Assessment of the information content of patterns: an algorithm
NASA Astrophysics Data System (ADS)
Daemi, M. Farhang; Beurle, R. L.
1991-12-01
A preliminary investigation confirmed the possibility of assessing the translational and rotational information content of simple artificial images. The calculation is tedious, and for more realistic patterns it is essential to implement the method on a computer. This paper describes an algorithm developed for this purpose which confirms the results of the preliminary investigation. Use of the algorithm facilitates much more comprehensive analysis of the combined effect of continuous rotation and fine translation, and paves the way for analysis of more realistic patterns. Owing to the volume of calculation involved in these algorithms, extensive computing facilities were necessary. The major part of the work was carried out using an ICL 3900 series mainframe computer as well as other powerful workstations such as a RISC architecture MIPS machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swesty, F. Douglas; Myra, Eric S.
It is now generally agreed that multidimensional, multigroup, neutrino-radiation hydrodynamics (RHD) is an indispensable element of any realistic model of stellar-core collapse, core-collapse supernovae, and proto-neutron star instabilities. We have developed a new, two-dimensional, multigroup algorithm that can model neutrino-RHD flows in core-collapse supernovae. Our algorithm uses an approach similar to the ZEUS family of algorithms, originally developed by Stone and Norman. However, this completely new implementation extends that previous work in three significant ways: first, we incorporate multispecies, multigroup RHD in a flux-limited-diffusion approximation. Our approach is capable of modeling pair-coupled neutrino-RHD, and includes effects of Pauli blocking inmore » the collision integrals. Blocking gives rise to nonlinearities in the discretized radiation-transport equations, which we evolve implicitly in time. We employ parallelized Newton-Krylov methods to obtain a solution of these nonlinear, implicit equations. Our second major extension to the ZEUS algorithm is the inclusion of an electron conservation equation that describes the evolution of electron-number density in the hydrodynamic flow. This permits calculating deleptonization of a stellar core. Our third extension modifies the hydrodynamics algorithm to accommodate realistic, complex equations of state, including those having nonconvex behavior. In this paper, we present a description of our complete algorithm, giving sufficient details to allow others to implement, reproduce, and extend our work. Finite-differencing details are presented in appendices. We also discuss implementation of this algorithm on state-of-the-art, parallel-computing architectures. Finally, we present results of verification tests that demonstrate the numerical accuracy of this algorithm on diverse hydrodynamic, gravitational, radiation-transport, and RHD sample problems. We believe our methods to be of general use in a variety of model settings where radiation transport or RHD is important. Extension of this work to three spatial dimensions is straightforward.« less
NASA Astrophysics Data System (ADS)
Bosca, Ryan J.; Jackson, Edward F.
2016-01-01
Assessing and mitigating the various sources of bias and variance associated with image quantification algorithms is essential to the use of such algorithms in clinical research and practice. Assessment is usually accomplished with grid-based digital reference objects (DRO) or, more recently, digital anthropomorphic phantoms based on normal human anatomy. Publicly available digital anthropomorphic phantoms can provide a basis for generating realistic model-based DROs that incorporate the heterogeneity commonly found in pathology. Using a publicly available vascular input function (VIF) and digital anthropomorphic phantom of a normal human brain, a methodology was developed to generate a DRO based on the general kinetic model (GKM) that represented realistic and heterogeneously enhancing pathology. GKM parameters were estimated from a deidentified clinical dynamic contrast-enhanced (DCE) MRI exam. This clinical imaging volume was co-registered with a discrete tissue model, and model parameters estimated from clinical images were used to synthesize a DCE-MRI exam that consisted of normal brain tissues and a heterogeneously enhancing brain tumor. An example application of spatial smoothing was used to illustrate potential applications in assessing quantitative imaging algorithms. A voxel-wise Bland-Altman analysis demonstrated negligible differences between the parameters estimated with and without spatial smoothing (using a small radius Gaussian kernel). In this work, we reported an extensible methodology for generating model-based anthropomorphic DROs containing normal and pathological tissue that can be used to assess quantitative imaging algorithms.
Generating soft shadows with a depth buffer algorithm
NASA Technical Reports Server (NTRS)
Brotman, L. S.; Badler, N. I.
1984-01-01
Computer-synthesized shadows used to appear with a sharp edge when cast onto a surface. At present the production of more realistic, soft shadows is considered. However, significant costs arise in connection with such a representation. The current investigation is concerned with a pragmatic approach, which combines an existing shadowing method with a popular visible surface rendering technique, called a 'depth buffer', to generate soft shadows resulting from light sources of finite extent. The considered method represents an extension of Crow's (1977) shadow volume algorithm.
NASA Technical Reports Server (NTRS)
Twomey, S.; Herman, B.; Rabinoff, R.
1977-01-01
An extension of the Chahine relaxation method (1970) for inverting the radiative transfer equation is presented. This method is superior to the original method in that it takes into account in a realistic manner the shape of the kernel function, and its extension to nonlinear systems is much more straightforward. A comparison of the new method with a matrix method due to Twomey (1965), in a problem involving inference of vertical distribution of ozone from spectroscopic measurements in the near ultraviolet, indicates that in this situation this method is stable with errors in the input data up to 4%, whereas the matrix method breaks down at these levels. The problem of non-uniqueness of the solution, which is a property of the system of equations rather than of any particular algorithm for solving them, remains, although it takes on slightly different forms for the two algorithms.
NASA Technical Reports Server (NTRS)
Kaushik, Dinesh K.; Baysal, Oktay
1997-01-01
Accurate computation of acoustic wave propagation may be more efficiently performed when their dispersion relations are considered. Consequently, computational algorithms which attempt to preserve these relations have been gaining popularity in recent years. In the present paper, the extensions to one such scheme are discussed. By solving the linearized, 2-D Euler and Navier-Stokes equations with such a method for the acoustic wave propagation, several issues were investigated. Among them were higher-order accuracy, choice of boundary conditions and differencing stencils, effects of viscosity, low-storage time integration, generalized curvilinear coordinates, periodic series, their reflections and interference patterns from a flat wall and scattering from a circular cylinder. The results were found to be promising en route to the aeroacoustic simulations of realistic engineering problems.
A new approach of data clustering using a flock of agents.
Picarougne, Fabien; Azzag, Hanene; Venturini, Gilles; Guinot, Christiane
2007-01-01
This paper presents a new bio-inspired algorithm (FClust) that dynamically creates and visualizes groups of data. This algorithm uses the concepts of a flock of agents that move together in a complex manner with simple local rules. Each agent represents one data. The agents move together in a 2D environment with the aim of creating homogeneous groups of data. These groups are visualized in real time, and help the domain expert to understand the underlying structure of the data set, like for example a realistic number of classes, clusters of similar data, isolated data. We also present several extensions of this algorithm, which reduce its computational cost, and make use of a 3D display. This algorithm is then tested on artificial and real-world data, and a heuristic algorithm is used to evaluate the relevance of the obtained partitioning.
From inverse problems to learning: a Statistical Mechanics approach
NASA Astrophysics Data System (ADS)
Baldassi, Carlo; Gerace, Federica; Saglietti, Luca; Zecchina, Riccardo
2018-01-01
We present a brief introduction to the statistical mechanics approaches for the study of inverse problems in data science. We then provide concrete new results on inferring couplings from sampled configurations in systems characterized by an extensive number of stable attractors in the low temperature regime. We also show how these result are connected to the problem of learning with realistic weak signals in computational neuroscience. Our techniques and algorithms rely on advanced mean-field methods developed in the context of disordered systems.
Development and application of unified algorithms for problems in computational science
NASA Technical Reports Server (NTRS)
Shankar, Vijaya; Chakravarthy, Sukumar
1987-01-01
A framework is presented for developing computationally unified numerical algorithms for solving nonlinear equations that arise in modeling various problems in mathematical physics. The concept of computational unification is an attempt to encompass efficient solution procedures for computing various nonlinear phenomena that may occur in a given problem. For example, in Computational Fluid Dynamics (CFD), a unified algorithm will be one that allows for solutions to subsonic (elliptic), transonic (mixed elliptic-hyperbolic), and supersonic (hyperbolic) flows for both steady and unsteady problems. The objectives are: development of superior unified algorithms emphasizing accuracy and efficiency aspects; development of codes based on selected algorithms leading to validation; application of mature codes to realistic problems; and extension/application of CFD-based algorithms to problems in other areas of mathematical physics. The ultimate objective is to achieve integration of multidisciplinary technologies to enhance synergism in the design process through computational simulation. Specific unified algorithms for a hierarchy of gas dynamics equations and their applications to two other areas: electromagnetic scattering, and laser-materials interaction accounting for melting.
Estimation of electric fields and current from ground-based magnetometer data
NASA Technical Reports Server (NTRS)
Kamide, Y.; Richmond, A. D.
1984-01-01
Recent advances in numerical algorithms for estimating ionospheric electric fields and currents from groundbased magnetometer data are reviewed and evaluated. Tests of the adequacy of one such algorithm in reproducing large-scale patterns of electrodynamic parameters in the high-latitude ionosphere have yielded generally positive results, at least for some simple cases. Some encouraging advances in producing realistic conductivity models, which are a critical input, are pointed out. When the algorithms are applied to extensive data sets, such as the ones from meridian chain magnetometer networks during the IMS, together with refined conductivity models, unique information on instantaneous electric field and current patterns can be obtained. Examples of electric potentials, ionospheric currents, field-aligned currents, and Joule heating distributions derived from ground magnetic data are presented. Possible directions for future improvements are also pointed out.
A rapid algorithm for realistic human reaching and its use in a virtual reality system
NASA Technical Reports Server (NTRS)
Aldridge, Ann; Pandya, Abhilash; Goldsby, Michael; Maida, James
1994-01-01
The Graphics Analysis Facility (GRAF) at JSC has developed a rapid algorithm for computing realistic human reaching. The algorithm was applied to GRAF's anthropometrically correct human model and used in a 3D computer graphics system and a virtual reality system. The nature of the algorithm and its uses are discussed.
Simulation of bright-field microscopy images depicting pap-smear specimen
Malm, Patrik; Brun, Anders; Bengtsson, Ewert
2015-01-01
As digital imaging is becoming a fundamental part of medical and biomedical research, the demand for computer-based evaluation using advanced image analysis is becoming an integral part of many research projects. A common problem when developing new image analysis algorithms is the need of large datasets with ground truth on which the algorithms can be tested and optimized. Generating such datasets is often tedious and introduces subjectivity and interindividual and intraindividual variations. An alternative to manually created ground-truth data is to generate synthetic images where the ground truth is known. The challenge then is to make the images sufficiently similar to the real ones to be useful in algorithm development. One of the first and most widely studied medical image analysis tasks is to automate screening for cervical cancer through Pap-smear analysis. As part of an effort to develop a new generation cervical cancer screening system, we have developed a framework for the creation of realistic synthetic bright-field microscopy images that can be used for algorithm development and benchmarking. The resulting framework has been assessed through a visual evaluation by experts with extensive experience of Pap-smear images. The results show that images produced using our described methods are realistic enough to be mistaken for real microscopy images. The developed simulation framework is very flexible and can be modified to mimic many other types of bright-field microscopy images. © 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of ISAC PMID:25573002
Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
Burbank, Kendra S
2015-12-01
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field's Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.
Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons
Burbank, Kendra S.
2015-01-01
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field’s Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks. PMID:26633645
Physical environment virtualization for human activities recognition
NASA Astrophysics Data System (ADS)
Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen
2015-05-01
Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.
Survey of Approaches to Generate Realistic Synthetic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Lee, Sangkeun; Powers, Sarah S
A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broadmore » set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.« less
NASA Astrophysics Data System (ADS)
Keane, Tommy P.; Saber, Eli; Rhody, Harvey; Savakis, Andreas; Raj, Jeffrey
2012-04-01
Contemporary research in automated panorama creation utilizes camera calibration or extensive knowledge of camera locations and relations to each other to achieve successful results. Research in image registration attempts to restrict these same camera parameters or apply complex point-matching schemes to overcome the complications found in real-world scenarios. This paper presents a novel automated panorama creation algorithm by developing an affine transformation search based on maximized mutual information (MMI) for region-based registration. Standard MMI techniques have been limited to applications with airborne/satellite imagery or medical images. We show that a novel MMI algorithm can approximate an accurate registration between views of realistic scenes of varying depth distortion. The proposed algorithm has been developed using stationary, color, surveillance video data for a scenario with no a priori camera-to-camera parameters. This algorithm is robust for strict- and nearly-affine-related scenes, while providing a useful approximation for the overlap regions in scenes related by a projective homography or a more complex transformation, allowing for a set of efficient and accurate initial conditions for pixel-based registration.
A synthetic dataset for evaluating soft and hard fusion algorithms
NASA Astrophysics Data System (ADS)
Graham, Jacob L.; Hall, David L.; Rimland, Jeffrey
2011-06-01
There is an emerging demand for the development of data fusion techniques and algorithms that are capable of combining conventional "hard" sensor inputs such as video, radar, and multispectral sensor data with "soft" data including textual situation reports, open-source web information, and "hard/soft" data such as image or video data that includes human-generated annotations. New techniques that assist in sense-making over a wide range of vastly heterogeneous sources are critical to improving tactical situational awareness in counterinsurgency (COIN) and other asymmetric warfare situations. A major challenge in this area is the lack of realistic datasets available for test and evaluation of such algorithms. While "soft" message sets exist, they tend to be of limited use for data fusion applications due to the lack of critical message pedigree and other metadata. They also lack corresponding hard sensor data that presents reasonable "fusion opportunities" to evaluate the ability to make connections and inferences that span the soft and hard data sets. This paper outlines the design methodologies, content, and some potential use cases of a COIN-based synthetic soft and hard dataset created under a United States Multi-disciplinary University Research Initiative (MURI) program funded by the U.S. Army Research Office (ARO). The dataset includes realistic synthetic reports from a variety of sources, corresponding synthetic hard data, and an extensive supporting database that maintains "ground truth" through logical grouping of related data into "vignettes." The supporting database also maintains the pedigree of messages and other critical metadata.
Non-Parametric Blur Map Regression for Depth of Field Extension.
D'Andres, Laurent; Salvador, Jordi; Kochale, Axel; Susstrunk, Sabine
2016-04-01
Real camera systems have a limited depth of field (DOF) which may cause an image to be degraded due to visible misfocus or too shallow DOF. In this paper, we present a blind deblurring pipeline able to restore such images by slightly extending their DOF and recovering sharpness in regions slightly out of focus. To address this severely ill-posed problem, our algorithm relies first on the estimation of the spatially varying defocus blur. Drawing on local frequency image features, a machine learning approach based on the recently introduced regression tree fields is used to train a model able to regress a coherent defocus blur map of the image, labeling each pixel by the scale of a defocus point spread function. A non-blind spatially varying deblurring algorithm is then used to properly extend the DOF of the image. The good performance of our algorithm is assessed both quantitatively, using realistic ground truth data obtained with a novel approach based on a plenoptic camera, and qualitatively with real images.
On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies
Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; Gonzalez-Castaño, Francisco Javier
2013-01-01
The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively. PMID:23939582
On maximizing the lifetime of Wireless Sensor Networks by optimally assigning energy supplies.
Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; González-Castano, Francisco Javier
2013-08-09
The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively.
NASA Technical Reports Server (NTRS)
Shaffer, Scott; Dunbar, R. Scott; Hsiao, S. Vincent; Long, David G.
1989-01-01
The NASA Scatterometer, NSCAT, is an active spaceborne radar designed to measure the normalized radar backscatter coefficient (sigma0) of the ocean surface. These measurements can, in turn, be used to infer the surface vector wind over the ocean using a geophysical model function. Several ambiguous wind vectors result because of the nature of the model function. A median-filter-based ambiguity removal algorithm will be used by the NSCAT ground data processor to select the best wind vector from the set of ambiguous wind vectors. This process is commonly known as dealiasing or ambiguity removal. The baseline NSCAT ambiguity removal algorithm and the method used to select the set of optimum parameter values are described. An extensive simulation of the NSCAT instrument and ground data processor provides a means of testing the resulting tuned algorithm. This simulation generates the ambiguous wind-field vectors expected from the instrument as it orbits over a set of realistic meoscale wind fields. The ambiguous wind field is then dealiased using the median-based ambiguity removal algorithm. Performance is measured by comparison of the unambiguous wind fields with the true wind fields. Results have shown that the median-filter-based ambiguity removal algorithm satisfies NSCAT mission requirements.
Holmes, T J; Liu, Y H
1989-11-15
A maximum likelihood based iterative algorithm adapted from nuclear medicine imaging for noncoherent optical imaging was presented in a previous publication with some initial computer-simulation testing. This algorithm is identical in form to that previously derived in a different way by W. H. Richardson "Bayesian-Based Iterative Method of Image Restoration," J. Opt. Soc. Am. 62, 55-59 (1972) and L. B. Lucy "An Iterative Technique for the Rectification of Observed Distributions," Astron. J. 79, 745-765 (1974). Foreseen applications include superresolution and 3-D fluorescence microscopy. This paper presents further simulation testing of this algorithm and a preliminary experiment with a defocused camera. The simulations show quantified resolution improvement as a function of iteration number, and they show qualitatively the trend in limitations on restored resolution when noise is present in the data. Also shown are results of a simulation in restoring missing-cone information for 3-D imaging. Conclusions are in support of the feasibility of using these methods with real systems, while computational cost and timing estimates indicate that it should be realistic to implement these methods. Itis suggested in the Appendix that future extensions to the maximum likelihood based derivation of this algorithm will address some of the limitations that are experienced with the nonextended form of the algorithm presented here.
Potential of dynamic spectrum allocation in LTE macro networks
NASA Astrophysics Data System (ADS)
Hoffmann, H.; Ramachandra, P.; Kovács, I. Z.; Jorguseski, L.; Gunnarsson, F.; Kürner, T.
2015-11-01
In recent years Mobile Network Operators (MNOs) worldwide are extensively deploying LTE networks in different spectrum bands and utilising different bandwidth configurations. Initially, the deployment is coverage oriented with macro cells using the lower LTE spectrum bands. As the offered traffic (i.e. the requested traffic from the users) increases the LTE deployment evolves with macro cells expanded with additional capacity boosting LTE carriers in higher frequency bands complemented with micro or small cells in traffic hotspot areas. For MNOs it is crucial to use the LTE spectrum assets, as well as the installed network infrastructure, in the most cost efficient way. The dynamic spectrum allocation (DSA) aims at (de)activating the available LTE frequency carriers according to the temporal and spatial traffic variations in order to increase the overall LTE system performance in terms of total network capacity by reducing the interference. This paper evaluates the DSA potential of achieving the envisaged performance improvement and identifying in which system and traffic conditions the DSA should be deployed. A self-optimised network (SON) DSA algorithm is also proposed and evaluated. The evaluations have been carried out in a hexagonal and a realistic site-specific urban macro layout assuming a central traffic hotspot area surrounded with an area of lower traffic with a total size of approximately 8 × 8 km2. The results show that up to 47 % and up to 40 % possible DSA gains are achievable with regards to the carried system load (i.e. used resources) for homogenous traffic distribution with hexagonal layout and for realistic site-specific urban macro layout, respectively. The SON DSA algorithm evaluation in a realistic site-specific urban macro cell deployment scenario including realistic non-uniform spatial traffic distribution shows insignificant cell throughput (i.e. served traffic) performance gains. Nevertheless, in the SON DSA investigations, a gain of up to 25 % has been observed when analysing the resource utilisation in the non-hotspot cells.
A boundedness result for the direct heuristic dynamic programming.
Liu, Feng; Sun, Jian; Si, Jennie; Guo, Wentao; Mei, Shengwei
2012-08-01
Approximate/adaptive dynamic programming (ADP) has been studied extensively in recent years for its potential scalability to solve large state and control space problems, including those involving continuous states and continuous controls. The applicability of ADP algorithms, especially the adaptive critic designs has been demonstrated in several case studies. Direct heuristic dynamic programming (direct HDP) is one of the ADP algorithms inspired by the adaptive critic designs. It has been shown applicable to industrial scale, realistic and complex control problems. In this paper, we provide a uniformly ultimately boundedness (UUB) result for the direct HDP learning controller under mild and intuitive conditions. By using a Lyapunov approach we show that the estimation errors of the learning parameters or the weights in the action and critic networks remain UUB. This result provides a useful controller convergence guarantee for the first time for the direct HDP design. Copyright © 2012 Elsevier Ltd. All rights reserved.
Flocking algorithm for autonomous flying robots.
Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás
2014-06-01
Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks.
Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.
Huson, Daniel H; Linz, Simone
2018-01-01
A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.
Supercomputer implementation of finite element algorithms for high speed compressible flows
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.
1986-01-01
Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.
NASA Astrophysics Data System (ADS)
Grilli, Stéphan T.; Guérin, Charles-Antoine; Shelby, Michael; Grilli, Annette R.; Moran, Patrick; Grosdidier, Samuel; Insua, Tania L.
2017-08-01
In past work, tsunami detection algorithms (TDAs) have been proposed, and successfully applied to offline tsunami detection, based on analyzing tsunami currents inverted from high-frequency (HF) radar Doppler spectra. With this method, however, the detection of small and short-lived tsunami currents in the most distant radar ranges is challenging due to conflicting requirements on the Doppler spectra integration time and resolution. To circumvent this issue, in Part I of this work, we proposed an alternative TDA, referred to as time correlation (TC) TDA, that does not require inverting currents, but instead detects changes in patterns of correlations of radar signal time series measured in pairs of cells located along the main directions of tsunami propagation (predicted by geometric optics theory); such correlations can be maximized when one signal is time-shifted by the pre-computed long wave propagation time. We initially validated the TC-TDA based on numerical simulations of idealized tsunamis in a simplified geometry. Here, we further develop, extend, and apply the TC algorithm to more realistic tsunami case studies. These are performed in the area West of Vancouver Island, BC, where Ocean Networks Canada recently deployed a HF radar (in Tofino, BC), to detect tsunamis from far- and near-field sources, up to a 110 km range. Two case studies are considered, both simulated using long wave models (1) a far-field seismic, and (2) a near-field landslide, tsunami. Pending the availability of radar data, a radar signal simulator is parameterized for the Tofino HF radar characteristics, in particular its signal-to-noise ratio with range, and combined with the simulated tsunami currents to produce realistic time series of backscattered radar signal from a dense grid of cells. Numerical experiments show that the arrival of a tsunami causes a clear change in radar signal correlation patterns, even at the most distant ranges beyond the continental shelf, thus making an early tsunami detection possible with the TC-TDA. Based on these results, we discuss how the new algorithm could be combined with standard methods proposed earlier, based on a Doppler analysis, to develop a new tsunami detection system based on HF radar data, that could increase warning time. This will be the object of future work, which will be based on actual, rather than simulated, radar data.
Probability Distributions over Cryptographic Protocols
2009-06-01
Artificial Immune Algorithm . . . . . . . . . . . . . . . . . . . 9 3 Design Decisions 11 3.1 Common Ground...creation algorithm for unbounded distribution . . . . . . . 24 4.2 Message creation algorithm for unbounded naive distribution . . . . 24 4.3 Protocol...creation algorithm for intended-run distributions . . . . . . 26 4.4 Protocol and message creation algorithm for realistic distribution . . 32 ix THIS
Ruusuvuori, Pekka; Aijö, Tarmo; Chowdhury, Sharif; Garmendia-Torres, Cecilia; Selinummi, Jyrki; Birbaumer, Mirko; Dudley, Aimée M; Pelkmans, Lucas; Yli-Harja, Olli
2010-05-13
Several algorithms have been proposed for detecting fluorescently labeled subcellular objects in microscope images. Many of these algorithms have been designed for specific tasks and validated with limited image data. But despite the potential of using extensive comparisons between algorithms to provide useful information to guide method selection and thus more accurate results, relatively few studies have been performed. To better understand algorithm performance under different conditions, we have carried out a comparative study including eleven spot detection or segmentation algorithms from various application fields. We used microscope images from well plate experiments with a human osteosarcoma cell line and frames from image stacks of yeast cells in different focal planes. These experimentally derived images permit a comparison of method performance in realistic situations where the number of objects varies within image set. We also used simulated microscope images in order to compare the methods and validate them against a ground truth reference result. Our study finds major differences in the performance of different algorithms, in terms of both object counts and segmentation accuracies. These results suggest that the selection of detection algorithms for image based screens should be done carefully and take into account different conditions, such as the possibility of acquiring empty images or images with very few spots. Our inclusion of methods that have not been used before in this context broadens the set of available detection methods and compares them against the current state-of-the-art methods for subcellular particle detection.
A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model
NASA Astrophysics Data System (ADS)
Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge
2016-12-01
A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.
NASA Astrophysics Data System (ADS)
Kazantsev, Daniil; Pickalov, Valery; Nagella, Srikanth; Pasca, Edoardo; Withers, Philip J.
2018-01-01
In the field of computerized tomographic imaging, many novel reconstruction techniques are routinely tested using simplistic numerical phantoms, e.g. the well-known Shepp-Logan phantom. These phantoms cannot sufficiently cover the broad spectrum of applications in CT imaging where, for instance, smooth or piecewise-smooth 3D objects are common. TomoPhantom provides quick access to an external library of modular analytical 2D/3D phantoms with temporal extensions. In TomoPhantom, quite complex phantoms can be built using additive combinations of geometrical objects, such as, Gaussians, parabolas, cones, ellipses, rectangles and volumetric extensions of them. Newly designed phantoms are better suited for benchmarking and testing of different image processing techniques. Specifically, tomographic reconstruction algorithms which employ 2D and 3D scanning geometries, can be rigorously analyzed using the software. TomoPhantom also provides a capability of obtaining analytical tomographic projections which further extends the applicability of software towards more realistic, free from the "inverse crime" testing. All core modules of the package are written in the C-OpenMP language and wrappers for Python and MATLAB are provided to enable easy access. Due to C-based multi-threaded implementation, volumetric phantoms of high spatial resolution can be obtained with computational efficiency.
Feature Reinforcement Learning: Part I. Unstructured MDPs
NASA Astrophysics Data System (ADS)
Hutter, Marcus
2009-12-01
General-purpose, intelligent, learning agents cycle through sequences of observations, actions, and rewards that are complex, uncertain, unknown, and non-Markovian. On the other hand, reinforcement learning is well-developed for small finite state Markov decision processes (MDPs). Up to now, extracting the right state representations out of bare observations, that is, reducing the general agent setup to the MDP framework, is an art that involves significant effort by designers. The primary goal of this work is to automate the reduction process and thereby significantly expand the scope of many existing reinforcement learning algorithms and the agents that employ them. Before we can think of mechanizing this search for suitable MDPs, we need a formal objective criterion. The main contribution of this article is to develop such a criterion. I also integrate the various parts into one learning algorithm. Extensions to more realistic dynamic Bayesian networks are developed in Part II (Hutter, 2009c). The role of POMDPs is also considered there.
AutoBayes Program Synthesis System System Internals
NASA Technical Reports Server (NTRS)
Schumann, Johann Martin
2011-01-01
This lecture combines the theoretical background of schema based program synthesis with the hands-on study of a powerful, open-source program synthesis system (Auto-Bayes). Schema-based program synthesis is a popular approach toward program synthesis. The lecture will provide an introduction into this topic and discuss how this technology can be used to generate customized algorithms. The synthesis of advanced numerical algorithms requires the availability of a powerful symbolic (algebra) system. Its task is to symbolically solve equations, simplify expressions, or to symbolically calculate derivatives (among others) such that the synthesized algorithms become as efficient as possible. We will discuss the use and importance of the symbolic system for synthesis. Any synthesis system is a large and complex piece of code. In this lecture, we will study Autobayes in detail. AutoBayes has been developed at NASA Ames and has been made open source. It takes a compact statistical specification and generates a customized data analysis algorithm (in C/C++) from it. AutoBayes is written in SWI Prolog and many concepts from rewriting, logic, functional, and symbolic programming. We will discuss the system architecture, the schema libary and the extensive support infra-structure. Practical hands-on experiments and exercises will enable the student to get insight into a realistic program synthesis system and provides knowledge to use, modify, and extend Autobayes.
Silletta, Emilia V; Franzoni, María B; Monti, Gustavo A; Acosta, Rodolfo H
2018-01-01
Two-dimension (2D) Nuclear Magnetic Resonance relaxometry experiments are a powerful tool extensively used to probe the interaction among different pore structures, mostly in inorganic systems. The analysis of the collected experimental data generally consists of a 2D numerical inversion of time-domain data where T 2 -T 2 maps are generated. Through the years, different algorithms for the numerical inversion have been proposed. In this paper, two different algorithms for numerical inversion are tested and compared under different conditions of exchange dynamics; the method based on Butler-Reeds-Dawson (BRD) algorithm and the fast-iterative shrinkage-thresholding algorithm (FISTA) method. By constructing a theoretical model, the algorithms were tested for a two- and three-site porous media, varying the exchange rates parameters, the pore sizes and the signal to noise ratio. In order to test the methods under realistic experimental conditions, a challenging organic system was chosen. The molecular exchange rates of water confined in hierarchical porous polymeric networks were obtained, for a two- and three-site porous media. Data processed with the BRD method was found to be accurate only under certain conditions of the exchange parameters, while data processed with the FISTA method is precise for all the studied parameters, except when SNR conditions are extreme. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.
2015-08-01
We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.
Improving UWB-Based Localization in IoT Scenarios with Statistical Models of Distance Error.
Monica, Stefania; Ferrari, Gianluigi
2018-05-17
Interest in the Internet of Things (IoT) is rapidly increasing, as the number of connected devices is exponentially growing. One of the application scenarios envisaged for IoT technologies involves indoor localization and context awareness. In this paper, we focus on a localization approach that relies on a particular type of communication technology, namely Ultra Wide Band (UWB). UWB technology is an attractive choice for indoor localization, owing to its high accuracy. Since localization algorithms typically rely on estimated inter-node distances, the goal of this paper is to evaluate the improvement brought by a simple (linear) statistical model of the distance error. On the basis of an extensive experimental measurement campaign, we propose a general analytical framework, based on a Least Square (LS) method, to derive a novel statistical model for the range estimation error between a pair of UWB nodes. The proposed statistical model is then applied to improve the performance of a few illustrative localization algorithms in various realistic scenarios. The obtained experimental results show that the use of the proposed statistical model improves the accuracy of the considered localization algorithms with a reduction of the localization error up to 66%.
Ma, Xiang; Schonfeld, Dan; Khokhar, Ashfaq A
2009-06-01
In this paper, we propose a novel solution to an arbitrary noncausal, multidimensional hidden Markov model (HMM) for image and video classification. First, we show that the noncausal model can be solved by splitting it into multiple causal HMMs and simultaneously solving each causal HMM using a fully synchronous distributed computing framework, therefore referred to as distributed HMMs. Next we present an approximate solution to the multiple causal HMMs that is based on an alternating updating scheme and assumes a realistic sequential computing framework. The parameters of the distributed causal HMMs are estimated by extending the classical 1-D training and classification algorithms to multiple dimensions. The proposed extension to arbitrary causal, multidimensional HMMs allows state transitions that are dependent on all causal neighbors. We, thus, extend three fundamental algorithms to multidimensional causal systems, i.e., 1) expectation-maximization (EM), 2) general forward-backward (GFB), and 3) Viterbi algorithms. In the simulations, we choose to limit ourselves to a noncausal 2-D model whose noncausality is along a single dimension, in order to significantly reduce the computational complexity. Simulation results demonstrate the superior performance, higher accuracy rate, and applicability of the proposed noncausal HMM framework to image and video classification.
Loudos, George K; Papadimitroulas, Panagiotis G; Kagadis, George C
2014-01-01
Monte Carlo (MC) simulations play a crucial role in nuclear medical imaging since they can provide the ground truth for clinical acquisitions, by integrating and quantifing all physical parameters that affect image quality. The last decade a number of realistic computational anthropomorphic models have been developed to serve imaging, as well as other biomedical engineering applications. The combination of MC techniques with realistic computational phantoms can provide a powerful tool for pre and post processing in imaging, data analysis and dosimetry. This work aims to create a global database for simulated Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) exams and the methodology, as well as the first elements are presented. Simulations are performed using the well validated GATE opensource toolkit, standard anthropomorphic phantoms and activity distribution of various radiopharmaceuticals, derived from literature. The resulting images, projections and sinograms of each study are provided in the database and can be further exploited to evaluate processing and reconstruction algorithms. Patient studies using different characteristics are included in the database and different computational phantoms were tested for the same acquisitions. These include the XCAT, Zubal and the Virtual Family, which some of which are used for the first time in nuclear imaging. The created database will be freely available and our current work is towards its extension by simulating additional clinical pathologies.
Fast state estimation subject to random data loss in discrete-time nonlinear stochastic systems
NASA Astrophysics Data System (ADS)
Mahdi Alavi, S. M.; Saif, Mehrdad
2013-12-01
This paper focuses on the design of the standard observer in discrete-time nonlinear stochastic systems subject to random data loss. By the assumption that the system response is incrementally bounded, two sufficient conditions are subsequently derived that guarantee exponential mean-square stability and fast convergence of the estimation error for the problem at hand. An efficient algorithm is also presented to obtain the observer gain. Finally, the proposed methodology is employed for monitoring the Continuous Stirred Tank Reactor (CSTR) via a wireless communication network. The effectiveness of the designed observer is extensively assessed by using an experimental tested-bed that has been fabricated for performance evaluation of the over wireless-network estimation techniques under realistic radio channel conditions.
NASA Astrophysics Data System (ADS)
Coudarcher, Rémi; Duculty, Florent; Serot, Jocelyn; Jurie, Frédéric; Derutin, Jean-Pierre; Dhome, Michel
2005-12-01
SKiPPER is a SKeleton-based Parallel Programming EnviRonment being developed since 1996 and running at LASMEA Laboratory, the Blaise-Pascal University, France. The main goal of the project was to demonstrate the applicability of skeleton-based parallel programming techniques to the fast prototyping of reactive vision applications. This paper deals with the special features embedded in the latest version of the project: algorithmic skeleton nesting capabilities and a fully dynamic operating model. Throughout the case study of a complete and realistic image processing application, in which we have pointed out the requirement for skeleton nesting, we are presenting the operating model of this feature. The work described here is one of the few reported experiments showing the application of skeleton nesting facilities for the parallelisation of a realistic application, especially in the area of image processing. The image processing application we have chosen is a 3D face-tracking algorithm from appearance.
Floares, Alexandru George
2008-01-01
Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.
Visual difference metric for realistic image synthesis
NASA Astrophysics Data System (ADS)
Bolin, Mark R.; Meyer, Gary W.
1999-05-01
An accurate and efficient model of human perception has been developed to control the placement of sample in a realistic image synthesis algorithm. Previous sampling techniques have sought to spread the error equally across the image plane. However, this approach neglects the fact that the renderings are intended to be displayed for a human observer. The human visual system has a varying sensitivity to error that is based upon the viewing context. This means that equivalent optical discrepancies can be very obvious in one situation and imperceptible in another. It is ultimately the perceptibility of this error that governs image quality and should be used as the basis of a sampling algorithm. This paper focuses on a simplified version of the Lubin Visual Discrimination Metric (VDM) that was developed for insertion into an image synthesis algorithm. The sampling VDM makes use of a Haar wavelet basis for the cortical transform and a less severe spatial pooling operation. The model was extended for color including the effects of chromatic aberration. Comparisons are made between the execution time and visual difference map for the original Lubin and simplified visual difference metrics. Results for the realistic image synthesis algorithm are also presented.
NASA Astrophysics Data System (ADS)
Nightingale, James; Wang, Qi; Grecos, Christos
2011-03-01
Users of the next generation wireless paradigm known as multihomed mobile networks expect satisfactory quality of service (QoS) when accessing streamed multimedia content. The recent H.264 Scalable Video Coding (SVC) extension to the Advanced Video Coding standard (AVC), offers the facility to adapt real-time video streams in response to the dynamic conditions of multiple network paths encountered in multihomed wireless mobile networks. Nevertheless, preexisting streaming algorithms were mainly proposed for AVC delivery over multipath wired networks and were evaluated by software simulation. This paper introduces a practical, hardware-based testbed upon which we implement and evaluate real-time H.264 SVC streaming algorithms in a realistic multihomed wireless mobile networks environment. We propose an optimised streaming algorithm with multi-fold technical contributions. Firstly, we extended the AVC packet prioritisation schemes to reflect the three-dimensional granularity of SVC. Secondly, we designed a mechanism for evaluating the effects of different streamer 'read ahead window' sizes on real-time performance. Thirdly, we took account of the previously unconsidered path switching and mobile networks tunnelling overheads encountered in real-world deployments. Finally, we implemented a path condition monitoring and reporting scheme to facilitate the intelligent path switching. The proposed system has been experimentally shown to offer a significant improvement in PSNR of the received stream compared with representative existing algorithms.
Dynamic Power Distribution System Management With a Locally Connected Communication Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhang, Kaiqing; Basar, Tamer
Coordinated optimization and control of distribution-level assets can enable a reliable and optimal integration of massive amount of distributed energy resources (DERs) and facilitate distribution system management (DSM). Accordingly, the objective is to coordinate the power injection at the DERs to maintain certain quantities across the network, e.g., voltage magnitude, line flows, or line losses, to be close to a desired profile. By and large, the performance of the DSM algorithms has been challenged by two factors: i) the possibly non-strongly connected communication network over DERs that hinders the coordination; ii) the dynamics of the real system caused by themore » DERs with heterogeneous capabilities, time-varying operating conditions, and real-time measurement mismatches. In this paper, we investigate the modeling and algorithm design and analysis with the consideration of these two factors. In particular, a game theoretic characterization is first proposed to account for a locally connected communication network over DERs, along with the analysis of the existence and uniqueness of the Nash equilibrium (NE) therein. To achieve the equilibrium in a distributed fashion, a projected-gradient-based asynchronous DSM algorithm is then advocated. The algorithm performance, including the convergence speed and the tracking error, is analytically guaranteed under the dynamic setting. Extensive numerical tests on both synthetic and realistic cases corroborate the analytical results derived.« less
32 CFR 644.547 - Extensions of time.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ESTATE HANDBOOK Disposal Sale Procedure § 644.547 Extensions of time. Granting an extension of time... development and administration of sales programs will help to avoid unjustified requests for extensions of time: (a) Establishment of realistic periods for completion of the sales contract. (b) Necessary and...
32 CFR 644.547 - Extensions of time.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ESTATE HANDBOOK Disposal Sale Procedure § 644.547 Extensions of time. Granting an extension of time... development and administration of sales programs will help to avoid unjustified requests for extensions of time: (a) Establishment of realistic periods for completion of the sales contract. (b) Necessary and...
Benchmarking protein classification algorithms via supervised cross-validation.
Kertész-Farkas, Attila; Dhir, Somdutta; Sonego, Paolo; Pacurar, Mircea; Netoteia, Sergiu; Nijveen, Harm; Kuzniar, Arnold; Leunissen, Jack A M; Kocsor, András; Pongor, Sándor
2008-04-24
Development and testing of protein classification algorithms are hampered by the fact that the protein universe is characterized by groups vastly different in the number of members, in average protein size, similarity within group, etc. Datasets based on traditional cross-validation (k-fold, leave-one-out, etc.) may not give reliable estimates on how an algorithm will generalize to novel, distantly related subtypes of the known protein classes. Supervised cross-validation, i.e., selection of test and train sets according to the known subtypes within a database has been successfully used earlier in conjunction with the SCOP database. Our goal was to extend this principle to other databases and to design standardized benchmark datasets for protein classification. Hierarchical classification trees of protein categories provide a simple and general framework for designing supervised cross-validation strategies for protein classification. Benchmark datasets can be designed at various levels of the concept hierarchy using a simple graph-theoretic distance. A combination of supervised and random sampling was selected to construct reduced size model datasets, suitable for algorithm comparison. Over 3000 new classification tasks were added to our recently established protein classification benchmark collection that currently includes protein sequence (including protein domains and entire proteins), protein structure and reading frame DNA sequence data. We carried out an extensive evaluation based on various machine-learning algorithms such as nearest neighbor, support vector machines, artificial neural networks, random forests and logistic regression, used in conjunction with comparison algorithms, BLAST, Smith-Waterman, Needleman-Wunsch, as well as 3D comparison methods DALI and PRIDE. The resulting datasets provide lower, and in our opinion more realistic estimates of the classifier performance than do random cross-validation schemes. A combination of supervised and random sampling was used to construct model datasets, suitable for algorithm comparison.
An efficient method for removing point sources from full-sky radio interferometric maps
NASA Astrophysics Data System (ADS)
Berger, Philippe; Oppermann, Niels; Pen, Ue-Li; Shaw, J. Richard
2017-12-01
A new generation of wide-field radio interferometers designed for 21-cm surveys is being built as drift scan instruments allowing them to observe large fractions of the sky. With large numbers of antennas and frequency channels, the enormous instantaneous data rates of these telescopes require novel, efficient, data management and analysis techniques. The m-mode formalism exploits the periodicity of such data with the sidereal day, combined with the assumption of statistical isotropy of the sky, to achieve large computational savings and render optimal analysis methods computationally tractable. We present an extension to that work that allows us to adopt a more realistic sky model and treat objects such as bright point sources. We develop a linear procedure for deconvolving maps, using a Wiener filter reconstruction technique, which simultaneously allows filtering of these unwanted components. We construct an algorithm, based on the Sherman-Morrison-Woodbury formula, to efficiently invert the data covariance matrix, as required for any optimal signal-to-noise ratio weighting. The performance of our algorithm is demonstrated using simulations of a cylindrical transit telescope.
On Super-Resolution and the MUSIC Algorithm,
1985-05-01
SUPER-RESOLUTION AND THE MUSIC ALGORITHM AUTHOR: G D de Villiers DATE: May 1985 SUMMARY Simulation results for phased array signal processing using...the MUSIC algorithm are presented. The model used is more realistic than previous ones and it gives an indication as to how the algorithm would perform...resolution ON SUPER-RESOLUTION AND THE MUSIC ALGORITHM 1. INTRODUCTION At present there is a considerable amount of interest in "high-resolution" b
A Novel Walking Detection and Step Counting Algorithm Using Unconstrained Smartphones.
Kang, Xiaomin; Huang, Baoqi; Qi, Guodong
2018-01-19
Recently, with the development of artificial intelligence technologies and the popularity of mobile devices, walking detection and step counting have gained much attention since they play an important role in the fields of equipment positioning, saving energy, behavior recognition, etc. In this paper, a novel algorithm is proposed to simultaneously detect walking motion and count steps through unconstrained smartphones in the sense that the smartphone placement is not only arbitrary but also alterable. On account of the periodicity of the walking motion and sensitivity of gyroscopes, the proposed algorithm extracts the frequency domain features from three-dimensional (3D) angular velocities of a smartphone through FFT (fast Fourier transform) and identifies whether its holder is walking or not irrespective of its placement. Furthermore, the corresponding step frequency is recursively updated to evaluate the step count in real time. Extensive experiments are conducted by involving eight subjects and different walking scenarios in a realistic environment. It is shown that the proposed method achieves the precision of 93.76 % and recall of 93.65 % for walking detection, and its overall performance is significantly better than other well-known methods. Moreover, the accuracy of step counting by the proposed method is 95.74 % , and is better than both of the several well-known counterparts and commercial products.
Higher representations on the lattice: Numerical simulations, SU(2) with adjoint fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Debbio, Luigi; Patella, Agostino; Pica, Claudio
2010-05-01
We discuss the lattice formulation of gauge theories with fermions in arbitrary representations of the color group and present in detail the implementation of the hybrid Monte Carlo (HMC)/rational HMC algorithm for simulating dynamical fermions. We discuss the validation of the implementation through an extensive set of tests and the stability of simulations by monitoring the distribution of the lowest eigenvalue of the Wilson-Dirac operator. Working with two flavors of Wilson fermions in the adjoint representation, benchmark results for realistic lattice simulations are presented. Runs are performed on different lattice sizes ranging from 4{sup 3}x8 to 24{sup 3}x64 sites. Formore » the two smallest lattices we also report the measured values of benchmark mesonic observables. These results can be used as a baseline for rapid cross-checks of simulations in higher representations. The results presented here are the first steps toward more extensive investigations with controlled systematic errors, aiming at a detailed understanding of the phase structure of these theories, and of their viability as candidates for strong dynamics beyond the standard model.« less
A collision detection algorithm for telerobotic arms
NASA Technical Reports Server (NTRS)
Tran, Doan Minh; Bartholomew, Maureen Obrien
1991-01-01
The telerobotic manipulator's collision detection algorithm is described. Its applied structural model of the world environment and template representation of objects is evaluated. Functional issues that are required for the manipulator to operate in a more complex and realistic environment are discussed.
NASA Astrophysics Data System (ADS)
Youn, J.; Kim, T.
2016-06-01
Visualization of disaster dispersion prediction enables decision makers and civilian to prepare disaster and to reduce the damage by showing the realistic simulation results. With advances of GIS technology and the theory of volcanic disaster prediction algorithm, the predicted disaster dispersions are displayed in spatial information. However, most of volcanic ash dispersion predictions are displayed in 2D. 2D visualization has a limitation to understand the realistic dispersion prediction since its height could be presented only by colour. Especially for volcanic ash, 3D visualization of dispersion prediction is essential since it could bring out big aircraft accident. In this paper, we deals with 3D visualization techniques of volcanic ash dispersion prediction with spatial information open platform in Korea. First, time-series volcanic ash 3D position and concentrations are calculated with WRF (Weather Research and Forecasting) model and Modified Fall3D algorithm. For 3D visualization, we propose three techniques; those are 'Cube in the air', 'Cube in the cube', and 'Semi-transparent plane in the air' methods. In the 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Big cube is not realistic when it is zoomed. Therefore, cube is divided into small cube with Octree algorithm. That is 'Cube in the Cube' algorithm. For more realistic visualization, we apply 'Semi-transparent Volcanic Ash Plane' which shows the ash as fog. The results are displayed in the 'V-world' which is a spatial information open platform implemented by Korean government. Proposed techniques were adopted in Volcanic Disaster Response System implemented by Korean Ministry of Public Safety and Security.
Protein structure prediction with local adjust tabu search algorithm
2014-01-01
Background Protein folding structure prediction is one of the most challenging problems in the bioinformatics domain. Because of the complexity of the realistic protein structure, the simplified structure model and the computational method should be adopted in the research. The AB off-lattice model is one of the simplification models, which only considers two classes of amino acids, hydrophobic (A) residues and hydrophilic (B) residues. Results The main work of this paper is to discuss how to optimize the lowest energy configurations in 2D off-lattice model and 3D off-lattice model by using Fibonacci sequences and real protein sequences. In order to avoid falling into local minimum and faster convergence to the global minimum, we introduce a novel method (SATS) to the protein structure problem, which combines simulated annealing algorithm and tabu search algorithm. Various strategies, such as the new encoding strategy, the adaptive neighborhood generation strategy and the local adjustment strategy, are adopted successfully for high-speed searching the optimal conformation corresponds to the lowest energy of the protein sequences. Experimental results show that some of the results obtained by the improved SATS are better than those reported in previous literatures, and we can sure that the lowest energy folding state for short Fibonacci sequences have been found. Conclusions Although the off-lattice models is not very realistic, they can reflect some important characteristics of the realistic protein. It can be found that 3D off-lattice model is more like native folding structure of the realistic protein than 2D off-lattice model. In addition, compared with some previous researches, the proposed hybrid algorithm can more effectively and more quickly search the spatial folding structure of a protein chain. PMID:25474708
NASA Astrophysics Data System (ADS)
Taylor, Thomas E.; L'Ecuyer, Tristan; Slusser, James; Stephens, Graeme; Krotkov, Nick; Davis, John; Goering, Christian
2005-08-01
Extensive sensitivity and error characteristics of a recently developed optimal estimation retrieval algorithm which simultaneously determines aerosol optical depth (AOD), aerosol single scatter albedo (SSA) and total ozone column (TOC) from ultra-violet irradiances are described. The algorithm inverts measured diffuse and direct irradiances at 7 channels in the UV spectral range obtained from the United States Department of Agriculture's (USDA) UV-B Monitoring and Research Program's (UVMRP) network of 33 ground-based UV-MFRSR instruments to produce aerosol optical properties and TOC at all seven wavelengths. Sensitivity studies of the Tropospheric Ultra-violet/Visible (TUV) radiative transfer model performed for various operating modes (Delta-Eddington versus n-stream Discrete Ordinate) over domains of AOD, SSA, TOC, asymmetry parameter and surface albedo show that the solutions are well constrained. Realistic input error budgets and diagnostic and error outputs from the retrieval are analyzed to demonstrate the atmospheric conditions under which the retrieval provides useful and significant results. After optimizing the algorithm for the USDA site in Panther Junction, Texas the retrieval algorithm was run on a cloud screened set of irradiance measurements for the month of May 2003. Comparisons to independently derived AOD's are favorable with root mean square (RMS) differences of about 3% to 7% at 300nm and less than 1% at 368nm, on May 12 and 22, 2003. This retrieval method will be used to build an aerosol climatology and provide ground-truthing of satellite measurements by running it operationally on the USDA UV network database.
Liu, Hesheng; Schimpf, Paul H; Dong, Guoya; Gao, Xiaorong; Yang, Fusheng; Gao, Shangkai
2005-10-01
This paper presents a new algorithm called Standardized Shrinking LORETA-FOCUSS (SSLOFO) for solving the electroencephalogram (EEG) inverse problem. Multiple techniques are combined in a single procedure to robustly reconstruct the underlying source distribution with high spatial resolution. This algorithm uses a recursive process which takes the smooth estimate of sLORETA as initialization and then employs the re-weighted minimum norm introduced by FOCUSS. An important technique called standardization is involved in the recursive process to enhance the localization ability. The algorithm is further improved by automatically adjusting the source space according to the estimate of the previous step, and by the inclusion of temporal information. Simulation studies are carried out on both spherical and realistic head models. The algorithm achieves very good localization ability on noise-free data. It is capable of recovering complex source configurations with arbitrary shapes and can produce high quality images of extended source distributions. We also characterized the performance with noisy data in a realistic head model. An important feature of this algorithm is that the temporal waveforms are clearly reconstructed, even for closely spaced sources. This provides a convenient way to estimate neural dynamics directly from the cortical sources.
NASA Astrophysics Data System (ADS)
Oda, Hirokuni; Xuan, Chuang
2014-10-01
development of pass-through superconducting rock magnetometers (SRM) has greatly promoted collection of paleomagnetic data from continuous long-core samples. The output of pass-through measurement is smoothed and distorted due to convolution of magnetization with the magnetometer sensor response. Although several studies could restore high-resolution paleomagnetic signal through deconvolution of pass-through measurement, difficulties in accurately measuring the magnetometer sensor response have hindered the application of deconvolution. We acquired reliable sensor response of an SRM at the Oregon State University based on repeated measurements of a precisely fabricated magnetic point source. In addition, we present an improved deconvolution algorithm based on Akaike's Bayesian Information Criterion (ABIC) minimization, incorporating new parameters to account for errors in sample measurement position and length. The new algorithm was tested using synthetic data constructed by convolving "true" paleomagnetic signal containing an "excursion" with the sensor response. Realistic noise was added to the synthetic measurement using Monte Carlo method based on measurement noise distribution acquired from 200 repeated measurements of a u-channel sample. Deconvolution of 1000 synthetic measurements with realistic noise closely resembles the "true" magnetization, and successfully restored fine-scale magnetization variations including the "excursion." Our analyses show that inaccuracy in sample measurement position and length significantly affects deconvolution estimation, and can be resolved using the new deconvolution algorithm. Optimized deconvolution of 20 repeated measurements of a u-channel sample yielded highly consistent deconvolution results and estimates of error in sample measurement position and length, demonstrating the reliability of the new deconvolution algorithm for real pass-through measurements.
A Fast Algorithm for the Convolution of Functions with Compact Support Using Fourier Extensions
Xu, Kuan; Austin, Anthony P.; Wei, Ke
2017-12-21
In this paper, we present a new algorithm for computing the convolution of two compactly supported functions. The algorithm approximates the functions to be convolved using Fourier extensions and then uses the fast Fourier transform to efficiently compute Fourier extension approximations to the pieces of the result. Finally, the complexity of the algorithm is O(N(log N) 2), where N is the number of degrees of freedom used in each of the Fourier extensions.
A Fast Algorithm for the Convolution of Functions with Compact Support Using Fourier Extensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kuan; Austin, Anthony P.; Wei, Ke
In this paper, we present a new algorithm for computing the convolution of two compactly supported functions. The algorithm approximates the functions to be convolved using Fourier extensions and then uses the fast Fourier transform to efficiently compute Fourier extension approximations to the pieces of the result. Finally, the complexity of the algorithm is O(N(log N) 2), where N is the number of degrees of freedom used in each of the Fourier extensions.
NASA Astrophysics Data System (ADS)
Sahasrabudhe, Harshad; Fallahi, Saeed; Nakamura, James; Povolotskyi, Michael; Novakovic, Bozidar; Rahman, Rajib; Manfra, Michael; Klimeck, Gerhard
Quantum Point Contacts (QPCs) are extensively used in semiconductor devices for charge sensing, tunneling and interference experiments. Fabry-Pérot interferometers containing 2 QPCs have applications in quantum computing, in which electrons/quasi-particles undergo interference due to back-scattering from the QPCs. Such experiments have turned out to be difficult because of the complex structure of edge states near the QPC boundary. We present realistic simulations of the edge states in QPCs based on GaAs/AlGaAs heterostructures, which can be used to predict conductance and edge state velocities. Conduction band profile is obtained by solving decoupled effective mass Schrödinger and Poisson equations self-consistently on a finite element mesh of a realistic geometry. In the integer quantum Hall regime, we obtain compressible and in-compressible regions near the edges. We then use the recursive Green`s function algorithm to solve Schrödinger equation with open boundary conditions for calculating transmission and local current density in the QPCs. Impurities are treated by inserting bumps in the potential with a Gaussian distribution. We compare observables with experiments for fitting some adjustable parameters. The authors would like to thank Purdue Research Foundation and Purdue Center for Topological Materials for their support.
NASA Astrophysics Data System (ADS)
Heister, Timo; Dannberg, Juliane; Gassmöller, Rene; Bangerth, Wolfgang
2017-08-01
Computations have helped elucidate the dynamics of Earth's mantle for several decades already. The numerical methods that underlie these simulations have greatly evolved within this time span, and today include dynamically changing and adaptively refined meshes, sophisticated and efficient solvers, and parallelization to large clusters of computers. At the same time, many of the methods - discussed in detail in a previous paper in this series - were developed and tested primarily using model problems that lack many of the complexities that are common to the realistic models our community wants to solve today. With several years of experience solving complex and realistic models, we here revisit some of the algorithm designs of the earlier paper and discuss the incorporation of more complex physics. In particular, we re-consider time stepping and mesh refinement algorithms, evaluate approaches to incorporate compressibility, and discuss dealing with strongly varying material coefficients, latent heat, and how to track chemical compositions and heterogeneities. Taken together and implemented in a high-performance, massively parallel code, the techniques discussed in this paper then allow for high resolution, 3-D, compressible, global mantle convection simulations with phase transitions, strongly temperature dependent viscosity and realistic material properties based on mineral physics data.
NASA Astrophysics Data System (ADS)
Merabet, Lucas; Robert, Sébastien; Prada, Claire
2018-04-01
In this paper, we present two frequency-domain algorithms for 2D imaging with plane wave emissions, namely Stolt's migration and Lu's method. The theoretical background is first presented, followed by an analysis of the algorithm complexities. The frequency-domain methods are then compared to the time-domain plane wave imaging in a realistic inspection configuration where the array elements are not in contact with the specimen. Imaging defects located far away from the array aperture is assessed and computation times for the three methods are presented as a function of the number of pixels of the reconstructed image. We show that Lu's method provides a time gain of up to 33 compared to the time-domain algorithm, and demonstrate the limitations of Stolt's migration for defects far away from the aperture.
Atomistic simulations of materials: Methods for accurate potentials and realistic time scales
NASA Astrophysics Data System (ADS)
Tiwary, Pratyush
This thesis deals with achieving more realistic atomistic simulations of materials, by developing accurate and robust force-fields, and algorithms for practical time scales. I develop a formalism for generating interatomic potentials for simulating atomistic phenomena occurring at energy scales ranging from lattice vibrations to crystal defects to high-energy collisions. This is done by fitting against an extensive database of ab initio results, as well as to experimental measurements for mixed oxide nuclear fuels. The applicability of these interactions to a variety of mixed environments beyond the fitting domain is also assessed. The employed formalism makes these potentials applicable across all interatomic distances without the need for any ambiguous splining to the well-established short-range Ziegler-Biersack-Littmark universal pair potential. We expect these to be reliable potentials for carrying out damage simulations (and molecular dynamics simulations in general) in nuclear fuels of varying compositions for all relevant atomic collision energies. A hybrid stochastic and deterministic algorithm is proposed that while maintaining fully atomistic resolution, allows one to achieve milliseconds and longer time scales for several thousands of atoms. The method exploits the rare event nature of the dynamics like other such methods, but goes beyond them by (i) not having to pick a scheme for biasing the energy landscape, (ii) providing control on the accuracy of the boosted time scale, (iii) not assuming any harmonic transition state theory (HTST), and (iv) not having to identify collective coordinates or interesting degrees of freedom. The method is validated by calculating diffusion constants for vacancy-mediated diffusion in iron metal at low temperatures, and comparing against brute-force high temperature molecular dynamics. We also calculate diffusion constants for vacancy diffusion in tantalum metal, where we compare against low-temperature HTST as well. The robustness of the algorithm with respect to the only free parameter it involves is ascertained. The method is then applied to perform tensile tests on gold nanopillars on strain rates as low as 100/s, bringing out the perils of high strain-rate molecular dynamics calculations. We also calculate temperature and stress dependence of activation free energy for surface nucleation of dislocations in pristine gold nanopillars under realistic loads. While maintaining fully atomistic resolution, we reach the fraction-of-a-second time scale regime. It is found that the activation free energy depends significantly and nonlinearly on the driving force (stress or strain) and temperature, leading to very high activation entropies for surface dislocation nucleation.
Appelbaum, Liat; Sosna, Jacob; Pearson, Robert; Perez, Sarah; Nissenbaum, Yizhak; Mertyna, Pawel; Libson, Eugene; Goldberg, S Nahum
2010-02-01
To prospectively optimize multistep algorithms for largest available multitined radiofrequency (RF) electrode system in ex vivo and in vivo tissues, to determine best energy parameters to achieve large predictable target sizes of coagulation, and to compare these algorithms with manufacturer's recommended algorithms. Institutional animal care and use committee approval was obtained for the in vivo portion of this study. Ablation (n = 473) was performed in ex vivo bovine liver; final tine extension was 5-7 cm. Variables in stepped-deployment RF algorithm were interrogated and included initial current ramping to 105 degrees C (1 degrees C/0.5-5.0 sec), the number of sequential tine extensions (2-7 cm), and duration of application (4-12 minutes) for final two to three tine extensions. Optimal parameters to achieve 5-7 cm of coagulation were compared with recommended algorithms. Optimal settings for 5- and 6-cm final tine extensions were confirmed in in vivo perfused bovine liver (n = 14). Multivariate analysis of variance and/or paired t tests were used. Mean RF ablation zones of 5.1 cm +/- 0.2 (standard deviation), 6.3 cm +/- 0.4, and 7 cm +/- 0.3 were achieved with 5-, 6-, and 7-cm final tine extensions in a mean of 19.5 min +/- 0.5, 27.9 min +/- 6, and 37.1 min +/- 2.3, respectively, at optimal settings. With these algorithms, size of ablation at 6- and 7-cm tine extension significantly increased from mean of 5.4 cm +/- 0.4 and 6.1 cm +/- 0.6 (manufacturer's algorithms) (P <.05, both comparisons); two recommended tine extensions were eliminated. In vivo confirmation produced mean diameter in specified time: 5.5 cm +/- 0.4 in 18.5 min +/- 0.5 (5-cm extensions) and 5.7 cm +/- 0.2 in 21.2 min +/- 0.6 (6-cm extensions). Large zones of coagulation of 5-7 cm can be created with optimized RF algorithms that help reduce number of tine extensions compared with manufacturer's recommendations. Such algorithms are likely to facilitate the utility of these devices for RF ablation of focal tumors in clinical practice. (c) RSNA, 2010.
Second-order Poisson Nernst-Planck solver for ion channel transport
Zheng, Qiong; Chen, Duan; Wei, Guo-Wei
2010-01-01
The Poisson Nernst-Planck (PNP) theory is a simplified continuum model for a wide variety of chemical, physical and biological applications. Its ability of providing quantitative explanation and increasingly qualitative predictions of experimental measurements has earned itself much recognition in the research community. Numerous computational algorithms have been constructed for the solution of the PNP equations. However, in the realistic ion-channel context, no second order convergent PNP algorithm has ever been reported in the literature, due to many numerical obstacles, including discontinuous coefficients, singular charges, geometric singularities, and nonlinear couplings. The present work introduces a number of numerical algorithms to overcome the abovementioned numerical challenges and constructs the first second-order convergent PNP solver in the ion-channel context. First, a Dirichlet to Neumann mapping (DNM) algorithm is designed to alleviate the charge singularity due to the protein structure. Additionally, the matched interface and boundary (MIB) method is reformulated for solving the PNP equations. The MIB method systematically enforces the interface jump conditions and achieves the second order accuracy in the presence of complex geometry and geometric singularities of molecular surfaces. Moreover, two iterative schemes are utilized to deal with the coupled nonlinear equations. Furthermore, extensive and rigorous numerical validations are carried out over a number of geometries, including a sphere, two proteins and an ion channel, to examine the numerical accuracy and convergence order of the present numerical algorithms. Finally, application is considered to a real transmembrane protein, the Gramicidin A channel protein. The performance of the proposed numerical techniques is tested against a number of factors, including mesh sizes, diffusion coefficient profiles, iterative schemes, ion concentrations, and applied voltages. Numerical predictions are compared with experimental measurements. PMID:21552336
Winds of Change: Toward a Realistic Vision for the Future of Cooperative Extension.
ERIC Educational Resources Information Center
Vitzthum, Edward F.
The extension and research systems of land-grant institutions are in trouble. Six factors demonstrate the scope of the problem: significant cuts for agriculture in the Clinton administration budget; lawmakers opposed to extension research; federal budget deficit; state budget constraints; decreased power of agriculture in Congress; and…
Adaptive bearing estimation and tracking of multiple targets in a realistic passive sonar scenario
NASA Astrophysics Data System (ADS)
Rajagopal, R.; Challa, Subhash; Faruqi, Farhan A.; Rao, P. R.
1997-06-01
In a realistic passive sonar environment, the received signal consists of multipath arrivals from closely separated moving targets. The signals are contaminated by spatially correlated noise. The differential MUSIC has been proposed to estimate the DOAs in such a scenario. This method estimates the 'noise subspace' in order to estimate the DOAs. However, the 'noise subspace' estimate has to be updated as and when new data become available. In order to save the computational costs, a new adaptive noise subspace estimation algorithm is proposed in this paper. The salient features of the proposed algorithm are: (1) Noise subspace estimation is done by QR decomposition of the difference matrix which is formed from the data covariance matrix. Thus, as compared to standard eigen-decomposition based methods which require O(N3) computations, the proposed method requires only O(N2) computations. (2) Noise subspace is updated by updating the QR decomposition. (3) The proposed algorithm works in a realistic sonar environment. In the second part of the paper, the estimated bearing values are used to track multiple targets. In order to achieve this, the nonlinear system/linear measurement extended Kalman filtering proposed is applied. Computer simulation results are also presented to support the theory.
Simulating realistic predator signatures in quantitative fatty acid signature analysis
Bromaghin, Jeffrey F.
2015-01-01
Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.
Spatial resolution of the electrical conductance of ionic fluids using a Green-Kubo method.
Jones, R E; Ward, D K; Templeton, J A
2014-11-14
We present a Green-Kubo method to spatially resolve transport coefficients in compositionally heterogeneous mixtures. We develop the underlying theory based on well-known results from mixture theory, Irving-Kirkwood field estimation, and linear response theory. Then, using standard molecular dynamics techniques, we apply the methodology to representative systems. With a homogeneous salt water system, where the expectation of the distribution of conductivity is clear, we demonstrate the sensitivities of the method to system size, and other physical and algorithmic parameters. Then we present a simple model of an electrochemical double layer where we explore the resolution limit of the method. In this system, we observe significant anisotropy in the wall-normal vs. transverse ionic conductances, as well as near wall effects. Finally, we discuss extensions and applications to more realistic systems such as batteries where detailed understanding of the transport properties in the vicinity of the electrodes is of technological importance.
NASA Technical Reports Server (NTRS)
Apodaca, Tony; Porter, Tom
1989-01-01
The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.
Anonymity and Historical-Anonymity in Location-Based Services
NASA Astrophysics Data System (ADS)
Bettini, Claudio; Mascetti, Sergio; Wang, X. Sean; Freni, Dario; Jajodia, Sushil
The problem of protecting user’s privacy in Location-Based Services (LBS) has been extensively studied recently and several defense techniques have been proposed. In this contribution, we first present a categorization of privacy attacks and related defenses. Then, we consider the class of defense techniques that aim at providing privacy through anonymity and in particular algorithms achieving “historical k- anonymity” in the case of the adversary obtaining a trace of requests recognized as being issued by the same (anonymous) user. Finally, we investigate the issues involved in the experimental evaluation of anonymity based defense techniques; we show that user movement simulations based on mostly random movements can lead to overestimate the privacy protection in some cases and to overprotective techniques in other cases. The above results are obtained by comparison to a more realistic simulation with an agent-based simulator, considering a specific deployment scenario.
Mapping algorithm for freeform construction using non-ideal light sources
NASA Astrophysics Data System (ADS)
Li, Chen; Michaelis, D.; Schreiber, P.; Dick, L.; Bräuer, A.
2015-09-01
Using conventional mapping algorithms for the construction of illumination freeform optics' arbitrary target pattern can be obtained for idealized sources, e.g. collimated light or point sources. Each freeform surface element generates an image point at the target and the light intensity of an image point is corresponding to the area of the freeform surface element who generates the image point. For sources with a pronounced extension and ray divergence, e.g. an LED with a small source-freeform-distance, the image points are blurred and the blurred patterns might be different between different points. Besides, due to Fresnel losses and vignetting, the relationship between light intensity of image points and area of freeform surface elements becomes complicated. These individual light distributions of each freeform element are taken into account in a mapping algorithm. To this end the method of steepest decent procedures are used to adapt the mapping goal. A structured target pattern for a optics system with an ideal source is computed applying corresponding linear optimization matrices. Special weighting factor and smoothing factor are included in the procedures to achieve certain edge conditions and to ensure the manufacturability of the freefrom surface. The corresponding linear optimization matrices, which are the lighting distribution patterns of each of the freeform surface elements, are gained by conventional raytracing with a realistic source. Nontrivial source geometries, like LED-irregularities due to bonding or source fine structures, and a complex ray divergence behavior can be easily considered. Additionally, Fresnel losses, vignetting and even stray light are taken into account. After optimization iterations, with a realistic source, the initial mapping goal can be achieved by the optics system providing a structured target pattern with an ideal source. The algorithm is applied to several design examples. A few simple tasks are presented to discussed the ability and limitation of the this mothed. It is also presented that a homogeneous LED-illumination system design, in where, with a strongly tilted incident direction, a homogeneous distribution is achieved with a rather compact optics system and short working distance applying a relatively large LED source. It is shown that the lighting distribution patterns from the freeform surface elements can be significantly different from the others. The generation of a structured target pattern, applying weighting factor and smoothing factor, are discussed. Finally, freeform designs for much more complex sources like clusters of LED-sources are presented.
NASA Technical Reports Server (NTRS)
Folta, David C.; Carpenter, J. Russell
1999-01-01
A decentralized control is investigated for applicability to the autonomous formation flying control algorithm developed by GSFC for the New Millenium Program Earth Observer-1 (EO-1) mission. This decentralized framework has the following characteristics: The approach is non-hierarchical, and coordination by a central supervisor is not required; Detected failures degrade the system performance gracefully; Each node in the decentralized network processes only its own measurement data, in parallel with the other nodes; Although the total computational burden over the entire network is greater than it would be for a single, centralized controller, fewer computations are required locally at each node; Requirements for data transmission between nodes are limited to only the dimension of the control vector, at the cost of maintaining a local additional data vector. The data vector compresses all past measurement history from all the nodes into a single vector of the dimension of the state; and The approach is optimal with respect to standard cost functions. The current approach is valid for linear time-invariant systems only. Similar to the GSFC formation flying algorithm, the extension to linear LQG time-varying systems requires that each node propagate its filter covariance forward (navigation) and controller Riccati matrix backward (guidance) at each time step. Extension of the GSFC algorithm to non-linear systems can also be accomplished via linearization about a reference trajectory in the standard fashion, or linearization about the current state estimate as with the extended Kalman filter. To investigate the feasibility of the decentralized integration with the GSFC algorithm, an existing centralized LQG design for a single spacecraft orbit control problem is adapted to the decentralized framework while using the GSFC algorithm's state transition matrices and framework. The existing GSFC design uses both reference trajectories of each spacecraft in formation and by appropriate choice of coordinates and simplified measurement modeling is formulated as a linear time-invariant system. Results for improvements to the GSFC algorithm and a multiple satellite formation will be addressed. The goal of this investigation is to progressively relax the assumptions that result in linear time-invariance, ultimately to the point of linearization of the non-linear dynamics about the current state estimate as in the extended Kalman filter. An assessment will then be made about the feasibility of the decentralized approach to the realistic formation flying application of the EO-1/Landsat 7 formation flying experiment.
An Empirical Generative Framework for Computational Modeling of Language Acquisition
ERIC Educational Resources Information Center
Waterfall, Heidi R.; Sandbank, Ben; Onnis, Luca; Edelman, Shimon
2010-01-01
This paper reports progress in developing a computer model of language acquisition in the form of (1) a generative grammar that is (2) algorithmically learnable from realistic corpus data, (3) viable in its large-scale quantitative performance and (4) psychologically real. First, we describe new algorithmic methods for unsupervised learning of…
GATE: a simulation toolkit for PET and SPECT.
Jan, S; Santin, G; Strul, D; Staelens, S; Assié, K; Autret, D; Avner, S; Barbier, R; Bardiès, M; Bloomfield, P M; Brasse, D; Breton, V; Bruyndonckx, P; Buvat, I; Chatziioannou, A F; Choi, Y; Chung, Y H; Comtat, C; Donnarieix, D; Ferrer, L; Glick, S J; Groiselle, C J; Guez, D; Honore, P F; Kerhoas-Cavata, S; Kirov, A S; Kohli, V; Koole, M; Krieguer, M; van der Laan, D J; Lamare, F; Largeron, G; Lartizien, C; Lazaro, D; Maas, M C; Maigne, L; Mayet, F; Melot, F; Merheb, C; Pennacchio, E; Perez, J; Pietrzyk, U; Rannou, F R; Rey, M; Schaart, D R; Schmidtlein, C R; Simon, L; Song, T Y; Vieira, J M; Visvikis, D; Van de Walle, R; Wieërs, E; Morel, C
2004-10-07
Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at http:/www-lphe.epfl.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects towards the gridification of GATE and its extension to other domains such as dosimetry are also discussed.
GATE - Geant4 Application for Tomographic Emission: a simulation toolkit for PET and SPECT
Jan, S.; Santin, G.; Strul, D.; Staelens, S.; Assié, K.; Autret, D.; Avner, S.; Barbier, R.; Bardiès, M.; Bloomfield, P. M.; Brasse, D.; Breton, V.; Bruyndonckx, P.; Buvat, I.; Chatziioannou, A. F.; Choi, Y.; Chung, Y. H.; Comtat, C.; Donnarieix, D.; Ferrer, L.; Glick, S. J.; Groiselle, C. J.; Guez, D.; Honore, P.-F.; Kerhoas-Cavata, S.; Kirov, A. S.; Kohli, V.; Koole, M.; Krieguer, M.; van der Laan, D. J.; Lamare, F.; Largeron, G.; Lartizien, C.; Lazaro, D.; Maas, M. C.; Maigne, L.; Mayet, F.; Melot, F.; Merheb, C.; Pennacchio, E.; Perez, J.; Pietrzyk, U.; Rannou, F. R.; Rey, M.; Schaart, D. R.; Schmidtlein, C. R.; Simon, L.; Song, T. Y.; Vieira, J.-M.; Visvikis, D.; Van de Walle, R.; Wieërs, E.; Morel, C.
2012-01-01
Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols, and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document, and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at the address http://www-lphe.ep.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects toward the gridification of GATE and its extension to other domains such as dosimetry are also discussed. PMID:15552416
NASA Technical Reports Server (NTRS)
Deese, J. E.; Agarwal, R. K.
1989-01-01
Computational fluid dynamics has an increasingly important role in the design and analysis of aircraft as computer hardware becomes faster and algorithms become more efficient. Progress is being made in two directions: more complex and realistic configurations are being treated and algorithms based on higher approximations to the complete Navier-Stokes equations are being developed. The literature indicates that linear panel methods can model detailed, realistic aircraft geometries in flow regimes where this approximation is valid. As algorithms including higher approximations to the Navier-Stokes equations are developed, computer resource requirements increase rapidly. Generation of suitable grids become more difficult and the number of grid points required to resolve flow features of interest increases. Recently, the development of large vector computers has enabled researchers to attempt more complex geometries with Euler and Navier-Stokes algorithms. The results of calculations for transonic flow about a typical transport and fighter wing-body configuration using thin layer Navier-Stokes equations are described along with flow about helicopter rotor blades using both Euler/Navier-Stokes equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, X.D.; Tsui, B.M.W.; Gregoriou, G.K.
The goal of the investigation was to study the effectiveness of the corrective reconstruction methods in cardiac SPECT using a realistic phantom and to qualitatively and quantitatively evaluate the reconstructed images using bull's-eye plots. A 3D mathematical phantom which realistically models the anatomical structures of the cardiac-torso region of patients was used. The phantom allows simulation of both the attenuation distribution and the uptake of radiopharmaceuticals in different organs. Also, the phantom can be easily modified to simulate different genders and variations in patient anatomy. Two-dimensional projection data were generated from the phantom and included the effects of attenuation andmore » detector response blurring. The reconstruction methods used in the study included the conventional filtered backprojection (FBP) with no attenuation compensation, and the first-order Chang algorithm, an iterative filtered backprojection algorithm (IFBP), the weighted least square conjugate gradient algorithm and the ML-EM algorithm with non-uniform attenuation compensation. The transaxial reconstructed images were rearranged into short-axis slices from which bull's-eye plots of the count density distribution in the myocardium were generated.« less
Superscattering of light optimized by a genetic algorithm
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.
2014-07-01
We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.
Fractal Landscape Algorithms for Environmental Simulations
NASA Astrophysics Data System (ADS)
Mao, H.; Moran, S.
2014-12-01
Natural science and geographical research are now able to take advantage of environmental simulations that more accurately test experimental hypotheses, resulting in deeper understanding. Experiments affected by the natural environment can benefit from 3D landscape simulations capable of simulating a variety of terrains and environmental phenomena. Such simulations can employ random terrain generation algorithms that dynamically simulate environments to test specific models against a variety of factors. Through the use of noise functions such as Perlin noise, Simplex noise, and diamond square algorithms, computers can generate simulations that model a variety of landscapes and ecosystems. This study shows how these algorithms work together to create realistic landscapes. By seeding values into the diamond square algorithm, one can control the shape of landscape. Perlin noise and Simplex noise are also used to simulate moisture and temperature. The smooth gradient created by coherent noise allows more realistic landscapes to be simulated. Terrain generation algorithms can be used in environmental studies and physics simulations. Potential studies that would benefit from simulations include the geophysical impact of flash floods or drought on a particular region and regional impacts on low lying area due to global warming and rising sea levels. Furthermore, terrain generation algorithms also serve as aesthetic tools to display landscapes (Google Earth), and simulate planetary landscapes. Hence, it can be used as a tool to assist science education. Algorithms used to generate these natural phenomena provide scientists a different approach in analyzing our world. The random algorithms used in terrain generation not only contribute to the generating the terrains themselves, but are also capable of simulating weather patterns.
NASA Astrophysics Data System (ADS)
Oesterle, Jonathan; Lionel, Amodeo
2018-06-01
The current competitive situation increases the importance of realistically estimating product costs during the early phases of product and assembly line planning projects. In this article, several multi-objective algorithms using difference dominance rules are proposed to solve the problem associated with the selection of the most effective combination of product and assembly lines. The list of developed algorithms includes variants of ant colony algorithms, evolutionary algorithms and imperialist competitive algorithms. The performance of each algorithm and dominance rule is analysed by five multi-objective quality indicators and fifty problem instances. The algorithms and dominance rules are ranked using a non-parametric statistical test.
An extension of the QZ algorithm for solving the generalized matrix eigenvalue problem
NASA Technical Reports Server (NTRS)
Ward, R. C.
1973-01-01
This algorithm is an extension of Moler and Stewart's QZ algorithm with some added features for saving time and operations. Also, some additional properties of the QR algorithm which were not practical to implement in the QZ algorithm can be generalized with the combination shift QZ algorithm. Numerous test cases are presented to give practical application tests for algorithm. Based on results, this algorithm should be preferred over existing algorithms which attempt to solve the class of generalized eigenproblems where both matrices are singular or nearly singular.
Interdependency of the maximum range of flexion-extension of hand metacarpophalangeal joints.
Gracia-Ibáñez, V; Vergara, M; Sancho-Bru, J-L
2016-12-01
Mobility of the fingers metacarpophalangeal (MCP) joints depends on the posture of the adjacent ones. Current Biomechanical hand models consider fixed ranges of movement at joints, regardless of the posture, thus allowing for non-realistic postures, generating wrong results in reach studies and forward dynamic analyses. This study provides data for more realistic hand models. The maximum voluntary extension (MVE) and flexion (MVF) of different combinations of MCP joints were measured covering their range of motion. Dependency of the MVF and MVE on the posture of the adjacent MCP joints was confirmed and mathematical models obtained through regression analyses (RMSE 7.7°).
Tang, Jie; Nett, Brian E; Chen, Guang-Hong
2009-10-07
Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.
POCO-MOEA: Using Evolutionary Algorithms to Solve the Controller Placement Problem
2016-03-24
to gather data on POCO-MOEA performance to a series of iv model networks. The algorithm’s behavior is then evaluated and compared to ex- haustive... evaluation of a third heuristic based on a Multi 3 Objective Evolutionary Algorithm (MOEA). This heuristic is modeled after one of the most well known MOEAs...researchers to extend into more realistic evaluations of the performance characteristics of SDN controllers, such as the use of simulators or live
Redundancy checking algorithms based on parallel novel extension rule
NASA Astrophysics Data System (ADS)
Liu, Lei; Yang, Yang; Li, Guangli; Wang, Qi; Lü, Shuai
2017-05-01
Redundancy checking (RC) is a key knowledge reduction technology. Extension rule (ER) is a new reasoning method, first presented in 2003 and well received by experts at home and abroad. Novel extension rule (NER) is an improved ER-based reasoning method, presented in 2009. In this paper, we first analyse the characteristics of the extension rule, and then present a simple algorithm for redundancy checking based on extension rule (RCER). In addition, we introduce MIMF, a type of heuristic strategy. Using the aforementioned rule and strategy, we design and implement RCHER algorithm, which relies on MIMF. Next we design and implement an RCNER (redundancy checking based on NER) algorithm based on NER. Parallel computing greatly accelerates the NER algorithm, which has weak dependence among tasks when executed. Considering this, we present PNER (parallel NER) and apply it to redundancy checking and necessity checking. Furthermore, we design and implement the RCPNER (redundancy checking based on PNER) and NCPPNER (necessary clause partition based on PNER) algorithms as well. The experimental results show that MIMF significantly influences the acceleration of algorithm RCER in formulae on a large scale and high redundancy. Comparing PNER with NER and RCPNER with RCNER, the average speedup can reach up to the number of task decompositions when executed. Comparing NCPNER with the RCNER-based algorithm on separating redundant formulae, speedup increases steadily as the scale of the formulae is incrementing. Finally, we describe the challenges that the extension rule will be faced with and suggest possible solutions.
Bayesian inversion using a geologically realistic and discrete model space
NASA Astrophysics Data System (ADS)
Jaeggli, C.; Julien, S.; Renard, P.
2017-12-01
Since the early days of groundwater modeling, inverse methods play a crucial role. Many research and engineering groups aim to infer extensive knowledge of aquifer parameters from a sparse set of observations. Despite decades of dedicated research on this topic, there are still several major issues to be solved. In the hydrogeological framework, one is often confronted with underground structures that present very sharp contrasts of geophysical properties. In particular, subsoil structures such as karst conduits, channels, faults, or lenses, strongly influence groundwater flow and transport behavior of the underground. For this reason it can be essential to identify their location and shape very precisely. Unfortunately, when inverse methods are specially trained to consider such complex features, their computation effort often becomes unaffordably high. The following work is an attempt to solve this dilemma. We present a new method that is, in some sense, a compromise between the ergodicity of Markov chain Monte Carlo (McMC) methods and the efficient handling of data by the ensemble based Kalmann filters. The realistic and complex random fields are generated by a Multiple-Point Statistics (MPS) tool. Nonetheless, it is applicable with any conditional geostatistical simulation tool. Furthermore, the algorithm is independent of any parametrization what becomes most important when two parametric systems are equivalent (permeability and resistivity, speed and slowness, etc.). When compared to two existing McMC schemes, the computational effort was divided by a factor of 12.
Parking simulation of three-dimensional multi-sized star-shaped particles
NASA Astrophysics Data System (ADS)
Zhu, Zhigang; Chen, Huisu; Xu, Wenxiang; Liu, Lin
2014-04-01
The shape and size of particles may have a great impact on the microstructure as well as the physico-properties of particulate composites. However, it is challenging to configure a parking system of particles to a geometrical shape that is close to realistic grains in particulate composites. In this work, with the assistance of x-ray tomography and a spherical harmonic series, we present a star-shaped particle that is close to realistic arbitrary-shaped grains. To realize such a hard particle parking structure, an inter-particle overlapping detection algorithm is introduced. A serial sectioning approach is employed to visualize the particle parking structure for the purpose of justifying the reliability of the overlapping detection algorithm. Furthermore, the validity of the area and perimeter of solids in any arbitrary section of a plane calculated using a numerical method is verified by comparison with those obtained using an image analysis approach. This contribution is helpful to further understand the dependence of the micro-structure and physico-properties of star-shaped particles on the realistic geometrical shape.
Montesantos, Spyridon; Katz, Ira; Pichelin, Marine; Caillibotte, Georges
2016-01-01
A quantitative description of the morphology of lung structure is essential prior to any form of predictive modeling of ventilation or aerosol deposition implemented within the lung. The human lung is a very complex organ, with airway structures that span two orders of magnitude and having a multitude of interfaces between air, tissue and blood. As such, current medical imaging protocols cannot provide medical practitioners and researchers with in-vivo knowledge of deeper lung structures. In this work a detailed algorithm for the generation of an individualized 3D deterministic model of the conducting part of the human tracheo-bronchial tree is described. Distinct initial conditions were obtained from the high-resolution computed tomography (HRCT) images of seven healthy volunteers. The algorithm developed is fractal in nature and is implemented as a self-similar space sub-division procedure. The expansion process utilizes physiologically realistic relationships and thresholds to produce an anatomically consistent human airway tree. The model was validated through extensive statistical analysis of the results and comparison of the most common morphological features with previously published morphometric studies and other equivalent models. The resulting trees were shown to be in good agreement with published human lung geometric characteristics and can be used to study, among other things, structure-function relationships in simulation studies.
Double-pass imaging through scattering (Conference Presentation)
NASA Astrophysics Data System (ADS)
Tajahuerce, Enrique; Andrés Bou, Pedro; Artal, Pablo; Lancis, Jesús
2017-02-01
In the last years, single-pixel imaging (SPI) was established as a suitable tool for non-invasive imaging of an absorbing object completely embedded in an inhomogeneous medium. One of the main characteristics of the technique is that it uses very simple sensors (bucket detectors such as photodiodes or photomultiplier tubes) combined with structured illumination and mathematical algorithms to recover the image. This reduction in complexity of the sensing device gives these systems the opportunity to obtain images at shallow depth overcoming the scattering problem. Nonetheless, some challenges, such as the need for improved signal-to-noise or the frame rate, remain to be tackled before extensive use in practical systems. Also, for intact or live optically thick tissues, epi-detection is commonly used, while present implementations of SPI are limited to transillumination geometries. In this work we present new features and some recent advances in SPI that involve either the use of computationally efficient algorithms for adaptive sensing or a balanced detection mechanism. Additionally, SPI has been adapted to handle reflected light to create a double pass optical system. Such developments represent a significant step towards the use of SPI in more realistic scenarios, especially in biophotonics applications. In particular, we show the design of a single-pixel ophtalmoscope as a novel way of imaging the retina in real time.
Learning Short Binary Codes for Large-scale Image Retrieval.
Liu, Li; Yu, Mengyang; Shao, Ling
2017-03-01
Large-scale visual information retrieval has become an active research area in this big data era. Recently, hashing/binary coding algorithms prove to be effective for scalable retrieval applications. Most existing hashing methods require relatively long binary codes (i.e., over hundreds of bits, sometimes even thousands of bits) to achieve reasonable retrieval accuracies. However, for some realistic and unique applications, such as on wearable or mobile devices, only short binary codes can be used for efficient image retrieval due to the limitation of computational resources or bandwidth on these devices. In this paper, we propose a novel unsupervised hashing approach called min-cost ranking (MCR) specifically for learning powerful short binary codes (i.e., usually the code length shorter than 100 b) for scalable image retrieval tasks. By exploring the discriminative ability of each dimension of data, MCR can generate one bit binary code for each dimension and simultaneously rank the discriminative separability of each bit according to the proposed cost function. Only top-ranked bits with minimum cost-values are then selected and grouped together to compose the final salient binary codes. Extensive experimental results on large-scale retrieval demonstrate that MCR can achieve comparative performance as the state-of-the-art hashing algorithms but with significantly shorter codes, leading to much faster large-scale retrieval.
Perceptual quality prediction on authentically distorted images using a bag of features approach
Ghadiyaram, Deepti; Bovik, Alan C.
2017-01-01
Current top-performing blind perceptual image quality prediction models are generally trained on legacy databases of human quality opinion scores on synthetically distorted images. Therefore, they learn image features that effectively predict human visual quality judgments of inauthentic and usually isolated (single) distortions. However, real-world images usually contain complex composite mixtures of multiple distortions. We study the perceptually relevant natural scene statistics of such authentically distorted images in different color spaces and transform domains. We propose a “bag of feature maps” approach that avoids assumptions about the type of distortion(s) contained in an image and instead focuses on capturing consistencies—or departures therefrom—of the statistics of real-world images. Using a large database of authentically distorted images, human opinions of them, and bags of features computed on them, we train a regressor to conduct image quality prediction. We demonstrate the competence of the features toward improving automatic perceptual quality prediction by testing a learned algorithm using them on a benchmark legacy database as well as on a newly introduced distortion-realistic resource called the LIVE In the Wild Image Quality Challenge Database. We extensively evaluate the perceptual quality prediction model and algorithm and show that it is able to achieve good-quality prediction power that is better than other leading models. PMID:28129417
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-11-25
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.
Fast, Automated, Photo realistic, 3D Modeling of Building Interiors
2016-09-12
project, we developed two algorithmic pipelines for GPS-denied indoor mobile 3D mapping using an ambulatory backpack system. By mounting scanning...equipment on a backpack system, a human operator can traverse the interior of a building to produce a high-quality 3D reconstruction. In each of our...Unlimited UU UU UU UU 12-09-2016 1-May-2011 30-Jun-2015 Final Report: Fast, Automated, Photo-realistic, 3D Modeling of Building Interiors (ATTN
Hogervorst, Maarten A.; Pinkus, Alan R.
2016-01-01
The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4–0.7μm), near-infrared (NIR, 0.7–1.0μm) and long-wave infrared (LWIR, 8–14μm) motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian) people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation) all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer). The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false) color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic) image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs can be used to define color mappings that give the multi-band imagery a realistic color appearance. PMID:28036328
Toet, Alexander; Hogervorst, Maarten A; Pinkus, Alan R
2016-01-01
The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4-0.7μm), near-infrared (NIR, 0.7-1.0μm) and long-wave infrared (LWIR, 8-14μm) motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian) people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation) all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer). The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false) color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic) image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs can be used to define color mappings that give the multi-band imagery a realistic color appearance.
Non-Algorithmic Issues in Automated Computational Mechanics
1991-04-30
Tworzydlo, Senior Research Engineer and Manager of Advanced Projects Group I. Professor I J. T. Oden, President and Senior Scientist of COMCO, was project...practical applications of the systems reported so far is due to the extremely arduous and complex development and management of a realistic knowledge base...software, designed to effectively implement deep, algorithmic knowledge, * and 0 "intelligent" software, designed to manage shallow, heuristic
NASA Astrophysics Data System (ADS)
Thieberger, P.; Gassner, D.; Hulsart, R.; Michnoff, R.; Miller, T.; Minty, M.; Sorrell, Z.; Bartnik, A.
2018-04-01
A simple, analytically correct algorithm is developed for calculating "pencil" relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a Field Programmable Gate Array-based BPM readout implementation of the new algorithm has been developed and characterized. Finally, the algorithm is tested with BPM data from the Cornell Preinjector.
Thieberger, Peter; Gassner, D.; Hulsart, R.; ...
2018-04-25
Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less
System Design under Uncertainty: Evolutionary Optimization of the Gravity Probe-B Spacecraft
NASA Technical Reports Server (NTRS)
Pullen, Samuel P.; Parkinson, Bradford W.
1994-01-01
This paper discusses the application of evolutionary random-search algorithms (Simulated Annealing and Genetic Algorithms) to the problem of spacecraft design under performance uncertainty. Traditionally, spacecraft performance uncertainty has been measured by reliability. Published algorithms for reliability optimization are seldom used in practice because they oversimplify reality. The algorithm developed here uses random-search optimization to allow us to model the problem more realistically. Monte Carlo simulations are used to evaluate the objective function for each trial design solution. These methods have been applied to the Gravity Probe-B (GP-B) spacecraft being developed at Stanford University for launch in 1999, Results of the algorithm developed here for GP-13 are shown, and their implications for design optimization by evolutionary algorithms are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thieberger, Peter; Gassner, D.; Hulsart, R.
Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less
Thieberger, P; Gassner, D; Hulsart, R; Michnoff, R; Miller, T; Minty, M; Sorrell, Z; Bartnik, A
2018-04-01
A simple, analytically correct algorithm is developed for calculating "pencil" relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a Field Programmable Gate Array-based BPM readout implementation of the new algorithm has been developed and characterized. Finally, the algorithm is tested with BPM data from the Cornell Preinjector.
Model-based Bayesian signal extraction algorithm for peripheral nerves
NASA Astrophysics Data System (ADS)
Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.
2017-10-01
Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of controlling a prosthetic limb.
Extension algorithm for generic low-voltage networks
NASA Astrophysics Data System (ADS)
Marwitz, S.; Olk, C.
2018-02-01
Distributed energy resources (DERs) are increasingly penetrating the energy system which is driven by climate and sustainability goals. These technologies are mostly connected to low- voltage electrical networks and change the demand and supply situation in these networks. This can cause critical network states. Network topologies vary significantly and depend on several conditions including geography, historical development, network design or number of network connections. In the past, only some of these aspects were taken into account when estimating the network investment needs for Germany on the low-voltage level. Typically, fixed network topologies are examined or a Monte Carlo approach is used to quantify the investment needs at this voltage level. Recent research has revealed that DERs differ substantially between rural, suburban and urban regions. The low-voltage network topologies have different design concepts in these regions, so that different network topologies have to be considered when assessing the need for network extensions and investments due to DERs. An extension algorithm is needed to calculate network extensions and investment needs for the different typologies of generic low-voltage networks. We therefore present a new algorithm, which is capable of calculating the extension for generic low-voltage networks of any given topology based on voltage range deviations and thermal overloads. The algorithm requires information about line and cable lengths, their topology and the network state only. We test the algorithm on a radial, a loop, and a heavily meshed network. Here we show that the algorithm functions for electrical networks with these topologies. We found that the algorithm is able to extend different networks efficiently by placing cables between network nodes. The main value of the algorithm is that it does not require any information about routes for additional cables or positions for additional substations when it comes to estimating network extension needs.
Reanimating patients: cardio-respiratory CT and MR motion phantoms based on clinical CT patient data
NASA Astrophysics Data System (ADS)
Mayer, Johannes; Sauppe, Sebastian; Rank, Christopher M.; Sawall, Stefan; Kachelrieß, Marc
2017-03-01
Until today several algorithms have been developed that reduce or avoid artifacts caused by cardiac and respiratory motion in computed tomography (CT). The motion information is converted into so-called motion vector fields (MVFs) and used for motion compensation (MoCo) during the image reconstruction. To analyze these algorithms quantitatively there is the need for ground truth patient data displaying realistic motion. We developed a method to generate a digital ground truth displaying realistic cardiac and respiratory motion that can be used as a tool to assess MoCo algorithms. By the use of available MoCo methods we measured the motion in CT scans with high spatial and temporal resolution and transferred the motion information onto patient data with different anatomy or imaging modality, thereby reanimating the patient virtually. In addition to these images the ground truth motion information in the form of MVFs is available and can be used to benchmark the MVF estimation of MoCo algorithms. We here applied the method to generate 20 CT volumes displaying detailed cardiac motion that can be used for cone-beam CT (CBCT) simulations and a set of 8 MR volumes displaying respiratory motion. Our method is able to reanimate patient data virtually. In combination with the MVFs it serves as a digital ground truth and provides an improved framework to assess MoCo algorithms.
Hayden, Eric J
2016-08-15
RNA molecules provide a realistic but tractable model of a genotype to phenotype relationship. This relationship has been extensively investigated computationally using secondary structure prediction algorithms. Enzymatic RNA molecules, or ribozymes, offer access to genotypic and phenotypic information in the laboratory. Advancements in high-throughput sequencing technologies have enabled the analysis of sequences in the lab that now rivals what can be accomplished computationally. This has motivated a resurgence of in vitro selection experiments and opened new doors for the analysis of the distribution of RNA functions in genotype space. A body of computational experiments has investigated the persistence of specific RNA structures despite changes in the primary sequence, and how this mutational robustness can promote adaptations. This article summarizes recent approaches that were designed to investigate the role of mutational robustness during the evolution of RNA molecules in the laboratory, and presents theoretical motivations, experimental methods and approaches to data analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
Quantifying and correcting motion artifacts in MRI
NASA Astrophysics Data System (ADS)
Bones, Philip J.; Maclaren, Julian R.; Millane, Rick P.; Watts, Richard
2006-08-01
Patient motion during magnetic resonance imaging (MRI) can produce significant artifacts in a reconstructed image. Since measurements are made in the spatial frequency domain ('k-space'), rigid-body translational motion results in phase errors in the data samples while rotation causes location errors. A method is presented to detect and correct these errors via a modified sampling strategy, thereby achieving more accurate image reconstruction. The strategy involves sampling vertical and horizontal strips alternately in k-space and employs phase correlation within the overlapping segments to estimate translational motion. An extension, also based on correlation, is employed to estimate rotational motion. Results from simulations with computer-generated phantoms suggest that the algorithm is robust up to realistic noise levels. The work is being extended to physical phantoms. Provided that a reference image is available and the object is of limited extent, it is shown that a measure related to the amount of energy outside the support can be used to objectively compare the severity of motion-induced artifacts.
Limited utility of residue masking for positive-selection inference.
Spielman, Stephanie J; Dawson, Eric T; Wilke, Claus O
2014-09-01
Errors in multiple sequence alignments (MSAs) can reduce accuracy in positive-selection inference. Therefore, it has been suggested to filter MSAs before conducting further analyses. One widely used filter, Guidance, allows users to remove MSA positions aligned with low confidence. However, Guidance's utility in positive-selection inference has been disputed in the literature. We have conducted an extensive simulation-based study to characterize fully how Guidance impacts positive-selection inference, specifically for protein-coding sequences of realistic divergence levels. We also investigated whether novel scoring algorithms, which phylogenetically corrected confidence scores, and a new gap-penalization score-normalization scheme improved Guidance's performance. We found that no filter, including original Guidance, consistently benefitted positive-selection inferences. Moreover, all improvements detected were exceedingly minimal, and in certain circumstances, Guidance-based filters worsened inferences. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Quednau, Philipp; Trommer, Ralph; Schmidt, Lorenz-Peter
2016-03-01
Wireless transmission systems in smart metering networks share the advantage of lower installation costs due to the expandability of separate infrastructure but suffer from transmission problems. In this paper the issue of interference of wireless transmitted smart meter data with third party systems and data from other meters is investigated and an approach for solving the problem is presented. A multi-channel wireless m-bus receiver was developed to separate the desired data from unwanted interferers by spatial filtering. The according algorithms are presented and the influence of different antenna types on the spatial filtering is investigated. The performance of the spatial filtering is evaluated by extensive measurements in a realistic surrounding with several hundreds of active wireless m-bus transponders. These measurements correspond to the future environment for data-collectors as they took place in rural and urban areas with smart gas meters equipped with wireless m-bus transponders installed in almost all surrounding buildings.
Cellular neural networks, the Navier-Stokes equation, and microarray image reconstruction.
Zineddin, Bachar; Wang, Zidong; Liu, Xiaohui
2011-11-01
Although the last decade has witnessed a great deal of improvements achieved for the microarray technology, many major developments in all the main stages of this technology, including image processing, are still needed. Some hardware implementations of microarray image processing have been proposed in the literature and proved to be promising alternatives to the currently available software systems. However, the main drawback of those proposed approaches is the unsuitable addressing of the quantification of the gene spot in a realistic way without any assumption about the image surface. Our aim in this paper is to present a new image-reconstruction algorithm using the cellular neural network that solves the Navier-Stokes equation. This algorithm offers a robust method for estimating the background signal within the gene-spot region. The MATCNN toolbox for Matlab is used to test the proposed method. Quantitative comparisons are carried out, i.e., in terms of objective criteria, between our approach and some other available methods. It is shown that the proposed algorithm gives highly accurate and realistic measurements in a fully automated manner within a remarkably efficient time.
Unsteady transonic flow calculations for realistic aircraft configurations
NASA Technical Reports Server (NTRS)
Batina, John T.; Seidel, David A.; Bland, Samuel R.; Bennett, Robert M.
1987-01-01
A transonic unsteady aerodynamic and aeroelasticity code has been developed for application to realistic aircraft configurations. The new code is called CAP-TSD which is an acronym for Computational Aeroelasticity Program - Transonic Small Disturbance. The CAP-TSD code uses a time-accurate approximate factorization (AF) algorithm for solution of the unsteady transonic small-disturbance equation. The AF algorithm is very efficient for solution of steady and unsteady transonic flow problems. It can provide accurate solutions in only several hundred time steps yielding a significant computational cost savings when compared to alternative methods. The new code can treat complete aircraft geometries with multiple lifting surfaces and bodies including canard, wing, tail, control surfaces, launchers, pylons, fuselage, stores, and nacelles. Applications are presented for a series of five configurations of increasing complexity to demonstrate the wide range of geometrical applicability of CAP-TSD. These results are in good agreement with available experimental steady and unsteady pressure data. Calculations for the General Dynamics one-ninth scale F-16C aircraft model are presented to demonstrate application to a realistic configuration. Unsteady results for the entire F-16C aircraft undergoing a rigid pitching motion illustrated the capability required to perform transonic unsteady aerodynamic and aeroelastic analyses for such configurations.
Enumeration and extension of non-equivalent deterministic update schedules in Boolean networks.
Palma, Eduardo; Salinas, Lilian; Aracena, Julio
2016-03-01
Boolean networks (BNs) are commonly used to model genetic regulatory networks (GRNs). Due to the sensibility of the dynamical behavior to changes in the updating scheme (order in which the nodes of a network update their state values), it is increasingly common to use different updating rules in the modeling of GRNs to better capture an observed biological phenomenon and thus to obtain more realistic models.In Aracena et al. equivalence classes of deterministic update schedules in BNs, that yield exactly the same dynamical behavior of the network, were defined according to a certain label function on the arcs of the interaction digraph defined for each scheme. Thus, the interaction digraph so labeled (update digraphs) encode the non-equivalent schemes. We address the problem of enumerating all non-equivalent deterministic update schedules of a given BN. First, we show that it is an intractable problem in general. To solve it, we first construct an algorithm that determines the set of update digraphs of a BN. For that, we use divide and conquer methodology based on the structural characteristics of the interaction digraph. Next, for each update digraph we determine a scheme associated. This algorithm also works in the case where there is a partial knowledge about the relative order of the updating of the states of the nodes. We exhibit some examples of how the algorithm works on some GRNs published in the literature. An executable file of the UpdateLabel algorithm made in Java and the files with the outputs of the algorithms used with the GRNs are available at: www.inf.udec.cl/ ∼lilian/UDE/ CONTACT: lilisalinas@udec.cl Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-01-01
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design. PMID:25404761
NASA Technical Reports Server (NTRS)
Hague, D. S.; Vanderburg, J. D.
1977-01-01
A vehicle geometric definition based upon quadrilateral surface elements to produce realistic pictures of an aerospace vehicle. The PCSYS programs can be used to visually check geometric data input, monitor geometric perturbations, and to visualize the complex spatial inter-relationships between the internal and external vehicle components. PCSYS has two major component programs. The between program, IMAGE, draws a complex aerospace vehicle pictorial representation based on either an approximate but rapid hidden line algorithm or without any hidden line algorithm. The second program, HIDDEN, draws a vehicle representation using an accurate but time consuming hidden line algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.
The FY17Q4 milestone of the ECP/VTK-m project includes the completion of a key-reduce scheduling mechanism, a spatial division algorithm, an algorithm for basic particle advection, and the computation of smoothed surface normals. With the completion of this milestone, we are able to, respectively, more easily group like elements (a common visualization algorithm operation), provide the fundamentals for geometric search structures, provide the fundamentals for many flow visualization algorithms, and provide more realistic rendering of surfaces approximated with facets.
SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Bri-Mathias; Palmintier, Bryan
This presentation provides an overview of full-scale, high-quality, synthetic distribution system data set(s) for testing distribution automation algorithms, distributed control approaches, ADMS capabilities, and other emerging distribution technologies.
Doubravsky, Karel; Dohnal, Mirko
2015-01-01
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details. PMID:26158662
Doubravsky, Karel; Dohnal, Mirko
2015-01-01
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.
Inversion of oceanic constituents in case I and II waters with genetic programming algorithms.
Chami, Malik; Robilliard, Denis
2002-10-20
A stochastic inverse technique based on agenetic programming (GP) algorithm was developed toinvert oceanic constituents from simulated data for case I and case II water applications. The simulations were carried out with the Ordre Successifs Ocean Atmosphere (OSOA) radiative transfer model. They include the effects of oceanic substances such as algal-related chlorophyll, nonchlorophyllous suspended matter, and dissolved organic matter. The synthetic data set also takes into account the directional effects of particles through a variation of their phase function that makes the simulated data realistic. It is shown that GP can be successfully applied to the inverse problem with acceptable stability in the presence of realistic noise in the data. GP is compared with neural network methodology for case I waters; GP exhibits similar retrieval accuracy, which is greater than for traditional techniques such as band ratio algorithms. The application of GP to real satellite data [a Sea-viewing Wide Field-of-view Sensor (SeaWiFS)] was also carried out for case I waters as a validation. Good agreement was obtained when GP results were compared with the SeaWiFS empirical algorithm. For case II waters the accuracy of GP is less than 33%, which remains satisfactory, at the present time, for remote-sensing purposes.
Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed
NASA Technical Reports Server (NTRS)
Tian, Ye; Song, Qi; Cattafesta, Louis
2005-01-01
This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.
Population of 224 realistic human subject-based computational breast phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, David W.; Wells, Jered R., E-mail: jered.wells@duke.edu; Sturgeon, Gregory M.
Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was thenmore » applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range of breast types, volumes, densities, and parenchymal patterns.« less
Population of 224 realistic human subject-based computational breast phantoms
Erickson, David W.; Wells, Jered R.; Sturgeon, Gregory M.; Dobbins, James T.; Segars, W. Paul; Lo, Joseph Y.
2016-01-01
Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range of breast types, volumes, densities, and parenchymal patterns. PMID:26745896
Antonietti, Alberto; Casellato, Claudia; Garrido, Jesús A; Luque, Niceto R; Naveros, Francisco; Ros, Eduardo; D' Angelo, Egidio; Pedrocchi, Alessandra
2016-01-01
In this study, we defined a realistic cerebellar model through the use of artificial spiking neural networks, testing it in computational simulations that reproduce associative motor tasks in multiple sessions of acquisition and extinction. By evolutionary algorithms, we tuned the cerebellar microcircuit to find out the near-optimal plasticity mechanism parameters that better reproduced human-like behavior in eye blink classical conditioning, one of the most extensively studied paradigms related to the cerebellum. We used two models: one with only the cortical plasticity and another including two additional plasticity sites at nuclear level. First, both spiking cerebellar models were able to well reproduce the real human behaviors, in terms of both "timing" and "amplitude", expressing rapid acquisition, stable late acquisition, rapid extinction, and faster reacquisition of an associative motor task. Even though the model with only the cortical plasticity site showed good learning capabilities, the model with distributed plasticity produced faster and more stable acquisition of conditioned responses in the reacquisition phase. This behavior is explained by the effect of the nuclear plasticities, which have slow dynamics and can express memory consolidation and saving. We showed how the spiking dynamics of multiple interactive neural mechanisms implicitly drive multiple essential components of complex learning processes. This study presents a very advanced computational model, developed together by biomedical engineers, computer scientists, and neuroscientists. Since its realistic features, the proposed model can provide confirmations and suggestions about neurophysiological and pathological hypotheses and can be used in challenging clinical applications.
Three dimensional δf simulations of beams in the SSC
NASA Astrophysics Data System (ADS)
Koga, J.; Tajima, T.; Machida, S.
1993-12-01
A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.
An empirical generative framework for computational modeling of language acquisition.
Waterfall, Heidi R; Sandbank, Ben; Onnis, Luca; Edelman, Shimon
2010-06-01
This paper reports progress in developing a computer model of language acquisition in the form of (1) a generative grammar that is (2) algorithmically learnable from realistic corpus data, (3) viable in its large-scale quantitative performance and (4) psychologically real. First, we describe new algorithmic methods for unsupervised learning of generative grammars from raw CHILDES data and give an account of the generative performance of the acquired grammars. Next, we summarize findings from recent longitudinal and experimental work that suggests how certain statistically prominent structural properties of child-directed speech may facilitate language acquisition. We then present a series of new analyses of CHILDES data indicating that the desired properties are indeed present in realistic child-directed speech corpora. Finally, we suggest how our computational results, behavioral findings, and corpus-based insights can be integrated into a next-generation model aimed at meeting the four requirements of our modeling framework.
Development of Realistic Synthetic Data Products for the Tempo Geostationary Mission
NASA Astrophysics Data System (ADS)
Chan Miller, C.; Gonzalez Abad, G.; Zoogman, P.; Spurr, R. J. D.; Keller, C. A.; Liu, X.; Chance, K.
2017-12-01
TEMPO is a future geostationary satellite instrument designed to measure atmospheric pollution from solar backscatter over greater North America. Here we describe efforts to generate realistic synthetic level 1 (radiance) and level 2 (trace gas, aerosol and cloud) TEMPO observations, appropriate for retrieval algorithm validation and data assimilation observing system simulation experiments. The synthetic data are derived using a high resolution ( 12km x 12km) GEOS-5 GCM simulation with GEOS-Chem tropospheric chemistry combined with the VLIDORT radiative transfer model. The simulations include cloud and aerosol scattering, pressure- and temperature-dependent gas absorption, anisotropic surface reflectance derived from MODIS observations, solar-induced plant fluorescence derived from GOME-2 observations, and the Ring effect. We describe methods to speed up calculation of the synthetic level 2 products, and present a first validation of the TEMPO operational algorithms against the synthetic level 1 data.
Realistic tissue visualization using photoacoustic image
NASA Astrophysics Data System (ADS)
Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong
2018-02-01
Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.
NASA Astrophysics Data System (ADS)
Pennington, Robert S.; Van den Broek, Wouter; Koch, Christoph T.
2014-05-01
We have reconstructed third-dimension specimen information from convergent-beam electron diffraction (CBED) patterns simulated using the stacked-Bloch-wave method. By reformulating the stacked-Bloch-wave formalism as an artificial neural network and optimizing with resilient back propagation, we demonstrate specimen orientation reconstructions with depth resolutions down to 5 nm. To show our algorithm's ability to analyze realistic data, we also discuss and demonstrate our algorithm reconstructing from noisy data and using a limited number of CBED disks. Applicability of this reconstruction algorithm to other specimen parameters is discussed.
NASA Astrophysics Data System (ADS)
Gallivanone, F.; Interlenghi, M.; Canervari, C.; Castiglioni, I.
2016-01-01
18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET) is a standard functional diagnostic technique to in vivo image cancer. Different quantitative paramters can be extracted from PET images and used as in vivo cancer biomarkers. Between PET biomarkers Metabolic Tumor Volume (MTV) has gained an important role in particular considering the development of patient-personalized radiotherapy treatment for non-homogeneous dose delivery. Different imaging processing methods have been developed to define MTV. The different proposed PET segmentation strategies were validated in ideal condition (e.g. in spherical objects with uniform radioactivity concentration), while the majority of cancer lesions doesn't fulfill these requirements. In this context, this work has a twofold objective: 1) to implement and optimize a fully automatic, threshold-based segmentation method for the estimation of MTV, feasible in clinical practice 2) to develop a strategy to obtain anthropomorphic phantoms, including non-spherical and non-uniform objects, miming realistic oncological patient conditions. The developed PET segmentation algorithm combines an automatic threshold-based algorithm for the definition of MTV and a k-means clustering algorithm for the estimation of the background. The method is based on parameters always available in clinical studies and was calibrated using NEMA IQ Phantom. Validation of the method was performed both in ideal (e.g. in spherical objects with uniform radioactivity concentration) and non-ideal (e.g. in non-spherical objects with a non-uniform radioactivity concentration) conditions. The strategy to obtain a phantom with synthetic realistic lesions (e.g. with irregular shape and a non-homogeneous uptake) consisted into the combined use of standard anthropomorphic phantoms commercially and irregular molds generated using 3D printer technology and filled with a radioactive chromatic alginate. The proposed segmentation algorithm was feasible in a clinical context and showed a good accuracy both in ideal and in realistic conditions.
Automatic Perceptual Color Map Generation for Realistic Volume Visualization
Silverstein, Jonathan C.; Parsad, Nigel M.; Tsirline, Victor
2008-01-01
Advances in computed tomography imaging technology and inexpensive high performance computer graphics hardware are making high-resolution, full color (24-bit) volume visualizations commonplace. However, many of the color maps used in volume rendering provide questionable value in knowledge representation and are non-perceptual thus biasing data analysis or even obscuring information. These drawbacks, coupled with our need for realistic anatomical volume rendering for teaching and surgical planning, has motivated us to explore the auto-generation of color maps that combine natural colorization with the perceptual discriminating capacity of grayscale. As evidenced by the examples shown that have been created by the algorithm described, the merging of perceptually accurate and realistically colorized virtual anatomy appears to insightfully interpret and impartially enhance volume rendered patient data. PMID:18430609
CHARMM-GUI Membrane Builder toward realistic biological membrane simulations.
Wu, Emilia L; Cheng, Xi; Jo, Sunhwan; Rui, Huan; Song, Kevin C; Dávila-Contreras, Eder M; Qi, Yifei; Lee, Jumin; Monje-Galvan, Viviana; Venable, Richard M; Klauda, Jeffery B; Im, Wonpil
2014-10-15
CHARMM-GUI Membrane Builder, http://www.charmm-gui.org/input/membrane, is a web-based user interface designed to interactively build all-atom protein/membrane or membrane-only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance-based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM-GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments. Copyright © 2014 Wiley Periodicals, Inc.
Baldewijns, Greet; Debard, Glen; Mertes, Gert; Vanrumste, Bart; Croonenborghs, Tom
2016-03-01
Fall incidents are an important health hazard for older adults. Automatic fall detection systems can reduce the consequences of a fall incident by assuring that timely aid is given. The development of these systems is therefore getting a lot of research attention. Real-life data which can help evaluate the results of this research is however sparse. Moreover, research groups that have this type of data are not at liberty to share it. Most research groups thus use simulated datasets. These simulation datasets, however, often do not incorporate the challenges the fall detection system will face when implemented in real-life. In this Letter, a more realistic simulation dataset is presented to fill this gap between real-life data and currently available datasets. It was recorded while re-enacting real-life falls recorded during previous studies. It incorporates the challenges faced by fall detection algorithms in real life. A fall detection algorithm from Debard et al. was evaluated on this dataset. This evaluation showed that the dataset possesses extra challenges compared with other publicly available datasets. In this Letter, the dataset is discussed as well as the results of this preliminary evaluation of the fall detection algorithm. The dataset can be downloaded from www.kuleuven.be/advise/datasets.
Realistic Real-Time Outdoor Rendering in Augmented Reality
Kolivand, Hoshang; Sunar, Mohd Shahrizal
2014-01-01
Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems. PMID:25268480
Realistic real-time outdoor rendering in augmented reality.
Kolivand, Hoshang; Sunar, Mohd Shahrizal
2014-01-01
Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.
Ma, Ren; Zhou, Xiaoqing; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng
2016-12-21
In this study we present a three-dimensional (3D) reconstruction algorithm for magneto-acoustic tomography with magnetic induction (MAT-MI) based on the characteristics of the ultrasound transducer. The algorithm is investigated to solve the blur problem of the MAT-MI acoustic source image, which is caused by the ultrasound transducer and the scanning geometry. First, we established a transducer model matrix using measured data from the real transducer. With reference to the S-L model used in the computed tomography algorithm, a 3D phantom model of electrical conductivity is set up. Both sphere scanning and cylinder scanning geometries are adopted in the computer simulation. Then, using finite element analysis, the distribution of the eddy current and the acoustic source as well as the acoustic pressure can be obtained with the transducer model matrix. Next, using singular value decomposition, the inverse transducer model matrix together with the reconstruction algorithm are worked out. The acoustic source and the conductivity images are reconstructed using the proposed algorithm. Comparisons between an ideal point transducer and the realistic transducer are made to evaluate the algorithms. Finally, an experiment is performed using a graphite phantom. We found that images of the acoustic source reconstructed using the proposed algorithm are a better match than those using the previous one, the correlation coefficient of sphere scanning geometry is 98.49% and that of cylinder scanning geometry is 94.96%. Comparison between the ideal point transducer and the realistic transducer shows that the correlation coefficients are 90.2% in sphere scanning geometry and 86.35% in cylinder scanning geometry. The reconstruction of the graphite phantom experiment also shows a higher resolution using the proposed algorithm. We conclude that the proposed reconstruction algorithm, which considers the characteristics of the transducer, can obviously improve the resolution of the reconstructed image. This study can be applied to analyse the effect of the position of the transducer and the scanning geometry on imaging. It may provide a more precise method to reconstruct the conductivity distribution in MAT-MI.
Noninvasive identification of the total peripheral resistance baroreflex
NASA Technical Reports Server (NTRS)
Mukkamala, Ramakrishna; Toska, Karin; Cohen, Richard J.
2003-01-01
We propose two identification algorithms for quantitating the total peripheral resistance (TPR) baroreflex, an important contributor to short-term arterial blood pressure (ABP) regulation. Each algorithm analyzes beat-to-beat fluctuations in ABP and cardiac output, which may both be obtained noninvasively in humans. For a theoretical evaluation, we applied both algorithms to a realistic cardiovascular model. The results contrasted with only one of the algorithms proving to be reliable. This algorithm was able to track changes in the static gains of both the arterial and cardiopulmonary TPR baroreflex. We then applied both algorithms to a preliminary set of human data and obtained contrasting results much like those obtained from the cardiovascular model, thereby making the theoretical evaluation results more meaningful. This study suggests that, with experimental testing, the reliable identification algorithm may provide a powerful, noninvasive means for quantitating the TPR baroreflex. This study also provides an example of the role that models can play in the development and initial evaluation of algorithms aimed at quantitating important physiological mechanisms.
Griffiths, Thomas L; Lieder, Falk; Goodman, Noah D
2015-04-01
Marr's levels of analysis-computational, algorithmic, and implementation-have served cognitive science well over the last 30 years. But the recent increase in the popularity of the computational level raises a new challenge: How do we begin to relate models at different levels of analysis? We propose that it is possible to define levels of analysis that lie between the computational and the algorithmic, providing a way to build a bridge between computational- and algorithmic-level models. The key idea is to push the notion of rationality, often used in defining computational-level models, deeper toward the algorithmic level. We offer a simple recipe for reverse-engineering the mind's cognitive strategies by deriving optimal algorithms for a series of increasingly more realistic abstract computational architectures, which we call "resource-rational analysis." Copyright © 2015 Cognitive Science Society, Inc.
Robust image modeling techniques with an image restoration application
NASA Astrophysics Data System (ADS)
Kashyap, Rangasami L.; Eom, Kie-Bum
1988-08-01
A robust parameter-estimation algorithm for a nonsymmetric half-plane (NSHP) autoregressive model, where the driving noise is a mixture of a Gaussian and an outlier process, is presented. The convergence of the estimation algorithm is proved. An algorithm to estimate parameters and original image intensity simultaneously from the impulse-noise-corrupted image, where the model governing the image is not available, is also presented. The robustness of the parameter estimates is demonstrated by simulation. Finally, an algorithm to restore realistic images is presented. The entire image generally does not obey a simple image model, but a small portion (e.g., 8 x 8) of the image is assumed to obey an NSHP model. The original image is divided into windows and the robust estimation algorithm is applied for each window. The restoration algorithm is tested by comparing it to traditional methods on several different images.
A fast image simulation algorithm for scanning transmission electron microscopy.
Ophus, Colin
2017-01-01
Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. We present a new algorithm named PRISM that combines features of the two most commonly used algorithms, namely the Bloch wave and multislice methods. PRISM uses a Fourier interpolation factor f that has typical values of 4-20 for atomic resolution simulations. We show that in many cases PRISM can provide a speedup that scales with f 4 compared to multislice simulations, with a negligible loss of accuracy. We demonstrate the usefulness of this method with large-scale scanning transmission electron microscopy image simulations of a crystalline nanoparticle on an amorphous carbon substrate.
A fast image simulation algorithm for scanning transmission electron microscopy
Ophus, Colin
2017-05-10
Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. Here, we present a new algorithm named PRISM that combines features of the two most commonly used algorithms, namely the Bloch wave and multislice methods. PRISM uses a Fourier interpolation factor f that has typical values of 4-20 for atomic resolution simulations. We show that in many cases PRISM can provide a speedup that scales with f 4 compared to multislice simulations, with a negligible loss of accuracy. We demonstrate the usefulness of this methodmore » with large-scale scanning transmission electron microscopy image simulations of a crystalline nanoparticle on an amorphous carbon substrate.« less
Motion compensation for fully 4D PET reconstruction using PET superset data
NASA Astrophysics Data System (ADS)
Verhaeghe, J.; Gravel, P.; Mio, R.; Fukasawa, R.; Rosa-Neto, P.; Soucy, J.-P.; Thompson, C. J.; Reader, A. J.
2010-07-01
Fully 4D PET image reconstruction is receiving increasing research interest due to its ability to significantly reduce spatiotemporal noise in dynamic PET imaging. However, thus far in the literature, the important issue of correcting for subject head motion has not been considered. Specifically, as a direct consequence of using temporally extensive basis functions, a single instance of movement propagates to impair the reconstruction of multiple time frames, even if no further movement occurs in those frames. Existing 3D motion compensation strategies have not yet been adapted to 4D reconstruction, and as such the benefits of 4D algorithms have not yet been reaped in a clinical setting where head movement undoubtedly occurs. This work addresses this need, developing a motion compensation method suitable for fully 4D reconstruction methods which exploits an optical tracking system to measure the head motion along with PET superset data to store the motion compensated data. List-mode events are histogrammed as PET superset data according to the measured motion, and a specially devised normalization scheme for motion compensated reconstruction from the superset data is required. This work proceeds to propose the corresponding time-dependent normalization modifications which are required for a major class of fully 4D image reconstruction algorithms (those which use linear combinations of temporal basis functions). Using realistically simulated as well as real high-resolution PET data from the HRRT, we demonstrate both the detrimental impact of subject head motion in fully 4D PET reconstruction and the efficacy of our proposed modifications to 4D algorithms. Benefits are shown both for the individual PET image frames as well as for parametric images of tracer uptake and volume of distribution for 18F-FDG obtained from Patlak analysis.
Enhancement of dynamic myocardial perfusion PET images based on low-rank plus sparse decomposition.
Lu, Lijun; Ma, Xiaomian; Mohy-Ud-Din, Hassan; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan
2018-02-01
The absolute quantification of dynamic myocardial perfusion (MP) PET imaging is challenged by the limited spatial resolution of individual frame images due to division of the data into shorter frames. This study aims to develop a method for restoration and enhancement of dynamic PET images. We propose that the image restoration model should be based on multiple constraints rather than a single constraint, given the fact that the image characteristic is hardly described by a single constraint alone. At the same time, it may be possible, but not optimal, to regularize the image with multiple constraints simultaneously. Fortunately, MP PET images can be decomposed into a superposition of background vs. dynamic components via low-rank plus sparse (L + S) decomposition. Thus, we propose an L + S decomposition based MP PET image restoration model and express it as a convex optimization problem. An iterative soft thresholding algorithm was developed to solve the problem. Using realistic dynamic 82 Rb MP PET scan data, we optimized and compared its performance with other restoration methods. The proposed method resulted in substantial visual as well as quantitative accuracy improvements in terms of noise versus bias performance, as demonstrated in extensive 82 Rb MP PET simulations. In particular, the myocardium defect in the MP PET images had improved visual as well as contrast versus noise tradeoff. The proposed algorithm was also applied on an 8-min clinical cardiac 82 Rb MP PET study performed on the GE Discovery PET/CT, and demonstrated improved quantitative accuracy (CNR and SNR) compared to other algorithms. The proposed method is effective for restoration and enhancement of dynamic PET images. Copyright © 2017 Elsevier B.V. All rights reserved.
Attitude control system of the Delfi-n3Xt satellite
NASA Astrophysics Data System (ADS)
Reijneveld, J.; Choukroun, D.
2013-12-01
This work is concerned with the development of the attitude control algorithms that will be implemented on board of the Delfi-n3xt nanosatellite, which is to be launched in 2013. One of the mission objectives is to demonstrate Sun pointing and three axis stabilization. The attitude control modes and the associated algorithms are described. The control authority is shared between three body-mounted magnetorquers (MTQ) and three orthogonal reaction wheels. The attitude information is retrieved from Sun vector measurements, Earth magnetic field measurements, and gyro measurements. The design of the control is achieved as a trade between simplicity and performance. Stabilization and Sun pointing are achieved via the successive application of the classical Bdot control law and a quaternion feedback control. For the purpose of Sun pointing, a simple quaternion estimation scheme is implemented based on geometric arguments, where the need for a costly optimal filtering algorithm is alleviated, and a single line of sight (LoS) measurement is required - here the Sun vector. Beyond the three-axis Sun pointing mode, spinning Sun pointing modes are also described and used as demonstration modes. The three-axis Sun pointing mode requires reaction wheels and magnetic control while the spinning control modes are implemented with magnetic control only. In addition, a simple scheme for angular rates estimation using Sun vector and Earth magnetic measurements is tested in the case of gyro failures. The various control modes performances are illustrated via extensive simulations over several orbits time spans. The simulated models of the dynamical space environment, of the attitude hardware, and the onboard controller logic are using realistic assumptions. All control modes satisfy the minimal Sun pointing requirements allowed for power generation.
Motion compensation for fully 4D PET reconstruction using PET superset data.
Verhaeghe, J; Gravel, P; Mio, R; Fukasawa, R; Rosa-Neto, P; Soucy, J-P; Thompson, C J; Reader, A J
2010-07-21
Fully 4D PET image reconstruction is receiving increasing research interest due to its ability to significantly reduce spatiotemporal noise in dynamic PET imaging. However, thus far in the literature, the important issue of correcting for subject head motion has not been considered. Specifically, as a direct consequence of using temporally extensive basis functions, a single instance of movement propagates to impair the reconstruction of multiple time frames, even if no further movement occurs in those frames. Existing 3D motion compensation strategies have not yet been adapted to 4D reconstruction, and as such the benefits of 4D algorithms have not yet been reaped in a clinical setting where head movement undoubtedly occurs. This work addresses this need, developing a motion compensation method suitable for fully 4D reconstruction methods which exploits an optical tracking system to measure the head motion along with PET superset data to store the motion compensated data. List-mode events are histogrammed as PET superset data according to the measured motion, and a specially devised normalization scheme for motion compensated reconstruction from the superset data is required. This work proceeds to propose the corresponding time-dependent normalization modifications which are required for a major class of fully 4D image reconstruction algorithms (those which use linear combinations of temporal basis functions). Using realistically simulated as well as real high-resolution PET data from the HRRT, we demonstrate both the detrimental impact of subject head motion in fully 4D PET reconstruction and the efficacy of our proposed modifications to 4D algorithms. Benefits are shown both for the individual PET image frames as well as for parametric images of tracer uptake and volume of distribution for (18)F-FDG obtained from Patlak analysis.
A transient FETI methodology for large-scale parallel implicit computations in structural mechanics
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Crivelli, Luis; Roux, Francois-Xavier
1992-01-01
Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because explicit schemes are also easier to parallelize than implicit ones. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet -- and perhaps will never -- be offset by the speed of parallel hardware. Therefore, it is essential to develop efficient and robust alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient when simulating low-frequency dynamics. Here we present a domain decomposition method for implicit schemes that requires significantly less storage than factorization algorithms, that is several times faster than other popular direct and iterative methods, that can be easily implemented on both shared and local memory parallel processors, and that is both computationally and communication-wise efficient. The proposed transient domain decomposition method is an extension of the method of Finite Element Tearing and Interconnecting (FETI) developed by Farhat and Roux for the solution of static problems. Serial and parallel performance results on the CRAY Y-MP/8 and the iPSC-860/128 systems are reported and analyzed for realistic structural dynamics problems. These results establish the superiority of the FETI method over both the serial/parallel conjugate gradient algorithm with diagonal scaling and the serial/parallel direct method, and contrast the computational power of the iPSC-860/128 parallel processor with that of the CRAY Y-MP/8 system.
Sachetto Oliveira, Rafael; Martins Rocha, Bernardo; Burgarelli, Denise; Meira, Wagner; Constantinides, Christakis; Weber Dos Santos, Rodrigo
2018-02-01
The use of computer models as a tool for the study and understanding of the complex phenomena of cardiac electrophysiology has attained increased importance nowadays. At the same time, the increased complexity of the biophysical processes translates into complex computational and mathematical models. To speed up cardiac simulations and to allow more precise and realistic uses, 2 different techniques have been traditionally exploited: parallel computing and sophisticated numerical methods. In this work, we combine a modern parallel computing technique based on multicore and graphics processing units (GPUs) and a sophisticated numerical method based on a new space-time adaptive algorithm. We evaluate each technique alone and in different combinations: multicore and GPU, multicore and GPU and space adaptivity, multicore and GPU and space adaptivity and time adaptivity. All the techniques and combinations were evaluated under different scenarios: 3D simulations on slabs, 3D simulations on a ventricular mouse mesh, ie, complex geometry, sinus-rhythm, and arrhythmic conditions. Our results suggest that multicore and GPU accelerate the simulations by an approximate factor of 33×, whereas the speedups attained by the space-time adaptive algorithms were approximately 48. Nevertheless, by combining all the techniques, we obtained speedups that ranged between 165 and 498. The tested methods were able to reduce the execution time of a simulation by more than 498× for a complex cellular model in a slab geometry and by 165× in a realistic heart geometry simulating spiral waves. The proposed methods will allow faster and more realistic simulations in a feasible time with no significant loss of accuracy. Copyright © 2017 John Wiley & Sons, Ltd.
Aeolus End-To-End Simulator and Wind Retrieval Algorithms up to Level 1B
NASA Astrophysics Data System (ADS)
Reitebuch, Oliver; Marksteiner, Uwe; Rompel, Marc; Meringer, Markus; Schmidt, Karsten; Huber, Dorit; Nikolaus, Ines; Dabas, Alain; Marshall, Jonathan; de Bruin, Frank; Kanitz, Thomas; Straume, Anne-Grete
2018-04-01
The first wind lidar in space ALADIN will be deployed on ESÁs Aeolus mission. In order to assess the performance of ALADIN and to optimize the wind retrieval and calibration algorithms an end-to-end simulator was developed. This allows realistic simulations of data downlinked by Aeolus. Together with operational processors this setup is used to assess random and systematic error sources and perform sensitivity studies about the influence of atmospheric and instrument parameters.
Temporal Planning for Compilation of Quantum Approximate Optimization Algorithm Circuits
NASA Technical Reports Server (NTRS)
Venturelli, Davide; Do, Minh Binh; Rieffel, Eleanor Gilbert; Frank, Jeremy David
2017-01-01
We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus our initial experiments on Quantum Approximate Optimization Algorithm (QAOA) circuits that have few ordering constraints and allow highly parallel plans. We report on experiments using several temporal planners to compile circuits of various sizes to a realistic hardware. This early empirical evaluation suggests that temporal planning is a viable approach to quantum circuit compilation.
Colour computer-generated holography for point clouds utilizing the Phong illumination model.
Symeonidou, Athanasia; Blinder, David; Schelkens, Peter
2018-04-16
A technique integrating the bidirectional reflectance distribution function (BRDF) is proposed to generate realistic high-quality colour computer-generated holograms (CGHs). We build on prior work, namely a fast computer-generated holography method for point clouds that handles occlusions. We extend the method by integrating the Phong illumination model so that the properties of the objects' surfaces are taken into account to achieve natural light phenomena such as reflections and shadows. Our experiments show that rendering holograms with the proposed algorithm provides realistic looking objects without any noteworthy increase to the computational cost.
NLSE: Parameter-Based Inversion Algorithm
NASA Astrophysics Data System (ADS)
Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.; Knopp, Jeremy S.
Chapter 11 introduced us to the notion of an inverse problem and gave us some examples of the value of this idea to the solution of realistic industrial problems. The basic inversion algorithm described in Chap. 11 was based upon the Gauss-Newton theory of nonlinear least-squares estimation and is called NLSE in this book. In this chapter we will develop the mathematical background of this theory more fully, because this algorithm will be the foundation of inverse methods and their applications during the remainder of this book. We hope, thereby, to introduce the reader to the application of sophisticated mathematical concepts to engineering practice without introducing excessive mathematical sophistication.
Ocean observations with EOS/MODIS: Algorithm Development and Post Launch Studies
NASA Technical Reports Server (NTRS)
Gordon, Howard R.
1998-01-01
Significant accomplishments made during the present reporting period: (1) We expanded our "spectral-matching" algorithm (SMA), for identifying the presence of absorbing aerosols and simultaneously performing atmospheric correction and derivation of the ocean's bio-optical parameters, to the point where it could be added as a subroutine to the MODIS water-leaving radiance algorithm; (2) A modification to the SMA that does not require detailed aerosol models has been developed. This is important as the requirement for realistic aerosol models has been a weakness of the SMA; and (3) We successfully acquired micro pulse lidar data in a Saharan dust outbreak during ACE-2 in the Canary Islands.
NASA Technical Reports Server (NTRS)
Stoessel, Achim; Markus, Thorsten
2003-01-01
The focus of this paper is on the representation of Antarctic coastal polynyas in global ice-ocean general circulation models (OGCMs), in particular their local, regional, and high-frequency behavior. This is verified with the aid of daily ice concentration derived from satellite passive microwave data using the NASATeam 2 (NT2) and the bootstrap (BS) algorithms. Large systematic regional and temporal discrepancies arise, some of which are related to the type of convection parameterization used in the model. An attempt is made to improve the fresh-water flux associated with melting and freezing in Antarctic coastal polynyas by ingesting (assimilating) satellite ice concentration where it comes to determining the thermodynamics of the open-water fraction of a model grid cell. Since the NT2 coastal open-water fraction (polynyas) tends to be less extensive than the simulated one in the decisive season and region, assimilating NT2 coastal ice concentration yields overall reduced net freezing rates, smaller formation rates of Antarctic Bottom Water, and a stronger southward flow of North Atlantic Deep Water across 30 S. Enhanced net freezing rates occur regionally when NT2 coastal ice concentration is assimilated, concomitant with a more realistic ice thickness distribution and accumulation of High-Salinity Shelf Water. Assimilating BS rather than NT2 coastal ice concentration, the differences to the non-assimilated simulation are generally smaller and of opposite sign. This suggests that the model reproduces coastal ice concentration in closer agreement with the BS data than with the NT2 data, while more realistic features emerge when NT2 data are assimilated.
A numerical comparison of discrete Kalman filtering algorithms: An orbit determination case study
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1976-01-01
The numerical stability and accuracy of various Kalman filter algorithms are thoroughly studied. Numerical results and conclusions are based on a realistic planetary approach orbit determination study. The case study results of this report highlight the numerical instability of the conventional and stabilized Kalman algorithms. Numerical errors associated with these algorithms can be so large as to obscure important mismodeling effects and thus give misleading estimates of filter accuracy. The positive result of this study is that the Bierman-Thornton U-D covariance factorization algorithm is computationally efficient, with CPU costs that differ negligibly from the conventional Kalman costs. In addition, accuracy of the U-D filter using single-precision arithmetic consistently matches the double-precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity of variations in the a priori statistics.
NASA Astrophysics Data System (ADS)
Lanusse, Francois; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Schneider, Jeff; Poczos, Barnabas
2017-01-01
Weak gravitational lensing has long been identified as one of the most powerful probes to investigate the nature of dark energy. As such, weak lensing is at the heart of the next generation of cosmological surveys such as LSST, Euclid or WFIRST.One particularly crititcal source of systematic errors in these surveys comes from the shape measurement algorithms tasked with estimating galaxy shapes. GREAT3, the last community challenge to assess the quality of state-of-the-art shape measurement algorithms has in particular demonstrated that all current methods are biased to various degrees and, more importantly, that these biases depend on the details of the galaxy morphologies. These biases can be measured and calibrated by generating mock observations where a known lensing signal has been introduced and comparing the resulting measurements to the ground-truth. Producing these mock observations however requires input galaxy images of higher resolution and S/N than the simulated survey, which typically implies acquiring extremely expensive space-based observations.The goal of this work is to train a deep generative model on already available Hubble Space Telescope data which can then be used to sample new galaxy images conditioned on parameters such as magnitude, size or redshift and exhibiting complex morphologies. Such model can allow us to inexpensively produce large set of realistic realistic images for calibration purposes.We implement a conditional generative model based on state-of-the-art deep learning methods and fit it to deep galaxy images from the COSMOS survey. The quality of the model is assessed by computing an extensive set of galaxy morphology statistics on the generated images. Beyond simple second moment statistics such as size and ellipticity, we apply more complex statistics specifically designed to be sensitive to disturbed galaxy morphologies. We find excellent agreement between the morphologies of real and model generated galaxies.Our results suggest that such deep generative models represent a reliable alternative to the acquisition of expensive high quality observations for generating the calibration data needed by the next generation of weak lensing surveys.
Shadow Mode Assessment Using Realistic Technologies for the National Airspace (SMART NAS)
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal H.
2014-01-01
Develop a simulation and modeling capability that includes: (a) Assessment of multiple parallel universes, (b) Accepts data feeds, (c) Allows for live virtual constructive distribute environment, (d) Enables integrated examinations of concepts, algorithms, technologies and National Airspace System (NAS) architectures.
Mspire-Simulator: LC-MS shotgun proteomic simulator for creating realistic gold standard data.
Noyce, Andrew B; Smith, Rob; Dalgleish, James; Taylor, Ryan M; Erb, K C; Okuda, Nozomu; Prince, John T
2013-12-06
The most important step in any quantitative proteomic pipeline is feature detection (aka peak picking). However, generating quality hand-annotated data sets to validate the algorithms, especially for lower abundance peaks, is nearly impossible. An alternative for creating gold standard data is to simulate it with features closely mimicking real data. We present Mspire-Simulator, a free, open-source shotgun proteomic simulator that goes beyond previous simulation attempts by generating LC-MS features with realistic m/z and intensity variance along with other noise components. It also includes machine-learned models for retention time and peak intensity prediction and a genetic algorithm to custom fit model parameters for experimental data sets. We show that these methods are applicable to data from three different mass spectrometers, including two fundamentally different types, and show visually and analytically that simulated peaks are nearly indistinguishable from actual data. Researchers can use simulated data to rigorously test quantitation software, and proteomic researchers may benefit from overlaying simulated data on actual data sets.
ODEion--a software module for structural identification of ordinary differential equations.
Gennemark, Peter; Wedelin, Dag
2014-02-01
In the systems biology field, algorithms for structural identification of ordinary differential equations (ODEs) have mainly focused on fixed model spaces like S-systems and/or on methods that require sufficiently good data so that derivatives can be accurately estimated. There is therefore a lack of methods and software that can handle more general models and realistic data. We present ODEion, a software module for structural identification of ODEs. Main characteristic features of the software are: • The model space is defined by arbitrary user-defined functions that can be nonlinear in both variables and parameters, such as for example chemical rate reactions. • ODEion implements computationally efficient algorithms that have been shown to efficiently handle sparse and noisy data. It can run a range of realistic problems that previously required a supercomputer. • ODEion is easy to use and provides SBML output. We describe the mathematical problem, the ODEion system itself, and provide several examples of how the system can be used. Available at: http://www.odeidentification.org.
Chen, Ke-ping; Xu, Geng; Wu, Shulin; Tang, Baopeng; Wang, Li; Zhang, Shu
2013-03-01
The present study was to assess the accuracy of automatic atrial and ventricular capture management (ACM and VCM) in determining pacing threshold and the performance of a second-generation automatic atrioventricular (AV) interval extension algorithm for reducing unnecessary ventricular pacing. A total of 398 patients at 32 centres who received an EnPulse dual-chamber pacing/dual-chamber adaptive rate pacing pacemaker (Medtronic, Minneapolis, MN, USA) were enrolled. The last amplitude thresholds as measured by ACM and VCM prior to the 6-month follow-up were compared with manually measured thresholds. Device diagnostics were used to evaluate ACM and VCM and the percentage of ventricular pacing with and without the AV extension algorithm. Modelling was performed to assess longevity gains relating to the use of automaticity features. Atrial and ventricular capture management performed accurately and reliably provided complete capture management in 97% of studied patients. The AV interval extension algorithm reduced the median per cent of right ventricular pacing in patients with sinus node dysfunction from 99.7 to 1.5% at 6-month follow-up and in patients with intermittent AV block (excluding persistent 3° AV block) from 99.9 to 50.2%. On the basis of validated modelling, estimated device longevity could potentially be extended by 1.9 years through the use of the capture management and AV interval extension features. Both ACM and VCM features reliably measured thresholds in nearly all patients; the AV extension algorithm significantly reduced ventricular pacing; and the use of pacemaker automaticity features potentially extends device longevity.
Calculating stage duration statistics in multistage diseases.
Komarova, Natalia L; Thalhauser, Craig J
2011-01-01
Many human diseases are characterized by multiple stages of progression. While the typical sequence of disease progression can be identified, there may be large individual variations among patients. Identifying mean stage durations and their variations is critical for statistical hypothesis testing needed to determine if treatment is having a significant effect on the progression, or if a new therapy is showing a delay of progression through a multistage disease. In this paper we focus on two methods for extracting stage duration statistics from longitudinal datasets: an extension of the linear regression technique, and a counting algorithm. Both are non-iterative, non-parametric and computationally cheap methods, which makes them invaluable tools for studying the epidemiology of diseases, with a goal of identifying different patterns of progression by using bioinformatics methodologies. Here we show that the regression method performs well for calculating the mean stage durations under a wide variety of assumptions, however, its generalization to variance calculations fails under realistic assumptions about the data collection procedure. On the other hand, the counting method yields reliable estimations for both means and variances of stage durations. Applications to Alzheimer disease progression are discussed.
Graph Partitioning for Parallel Applications in Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Bisws, Rupak; Kumar, Shailendra; Das, Sajal K.; Biegel, Bryan (Technical Monitor)
2002-01-01
The problem of partitioning irregular graphs and meshes for parallel computations on homogeneous systems has been extensively studied. However, these partitioning schemes fail when the target system architecture exhibits heterogeneity in resource characteristics. With the emergence of technologies such as the Grid, it is imperative to study the partitioning problem taking into consideration the differing capabilities of such distributed heterogeneous systems. In our model, the heterogeneous system consists of processors with varying processing power and an underlying non-uniform communication network. We present in this paper a novel multilevel partitioning scheme for irregular graphs and meshes, that takes into account issues pertinent to Grid computing environments. Our partitioning algorithm, called MiniMax, generates and maps partitions onto a heterogeneous system with the objective of minimizing the maximum execution time of the parallel distributed application. For experimental performance study, we have considered both a realistic mesh problem from NASA as well as synthetic workloads. Simulation results demonstrate that MiniMax generates high quality partitions for various classes of applications targeted for parallel execution in a distributed heterogeneous environment.
ERIC Educational Resources Information Center
Mori, Setsuko
2015-01-01
There is no shortage of studies that have reported the beneficial effects of extensive reading (ER) on various aspects of second/foreign language acquisition, including reading comprehension, reading speed, and vocabulary development. Anecdote after anecdote shows the effectiveness of ER, and no one seems to repudiate the power of reading in large…
Bacanin, Nebojsa; Tuba, Milan
2014-01-01
Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.
2014-01-01
Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results. PMID:24991645
NASA Astrophysics Data System (ADS)
Gaté, F.; Revenu, B.; García-Fernández, D.; Marin, V.; Dallier, R.; Escudié, A.; Martin, L.
2018-03-01
The composition of ultra-high energy cosmic rays is still poorly known and constitutes a very important topic in the field of high-energy astrophysics. Detection of ultra-high energy cosmic rays is carried out via the extensive air showers they create after interacting with the atmosphere constituents. The secondary electrons and positrons within the showers emit a detectable electric field in the kHz-GHz range. It is possible to use this radio signal for the estimation of the atmospheric depth of maximal development of the showers Xmax , with a good accuracy and a duty cycle close to 100%. This value of Xmax is strongly correlated to the nature of the primary cosmic ray that initiated the shower. We show in this paper the importance of using a realistic atmospheric model in order to correct for systematic errors that can prevent a correct and unbiased estimation of Xmax.
Optimizing human activity patterns using global sensitivity analysis.
Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M
2014-12-01
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.
Optimizing human activity patterns using global sensitivity analysis
Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.
2014-01-01
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080
Optimizing human activity patterns using global sensitivity analysis
Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; ...
2013-12-10
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less
Simulation of realistic retinoscopic measurement
NASA Astrophysics Data System (ADS)
Tan, Bo; Chen, Ying-Ling; Baker, K.; Lewis, J. W.; Swartz, T.; Jiang, Y.; Wang, M.
2007-03-01
Realistic simulation of ophthalmic measurements on normal and diseased eyes is presented. We use clinical data of ametropic and keratoconus patients to construct anatomically accurate three-dimensional eye models and simulate the measurement of a streak retinoscope with all the optical elements. The results show the clinical observations including the anomalous motion in high myopia and the scissors reflex in keratoconus. The demonstrated technique can be applied to other ophthalmic instruments and to other and more extensively abnormal eye conditions. It provides promising features for medical training and for evaluating and developing ocular instruments.
Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.
2016-01-01
Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials. PMID:26842761
NASA Astrophysics Data System (ADS)
Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.
2016-02-01
Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials.
LYDIAN: An Extensible Educational Animation Environment for Distributed Algorithms
ERIC Educational Resources Information Center
Koldehofe, Boris; Papatriantafilou, Marina; Tsigas, Philippas
2006-01-01
LYDIAN is an environment to support the teaching and learning of distributed algorithms. It provides a collection of distributed algorithms as well as continuous animations. Users can combine algorithms and animations with arbitrary network structures defining the interconnection and behavior of the distributed algorithm. Further, it facilitates…
HerMES: point source catalogues from Herschel-SPIRE observations II
NASA Astrophysics Data System (ADS)
Wang, L.; Viero, M.; Clarke, C.; Bock, J.; Buat, V.; Conley, A.; Farrah, D.; Guo, K.; Heinis, S.; Magdis, G.; Marchetti, L.; Marsden, G.; Norberg, P.; Oliver, S. J.; Page, M. J.; Roehlly, Y.; Roseboom, I. G.; Schulz, B.; Smith, A. J.; Vaccari, M.; Zemcov, M.
2014-11-01
The Herschel Multi-tiered Extragalactic Survey (HerMES) is the largest Guaranteed Time Key Programme on the Herschel Space Observatory. With a wedding cake survey strategy, it consists of nested fields with varying depth and area totalling ˜380 deg2. In this paper, we present deep point source catalogues extracted from Herschel-Spectral and Photometric Imaging Receiver (SPIRE) observations of all HerMES fields, except for the later addition of the 270 deg2 HerMES Large-Mode Survey (HeLMS) field. These catalogues constitute the second Data Release (DR2) made in 2013 October. A sub-set of these catalogues, which consists of bright sources extracted from Herschel-SPIRE observations completed by 2010 May 1 (covering ˜74 deg2) were released earlier in the first extensive data release in 2012 March. Two different methods are used to generate the point source catalogues, the SUSSEXTRACTOR point source extractor used in two earlier data releases (EDR and EDR2) and a new source detection and photometry method. The latter combines an iterative source detection algorithm, STARFINDER, and a De-blended SPIRE Photometry algorithm. We use end-to-end Herschel-SPIRE simulations with realistic number counts and clustering properties to characterize basic properties of the point source catalogues, such as the completeness, reliability, photometric and positional accuracy. Over 500 000 catalogue entries in HerMES fields (except HeLMS) are released to the public through the HeDAM (Herschel Database in Marseille) website (http://hedam.lam.fr/HerMES).
A real-time MTFC algorithm of space remote-sensing camera based on FPGA
NASA Astrophysics Data System (ADS)
Zhao, Liting; Huang, Gang; Lin, Zhe
2018-01-01
A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.
Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard
2002-01-01
The purpose of this paper is to demonstrate the application of particle swarm optimization to a realistic multidisciplinary optimization test problem. The paper's new contributions to multidisciplinary optimization is the application of a new algorithm for dealing with the unique challenges associated with multidisciplinary optimization problems, and recommendations as to the utility of the algorithm in future multidisciplinary optimization applications. The selected example is a bi-level optimization problem that demonstrates severe numerical noise and has a combination of continuous and truly discrete design variables. The use of traditional gradient-based optimization algorithms is thus not practical. The numerical results presented indicate that the particle swarm optimization algorithm is able to reliably find the optimum design for the problem presented here. The algorithm is capable of dealing with the unique challenges posed by multidisciplinary optimization as well as the numerical noise and truly discrete variables present in the current example problem.
Fuzzy Sarsa with Focussed Replacing Eligibility Traces for Robust and Accurate Control
NASA Astrophysics Data System (ADS)
Kamdem, Sylvain; Ohki, Hidehiro; Sueda, Naomichi
Several methods of reinforcement learning in continuous state and action spaces that utilize fuzzy logic have been proposed in recent years. This paper introduces Fuzzy Sarsa(λ), an on-policy algorithm for fuzzy learning that relies on a novel way of computing replacing eligibility traces to accelerate the policy evaluation. It is tested against several temporal difference learning algorithms: Sarsa(λ), Fuzzy Q(λ), an earlier fuzzy version of Sarsa and an actor-critic algorithm. We perform detailed evaluations on two benchmark problems : a maze domain and the cart pole. Results of various tests highlight the strengths and weaknesses of these algorithms and show that Fuzzy Sarsa(λ) outperforms all other algorithms tested for a larger granularity of design and under noisy conditions. It is a highly competitive method of learning in realistic noisy domains where a denser fuzzy design over the state space is needed for a more precise control.
An Arbitrary First Order Theory Can Be Represented by a Program: A Theorem
NASA Technical Reports Server (NTRS)
Hosheleva, Olga
1997-01-01
How can we represent knowledge inside a computer? For formalized knowledge, classical logic seems to be the most adequate tool. Classical logic is behind all formalisms of classical mathematics, and behind many formalisms used in Artificial Intelligence. There is only one serious problem with classical logic: due to the famous Godel's theorem, classical logic is algorithmically undecidable; as a result, when the knowledge is represented in the form of logical statements, it is very difficult to check whether, based on this statement, a given query is true or not. To make knowledge representations more algorithmic, a special field of logic programming was invented. An important portion of logic programming is algorithmically decidable. To cover knowledge that cannot be represented in this portion, several extensions of the decidable fragments have been proposed. In the spirit of logic programming, these extensions are usually introduced in such a way that even if a general algorithm is not available, good heuristic methods exist. It is important to check whether the already proposed extensions are sufficient, or further extensions is necessary. In the present paper, we show that one particular extension, namely, logic programming with classical negation, introduced by M. Gelfond and V. Lifschitz, can represent (in some reasonable sense) an arbitrary first order logical theory.
Analysis of the Impact of Realistic Wind Size Parameter on the Delft3D Model
NASA Astrophysics Data System (ADS)
Washington, M. H.; Kumar, S.
2017-12-01
The wind size parameter, which is the distance from the center of the storm to the location of the maximum winds, is currently a constant in the Delft3D model. As a result, the Delft3D model's output prediction of the water levels during a storm surge are inaccurate compared to the observed data. To address these issues, an algorithm to calculate a realistic wind size parameter for a given hurricane was designed and implemented using the observed water-level data for Hurricane Matthew. A performance evaluation experiment was conducted to demonstrate the accuracy of the model's prediction of water levels using the realistic wind size input parameter compared to the default constant wind size parameter for Hurricane Matthew, with the water level data observed from October 4th, 2016 to October 9th, 2016 from National Oceanic and Atmospheric Administration (NOAA) as a baseline. The experimental results demonstrate that the Delft3D water level output for the realistic wind size parameter, compared to the default constant size parameter, matches more accurately with the NOAA reference water level data.
Large-scale shell-model study of the Sn isotopes
NASA Astrophysics Data System (ADS)
Osnes, Eivind; Engeland, Torgeir; Hjorth-Jensen, Morten
2015-05-01
We summarize the results of an extensive study of the structure of the Sn isotopes using a large shell-model space and effective interactions evaluated from realistic two-nucleon potentials. For a fuller account, see ref. [1].
ERIC Educational Resources Information Center
Blanco, Francesco; La Rocca, Paola; Petta, Catia; Riggi, Francesco
2009-01-01
An educational model simulation of the sound produced by lightning in the sky has been employed to demonstrate realistic signatures of thunder and its connection to the particular structure of the lightning channel. Algorithms used in the past have been revisited and implemented, making use of current computer techniques. The basic properties of…
Computerized algorithms for partial cuts
R.L. Ernst; S.L. Stout
1991-01-01
Stand density, stand structure (diameter distribution), and species composition are all changed by intermediate treatments in forest stands. To use computer stand-growth simulators to assess the effects of different treatments on stand growth and development, users must be able to duplicate silviculturally realistic treatments in the simulator. In this paper, we review...
Trajectory Generation and Path Planning for Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Kulczycki, Eric A.; Elfes, Alberto
2007-01-01
This paper presents global path planning algorithms for the Titan aerobot based on user defined waypoints in 2D and 3D space. The algorithms were implemented using information obtained through a planner user interface. The trajectory planning algorithms were designed to accurately represent the aerobot's characteristics, such as minimum turning radius. Additionally, trajectory planning techniques were implemented to allow for surveying of a planar area based solely on camera fields of view, airship altitude, and the location of the planar area's perimeter. The developed paths allow for planar navigation and three-dimensional path planning. These calculated trajectories are optimized to produce the shortest possible path while still remaining within realistic bounds of airship dynamics.
Tracking fronts in solutions of the shallow-water equations
NASA Astrophysics Data System (ADS)
Bennett, Andrew F.; Cummins, Patrick F.
1988-02-01
A front-tracking algorithm of Chern et al. (1986) is tested on the shallow-water equations, using the Parrett and Cullen (1984) and Williams and Hori (1970) initial state, consisting of smooth finite amplitude waves depending on one space dimension alone. At high resolution the solution is almost indistinguishable from that obtained with the Glimm algorithm. The latter is known to converge to the true frontal solution, but is 20 times less efficient at the same resolution. The solutions obtained using the front-tracking algorithm at 8 times coarser resolution are quite acceptable, indicating a very substantial gain in efficiency, which encourages application in realistic ocean models possessing two or three space dimensions.
Realistic Covariance Prediction for the Earth Science Constellation
NASA Technical Reports Server (NTRS)
Duncan, Matthew; Long, Anne
2006-01-01
Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. One component of the risk assessment process is computing the collision probability between two space objects. The collision probability is computed using Monte Carlo techniques as well as by numerically integrating relative state probability density functions. Each algorithm takes as inputs state vector and state vector uncertainty information for both objects. The state vector uncertainty information is expressed in terms of a covariance matrix. The collision probability computation is only as good as the inputs. Therefore, to obtain a collision calculation that is a useful decision-making metric, realistic covariance matrices must be used as inputs to the calculation. This paper describes the process used by the NASA/Goddard Space Flight Center's Earth Science Mission Operations Project to generate realistic covariance predictions for three of the Earth Science Constellation satellites: Aqua, Aura and Terra.
Applications of the JARS method to study levee sites in southern Texas and southern New Mexico
Ivanov, J.; Miller, R.D.; Xia, J.; Dunbar, J.B.
2007-01-01
We apply the joint analysis of refractions with surface waves (JARS) method to several sites and compare its results to traditional refraction-tomography methods in efforts of finding a more realistic solution to the inverse refraction-traveltime problem. The JARS method uses a reference model, derived from surface-wave shear-wave velocity estimates, as a constraint. In all of the cases JARS estimates appear more realistic than those from the conventional refraction-tomography methods. As a result, we consider, the JARS algorithm as the preferred method for finding solutions to the inverse refraction-tomography problems. ?? 2007 Society of Exploration Geophysicists.
Nassi-Schneiderman Diagram in HTML Based on AML
ERIC Educational Resources Information Center
Menyhárt, László
2013-01-01
In an earlier work I defined an extension of XML called Algorithm Markup Language (AML) for easy and understandable coding in an IDE which supports XML editing (e.g. NetBeans). The AML extension contains annotations and native language (English or Hungarian) tag names used when coding our algorithm. This paper presents a drawing tool with which…
Column generation algorithms for virtual network embedding in flexi-grid optical networks.
Lin, Rongping; Luo, Shan; Zhou, Jingwei; Wang, Sheng; Chen, Bin; Zhang, Xiaoning; Cai, Anliang; Zhong, Wen-De; Zukerman, Moshe
2018-04-16
Network virtualization provides means for efficient management of network resources by embedding multiple virtual networks (VNs) to share efficiently the same substrate network. Such virtual network embedding (VNE) gives rise to a challenging problem of how to optimize resource allocation to VNs and to guarantee their performance requirements. In this paper, we provide VNE algorithms for efficient management of flexi-grid optical networks. We provide an exact algorithm aiming to minimize the total embedding cost in terms of spectrum cost and computation cost for a single VN request. Then, to achieve scalability, we also develop a heuristic algorithm for the same problem. We apply these two algorithms for a dynamic traffic scenario where many VN requests arrive one-by-one. We first demonstrate by simulations for the case of a six-node network that the heuristic algorithm obtains very close blocking probabilities to exact algorithm (about 0.2% higher). Then, for a network of realistic size (namely, USnet) we demonstrate that the blocking probability of our new heuristic algorithm is about one magnitude lower than a simpler heuristic algorithm, which was a component of an earlier published algorithm.
NASA Astrophysics Data System (ADS)
Zurek, Sebastian; Guzik, Przemyslaw; Pawlak, Sebastian; Kosmider, Marcin; Piskorski, Jaroslaw
2012-12-01
We explore the relation between correlation dimension, approximate entropy and sample entropy parameters, which are commonly used in nonlinear systems analysis. Using theoretical considerations we identify the points which are shared by all these complexity algorithms and show explicitly that the above parameters are intimately connected and mutually interdependent. A new geometrical interpretation of sample entropy and correlation dimension is provided and the consequences for the interpretation of sample entropy, its relative consistency and some of the algorithms for parameter selection for this quantity are discussed. To get an exact algorithmic relation between the three parameters we construct a very fast algorithm for simultaneous calculations of the above, which uses the full time series as the source of templates, rather than the usual 10%. This algorithm can be used in medical applications of complexity theory, as it can calculate all three parameters for a realistic recording of 104 points within minutes with the use of an average notebook computer.
Regier, Michael D; Moodie, Erica E M
2016-05-01
We propose an extension of the EM algorithm that exploits the common assumption of unique parameterization, corrects for biases due to missing data and measurement error, converges for the specified model when standard implementation of the EM algorithm has a low probability of convergence, and reduces a potentially complex algorithm into a sequence of smaller, simpler, self-contained EM algorithms. We use the theory surrounding the EM algorithm to derive the theoretical results of our proposal, showing that an optimal solution over the parameter space is obtained. A simulation study is used to explore the finite sample properties of the proposed extension when there is missing data and measurement error. We observe that partitioning the EM algorithm into simpler steps may provide better bias reduction in the estimation of model parameters. The ability to breakdown a complicated problem in to a series of simpler, more accessible problems will permit a broader implementation of the EM algorithm, permit the use of software packages that now implement and/or automate the EM algorithm, and make the EM algorithm more accessible to a wider and more general audience.
An outlet breaching algorithm for the treatment of closed depressions in a raster DEM
NASA Astrophysics Data System (ADS)
Martz, Lawrence W.; Garbrecht, Jurgen
1999-08-01
Automated drainage analysis of raster DEMs typically begins with the simulated filling of all closed depressions and the imposition of a drainage pattern on the resulting flat areas. The elimination of closed depressions by filling implicitly assumes that all depressions are caused by elevation underestimation. This assumption is difficult to support, as depressions can be produced by overestimation as well as by underestimation of DEM values.This paper presents a new algorithm that is applied in conjunction with conventional depression filling to provide a more realistic treatment of those depressions that are likely due to overestimation errors. The algorithm lowers the elevation of selected cells on the edge of closed depressions to simulate breaching of the depression outlets. Application of this breaching algorithm prior to depression filling can substantially reduce the number and size of depressions that need to be filled, especially in low relief terrain.Removing or reducing the size of a depression by breaching implicitly assumes that the depression is due to a spurious flow blockage caused by elevation overestimation. Removing a depression by filling, on the other hand, implicitly assumes that the depression is a direct artifact of elevation underestimation. Although the breaching algorithm cannot distinguish between overestimation and underestimation errors in a DEM, a constraining parameter for breaching length can be used to restrict breaching to closed depressions caused by narrow blockages along well-defined drainage courses. These are considered the depressions most likely to have arisen from overestimation errors. Applying the constrained breaching algorithm prior to a conventional depression-filling algorithm allows both positive and negative elevation adjustments to be used to remove depressions.The breaching algorithm was incorporated into the DEM pre-processing operations of the TOPAZ software system. The effect of the algorithm is illustrated by the application of TOPAZ to a DEM of a low-relief landscape. The use of the breaching algorithm during DEM pre-processing substantially reduced the number of cells that needed to be subsequently raised in elevation to remove depressions. The number and kind of depression cells that were eliminated by the breaching algorithm suggested that the algorithm effectively targeted those topographic situations for which it was intended. A detailed inspection of a portion of the DEM that was processed using breaching algorithm in conjunction with depression-filling also suggested the effects of the algorithm were as intended.The breaching algorithm provides an empirically satisfactory and robust approach to treating closed depressions in a raster DEM. It recognises that depressions in certain topographic settings are as likely to be due to elevation overestimation as to elevation underestimation errors. The algorithm allows a more realistic treatment of depressions in these situations than conventional methods that rely solely on depression-filling.
An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet
NASA Astrophysics Data System (ADS)
Taylor, Thomas E.; L'Ecuyer, Tristan S.; Slusser, James R.; Stephens, Graeme L.; Goering, Christian D.
2008-02-01
This paper describes a number of practical considerations concerning the optimization and operational implementation of an algorithm used to characterize the optical properties of aerosols across part of the ultraviolet (UV) spectrum. The algorithm estimates values of aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) at seven wavelengths in the UV, as well as total column ozone (TOC) and wavelength-independent asymmetry factor (g) using direct and diffuse irradiances measured with a UV multifilter rotating shadowband radiometer (UV-MFRSR). A novel method for cloud screening the irradiance data set is introduced, as well as several improvements and optimizations to the retrieval scheme which yield a more realistic physical model for the inversion and increase the efficiency of the algorithm. Introduction of a wavelength-dependent retrieval error budget generated from rigorous forward model analysis as well as broadened covariances on the a priori values of AOD, SSA and g and tightened covariances of TOC allows sufficient retrieval sensitivity and resolution to obtain unique solutions of aerosol optical properties as demonstrated by synthetic retrievals. Analysis of a cloud screened data set (May 2003) from Panther Junction, Texas, demonstrates that the algorithm produces realistic values of the optical properties that compare favorably with pseudo-independent methods for AOD, TOC and calculated Ångstrom exponents. Retrieval errors of all parameters (except TOC) are shown to be negatively correlated to AOD, while the Shannon information content is positively correlated, indicating that retrieval skill improves with increasing atmospheric turbidity. When implemented operationally on more than thirty instruments in the Ultraviolet Monitoring and Research Program's (UVMRP) network, this retrieval algorithm will provide a comprehensive and internally consistent climatology of ground-based aerosol properties in the UV spectral range that can be used for both validation of satellite measurements as well as regional aerosol and ultraviolet transmission studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saenz, D; Stathakis, S; Kirby, N
Purpose: Deformable image registration (DIR) has widespread uses in radiotherapy for applications such as dose accumulation studies, multi-modality image fusion, and organ segmentation. The quality assurance (QA) of such algorithms, however, remains largely unimplemented. This work aims to determine how detailed a physical phantom needs to be to accurately perform QA of a DIR algorithm. Methods: Virtual prostate and head-and-neck phantoms, made from patient images, were used for this study. Both sets consist of an undeformed and deformed image pair. The images were processed to create additional image pairs with one through five homogeneous tissue levels using Otsu’s method. Realisticmore » noise was then added to each image. The DIR algorithms from MIM and Velocity (Deformable Multipass) were applied to the original phantom images and the processed ones. The resulting deformations were then compared to the known warping. A higher number of tissue levels creates more contrast in an image and enables DIR algorithms to produce more accurate results. For this reason, error (distance between predicted and known deformation) is utilized as a metric to evaluate how many levels are required for a phantom to be a realistic patient proxy. Results: For the prostate image pairs, the mean error decreased from 1–2 tissue levels and remained constant for 3+ levels. The mean error reduction was 39% and 26% for Velocity and MIM respectively. For head and neck, mean error fell similarly through 2 levels and flattened with total reduction of 16% and 49% for Velocity and MIM. For Velocity, 3+ levels produced comparable accuracy as the actual patient images, whereas MIM showed further accuracy improvement. Conclusion: The number of tissue levels needed to produce an accurate patient proxy depends on the algorithm. For Velocity, three levels were enough, whereas five was still insufficient for MIM.« less
NASA Technical Reports Server (NTRS)
Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret
1992-01-01
Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.
Teleoperation with virtual force feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.J.
1993-08-01
In this paper we describe an algorithm for generating virtual forces in a bilateral teleoperator system. The virtual forces are generated from a world model and are used to provide real-time obstacle avoidance and guidance capabilities. The algorithm requires that the slaves tool and every object in the environment be decomposed into convex polyhedral Primitives. Intrusion distance and extraction vectors are then derived at every time step by applying Gilbert`s polyhedra distance algorithm, which has been adapted for the task. This information is then used to determine the compression and location of nonlinear virtual spring-dampers whose total force is summedmore » and applied to the manipulator/teleoperator system. Experimental results validate the whole approach, showing that it is possible to compute the algorithm and generate realistic, useful psuedo forces for a bilateral teleoperator system using standard VME bus hardware.« less
NASA Astrophysics Data System (ADS)
Shi, X.; Zhang, G.
2013-12-01
Because of the extensive computational burden, parametric uncertainty analyses are rarely conducted for geological carbon sequestration (GCS) process based multi-phase models. The difficulty of predictive uncertainty analysis for the CO2 plume migration in realistic GCS models is not only due to the spatial distribution of the caprock and reservoir (i.e. heterogeneous model parameters), but also because the GCS optimization estimation problem has multiple local minima due to the complex nonlinear multi-phase (gas and aqueous), and multi-component (water, CO2, salt) transport equations. The geological model built by Doughty and Pruess (2004) for the Frio pilot site (Texas) was selected and assumed to represent the 'true' system, which was composed of seven different facies (geological units) distributed among 10 layers. We chose to calibrate the permeabilities of these facies. Pressure and gas saturation values from this true model were then extracted and used as observations for subsequent model calibration. Random noise was added to the observations to approximate realistic field conditions. Each simulation of the model lasts about 2 hours. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid stochastic collocation method. This surrogate response surface global optimization algorithm is firstly used to calibrate the model parameters, then prediction uncertainty of the CO2 plume position is quantified due to the propagation from parametric uncertainty in the numerical experiments, which is also compared to the actual plume from the 'true' model. Results prove that the approach is computationally efficient for multi-modal optimization and prediction uncertainty quantification for computationally expensive simulation models. Both our inverse methodology and findings can be broadly applicable to GCS in heterogeneous storage formations.
Novel application of DEM to modelling comminution processes
NASA Astrophysics Data System (ADS)
Delaney, Gary W.; Cleary, Paul W.; Sinnott, Matt D.; Morrison, Rob D.
2010-06-01
Comminution processes in which grains are broken down into smaller and smaller sizes represent a critical component in many industries including mineral processing, cement production, food processing and pharmaceuticals. We present a novel DEM implementation capable of realistically modelling such comminution processes. This extends on a previous implementation of DEM particle breakage that utilized spherical particles. Our new extension uses super-quadric particles, where daughter fragments with realistic size and shape distributions are packed inside a bounding parent super-quadric. We demonstrate the flexibility of our approach in different particle breakage scenarios and examine the effect of the chosen minimum resolved particle size. This incorporation of the effect of particle shape in the breakage process allows for more realistic DEM simulations to be performed, that can provide additional fundamental insights into comminution processes and into the behaviour of individual pieces of industrial machinery.
NASA Astrophysics Data System (ADS)
Ushijima, Timothy T.; Yeh, William W.-G.
2013-10-01
An optimal experimental design algorithm is developed to select locations for a network of observation wells that provide maximum information about unknown groundwater pumping in a confined, anisotropic aquifer. The design uses a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. The formulated optimization problem is non-convex and contains integer variables necessitating a combinatorial search. Given a realistic large-scale model, the size of the combinatorial search required can make the problem difficult, if not impossible, to solve using traditional mathematical programming techniques. Genetic algorithms (GAs) can be used to perform the global search; however, because a GA requires a large number of calls to a groundwater model, the formulated optimization problem still may be infeasible to solve. As a result, proper orthogonal decomposition (POD) is applied to the groundwater model to reduce its dimensionality. Then, the information matrix in the full model space can be searched without solving the full model. Results from a small-scale test case show identical optimal solutions among the GA, integer programming, and exhaustive search methods. This demonstrates the GA's ability to determine the optimal solution. In addition, the results show that a GA with POD model reduction is several orders of magnitude faster in finding the optimal solution than a GA using the full model. The proposed experimental design algorithm is applied to a realistic, two-dimensional, large-scale groundwater problem. The GA converged to a solution for this large-scale problem.
Simulations of Aperture Synthesis Imaging Radar for the EISCAT_3D Project
NASA Astrophysics Data System (ADS)
La Hoz, C.; Belyey, V.
2012-12-01
EISCAT_3D is a project to build the next generation of incoherent scatter radars endowed with multiple 3-dimensional capabilities that will replace the current EISCAT radars in Northern Scandinavia. Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. To demonstrate the feasibility of the antenna configurations and the imaging inversion algorithms a simulation of synthetic incoherent scattering data has been performed. The simulation algorithm incorporates the ability to control the background plasma parameters with non-homogeneous, non-stationary components over an extended 3-dimensional space. Control over the positions of a number of separated receiving antennas, their signal-to-noise-ratios and arriving phases allows realistic simulation of a multi-baseline interferometric imaging radar system. The resulting simulated data is fed into various inversion algorithms. This simulation package is a powerful tool to evaluate various antenna configurations and inversion algorithms. Results applied to realistic design alternatives of EISCAT_3D will be described.
A Practical Ontology Query Expansion Algorithm for Semantic-Aware Learning Objects Retrieval
ERIC Educational Resources Information Center
Lee, Ming-Che; Tsai, Kun Hua; Wang, Tzone I.
2008-01-01
Following the rapid development of Internet, particularly web page interaction technology, distant e-learning has become increasingly realistic and popular. To solve the problems associated with sharing and reusing teaching materials in different e-learning systems, several standard formats, including SCORM, IMS, LOM, and AICC, etc., recently have…
2010 Neuroscience Director’s Strategic Initiative
2011-02-01
distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Understanding how Soldiers’ cognitive abilities meet the increasing demands of dynamic...In order to acquire, monitor, and assess Soldier sensory, perceptual, emotional, cognitive , and physical performance within realistic operational...brain state classification algorithm from EEG data acquired from participants performing tasks with varied cognitive demands. Third, Kaleb McDowell
A validated methodology for the 3D reconstruction of cochlea geometries using human microCT images
NASA Astrophysics Data System (ADS)
Sakellarios, A. I.; Tachos, N. S.; Rigas, G.; Bibas, T.; Ni, G.; Böhnke, F.; Fotiadis, D. I.
2017-05-01
Accurate reconstruction of the inner ear is a prerequisite for the modelling and understanding of the inner ear mechanics. In this study, we present a semi-automated methodology for accurate reconstruction of the major inner ear structures (scalae, basilar membrane, stapes and semicircular canals). For this purpose, high resolution microCT images of a human specimen were used. The segmentation methodology is based on an iterative level set algorithm which provides the borders of the structures of interest. An enhanced coupled level set method which allows the simultaneous multiple image labeling without any overlapping regions has been developed for this purpose. The marching cube algorithm was applied in order to extract the surface from the segmented volume. The reconstructed geometries are then post-processed to improve the basilar membrane geometry to realistically represent physiologic dimensions. The final reconstructed model is compared to the available data from the literature. The results show that our generated inner ear structures are in good agreement with the published ones, while our approach is the most realistic in terms of the basilar membrane thickness and width reconstruction.
VDA, a Method of Choosing a Better Algorithm with Fewer Validations
Kluger, Yuval
2011-01-01
The multitude of bioinformatics algorithms designed for performing a particular computational task presents end-users with the problem of selecting the most appropriate computational tool for analyzing their biological data. The choice of the best available method is often based on expensive experimental validation of the results. We propose an approach to design validation sets for method comparison and performance assessment that are effective in terms of cost and discrimination power. Validation Discriminant Analysis (VDA) is a method for designing a minimal validation dataset to allow reliable comparisons between the performances of different algorithms. Implementation of our VDA approach achieves this reduction by selecting predictions that maximize the minimum Hamming distance between algorithmic predictions in the validation set. We show that VDA can be used to correctly rank algorithms according to their performances. These results are further supported by simulations and by realistic algorithmic comparisons in silico. VDA is a novel, cost-efficient method for minimizing the number of validation experiments necessary for reliable performance estimation and fair comparison between algorithms. Our VDA software is available at http://sourceforge.net/projects/klugerlab/files/VDA/ PMID:22046256
NASA Astrophysics Data System (ADS)
Saenz, Daniel L.; Kim, Hojin; Chen, Josephine; Stathakis, Sotirios; Kirby, Neil
2016-09-01
The primary purpose of the study was to determine how detailed deformable image registration (DIR) phantoms need to adequately simulate human anatomy and accurately assess the quality of DIR algorithms. In particular, how many distinct tissues are required in a phantom to simulate complex human anatomy? Pelvis and head-and-neck patient CT images were used for this study as virtual phantoms. Two data sets from each site were analyzed. The virtual phantoms were warped to create two pairs consisting of undeformed and deformed images. Otsu’s method was employed to create additional segmented image pairs of n distinct soft tissue CT number ranges (fat, muscle, etc). A realistic noise image was added to each image. Deformations were applied in MIM Software (MIM) and Velocity deformable multi-pass (DMP) and compared with the known warping. Images with more simulated tissue levels exhibit more contrast, enabling more accurate results. Deformation error (magnitude of the vector difference between known and predicted deformation) was used as a metric to evaluate how many CT number gray levels are needed for a phantom to serve as a realistic patient proxy. Stabilization of the mean deformation error was reached by three soft tissue levels for Velocity DMP and MIM, though MIM exhibited a persisting difference in accuracy between the discrete images and the unprocessed image pair. A minimum detail of three levels allows a realistic patient proxy for use with Velocity and MIM deformation algorithms.
Wan, Xiaohua; Katchalski, Tsvi; Churas, Christopher; Ghosh, Sreya; Phan, Sebastien; Lawrence, Albert; Hao, Yu; Zhou, Ziying; Chen, Ruijuan; Chen, Yu; Zhang, Fa; Ellisman, Mark H
2017-05-01
Because of the significance of electron microscope tomography in the investigation of biological structure at nanometer scales, ongoing improvement efforts have been continuous over recent years. This is particularly true in the case of software developments. Nevertheless, verification of improvements delivered by new algorithms and software remains difficult. Current analysis tools do not provide adaptable and consistent methods for quality assessment. This is particularly true with images of biological samples, due to image complexity, variability, low contrast and noise. We report an electron tomography (ET) simulator with accurate ray optics modeling of image formation that includes curvilinear trajectories through the sample, warping of the sample and noise. As a demonstration of the utility of our approach, we have concentrated on providing verification of the class of reconstruction methods applicable to wide field images of stained plastic-embedded samples. Accordingly, we have also constructed digital phantoms derived from serial block face scanning electron microscope images. These phantoms are also easily modified to include alignment features to test alignment algorithms. The combination of more realistic phantoms with more faithful simulations facilitates objective comparison of acquisition parameters, alignment and reconstruction algorithms and their range of applicability. With proper phantoms, this approach can also be modified to include more complex optical models, including distance-dependent blurring and phase contrast functions, such as may occur in cryotomography. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha
2014-10-01
We explore optimization methods for planning the placement, sizing and operations of flexible alternating current transmission system (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to series compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of linear programs (LP) that are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPower Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically sized networks that suffer congestion from a range of causes, including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically sized network.
Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha
2014-10-24
We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating Current Transmission System (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to Series Compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l 1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of Linear Programs (LP) which are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPowermore » Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed up that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically-sized networks that suffer congestion from a range of causes including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically-sized network.« less
Real-time simulation of the nonlinear visco-elastic deformations of soft tissues.
Basafa, Ehsan; Farahmand, Farzam
2011-05-01
Mass-spring-damper (MSD) models are often used for real-time surgery simulation due to their fast response and fairly realistic deformation replication. An improved real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was developed and tested. The mechanical realization of conventional MSD models was improved using nonlinear springs and nodal dampers, while their high computational efficiency was maintained using an adapted implicit integration algorithm. New practical algorithms for model parameter tuning, collision detection, and simulation were incorporated. The model was able to replicate complex biological soft tissue mechanical properties under large deformations, i.e., the nonlinear and viscoelastic behaviors. The simulated response of the model after tuning of its parameters to the experimental data of a deer liver sample, closely tracked the reference data with high correlation and maximum relative differences of less than 5 and 10%, for the tuning and testing data sets respectively. Finally, implementation of the proposed model and algorithms in a graphical environment resulted in a real-time simulation with update rates of 150 Hz for interactive deformation and haptic manipulation, and 30 Hz for visual rendering. The proposed real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was efficient, realistic, and accurate in ex vivo testing. This model is a suitable candidate for testing in vivo during laparoscopic surgery.
Digital Simulation Of Precise Sensor Degradations Including Non-Linearities And Shift Variance
NASA Astrophysics Data System (ADS)
Kornfeld, Gertrude H.
1987-09-01
Realistic atmospheric and Forward Looking Infrared Radiometer (FLIR) degradations were digitally simulated. Inputs to the routine are environmental observables and the FLIR specifications. It was possible to achieve realism in the thermal domain within acceptable computer time and random access memory (RAM) requirements because a shift variant recursive convolution algorithm that well describes thermal properties was invented and because each picture element (pixel) has radiative temperature, a materials parameter and range and altitude information. The computer generation steps start with the image synthesis of an undegraded scene. Atmospheric and sensor degradation follow. The final result is a realistic representation of an image seen on the display of a specific FLIR.
DEVELOPMENT OF USER-FRIENDLY SIMULATION SYSTEM OF EARTHQUAKE INDUCED URBAN SPREADING FIRE
NASA Astrophysics Data System (ADS)
Tsujihara, Osamu; Gawa, Hidemi; Hayashi, Hirofumi
In the simulation of earthquake induced urban spreading fire, the produce of the analytical model of the target area is required as well as the analysis of spreading fire and the presentati on of the results. In order to promote the use of the simulation, it is important that the simulation system is non-intrusive and the analysis results can be demonstrated by the realistic presentation. In this study, the simulation system is developed based on the Petri-net algorithm, in which the easy operation can be realized in the modeling of the target area of the simulation through the presentation of analytical results by realistic 3-D animation.
Gravitational Reference Sensor Front-End Electronics Simulator for LISA
NASA Astrophysics Data System (ADS)
Meshksar, Neda; Ferraioli, Luigi; Mance, Davor; ten Pierick, Jan; Zweifel, Peter; Giardini, Domenico; ">LISA Pathfinder colaboration,
NASA Technical Reports Server (NTRS)
Wang, C. C.
1989-01-01
Improved algorithm reduces complexity of calculations that must precede design of Massey-Omura finite-field normal-basis multipliers, used in error-correcting-code equipment and cryptographic devices. Algorithm represents an extension of development reported in "Algorithm To Design Finite-Field Normal-Basis Multipliers" (NPO-17109), NASA Tech Briefs, Vol. 12, No. 5, page 82.
A Lightning Channel Retrieval Algorithm for the North Alabama Lightning Mapping Array (LMA)
NASA Technical Reports Server (NTRS)
Koshak, William; Arnold, James E. (Technical Monitor)
2002-01-01
A new multi-station VHF time-of-arrival (TOA) antenna network is, at the time of this writing, coming on-line in Northern Alabama. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The network will support on-going ground validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. It will also provide for many interesting and detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and will offer many interesting comparisons with other meteorological/geophysical wets associated with lightning and thunderstorms. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. In this study, a new revised channel mapping retrieval algorithm is introduced. The algorithm is an extension of earlier work provided in Koshak and Solakiewicz (1996) in the analysis of the NASA Kennedy Space Center (KSC) Lightning Detection and Ranging (LDAR) system. As in the 1996 study, direct algebraic solutions are obtained by inverting a simple linear system of equations, thereby making computer searches through a multi-dimensional parameter domain of a Chi-Squared function unnecessary. However, the new algorithm is developed completely in spherical Earth-centered coordinates (longitude, latitude, altitude), rather than in the (x, y, z) cartesian coordinates employed in the 1996 study. Hence, no mathematical transformations from (x, y, z) into spherical coordinates are required (such transformations involve more numerical error propagation, more computer program coding, and slightly more CPU computing time). The new algorithm also has a more realistic definition of source altitude that accounts for Earth oblateness (this can become important for sources that are hundreds of kilometers away from the network). In addition, the new algorithm is being applied to analyze computer simulated LMA datasets in order to obtain detailed location/time retrieval error maps for sources in and around the LMA network. These maps will provide a more comprehensive analysis of retrieval errors for LMA than the 1996 study did of LDAR retrieval errors. Finally, we note that the new algorithm can be applied to LDAR, and essentially any other multi-station TWA network that depends on direct line-of-site antenna excitation.
NASA Technical Reports Server (NTRS)
Thadani, S. G.
1977-01-01
The Maximum Likelihood Estimation of Signature Transformation (MLEST) algorithm is used to obtain maximum likelihood estimates (MLE) of affine transformation. The algorithm has been evaluated for three sets of data: simulated (training and recognition segment pairs), consecutive-day (data gathered from Landsat images), and geographical-extension (large-area crop inventory experiment) data sets. For each set, MLEST signature extension runs were made to determine MLE values and the affine-transformed training segment signatures were used to classify the recognition segments. The classification results were used to estimate wheat proportions at 0 and 1% threshold values.
Enhancing scattering images for orientation recovery with diffusion map
Winter, Martin; Saalmann, Ulf; Rost, Jan M.
2016-02-12
We explore the possibility for orientation recovery in single-molecule coherent diffractive imaging with diffusion map. This algorithm approximates the Laplace-Beltrami operator, which we diagonalize with a metric that corresponds to the mapping of Euler angles onto scattering images. While suitable for images of objects with specific properties we show why this approach fails for realistic molecules. Here, we introduce a modification of the form factor in the scattering images which facilitates the orientation recovery and should be suitable for all recovery algorithms based on the distance of individual images. (C) 2016 Optical Society of America
Distributed-Memory Computing With the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)
NASA Technical Reports Server (NTRS)
Riley, Christopher J.; Cheatwood, F. McNeil
1997-01-01
The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), a Navier-Stokes solver, has been modified for use in a parallel, distributed-memory environment using the Message-Passing Interface (MPI) standard. A standard domain decomposition strategy is used in which the computational domain is divided into subdomains with each subdomain assigned to a processor. Performance is examined on dedicated parallel machines and a network of desktop workstations. The effect of domain decomposition and frequency of boundary updates on performance and convergence is also examined for several realistic configurations and conditions typical of large-scale computational fluid dynamic analysis.
Towards developing robust algorithms for solving partial differential equations on MIMD machines
NASA Technical Reports Server (NTRS)
Saltz, Joel H.; Naik, Vijay K.
1988-01-01
Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.
Towards developing robust algorithms for solving partial differential equations on MIMD machines
NASA Technical Reports Server (NTRS)
Saltz, J. H.; Naik, V. K.
1985-01-01
Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.
Gamut extension for cinema: psychophysical evaluation of the state of the art and a new algorithm
NASA Astrophysics Data System (ADS)
Zamir, Syed Waqas; Vazquez-Corral, Javier; Bertalmío, Marcelo
2015-03-01
Wide gamut digital display technology, in order to show its full potential in terms of colors, is creating an opportunity to develop gamut extension algorithms (GEAs). To this end, in this work we present two contributions. First we report a psychophysical evaluation of GEAs specifically for cinema using a digital cinema projector under cinematic (low ambient light) conditions; to the best of our knowledge this is the first evaluation of this kind reported in the literature. Second, we propose a new GEA by introducing simple but key modifications to the algorithm of Zamir et al. This new algorithm performs well in terms of skin tones and memory colors, with results that look natural and which are free from artifacts.
Autonomous learning based on cost assumptions: theoretical studies and experiments in robot control.
Ribeiro, C H; Hemerly, E M
2000-02-01
Autonomous learning techniques are based on experience acquisition. In most realistic applications, experience is time-consuming: it implies sensor reading, actuator control and algorithmic update, constrained by the learning system dynamics. The information crudeness upon which classical learning algorithms operate make such problems too difficult and unrealistic. Nonetheless, additional information for facilitating the learning process ideally should be embedded in such a way that the structural, well-studied characteristics of these fundamental algorithms are maintained. We investigate in this article a more general formulation of the Q-learning method that allows for a spreading of information derived from single updates towards a neighbourhood of the instantly visited state and converges to optimality. We show how this new formulation can be used as a mechanism to safely embed prior knowledge about the structure of the state space, and demonstrate it in a modified implementation of a reinforcement learning algorithm in a real robot navigation task.
Formation control of robotic swarm using bounded artificial forces.
Qin, Long; Zha, Yabing; Yin, Quanjun; Peng, Yong
2013-01-01
Formation control of multirobot systems has drawn significant attention in the recent years. This paper presents a potential field control algorithm, navigating a swarm of robots into a predefined 2D shape while avoiding intermember collisions. The algorithm applies in both stationary and moving targets formation. We define the bounded artificial forces in the form of exponential functions, so that the behavior of the swarm drove by the forces can be adjusted via selecting proper control parameters. The theoretical analysis of the swarm behavior proves the stability and convergence properties of the algorithm. We further make certain modifications upon the forces to improve the robustness of the swarm behavior in the presence of realistic implementation considerations. The considerations include obstacle avoidance, local minima, and deformation of the shape. Finally, detailed simulation results validate the efficiency of the proposed algorithm, and the direction of possible futrue work is discussed in the conclusions.
Formation Control of Robotic Swarm Using Bounded Artificial Forces
Zha, Yabing; Peng, Yong
2013-01-01
Formation control of multirobot systems has drawn significant attention in the recent years. This paper presents a potential field control algorithm, navigating a swarm of robots into a predefined 2D shape while avoiding intermember collisions. The algorithm applies in both stationary and moving targets formation. We define the bounded artificial forces in the form of exponential functions, so that the behavior of the swarm drove by the forces can be adjusted via selecting proper control parameters. The theoretical analysis of the swarm behavior proves the stability and convergence properties of the algorithm. We further make certain modifications upon the forces to improve the robustness of the swarm behavior in the presence of realistic implementation considerations. The considerations include obstacle avoidance, local minima, and deformation of the shape. Finally, detailed simulation results validate the efficiency of the proposed algorithm, and the direction of possible futrue work is discussed in the conclusions. PMID:24453809
Robust control algorithms for Mars aerobraking
NASA Technical Reports Server (NTRS)
Shipley, Buford W., Jr.; Ward, Donald T.
1992-01-01
Four atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. The first two offer improvements to the Analytic Predictor Corrector (APC) to increase its robustness to density variations. The second two are variations of a new Liapunov tracking exit phase algorithm, developed to guide the vehicle along a reference trajectory. These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARSGRAM is used to develop realistic atmospheres for the study. When square wave density pulses perturb the atmosphere all four controllers are successful. The algorithms are tested against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the outbound leg of the trajectory. Additionally, sine waves are used to perturb the density function. The new algorithms are found to be more robust than any previously tested and a Liapunov controller is selected as the most robust control algorithm overall examined.
Relaxation dynamics of internal segments of DNA chains in nanochannels
NASA Astrophysics Data System (ADS)
Jain, Aashish; Muralidhar, Abhiram; Dorfman, Kevin; Dorfman Group Team
We will present relaxation dynamics of internal segments of a DNA chain confined in nanochannel. The results have direct application in genome mapping technology, where long DNA molecules containing sequence-specific fluorescent probes are passed through an array of nanochannels to linearize them, and then the distances between these probes (the so-called ``DNA barcode'') are measured. The relaxation dynamics of internal segments set the experimental error due to dynamic fluctuations. We developed a multi-scale simulation algorithm, combining a Pruned-Enriched Rosenbluth Method (PERM) simulation of a discrete wormlike chain model with hard spheres with Brownian dynamics (BD) simulations of a bead-spring chain. Realistic parameters such as the bead friction coefficient and spring force law parameters are obtained from PERM simulations and then mapped onto the bead-spring model. The BD simulations are carried out to obtain the extension autocorrelation functions of various segments, which furnish their relaxation times. Interestingly, we find that (i) corner segments relax faster than the center segments and (ii) relaxation times of corner segments do not depend on the contour length of DNA chain, whereas the relaxation times of center segments increase linearly with DNA chain size.
Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures
NASA Technical Reports Server (NTRS)
Potyondy, David O.; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1994-01-01
A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modeling strategy. The structural response for each cracked configuration is obtained using a geometrically nonlinear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology and its applicability to performing practical analyses of realistic structures is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.
Semiparametric regression analysis of interval-censored competing risks data.
Mao, Lu; Lin, Dan-Yu; Zeng, Donglin
2017-09-01
Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not observed directly but rather is known to lie in an interval between two examinations. We formulate the effects of possibly time-varying (external) covariates on the cumulative incidence or sub-distribution function of competing risks (i.e., the marginal probability of failure from a specific cause) through a broad class of semiparametric regression models that captures both proportional and non-proportional hazards structures for the sub-distribution. We allow each subject to have an arbitrary number of examinations and accommodate missing information on the cause of failure. We consider nonparametric maximum likelihood estimation and devise a fast and stable EM-type algorithm for its computation. We then establish the consistency, asymptotic normality, and semiparametric efficiency of the resulting estimators for the regression parameters by appealing to modern empirical process theory. In addition, we show through extensive simulation studies that the proposed methods perform well in realistic situations. Finally, we provide an application to a study on HIV-1 infection with different viral subtypes. © 2017, The International Biometric Society.
ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs
NASA Astrophysics Data System (ADS)
Cleves, Ann E.; Jain, Ajay N.
2017-05-01
We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12-23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.
SensorWeb 3G: Extending On-Orbit Sensor Capabilities to Enable Near Realtime User Configurability
NASA Technical Reports Server (NTRS)
Mandl, Daniel; Cappelaere, Pat; Frye, Stuart; Sohlberg, Rob; Ly, Vuong; Chien, Steve; Tran, Daniel; Davies, Ashley; Sullivan, Don; Ames, Troy;
2010-01-01
This research effort prototypes an implementation of a standard interface, Web Coverage Processing Service (WCPS), which is an Open Geospatial Consortium(OGC) standard, to enable users to define, test, upload and execute algorithms for on-orbit sensor systems. The user is able to customize on-orbit data products that result from raw data streaming from an instrument. This extends the SensorWeb 2.0 concept that was developed under a previous Advanced Information System Technology (AIST) effort in which web services wrap sensors and a standardized Extensible Markup Language (XML) based scripting workflow language orchestrates processing steps across multiple domains. SensorWeb 3G extends the concept by providing the user controls into the flight software modules associated with on-orbit sensor and thus provides a degree of flexibility which does not presently exist. The successful demonstrations to date will be presented, which includes a realistic HyspIRI decadal mission testbed. Furthermore, benchmarks that were run will also be presented along with future demonstration and benchmark tests planned. Finally, we conclude with implications for the future and how this concept dovetails into efforts to develop "cloud computing" methods and standards.
Alderton, Simon; Noble, Jason; Schaten, Kathrin; Welburn, Susan C; Atkinson, Peter M
2015-01-01
In this research, an agent-based model (ABM) was developed to generate human movement routes between homes and water resources in a rural setting, given commonly available geospatial datasets on population distribution, land cover and landscape resources. ABMs are an object-oriented computational approach to modelling a system, focusing on the interactions of autonomous agents, and aiming to assess the impact of these agents and their interactions on the system as a whole. An A* pathfinding algorithm was implemented to produce walking routes, given data on the terrain in the area. A* is an extension of Dijkstra's algorithm with an enhanced time performance through the use of heuristics. In this example, it was possible to impute daily activity movement patterns to the water resource for all villages in a 75 km long study transect across the Luangwa Valley, Zambia, and the simulated human movements were statistically similar to empirical observations on travel times to the water resource (Chi-squared, 95% confidence interval). This indicates that it is possible to produce realistic data regarding human movements without costly measurement as is commonly achieved, for example, through GPS, or retrospective or real-time diaries. The approach is transferable between different geographical locations, and the product can be useful in providing an insight into human movement patterns, and therefore has use in many human exposure-related applications, specifically epidemiological research in rural areas, where spatial heterogeneity in the disease landscape, and space-time proximity of individuals, can play a crucial role in disease spread.
Control of the seven-degree-of-freedom upper limb exoskeleton for an improved human-robot interface
NASA Astrophysics Data System (ADS)
Kim, Hyunchul; Kim, Jungsuk
2017-04-01
This study analyzes a practical scheme for controlling an exoskeleton robot with seven degrees of freedom (DOFs) that supports natural movements of the human arm. A redundant upper limb exoskeleton robot with seven DOFs is mechanically coupled to the human body such that it becomes a natural extension of the body. If the exoskeleton robot follows the movement of the human body synchronously, the energy exchange between the human and the robot will be reduced significantly. In order to achieve this, the redundancy of the human arm, which is represented by the swivel angle, should be resolved using appropriate constraints and applied to the robot. In a redundant 7-DOF upper limb exoskeleton, the pseudoinverse of the Jacobian with secondary objective functions is widely used to resolve the redundancy that defines the desired joint angles. A secondary objective function requires the desired joint angles for the movement of the human arm, and the angles are estimated by maximizing the projection of the longest principle axis of the manipulability ellipsoid for the human arm onto the virtual destination toward the head region. Then, they are fed into the muscle model with a relative damping to achieve more realistic robot-arm movements. Various natural arm movements are recorded using a motion capture system, and the actual swivel-angle is compared to that estimated using the proposed swivel angle estimation algorithm. The results indicate that the proposed algorithm provides a precise reference for estimating the desired joint angle with an error less than 5°.
Why Does Experimentation Matter in Teaching Ecology?
ERIC Educational Resources Information Center
Finn, Hugh; Maxwell, Marika; Calver, Michael
2002-01-01
Suggests that because controlled experiments are used extensively by professional ecologists to solve both theoretical and applied problems, experimentation should be a key component of secondary school ecology curricula. Describes five teaching principles to guide secondary school biology teachers in providing a more realistic view of the…
Coping with Autism: The Parental Journey of Adjustment
ERIC Educational Resources Information Center
Agnello, Barbara A.
2010-01-01
Autism is a pervasive developmental disorder that has attracted extensive media attention for its drastic increase in diagnosis over the past several years. Increased media attention creates some barriers to parents' obtaining accurate, realistic, and objective information about diagnosis, efficacy of interventions, and potential outcomes.…
A hardware-oriented algorithm for floating-point function generation
NASA Technical Reports Server (NTRS)
O'Grady, E. Pearse; Young, Baek-Kyu
1991-01-01
An algorithm is presented for performing accurate, high-speed, floating-point function generation for univariate functions defined at arbitrary breakpoints. Rapid identification of the breakpoint interval, which includes the input argument, is shown to be the key operation in the algorithm. A hardware implementation which makes extensive use of read/write memories is used to illustrate the algorithm.
Park, Chunjae; Kwon, Ohin; Woo, Eung Je; Seo, Jin Keun
2004-03-01
In magnetic resonance electrical impedance tomography (MREIT), we try to visualize cross-sectional conductivity (or resistivity) images of a subject. We inject electrical currents into the subject through surface electrodes and measure the z component Bz of the induced internal magnetic flux density using an MRI scanner. Here, z is the direction of the main magnetic field of the MRI scanner. We formulate the conductivity image reconstruction problem in MREIT from a careful analysis of the relationship between the injection current and the induced magnetic flux density Bz. Based on the novel mathematical formulation, we propose the gradient Bz decomposition algorithm to reconstruct conductivity images. This new algorithm needs to differentiate Bz only once in contrast to the previously developed harmonic Bz algorithm where the numerical computation of (inverted delta)2Bz is required. The new algorithm, therefore, has the important advantage of much improved noise tolerance. Numerical simulations with added random noise of realistic amounts show the feasibility of the algorithm in practical applications and also its robustness against measurement noise.
Geographic Gossip: Efficient Averaging for Sensor Networks
NASA Astrophysics Data System (ADS)
Dimakis, Alexandros D. G.; Sarwate, Anand D.; Wainwright, Martin J.
Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repeatedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of $n$ and $\\sqrt{n}$ respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy $\\epsilon$ using $O(\\frac{n^{1.5}}{\\sqrt{\\log n}} \\log \\epsilon^{-1})$ radio transmissions, which yields a $\\sqrt{\\frac{n}{\\log n}}$ factor improvement over standard gossip algorithms. We illustrate these theoretical results with experimental comparisons between our algorithm and standard methods as applied to various classes of random fields.
Comparing Binaural Pre-processing Strategies I: Instrumental Evaluation.
Baumgärtel, Regina M; Krawczyk-Becker, Martin; Marquardt, Daniel; Völker, Christoph; Hu, Hongmei; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Ernst, Stephan M A; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-12-30
In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios. © The Author(s) 2015.
Parameterization of Keeling's network generation algorithm.
Badham, Jennifer; Abbass, Hussein; Stocker, Rob
2008-09-01
Simulation is increasingly being used to examine epidemic behaviour and assess potential management options. The utility of the simulations rely on the ability to replicate those aspects of the social structure that are relevant to epidemic transmission. One approach is to generate networks with desired social properties. Recent research by Keeling and his colleagues has generated simulated networks with a range of properties, and examined the impact of these properties on epidemic processes occurring over the network. However, published work has included only limited analysis of the algorithm itself and the way in which the network properties are related to the algorithm parameters. This paper identifies some relationships between the algorithm parameters and selected network properties (mean degree, degree variation, clustering coefficient and assortativity). Our approach enables users of the algorithm to efficiently generate a network with given properties, thereby allowing realistic social networks to be used as the basis of epidemic simulations. Alternatively, the algorithm could be used to generate social networks with a range of property values, enabling analysis of the impact of these properties on epidemic behaviour.
Comparing Binaural Pre-processing Strategies I
Krawczyk-Becker, Martin; Marquardt, Daniel; Völker, Christoph; Hu, Hongmei; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Ernst, Stephan M. A.; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-01-01
In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios. PMID:26721920
A Model and Simple Iterative Algorithm for Redundancy Analysis.
ERIC Educational Resources Information Center
Fornell, Claes; And Others
1988-01-01
This paper shows that redundancy maximization with J. K. Johansson's extension can be accomplished via a simple iterative algorithm based on H. Wold's Partial Least Squares. The model and the iterative algorithm for the least squares approach to redundancy maximization are presented. (TJH)
Realistic page-turning of electronic books
NASA Astrophysics Data System (ADS)
Fan, Chaoran; Li, Haisheng; Bai, Yannan
2014-01-01
The booming electronic books (e-books), as an extension to the paper book, are popular with readers. Recently, many efforts are put into the realistic page-turning simulation o f e-book to improve its reading experience. This paper presents a new 3D page-turning simulation approach, which employs piecewise time-dependent cylindrical surfaces to describe the turning page and constructs smooth transition method between time-dependent cylinders. The page-turning animation is produced by sequentially mapping the turning page into the cylinders with different radii and positions. Compared to the previous approaches, our method is able to imitate various effects efficiently and obtains more natural animation of turning page.
Toward Millimagnitude Photometric Calibration (Abstract)
NASA Astrophysics Data System (ADS)
Dose, E.
2014-12-01
(Abstract only) Asteroid roation, exoplanet transits, and similar measurements will increasingly call for photometric precisions better than about 10 millimagnitudes, often between nights and ideally between distant observers. The present work applies detailed spectral simulations to test popular photometric calibration practices, and to test new extensions of these practices. Using 107 synthetic spectra of stars of diverse colors, detailed atmospheric transmission spectra computed by solar-energy software, realistic spectra of popular astronomy gear, and the option of three sources of noise added at realistic millimagnitude levels, we find that certain adjustments to current calibration practices can help remove small systematic errors, especially for imperfect filters, high airmasses, and possibly passing thin cirrus clouds.
Graph embedding and extensions: a general framework for dimensionality reduction.
Yan, Shuicheng; Xu, Dong; Zhang, Benyu; Zhang, Hong-Jiang; Yang, Qiang; Lin, Stephen
2007-01-01
Over the past few decades, a large family of algorithms - supervised or unsupervised; stemming from statistics or geometry theory - has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this paper a general formulation known as graph embedding to unify them within a common framework. In graph embedding, each algorithm can be considered as the direct graph embedding or its linear/kernel/tensor extension of a specific intrinsic graph that describes certain desired statistical or geometric properties of a data set, with constraints from scale normalization or a penalty graph that characterizes a statistical or geometric property that should be avoided. Furthermore, the graph embedding framework can be used as a general platform for developing new dimensionality reduction algorithms. By utilizing this framework as a tool, we propose a new supervised dimensionality reduction algorithm called Marginal Fisher Analysis in which the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring points of the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. We show that MFA effectively overcomes the limitations of the traditional Linear Discriminant Analysis algorithm due to data distribution assumptions and available projection directions. Real face recognition experiments show the superiority of our proposed MFA in comparison to LDA, also for corresponding kernel and tensor extensions.
Modelled and field measurements of biogenic hydrocarbon emissions from a Canadian deciduous forest
NASA Astrophysics Data System (ADS)
Fuentes, J. D.; Wang, D.; Den Hartog, G.; Neumann, H. H.; Dann, T. F.; Puckett, K. J.
The Biogenic Emission Inventory System (BEIS) used by the United States Environmental Protection Agency (Lamb et al., 1993, Atmospheric Environment21, 1695-1705; Pierce and Waldruff, 1991, J. Air Waste Man. Ass.41, 937-941) was tested for its ability to provide realistic microclimate descriptions within a deciduous forest in Canada. The microclimate description within plant canopies is required because isoprene emission rates from plants are strongly influenced by foliage temperature and photosynthetically active radiation impinging on leaves while monoterpene emissions depend primarily on leaf temperature. Model microclimate results combined with plant emission rates and local biomass distribution were used to derive isoprene and α-pinene emissions from the deciduous forest canopy. In addition, modelled isoprene emission estimates were compared to measured emission rates at the leaf level. The current model formulation provides realistic microclimatic conditions for the forest crown where modelled and measured air and foliage temperature are within 3°C. However, the model provides inadequate microclimate characterizations in the lower canopy where estimated and measured foliage temperatures differ by as much as 10°C. This poor agreement may be partly due to improper model characterization of relative humidity and ambient temperature within the canopy. These uncertainties in estimated foliage temperature can lead to underestimates of hydrocarbon emission estimates of two-fold. Moreover, the model overestimates hydrocarbon emissions during the early part of the growing season and underestimates emissions during the middle and latter part of the growing season. These emission uncertainties arise because of the assumed constant biomass distribution of the forest and constant hydrocarbon emission rates throughout the season. The BEIS model, which is presently used in Canada to estimate inventories of hydrocarbon emissions from vegetation, underestimates emission rates by at least two-fold compared to emissions derived from field measurements. The isoprene emission algorithm proposed by Guenther et al. (1993), applied at the leaf level, provides relatively good agreement compared to measurements. Field measurements indicate that isoprene emissions change with leaf ontogeny and differ amongst tree species. Emission rates defined as function of foliage development stage and plant species need to be introduced in the hydrocarbon emission algorithms. Extensive model evaluation and more hydrocarbon emission measurement;: from different plant species are required to fully assess the appropriateness of this emission calculation approach for Canadian forests.
An Imperfect Dopaminergic Error Signal Can Drive Temporal-Difference Learning
Potjans, Wiebke; Diesmann, Markus; Morrison, Abigail
2011-01-01
An open problem in the field of computational neuroscience is how to link synaptic plasticity to system-level learning. A promising framework in this context is temporal-difference (TD) learning. Experimental evidence that supports the hypothesis that the mammalian brain performs temporal-difference learning includes the resemblance of the phasic activity of the midbrain dopaminergic neurons to the TD error and the discovery that cortico-striatal synaptic plasticity is modulated by dopamine. However, as the phasic dopaminergic signal does not reproduce all the properties of the theoretical TD error, it is unclear whether it is capable of driving behavior adaptation in complex tasks. Here, we present a spiking temporal-difference learning model based on the actor-critic architecture. The model dynamically generates a dopaminergic signal with realistic firing rates and exploits this signal to modulate the plasticity of synapses as a third factor. The predictions of our proposed plasticity dynamics are in good agreement with experimental results with respect to dopamine, pre- and post-synaptic activity. An analytical mapping from the parameters of our proposed plasticity dynamics to those of the classical discrete-time TD algorithm reveals that the biological constraints of the dopaminergic signal entail a modified TD algorithm with self-adapting learning parameters and an adapting offset. We show that the neuronal network is able to learn a task with sparse positive rewards as fast as the corresponding classical discrete-time TD algorithm. However, the performance of the neuronal network is impaired with respect to the traditional algorithm on a task with both positive and negative rewards and breaks down entirely on a task with purely negative rewards. Our model demonstrates that the asymmetry of a realistic dopaminergic signal enables TD learning when learning is driven by positive rewards but not when driven by negative rewards. PMID:21589888
Building test data from real outbreaks for evaluating detection algorithms.
Texier, Gaetan; Jackson, Michael L; Siwe, Leonel; Meynard, Jean-Baptiste; Deparis, Xavier; Chaudet, Herve
2017-01-01
Benchmarking surveillance systems requires realistic simulations of disease outbreaks. However, obtaining these data in sufficient quantity, with a realistic shape and covering a sufficient range of agents, size and duration, is known to be very difficult. The dataset of outbreak signals generated should reflect the likely distribution of authentic situations faced by the surveillance system, including very unlikely outbreak signals. We propose and evaluate a new approach based on the use of historical outbreak data to simulate tailored outbreak signals. The method relies on a homothetic transformation of the historical distribution followed by resampling processes (Binomial, Inverse Transform Sampling Method-ITSM, Metropolis-Hasting Random Walk, Metropolis-Hasting Independent, Gibbs Sampler, Hybrid Gibbs Sampler). We carried out an analysis to identify the most important input parameters for simulation quality and to evaluate performance for each of the resampling algorithms. Our analysis confirms the influence of the type of algorithm used and simulation parameters (i.e. days, number of cases, outbreak shape, overall scale factor) on the results. We show that, regardless of the outbreaks, algorithms and metrics chosen for the evaluation, simulation quality decreased with the increase in the number of days simulated and increased with the number of cases simulated. Simulating outbreaks with fewer cases than days of duration (i.e. overall scale factor less than 1) resulted in an important loss of information during the simulation. We found that Gibbs sampling with a shrinkage procedure provides a good balance between accuracy and data dependency. If dependency is of little importance, binomial and ITSM methods are accurate. Given the constraint of keeping the simulation within a range of plausible epidemiological curves faced by the surveillance system, our study confirms that our approach can be used to generate a large spectrum of outbreak signals.
Building test data from real outbreaks for evaluating detection algorithms
Texier, Gaetan; Jackson, Michael L.; Siwe, Leonel; Meynard, Jean-Baptiste; Deparis, Xavier; Chaudet, Herve
2017-01-01
Benchmarking surveillance systems requires realistic simulations of disease outbreaks. However, obtaining these data in sufficient quantity, with a realistic shape and covering a sufficient range of agents, size and duration, is known to be very difficult. The dataset of outbreak signals generated should reflect the likely distribution of authentic situations faced by the surveillance system, including very unlikely outbreak signals. We propose and evaluate a new approach based on the use of historical outbreak data to simulate tailored outbreak signals. The method relies on a homothetic transformation of the historical distribution followed by resampling processes (Binomial, Inverse Transform Sampling Method—ITSM, Metropolis-Hasting Random Walk, Metropolis-Hasting Independent, Gibbs Sampler, Hybrid Gibbs Sampler). We carried out an analysis to identify the most important input parameters for simulation quality and to evaluate performance for each of the resampling algorithms. Our analysis confirms the influence of the type of algorithm used and simulation parameters (i.e. days, number of cases, outbreak shape, overall scale factor) on the results. We show that, regardless of the outbreaks, algorithms and metrics chosen for the evaluation, simulation quality decreased with the increase in the number of days simulated and increased with the number of cases simulated. Simulating outbreaks with fewer cases than days of duration (i.e. overall scale factor less than 1) resulted in an important loss of information during the simulation. We found that Gibbs sampling with a shrinkage procedure provides a good balance between accuracy and data dependency. If dependency is of little importance, binomial and ITSM methods are accurate. Given the constraint of keeping the simulation within a range of plausible epidemiological curves faced by the surveillance system, our study confirms that our approach can be used to generate a large spectrum of outbreak signals. PMID:28863159
Hidden Semi-Markov Models and Their Application
NASA Astrophysics Data System (ADS)
Beyreuther, M.; Wassermann, J.
2008-12-01
In the framework of detection and classification of seismic signals there are several different approaches. Our choice for a more robust detection and classification algorithm is to adopt Hidden Markov Models (HMM), a technique showing major success in speech recognition. HMM provide a powerful tool to describe highly variable time series based on a double stochastic model and therefore allow for a broader class description than e.g. template based pattern matching techniques. Being a fully probabilistic model, HMM directly provide a confidence measure of an estimated classification. Furthermore and in contrast to classic artificial neuronal networks or support vector machines, HMM are incorporating the time dependence explicitly in the models thus providing a adequate representation of the seismic signal. As the majority of detection algorithms, HMM are not based on the time and amplitude dependent seismogram itself but on features estimated from the seismogram which characterize the different classes. Features, or in other words characteristic functions, are e.g. the sonogram bands, instantaneous frequency, instantaneous bandwidth or centroid time. In this study we apply continuous Hidden Semi-Markov Models (HSMM), an extension of continuous HMM. The duration probability of a HMM is an exponentially decaying function of the time, which is not a realistic representation of the duration of an earthquake. In contrast HSMM use Gaussians as duration probabilities, which results in an more adequate model. The HSMM detection and classification system is running online as an EARTHWORM module at the Bavarian Earthquake Service. Here the signals that are to be classified simply differ in epicentral distance. This makes it possible to easily decide whether a classification is correct or wrong and thus allows to better evaluate the advantages and disadvantages of the proposed algorithm. The evaluation is based on several month long continuous data and the results are additionally compared to the previously published discrete HMM, continuous HMM and a classic STA/LTA. The intermediate evaluation results are very promising.
Effect of degree correlations above the first shell on the percolation transition
NASA Astrophysics Data System (ADS)
Valdez, L. D.; Buono, C.; Braunstein, L. A.; Macri, P. A.
2011-11-01
The use of degree-degree correlations to model realistic networks which are characterized by their Pearson's coefficient, has become widespread. However the effect on how different correlation algorithms produce different results on processes on top of them, has not yet been discussed. In this letter, using different correlation algorithms to generate assortative networks, we show that for very assortative networks the behavior of the main observables in percolation processes depends on the algorithm used to build the network. The different alghoritms used here introduce different inner structures that are missed in Pearson's coefficient. We explain the different behaviors through a generalization of Pearson's coefficient that allows to study the correlations at chemical distances l from a root node. We apply our findings to real networks.
Harmony search optimization algorithm for a novel transportation problem in a consolidation network
NASA Astrophysics Data System (ADS)
Davod Hosseini, Seyed; Akbarpour Shirazi, Mohsen; Taghi Fatemi Ghomi, Seyed Mohammad
2014-11-01
This article presents a new harmony search optimization algorithm to solve a novel integer programming model developed for a consolidation network. In this network, a set of vehicles is used to transport goods from suppliers to their corresponding customers via two transportation systems: direct shipment and milk run logistics. The objective of this problem is to minimize the total shipping cost in the network, so it tries to reduce the number of required vehicles using an efficient vehicle routing strategy in the solution approach. Solving several numerical examples confirms that the proposed solution approach based on the harmony search algorithm performs much better than CPLEX in reducing both the shipping cost in the network and computational time requirement, especially for realistic size problem instances.
Developing Successful Community Assistance Programs.
ERIC Educational Resources Information Center
Kozoll, Charles; Ulmer, Curtis, Ed.
This guide is written for the adult education teachers and administrators; it shows why and how to use outside resources and the extensive agency and individual assistance available. The material presented concerns the following subject areas: A Realistic Self Appraisal (Where to Find Assistance; Obligations to the Adult Student; Responsibility in…
Professional Ideals and Social Realities: Some Questions about the Education of Librarians.
ERIC Educational Resources Information Center
Colson, John Calvin
1980-01-01
Argues that the educational problems of librarianship cannot be examined realistically without a concern for knowledge about the social conditions within which libraries exist. The nature of these social realities is discussed, as well as their influence on library education. Extensive references are provided. (Author/BK)
Elliptic Curve Cryptography with Java
ERIC Educational Resources Information Center
Klima, Richard E.; Sigmon, Neil P.
2005-01-01
The use of the computer, and specifically the mathematics software package Maple, has played a central role in the authors' abstract algebra course because it provides their students with a way to see realistic examples of the topics they discuss without having to struggle with extensive computations. However, Maple does not provide the computer…
ERIC Educational Resources Information Center
Viernstein, Mary Cowan
Two methods are presented for extending Holland's occupational classification to include all occupations in the Dictionary of Occupational Titles (DOT). Holland's classification is based on a theory of personality types, with occupations in the classification organized into major categories (Realistic, Investigative, Artistic, Social,…
Agencies within communities, communities within ecosystems
Jane Kapler Smith; Kerry McMenus
2000-01-01
Can scientific information and intensive, extensive public involvement through facilitated meetings be expected to lead to agreement on natural resource issues? Communications and research in the Bitterroot Ecosystem Management Research Project indicate that, where peopleâs values differ greatly, consensus is not a realistic goal for short term planning processes....
Sequential Dependencies in Driving
ERIC Educational Resources Information Center
Doshi, Anup; Tran, Cuong; Wilder, Matthew H.; Mozer, Michael C.; Trivedi, Mohan M.
2012-01-01
The effect of recent experience on current behavior has been studied extensively in simple laboratory tasks. We explore the nature of sequential effects in the more naturalistic setting of automobile driving. Driving is a safety-critical task in which delayed response times may have severe consequences. Using a realistic driving simulator, we find…
NASA Astrophysics Data System (ADS)
Strippoli, L. S.; Gonzalez-Arjona, D. G.
2018-04-01
GMV extensively worked in many activities aimed at developing, validating, and verifying up to TRL-6 advanced GNC and IP algorithms for Mars Sample Return rendezvous working under different ESA contracts on the development of advanced algorithms for VBN sensor.
Extension of the firefly algorithm and preference rules for solving MINLP problems
NASA Astrophysics Data System (ADS)
Costa, M. Fernanda P.; Francisco, Rogério B.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.
2017-07-01
An extension of the firefly algorithm (FA) for solving mixed-integer nonlinear programming (MINLP) problems is presented. Although penalty functions are nowadays frequently used to handle integrality conditions and inequality and equality constraints, this paper proposes the implementation within the FA of a simple rounded-based heuristic and four preference rules to find and converge to MINLP feasible solutions. Preliminary numerical experiments are carried out to validate the proposed methodology.
Adaptive DIT-Based Fringe Tracking and Prediction at IOTA
NASA Technical Reports Server (NTRS)
Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.
2004-01-01
An automatic fringe tracking system has been developed and implemented at the Infrared Optical Telescope Array (IOTA). In testing during May 2002, the system successfully minimized the optical path differences (OPDs) for all three baselines at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHZ PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. Preliminary analysis on an extension of this algorithm indicates a potential for predictive tracking, although at present, real-time implementation of this extension would require significantly more computational capacity.
Interval-based reconstruction for uncertainty quantification in PET
NASA Astrophysics Data System (ADS)
Kucharczak, Florentin; Loquin, Kevin; Buvat, Irène; Strauss, Olivier; Mariano-Goulart, Denis
2018-02-01
A new directed interval-based tomographic reconstruction algorithm, called non-additive interval based expectation maximization (NIBEM) is presented. It uses non-additive modeling of the forward operator that provides intervals instead of single-valued projections. The detailed approach is an extension of the maximum likelihood—expectation maximization algorithm based on intervals. The main motivation for this extension is that the resulting intervals have appealing properties for estimating the statistical uncertainty associated with the reconstructed activity values. After reviewing previously published theoretical concepts related to interval-based projectors, this paper describes the NIBEM algorithm and gives examples that highlight the properties and advantages of this interval valued reconstruction.
A novel highly parallel algorithm for linearly unmixing hyperspectral images
NASA Astrophysics Data System (ADS)
Guerra, Raúl; López, Sebastián.; Callico, Gustavo M.; López, Jose F.; Sarmiento, Roberto
2014-10-01
Endmember extraction and abundances calculation represent critical steps within the process of linearly unmixing a given hyperspectral image because of two main reasons. The first one is due to the need of computing a set of accurate endmembers in order to further obtain confident abundance maps. The second one refers to the huge amount of operations involved in these time-consuming processes. This work proposes an algorithm to estimate the endmembers of a hyperspectral image under analysis and its abundances at the same time. The main advantage of this algorithm is its high parallelization degree and the mathematical simplicity of the operations implemented. This algorithm estimates the endmembers as virtual pixels. In particular, the proposed algorithm performs the descent gradient method to iteratively refine the endmembers and the abundances, reducing the mean square error, according with the linear unmixing model. Some mathematical restrictions must be added so the method converges in a unique and realistic solution. According with the algorithm nature, these restrictions can be easily implemented. The results obtained with synthetic images demonstrate the well behavior of the algorithm proposed. Moreover, the results obtained with the well-known Cuprite dataset also corroborate the benefits of our proposal.
FEAST: sensitive local alignment with multiple rates of evolution.
Hudek, Alexander K; Brown, Daniel G
2011-01-01
We present a pairwise local aligner, FEAST, which uses two new techniques: a sensitive extension algorithm for identifying homologous subsequences, and a descriptive probabilistic alignment model. We also present a new procedure for training alignment parameters and apply it to the human and mouse genomes, producing a better parameter set for these sequences. Our extension algorithm identifies homologous subsequences by considering all evolutionary histories. It has higher maximum sensitivity than Viterbi extensions, and better balances specificity. We model alignments with several submodels, each with unique statistical properties, describing strongly similar and weakly similar regions of homologous DNA. Training parameters using two submodels produces superior alignments, even when we align with only the parameters from the weaker submodel. Our extension algorithm combined with our new parameter set achieves sensitivity 0.59 on synthetic tests. In contrast, LASTZ with default settings achieves sensitivity 0.35 with the same false positive rate. Using the weak submodel as parameters for LASTZ increases its sensitivity to 0.59 with high error. FEAST is available at http://monod.uwaterloo.ca/feast/.
NASA Astrophysics Data System (ADS)
Mariethoz, Gregoire; Lefebvre, Sylvain
2014-05-01
Multiple-Point Simulations (MPS) is a family of geostatistical tools that has received a lot of attention in recent years for the characterization of spatial phenomena in geosciences. It relies on the definition of training images to represent a given type of spatial variability, or texture. We show that the algorithmic tools used are similar in many ways to techniques developed in computer graphics, where there is a need to generate large amounts of realistic textures for applications such as video games and animated movies. Similarly to MPS, these texture synthesis methods use training images, or exemplars, to generate realistic-looking graphical textures. Both domains of multiple-point geostatistics and example-based texture synthesis present similarities in their historic development and share similar concepts. These disciplines have however remained separated, and as a result significant algorithmic innovations in each discipline have not been universally adopted. Texture synthesis algorithms present drastically increased computational efficiency, patterns reproduction and user control. At the same time, MPS developed ways to condition models to spatial data and to produce 3D stochastic realizations, which have not been thoroughly investigated in the field of texture synthesis. In this paper we review the possible links between these disciplines and show the potential and limitations of using concepts and approaches from texture synthesis in MPS. We also provide guidelines on how recent developments could benefit both fields of research, and what challenges remain open.
IndeCut evaluates performance of network motif discovery algorithms.
Ansariola, Mitra; Megraw, Molly; Koslicki, David
2018-05-01
Genomic networks represent a complex map of molecular interactions which are descriptive of the biological processes occurring in living cells. Identifying the small over-represented circuitry patterns in these networks helps generate hypotheses about the functional basis of such complex processes. Network motif discovery is a systematic way of achieving this goal. However, a reliable network motif discovery outcome requires generating random background networks which are the result of a uniform and independent graph sampling method. To date, there has been no method to numerically evaluate whether any network motif discovery algorithm performs as intended on realistically sized datasets-thus it was not possible to assess the validity of resulting network motifs. In this work, we present IndeCut, the first method to date that characterizes network motif finding algorithm performance in terms of uniform sampling on realistically sized networks. We demonstrate that it is critical to use IndeCut prior to running any network motif finder for two reasons. First, IndeCut indicates the number of samples needed for a tool to produce an outcome that is both reproducible and accurate. Second, IndeCut allows users to choose the tool that generates samples in the most independent fashion for their network of interest among many available options. The open source software package is available at https://github.com/megrawlab/IndeCut. megrawm@science.oregonstate.edu or david.koslicki@math.oregonstate.edu. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Dedes, I.; Dudek, J.
2018-03-01
We examine the effects of the parametric correlations on the predictive capacities of the theoretical modelling keeping in mind the nuclear structure applications. The main purpose of this work is to illustrate the method of establishing the presence and determining the form of parametric correlations within a model as well as an algorithm of elimination by substitution (see text) of parametric correlations. We examine the effects of the elimination of the parametric correlations on the stabilisation of the model predictions further and further away from the fitting zone. It follows that the choice of the physics case and the selection of the associated model are of secondary importance in this case. Under these circumstances we give priority to the relative simplicity of the underlying mathematical algorithm, provided the model is realistic. Following such criteria, we focus specifically on an important but relatively simple case of doubly magic spherical nuclei. To profit from the algorithmic simplicity we chose working with the phenomenological spherically symmetric Woods–Saxon mean-field. We employ two variants of the underlying Hamiltonian, the traditional one involving both the central and the spin orbit potential in the Woods–Saxon form and the more advanced version with the self-consistent density-dependent spin–orbit interaction. We compare the effects of eliminating of various types of correlations and discuss the improvement of the quality of predictions (‘predictive power’) under realistic parameter adjustment conditions.
Demonstration of a 3D vision algorithm for space applications
NASA Technical Reports Server (NTRS)
Defigueiredo, Rui J. P. (Editor)
1987-01-01
This paper reports an extension of the MIAG algorithm for recognition and motion parameter determination of general 3-D polyhedral objects based on model matching techniques and using movement invariants as features of object representation. Results of tests conducted on the algorithm under conditions simulating space conditions are presented.
ABLEPathPlanner library for Umbra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oppel III, Fred J; Xavier, Patrick G.; Gottlieb, Eric Joseph
Umbra contains a flexible, modular path planner that is used to simulate complex entity behaviors moving within 3D terrain environments that include buildings, barriers, roads, bridges, fences, and a variety of other terrain features (water, vegetation, slope, etc…). The path planning algorithm is a critical component required to execute these tactical behaviors to provide realistic entity movement and provide efficient system computing performance.
Tidal Distortion and Disruption of Earth-Crossing Asteriods
NASA Technical Reports Server (NTRS)
Love, Stanley G.; Bottke, William, Jr.
1997-01-01
We represent results of numerical simulations that show Earth's tidal forces can both distort and disrupt Earth-crossing asteriods (ECAs) that have weak rubble-pile structures. Building on previous studies, we consider more realistic asteriod shapes and trajectories, test a variety of spin and rates and axis orientations, and employ a dissipation algorithm to more accurately treat collisions between particles.
An information-theoretic approach to the gravitational-wave burst detection problem
NASA Astrophysics Data System (ADS)
Katsavounidis, E.; Lynch, R.; Vitale, S.; Essick, R.; Robinet, F.
2016-03-01
The advanced era of gravitational-wave astronomy, with data collected in part by the LIGO gravitational-wave interferometers, has begun as of fall 2015. One potential type of detectable gravitational waves is short-duration gravitational-wave bursts, whose waveforms can be difficult to predict. We present the framework for a new detection algorithm - called oLIB - that can be used in relatively low-latency to turn calibrated strain data into a detection significance statement. This pipeline consists of 1) a sine-Gaussian matched-filter trigger generator based on the Q-transform - known as Omicron -, 2) incoherent down-selection of these triggers to the most signal-like set, and 3) a fully coherent analysis of this signal-like set using the Markov chain Monte Carlo (MCMC) Bayesian evidence calculator LALInferenceBurst (LIB). We optimally extract this information by using a likelihood-ratio test (LRT) to map these search statistics into a significance statement. Using representative archival LIGO data, we show that the algorithm can detect gravitational-wave burst events of realistic strength in realistic instrumental noise with good detection efficiencies across different burst waveform morphologies. With support from the National Science Foundation under Grant PHY-0757058.
A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.
1985-01-01
Gravity wave ray tracing and wave packet theory is used to parameterize wave breaking in the mesosphere. Rays are tracked by solving the group velocity equations, and the interaction with the basic state is determined by considering the evolution of the packet wave action density. The ray tracing approach has a number of advantages over the steady state parameterization as the effects of gravity wave focussing and refraction, local dissipation, and wave response to rapid changes in the mean flow are more realistically considered; however, if steady state conditions prevail, the method gives identical results. The ray tracing algorithm is tested using both interactive and noninteractive models of the basic state. In the interactive model, gravity wave interaction with the polar night jet on a beta-plane is considered. The algorithm produces realistic polar night jet closure for weak topographic forcing of gravity waves. Planetary scale waves forced by local transfer of wave action into the basic flow in turn transfer their wave action into the zonal mean flow. Highly refracted rays are also found not to contribute greatly to the climatology of the mesosphere, as their wave action is severely reduced by dissipation during their lateral travel.
Na, Okpin; Cai, Xiao-Chuan; Xi, Yunping
2017-01-01
The prediction of the chloride-induced corrosion is very important because of the durable life of concrete structure. To simulate more realistic durability performance of concrete structures, complex scientific methods and more accurate material models are needed. In order to predict the robust results of corrosion initiation time and to describe the thin layer from concrete surface to reinforcement, a large number of fine meshes are also used. The purpose of this study is to suggest more realistic physical model regarding coupled hygro-chemo transport and to implement the model with parallel finite element algorithm. Furthermore, microclimate model with environmental humidity and seasonal temperature is adopted. As a result, the prediction model of chloride diffusion under unsaturated condition was developed with parallel algorithms and was applied to the existing bridge to validate the model with multi-boundary condition. As the number of processors increased, the computational time decreased until the number of processors became optimized. Then, the computational time increased because the communication time between the processors increased. The framework of present model can be extended to simulate the multi-species de-icing salts ingress into non-saturated concrete structures in future work. PMID:28772714
NASA Astrophysics Data System (ADS)
Kim, Jong-Min; Lee, Hyun-Boo; Chang, Yoon-Suk; Choi, Jae-Boong; Kim, Young-Jin; Ji, Kum-Young
2010-05-01
Recently, the reliability assurance of lead-free solder to prevent environmental contamination is quite important issue for chip-scale packaging. Although lots of efforts have been devoted to the solder undergone drop, shear and creep loads, there was a little research on IMC due primarily to its thickness restriction and geometric irregularity. However, the IMC is known as the weakest layer governing failures of the solder joint. The present work is to characterize realistic material properties of the IMC for ENEPIG process. Lee's modified reverse algorithm was adopted to determine elastic-plastic stress-strain curve and so forth, after examining several methods, which requires inherently elastic data. In this context, a series of nano-indentation tests as well as corresponding simulations were carried out by changing indentation depths from 200 to 400 nm and strain rates from 0.05 to 0.10 1/s. It would be conclude that effect of strain rate is relatively small and IMC layer should be more than 5 times of indentation depth when using the recommended method, which are applicable to generate realistic material properties for further diverse structural integrity simulations.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Rozendaal, H. L.
1977-01-01
A rapid mission analysis code based on the use of approximate flight path equations of motion is presented. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed characteristics were specified in tabular form. The code also contains extensive flight envelope performance mapping capabilities. Approximate take off and landing analyses were performed. At high speeds, centrifugal lift effects were accounted for. Extensive turbojet and ramjet engine scaling procedures were incorporated in the code.
Fast algorithm for the rendering of three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Pritt, Mark D.
1994-02-01
It is often desirable to draw a detailed and realistic representation of surface data on a computer graphics display. One such representation is a 3D shaded surface. Conventional techniques for rendering shaded surfaces are slow, however, and require substantial computational power. Furthermore, many techniques suffer from aliasing effects, which appear as jagged lines and edges. This paper describes an algorithm for the fast rendering of shaded surfaces without aliasing effects. It is much faster than conventional ray tracing and polygon-based rendering techniques and is suitable for interactive use. On an IBM RISC System/6000TM workstation it renders a 1000 X 1000 surface in about 7 seconds.
Multi-period project portfolio selection under risk considerations and stochastic income
NASA Astrophysics Data System (ADS)
Tofighian, Ali Asghar; Moezzi, Hamid; Khakzar Barfuei, Morteza; Shafiee, Mahmood
2018-02-01
This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, considering risks, stochastic incomes, and possibility of investing extra budget in each time period. Due to the complexity of the problem, an effective meta-heuristic method hybridized with a local search procedure is presented to solve the problem. The algorithm is based on genetic algorithm (GA), which is a prominent method to solve this type of problems. The GA is enhanced by a new solution representation and well selected operators. It also is hybridized with a local search mechanism to gain better solution in shorter time. The performance of the proposed algorithm is then compared with well-known algorithms, like basic genetic algorithm (GA), particle swarm optimization (PSO), and electromagnetism-like algorithm (EM-like) by means of some prominent indicators. The computation results show the superiority of the proposed algorithm in terms of accuracy, robustness and computation time. At last, the proposed algorithm is wisely combined with PSO to improve the computing time considerably.
Comparison analysis for classification algorithm in data mining and the study of model use
NASA Astrophysics Data System (ADS)
Chen, Junde; Zhang, Defu
2018-04-01
As a key technique in data mining, classification algorithm was received extensive attention. Through an experiment of classification algorithm in UCI data set, we gave a comparison analysis method for the different algorithms and the statistical test was used here. Than that, an adaptive diagnosis model for preventive electricity stealing and leakage was given as a specific case in the paper.
RACER: Effective Race Detection Using AspectJ
NASA Technical Reports Server (NTRS)
Bodden, Eric; Havelund, Klaus
2008-01-01
The limits of coding with joint constraints on detected and undetected error rates Programming errors occur frequently in large software systems, and even more so if these systems are concurrent. In the past, researchers have developed specialized programs to aid programmers detecting concurrent programming errors such as deadlocks, livelocks, starvation and data races. In this work we propose a language extension to the aspect-oriented programming language AspectJ, in the form of three new built-in pointcuts, lock(), unlock() and may be Shared(), which allow programmers to monitor program events where locks are granted or handed back, and where values are accessed that may be shared amongst multiple Java threads. We decide thread-locality using a static thread-local objects analysis developed by others. Using the three new primitive pointcuts, researchers can directly implement efficient monitoring algorithms to detect concurrent programming errors online. As an example, we expose a new algorithm which we call RACER, an adoption of the well-known ERASER algorithm to the memory model of Java. We implemented the new pointcuts as an extension to the Aspect Bench Compiler, implemented the RACER algorithm using this language extension and then applied the algorithm to the NASA K9 Rover Executive. Our experiments proved our implementation very effective. In the Rover Executive RACER finds 70 data races. Only one of these races was previously known.We further applied the algorithm to two other multi-threaded programs written by Computer Science researchers, in which we found races as well.
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
ERIC Educational Resources Information Center
Randall, David C.; Wilbur, Frank H.; Burkholder, Timothy J.
2004-01-01
Realistic research experience is beneficial to undergraduate students, but it is often difficult for liberal arts colleges to offer this opportunity. We describe two approaches for developing and maintaining an interdisciplinary research program at small colleges. An active and continuing involvement of an individual with extensive research…
Wynant, Willy; Abrahamowicz, Michal
2016-11-01
Standard optimization algorithms for maximizing likelihood may not be applicable to the estimation of those flexible multivariable models that are nonlinear in their parameters. For applications where the model's structure permits separating estimation of mutually exclusive subsets of parameters into distinct steps, we propose the alternating conditional estimation (ACE) algorithm. We validate the algorithm, in simulations, for estimation of two flexible extensions of Cox's proportional hazards model where the standard maximum partial likelihood estimation does not apply, with simultaneous modeling of (1) nonlinear and time-dependent effects of continuous covariates on the hazard, and (2) nonlinear interaction and main effects of the same variable. We also apply the algorithm in real-life analyses to estimate nonlinear and time-dependent effects of prognostic factors for mortality in colon cancer. Analyses of both simulated and real-life data illustrate good statistical properties of the ACE algorithm and its ability to yield new potentially useful insights about the data structure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Algorithm and code development for unsteady three-dimensional Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1991-01-01
A streamwise upwind algorithm for solving the unsteady 3-D Navier-Stokes equations was extended to handle the moving grid system. It is noted that the finite volume concept is essential to extend the algorithm. The resulting algorithm is conservative for any motion of the coordinate system. Two extensions to an implicit method were considered and the implicit extension that makes the algorithm computationally efficient is implemented into Ames's aeroelasticity code, ENSAERO. The new flow solver has been validated through the solution of test problems. Test cases include three-dimensional problems with fixed and moving grids. The first test case shown is an unsteady viscous flow over an F-5 wing, while the second test considers the motion of the leading edge vortex as well as the motion of the shock wave for a clipped delta wing. The resulting algorithm has been implemented into ENSAERO. The upwind version leads to higher accuracy in both steady and unsteady computations than the previously used central-difference method does, while the increase in the computational time is small.
Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics
NASA Astrophysics Data System (ADS)
Junghans, Christoph; Mniszewski, Susan; Voter, Arthur; Perez, Danny; Eidenbenz, Stephan
2014-03-01
We present an example of a new class of tools that we call application simulators, parameterized fast-running proxies of large-scale scientific applications using parallel discrete event simulation (PDES). We demonstrate our approach with a TADSim application simulator that models the Temperature Accelerated Dynamics (TAD) method, which is an algorithmically complex member of the Accelerated Molecular Dynamics (AMD) family. The essence of the TAD application is captured without the computational expense and resource usage of the full code. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the otherwise long-running simulation code. We further extend TADSim to model algorithm extensions to standard TAD, such as speculative spawning of the compute-bound stages of the algorithm, and predict performance improvements without having to implement such a method. Focused parameter scans have allowed us to study algorithm parameter choices over far more scenarios than would be possible with the actual simulation. This has led to interesting performance-related insights into the TAD algorithm behavior and suggested extensions to the TAD method.
Aquatic Debris Detection Using Embedded Camera Sensors
Wang, Yong; Wang, Dianhong; Lu, Qian; Luo, Dapeng; Fang, Wu
2015-01-01
Aquatic debris monitoring is of great importance to human health, aquatic habitats and water transport. In this paper, we first introduce the prototype of an aquatic sensor node equipped with an embedded camera sensor. Based on this sensing platform, we propose a fast and accurate debris detection algorithm. Our method is specifically designed based on compressive sensing theory to give full consideration to the unique challenges in aquatic environments, such as waves, swaying reflections, and tight energy budget. To upload debris images, we use an efficient sparse recovery algorithm in which only a few linear measurements need to be transmitted for image reconstruction. Besides, we implement the host software and test the debris detection algorithm on realistically deployed aquatic sensor nodes. The experimental results demonstrate that our approach is reliable and feasible for debris detection using camera sensors in aquatic environments. PMID:25647741
Design of an FMCW radar baseband signal processing system for automotive application.
Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung
2016-01-01
For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario.
High-performance computing on GPUs for resistivity logging of oil and gas wells
NASA Astrophysics Data System (ADS)
Glinskikh, V.; Dudaev, A.; Nechaev, O.; Surodina, I.
2017-10-01
We developed and implemented into software an algorithm for high-performance simulation of electrical logs from oil and gas wells using high-performance heterogeneous computing. The numerical solution of the 2D forward problem is based on the finite-element method and the Cholesky decomposition for solving a system of linear algebraic equations (SLAE). Software implementations of the algorithm used the NVIDIA CUDA technology and computing libraries are made, allowing us to perform decomposition of SLAE and find its solution on central processor unit (CPU) and graphics processor unit (GPU). The calculation time is analyzed depending on the matrix size and number of its non-zero elements. We estimated the computing speed on CPU and GPU, including high-performance heterogeneous CPU-GPU computing. Using the developed algorithm, we simulated resistivity data in realistic models.
Hatt, Mathieu; Lee, John A.; Schmidtlein, Charles R.; Naqa, Issam El; Caldwell, Curtis; De Bernardi, Elisabetta; Lu, Wei; Das, Shiva; Geets, Xavier; Gregoire, Vincent; Jeraj, Robert; MacManus, Michael P.; Mawlawi, Osama R.; Nestle, Ursula; Pugachev, Andrei B.; Schöder, Heiko; Shepherd, Tony; Spezi, Emiliano; Visvikis, Dimitris; Zaidi, Habib; Kirov, Assen S.
2017-01-01
Purpose The purpose of this educational report is to provide an overview of the present state-of-the-art PET auto-segmentation (PET-AS) algorithms and their respective validation, with an emphasis on providing the user with help in understanding the challenges and pitfalls associated with selecting and implementing a PET-AS algorithm for a particular application. Approach A brief description of the different types of PET-AS algorithms is provided using a classification based on method complexity and type. The advantages and the limitations of the current PET-AS algorithms are highlighted based on current publications and existing comparison studies. A review of the available image datasets and contour evaluation metrics in terms of their applicability for establishing a standardized evaluation of PET-AS algorithms is provided. The performance requirements for the algorithms and their dependence on the application, the radiotracer used and the evaluation criteria are described and discussed. Finally, a procedure for algorithm acceptance and implementation, as well as the complementary role of manual and auto-segmentation are addressed. Findings A large number of PET-AS algorithms have been developed within the last 20 years. Many of the proposed algorithms are based on either fixed or adaptively selected thresholds. More recently, numerous papers have proposed the use of more advanced image analysis paradigms to perform semi-automated delineation of the PET images. However, the level of algorithm validation is variable and for most published algorithms is either insufficient or inconsistent which prevents recommending a single algorithm. This is compounded by the fact that realistic image configurations with low signal-to-noise ratios (SNR) and heterogeneous tracer distributions have rarely been used. Large variations in the evaluation methods used in the literature point to the need for a standardized evaluation protocol. Conclusions Available comparison studies suggest that PET-AS algorithms relying on advanced image analysis paradigms provide generally more accurate segmentation than approaches based on PET activity thresholds, particularly for realistic configurations. However, this may not be the case for simple shape lesions in situations with a narrower range of parameters, where simpler methods may also perform well. Recent algorithms which employ some type of consensus or automatic selection between several PET-AS methods have potential to overcome the limitations of the individual methods when appropriately trained. In either case, accuracy evaluation is required for each different PET scanner and scanning and image reconstruction protocol. For the simpler, less robust approaches, adaptation to scanning conditions, tumor type, and tumor location by optimization of parameters is necessary. The results from the method evaluation stage can be used to estimate the contouring uncertainty. All PET-AS contours should be critically verified by a physician. A standard test, i.e., a benchmark dedicated to evaluating both existing and future PET-AS algorithms needs to be designed, to aid clinicians in evaluating and selecting PET-AS algorithms and to establish performance limits for their acceptance for clinical use. The initial steps toward designing and building such a standard are undertaken by the task group members. PMID:28120467
Selective Iterative Waterfilling for Digital Subscriber Lines
NASA Astrophysics Data System (ADS)
Xu, Yang; Le-Ngoc, Tho; Panigrahi, Saswat
2007-12-01
This paper presents a high-performance, low-complexity, quasi-distributed dynamic spectrum management (DSM) algorithm suitable for DSL systems. We analytically demonstrate that the rate degradation of the distributed iterative waterfilling (IW) algorithm in near-far scenarios is caused by the insufficient utilization of all available frequency and power resources due to its nature of noncooperative game theoretic formulation. Inspired by this observation, we propose the selective IW (SIW) algorithm that can considerably alleviate the performance degradation of IW by applying IW selectively to different groups of users over different frequency bands so that all the available resources can be fully utilized. For [InlineEquation not available: see fulltext.] users, the proposed SIW algorithm needs at most [InlineEquation not available: see fulltext.] times the complexity of the IW algorithm, and is much simpler than the centralized optimal spectrum balancing (OSB), while it can offer a rate performance much better than that of the IW and close to the maximum possible rate region computed by the OSB in realistic near-far DSL scenarios. Furthermore, its predominantly distributed structure makes it suitable for DSL implementation.
Identification of noise artifacts in searches for long-duration gravitational-wave transients
NASA Astrophysics Data System (ADS)
Prestegard, Tanner; Thrane, Eric; Christensen, Nelson L.; Coughlin, Michael W.; Hubbert, Ben; Kandhasamy, Shivaraj; MacAyeal, Evan; Mandic, Vuk
2012-05-01
We present an algorithm for the identification of transient noise artifacts (glitches) in cross-correlation searches for long gravitational-wave (GW) transients lasting seconds to weeks. The algorithm utilizes the auto-power in each detector as a discriminator between well-behaved stationary noise (possibly including a GW signal) and non-stationary noise transients. We test the algorithm with both Monte Carlo noise and time-shifted data from the LIGO S5 science run and find that it removes a significant fraction of glitches while keeping the vast majority (99.6%) of the data. We show that this cleaned data can be used to observe GW signals at a significantly lower amplitude than can otherwise be achieved. Using an accretion disk instability signal model, we estimate that the algorithm is accidentally triggered at a rate of less than 10-5% by realistic signals, and less than 3% even for exceptionally loud signals. We conclude that the algorithm is a safe and effective method for cleaning the cross-correlation data used in searches for long GW transients.
NASA Astrophysics Data System (ADS)
Rashid, Ahmar; Khambampati, Anil Kumar; Kim, Bong Seok; Liu, Dong; Kim, Sin; Kim, Kyung Youn
EIT image reconstruction is an ill-posed problem, the spatial resolution of the estimated conductivity distribution is usually poor and the external voltage measurements are subject to variable noise. Therefore, EIT conductivity estimation cannot be used in the raw form to correctly estimate the shape and size of complex shaped regional anomalies. An efficient algorithm employing a shape based estimation scheme is needed. The performance of traditional inverse algorithms, such as the Newton Raphson method, used for this purpose is below par and depends upon the initial guess and the gradient of the cost functional. This paper presents the application of differential evolution (DE) algorithm to estimate complex shaped region boundaries, expressed as coefficients of truncated Fourier series, using EIT. DE is a simple yet powerful population-based, heuristic algorithm with the desired features to solve global optimization problems under realistic conditions. The performance of the algorithm has been tested through numerical simulations, comparing its results with that of the traditional modified Newton Raphson (mNR) method.
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.
Multilevel algorithms for nonlinear optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Dennis, J. E., Jr.
1994-01-01
Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that naturally occur in blocks. We propose a class of multilevel optimization methods motivated by the structure and number of constraints and by the expense of the derivative computations for MDO. The algorithms are an extension to the nonlinear programming problem of the successful class of local Brown-Brent algorithms for nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to fit the application, and they separately process each block and the objective function, restricted to certain subspaces. The methods use trust regions as a globalization strategy, and they have been shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems of equations are a special case of the multilevel optimization methods. In this case, they can be viewed as a trust-region globalization of the Brown-Brent class.
Motion Cueing Algorithm Development: Piloted Performance Testing of the Cueing Algorithms
NASA Technical Reports Server (NTRS)
Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.
2005-01-01
The relative effectiveness in simulating aircraft maneuvers with both current and newly developed motion cueing algorithms was assessed with an eleven-subject piloted performance evaluation conducted on the NASA Langley Visual Motion Simulator (VMS). In addition to the current NASA adaptive algorithm, two new cueing algorithms were evaluated: the optimal algorithm and the nonlinear algorithm. The test maneuvers included a straight-in approach with a rotating wind vector, an offset approach with severe turbulence and an on/off lateral gust that occurs as the aircraft approaches the runway threshold, and a takeoff both with and without engine failure after liftoff. The maneuvers were executed with each cueing algorithm with added visual display delay conditions ranging from zero to 200 msec. Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. Piloted performance parameters for the approach maneuvers, the vertical velocity upon touchdown and the runway touchdown position, were also analyzed but did not show any noticeable difference among the cueing algorithms. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach were less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.
Angle Statistics Reconstruction: a robust reconstruction algorithm for Muon Scattering Tomography
NASA Astrophysics Data System (ADS)
Stapleton, M.; Burns, J.; Quillin, S.; Steer, C.
2014-11-01
Muon Scattering Tomography (MST) is a technique for using the scattering of cosmic ray muons to probe the contents of enclosed volumes. As a muon passes through material it undergoes multiple Coulomb scattering, where the amount of scattering is dependent on the density and atomic number of the material as well as the path length. Hence, MST has been proposed as a means of imaging dense materials, for instance to detect special nuclear material in cargo containers. Algorithms are required to generate an accurate reconstruction of the material density inside the volume from the muon scattering information and some have already been proposed, most notably the Point of Closest Approach (PoCA) and Maximum Likelihood/Expectation Maximisation (MLEM) algorithms. However, whilst PoCA-based algorithms are easy to implement, they perform rather poorly in practice. Conversely, MLEM is a complicated algorithm to implement and computationally intensive and there is currently no published, fast and easily-implementable algorithm that performs well in practice. In this paper, we first provide a detailed analysis of the source of inaccuracy in PoCA-based algorithms. We then motivate an alternative method, based on ideas first laid out by Morris et al, presenting and fully specifying an algorithm that performs well against simulations of realistic scenarios. We argue this new algorithm should be adopted by developers of Muon Scattering Tomography as an alternative to PoCA.
A Very Simple Method to Calculate the (Positive) Largest Lyapunov Exponent Using Interval Extensions
NASA Astrophysics Data System (ADS)
Mendes, Eduardo M. A. M.; Nepomuceno, Erivelton G.
2016-12-01
In this letter, a very simple method to calculate the positive Largest Lyapunov Exponent (LLE) based on the concept of interval extensions and using the original equations of motion is presented. The exponent is estimated from the slope of the line derived from the lower bound error when considering two interval extensions of the original system. It is shown that the algorithm is robust, fast and easy to implement and can be considered as alternative to other algorithms available in the literature. The method has been successfully tested in five well-known systems: Logistic, Hénon, Lorenz and Rössler equations and the Mackey-Glass system.
A General, Adaptive, Roadmap-Based Algorithm for Protein Motion Computation.
Molloy, Kevin; Shehu, Amarda
2016-03-01
Precious information on protein function can be extracted from a detailed characterization of protein equilibrium dynamics. This remains elusive in wet and dry laboratories, as function-modulating transitions of a protein between functionally-relevant, thermodynamically-stable and meta-stable structural states often span disparate time scales. In this paper we propose a novel, robotics-inspired algorithm that circumvents time-scale challenges by drawing analogies between protein motion and robot motion. The algorithm adapts the popular roadmap-based framework in robot motion computation to handle the more complex protein conformation space and its underlying rugged energy surface. Given known structures representing stable and meta-stable states of a protein, the algorithm yields a time- and energy-prioritized list of transition paths between the structures, with each path represented as a series of conformations. The algorithm balances computational resources between a global search aimed at obtaining a global view of the network of protein conformations and their connectivity and a detailed local search focused on realizing such connections with physically-realistic models. Promising results are presented on a variety of proteins that demonstrate the general utility of the algorithm and its capability to improve the state of the art without employing system-specific insight.
A mixed-mode traffic assignment model with new time-flow impedance function
NASA Astrophysics Data System (ADS)
Lin, Gui-Hua; Hu, Yu; Zou, Yuan-Yang
2018-01-01
Recently, with the wide adoption of electric vehicles, transportation network has shown different characteristics and been further developed. In this paper, we present a new time-flow impedance function, which may be more realistic than the existing time-flow impedance functions. Based on this new impedance function, we present an optimization model for a mixed-mode traffic network in which battery electric vehicles (BEVs) and gasoline vehicles (GVs) are chosen. We suggest two approaches to handle the model: One is to use the interior point (IP) algorithm and the other is to employ the sequential quadratic programming (SQP) algorithm. Three numerical examples are presented to illustrate the efficiency of these approaches. In particular, our numerical results show that more travelers prefer to choosing BEVs when the distance limit of BEVs is long enough and the unit operating cost of GVs is higher than that of BEVs, and the SQP algorithm is faster than the IP algorithm.
Parallel Computing Strategies for Irregular Algorithms
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Shan, Hongzhang; Biegel, Bryan (Technical Monitor)
2002-01-01
Parallel computing promises several orders of magnitude increase in our ability to solve realistic computationally-intensive problems, but relies on their efficient mapping and execution on large-scale multiprocessor architectures. Unfortunately, many important applications are irregular and dynamic in nature, making their effective parallel implementation a daunting task. Moreover, with the proliferation of parallel architectures and programming paradigms, the typical scientist is faced with a plethora of questions that must be answered in order to obtain an acceptable parallel implementation of the solution algorithm. In this paper, we consider three representative irregular applications: unstructured remeshing, sparse matrix computations, and N-body problems, and parallelize them using various popular programming paradigms on a wide spectrum of computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the underlying problems, the solution algorithms, and the parallel implementation strategies. Smart load-balancing, partitioning, and ordering techniques are used to enhance parallel performance. Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.
Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters.
Ruddick, K G; Ovidio, F; Rijkeboer, M
2000-02-20
The standard SeaWiFS atmospheric correction algorithm, designed for open ocean water, has been extended for use over turbid coastal and inland waters. Failure of the standard algorithm over turbid waters can be attributed to invalid assumptions of zero water-leaving radiance for the near-infrared bands at 765 and 865 nm. In the present study these assumptions are replaced by the assumptions of spatial homogeneity of the 765:865-nm ratios for aerosol reflectance and for water-leaving reflectance. These two ratios are imposed as calibration parameters after inspection of the Rayleigh-corrected reflectance scatterplot. The performance of the new algorithm is demonstrated for imagery of Belgian coastal waters and yields physically realistic water-leaving radiance spectra. A preliminary comparison with in situ radiance spectra for the Dutch Lake Markermeer shows significant improvement over the standard atmospheric correction algorithm. An analysis is made of the sensitivity of results to the choice of calibration parameters, and perspectives for application of the method to other sensors are briefly discussed.
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok
1990-01-01
A procedure for compensating for the effects of distributed network-induced delays in integrated communication and control systems (ICCS) is proposed. The problem of analyzing systems with time-varying and possibly stochastic delays could be circumvented by use of a deterministic observer which is designed to perform under certain restrictive but realistic assumptions. The proposed delay-compensation algorithm is based on a deterministic state estimator and a linear state-variable-feedback control law. The deterministic observer can be replaced by a stochastic observer without any structural modifications of the delay compensation algorithm. However, if a feedforward-feedback control law is chosen instead of the state-variable feedback control law, the observer must be modified as a conventional nondelayed system would be. Under these circumstances, the delay compensation algorithm would be accordingly changed. The separation principle of the classical Luenberger observer holds true for the proposed delay compensator. The algorithm is suitable for ICCS in advanced aircraft, spacecraft, manufacturing automation, and chemical process applications.
The Simplified Aircraft-Based Paired Approach With the ALAS Alerting Algorithm
NASA Technical Reports Server (NTRS)
Perry, Raleigh B.; Madden, Michael M.; Torres-Pomales, Wilfredo; Butler, Ricky W.
2013-01-01
This paper presents the results of an investigation of a proposed concept for closely spaced parallel runways called the Simplified Aircraft-based Paired Approach (SAPA). This procedure depends upon a new alerting algorithm called the Adjacent Landing Alerting System (ALAS). This study used both low fidelity and high fidelity simulations to validate the SAPA procedure and test the performance of the new alerting algorithm. The low fidelity simulation enabled a determination of minimum approach distance for the worst case over millions of scenarios. The high fidelity simulation enabled an accurate determination of timings and minimum approach distance in the presence of realistic trajectories, communication latencies, and total system error for 108 test cases. The SAPA procedure and the ALAS alerting algorithm were applied to the 750-ft parallel spacing (e.g., SFO 28L/28R) approach problem. With the SAPA procedure as defined in this paper, this study concludes that a 750-ft application does not appear to be feasible, but preliminary results for 1000-ft parallel runways look promising.
A proposed study of multiple scattering through clouds up to 1 THz
NASA Technical Reports Server (NTRS)
Gerace, G. C.; Smith, E. K.
1992-01-01
A rigorous computation of the electromagnetic field scattered from an atmospheric liquid water cloud is proposed. The recent development of a fast recursive algorithm (Chew algorithm) for computing the fields scattered from numerous scatterers now makes a rigorous computation feasible. A method is presented for adapting this algorithm to a general case where there are an extremely large number of scatterers. It is also proposed to extend a new binary PAM channel coding technique (El-Khamy coding) to multiple levels with non-square pulse shapes. The Chew algorithm can be used to compute the transfer function of a cloud channel. Then the transfer function can be used to design an optimum El-Khamy code. In principle, these concepts can be applied directly to the realistic case of a time-varying cloud (adaptive channel coding and adaptive equalization). A brief review is included of some preliminary work on cloud dispersive effects on digital communication signals and on cloud liquid water spectra and correlations.
In Silico Synthesis of Synthetic Receptors: A Polymerization Algorithm.
Cowen, Todd; Busato, Mirko; Karim, Kal; Piletsky, Sergey A
2016-12-01
Molecularly imprinted polymer (MIP) synthetic receptors have proposed and applied applications in chemical extraction, sensors, assays, catalysis, targeted drug delivery, and direct inhibition of harmful chemicals and pathogens. However, they rely heavily on effective design for success. An algorithm has been written which mimics radical polymerization atomistically, accounting for chemical and spatial discrimination, hybridization, and geometric optimization. Synthetic ephedrine receptors were synthesized in silico to demonstrate the accuracy of the algorithm in reproducing polymers structures at the atomic level. Comparative analysis in the design of a synthetic ephedrine receptor demonstrates that the new method can effectively identify affinity trends and binding site selectivities where commonly used alternative methods cannot. This new method is believed to generate the most realistic models of MIPs thus produced. This suggests that the algorithm could be a powerful new tool in the design and analysis of various polymers, including MIPs, with significant implications in areas of biotechnology, biomimetics, and the materials sciences more generally. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Zhonghua; Arikatla, Venkata S; Han, Zhongqing; Allen, Brian F; De, Suvranu
2014-12-01
High-frequency electricity is used in the majority of surgical interventions. However, modern computer-based training and simulation systems rely on physically unrealistic models that fail to capture the interplay of the electrical, mechanical and thermal properties of biological tissue. We present a real-time and physically realistic simulation of electrosurgery by modelling the electrical, thermal and mechanical properties as three iteratively solved finite element models. To provide subfinite-element graphical rendering of vaporized tissue, a dual-mesh dynamic triangulation algorithm based on isotherms is proposed. The block compressed row storage (BCRS) structure is shown to be critical in allowing computationally efficient changes in the tissue topology due to vaporization. We have demonstrated our physics-based electrosurgery cutting algorithm through various examples. Our matrix manipulation algorithms designed for topology changes have shown low computational cost. Our simulator offers substantially greater physical fidelity compared to previous simulators that use simple geometry-based heat characterization. Copyright © 2013 John Wiley & Sons, Ltd.
Iterative Importance Sampling Algorithms for Parameter Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, Ray W; Morzfeld, Matthias; Day, Marcus S.
In parameter estimation problems one computes a posterior distribution over uncertain parameters defined jointly by a prior distribution, a model, and noisy data. Markov chain Monte Carlo (MCMC) is often used for the numerical solution of such problems. An alternative to MCMC is importance sampling, which can exhibit near perfect scaling with the number of cores on high performance computing systems because samples are drawn independently. However, finding a suitable proposal distribution is a challenging task. Several sampling algorithms have been proposed over the past years that take an iterative approach to constructing a proposal distribution. We investigate the applicabilitymore » of such algorithms by applying them to two realistic and challenging test problems, one in subsurface flow, and one in combustion modeling. More specifically, we implement importance sampling algorithms that iterate over the mean and covariance matrix of Gaussian or multivariate t-proposal distributions. Our implementation leverages massively parallel computers, and we present strategies to initialize the iterations using 'coarse' MCMC runs or Gaussian mixture models.« less
An Aircraft Separation Algorithm with Feedback and Perturbation
NASA Technical Reports Server (NTRS)
White, Allan L.
2010-01-01
A separation algorithm is a set of rules that tell aircraft how to maneuver in order to maintain a minimum distance between them. This paper investigates demonstrating that separation algorithms satisfy the FAA requirement for the occurrence of incidents by means of simulation. Any demonstration that a separation algorithm, or any other aspect of flight, satisfies the FAA requirement is a challenge because of the stringent nature of the requirement and the complexity of airspace operations. The paper begins with a probability and statistical analysis of both the FAA requirement and demonstrating meeting it by a Monte Carlo approach. It considers the geometry of maintaining separation when one plane must change its flight path. It then develops a simple feedback control law that guides the planes on their paths. The presence of feedback control permits the introduction of perturbations, and the stochastic nature of the chosen perturbation is examined. The simulation program is described. This paper is an early effort in the realistic demonstration of a stringent requirement. Much remains to be done.
Noise suppression methods for robust speech processing
NASA Astrophysics Data System (ADS)
Boll, S. F.; Ravindra, H.; Randall, G.; Armantrout, R.; Power, R.
1980-05-01
Robust speech processing in practical operating environments requires effective environmental and processor noise suppression. This report describes the technical findings and accomplishments during this reporting period for the research program funded to develop real time, compressed speech analysis synthesis algorithms whose performance in invariant under signal contamination. Fulfillment of this requirement is necessary to insure reliable secure compressed speech transmission within realistic military command and control environments. Overall contributions resulting from this research program include the understanding of how environmental noise degrades narrow band, coded speech, development of appropriate real time noise suppression algorithms, and development of speech parameter identification methods that consider signal contamination as a fundamental element in the estimation process. This report describes the current research and results in the areas of noise suppression using the dual input adaptive noise cancellation using the short time Fourier transform algorithms, articulation rate change techniques, and a description of an experiment which demonstrated that the spectral subtraction noise suppression algorithm can improve the intelligibility of 2400 bps, LPC 10 coded, helicopter speech by 10.6 point.
Material Identification Algorithm
2007-09-01
realistic scenes composed of uneven ground, trees, and reflecting objects. The simulation includes effects of ionospheric dispersion on the radar pulses...effects of ionospheric dispersion on the SAR returns. Summary - Part 1I The objective of this effort was to perform numerical simulations for large...study," Radiology, vol. 216, pp. 279-283, 2000. [9] M. Xu, G. Ku, and L. V. Wang, "Microwave-induced thermoacous- tic tomography using multi-sector
Optimizing Segmental Bone Regeneration Using Functionally Graded Scaffolds
2012-10-01
Such a model system would allow more realistic assessment of different clinical treatment options in a rapid, cost -efficient, and safe man- ner...along with MichealiseMenten kinetics. Genetic algorithm [37] was adopted to minimize the cost function in Equation (14). Fig. 3 shows that simulated...associated with autografts, such as high cost , requirement of additional surgeries, donor-site morbidity, and limiting autographs for the treatment
Automated Reconstruction of Neural Trees Using Front Re-initialization
Mukherjee, Amit; Stepanyants, Armen
2013-01-01
This paper proposes a greedy algorithm for automated reconstruction of neural arbors from light microscopy stacks of images. The algorithm is based on the minimum cost path method. While the minimum cost path, obtained using the Fast Marching Method, results in a trace with the least cumulative cost between the start and the end points, it is not sufficient for the reconstruction of neural trees. This is because sections of the minimum cost path can erroneously travel through the image background with undetectable detriment to the cumulative cost. To circumvent this problem we propose an algorithm that grows a neural tree from a specified root by iteratively re-initializing the Fast Marching fronts. The speed image used in the Fast Marching Method is generated by computing the average outward flux of the gradient vector flow field. Each iteration of the algorithm produces a candidate extension by allowing the front to travel a specified distance and then tracking from the farthest point of the front back to the tree. Robust likelihood ratio test is used to evaluate the quality of the candidate extension by comparing voxel intensities along the extension to those in the foreground and the background. The qualified extensions are appended to the current tree, the front is re-initialized, and Fast Marching is continued until the stopping criterion is met. To evaluate the performance of the algorithm we reconstructed 6 stacks of two-photon microscopy images and compared the results to the ground truth reconstructions by using the DIADEM metric. The average comparison score was 0.82 out of 1.0, which is on par with the performance achieved by expert manual tracers. PMID:24386539
Explicit integration with GPU acceleration for large kinetic networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brock, Benjamin; Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830; Belt, Andrew
2015-12-01
We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems inmore » various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.« less
Meshless Modeling of Deformable Shapes and their Motion
Adams, Bart; Ovsjanikov, Maks; Wand, Michael; Seidel, Hans-Peter; Guibas, Leonidas J.
2010-01-01
We present a new framework for interactive shape deformation modeling and key frame interpolation based on a meshless finite element formulation. Starting from a coarse nodal sampling of an object’s volume, we formulate rigidity and volume preservation constraints that are enforced to yield realistic shape deformations at interactive frame rates. Additionally, by specifying key frame poses of the deforming shape and optimizing the nodal displacements while targeting smooth interpolated motion, our algorithm extends to a motion planning framework for deformable objects. This allows reconstructing smooth and plausible deformable shape trajectories in the presence of possibly moving obstacles. The presented results illustrate that our framework can handle complex shapes at interactive rates and hence is a valuable tool for animators to realistically and efficiently model and interpolate deforming 3D shapes. PMID:24839614
Survey of gene splicing algorithms based on reads.
Si, Xiuhua; Wang, Qian; Zhang, Lei; Wu, Ruo; Ma, Jiquan
2017-11-02
Gene splicing is the process of assembling a large number of unordered short sequence fragments to the original genome sequence as accurately as possible. Several popular splicing algorithms based on reads are reviewed in this article, including reference genome algorithms and de novo splicing algorithms (Greedy-extension, Overlap-Layout-Consensus graph, De Bruijn graph). We also discuss a new splicing method based on the MapReduce strategy and Hadoop. By comparing these algorithms, some conclusions are drawn and some suggestions on gene splicing research are made.
GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments.
Monroy, Javier; Hernandez-Bennets, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier
2017-06-23
This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.
GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments
Hernandez-Bennetts, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier
2017-01-01
This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment. PMID:28644375
Scholl, Zackary N.; Marszalek, Piotr E.
2013-01-01
The benefits of single molecule force spectroscopy (SMFS) clearly outweigh the challenges which include small sample sizes, tedious data collection and introduction of human bias during the subjective data selection. These difficulties can be partially eliminated through automation of the experimental data collection process for atomic force microscopy (AFM). Automation can be accomplished using an algorithm that triages usable force-extension recordings quickly with positive and negative selection. We implemented an algorithm based on the windowed fast Fourier transform of force-extension traces that identifies peaks using force-extension regimes to correctly identify usable recordings from proteins composed of repeated domains. This algorithm excels as a real-time diagnostic because it involves <30 ms computational time, has high sensitivity and specificity, and efficiently detects weak unfolding events. We used the statistics provided by the automated procedure to clearly demonstrate the properties of molecular adhesion and how these properties change with differences in the cantilever tip and protein functional groups and protein age. PMID:24001740
Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M
2017-08-01
Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.
2006-01-01
We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups withmore » ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.« less
NASA Astrophysics Data System (ADS)
Packard, Corey D.; Viola, Timothy S.; Klein, Mark D.
2017-10-01
The ability to predict spectral electro-optical (EO) signatures for various targets against realistic, cluttered backgrounds is paramount for rigorous signature evaluation. Knowledge of background and target signatures, including plumes, is essential for a variety of scientific and defense-related applications including contrast analysis, camouflage development, automatic target recognition (ATR) algorithm development and scene material classification. The capability to simulate any desired mission scenario with forecast or historical weather is a tremendous asset for defense agencies, serving as a complement to (or substitute for) target and background signature measurement campaigns. In this paper, a systematic process for the physical temperature and visible-through-infrared radiance prediction of several diverse targets in a cluttered natural environment scene is presented. The ability of a virtual airborne sensor platform to detect and differentiate targets from a cluttered background, from a variety of sensor perspectives and across numerous wavelengths in differing atmospheric conditions, is considered. The process described utilizes the thermal and radiance simulation software MuSES and provides a repeatable, accurate approach for analyzing wavelength-dependent background and target (including plume) signatures in multiple band-integrated wavebands (multispectral) or hyperspectrally. The engineering workflow required to combine 3D geometric descriptions, thermal material properties, natural weather boundary conditions, all modes of heat transfer and spectral surface properties is summarized. This procedure includes geometric scene creation, material and optical property attribution, and transient physical temperature prediction. Radiance renderings, based on ray-tracing and the Sandford-Robertson BRDF model, are coupled with MODTRAN for the inclusion of atmospheric effects. This virtual hyperspectral/multispectral radiance prediction methodology has been extensively validated and provides a flexible process for signature evaluation and algorithm development.
CONORBIT: constrained optimization by radial basis function interpolation in trust regions
Regis, Rommel G.; Wild, Stefan M.
2016-09-26
Here, this paper presents CONORBIT (CONstrained Optimization by Radial Basis function Interpolation in Trust regions), a derivative-free algorithm for constrained black-box optimization where the objective and constraint functions are computationally expensive. CONORBIT employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions, and is an extension of the ORBIT algorithm. It uses a small margin for the RBF constraint models to facilitate the generation of feasible iterates, and extensive numerical tests confirm that such a margin is helpful in improving performance. CONORBIT is compared with other algorithms on 27 test problems, amore » chemical process optimization problem, and an automotive application. Numerical results show that CONORBIT performs better than COBYLA, a sequential penalty derivative-free method, an augmented Lagrangian method, a direct search method, and another RBF-based algorithm on the test problems and on the automotive application.« less
Advanced order management in ERM systems: the tic-tac-toe algorithm
NASA Astrophysics Data System (ADS)
Badell, Mariana; Fernandez, Elena; Puigjaner, Luis
2000-10-01
The concept behind improved enterprise resource planning systems (ERP) systems is the overall integration of the whole enterprise functionality into the management systems through financial links. Converting current software into real management decision tools requires crucial changes in the current approach to ERP systems. This evolution must be able to incorporate the technological achievements both properly and in time. The exploitation phase of plants needs an open web-based environment for collaborative business-engineering with on-line schedulers. Today's short lifecycles of products and processes require sharp and finely tuned management actions that must be guided by scheduling tools. Additionally, such actions must be able to keep track of money movements related to supply chain events. Thus, the necessary outputs require financial-production integration at the scheduling level as proposed in the new approach of enterprise management systems (ERM). Within this framework, the economical analysis of the due date policy and its optimization become essential to manage dynamically realistic and optimal delivery dates with price-time trade-off during the marketing activities. In this work we propose a scheduling tool with web-based interface conducted by autonomous agents when precise economic information relative to plant and business actions and their effects are provided. It aims to attain a better arrangement of the marketing and production events in order to face the bid/bargain process during e-commerce. Additionally, management systems require real time execution and an efficient transaction-oriented approach capable to dynamically adopt realistic and optimal actions to support marketing management. To this end the TicTacToe algorithm provides sequence optimization with acceptable tolerances in realistic time.
Dietschreit, Johannes C B; Diestler, Dennis J; Knapp, Ernst W
2016-05-10
To speed up the generation of an ensemble of poly(ethylene oxide) (PEO) polymer chains in solution, a tetrahedral lattice model possessing the appropriate bond angles is used. The distance between noncovalently bonded atoms is maintained at realistic values by generating chains with an enhanced degree of self-avoidance by a very efficient Monte Carlo (MC) algorithm. Potential energy parameters characterizing this lattice model are adjusted so as to mimic realistic PEO polymer chains in water simulated by molecular dynamics (MD), which serves as a benchmark. The MD data show that PEO chains have a fractal dimension of about two, in contrast to self-avoiding walk lattice models, which exhibit the fractal dimension of 1.7. The potential energy accounts for a mild hydrophobic effect (HYEF) of PEO and for a proper setting of the distribution between trans and gauche conformers. The potential energy parameters are determined by matching the Flory radius, the radius of gyration, and the fraction of trans torsion angles in the chain. A gratifying result is the excellent agreement of the pair distribution function and the angular correlation for the lattice model with the benchmark distribution. The lattice model allows for the precise computation of the torsional entropy of the chain. The generation of polymer conformations of the adjusted lattice model is at least 2 orders of magnitude more efficient than MD simulations of the PEO chain in explicit water. This method of generating chain conformations on a tetrahedral lattice can also be applied to other types of polymers with appropriate adjustment of the potential energy function. The efficient MC algorithm for generating chain conformations on a tetrahedral lattice is available for download at https://github.com/Roulattice/Roulattice .
Development of an OSSE Framework for a Global Atmospheric Data Assimilation System
NASA Technical Reports Server (NTRS)
Gelaro, Ronald; Errico, Ronald M.; Prive, N.
2012-01-01
Observing system simulation experiments (OSSEs) are powerful tools for estimating the usefulness of various configurations of envisioned observing systems and data assimilation techniques. Their utility stems from their being conducted in an entirely simulated context, utilizing simulated observations having simulated errors and drawn from a simulation of the earth's environment. Observations are generated by applying physically based algorithms to the simulated state, such as performed during data assimilation or using other appropriate algorithms. Adding realistic instrument plus representativeness errors, including their biases and correlations, can be critical for obtaining realistic assessments of the impact of a proposed observing system or analysis technique. If estimates of the expected accuracy of proposed observations are realistic, then the OSSE can be also used to learn how best to utilize the new information, accelerating its transition to operations once the real data are available. As with any inferences from simulations, however, it is first imperative that some baseline OSSEs are performed and well validated against corresponding results obtained with a real observing system. This talk provides an overview of, and highlights critical issues related to, the development of an OSSE framework for the tropospheric weather prediction component of the NASA GEOS-5 global atmospheric data assimilation system. The framework includes all existing observations having significant impact on short-term forecast skill. Its validity has been carefully assessed using a range of metrics that can be evaluated in both the OSSE and real contexts, including adjoint-based estimates of observation impact. A preliminary application to the Aeolus Doppler wind lidar mission, scheduled for launch by the European Space Agency in 2014, has also been investigated.
A Fuzzy-Decision Based Approach for Composite Event Detection in Wireless Sensor Networks
Zhang, Shukui; Chen, Hao; Zhu, Qiaoming
2014-01-01
The event detection is one of the fundamental researches in wireless sensor networks (WSNs). Due to the consideration of various properties that reflect events status, the Composite event is more consistent with the objective world. Thus, the research of the Composite event becomes more realistic. In this paper, we analyze the characteristics of the Composite event; then we propose a criterion to determine the area of the Composite event and put forward a dominating set based network topology construction algorithm under random deployment. For the unreliability of partial data in detection process and fuzziness of the event definitions in nature, we propose a cluster-based two-dimensional τ-GAS algorithm and fuzzy-decision based composite event decision mechanism. In the case that the sensory data of most nodes are normal, the two-dimensional τ-GAS algorithm can filter the fault node data effectively and reduce the influence of erroneous data on the event determination. The Composite event judgment mechanism which is based on fuzzy-decision holds the superiority of the fuzzy-logic based algorithm; moreover, it does not need the support of a huge rule base and its computational complexity is small. Compared to CollECT algorithm and CDS algorithm, this algorithm improves the detection accuracy and reduces the traffic. PMID:25136690
Bouallègue, Fayçal Ben; Crouzet, Jean-François; Comtat, Claude; Fourcade, Marjolaine; Mohammadi, Bijan; Mariano-Goulart, Denis
2007-07-01
This paper presents an extended 3-D exact rebinning formula in the Fourier space that leads to an iterative reprojection algorithm (iterative FOREPROJ), which enables the estimation of unmeasured oblique projection data on the basis of the whole set of measured data. In first approximation, this analytical formula also leads to an extended Fourier rebinning equation that is the basis for an approximate reprojection algorithm (extended FORE). These algorithms were evaluated on numerically simulated 3-D positron emission tomography (PET) data for the solution of the truncation problem, i.e., the estimation of the missing portions in the oblique projection data, before the application of algorithms that require complete projection data such as some rebinning methods (FOREX) or 3-D reconstruction algorithms (3DRP or direct Fourier methods). By taking advantage of all the 3-D data statistics, the iterative FOREPROJ reprojection provides a reliable alternative to the classical FOREPROJ method, which only exploits the low-statistics nonoblique data. It significantly improves the quality of the external reconstructed slices without loss of spatial resolution. As for the approximate extended FORE algorithm, it clearly exhibits limitations due to axial interpolations, but will require clinical studies with more realistic measured data in order to decide on its pertinence.
Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.
2014-01-01
There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269
ERIC Educational Resources Information Center
Ceulemans, Eva; Van Mechelen, Iven; Leenen, Iwin
2007-01-01
Hierarchical classes models are quasi-order retaining Boolean decomposition models for N-way N-mode binary data. To fit these models to data, rationally started alternating least squares (or, equivalently, alternating least absolute deviations) algorithms have been proposed. Extensive simulation studies showed that these algorithms succeed quite…
Terrain mapping and control of unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Kang, Yeonsik
In this thesis, methods for terrain mapping and control of unmanned aerial vehicles (UAVs) are proposed. First, robust obstacle detection and tracking algorithm are introduced to eliminate the clutter noise uncorrelated with the real obstacle. This is an important problem since most types of sensor measurements are vulnerable to noise. In order to eliminate such noise, a Kalman filter-based interacting multiple model (IMM) algorithm is employed to effectively detect obstacles and estimate their positions precisely. Using the outcome of the IMM-based obstacle detection algorithm, a new method of building a probabilistic occupancy grid map is proposed based on Bayes rule in probability theory. Since the proposed map update law uses the outputs of the IMM-based obstacle detection algorithm, simultaneous tracking of moving targets and mapping of stationary obstacles are possible. This can be helpful especially in a noisy outdoor environment where different types of obstacles exist. Another feature of the algorithm is its capability to eliminate clutter noise as well as measurement noise. The proposed algorithm is simulated in Matlab using realistic sensor models. The results show close agreement with the layout of real obstacles. An efficient method called "quadtree" is used to process massive geographical information in a convenient manner. The algorithm is evaluated in a realistic simulation environment called RIPTIDE, which the NASA Ames Research Center developed to access the performance of complicated software for UAVs. Supposing that a UAV is equipped with abovementioned obstacle detection and mapping algorithm, the control problem of a small fixed-wing UAV is studied. A Nonlinear Model Predictive Control (NMPC is designed as a high level controller for the fixed-wing UAV using a kinematic model of the UAV. The kinematic model is employed because of the assumption that there exist low level controls on the UAV. The UAV dynamics are nonlinear with input constraints which is the main challenge explored in this thesis. The control objective of the NMPC is determined to track a desired line, and the analysis of the designed NMPC's stability is followed to find the conditions that can assure stability. Then, the control objective is extended to track adjoined multiple line segments with obstacle avoidance capability. In simulation, the performance of the NMPC is superb with fast convergence and small overshoot. The computation time is not a burden for a fixed-wing UAV controller with a Pentium level on-board computer that provides a reasonable control update rate.
NASA Technical Reports Server (NTRS)
Roth, J. P.
1972-01-01
Methods for development of logic design together with algorithms for failure testing, a method for design of logic for ultra-large-scale integration, extension of quantum calculus to describe the functional behavior of a mechanism component-by-component and to computer tests for failures in the mechanism using the diagnosis algorithm, and the development of an algorithm for the multi-output 2-level minimization problem are discussed.
ERIC Educational Resources Information Center
Altieri, Jennifer L.
2007-01-01
This study examined children's and adolescent trade books portraying school-age characters with dyslexia. All of the books are contemporary realistic fiction, geared to elementary and adolescent readers, and published in the United States between 1993 and 2003. After an extensive search, seventy-two books were located. An analysis of the…
Giving More Realistic Definitions of Trigonometric Ratios II
ERIC Educational Resources Information Center
Bhattacharjee, Pramode Ranjan
2014-01-01
This paper being an extension of Bhattacharjee (2012) is very much relevant to Year 9 to Year 10A in the "Australian Curriculum: Mathematics". It also falls within the purview of class IX to class XII curriculum of Mathematics in India (Revised NCERT curriculum) for students aged 14-17 years. In Bhattacharjee (2012), the discovery of…
An Eight-Parameter Function for Simulating Model Rocket Engine Thrust Curves
ERIC Educational Resources Information Center
Dooling, Thomas A.
2007-01-01
The toy model rocket is used extensively as an example of a realistic physical system. Teachers from grade school to the university level use them. Many teachers and students write computer programs to investigate rocket physics since the problem involves nonlinear functions related to air resistance and mass loss. This paper describes a nonlinear…
CP decomposition approach to blind separation for DS-CDMA system using a new performance index
NASA Astrophysics Data System (ADS)
Rouijel, Awatif; Minaoui, Khalid; Comon, Pierre; Aboutajdine, Driss
2014-12-01
In this paper, we present a canonical polyadic (CP) tensor decomposition isolating the scaling matrix. This has two major implications: (i) the problem conditioning shows up explicitly and could be controlled through a constraint on the so-called coherences and (ii) a performance criterion concerning the factor matrices can be exactly calculated and is more realistic than performance metrics used in the literature. Two new algorithms optimizing the CP decomposition based on gradient descent are proposed. This decomposition is illustrated by an application to direct-sequence code division multiplexing access (DS-CDMA) systems; computer simulations are provided and demonstrate the good behavior of these algorithms, compared to others in the literature.
Properties of nucleon resonances by means of a genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Ramirez, C.; Moya de Guerra, E.; Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid
2008-06-15
We present an optimization scheme that employs a genetic algorithm (GA) to determine the properties of low-lying nucleon excitations within a realistic photo-pion production model based upon an effective Lagrangian. We show that with this modern optimization technique it is possible to reliably assess the parameters of the resonances and the associated error bars as well as to identify weaknesses in the models. To illustrate the problems the optimization process may encounter, we provide results obtained for the nucleon resonances {delta}(1230) and {delta}(1700). The former can be easily isolated and thus has been studied in depth, while the latter ismore » not as well known experimentally.« less
Real time ray tracing based on shader
NASA Astrophysics Data System (ADS)
Gui, JiangHeng; Li, Min
2017-07-01
Ray tracing is a rendering algorithm for generating an image through tracing lights into an image plane, it can simulate complicate optical phenomenon like refraction, depth of field and motion blur. Compared with rasterization, ray tracing can achieve more realistic rendering result, however with greater computational cost, simple scene rendering can consume tons of time. With the GPU's performance improvement and the advent of programmable rendering pipeline, complicated algorithm can also be implemented directly on shader. So, this paper proposes a new method that implement ray tracing directly on fragment shader, mainly include: surface intersection, importance sampling and progressive rendering. With the help of GPU's powerful throughput capability, it can implement real time rendering of simple scene.
Deterministic Bragg Coherent Diffraction Imaging.
Pavlov, Konstantin M; Punegov, Vasily I; Morgan, Kaye S; Schmalz, Gerd; Paganin, David M
2017-04-25
A deterministic variant of Bragg Coherent Diffraction Imaging is introduced in its kinematical approximation, for X-ray scattering from an imperfect crystal whose imperfections span no more than half of the volume of the crystal. This approach provides a unique analytical reconstruction of the object's structure factor and displacement fields from the 3D diffracted intensity distribution centred around any particular reciprocal lattice vector. The simple closed-form reconstruction algorithm, which requires only one multiplication and one Fourier transformation, is not restricted by assumptions of smallness of the displacement field. The algorithm performs well in simulations incorporating a variety of conditions, including both realistic levels of noise and departures from ideality in the reference (i.e. imperfection-free) part of the crystal.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Rozendaal, H. L.
1977-01-01
A rapid mission analysis code based on the use of approximate flight path equations of motion is described. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed vehicle characteristics are specified in tabular form. In addition to its mission performance calculation capabilities, the code also contains extensive flight envelop performance mapping capabilities. Approximate take off and landing analyses can be performed. At high speeds, centrifugal lift effects are taken into account. Extensive turbojet and ramjet engine scaling procedures are incorporated in the code.
Blend Shape Interpolation and FACS for Realistic Avatar
NASA Astrophysics Data System (ADS)
Alkawaz, Mohammed Hazim; Mohamad, Dzulkifli; Basori, Ahmad Hoirul; Saba, Tanzila
2015-03-01
The quest of developing realistic facial animation is ever-growing. The emergence of sophisticated algorithms, new graphical user interfaces, laser scans and advanced 3D tools imparted further impetus towards the rapid advancement of complex virtual human facial model. Face-to-face communication being the most natural way of human interaction, the facial animation systems became more attractive in the information technology era for sundry applications. The production of computer-animated movies using synthetic actors are still challenging issues. Proposed facial expression carries the signature of happiness, sadness, angry or cheerful, etc. The mood of a particular person in the midst of a large group can immediately be identified via very subtle changes in facial expressions. Facial expressions being very complex as well as important nonverbal communication channel are tricky to synthesize realistically using computer graphics. Computer synthesis of practical facial expressions must deal with the geometric representation of the human face and the control of the facial animation. We developed a new approach by integrating blend shape interpolation (BSI) and facial action coding system (FACS) to create a realistic and expressive computer facial animation design. The BSI is used to generate the natural face while the FACS is employed to reflect the exact facial muscle movements for four basic natural emotional expressions such as angry, happy, sad and fear with high fidelity. The results in perceiving the realistic facial expression for virtual human emotions based on facial skin color and texture may contribute towards the development of virtual reality and game environment of computer aided graphics animation systems.
Chen, Jiehui; Salim, Mariam B; Matsumoto, Mitsuji
2010-01-01
Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations.
NASA Technical Reports Server (NTRS)
Weiss, Jerold L.; Hsu, John Y.
1986-01-01
The use of a decentralized approach to failure detection and isolation for use in restructurable control systems is examined. This work has produced: (1) A method for evaluating fundamental limits to FDI performance; (2) Application using flight recorded data; (3) A working control element FDI system with maximal sensitivity to critical control element failures; (4) Extensive testing on realistic simulations; and (5) A detailed design methodology involving parameter optimization (with respect to model uncertainties) and sensitivity analyses. This project has concentrated on detection and isolation of generic control element failures since these failures frequently lead to emergency conditions and since knowledge of remaining control authority is essential for control system redesign. The failures are generic in the sense that no temporal failure signature information was assumed. Thus, various forms of functional failures are treated in a unified fashion. Such a treatment results in a robust FDI system (i.e., one that covers all failure modes) but sacrifices some performance when detailed failure signature information is known, useful, and employed properly. It was assumed throughout that all sensors are validated (i.e., contain only in-spec errors) and that only the first failure of a single control element needs to be detected and isolated. The FDI system which has been developed will handle a class of multiple failures.
Laser Frequency Noise in Coherent Optical Systems: Spectral Regimes and Impairments.
Kakkar, Aditya; Rodrigo Navarro, Jaime; Schatz, Richard; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Louchet, Hadrien; Popov, Sergei; Jacobsen, Gunnar
2017-04-12
Coherent communication networks are based on the ability to use multiple dimensions of the lightwave together with electrical domain compensation of transmission impairments. Electrical-domain dispersion compensation (EDC) provides many advantages such as network flexibility and enhanced fiber nonlinearity tolerance, but makes the system more susceptible to laser frequency noise (FN), e.g. to the local oscillator FN in systems with post-reception EDC. Although this problem has been extensively studied, statistically, for links assuming lasers with white-FN, many questions remain unanswered. Particularly, the influence of a realistic non-white FN-spectrum due to e.g., the presence of 1/f-flicker and carrier induced noise remains elusive and a statistical analysis becomes insufficient. Here we provide an experimentally validated theory for coherent optical links with lasers having general non-white FN-spectrum and EDC. The fundamental reason of the increased susceptibility is shown to be FN-induced symbol displacement that causes timing jitter and/or inter/intra symbol interference. We establish that different regimes of the laser FN-spectrum cause a different set of impairments. The influence of the impairments due to some regimes can be reduced by optimizing the corresponding mitigation algorithms, while other regimes cause irretrievable impairments. Theoretical boundaries of these regimes and corresponding criteria applicable to system/laser design are provided.
Security in Intelligent Transport Systems for Smart Cities: From Theory to Practice.
Javed, Muhammad Awais; Ben Hamida, Elyes; Znaidi, Wassim
2016-06-15
Connecting vehicles securely and reliably is pivotal to the implementation of next generation ITS applications of smart cities. With continuously growing security threats, vehicles could be exposed to a number of service attacks that could put their safety at stake. To address this concern, both US and European ITS standards have selected Elliptic Curve Cryptography (ECC) algorithms to secure vehicular communications. However, there is still a lack of benchmarking studies on existing security standards in real-world settings. In this paper, we first analyze the security architecture of the ETSI ITS standard. We then implement the ECC based digital signature and encryption procedures using an experimental test-bed and conduct an extensive benchmark study to assess their performance which depends on factors such as payload size, processor speed and security levels. Using network simulation models, we further evaluate the impact of standard compliant security procedures in dense and realistic smart cities scenarios. Obtained results suggest that existing security solutions directly impact the achieved quality of service (QoS) and safety awareness of vehicular applications, in terms of increased packet inter-arrival delays, packet and cryptographic losses, and reduced safety awareness in safety applications. Finally, we summarize the insights gained from the simulation results and discuss open research challenges for efficient working of security in ITS applications of smart cities.
3D simulations of early blood vessel formation
NASA Astrophysics Data System (ADS)
Cavalli, F.; Gamba, A.; Naldi, G.; Semplice, M.; Valdembri, D.; Serini, G.
2007-08-01
Blood vessel networks form by spontaneous aggregation of individual cells migrating toward vascularization sites (vasculogenesis). A successful theoretical model of two-dimensional experimental vasculogenesis has been recently proposed, showing the relevance of percolation concepts and of cell cross-talk (chemotactic autocrine loop) to the understanding of this self-aggregation process. Here we study the natural 3D extension of the computational model proposed earlier, which is relevant for the investigation of the genuinely three-dimensional process of vasculogenesis in vertebrate embryos. The computational model is based on a multidimensional Burgers equation coupled with a reaction diffusion equation for a chemotactic factor and a mass conservation law. The numerical approximation of the computational model is obtained by high order relaxed schemes. Space and time discretization are performed by using TVD schemes and, respectively, IMEX schemes. Due to the computational costs of realistic simulations, we have implemented the numerical algorithm on a cluster for parallel computation. Starting from initial conditions mimicking the experimentally observed ones, numerical simulations produce network-like structures qualitatively similar to those observed in the early stages of in vivo vasculogenesis. We develop the computation of critical percolative indices as a robust measure of the network geometry as a first step towards the comparison of computational and experimental data.
Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji
2010-01-01
Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations. PMID:22163503
Flexible Residential Smart Grid Simulation Framework
NASA Astrophysics Data System (ADS)
Xiang, Wang
Different scheduling and coordination algorithms controlling household appliances' operations can potentially lead to energy consumption reduction and/or load balancing in conjunction with different electricity pricing methods used in smart grid programs. In order to easily implement different algorithms and evaluate their efficiency against other ideas, a flexible simulation framework is desirable in both research and business fields. However, such a platform is currently lacking or underdeveloped. In this thesis, we provide a simulation framework to focus on demand side residential energy consumption coordination in response to different pricing methods. This simulation framework, equipped with an appliance consumption library using realistic values, aims to closely represent the average usage of different types of appliances. The simulation results of traditional usage yield close matching values compared to surveyed real life consumption records. Several sample coordination algorithms, pricing schemes, and communication scenarios are also implemented to illustrate the use of the simulation framework.
NASA Technical Reports Server (NTRS)
Kanevsky, Alex
2004-01-01
My goal is to develop and implement efficient, accurate, and robust Implicit-Explicit Runge-Kutta (IMEX RK) methods [9] for overcoming geometry-induced stiffness with applications to computational electromagnetics (CEM), computational fluid dynamics (CFD) and computational aeroacoustics (CAA). IMEX algorithms solve the non-stiff portions of the domain using explicit methods, and isolate and solve the more expensive stiff portions using implicit methods. Current algorithms in CEM can only simulate purely harmonic (up to lOGHz plane wave) EM scattering by fighter aircraft, which are assumed to be pure metallic shells, and cannot handle the inclusion of coatings, penetration into and radiation out of the aircraft. Efficient MEX RK methods could potentially increase current CEM capabilities by 1-2 orders of magnitude, allowing scientists and engineers to attack more challenging and realistic problems.
MUSIC algorithms for rebar detection
NASA Astrophysics Data System (ADS)
Solimene, Raffaele; Leone, Giovanni; Dell'Aversano, Angela
2013-12-01
The MUSIC (MUltiple SIgnal Classification) algorithm is employed to detect and localize an unknown number of scattering objects which are small in size as compared to the wavelength. The ensemble of objects to be detected consists of both strong and weak scatterers. This represents a scattering environment challenging for detection purposes as strong scatterers tend to mask the weak ones. Consequently, the detection of more weakly scattering objects is not always guaranteed and can be completely impaired when the noise corrupting data is of a relatively high level. To overcome this drawback, here a new technique is proposed, starting from the idea of applying a two-stage MUSIC algorithm. In the first stage strong scatterers are detected. Then, information concerning their number and location is employed in the second stage focusing only on the weak scatterers. The role of an adequate scattering model is emphasized to improve drastically detection performance in realistic scenarios.
Noise-tolerant parity learning with one quantum bit
NASA Astrophysics Data System (ADS)
Park, Daniel K.; Rhee, June-Koo K.; Lee, Soonchil
2018-03-01
Demonstrating quantum advantage with less powerful but more realistic devices is of great importance in modern quantum information science. Recently, a significant quantum speedup was achieved in the problem of learning a hidden parity function with noise. However, if all data qubits at the query output are completely depolarized, the algorithm fails. In this work, we present a quantum parity learning algorithm that exhibits quantum advantage as long as one qubit is provided with nonzero polarization in each query. In this scenario, the quantum parity learning naturally becomes deterministic quantum computation with one qubit. Then the hidden parity function can be revealed by performing a set of operations that can be interpreted as measuring nonlocal observables on the auxiliary result qubit having nonzero polarization and each data qubit. We also discuss the source of the quantum advantage in our algorithm from the resource-theoretic point of view.
Simulation study into the identification of nuclear materials in cargo containers using cosmic rays
NASA Astrophysics Data System (ADS)
Blackwell, T. B.; Kudryavtsev, V. A.
2015-04-01
Muon tomography represents a new type of imaging technique that can be used in detecting high-Z materials. Monte Carlo simulations for muon scattering in different types of target materials are presented. The dependence of the detector capability to identify high-Z targets on spatial resolution has been studied. Muon tracks are reconstructed using a basic point of closest approach (PoCA) algorithm. In this article we report the development of a secondary analysis algorithm that is applied to the reconstructed PoCA points. This algorithm efficiently ascertains clusters of voxels with high average scattering angles to identify `areas of interest' within the inspected volume. Using this approach the effect of other parameters, such as the distance between detectors and the number of detectors per set, on material identification is also presented. Finally, false positive and false negative rates for detecting shielded HEU in realistic scenarios with low-Z clutter are presented.
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy
2002-01-01
A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.
NASA Astrophysics Data System (ADS)
Motta, Mario; Zhang, Shiwei
2018-05-01
We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.
Simulation of rotor blade element turbulence
NASA Technical Reports Server (NTRS)
Mcfarland, R. E.; Duisenberg, Ken
1995-01-01
A piloted, motion-based simulation of Sikorsky's Black Hawk helicopter was used as a platform for the investigation of rotorcraft responses to vertical turbulence. By using an innovative temporal and geometrical distribution algorithm that preserved the statistical characteristics of the turbulence over the rotor disc, stochastic velocity components were applied at each of twenty blade-element stations. This model was implemented on NASA Ames' Vertical Motion Simulator (VMS), and ten test pilots were used to establish that the model created realistic cues. The objectives of this research included the establishment of a simulation-technology basis for future investigation into real-time turbulence modeling. This goal was achieved; our extensive additions to the rotor model added less than a 10 percent computational overhead. Using a VAX 9000 computer the entire simulation required a cycle time of less than 12 msec. Pilot opinion during this simulation was generally quite favorable. For low speed flight the consensus was that SORBET (acronym for title) was better than the conventional body-fixed model, which was used for comparison purposes, and was determined to be too violent (like a washboard). For high speed flight the pilots could not identify differences between these models. These opinions were something of a surprise because only the vertical turbulence component on the rotor system was implemented in SORBET. Because of the finite-element distribution of the inputs, induced outputs were observed in all translational and rotational axes. Extensive post-simulation spectral analyses of the SORBET model suggest that proper rotorcraft turbulence modeling requires that vertical atmospheric disturbances not be superimposed at the vehicle center of gravity but, rather, be input into the rotor system, where the rotor-to-body transfer function severely attenuates high frequency rotorcraft responses.
On Connectivity of Wireless Sensor Networks with Directional Antennas
Wang, Qiu; Dai, Hong-Ning; Zheng, Zibin; Imran, Muhammad; Vasilakos, Athanasios V.
2017-01-01
In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models. PMID:28085081
Assessing Sonar Performance in Realistic Environments
2012-10-01
ASPIRE project, a number of shortcomings were identified in conjunction with RCN partners in the 1C (Underwater Warfare) Thrust. These were: • There is...and the algorithms and models integrated into it to be tested on non-research platforms such as RCN ships. Much of the work undertaken in WBE 2...Sensitivity and Transmission Estimation Tool R & D Research and Development RCN Royal Canadian Navy REA Rapid Environmental Assessment REP Recognized
An Optically Implemented Kalman Filter Algorithm.
1983-12-01
8b. OFFICE SYMOOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 8c. ADDRESS (City, State and ZIP Code ) 10. SOURCE OF FUNDING NOS.______ PROGRAM...are completely speci- fied for the correlation stage to perform the required corre- lation in real time, and the filter stage to perform the lin- ear...performance analy- ses indicated an enhanced ability of the nonadaptive filter to track a realistic distant point source target with an error standard
A Coherent VLSI Design Environment
1987-03-31
experimentally on realistic problems. U In the area of parallel algorithms and architectures, Prof. Leighton and Briic= Maggs are developing efficient...performance penalty. The flexibility is particularly important in an experimental machine. For example, we can redefine system messages such as ’SEND’ or...Theorem -- What It Says, Why It’s True , and Some of the Things It Predicts," Department of Computer Science, California Insti- tute of Technology
NASA Technical Reports Server (NTRS)
Naasz, Bo J.; Burns, Richard D.; Gaylor, David; Higinbotham, John
2004-01-01
A sample mission sequence is defined for a low earth orbit demonstration of Precision Formation Flying (PFF). Various guidance navigation and control strategies are discussed for use in the PFF experiment phases. A sample PFF experiment is implemented and tested in a realistic Hardware-in-the-Loop (HWIL) simulation using the Formation Flying Test Bed (FFTB) at NASA's Goddard Space Flight Center.
Dura-Bernal, S.; Neymotin, S. A.; Kerr, C. C.; Sivagnanam, S.; Majumdar, A.; Francis, J. T.; Lytton, W. W.
2017-01-01
Biomimetic simulation permits neuroscientists to better understand the complex neuronal dynamics of the brain. Embedding a biomimetic simulation in a closed-loop neuroprosthesis, which can read and write signals from the brain, will permit applications for amelioration of motor, psychiatric, and memory-related brain disorders. Biomimetic neuroprostheses require real-time adaptation to changes in the external environment, thus constituting an example of a dynamic data-driven application system. As model fidelity increases, so does the number of parameters and the complexity of finding appropriate parameter configurations. Instead of adapting synaptic weights via machine learning, we employed major biological learning methods: spike-timing dependent plasticity and reinforcement learning. We optimized the learning metaparameters using evolutionary algorithms, which were implemented in parallel and which used an island model approach to obtain sufficient speed. We employed these methods to train a cortical spiking model to utilize macaque brain activity, indicating a selected target, to drive a virtual musculoskeletal arm with realistic anatomical and biomechanical properties to reach to that target. The optimized system was able to reproduce macaque data from a comparable experimental motor task. These techniques can be used to efficiently tune the parameters of multiscale systems, linking realistic neuronal dynamics to behavior, and thus providing a useful tool for neuroscience and neuroprosthetics. PMID:29200477
The constraints satisfaction problem approach in the design of an architectural functional layout
NASA Astrophysics Data System (ADS)
Zawidzki, Machi; Tateyama, Kazuyoshi; Nishikawa, Ikuko
2011-09-01
A design support system with a new strategy for finding the optimal functional configurations of rooms for architectural layouts is presented. A set of configurations satisfying given constraints is generated and ranked according to multiple objectives. The method can be applied to problems in architectural practice, urban or graphic design-wherever allocation of related geometrical elements of known shape is optimized. Although the methodology is shown using simplified examples-a single story residential building with two apartments each having two rooms-the results resemble realistic functional layouts. One example of a practical size problem of a layout of three apartments with a total of 20 rooms is demonstrated, where the generated solution can be used as a base for a realistic architectural blueprint. The discretization of design space is discussed, followed by application of a backtrack search algorithm used for generating a set of potentially 'good' room configurations. Next the solutions are classified by a machine learning method (FFN) as 'proper' or 'improper' according to the internal communication criteria. Examples of interactive ranking of the 'proper' configurations according to multiple criteria and choosing 'the best' ones are presented. The proposed framework is general and universal-the criteria, parameters and weights can be individually defined by a user and the search algorithm can be adjusted to a specific problem.
Riveros, Fabián; Chandra, Santanu; Finol, Ender A; Gasser, T Christian; Rodriguez, Jose F
2013-04-01
Biomechanical studies on abdominal aortic aneurysms (AAA) seek to provide for better decision criteria to undergo surgical intervention for AAA repair. More accurate results can be obtained by using appropriate material models for the tissues along with accurate geometric models and more realistic boundary conditions for the lesion. However, patient-specific AAA models are generated from gated medical images in which the artery is under pressure. Therefore, identification of the AAA zero pressure geometry would allow for a more realistic estimate of the aneurysmal wall mechanics. This study proposes a novel iterative algorithm to find the zero pressure geometry of patient-specific AAA models. The methodology allows considering the anisotropic hyperelastic behavior of the aortic wall, its thickness and accounts for the presence of the intraluminal thrombus. Results on 12 patient-specific AAA geometric models indicate that the procedure is computational tractable and efficient, and preserves the global volume of the model. In addition, a comparison of the peak wall stress computed with the zero pressure and CT-based geometries during systole indicates that computations using CT-based geometric models underestimate the peak wall stress by 59 ± 64 and 47 ± 64 kPa for the isotropic and anisotropic material models of the arterial wall, respectively.
Largescale Long-term particle Simulations of Runaway electrons in Tokamaks
NASA Astrophysics Data System (ADS)
Liu, Jian; Qin, Hong; Wang, Yulei
2016-10-01
To understand runaway dynamical behavior is crucial to assess the safety of tokamaks. Though many important analytical and numerical results have been achieved, the overall dynamic behaviors of runaway electrons in a realistic tokamak configuration is still rather vague. In this work, the secular full-orbit simulations of runaway electrons are carried out based on a relativistic volume-preserving algorithm. Detailed phase-space behaviors of runaway electrons are investigated in different timescales spanning 11 orders. A detailed analysis of the collisionless neoclassical scattering is provided when considering the coupling between the rotation of momentum vector and the background field. In large timescale, the initial condition of runaway electrons in phase space globally influences the runaway distribution. It is discovered that parameters and field configuration of tokamaks can modify the runaway electron dynamics significantly. Simulations on 10 million cores of supercomputer using the APT code have been completed. A resolution of 107 in phase space is used, and simulations are performed for 1011 time steps. Largescale simulations show that in a realistic fusion reactor, the concern of runaway electrons is not as serious as previously thought. This research was supported by National Magnetic Connement Fusion Energy Research Project (2015GB111003, 2014GB124005), the National Natural Science Foundation of China (NSFC-11575185, 11575186) and the GeoAlgorithmic Plasma Simulator (GAPS) Project.
Daytime Land Surface Temperature Extraction from MODIS Thermal Infrared Data under Cirrus Clouds
Fan, Xiwei; Tang, Bo-Hui; Wu, Hua; Yan, Guangjian; Li, Zhao-Liang
2015-01-01
Simulated data showed that cirrus clouds could lead to a maximum land surface temperature (LST) retrieval error of 11.0 K when using the generalized split-window (GSW) algorithm with a cirrus optical depth (COD) at 0.55 μm of 0.4 and in nadir view. A correction term in the COD linear function was added to the GSW algorithm to extend the GSW algorithm to cirrus cloudy conditions. The COD was acquired by a look up table of the isolated cirrus bidirectional reflectance at 0.55 μm. Additionally, the slope k of the linear function was expressed as a multiple linear model of the top of the atmospheric brightness temperatures of MODIS channels 31–34 and as the difference between split-window channel emissivities. The simulated data showed that the LST error could be reduced from 11.0 to 2.2 K. The sensitivity analysis indicated that the total errors from all the uncertainties of input parameters, extension algorithm accuracy, and GSW algorithm accuracy were less than 2.5 K in nadir view. Finally, the Great Lakes surface water temperatures measured by buoys showed that the retrieval accuracy of the GSW algorithm was improved by at least 1.5 K using the proposed extension algorithm for cirrus skies. PMID:25928059
NASA Astrophysics Data System (ADS)
Minvielle, M.; Céron, J.; Page, C.
2013-12-01
The SAFRAN-ISBA-MODCOU (SIM) system is a combination of three different components: an atmospheric analysis system (SAFRAN) providing the atmospheric forcing for a land surface model (ISBA) that computes surface water and energy budgets and a hydrological model (MODCOU) that provides river flows and level of several aquifers. The variables generated by the SIM chain constitute the SIM reanalysis and the current version only covers the 1958-2012 period. However, long climate datasets are required for evaluation and verification of climate hindcasts/forecasts and to isolate the contribution of natural decadal variability from that of anthropogenic forcing to climate variations. The aim of this work is to extend of the fine-mesh SIM reanalysis to the entire 20th century, especially focusing on temperature and rainfall over France, but also soil wetness and river flows. This extension will first allow a detailed investigation of the influence of decadal variability on France at very fine spatial scales and will provide crucial information for climate model evaluation. Before 1958, the density of available observations from Météo-France necessary to force SAFRAN (rainfall, snow, wind, temperature, humidity, cloudiness) is much lower than today, and not sufficient to produce a correct SIM reanalysis. That's why is has been decided to use the available atmospheric observations over the past decades combined to a statistical downscaling algorithm to overcome the lack of observations. The DSCLIM software package implemented by the CERFACS and using a weather typing based statistical methodology will be used as statistical downscaling method to reconstruct the atmospheric variables necessary to force the ISBA-MODCOU hydrological component. The first stage of this work was to estimate and compare the bias and strengths of the two approaches in their ability to reconstruct the past decades. In this sense, SIM hydro-meteorological experiments were performed for some recent years, with a number of observations artificially reduced to a number similar to years 1910, 1930 and 1950. Concurrently, the same recent years have been downscaled by DSCLIM and used to force ISBA-MODCOU. Afterwards, some additional experiments with some modified parameters in the DSCLIM algorithm have been performed in order to adapt the methodology to the study case, and thus trying to improve its performances. Several configurations of the DSCLIM algorithm were applied to the entire century, using the NOAA20CR reanalysis as large-scale predictor. The reconstructed atmospheric variables are compared to the available observations over the entire century to estimate the ability of the statistical downscaling method to reproduce a correct interannual to multidecadal variability. Finally, a novel method is tested: available observations over past decades are introduced in the DSCLIM algorithm, in order to obtain a reconstructed dataset as realistic as possible.
Sun, Lifan; Ji, Baofeng; Lan, Jian; He, Zishu; Pu, Jiexin
2017-01-01
The key to successful maneuvering complex extended object tracking (MCEOT) using range extent measurements provided by high resolution sensors lies in accurate and effective modeling of both the extension dynamics and the centroid kinematics. During object maneuvers, the extension dynamics of an object with a complex shape is highly coupled with the centroid kinematics. However, this difficult but important problem is rarely considered and solved explicitly. In view of this, this paper proposes a general approach to modeling a maneuvering complex extended object based on Minkowski sum, so that the coupled turn maneuvers in both the centroid states and extensions can be described accurately. The new model has a concise and unified form, in which the complex extension dynamics can be simply and jointly characterized by multiple simple sub-objects’ extension dynamics based on Minkowski sum. The proposed maneuvering model fits range extent measurements very well due to its favorable properties. Based on this model, an MCEOT algorithm dealing with motion and extension maneuvers is also derived. Two different cases of the turn maneuvers with known/unknown turn rates are specifically considered. The proposed algorithm which jointly estimates the kinematic state and the object extension can also be easily implemented. Simulation results demonstrate the effectiveness of the proposed modeling and tracking approaches. PMID:28937629
Exposure Render: An Interactive Photo-Realistic Volume Rendering Framework
Kroes, Thomas; Post, Frits H.; Botha, Charl P.
2012-01-01
The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR) by integrating a number of visually plausible but often effect-specific rendering techniques, for instance modeling of light occlusion and depth of field. Besides yielding more attractive renderings, especially the more realistic lighting has a positive effect on perceptual tasks. Although these new rendering techniques yield impressive results, they exhibit limitations in terms of their exibility and their performance. Monte Carlo ray tracing (MCRT), coupled with physically based light transport, is the de-facto standard for synthesizing highly realistic images in the graphics domain, although usually not from volumetric data. Due to the stochastic sampling of MCRT algorithms, numerous effects can be achieved in a relatively straight-forward fashion. For this reason, we have developed a practical framework that applies MCRT techniques also to direct volume rendering (DVR). With this work, we demonstrate that a host of realistic effects, including physically based lighting, can be simulated in a generic and flexible fashion, leading to interactive DVR with improved realism. In the hope that this improved approach to DVR will see more use in practice, we have made available our framework under a permissive open source license. PMID:22768292
Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benatti, Fabio, E-mail: benatti@ts.infn.it; Oskouei, Samad Khabbazi, E-mail: kh.oskuei@ut.ac.ir; Deh Abad, Ahmad Shafiei, E-mail: shafiei@khayam.ut.ac.ir
We extend the notion of Gacs quantum algorithmic entropy, originally formulated for finitely many qubits, to infinite dimensional quantum spin chains and investigate the relation of this extension with two quantum dynamical entropies that have been proposed in recent years.
A software framework for pipelined arithmetic algorithms in field programmable gate arrays
NASA Astrophysics Data System (ADS)
Kim, J. B.; Won, E.
2018-03-01
Pipelined algorithms implemented in field programmable gate arrays are extensively used for hardware triggers in the modern experimental high energy physics field and the complexity of such algorithms increases rapidly. For development of such hardware triggers, algorithms are developed in C++, ported to hardware description language for synthesizing firmware, and then ported back to C++ for simulating the firmware response down to the single bit level. We present a C++ software framework which automatically simulates and generates hardware description language code for pipelined arithmetic algorithms.
A new algorithm for DNS of turbulent polymer solutions using the FENE-P model
NASA Astrophysics Data System (ADS)
Vaithianathan, T.; Collins, Lance; Robert, Ashish; Brasseur, James
2004-11-01
Direct numerical simulations (DNS) of polymer solutions based on the finite extensible nonlinear elastic model with the Peterlin closure (FENE-P) solve for a conformation tensor with properties that must be maintained by the numerical algorithm. In particular, the eigenvalues of the tensor are all positive (to maintain positive definiteness) and the sum is bounded by the maximum extension length. Loss of either of these properties will give rise to unphysical instabilities. In earlier work, Vaithianathan & Collins (2003) devised an algorithm based on an eigendecomposition that allows you to update the eigenvalues of the conformation tensor directly, making it easier to maintain the necessary conditions for a stable calculation. However, simple fixes (such as ceilings and floors) yield results that violate overall conservation. The present finite-difference algorithm is inherently designed to satisfy all of the bounds on the eigenvalues, and thus restores overall conservation. New results suggest that the earlier algorithm may have exaggerated the energy exchange at high wavenumbers. In particular, feedback of the polymer elastic energy to the isotropic turbulence is now greatly reduced.
Autonomous Wheeled Robot Platform Testbed for Navigation and Mapping Using Low-Cost Sensors
NASA Astrophysics Data System (ADS)
Calero, D.; Fernandez, E.; Parés, M. E.
2017-11-01
This paper presents the concept of an architecture for a wheeled robot system that helps researchers in the field of geomatics to speed up their daily research on kinematic geodesy, indoor navigation and indoor positioning fields. The presented ideas corresponds to an extensible and modular hardware and software system aimed at the development of new low-cost mapping algorithms as well as at the evaluation of the performance of sensors. The concept, already implemented in the CTTC's system ARAS (Autonomous Rover for Automatic Surveying) is generic and extensible. This means that it is possible to incorporate new navigation algorithms or sensors at no maintenance cost. Only the effort related to the development tasks required to either create such algorithms needs to be taken into account. As a consequence, change poses a much small problem for research activities in this specific area. This system includes several standalone sensors that may be combined in different ways to accomplish several goals; that is, this system may be used to perform a variety of tasks, as, for instance evaluates positioning algorithms performance or mapping algorithms performance.
Formulating face verification with semidefinite programming.
Yan, Shuicheng; Liu, Jianzhuang; Tang, Xiaoou; Huang, Thomas S
2007-11-01
This paper presents a unified solution to three unsolved problems existing in face verification with subspace learning techniques: selection of verification threshold, automatic determination of subspace dimension, and deducing feature fusing weights. In contrast to previous algorithms which search for the projection matrix directly, our new algorithm investigates a similarity metric matrix (SMM). With a certain verification threshold, this matrix is learned by a semidefinite programming approach, along with the constraints of the kindred pairs with similarity larger than the threshold, and inhomogeneous pairs with similarity smaller than the threshold. Then, the subspace dimension and the feature fusing weights are simultaneously inferred from the singular value decomposition of the derived SMM. In addition, the weighted and tensor extensions are proposed to further improve the algorithmic effectiveness and efficiency, respectively. Essentially, the verification is conducted within an affine subspace in this new algorithm and is, hence, called the affine subspace for verification (ASV). Extensive experiments show that the ASV can achieve encouraging face verification accuracy in comparison to other subspace algorithms, even without the need to explore any parameters.
Improved Passive Microwave Algorithms for North America and Eurasia
NASA Technical Reports Server (NTRS)
Foster, James; Chang, Alfred; Hall, Dorothy
1997-01-01
Microwave algorithms simplify complex physical processes in order to estimate geophysical parameters such as snow cover and snow depth. The microwave radiances received at the satellite sensor and expressed as brightness temperatures are a composite of contributions from the Earth's surface, the Earth's atmosphere and from space. Owing to the coarse resolution inherent to passive microwave sensors, each pixel value represents a mixture of contributions from different surface types including deep snow, shallow snow, forests and open areas. Algorithms are generated in order to resolve these mixtures. The accuracy of the retrieved information is affected by uncertainties in the assumptions used in the radiative transfer equation (Steffen et al., 1992). One such uncertainty in the Chang et al., (1987) snow algorithm is that the snow grain radius is 0.3 mm for all layers of the snowpack and for all physiographic regions. However, this is not usually the case. The influence of larger grain sizes appears to be of more importance for deeper snowpacks in the interior of Eurasia. Based on this consideration and the effects of forests, a revised SMMR snow algorithm produces more realistic snow mass values. The purpose of this study is to present results of the revised algorithm (referred to for the remainder of this paper as the GSFC 94 snow algorithm) which incorporates differences in both fractional forest cover and snow grain size. Results from the GSFC 94 algorithm will be compared to the original Chang et al. (1987) algorithm and to climatological snow depth data as well.
Explicit integration with GPU acceleration for large kinetic networks
Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; ...
2015-09-15
In this study, we demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. In addition, this orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies thatmore » important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.« less
NASA Astrophysics Data System (ADS)
Piotrowski, J.
2010-07-01
This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.
Advances in Artificial Neural Networks - Methodological Development and Application
USDA-ARS?s Scientific Manuscript database
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
NASA Astrophysics Data System (ADS)
Siswantyo, Sepha; Susanti, Bety Hayat
2016-02-01
Preneel-Govaerts-Vandewalle (PGV) schemes consist of 64 possible single-block-length schemes that can be used to build a hash function based on block ciphers. For those 64 schemes, Preneel claimed that 4 schemes are secure. In this paper, we apply length extension attack on those 4 secure PGV schemes which use RC5 algorithm in its basic construction to test their collision resistance property. The attack result shows that the collision occurred on those 4 secure PGV schemes. Based on the analysis, we indicate that Feistel structure and data dependent rotation operation in RC5 algorithm, XOR operations on the scheme, along with selection of additional message block value also give impact on the collision to occur.
Efficient image compression algorithm for computer-animated images
NASA Astrophysics Data System (ADS)
Yfantis, Evangelos A.; Au, Matthew Y.; Miel, G.
1992-10-01
An image compression algorithm is described. The algorithm is an extension of the run-length image compression algorithm and its implementation is relatively easy. This algorithm was implemented and compared with other existing popular compression algorithms and with the Lempel-Ziv (LZ) coding. The Lempel-Ziv algorithm is available as a utility in the UNIX operating system and is also referred to as the UNIX uncompress. Sometimes our algorithm is best in terms of saving memory space, and sometimes one of the competing algorithms is best. The algorithm is lossless, and the intent is for the algorithm to be used in computer graphics animated images. Comparisons made with the LZ algorithm indicate that the decompression time using our algorithm is faster than that using the LZ algorithm. Once the data are in memory, a relatively simple and fast transformation is applied to uncompress the file.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to develop a realistic model to simulate the complex processes of flow and tracer transport in USDA-ARS OPE3 field site and to compare simulation results with the detailed monitoring observations. The site has been studied for over 10 years with the extensive availabl...
Madsen, Thomas; Braun, Danielle; Peng, Gang; Parmigiani, Giovanni; Trippa, Lorenzo
2018-06-25
The Elston-Stewart peeling algorithm enables estimation of an individual's probability of harboring germline risk alleles based on pedigree data, and serves as the computational backbone of important genetic counseling tools. However, it remains limited to the analysis of risk alleles at a small number of genetic loci because its computing time grows exponentially with the number of loci considered. We propose a novel, approximate version of this algorithm, dubbed the peeling and paring algorithm, which scales polynomially in the number of loci. This allows extending peeling-based models to include many genetic loci. The algorithm creates a trade-off between accuracy and speed, and allows the user to control this trade-off. We provide exact bounds on the approximation error and evaluate it in realistic simulations. Results show that the loss of accuracy due to the approximation is negligible in important applications. This algorithm will improve genetic counseling tools by increasing the number of pathogenic risk alleles that can be addressed. To illustrate we create an extended five genes version of BRCAPRO, a widely used model for estimating the carrier probabilities of BRCA1 and BRCA2 risk alleles and assess its computational properties. © 2018 WILEY PERIODICALS, INC.
An Improved Neutron Transport Algorithm for Space Radiation
NASA Technical Reports Server (NTRS)
Heinbockel, John H.; Clowdsley, Martha S.; Wilson, John W.
2000-01-01
A low-energy neutron transport algorithm for use in space radiation protection is developed. The algorithm is based upon a multigroup analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. This analysis is accomplished by solving a realistic but simplified neutron transport test problem. The test problem is analyzed by using numerical and analytical procedures to obtain an accurate solution within specified error bounds. Results from the test problem are then used for determining mean values associated with rescattering terms that are associated with a multigroup solution of the straight-ahead Boltzmann equation. The algorithm is then coupled to the Langley HZETRN code through the evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for a water and an aluminum-water shield-target configuration is then compared with LAHET and MCNPX Monte Carlo code calculations for the same shield-target configuration. The algorithm developed showed a great improvement in results over the unmodified HZETRN solution. In addition, a two-directional solution of the evaporation source showed even further improvement of the fluence near the front of the water target where diffusion from the front surface is important.
An intelligent allocation algorithm for parallel processing
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Homaifar, Abdollah; Ananthram, Kishan G.
1988-01-01
The problem of allocating nodes of a program graph to processors in a parallel processing architecture is considered. The algorithm is based on critical path analysis, some allocation heuristics, and the execution granularity of nodes in a program graph. These factors, and the structure of interprocessor communication network, influence the allocation. To achieve realistic estimations of the executive durations of allocations, the algorithm considers the fact that nodes in a program graph have to communicate through varying numbers of tokens. Coarse and fine granularities have been implemented, with interprocessor token-communication duration, varying from zero up to values comparable to the execution durations of individual nodes. The effect on allocation of communication network structures is demonstrated by performing allocations for crossbar (non-blocking) and star (blocking) networks. The algorithm assumes the availability of as many processors as it needs for the optimal allocation of any program graph. Hence, the focus of allocation has been on varying token-communication durations rather than varying the number of processors. The algorithm always utilizes as many processors as necessary for the optimal allocation of any program graph, depending upon granularity and characteristics of the interprocessor communication network.
Optimization of a chemical identification algorithm
NASA Astrophysics Data System (ADS)
Chyba, Thomas H.; Fisk, Brian; Gunning, Christin; Farley, Kevin; Polizzi, Amber; Baughman, David; Simpson, Steven; Slamani, Mohamed-Adel; Almassy, Robert; Da Re, Ryan; Li, Eunice; MacDonald, Steve; Slamani, Ahmed; Mitchell, Scott A.; Pendell-Jones, Jay; Reed, Timothy L.; Emge, Darren
2010-04-01
A procedure to evaluate and optimize the performance of a chemical identification algorithm is presented. The Joint Contaminated Surface Detector (JCSD) employs Raman spectroscopy to detect and identify surface chemical contamination. JCSD measurements of chemical warfare agents, simulants, toxic industrial chemicals, interferents and bare surface backgrounds were made in the laboratory and under realistic field conditions. A test data suite, developed from these measurements, is used to benchmark algorithm performance throughout the improvement process. In any one measurement, one of many possible targets can be present along with interferents and surfaces. The detection results are expressed as a 2-category classification problem so that Receiver Operating Characteristic (ROC) techniques can be applied. The limitations of applying this framework to chemical detection problems are discussed along with means to mitigate them. Algorithmic performance is optimized globally using robust Design of Experiments and Taguchi techniques. These methods require figures of merit to trade off between false alarms and detection probability. Several figures of merit, including the Matthews Correlation Coefficient and the Taguchi Signal-to-Noise Ratio are compared. Following the optimization of global parameters which govern the algorithm behavior across all target chemicals, ROC techniques are employed to optimize chemical-specific parameters to further improve performance.
Data fusion for target tracking and classification with wireless sensor network
NASA Astrophysics Data System (ADS)
Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic
2016-10-01
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Progressive Visual Analytics: User-Driven Visual Exploration of In-Progress Analytics.
Stolper, Charles D; Perer, Adam; Gotz, David
2014-12-01
As datasets grow and analytic algorithms become more complex, the typical workflow of analysts launching an analytic, waiting for it to complete, inspecting the results, and then re-Iaunching the computation with adjusted parameters is not realistic for many real-world tasks. This paper presents an alternative workflow, progressive visual analytics, which enables an analyst to inspect partial results of an algorithm as they become available and interact with the algorithm to prioritize subspaces of interest. Progressive visual analytics depends on adapting analytical algorithms to produce meaningful partial results and enable analyst intervention without sacrificing computational speed. The paradigm also depends on adapting information visualization techniques to incorporate the constantly refining results without overwhelming analysts and provide interactions to support an analyst directing the analytic. The contributions of this paper include: a description of the progressive visual analytics paradigm; design goals for both the algorithms and visualizations in progressive visual analytics systems; an example progressive visual analytics system (Progressive Insights) for analyzing common patterns in a collection of event sequences; and an evaluation of Progressive Insights and the progressive visual analytics paradigm by clinical researchers analyzing electronic medical records.
Benchmarking homogenization algorithms for monthly data
NASA Astrophysics Data System (ADS)
Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratiannil, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.; Willett, K.
2013-09-01
The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.
Four-dimensional guidance algorithms for aircraft in an air traffic control environment
NASA Technical Reports Server (NTRS)
Pecsvaradi, T.
1975-01-01
Theoretical development and computer implementation of three guidance algorithms are presented. From a small set of input parameters the algorithms generate the ground track, altitude profile, and speed profile required to implement an experimental 4-D guidance system. Given a sequence of waypoints that define a nominal flight path, the first algorithm generates a realistic, flyable ground track consisting of a sequence of straight line segments and circular arcs. Each circular turn is constrained by the minimum turning radius of the aircraft. The ground track and the specified waypoint altitudes are used as inputs to the second algorithm which generates the altitude profile. The altitude profile consists of piecewise constant flight path angle segments, each segment lying within specified upper and lower bounds. The third algorithm generates a feasible speed profile subject to constraints on the rate of change in speed, permissible speed ranges, and effects of wind. Flight path parameters are then combined into a chronological sequence to form the 4-D guidance vectors. These vectors can be used to drive the autopilot/autothrottle of the aircraft so that a 4-D flight path could be tracked completely automatically; or these vectors may be used to drive the flight director and other cockpit displays, thereby enabling the pilot to track a 4-D flight path manually.
Farrington, C. Paddy; Noufaily, Angela; Andrews, Nick J.; Charlett, Andre
2016-01-01
A large-scale multiple surveillance system for infectious disease outbreaks has been in operation in England and Wales since the early 1990s. Changes to the statistical algorithm at the heart of the system were proposed and the purpose of this paper is to compare two new algorithms with the original algorithm. Test data to evaluate performance are created from weekly counts of the number of cases of each of more than 2000 diseases over a twenty-year period. The time series of each disease is separated into one series giving the baseline (background) disease incidence and a second series giving disease outbreaks. One series is shifted forward by twelve months and the two are then recombined, giving a realistic series in which it is known where outbreaks have been added. The metrics used to evaluate performance include a scoring rule that appropriately balances sensitivity against specificity and is sensitive to variation in probabilities near 1. In the context of disease surveillance, a scoring rule can be adapted to reflect the size of outbreaks and this was done. Results indicate that the two new algorithms are comparable to each other and better than the algorithm they were designed to replace. PMID:27513749
NASA Astrophysics Data System (ADS)
Yuan, Chunhua; Wang, Jiang; Yi, Guosheng
2017-03-01
Estimation of ion channel parameters is crucial to spike initiation of neurons. The biophysical neuron models have numerous ion channel parameters, but only a few of them play key roles in the firing patterns of the models. So we choose three parameters featuring the adaptation in the Ermentrout neuron model to be estimated. However, the traditional particle swarm optimization (PSO) algorithm is still easy to fall into local optimum and has the premature convergence phenomenon in the study of some problems. In this paper, we propose an improved method that uses a concave function and dynamic logistic chaotic mapping mixed to adjust the inertia weights of the fitness value, effectively improve the global convergence ability of the algorithm. The perfect predicting firing trajectories of the rebuilt model using the estimated parameters prove that only estimating a few important ion channel parameters can establish the model well and the proposed algorithm is effective. Estimations using two classic PSO algorithms are also compared to the improved PSO to verify that the algorithm proposed in this paper can avoid local optimum and quickly converge to the optimal value. The results provide important theoretical foundations for building biologically realistic neuron models.
Real-time maritime scene simulation for ladar sensors
NASA Astrophysics Data System (ADS)
Christie, Chad L.; Gouthas, Efthimios; Swierkowski, Leszek; Williams, Owen M.
2011-06-01
Continuing interest exists in the development of cost-effective synthetic environments for testing Laser Detection and Ranging (ladar) sensors. In this paper we describe a PC-based system for real-time ladar scene simulation of ships and small boats in a dynamic maritime environment. In particular, we describe the techniques employed to generate range imagery accompanied by passive radiance imagery. Our ladar scene generation system is an evolutionary extension of the VIRSuite infrared scene simulation program and includes all previous features such as ocean wave simulation, the physically-realistic representation of boat and ship dynamics, wake generation and simulation of whitecaps, spray, wake trails and foam. A terrain simulation extension is also under development. In this paper we outline the development, capabilities and limitations of the VIRSuite extensions.
NASA Astrophysics Data System (ADS)
Le, Zichun; Suo, Kaihua; Fu, Minglei; Jiang, Ling; Dong, Wen
2012-03-01
In order to minimize the average end to end delay for data transporting in hybrid wireless optical broadband access network, a novel routing algorithm named MSTMCF (minimum spanning tree and minimum cost flow) is devised. The routing problem is described as a minimum spanning tree and minimum cost flow model and corresponding algorithm procedures are given. To verify the effectiveness of MSTMCF algorithm, extensively simulations based on OWNS have been done under different types of traffic source.
NASA Astrophysics Data System (ADS)
Burtyka, Filipp
2018-01-01
The paper considers algorithms for finding diagonalizable and non-diagonalizable roots (so called solvents) of monic arbitrary unilateral second-order matrix polynomial over prime finite field. These algorithms are based on polynomial matrices (lambda-matrices). This is an extension of existing general methods for computing solvents of matrix polynomials over field of complex numbers. We analyze how techniques for complex numbers can be adapted for finite field and estimate asymptotic complexity of the obtained algorithms.
Becker, H; Albera, L; Comon, P; Nunes, J-C; Gribonval, R; Fleureau, J; Guillotel, P; Merlet, I
2017-08-15
Over the past decades, a multitude of different brain source imaging algorithms have been developed to identify the neural generators underlying the surface electroencephalography measurements. While most of these techniques focus on determining the source positions, only a small number of recently developed algorithms provides an indication of the spatial extent of the distributed sources. In a recent comparison of brain source imaging approaches, the VB-SCCD algorithm has been shown to be one of the most promising algorithms among these methods. However, this technique suffers from several problems: it leads to amplitude-biased source estimates, it has difficulties in separating close sources, and it has a high computational complexity due to its implementation using second order cone programming. To overcome these problems, we propose to include an additional regularization term that imposes sparsity in the original source domain and to solve the resulting optimization problem using the alternating direction method of multipliers. Furthermore, we show that the algorithm yields more robust solutions by taking into account the temporal structure of the data. We also propose a new method to automatically threshold the estimated source distribution, which permits to delineate the active brain regions. The new algorithm, called Source Imaging based on Structured Sparsity (SISSY), is analyzed by means of realistic computer simulations and is validated on the clinical data of four patients. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Nalepka, R. F. (Principal Investigator); Cicone, R. C.; Stinson, J. L.; Balon, R. J.
1977-01-01
The author has identified the following significant results. Two examples of haze correction algorithms were tested: CROP-A and XSTAR. The CROP-A was tested in a unitemporal mode on data collected in 1973-74 over ten sample segments in Kansas. Because of the uniformly low level of haze present in these segments, no conclusion could be reached about CROP-A's ability to compensate for haze. It was noted, however, that in some cases CROP-A made serious errors which actually degraded classification performance. The haze correction algorithm XSTAR was tested in a multitemporal mode on 1975-76 LACIE sample segment data over 23 blind sites in Kansas and 18 sample segments in North Dakota, providing wide range of haze levels and other conditions for algorithm evaluation. It was found that this algorithm substantially improved signature extension classification accuracy when a sum-of-likelihoods classifier was used with an alien rejection threshold.
NASA Technical Reports Server (NTRS)
Weeks, Cindy Lou
1986-01-01
Experiments were conducted at NASA Ames Research Center to define multi-tasking software requirements for multiple-instruction, multiple-data stream (MIMD) computer architectures. The focus was on specifying solutions for algorithms in the field of computational fluid dynamics (CFD). The program objectives were to allow researchers to produce usable parallel application software as soon as possible after acquiring MIMD computer equipment, to provide researchers with an easy-to-learn and easy-to-use parallel software language which could be implemented on several different MIMD machines, and to enable researchers to list preferred design specifications for future MIMD computer architectures. Analysis of CFD algorithms indicated that extensions of an existing programming language, adaptable to new computer architectures, provided the best solution to meeting program objectives. The CoFORTRAN Language was written in response to these objectives and to provide researchers a means to experiment with parallel software solutions to CFD algorithms on machines with parallel architectures.
Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.
Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng
2016-09-07
Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers.
Practical Algorithms for the Longest Common Extension Problem
NASA Astrophysics Data System (ADS)
Ilie, Lucian; Tinta, Liviu
The Longest Common Extension problem considers a string s and computes, for each of a number of pairs (i,j), the longest substring of s that starts at both i and j. It appears as a subproblem in many fundamental string problems and can be solved by linear-time preprocessing of the string that allows (worst-case) constant-time computation for each pair. The two known approaches use powerful algorithms: either constant-time computation of the Lowest Common Ancestor in trees or constant-time computation of Range Minimum Queries (RMQ) in arrays. We show here that, from practical point of view, such complicated approaches are not needed. We give two very simple algorithms for this problem that require no preprocessing. The first needs only the string and is significantly faster than all previous algorithms on the average. The second combines the first with a direct RMQ computation on the Longest Common Prefix array. It takes advantage of the superior speed of the cache memory and is the fastest on virtually all inputs.
Improving Memory for Optimization and Learning in Dynamic Environments
2011-07-01
algorithm uses simple, in- cremental clustering to separate solutions into memory entries. The cluster centers are used as the models in the memory. This is...entire days of traffic with realistic traffic de - mands and turning ratios on a 32 intersection network modeled on downtown Pittsburgh, Pennsyl- vania...early/tardy problem. Management Science, 35(2):177–191, 1989. [78] Daniel Parrott and Xiaodong Li. A particle swarm model for tracking multiple peaks in
Evaluating and minimizing noise impact due to aircraft flyover
NASA Technical Reports Server (NTRS)
Jacobson, I. D.
1980-01-01
The results of a study on the evaluation and reduction of noise impact to a community due to aircraft landing and takeoff operations are presented. The case of multiple aircrafts flying on several trajectories, for either approach/landings or takeoffs was examined. An extremely realistic model of the flight path was developed. The annoyance criterion used was the noise impact index (NII). The algorithm was applied to Patrick Henry International Airport.
Pattern Recognition Algorithm for High-Sensitivity Odorant Detection in Unknown Environments
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2012-01-01
In a realistic odorant detection application environment, the collected sensory data is a mix of unknown chemicals with unknown concentrations and noise. The identification of the odorants among these mixtures is a challenge in data recognition. In addition, deriving their individual concentrations in the mix is also a challenge. A deterministic analytical model was developed to accurately identify odorants and calculate their concentrations in a mixture with noisy data.
Spatial Statistics of Large Astronomical Databases: An Algorithmic Approach
NASA Technical Reports Server (NTRS)
Szapudi, Istvan
2004-01-01
In this AISRP, the we have demonstrated that the correlation function i) can be calculated for MAP in minutes (about 45 minutes for Planck) on a modest 500Mhz workstation ii) the corresponding method, although theoretically suboptimal, produces nearly optimal results for realistic noise and cut sky. This trillion fold improvement in speed over the standard maximum likelihood technique opens up tremendous new possibilities, which will be persued in the follow up.
NASA Astrophysics Data System (ADS)
Lee, Junyung; Yi, Kyongsu; Yoo, Hyunjae; Chong, Hyokjin; Ko, Bongchul
2015-06-01
This paper describes a risk management algorithm for rear-side collision avoidance. The proposed risk management algorithm consists of a supervisor and a coordinator. The supervisor is designed to monitor collision risks between the subject vehicle and approaching vehicle in the adjacent lane. An appropriate criterion of intervention, which satisfies high acceptance to drivers through the consideration of a realistic traffic, has been determined based on the analysis of the kinematics of the vehicles in longitudinal and lateral directions. In order to assist the driver actively and increase driver's safety, a coordinator is designed to combine lateral control using a steering torque overlay by motor-driven power steering and differential braking by vehicle stability control. In order to prevent the collision while limiting actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort, the Lyapunov theory and linear matrix inequalities based optimisation methods have been used. The proposed risk management algorithm has been evaluated via simulation using CarSim and MATLAB/Simulink.
NASA Technical Reports Server (NTRS)
Gordon, Howard R.; Wang, Menghua
1992-01-01
The first step in the Coastal Zone Color Scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering (RS) contribution, L sub r, to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm, L sub r is computed by assuming that the ocean surface is flat. Calculations of the radiance leaving an RS atmosphere overlying a rough Fresnel-reflecting ocean are presented to evaluate the radiance error caused by the flat-ocean assumption. Simulations are carried out to evaluate the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct sun glitter, it is concluded that the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness. This suggests that, in refining algorithms for future sensors, more effort should be focused on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.
NASA Technical Reports Server (NTRS)
Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae
2015-01-01
Aerosol Single scattering albedo and Height Estimation (ASHE) algorithm was first introduced in Jeong and Hsu (2008) to provide aerosol layer height as well as single scattering albedo (SSA) for biomass burning smoke aerosols. One of the advantages of this algorithm was that the aerosol layer height can be retrieved over broad areas, which had not been available from lidar observations only. The algorithm utilized aerosol properties from three different satellite sensors, i.e., aerosol optical depth (AOD) and Ångström exponent (AE) from Moderate Resolution Imaging Spectroradiometer (MODIS), UV aerosol index (UVAI) from Ozone Monitoring Instrument (OMI), and aerosol layer height from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Here, we extend the application of the algorithm to Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) data. We also now include dust layers as well as smoke. Other updates include improvements in retrieving the AOD of nonspherical dust from VIIRS, better determination of the aerosol layer height from CALIOP, and more realistic input aerosol profiles in the forward model for better accuracy.
Sensitivity of CO2 Simulation in a GCM to the Convective Transport Algorithms
NASA Technical Reports Server (NTRS)
Zhu, Z.; Pawson, S.; Collatz, G. J.; Gregg, W. W.; Kawa, S. R.; Baker, D.; Ott, L.
2014-01-01
Convection plays an important role in the transport of heat, moisture and trace gases. In this study, we simulated CO2 concentrations with an atmospheric general circulation model (GCM). Three different convective transport algorithms were used. One is a modified Arakawa-Shubert scheme that was native to the GCM; two others used in two off-line chemical transport models (CTMs) were added to the GCM here for comparison purposes. Advanced CO2 surfaced fluxes were used for the simulations. The results were compared to a large quantity of CO2 observation data. We find that the simulation results are sensitive to the convective transport algorithms. Overall, the three simulations are quite realistic and similar to each other in the remote marine regions, but are significantly different in some land regions with strong fluxes such as Amazon and Siberia during the convection seasons. Large biases against CO2 measurements are found in these regions in the control run, which uses the original GCM. The simulation with the simple diffusive algorithm is better. The difference of the two simulations is related to the very different convective transport speed.
A detection method for X-ray images based on wavelet transforms: the case of the ROSAT PSPC.
NASA Astrophysics Data System (ADS)
Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.
1996-02-01
The authors have developed a method based on wavelet transforms (WT) to detect efficiently sources in PSPC X-ray images. The multiscale approach typical of WT can be used to detect sources with a large range of sizes, and to estimate their size and count rate. Significance thresholds for candidate detections (found as local WT maxima) have been derived from a detailed study of the probability distribution of the WT of a locally uniform background. The use of the exposure map allows good detection efficiency to be retained even near PSPC ribs and edges. The algorithm may also be used to get upper limits to the count rate of undetected objects. Simulations of realistic PSPC images containing either pure background or background+sources were used to test the overall algorithm performances, and to assess the frequency of spurious detections (vs. detection threshold) and the algorithm sensitivity. Actual PSPC images of galaxies and star clusters show the algorithm to have good performance even in cases of extended sources and crowded fields.
Quantum plug n’ play: modular computation in the quantum regime
NASA Astrophysics Data System (ADS)
Thompson, Jayne; Modi, Kavan; Vedral, Vlatko; Gu, Mile
2018-01-01
Classical computation is modular. It exploits plug n’ play architectures which allow us to use pre-fabricated circuits without knowing their construction. This bestows advantages such as allowing parts of the computational process to be outsourced, and permitting individual circuit components to be exchanged and upgraded. Here, we introduce a formal framework to describe modularity in the quantum regime. We demonstrate a ‘no-go’ theorem, stipulating that it is not always possible to make use of quantum circuits without knowing their construction. This has significant consequences for quantum algorithms, forcing the circuit implementation of certain quantum algorithms to be rebuilt almost entirely from scratch after incremental changes in the problem—such as changing the number being factored in Shor’s algorithm. We develop a workaround capable of restoring modularity, and apply it to design a modular version of Shor’s algorithm that exhibits increased versatility and reduced complexity. In doing so we pave the way to a realistic framework whereby ‘quantum chips’ and remote servers can be invoked (or assembled) to implement various parts of a more complex quantum computation.
Probabilistic representation of gene regulatory networks.
Mao, Linyong; Resat, Haluk
2004-09-22
Recent experiments have established unambiguously that biological systems can have significant cell-to-cell variations in gene expression levels even in isogenic populations. Computational approaches to studying gene expression in cellular systems should capture such biological variations for a more realistic representation. In this paper, we present a new fully probabilistic approach to the modeling of gene regulatory networks that allows for fluctuations in the gene expression levels. The new algorithm uses a very simple representation for the genes, and accounts for the repression or induction of the genes and for the biological variations among isogenic populations simultaneously. Because of its simplicity, introduced algorithm is a very promising approach to model large-scale gene regulatory networks. We have tested the new algorithm on the synthetic gene network library bioengineered recently. The good agreement between the computed and the experimental results for this library of networks, and additional tests, demonstrate that the new algorithm is robust and very successful in explaining the experimental data. The simulation software is available upon request. Supplementary material will be made available on the OUP server.
Evaluation of on-line pulse control for vibration suppression in flexible spacecraft
NASA Technical Reports Server (NTRS)
Masri, Sami F.
1987-01-01
A numerical simulation was performed, by means of a large-scale finite element code capable of handling large deformations and/or nonlinear behavior, to investigate the suitability of the nonlinear pulse-control algorithm to suppress the vibrations induced in the Spacecraft Control Laboratory Experiment (SCOLE) components under realistic maneuvers. Among the topics investigated were the effects of various control parameters on the efficiency and robustness of the vibration control algorithm. Advanced nonlinear control techniques were applied to an idealized model of some of the SCOLE components to develop an efficient algorithm to determine the optimal locations of point actuators, considering the hardware on the SCOLE project as distributed in nature. The control was obtained from a quadratic optimization criterion, given in terms of the state variables of the distributed system. An experimental investigation was performed on a model flexible structure resembling the essential features of the SCOLE components, and electrodynamic and electrohydraulic actuators were used to investigate the applicability of the control algorithm with such devices in addition to mass-ejection pulse generators using compressed air.
Comparison of reversible methods for data compression
NASA Astrophysics Data System (ADS)
Heer, Volker K.; Reinfelder, Hans-Erich
1990-07-01
Widely differing methods for data compression described in the ACR-NEMA draft are used in medical imaging. In our contribution we will review various methods briefly and discuss the relevant advantages and disadvantages. In detail we evaluate 1st order DPCM pyramid transformation and S transformation. We compare as coding algorithms both fixed and adaptive Huffman coding and Lempel-Ziv coding. Our comparison is performed on typical medical images from CT MR DSA and DLR (Digital Luminescence Radiography). Apart from the achieved compression factors we take into account CPU time required and main memory requirement both for compression and for decompression. For a realistic comparison we have implemented the mentioned algorithms in the C program language on a MicroVAX II and a SPARC station 1. 2.
NASA Astrophysics Data System (ADS)
Yang, Huanhuan; Gunzburger, Max
2017-06-01
Simulation-based optimization of acoustic liner design in a turbofan engine nacelle for noise reduction purposes can dramatically reduce the cost and time needed for experimental designs. Because uncertainties are inevitable in the design process, a stochastic optimization algorithm is posed based on the conditional value-at-risk measure so that an ideal acoustic liner impedance is determined that is robust in the presence of uncertainties. A parallel reduced-order modeling framework is developed that dramatically improves the computational efficiency of the stochastic optimization solver for a realistic nacelle geometry. The reduced stochastic optimization solver takes less than 500 seconds to execute. In addition, well-posedness and finite element error analyses of the state system and optimization problem are provided.
Formation Design Strategy for SCOPE High-Elliptic Formation Flying Mission
NASA Technical Reports Server (NTRS)
Tsuda, Yuichi
2007-01-01
The new formation design strategy using simulated annealing (SA) optimization is presented. The SA algorithm is useful to survey a whole solution space of optimum formation, taking into account realistic constraints composed of continuous and discrete functions. It is revealed that this method is not only applicable for circular orbit, but also for high-elliptic orbit formation flying. The developed algorithm is first tested with a simple cart-wheel motion example, and then applied to the formation design for SCOPE. SCOPE is the next generation geomagnetotail observation mission planned in JAXA, utilizing a formation flying techonology in a high elliptic orbit. A distinctive and useful heuristics is found by investigating SA results, showing the effectiveness of the proposed design process.
Programming languages and compiler design for realistic quantum hardware.
Chong, Frederic T; Franklin, Diana; Martonosi, Margaret
2017-09-13
Quantum computing sits at an important inflection point. For years, high-level algorithms for quantum computers have shown considerable promise, and recent advances in quantum device fabrication offer hope of utility. A gap still exists, however, between the hardware size and reliability requirements of quantum computing algorithms and the physical machines foreseen within the next ten years. To bridge this gap, quantum computers require appropriate software to translate and optimize applications (toolflows) and abstraction layers. Given the stringent resource constraints in quantum computing, information passed between layers of software and implementations will differ markedly from in classical computing. Quantum toolflows must expose more physical details between layers, so the challenge is to find abstractions that expose key details while hiding enough complexity.
Andrés-Toro, B; Girón-Sierra, J M; Fernández-Blanco, P; López-Orozco, J A; Besada-Portas, E
2004-04-01
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation. Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results. The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs). Successful finding of optimal ways to drive these processes were reported. Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.
An Elementary Algorithm for Autonomous Air Terminal Merging and Interval Management
NASA Technical Reports Server (NTRS)
White, Allan L.
2017-01-01
A central element of air traffic management is the safe merging and spacing of aircraft during the terminal area flight phase. This paper derives and examines an algorithm for the merging and interval managing problem for Standard Terminal Arrival Routes. It describes a factor analysis for performance based on the distribution of arrivals, the operating period of the terminal, and the topology of the arrival routes; then presents results from a performance analysis and from a safety analysis for a realistic topology based on typical routes for a runway at Phoenix International Airport. The heart of the safety analysis is a statistical derivation on how to conduct a safety analysis for a local simulation when the safety requirement is given for the entire airspace.
Operational Performance Analysis of Passive Acoustic Monitoring for Killer Whales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzner, Shari; Fu, Tao; Ren, Huiying
2011-09-30
For the planned tidal turbine site in Puget Sound, WA, the main concern is to protect Southern Resident Killer Whales (SRKW) due to their Endangered Species Act status. A passive acoustic monitoring system is proposed because the whales emit vocalizations that can be detected by a passive system. The algorithm for detection is implemented in two stages. The first stage is an energy detector designed to detect candidate signals. The second stage is a spectral classifier that is designed to reduce false alarms. The evaluation presented here of the detection algorithm incorporates behavioral models of the species of interest, environmentalmore » models of noise levels and potential false alarm sources to provide a realistic characterization of expected operational performance.« less
Simulating nailfold capillaroscopy sequences to evaluate algorithms for blood flow estimation.
Tresadern, P A; Berks, M; Murray, A K; Dinsdale, G; Taylor, C J; Herrick, A L
2013-01-01
The effects of systemic sclerosis (SSc)--a disease of the connective tissue causing blood flow problems that can require amputation of the fingers--can be observed indirectly by imaging the capillaries at the nailfold, though taking quantitative measures such as blood flow to diagnose the disease and monitor its progression is not easy. Optical flow algorithms may be applied, though without ground truth (i.e. known blood flow) it is hard to evaluate their accuracy. We propose an image model that generates realistic capillaroscopy videos with known flow, and use this model to quantify the effect of flow rate, cell density and contrast (among others) on estimated flow. This resource will help researchers to design systems that are robust under real-world conditions.
Programming languages and compiler design for realistic quantum hardware
NASA Astrophysics Data System (ADS)
Chong, Frederic T.; Franklin, Diana; Martonosi, Margaret
2017-09-01
Quantum computing sits at an important inflection point. For years, high-level algorithms for quantum computers have shown considerable promise, and recent advances in quantum device fabrication offer hope of utility. A gap still exists, however, between the hardware size and reliability requirements of quantum computing algorithms and the physical machines foreseen within the next ten years. To bridge this gap, quantum computers require appropriate software to translate and optimize applications (toolflows) and abstraction layers. Given the stringent resource constraints in quantum computing, information passed between layers of software and implementations will differ markedly from in classical computing. Quantum toolflows must expose more physical details between layers, so the challenge is to find abstractions that expose key details while hiding enough complexity.
Mobility Models for Systems Evaluation
NASA Astrophysics Data System (ADS)
Musolesi, Mirco; Mascolo, Cecilia
Mobility models are used to simulate and evaluate the performance of mobile wireless systems and the algorithms and protocols at the basis of them. The definition of realistic mobility models is one of the most critical and, at the same time, difficult aspects of the simulation of applications and systems designed for mobile environments. There are essentially two possible types of mobility patterns that can be used to evaluate mobile network protocols and algorithms by means of simulations: traces and synthetic models [130]. Traces are obtained by means of measurements of deployed systems and usually consist of logs of connectivity or location information, whereas synthetic models are mathematical models, such as sets of equations, which try to capture the movement of the devices.
Information pricing based on trusted system
NASA Astrophysics Data System (ADS)
Liu, Zehua; Zhang, Nan; Han, Hongfeng
2018-05-01
Personal information has become a valuable commodity in today's society. So our goal aims to develop a price point and a pricing system to be realistic. First of all, we improve the existing BLP system to prevent cascading incidents, design a 7-layer model. Through the cost of encryption in each layer, we develop PI price points. Besides, we use association rules mining algorithms in data mining algorithms to calculate the importance of information in order to optimize informational hierarchies of different attribute types when located within a multi-level trusted system. Finally, we use normal distribution model to predict encryption level distribution for users in different classes and then calculate information prices through a linear programming model with the help of encryption level distribution above.
Overview of the EarthCARE simulator and its applications
NASA Astrophysics Data System (ADS)
van Zadelhoff, G.; Donovan, D. P.; Lajas, D.
2011-12-01
The EarthCARE Simulator (ECSIM) was initially developed in 2004 as a scientific tool to simulate atmospheric scenes, radiative transfer and instrument models for the four instruments of the EarthCARE mission. ECSIM has subsequently been significantly further enhanced and is evolving into a tool for both mission performance assessment and L2 retrieval development. It is an ESA requirement that all L2 retrieval algorithms foreseen for the ground segment will be integrated and tested in ECSIM. It is furthermore envisaged, that the (retrieval part of) ECSIM will be the tool for scientists to work with on updates and new L2 algorithms during the EarthCARE Commissioning phase and beyond. ECSIM is capable of performing 'end to end' simulations of single, or any combination of the EarthCARE instruments. That is, ECSIM starts with an input atmospheric ``scene'', then uses various radiative transfer and instrument models in order to generate synthetic observations which can be subsequently inverted. The results of the inversions may then be compared to the input "truth". ECSIM consists of a modular general framework populated by various models. The models within ECSIM are grouped according to the following scheme: 1) Scene creation models (3D atmospheric scene definition) 2) Orbit models (orbit and orientation of the platform as it overflies the scene) 3) Forward models (calculate the signal impinging on the telescope/antenna of the instrument(s) in question) 4) Instrument models (calculate the instrument response to the signals calculated by the Forward models) 5) Retrieval models (invert the instrument signals to recover relevant geophysical information) Within the default ECSIM models crude instrument specific parameterizations (i.e. empirically based radar reflectivity vs. IWC relationships) are avoided. Instead, the radiative transfer forward models are kept separate (as possible) from the instrument models. In order to accomplish this, the atmospheric scenes are specified in high detail (i.e. bin resolved [cloud] size distributions) and the relevant wavelength dependent optical properties are specified in a separate database. This helps insure that all the instruments involved in the simulation are treated consistently and that the physical relationships between the various measurements are realistically captured. ECSIM is mainly used as an algorithm development platform for EarthCARE. However, it has also been used for simulating Calipso, CloudSAT, future multi-wavelength HSRL satellite missions and airborne HSRL data, showing the versatility of the tool. Validating L2 retrieval algorithms require the creation of atmospheric scenes ranging in complexity from very simple (blocky) to 'realistic' (high resolution) scenes. Recent work on the evaluation of aerosol retrieval algorithms from satellite lidar data (e.g. ATLID) required these latter scenes, which were created based on HSRL and in-situ measurements from the DLR FALCON aircraft. The synthetic signals were subsequently evaluated by comparing to the original measured signals. In this presentation an overview of the EarthCARE Simulator, its philosophy and the construction of realistic "scenes'' based on actual campaign observations is presented.
Test Facilities in Support of High Power Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert
2002-01-01
Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.
Realism and Pragmatism in a mixed methods study.
Allmark, Peter; Machaczek, Katarzyna
2018-06-01
A discussion of how adopting a Realist rather than Pragmatist methodology affects the conduct of mixed methods research. Mixed methods approaches are now extensively employed in nursing and other healthcare research. At the same time, realist methodology is increasingly used as philosophical underpinning of research in these areas. However, the standard philosophical underpinning of mixed methods research is Pragmatism, which is generally considered incompatible or at least at odds with Realism. This paper argues that Realism can be used as the basis of mixed methods research and that doing so carries advantages over using Pragmatism. A mixed method study into patient handover reports is used to illustrate how Realism affected its design and how it would have differed had a Pragmatist approach been taken. Discussion Paper. Philosophers Index; Google Scholar. Those undertaking mixed methods research should consider the use of Realist methodology with the addition of some insights from Pragmatism to do with the start and end points of enquiry. Realism is a plausible alternative methodology for those undertaking mixed methods studies. © 2018 John Wiley & Sons Ltd.
Fiberfox: facilitating the creation of realistic white matter software phantoms.
Neher, Peter F; Laun, Frederik B; Stieltjes, Bram; Maier-Hein, Klaus H
2014-11-01
Phantom-based validation of diffusion-weighted image processing techniques is an important key to innovation in the field and is widely used. Openly available and user friendly tools for the flexible generation of tailor-made datasets for the specific tasks at hand can greatly facilitate the work of researchers around the world. We present an open-source framework, Fiberfox, that enables (1) the intuitive definition of arbitrary artificial white matter fiber tracts, (2) signal generation from those fibers by means of the most recent multi-compartment modeling techniques, and (3) simulation of the actual MR acquisition that allows for the introduction of realistic MRI-related effects into the final image. We show that real acquisitions can be closely approximated by simulating the acquisition of the well-known FiberCup phantom. We further demonstrate the advantages of our framework by evaluating the effects of imaging artifacts and acquisition settings on the outcome of 12 tractography algorithms. Our findings suggest that experiments on a realistic software phantom might change the conclusions drawn from earlier hardware phantom experiments. Fiberfox may find application in validating and further developing methods such as tractography, super-resolution, diffusion modeling or artifact correction. Copyright © 2013 Wiley Periodicals, Inc.
A 4DCT imaging-based breathing lung model with relative hysteresis
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long
2016-01-01
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. PMID:28260811
A 4DCT imaging-based breathing lung model with relative hysteresis
NASA Astrophysics Data System (ADS)
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long
2016-12-01
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry.
Robust mode space approach for atomistic modeling of realistically large nanowire transistors
NASA Astrophysics Data System (ADS)
Huang, Jun Z.; Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard
2018-01-01
Nanoelectronic transistors have reached 3D length scales in which the number of atoms is countable. Truly atomistic device representations are needed to capture the essential functionalities of the devices. Atomistic quantum transport simulations of realistically extended devices are, however, computationally very demanding. The widely used mode space (MS) approach can significantly reduce the numerical cost, but a good MS basis is usually very hard to obtain for atomistic full-band models. In this work, a robust and parallel algorithm is developed to optimize the MS basis for atomistic nanowires. This enables engineering-level, reliable tight binding non-equilibrium Green's function simulation of nanowire metal-oxide-semiconductor field-effect transistor (MOSFET) with a realistic cross section of 10 nm × 10 nm using a small computer cluster. This approach is applied to compare the performance of InGaAs and Si nanowire n-type MOSFETs (nMOSFETs) with various channel lengths and cross sections. Simulation results with full-band accuracy indicate that InGaAs nanowire nMOSFETs have no drive current advantage over their Si counterparts for cross sections up to about 10 nm × 10 nm.
An operational GLS model for hydrologic regression
Tasker, Gary D.; Stedinger, J.R.
1989-01-01
Recent Monte Carlo studies have documented the value of generalized least squares (GLS) procedures to estimate empirical relationships between streamflow statistics and physiographic basin characteristics. This paper presents a number of extensions of the GLS method that deal with realities and complexities of regional hydrologic data sets that were not addressed in the simulation studies. These extensions include: (1) a more realistic model of the underlying model errors; (2) smoothed estimates of cross correlation of flows; (3) procedures for including historical flow data; (4) diagnostic statistics describing leverage and influence for GLS regression; and (5) the formulation of a mathematical program for evaluating future gaging activities. ?? 1989.
Minimal scales from an extended Hilbert space
NASA Astrophysics Data System (ADS)
Kober, Martin; Nicolini, Piero
2010-12-01
We consider an extension of the conventional quantum Heisenberg algebra, assuming that coordinates as well as momenta fulfil nontrivial commutation relations. As a consequence, a minimal length and a minimal mass scale are implemented. Our commutators do not depend on positions and momenta and we provide an extension of the coordinate coherent state approach to noncommutative geometry. We explore, as a toy model, the corresponding quantum field theory in a (2+1)-dimensional spacetime. Then we investigate the more realistic case of a (3+1)-dimensional spacetime, foliated into noncommutative planes. As a result, we obtain propagators, which are finite in the ultraviolet as well as the infrared regime.
Sokolenko, Stanislav; Aucoin, Marc G
2015-09-04
The growing ubiquity of metabolomic techniques has facilitated high frequency time-course data collection for an increasing number of applications. While the concentration trends of individual metabolites can be modeled with common curve fitting techniques, a more accurate representation of the data needs to consider effects that act on more than one metabolite in a given sample. To this end, we present a simple algorithm that uses nonparametric smoothing carried out on all observed metabolites at once to identify and correct systematic error from dilution effects. In addition, we develop a simulation of metabolite concentration time-course trends to supplement available data and explore algorithm performance. Although we focus on nuclear magnetic resonance (NMR) analysis in the context of cell culture, a number of possible extensions are discussed. Realistic metabolic data was successfully simulated using a 4-step process. Starting with a set of metabolite concentration time-courses from a metabolomic experiment, each time-course was classified as either increasing, decreasing, concave, or approximately constant. Trend shapes were simulated from generic functions corresponding to each classification. The resulting shapes were then scaled to simulated compound concentrations. Finally, the scaled trends were perturbed using a combination of random and systematic errors. To detect systematic errors, a nonparametric fit was applied to each trend and percent deviations calculated at every timepoint. Systematic errors could be identified at time-points where the median percent deviation exceeded a threshold value, determined by the choice of smoothing model and the number of observed trends. Regardless of model, increasing the number of observations over a time-course resulted in more accurate error estimates, although the improvement was not particularly large between 10 and 20 samples per trend. The presented algorithm was able to identify systematic errors as small as 2.5 % under a wide range of conditions. Both the simulation framework and error correction method represent examples of time-course analysis that can be applied to further developments in (1)H-NMR methodology and the more general application of quantitative metabolomics.
A study of real-time computer graphic display technology for aeronautical applications
NASA Technical Reports Server (NTRS)
Rajala, S. A.
1981-01-01
The development, simulation, and testing of an algorithm for anti-aliasing vector drawings is discussed. The pseudo anti-aliasing line drawing algorithm is an extension to Bresenham's algorithm for computer control of a digital plotter. The algorithm produces a series of overlapping line segments where the display intensity shifts from one segment to the other in this overlap (transition region). In this algorithm the length of the overlap and the intensity shift are essentially constants because the transition region is an aid to the eye in integrating the segments into a single smooth line.
Rao, Akshay; Elara, Mohan Rajesh; Elangovan, Karthikeyan
This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local path planning algorithms.
NASA Technical Reports Server (NTRS)
Izumi, K. H.; Thompson, J. L.; Groce, J. L.; Schwab, R. W.
1986-01-01
The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described.
An Automated Cloud-edge Detection Algorithm Using Cloud Physics and Radar Data
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Merceret, Francis J.; Grainger, Cedric A.
2003-01-01
An automated cloud edge detection algorithm was developed and extensively tested. The algorithm uses in-situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft is in or out of cloud. Cloud edges are determined when the in/out state changes, subject to a hysteresis constraint. The hysteresis constraint prevents isolated transient cloud puffs or data dropouts from being identified as cloud boundaries. The algorithm was verified by detailed manual examination of the data set in comparison to the results from application of the automated algorithm.
An improved reversible data hiding algorithm based on modification of prediction errors
NASA Astrophysics Data System (ADS)
Jafar, Iyad F.; Hiary, Sawsan A.; Darabkh, Khalid A.
2014-04-01
Reversible data hiding algorithms are concerned with the ability of hiding data and recovering the original digital image upon extraction. This issue is of interest in medical and military imaging applications. One particular class of such algorithms relies on the idea of histogram shifting of prediction errors. In this paper, we propose an improvement over one popular algorithm in this class. The improvement is achieved by employing a different predictor, the use of more bins in the prediction error histogram in addition to multilevel embedding. The proposed extension shows significant improvement over the original algorithm and its variations.
Monte Carlo Analysis of Reservoir Models Using Seismic Data and Geostatistical Models
NASA Astrophysics Data System (ADS)
Zunino, A.; Mosegaard, K.; Lange, K.; Melnikova, Y.; Hansen, T. M.
2013-12-01
We present a study on the analysis of petroleum reservoir models consistent with seismic data and geostatistical constraints performed on a synthetic reservoir model. Our aim is to invert directly for structure and rock bulk properties of the target reservoir zone. To infer the rock facies, porosity and oil saturation seismology alone is not sufficient but a rock physics model must be taken into account, which links the unknown properties to the elastic parameters. We then combine a rock physics model with a simple convolutional approach for seismic waves to invert the "measured" seismograms. To solve this inverse problem, we employ a Markov chain Monte Carlo (MCMC) method, because it offers the possibility to handle non-linearity, complex and multi-step forward models and provides realistic estimates of uncertainties. However, for large data sets the MCMC method may be impractical because of a very high computational demand. To face this challenge one strategy is to feed the algorithm with realistic models, hence relying on proper prior information. To address this problem, we utilize an algorithm drawn from geostatistics to generate geologically plausible models which represent samples of the prior distribution. The geostatistical algorithm learns the multiple-point statistics from prototype models (in the form of training images), then generates thousands of different models which are accepted or rejected by a Metropolis sampler. To further reduce the computation time we parallelize the software and run it on multi-core machines. The solution of the inverse problem is then represented by a collection of reservoir models in terms of facies, porosity and oil saturation, which constitute samples of the posterior distribution. We are finally able to produce probability maps of the properties we are interested in by performing statistical analysis on the collection of solutions.
Surprise Realistic Mock Disasters—The Most Effective Means of Disaster Training
Campanale, Ralph P.
1964-01-01
Realism introduced in several large scale surprise mock-disaster tests proved to be a real challenge to a disaster-conscious hospital staff that had previously undergone fairly extensive disaster training and testing, utilizing conventional methods. Serious weaknesses, flaws, omissions and deficiencies in disaster capability were dramatically and conclusively revealed by use of what appeared to be a “live” disaster setting with smoke, fire, explosions; adverse weather and light conditions; realistically-simulated “casualites” especially prepared not only to look but to act the part; selected harassment incidents from well-documented disasters, such as utility failures, automobile accident on the main access route, overload of telephone switchboard, and invasion of hospital and disaster site by distraught relatives and the morbidly curious. Imagesp436-ap436-bp436-c PMID:14232161
NASA Astrophysics Data System (ADS)
Nikitichev, Daniil I.; Xia, Wenfeng; West, Simeon J.; Desjardins, Adrien E.; Ourselin, Sebastien; Vercauteren, Tom
2017-03-01
Ultrasound (US) imaging is widely used to guide vascular access procedures such as arterial and venous cannulation. As needle visualisation with US imaging can be very challenging, it is easy to misplace the needle in the patient and it can be life threating. Photoacoustic (PA) imaging is well suited to image medical needles and catheters that are commonly used for vascular access. To improve the success rate, a certain level of proficiency is required that can be gained through extensive practice on phantoms. Unfortunately, commercial training phantoms are expensive and custom-made phantoms usually do not replicate the anatomy very well. Thus, there is a great demand for more realistic and affordable ultrasound and photoacoustic imaging phantoms for vasculature access procedures training. Three-dimensional (3D) printing can help create models that replicate complex anatomical geometries. However, the available 3D printed materials do not possess realistic tissue properties. Alternatively, tissue-mimicking materials can be employed using casting and 3D printed moulds but this approach is limited to the creation of realistic outer shapes with no replication of complex internal structures. In this study, we developed a realistic vasculature access phantom using a combination of mineral oil based materials as background tissue and a non-toxic, water dissolvable filament material to create complex vascular structure using 3D printing. US and PA images of the phantoms comprising the complex vasculature network were acquired. The results show that 3D printing can facilitate the fabrication of anatomically realistic training phantoms, with designs that can be customized and shared electronically.
Topological mappings of video and audio data.
Fyfe, Colin; Barbakh, Wesam; Ooi, Wei Chuan; Ko, Hanseok
2008-12-01
We review a new form of self-organizing map which is based on a nonlinear projection of latent points into data space, identical to that performed in the Generative Topographic Mapping (GTM).(1) But whereas the GTM is an extension of a mixture of experts, this model is an extension of a product of experts.(2) We show visualisation and clustering results on a data set composed of video data of lips uttering 5 Korean vowels. Finally we note that we may dispense with the probabilistic underpinnings of the product of experts and derive the same algorithm as a minimisation of mean squared error between the prototypes and the data. This leads us to suggest a new algorithm which incorporates local and global information in the clustering. Both ot the new algorithms achieve better results than the standard Self-Organizing Map.
A new head phantom with realistic shape and spatially varying skull resistivity distribution.
Li, Jian-Bo; Tang, Chi; Dai, Meng; Liu, Geng; Shi, Xue-Tao; Yang, Bin; Xu, Can-Hua; Fu, Feng; You, Fu-Sheng; Tang, Meng-Xing; Dong, Xiu-Zhen
2014-02-01
Brain electrical impedance tomography (EIT) is an emerging method for monitoring brain injuries. To effectively evaluate brain EIT systems and reconstruction algorithms, we have developed a novel head phantom that features realistic anatomy and spatially varying skull resistivity. The head phantom was created with three layers, representing scalp, skull, and brain tissues. The fabrication process entailed 3-D printing of the anatomical geometry for mold creation followed by casting to ensure high geometrical precision and accuracy of the resistivity distribution. We evaluated the accuracy and stability of the phantom. Results showed that the head phantom achieved high geometric accuracy, accurate skull resistivity values, and good stability over time and in the frequency domain. Experimental impedance reconstructions performed using the head phantom and computer simulations were found to be consistent for the same perturbation object. In conclusion, this new phantom could provide a more accurate test platform for brain EIT research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aimone, James Bradley; Bernard, Michael Lewis; Vineyard, Craig Michael
2014-10-01
Adult neurogenesis in the hippocampus region of the brain is a neurobiological process that is believed to contribute to the brain's advanced abilities in complex pattern recognition and cognition. Here, we describe how realistic scale simulations of the neurogenesis process can offer both a unique perspective on the biological relevance of this process and confer computational insights that are suggestive of novel machine learning techniques. First, supercomputer based scaling studies of the neurogenesis process demonstrate how a small fraction of adult-born neurons have a uniquely larger impact in biologically realistic scaled networks. Second, we describe a novel technical approach bymore » which the information content of ensembles of neurons can be estimated. Finally, we illustrate several examples of broader algorithmic impact of neurogenesis, including both extending existing machine learning approaches and novel approaches for intelligent sensing.« less
CG2Real: Improving the Realism of Computer Generated Images Using a Large Collection of Photographs.
Johnson, Micah K; Dale, Kevin; Avidan, Shai; Pfister, Hanspeter; Freeman, William T; Matusik, Wojciech
2011-09-01
Computer-generated (CG) images have achieved high levels of realism. This realism, however, comes at the cost of long and expensive manual modeling, and often humans can still distinguish between CG and real images. We introduce a new data-driven approach for rendering realistic imagery that uses a large collection of photographs gathered from online repositories. Given a CG image, we retrieve a small number of real images with similar global structure. We identify corresponding regions between the CG and real images using a mean-shift cosegmentation algorithm. The user can then automatically transfer color, tone, and texture from matching regions to the CG image. Our system only uses image processing operations and does not require a 3D model of the scene, making it fast and easy to integrate into digital content creation workflows. Results of a user study show that our hybrid images appear more realistic than the originals.
De Marco, Tommaso; Ries, Florian; Guermandi, Marco; Guerrieri, Roberto
2012-05-01
Electrical impedance tomography (EIT) is an imaging technology based on impedance measurements. To retrieve meaningful insights from these measurements, EIT relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of current flows therein. The nonhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeoff between physical accuracy and technical feasibility, which at present severely limits the capabilities of EIT. This work presents a complete algorithmic flow for an accurate EIT modeling environment featuring high anatomical fidelity with a spatial resolution equal to that provided by an MRI and a novel realistic complete electrode model implementation. At the same time, we demonstrate that current graphics processing unit (GPU)-based platforms provide enough computational power that a domain discretized with five million voxels can be numerically modeled in about 30 s.
Towards a 'siliconeural computer': technological successes and challenges.
Hughes, Mark A; Shipston, Mike J; Murray, Alan F
2015-07-28
Electronic signals govern the function of both nervous systems and computers, albeit in different ways. As such, hybridizing both systems to create an iono-electric brain-computer interface is a realistic goal; and one that promises exciting advances in both heterotic computing and neuroprosthetics capable of circumventing devastating neuropathology. 'Neural networks' were, in the 1980s, viewed naively as a potential panacea for all computational problems that did not fit well with conventional computing. The field bifurcated during the 1990s into a highly successful and much more realistic machine learning community and an equally pragmatic, biologically oriented 'neuromorphic computing' community. Algorithms found in nature that use the non-synchronous, spiking nature of neuronal signals have been found to be (i) implementable efficiently in silicon and (ii) computationally useful. As a result, interest has grown in techniques that could create mixed 'siliconeural' computers. Here, we discuss potential approaches and focus on one particular platform using parylene-patterned silicon dioxide.
The Influence of Antenna Pattern on Faraday Rotation in Remote Sensing at L-band
NASA Technical Reports Server (NTRS)
LeVine, David M.; Jacob, S. Daniel
2007-01-01
Faraday rotation is a change in the polarization vector of electromagnetic radiation that occurs as the waves propagate from the Earth surface through the ionosphere to a spaceborne sensor. This change can cause errors in monitoring parameters at the surface such as soil moisture and sea surface salinity and it is an important consideration for radiometers on future missions in space such as NASA's Aquarius mission and ESA's SMOS mission. Two prominent strategies for compensating for Faraday rotation are using a sum of the signal at two polarizations and using the correlation between the signals at the two polarizations. These strategies work for an idealized antenna. This paper evaluates the strategies in the context of realistic antennas such as will be built for the Aquarius radiometer. Realistic antennas will make small differences that need to be included in planning for retrieval algorithms in future missions.
Multiagent Reinforcement Learning With Sparse Interactions by Negotiation and Knowledge Transfer.
Zhou, Luowei; Yang, Pei; Chen, Chunlin; Gao, Yang
2017-05-01
Reinforcement learning has significant applications for multiagent systems, especially in unknown dynamic environments. However, most multiagent reinforcement learning (MARL) algorithms suffer from such problems as exponential computation complexity in the joint state-action space, which makes it difficult to scale up to realistic multiagent problems. In this paper, a novel algorithm named negotiation-based MARL with sparse interactions (NegoSIs) is presented. In contrast to traditional sparse-interaction-based MARL algorithms, NegoSI adopts the equilibrium concept and makes it possible for agents to select the nonstrict equilibrium-dominating strategy profile (nonstrict EDSP) or meta equilibrium for their joint actions. The presented NegoSI algorithm consists of four parts: 1) the equilibrium-based framework for sparse interactions; 2) the negotiation for the equilibrium set; 3) the minimum variance method for selecting one joint action; and 4) the knowledge transfer of local Q -values. In this integrated algorithm, three techniques, i.e., unshared value functions, equilibrium solutions, and sparse interactions are adopted to achieve privacy protection, better coordination and lower computational complexity, respectively. To evaluate the performance of the presented NegoSI algorithm, two groups of experiments are carried out regarding three criteria: 1) steps of each episode; 2) rewards of each episode; and 3) average runtime. The first group of experiments is conducted using six grid world games and shows fast convergence and high scalability of the presented algorithm. Then in the second group of experiments NegoSI is applied to an intelligent warehouse problem and simulated results demonstrate the effectiveness of the presented NegoSI algorithm compared with other state-of-the-art MARL algorithms.
First-Principle Construction of U(1) Symmetric Matrix Product States
NASA Astrophysics Data System (ADS)
Rakov, Mykhailo V.
2018-07-01
The algorithm to calculate the sets of symmetry sectors for virtual indices of U(1) symmetric matrix product states (MPS) is described. The principal differences between open (OBC) and periodic (PBC) boundary conditions are stressed, and the extension of PBC MPS algorithm to projected entangled pair states is outlined.
Generating Multimodal References
ERIC Educational Resources Information Center
van der Sluis, Ielka; Krahmer, Emiel
2007-01-01
This article presents a new computational model for the generation of multimodal referring expressions (REs), based on observations in human communication. The algorithm is an extension of the graph-based algorithm proposed by Krahmer, van Erk, and Verleg (2003) and makes use of a so-called Flashlight Model for pointing. The Flashlight Model…
Constructing the Exact Significance Level for a Person-Fit Statistic.
ERIC Educational Resources Information Center
Liou, Michelle; Chang, Chih-Hsin
1992-01-01
An extension is proposed for the network algorithm introduced by C.R. Mehta and N.R. Patel to construct exact tail probabilities for testing the general hypothesis that item responses are distributed according to the Rasch model. A simulation study indicates the efficiency of the algorithm. (SLD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastore, Giovanni; Rabiti, Cristian; Pizzocri, Davide
PolyPole is a numerical algorithm for the calculation of intra-granular fission gas release. In particular, the algorithm solves the gas diffusion problem in a fuel grain in time-varying conditions. The program has been extensively tested. PolyPole combines a high accuracy with a high computational efficiency and is ideally suited for application in fuel performance codes.
FGRAAL: FORTRAN extended graph algorithmic language
NASA Technical Reports Server (NTRS)
Basili, V. R.; Mesztenyi, C. K.; Rheinboldt, W. C.
1972-01-01
The FORTRAN version FGRAAL of the graph algorithmic language GRAAL as it has been implemented for the Univac 1108 is described. FBRAAL is an extension of FORTRAN 5 and is intended for describing and implementing graph algorithms of the type primarily arising in applications. The formal description contained in this report represents a supplement to the FORTRAN 5 manual for the Univac 1108 (UP-4060), that is, only the new features of the language are described. Several typical graph algorithms, written in FGRAAL, are included to illustrate various features of the language and to show its applicability.
An l1-TV algorithm for deconvolution with salt and pepper noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohlberg, Brendt; Rodriguez, Paul
2008-01-01
There has recently been considerable interest in applying Total Variation with an {ell}{sup 1} data fidelity term to the denoising of images subject to salt and pepper noise, but the extension of this formulation to more general problems, such as deconvolution, has received little attention, most probably because most efficient algorithms for {ell}{sup 1}-TV denoising can not handle more general inverse problems. We apply the Iteratively Reweighted Norm algorithm to this problem, and compare performance with an alternative algorithm based on the Mumford-Shah functional.
Optimal domain decomposition strategies
NASA Technical Reports Server (NTRS)
Yoon, Yonghyun; Soni, Bharat K.
1995-01-01
The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.
Simulation studies of the application of SEASAT data in weather and state of sea forecasting models
NASA Technical Reports Server (NTRS)
Cardone, V. J.; Greenwood, J. A.
1979-01-01
The design and analysis of SEASAT simulation studies in which the error structure of conventional analyses and forecasts is modeled realistically are presented. The development and computer implementation of a global spectral ocean wave model is described. The design of algorithms for the assimilation of theoretical wind data into computers and for the utilization of real wind data and wave height data in a coupled computer system are presented.
A Fully Distributed Approach to the Design of a KBIT/SEC VHF Packet Radio Network,
1984-02-01
topological change and consequent out-modea routing data. Algorithm development has been aided by computer simulation using a finite state machine technique...development has been aided by computer simulation using a finite state machine technique to model a realistic network of up to fifty nodes. This is...use of computer based equipments in weapons systems and their associated sensors and command and control elements and the trend from voice to data
A realistic 3+1D Viscous Hydro Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romatschke, Paul
2015-05-31
DoE funds were used as bridge funds for the faculty position for the PI at the University of Colorado. The total funds for the Years 3-5 of the JET Topical Collaboration amounted to about 50 percent of the academic year salary of the PI.The PI contributed to the JET Topical Collaboration by developing, testing and applying algorithms for a realistic simulation of the bulk medium created in relativistic ion collisions.Specifically, two approaches were studied, one based on a new Lattice-Boltzmann (LB) framework, and one on a more traditional viscous hydro-dynamics framework. Both approaches were found to be viable in principle,more » with the LB approach being more elegant but needing still more time to develop.The traditional approach led to the super-hybrid model of ion collisions dubbed 'superSONIC', and has been successfully used for phenomenology of relativistic heavy-ion and light-on-heavy-ion collisions.In the time-frame of the JET Topical Collaboration, the Colorado group has published 15 articles in peer-reviewed journals, three of which were published in Physical Review Letters. The group graduated one Master student during this time-frame and two more PhD students are expected to graduate in the next few years. The PI has given more than 28 talks and presentations during this period.« less
Optimizing performance of hybrid FSO/RF networks in realistic dynamic scenarios
NASA Astrophysics Data System (ADS)
Llorca, Jaime; Desai, Aniket; Baskaran, Eswaran; Milner, Stuart; Davis, Christopher
2005-08-01
Hybrid Free Space Optical (FSO) and Radio Frequency (RF) networks promise highly available wireless broadband connectivity and quality of service (QoS), particularly suitable for emerging network applications involving extremely high data rate transmissions such as high quality video-on-demand and real-time surveillance. FSO links are prone to atmospheric obscuration (fog, clouds, snow, etc) and are difficult to align over long distances due the use of narrow laser beams and the effect of atmospheric turbulence. These problems can be mitigated by using adjunct directional RF links, which provide backup connectivity. In this paper, methodologies for modeling and simulation of hybrid FSO/RF networks are described. Individual link propagation models are derived using scattering theory, as well as experimental measurements. MATLAB is used to generate realistic atmospheric obscuration scenarios, including moving cloud layers at different altitudes. These scenarios are then imported into a network simulator (OPNET) to emulate mobile hybrid FSO/RF networks. This framework allows accurate analysis of the effects of node mobility, atmospheric obscuration and traffic demands on network performance, and precise evaluation of topology reconfiguration algorithms as they react to dynamic changes in the network. Results show how topology reconfiguration algorithms, together with enhancements to TCP/IP protocols which reduce the network response time, enable the network to rapidly detect and act upon link state changes in highly dynamic environments, ensuring optimized network performance and availability.
Credit Card Fraud Detection: A Realistic Modeling and a Novel Learning Strategy.
Dal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca
2017-09-14
Detecting frauds in credit card transactions is perhaps one of the best testbeds for computational intelligence algorithms. In fact, this problem involves a number of relevant challenges, namely: concept drift (customers' habits evolve and fraudsters change their strategies over time), class imbalance (genuine transactions far outnumber frauds), and verification latency (only a small set of transactions are timely checked by investigators). However, the vast majority of learning algorithms that have been proposed for fraud detection rely on assumptions that hardly hold in a real-world fraud-detection system (FDS). This lack of realism concerns two main aspects: 1) the way and timing with which supervised information is provided and 2) the measures used to assess fraud-detection performance. This paper has three major contributions. First, we propose, with the help of our industrial partner, a formalization of the fraud-detection problem that realistically describes the operating conditions of FDSs that everyday analyze massive streams of credit card transactions. We also illustrate the most appropriate performance measures to be used for fraud-detection purposes. Second, we design and assess a novel learning strategy that effectively addresses class imbalance, concept drift, and verification latency. Third, in our experiments, we demonstrate the impact of class unbalance and concept drift in a real-world data stream containing more than 75 million transactions, authorized over a time window of three years.
NASA Astrophysics Data System (ADS)
Chintalapudi, V. S.; Sirigiri, Sivanagaraju
2017-04-01
In power system restructuring, pricing the electrical power plays a vital role in cost allocation between suppliers and consumers. In optimal power dispatch problem, not only the cost of active power generation but also the costs of reactive power generated by the generators should be considered to increase the effectiveness of the problem. As the characteristics of reactive power cost curve are similar to that of active power cost curve, a nonconvex reactive power cost function is formulated. In this paper, a more realistic multi-fuel total cost objective is formulated by considering active and reactive power costs of generators. The formulated cost function is optimized by satisfying equality, in-equality and practical constraints using the proposed uniform distributed two-stage particle swarm optimization. The proposed algorithm is a combination of uniform distribution of control variables (to start the iterative process with good initial value) and two-stage initialization processes (to obtain best final value in less number of iterations) can enhance the effectiveness of convergence characteristics. Obtained results for the considered standard test functions and electrical systems indicate the effectiveness of the proposed algorithm and can obtain efficient solution when compared to existing methods. Hence, the proposed method is a promising method and can be easily applied to optimize the power system objectives.
A fast recursive algorithm for molecular dynamics simulation
NASA Technical Reports Server (NTRS)
Jain, A.; Vaidehi, N.; Rodriguez, G.
1993-01-01
The present recursive algorithm for solving molecular systems' dynamical equations of motion employs internal variable models that reduce such simulations' computation time by an order of magnitude, relative to Cartesian models. Extensive use is made of spatial operator methods recently developed for analysis and simulation of the dynamics of multibody systems. A factor-of-450 speedup over the conventional O(N-cubed) algorithm is demonstrated for the case of a polypeptide molecule with 400 residues.
Angular Superresolution for a Scanning Antenna with Simulated Complex Scatterer-Type Targets
2002-05-01
Approved for public release; distribution unlimited. The Scan- MUSIC (MUltiple SIgnal Classification), or SMUSIC, algorithm was developed by the Millimeter...with the use of a single rotatable sensor scanning in an angular region of interest. This algorithm has been adapted and extended from the MUSIC ...simulation. Abstract ii iii Contents 1. Introduction 1 2. Extension of the MUSIC Algorithm for Scanning Antenna 2 2.1 Subvector Averaging Method
Algorithm For Solution Of Subset-Regression Problems
NASA Technical Reports Server (NTRS)
Verhaegen, Michel
1991-01-01
Reliable and flexible algorithm for solution of subset-regression problem performs QR decomposition with new column-pivoting strategy, enables selection of subset directly from originally defined regression parameters. This feature, in combination with number of extensions, makes algorithm very flexible for use in analysis of subset-regression problems in which parameters have physical meanings. Also extended to enable joint processing of columns contaminated by noise with those free of noise, without using scaling techniques.
Novel optimization technique of isolated microgrid with hydrogen energy storage.
Beshr, Eman Hassan; Abdelghany, Hazem; Eteiba, Mahmoud
2018-01-01
This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm.
Efficient electromagnetic source imaging with adaptive standardized LORETA/FOCUSS.
Schimpf, Paul H; Liu, Hesheng; Ramon, Ceon; Haueisen, Jens
2005-05-01
Functional brain imaging and source localization based on the scalp's potential field require a solution to an ill-posed inverse problem with many solutions. This makes it necessary to incorporate a priori knowledge in order to select a particular solution. A computational challenge for some subject-specific head models is that many inverse algorithms require a comprehensive sampling of the candidate source space at the desired resolution. In this study, we present an algorithm that can accurately reconstruct details of localized source activity from a sparse sampling of the candidate source space. Forward computations are minimized through an adaptive procedure that increases source resolution as the spatial extent is reduced. With this algorithm, we were able to compute inverses using only 6% to 11% of the full resolution lead-field, with a localization accuracy that was not significantly different than an exhaustive search through a fully-sampled source space. The technique is, therefore, applicable for use with anatomically-realistic, subject-specific forward models for applications with spatially concentrated source activity.
Novel optimization technique of isolated microgrid with hydrogen energy storage
Abdelghany, Hazem; Eteiba, Mahmoud
2018-01-01
This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm. PMID:29466433
Fast numerics for the spin orbit equation with realistic tidal dissipation and constant eccentricity
NASA Astrophysics Data System (ADS)
Bartuccelli, Michele; Deane, Jonathan; Gentile, Guido
2017-08-01
We present an algorithm for the rapid numerical integration of a time-periodic ODE with a small dissipation term that is C^1 in the velocity. Such an ODE arises as a model of spin-orbit coupling in a star/planet system, and the motivation for devising a fast algorithm for its solution comes from the desire to estimate probability of capture in various solutions, via Monte Carlo simulation: the integration times are very long, since we are interested in phenomena occurring on timescales of the order of 10^6-10^7 years. The proposed algorithm is based on the high-order Euler method which was described in Bartuccelli et al. (Celest Mech Dyn Astron 121(3):233-260, 2015), and it requires computer algebra to set up the code for its implementation. The payoff is an overall increase in speed by a factor of about 7.5 compared to standard numerical methods. Means for accelerating the purely numerical computation are also discussed.
NASA Astrophysics Data System (ADS)
Ushijima, T.; Yeh, W.
2013-12-01
An optimal experimental design algorithm is developed to select locations for a network of observation wells that provides the maximum information about unknown hydraulic conductivity in a confined, anisotropic aquifer. The design employs a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. Because that the formulated problem is non-convex and contains integer variables (necessitating a combinatorial search), for a realistically-scaled model, the problem may be difficult, if not impossible, to solve through traditional mathematical programming techniques. Genetic Algorithms (GAs) are designed to search out the global optimum; however because a GA requires a large number of calls to a groundwater model, the formulated optimization problem may still be infeasible to solve. To overcome this, Proper Orthogonal Decomposition (POD) is applied to the groundwater model to reduce its dimension. The information matrix in the full model space can then be searched without solving the full model.
The infection algorithm: an artificial epidemic approach for dense stereo correspondence.
Olague, Gustavo; Fernández, Francisco; Pérez, Cynthia B; Lutton, Evelyne
2006-01-01
We present a new bio-inspired approach applied to a problem of stereo image matching. This approach is based on an artificial epidemic process, which we call the infection algorithm. The problem at hand is a basic one in computer vision for 3D scene reconstruction. It has many complex aspects and is known as an extremely difficult one. The aim is to match the contents of two images in order to obtain 3D information that allows the generation of simulated projections from a viewpoint that is different from the ones of the initial photographs. This process is known as view synthesis. The algorithm we propose exploits the image contents in order to produce only the necessary 3D depth information, while saving computational time. It is based on a set of distributed rules, which propagate like an artificial epidemic over the images. Experiments on a pair of real images are presented, and realistic reprojected images have been generated.
Prediction-Correction Algorithms for Time-Varying Constrained Optimization
Simonetto, Andrea; Dall'Anese, Emiliano
2017-07-26
This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less
A feedback control for the advanced launch system
NASA Technical Reports Server (NTRS)
Seywald, Hans; Cliff, Eugene M.
1991-01-01
A robust feedback algorithm is presented for a near-minimum-fuel ascent of a two-stage launch vehicle operating in the equatorial plane. The development of the algorithm is based on the ideas of neighboring optimal control and can be derived into three phases. In phase 1, the formalism of optimal control is employed to calculate fuel-optimal ascent trajectories for a simple point-mass model. In phase 2, these trajectories are used to numerically calculate gain functions of time for the control(s), the total flight time, and possibly, for other variables of interest. In phase 3, these gains are used to determine feedback expressions for the controls associated with a more realistic model of a launch vehicle. With the Advanced Launch System in mind, all calculations are performed on a two-stage vehicle with fixed thrust history, but this restriction is by no means important for the approach taken. Performance and robustness of the algorithm is found to be excellent.
A Comparison of Techniques for Scheduling Earth-Observing Satellites
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna
2004-01-01
Scheduling observations by coordinated fleets of Earth Observing Satellites (EOS) involves large search spaces, complex constraints and poorly understood bottlenecks, conditions where evolutionary and related algorithms are often effective. However, there are many such algorithms and the best one to use is not clear. Here we compare multiple variants of the genetic algorithm: stochastic hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on ten realistically-sized EOS scheduling problems. Schedules are represented by a permutation (non-temperal ordering) of the observation requests. A simple deterministic scheduler assigns times and resources to each observation request in the order indicated by the permutation, discarding those that violate the constraints created by previously scheduled observations. Simulated annealing performs best. Random mutation outperform a more 'intelligent' mutator. Furthermore, the best mutator, by a small margin, was a novel approach we call temperature dependent random sampling that makes large changes in the early stages of evolution and smaller changes towards the end of search.
Evaluation of a pulse control law for flexible spacecraft
NASA Technical Reports Server (NTRS)
1985-01-01
The following analytical and experimental studies were conducted: (1) A simple algorithm was developed to suppress the structural vibrations of 3-dimensional distributed parameter systems, subjected to interface motion and/or directly applied forces. The algorithm is designed to cope with structural oscillations superposed on top of rigid-body motion: a situation identical to that encountered by the SCOLE components. A significant feature of the method is that only local measurements of the structural displacements and velocities relative to the moving frame of reference are needed. (2) A numerical simulation study was conducted on a simple linear finite element model of a cantilevered plate which was subjected to test excitations consisting of impulsive base motion and of nonstationary wide-band random excitation applied at its root. In each situation, the aim was to suppress the vibrations of the plate relative to the moving base. (3) A small mechanical model resembling an aircraft wing was designed and fabricated to investigate the control algorithm under realistic laboratory conditions.
Optimal Link Removal for Epidemic Mitigation: A Two-Way Partitioning Approach
Enns, Eva A.; Mounzer, Jeffrey J.; Brandeau, Margaret L.
2011-01-01
The structure of the contact network through which a disease spreads may influence the optimal use of resources for epidemic control. In this work, we explore how to minimize the spread of infection via quarantining with limited resources. In particular, we examine which links should be removed from the contact network, given a constraint on the number of removable links, such that the number of nodes which are no longer at risk for infection is maximized. We show how this problem can be posed as a non-convex quadratically constrained quadratic program (QCQP), and we use this formulation to derive a link removal algorithm. The performance of our QCQP-based algorithm is validated on small Erdős-Renyi and small-world random graphs, and then tested on larger, more realistic networks, including a real-world network of injection drug use. We show that our approach achieves near optimal performance and out-perform so ther intuitive link removal algorithms, such as removing links in order of edge centrality. PMID:22115862
Real-time algorithm for acoustic imaging with a microphone array.
Huang, Xun
2009-05-01
Acoustic phased array has become an important testing tool in aeroacoustic research, where the conventional beamforming algorithm has been adopted as a classical processing technique. The computation however has to be performed off-line due to the expensive cost. An innovative algorithm with real-time capability is proposed in this work. The algorithm is similar to a classical observer in the time domain while extended for the array processing to the frequency domain. The observer-based algorithm is beneficial mainly for its capability of operating over sampling blocks recursively. The expensive experimental time can therefore be reduced extensively since any defect in a testing can be corrected instantaneously.
Image restoration by minimizing zero norm of wavelet frame coefficients
NASA Astrophysics Data System (ADS)
Bao, Chenglong; Dong, Bin; Hou, Likun; Shen, Zuowei; Zhang, Xiaoqun; Zhang, Xue
2016-11-01
In this paper, we propose two algorithms, namely the extrapolated proximal iterative hard thresholding (EPIHT) algorithm and the EPIHT algorithm with line-search, for solving the {{\\ell }}0-norm regularized wavelet frame balanced approach for image restoration. Under the theoretical framework of Kurdyka-Łojasiewicz property, we show that the sequences generated by the two algorithms converge to a local minimizer with linear convergence rate. Moreover, extensive numerical experiments on sparse signal reconstruction and wavelet frame based image restoration problems including CT reconstruction, image deblur, demonstrate the improvement of {{\\ell }}0-norm based regularization models over some prevailing ones, as well as the computational efficiency of the proposed algorithms.
Gürün, O O; Fatouros, P P; Kuhn, G M; de Paredes, E S
2001-04-01
We report on some extensions and further developments of a well-known microcalcification detection algorithm based on adaptive noise equalization. Tissue equivalent phantom images with and without labeled microcalcifications were subjected to this algorithm, and analyses of results revealed some shortcomings in the approach. Particularly, it was observed that the method of estimating the width of distributions in the feature space was based on assumptions which resulted in the loss of similarity preservation characteristics. A modification involving a change of estimator statistic was made, and the modified approach was tested on the same phantom images. Other modifications for improving detectability such as downsampling and use of alternate local contrast filters were also tested. The results indicate that these modifications yield improvements in detectability, while extending the generality of the approach. Extensions to real mammograms and further directions of research are discussed.
A simple extension of Roe's scheme for real gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arabi, Sina, E-mail: sina.arabi@polymtl.ca; Trépanier, Jean-Yves; Camarero, Ricardo
The purpose of this paper is to develop a highly accurate numerical algorithm to model real gas flows in local thermodynamic equilibrium (LTE). The Euler equations are solved using a finite volume method based on Roe's flux difference splitting scheme including real gas effects. A novel algorithm is proposed to calculate the Jacobian matrix which satisfies the flux difference splitting exactly in the average state for a general equation of state. This algorithm increases the robustness and accuracy of the method, especially around the contact discontinuities and shock waves where the gas properties jump appreciably. The results are compared withmore » an exact solution of the Riemann problem for the shock tube which considers the real gas effects. In addition, the method is applied to a blunt cone to illustrate the capability of the proposed extension in solving two dimensional flows.« less
NASA Astrophysics Data System (ADS)
Azzali, F.; Ghazali, O.; Omar, M. H.
2017-08-01
The design of next generation networks in various technologies under the “Anywhere, Anytime” paradigm offers seamless connectivity across different coverage. A conventional algorithm such as RSSThreshold algorithm, that only uses the received strength signal (RSS) as a metric, will decrease handover performance regarding handover latency, delay, packet loss, and handover failure probability. Moreover, the RSS-based algorithm is only suitable for horizontal handover decision to examine the quality of service (QoS) compared to the vertical handover decision in advanced technologies. In the next generation network, vertical handover can be started based on the user’s convenience or choice rather than connectivity reasons. This study proposes a vertical handover decision algorithm that uses a Fuzzy Logic (FL) algorithm, to increase QoS performance in heterogeneous vehicular ad-hoc networks (VANET). The study uses network simulator 2.29 (NS 2.29) along with the mobility traffic network and generator to implement simulation scenarios and topologies. This helps the simulation to achieve a realistic VANET mobility scenario. The required analysis on the performance of QoS in the vertical handover can thus be conducted. The proposed Fuzzy Logic algorithm shows improvement over the conventional algorithm (RSSThreshold) in the average percentage of handover QoS whereby it achieves 20%, 21% and 13% improvement on handover latency, delay, and packet loss respectively. This is achieved through triggering a process in layer two and three that enhances the handover performance.
NASA Astrophysics Data System (ADS)
Wu, Zhejun; Kudenov, Michael W.
2017-05-01
This paper presents a reconstruction algorithm for the Spatial-Spectral Multiplexing (SSM) optical system. The goal of this algorithm is to recover the three-dimensional spatial and spectral information of a scene, given that a one-dimensional spectrometer array is used to sample the pupil of the spatial-spectral modulator. The challenge of the reconstruction is that the non-parametric representation of the three-dimensional spatial and spectral object requires a large number of variables, thus leading to an underdetermined linear system that is hard to uniquely recover. We propose to reparameterize the spectrum using B-spline functions to reduce the number of unknown variables. Our reconstruction algorithm then solves the improved linear system via a least- square optimization of such B-spline coefficients with additional spatial smoothness regularization. The ground truth object and the optical model for the measurement matrix are simulated with both spatial and spectral assumptions according to a realistic field of view. In order to test the robustness of the algorithm, we add Poisson noise to the measurement and test on both two-dimensional and three-dimensional spatial and spectral scenes. Our analysis shows that the root mean square error of the recovered results can be achieved within 5.15%.
Parallel Processing Systems for Passive Ranging During Helicopter Flight
NASA Technical Reports Server (NTRS)
Sridhar, Bavavar; Suorsa, Raymond E.; Showman, Robert D. (Technical Monitor)
1994-01-01
The complexity of rotorcraft missions involving operations close to the ground result in high pilot workload. In order to allow a pilot time to perform mission-oriented tasks, sensor-aiding and automation of some of the guidance and control functions are highly desirable. Images from an electro-optical sensor provide a covert way of detecting objects in the flight path of a low-flying helicopter. Passive ranging consists of processing a sequence of images using techniques based on optical low computation and recursive estimation. The passive ranging algorithm has to extract obstacle information from imagery at rates varying from five to thirty or more frames per second depending on the helicopter speed. We have implemented and tested the passive ranging algorithm off-line using helicopter-collected images. However, the real-time data and computation requirements of the algorithm are beyond the capability of any off-the-shelf microprocessor or digital signal processor. This paper describes the computational requirements of the algorithm and uses parallel processing technology to meet these requirements. Various issues in the selection of a parallel processing architecture are discussed and four different computer architectures are evaluated regarding their suitability to process the algorithm in real-time. Based on this evaluation, we conclude that real-time passive ranging is a realistic goal and can be achieved with a short time.
Imaging tilted transversely isotropic media with a generalised screen propagator
NASA Astrophysics Data System (ADS)
Shin, Sung-Il; Byun, Joongmoo; Seol, Soon Jee
2015-01-01
One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers.
Huang, C.; Townshend, J.R.G.
2003-01-01
A stepwise regression tree (SRT) algorithm was developed for approximating complex nonlinear relationships. Based on the regression tree of Breiman et al . (BRT) and a stepwise linear regression (SLR) method, this algorithm represents an improvement over SLR in that it can approximate nonlinear relationships and over BRT in that it gives more realistic predictions. The applicability of this method to estimating subpixel forest was demonstrated using three test data sets, on all of which it gave more accurate predictions than SLR and BRT. SRT also generated more compact trees and performed better than or at least as well as BRT at all 10 equal forest proportion interval ranging from 0 to 100%. This method is appealing to estimating subpixel land cover over large areas.
Non-equilibrium Green's functions method: Non-trivial and disordered leads
NASA Astrophysics Data System (ADS)
He, Yu; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann
2014-11-01
The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si0.5Ge0.5. It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si0.5Ge0.5 transistors by 45% compared to conventional lead methods.
NASA Technical Reports Server (NTRS)
Pindera, Maciej Z.; Przekwas, Andrzej J.
1994-01-01
Since the early 1960's, it has been known that realistic combustion models for liquid fuel rocket engines should contain at least a rudimentary treatment of atomization and spray physics. This is of particular importance in transient operations. It has long been recognized that spray characteristics and droplet vaporization physics play a fundamental role in determining the stability behavior of liquid fuel rocket motors. This paper gives an overview of work in progress on design of a numerical algorithm for practical studies of combustion instabilities in liquid rocket motors. For flexibility, the algorithm is composed of semi-independent solution modules, accounting for different physical processes. Current findings are report and future work is indicated. The main emphasis of this research is the development of an efficient treatment to interactions between acoustic fields and liquid fuel/oxidizer sprays.
Optimal Control for Fast and Robust Generation of Entangled States in Anisotropic Heisenberg Chains
NASA Astrophysics Data System (ADS)
Zhang, Xiong-Peng; Shao, Bin; Zou, Jian
2017-05-01
Motivated by some recent results of the optimal control (OC) theory, we study anisotropic XXZ Heisenberg spin-1/2 chains with control fields acting on a single spin, with the aim of exploring how maximally entangled state can be prepared. To achieve the goal, we use a numerical optimization algorithm (e.g., the Krotov algorithm, which was shown to be capable of reaching the quantum speed limit) to search an optimal set of control parameters, and then obtain OC pulses corresponding to the target fidelity. We find that the minimum time for implementing our target state depending on the anisotropy parameter Δ of the model. Finally, we analyze the robustness of the obtained results for the optimal fidelities and the effectiveness of the Krotov method under some realistic conditions.
Improved Heat-Stress Algorithm
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.; Fehn, Steven
2007-01-01
NASA Dryden presents an improved and automated site-specific algorithm for heat-stress approximation using standard atmospheric measurements routinely obtained from the Edwards Air Force Base weather detachment. Heat stress, which is the net heat load a worker may be exposed to, is officially measured using a thermal-environment monitoring system to calculate the wet-bulb globe temperature (WBGT). This instrument uses three independent thermometers to measure wet-bulb, dry-bulb, and the black-globe temperatures. By using these improvements, a more realistic WBGT estimation value can now be produced. This is extremely useful for researchers and other employees who are working on outdoor projects that are distant from the areas that the Web system monitors. Most importantly, the improved WBGT estimations will make outdoor work sites safer by reducing the likelihood of heat stress.
All-optical signatures of strong-field QED in the vacuum emission picture
NASA Astrophysics Data System (ADS)
Gies, Holger; Karbstein, Felix; Kohlfürst, Christian
2018-02-01
We study all-optical signatures of the effective nonlinear couplings among electromagnetic fields in the quantum vacuum, using the collision of two focused high-intensity laser pulses as an example. The experimental signatures of quantum vacuum nonlinearities are encoded in signal photons, whose kinematic and polarization properties differ from the photons constituting the macroscopic laser fields. We implement an efficient numerical algorithm allowing for the theoretical investigation of such signatures in realistic field configurations accessible in experiment. This algorithm is based on a vacuum emission scheme and can readily be adapted to the collision of more laser beams or further involved field configurations. We solve the case of two colliding pulses in full 3 +1 -dimensional spacetime and identify experimental geometries and parameter regimes with improved signal-to-noise ratios.
Simulating Nailfold Capillaroscopy Sequences to Evaluate Algorithms for Blood Flow Estimation
Tresadern, P. A.; Berks, M.; Murray, A. K.; Dinsdale, G.; Taylor, C. J.; Herrick, A. L.
2016-01-01
The effects of systemic sclerosis (SSc) – a disease of the connective tissue causing blood flow problems that can require amputation of the fingers – can be observed indirectly by imaging the capillaries at the nailfold, though taking quantitative measures such as blood flow to diagnose the disease and monitor its progression is not easy. Optical flow algorithms may be applied, though without ground truth (i.e. known blood flow) it is hard to evaluate their accuracy. We propose an image model that generates realistic capillaroscopy videos with known flow, and use this model to quantify the effect of flow rate, cell density and contrast (among others) on estimated flow. This resource will help researchers to design systems that are robust under real-world conditions. PMID:24110268
Extended Mixed-Efects Item Response Models with the MH-RM Algorithm
ERIC Educational Resources Information Center
Chalmers, R. Philip
2015-01-01
A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for…
A robust nonlinear position observer for synchronous motors with relaxed excitation conditions
NASA Astrophysics Data System (ADS)
Bobtsov, Alexey; Bazylev, Dmitry; Pyrkin, Anton; Aranovskiy, Stanislav; Ortega, Romeo
2017-04-01
A robust, nonlinear and globally convergent rotor position observer for surface-mounted permanent magnet synchronous motors was recently proposed by the authors. The key feature of this observer is that it requires only the knowledge of the motor's resistance and inductance. Using some particular properties of the mathematical model it is shown that the problem of state observation can be translated into one of estimation of two constant parameters, which is carried out with a standard gradient algorithm. In this work, we propose to replace this estimator with a new one called dynamic regressor extension and mixing, which has the following advantages with respect to gradient estimators: (1) the stringent persistence of excitation (PE) condition of the regressor is not necessary to ensure parameter convergence; (2) the latter is guaranteed requiring instead a non-square-integrability condition that has a clear physical meaning in terms of signal energy; (3) if the regressor is PE, the new observer (like the old one) ensures convergence is exponential, entailing some robustness properties to the observer; (4) the new estimator includes an additional filter that constitutes an additional degree of freedom to satisfy the non-square integrability condition. Realistic simulation results show significant performance improvement of the position observer using the new parameter estimator, with a less oscillatory behaviour and a faster convergence speed.
NASA Astrophysics Data System (ADS)
Villar, Paula I.; Soba, Alejandro
2017-07-01
We present an alternative numerical approach to compute the number of particles created inside a cavity due to time-dependent boundary conditions. The physical model consists of a rectangular cavity, where a wall always remains still while the other wall of the cavity presents a smooth movement in one direction. The method relies on the setting of the boundary conditions (Dirichlet and Neumann) and the following resolution of the corresponding equations of modes. By a further comparison between the ground state before and after the movement of the cavity wall, we finally compute the number of particles created. To demonstrate the method, we investigate the creation of particle production in vibrating cavities, confirming previously known results in the appropriate limits. Within this approach, the dynamical Casimir effect can be investigated, making it possible to study a variety of scenarios where no analytical results are known. Of special interest is, of course, the realistic case of the electromagnetic field in a three-dimensional cavity, with transverse electric (TE)-mode and transverse magnetic (TM)-mode photon production. Furthermore, with our approach we are able to calculate numerically the particle creation in a tuneable resonant superconducting cavity by the use of the generalized Robin boundary condition. We compare the numerical results with analytical predictions as well as a different numerical approach. Its extension to three dimensions is also straightforward.
A Likelihood-Based Framework for Association Analysis of Allele-Specific Copy Numbers.
Hu, Y J; Lin, D Y; Sun, W; Zeng, D
2014-10-01
Copy number variants (CNVs) and single nucleotide polymorphisms (SNPs) co-exist throughout the human genome and jointly contribute to phenotypic variations. Thus, it is desirable to consider both types of variants, as characterized by allele-specific copy numbers (ASCNs), in association studies of complex human diseases. Current SNP genotyping technologies capture the CNV and SNP information simultaneously via fluorescent intensity measurements. The common practice of calling ASCNs from the intensity measurements and then using the ASCN calls in downstream association analysis has important limitations. First, the association tests are prone to false-positive findings when differential measurement errors between cases and controls arise from differences in DNA quality or handling. Second, the uncertainties in the ASCN calls are ignored. We present a general framework for the integrated analysis of CNVs and SNPs, including the analysis of total copy numbers as a special case. Our approach combines the ASCN calling and the association analysis into a single step while allowing for differential measurement errors. We construct likelihood functions that properly account for case-control sampling and measurement errors. We establish the asymptotic properties of the maximum likelihood estimators and develop EM algorithms to implement the corresponding inference procedures. The advantages of the proposed methods over the existing ones are demonstrated through realistic simulation studies and an application to a genome-wide association study of schizophrenia. Extensions to next-generation sequencing data are discussed.
Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong; Turchi, Craig
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
Simulation and mitigation of higher-order ionospheric errors in PPP
NASA Astrophysics Data System (ADS)
Zus, Florian; Deng, Zhiguo; Wickert, Jens
2017-04-01
We developed a rapid and precise algorithm to compute ionospheric phase advances in a realistic electron density field. The electron density field is derived from a plasmaspheric extension of the International Reference Ionosphere (Gulyaeva and Bilitza, 2012) and the magnetic field stems from the International Geomagnetic Reference Field. For specific station locations, elevation and azimuth angles the ionospheric phase advances are stored in a look-up table. The higher-order ionospheric residuals are computed by forming the standard linear combination of the ionospheric phase advances. In a simulation study we examine how the higher-order ionospheric residuals leak into estimated station coordinates, clocks, zenith delays and tropospheric gradients in precise point positioning. The simulation study includes a few hundred globally distributed stations and covers the time period 1990-2015. We take a close look on the estimated zenith delays and tropospheric gradients as they are considered a data source for meteorological and climate related research. We also show how the by product of this simulation study, the look-up tables, can be used to mitigate higher-order ionospheric errors in practise. Gulyaeva, T.L., and Bilitza, D. Towards ISO Standard Earth Ionosphere and Plasmasphere Model. In: New Developments in the Standard Model, edited by R.J. Larsen, pp. 1-39, NOVA, Hauppauge, New York, 2012, available at https://www.novapublishers.com/catalog/product_info.php?products_id=35812
Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised
NASA Technical Reports Server (NTRS)
Yee, Helen C.; Sweby, Peter K.
1997-01-01
The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.
Robustness and Reliability of Synergy-Based Myocontrol of a Multiple Degree of Freedom Robotic Arm.
Lunardini, Francesca; Casellato, Claudia; d'Avella, Andrea; Sanger, Terence D; Pedrocchi, Alessandra
2016-09-01
In this study, we test the feasibility of the synergy- based approach for application in the realistic and clinically oriented framework of multi-degree of freedom (DOF) robotic control. We developed and tested online ten able-bodied subjects in a semi-supervised method to achieve simultaneous, continuous control of two DOFs of a robotic arm, using muscle synergies extracted from upper limb muscles while performing flexion-extension movements of the elbow and shoulder joints in the horizontal plane. To validate the efficacy of the synergy-based approach in extracting reliable control signals, compared to the simple muscle-pair method typically used in commercial applications, we evaluated the repeatability of the algorithm over days, the effect of the arm dynamics on the control performance, and the robustness of the control scheme to the presence of co-contraction between pairs of antagonist muscles. Results showed that, without the need for a daily calibration, all subjects were able to intuitively and easily control the synergy-based myoelectric interface in different scenarios, using both dynamic and isometric muscle contractions. The proposed control scheme was shown to be robust to co-contraction between antagonist muscles, providing better performance compared to the traditional muscle-pair approach. The current study is a first step toward user-friendly application of synergy-based myocontrol of assistive robotic devices.
Security in Intelligent Transport Systems for Smart Cities: From Theory to Practice
Javed, Muhammad Awais; Ben Hamida, Elyes; Znaidi, Wassim
2016-01-01
Connecting vehicles securely and reliably is pivotal to the implementation of next generation ITS applications of smart cities. With continuously growing security threats, vehicles could be exposed to a number of service attacks that could put their safety at stake. To address this concern, both US and European ITS standards have selected Elliptic Curve Cryptography (ECC) algorithms to secure vehicular communications. However, there is still a lack of benchmarking studies on existing security standards in real-world settings. In this paper, we first analyze the security architecture of the ETSI ITS standard. We then implement the ECC based digital signature and encryption procedures using an experimental test-bed and conduct an extensive benchmark study to assess their performance which depends on factors such as payload size, processor speed and security levels. Using network simulation models, we further evaluate the impact of standard compliant security procedures in dense and realistic smart cities scenarios. Obtained results suggest that existing security solutions directly impact the achieved quality of service (QoS) and safety awareness of vehicular applications, in terms of increased packet inter-arrival delays, packet and cryptographic losses, and reduced safety awareness in safety applications. Finally, we summarize the insights gained from the simulation results and discuss open research challenges for efficient working of security in ITS applications of smart cities. PMID:27314358
Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
Zhu, Guangdong; Turchi, Craig
2017-01-27
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
Synchronous wearable wireless body sensor network composed of autonomous textile nodes.
Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik
2014-10-09
A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system.
NASA Astrophysics Data System (ADS)
Kunz, Matthew W.; Mouschovias, Telemachos Ch.
2009-03-01
We formulate the problem of the formation and subsequent evolution of fragments (or cores) in magnetically supported, self-gravitating molecular clouds in two spatial dimensions. The six-fluid (neutrals, electrons, molecular and atomic ions, positively charged, negatively charged, and neutral grains) physical system is governed by the radiation, nonideal magnetohydrodynamic equations. The magnetic flux is not assumed to be frozen in any of the charged species. Its evolution is determined by a newly derived generalized Ohm's law, which accounts for the contributions of both elastic and inelastic collisions to ambipolar diffusion and Ohmic dissipation. The species abundances are calculated using an extensive chemical-equilibrium network. Both MRN and uniform grain size distributions are considered. The thermal evolution of the protostellar core and its effect on the dynamics are followed by employing the gray flux-limited diffusion approximation. Realistic temperature-dependent grain opacities are used that account for a variety of grain compositions. We have augmented the publicly available Zeus-MP code to take into consideration all these effects and have modified several of its algorithms to improve convergence, accuracy, and efficiency. Results of magnetic star formation simulations that accurately track the evolution of a protostellar fragment from a density sime103 cm-3 to a density sime1015 cm-3, while rigorously accounting for both nonideal MHD processes and radiative transfer, are presented in a separate paper.
Synchronous Wearable Wireless Body Sensor Network Composed of Autonomous Textile Nodes
Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik
2014-01-01
A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system. PMID:25302808
Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters
Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng
2016-01-01
Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046
SPMBR: a scalable algorithm for mining sequential patterns based on bitmaps
NASA Astrophysics Data System (ADS)
Xu, Xiwei; Zhang, Changhai
2013-12-01
Now some sequential patterns mining algorithms generate too many candidate sequences, and increase the processing cost of support counting. Therefore, we present an effective and scalable algorithm called SPMBR (Sequential Patterns Mining based on Bitmap Representation) to solve the problem of mining the sequential patterns for large databases. Our method differs from previous related works of mining sequential patterns. The main difference is that the database of sequential patterns is represented by bitmaps, and a simplified bitmap structure is presented firstly. In this paper, First the algorithm generate candidate sequences by SE(Sequence Extension) and IE(Item Extension), and then obtain all frequent sequences by comparing the original bitmap and the extended item bitmap .This method could simplify the problem of mining the sequential patterns and avoid the high processing cost of support counting. Both theories and experiments indicate that the performance of SPMBR is predominant for large transaction databases, the required memory size for storing temporal data is much less during mining process, and all sequential patterns can be mined with feasibility.