Sample records for realization algorithm era

  1. An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Cooper, J. E.; Wright, J. R.

    1987-01-01

    A modification to the Eigensystem Realization Algorithm (ERA) for modal parameter identification is presented in this paper. The ERA minimum order realization approach using singular value decomposition is combined with the philosophy of the Correlation Fit method in state space form such that response data correlations rather than actual response values are used for modal parameter identification. This new method, the ERA using data correlations (ERA/DC), reduces bias errors due to noise corruption significantly without the need for model overspecification. This method is tested using simulated five-degree-of-freedom system responses corrupted by measurement noise. It is found for this case that, when model overspecification is permitted and a minimum order solution obtained via singular value truncation, the results from the two methods are of similar quality.

  2. An Eigensystem Realization Algorithm (ERA) for modal parameter identification and model reduction

    NASA Technical Reports Server (NTRS)

    Juang, J. N.; Pappa, R. S.

    1985-01-01

    A method, called the Eigensystem Realization Algorithm (ERA), is developed for modal parameter identification and model reduction of dynamic systems from test data. A new approach is introduced in conjunction with the singular value decomposition technique to derive the basic formulation of minimum order realization which is an extended version of the Ho-Kalman algorithm. The basic formulation is then transformed into modal space for modal parameter identification. Two accuracy indicators are developed to quantitatively identify the system modes and noise modes. For illustration of the algorithm, examples are shown using simulation data and experimental data for a rectangular grid structure.

  3. Eigensystem realization algorithm user's guide forVAX/VMS computers: Version 931216

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.

    1994-01-01

    The eigensystem realization algorithm (ERA) is a multiple-input, multiple-output, time domain technique for structural modal identification and minimum-order system realization. Modal identification is the process of calculating structural eigenvalues and eigenvectors (natural vibration frequencies, damping, mode shapes, and modal masses) from experimental data. System realization is the process of constructing state-space dynamic models for modern control design. This user's guide documents VAX/VMS-based FORTRAN software developed by the author since 1984 in conjunction with many applications. It consists of a main ERA program and 66 pre- and post-processors. The software provides complete modal identification capabilities and most system realization capabilities.

  4. Eigensystem realization algorithm modal identification experiences with mini-mast

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Schenk, Axel; Noll, Christopher

    1992-01-01

    This paper summarizes work performed under a collaborative research effort between the National Aeronautics and Space Administration (NASA) and the German Aerospace Research Establishment (DLR, Deutsche Forschungsanstalt fur Luft- und Raumfahrt). The objective is to develop and demonstrate system identification technology for future large space structures. Recent experiences using the Eigensystem Realization Algorithm (ERA), for modal identification of Mini-Mast, are reported. Mini-Mast is a 20 m long deployable space truss used for structural dynamics and active vibration-control research at the Langley Research Center. A comprehensive analysis of 306 frequency response functions (3 excitation forces and 102 displacement responses) was performed. Emphasis is placed on two topics of current research: (1) gaining an improved understanding of ERA performance characteristics (theory vs. practice); and (2) developing reliable techniques to improve identification results for complex experimental data. Because of nonlinearities and numerous local modes, modal identification of Mini-Mast proved to be surprisingly difficult. Methods were available, ERA, for obtaining detailed, high-confidence results.

  5. Rigid body mode identification of the PAH-2 helicopter using the eigensystem realization algorithm

    NASA Technical Reports Server (NTRS)

    Schenk, Axel; Pappa, Richard S.

    1992-01-01

    The rigid body modes of the PAH-2 'Tiger' helicopter were identified using the Eigensystem Realization Algorithm (ERA). This work complements ground vibration tests performed using DLR's traditional phase resonance technique and the ISSPA (Identification of Structural System Parameters) method. Rigid body modal parameters are important for ground resonance prediction. Time-domain data for ERA were obtained by inverse Fourier transformation of frequency response functions measured with stepped-sine excitation. Mode purity (based on the Phase Resonance Criterion) was generally equal to or greater than corresponding results obtained in the ground vibration tests. All identified natural frequencies and mode shapes correlate well with corresponding ground vibration test results. The modal identification approach discussed in this report has become increasingly attractive in recent years due to the steadily declining cost and increased performance of scientific computers. As illustrated in this application, modern time-domain methods can be successfully applied to data acquired using DLR's existing test equipment. Some suggestions are made for future applications of time domain modal identification in this manner.

  6. Big data mining analysis method based on cloud computing

    NASA Astrophysics Data System (ADS)

    Cai, Qing Qiu; Cui, Hong Gang; Tang, Hao

    2017-08-01

    Information explosion era, large data super-large, discrete and non-(semi) structured features have gone far beyond the traditional data management can carry the scope of the way. With the arrival of the cloud computing era, cloud computing provides a new technical way to analyze the massive data mining, which can effectively solve the problem that the traditional data mining method cannot adapt to massive data mining. This paper introduces the meaning and characteristics of cloud computing, analyzes the advantages of using cloud computing technology to realize data mining, designs the mining algorithm of association rules based on MapReduce parallel processing architecture, and carries out the experimental verification. The algorithm of parallel association rule mining based on cloud computing platform can greatly improve the execution speed of data mining.

  7. Autonomous Modal Identification of the Space Shuttle Tail Rudder

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; James, George H., III; Zimmerman, David C.

    1997-01-01

    Autonomous modal identification automates the calculation of natural vibration frequencies, damping, and mode shapes of a structure from experimental data. This technology complements damage detection techniques that use continuous or periodic monitoring of vibration characteristics. The approach shown in the paper incorporates the Eigensystem Realization Algorithm (ERA) as a data analysis engine and an autonomous supervisor to condense multiple estimates of modal parameters using ERA's Consistent-Mode Indicator and correlation of mode shapes. The procedure was applied to free-decay responses of a Space Shuttle tail rudder and successfully identified the seven modes of the structure below 250 Hz. The final modal parameters are a condensed set of results for 87 individual ERA cases requiring approximately five minutes of CPU time on a DEC Alpha computer.

  8. Evaluating the performance of distributed approaches for modal identification

    NASA Astrophysics Data System (ADS)

    Krishnan, Sriram S.; Sun, Zhuoxiong; Irfanoglu, Ayhan; Dyke, Shirley J.; Yan, Guirong

    2011-04-01

    In this paper two modal identification approaches appropriate for use in a distributed computing environment are applied to a full-scale, complex structure. The natural excitation technique (NExT) is used in conjunction with a condensed eigensystem realization algorithm (ERA), and the frequency domain decomposition with peak-picking (FDD-PP) are both applied to sensor data acquired from a 57.5-ft, 10 bay highway sign truss structure. Monte-Carlo simulations are performed on a numerical example to investigate the statistical properties and sensitivity to noise of the two distributed algorithms. Experimental results are provided and discussed.

  9. Research on multi - channel interactive virtual assembly system for power equipment under the “VR+” era

    NASA Astrophysics Data System (ADS)

    Ren, Yilong; Duan, Xitong; Wu, Lei; He, Jin; Xu, Wu

    2017-06-01

    With the development of the “VR+” era, the traditional virtual assembly system of power equipment has been unable to satisfy our growing needs. In this paper, based on the analysis of the traditional virtual assembly system of electric power equipment and the application of VR technology in the virtual assembly system of electric power equipment in our country, this paper puts forward the scheme of establishing the virtual assembly system of power equipment: At first, we should obtain the information of power equipment, then we should using OpenGL and multi texture technology to build 3D solid graphics library. After the completion of three-dimensional modeling, we can use the dynamic link library DLL package three-dimensional solid graphics generation program to realize the modularization of power equipment model library and power equipment model library generated hidden algorithm. After the establishment of 3D power equipment model database, we set up the virtual assembly system of 3D power equipment to separate the assembly operation of the power equipment from the space. At the same time, aiming at the deficiency of the traditional gesture recognition algorithm, we propose a gesture recognition algorithm based on improved PSO algorithm for BP neural network data glove. Finally, the virtual assembly system of power equipment can really achieve multi-channel interaction function.

  10. a Unified Matrix Polynomial Approach to Modal Identification

    NASA Astrophysics Data System (ADS)

    Allemang, R. J.; Brown, D. L.

    1998-04-01

    One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.

  11. Early-time cosmology with stiff era from modified gravity

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-11-01

    In this work, we shall incorporate a stiff era in the Universe's evolution in the context of F (R ) gravity. After deriving the vacuum F (R ) gravity, which may realize a stiff evolution, we combine the stiff F (R ) gravity with an R2 model, and we construct a qualitative model for the inflationary and stiff era, with the latter commencing after the end of the inflationary era. We assume that the baryogenesis occurs during the stiff era, and we calculate the baryon to entropy ratio, which effectively constraints the functional form of the stiff F (R ) gravity. Further constraints on the stiff F (R ) gravity may come from the primordial gravitational waves, and particularly their scalar mode, which is characteristic of the F (R ) gravity theory. The stiff era presence does not contradict the standard cosmology era, namely, inflation, and the radiation-matter domination eras. Furthermore, we investigate which F (R ) gravity may realize a dust and stiff matter dominated Einstein-Hilbert evolution.

  12. Cyclo-stationary linear parameter time-varying subspace realization method applied for identification of horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Velazquez, Antonio; Swartz, R. Andrew

    2013-04-01

    Wind energy is becoming increasingly important worldwide as an alternative renewable energy source. Economical, maintenance and operation are critical issues for large slender dynamic structures, especially for remote offshore wind farms. Health monitoring systems are very promising instruments to assure reliability and good performance of the structure. These sensing and control technologies are typically informed by models based on mechanics or data-driven identification techniques in the time and/or frequency domain. Frequency response functions are popular but are difficult to realize autonomously for structures of higher order and having overlapping frequency content. Instead, time-domain techniques have shown powerful advantages from a practical point of view (e.g. embedded algorithms in wireless-sensor networks), being more suitable to differentiate closely-related modes. Customarily, time-varying effects are often neglected or dismissed to simplify the analysis, but such is not the case for wind loaded structures with spinning multibodies. A more complex scenario is constituted when dealing with both periodic mechanisms responsible for the vibration shaft of the rotor-blade system, and the wind tower substructure interaction. Transformations of the cyclic effects on the vibration data can be applied to isolate inertia quantities different from rotating-generated forces that are typically non-stationary in nature. After applying these transformations, structural identification can be carried out by stationary techniques via data-correlated Eigensystem realizations. In this paper an exploration of a periodic stationary or cyclo-stationary subspace identification technique is presented here by means of a modified Eigensystem Realization Algorithm (ERA) via Stochastic Subspace Identification (SSI) and Linear Parameter Time-Varying (LPTV) techniques. Structural response is assumed under stationary ambient excitation produced by a Gaussian (white) noise assembled in the operative range bandwidth of horizontal-axis wind turbines. ERA-OKID analysis is driven by correlation-function matrices from the stationary ambient response aiming to reduce noise effects. Singular value decomposition (SVD) and eigenvalue analysis are computed in a last stage to get frequencies and mode shapes. Proposed assumptions are carefully weighted to account for the uncertainty of the environment the wind turbines are subjected to. A numerical example is presented based on data acquisition carried out in a BWC XL.1 low power wind turbine device installed in University of California at Davis. Finally, comments and observations are provided on how this subspace realization technique can be extended for modal-parameter identification using exclusively ambient vibration data.

  13. Implementation issues of the nearfield equivalent source imaging microphone array

    NASA Astrophysics Data System (ADS)

    Bai, Mingsian R.; Lin, Jia-Hong; Tseng, Chih-Wen

    2011-01-01

    This paper revisits a nearfield microphone array technique termed nearfield equivalent source imaging (NESI) proposed previously. In particular, various issues concerning the implementation of the NESI algorithm are examined. The NESI can be implemented in both the time domain and the frequency domain. Acoustical variables including sound pressure, particle velocity, active intensity and sound power are calculated by using multichannel inverse filters. Issues concerning sensor deployment are also investigated for the nearfield array. The uniform array outperformed a random array previously optimized for far-field imaging, which contradicts the conventional wisdom in far-field arrays. For applications in which only a patch array with scarce sensors is available, a virtual microphone approach is employed to ameliorate edge effects using extrapolation and to improve imaging resolution using interpolation. To enhance the processing efficiency of the time-domain NESI, an eigensystem realization algorithm (ERA) is developed. Several filtering methods are compared in terms of computational complexity. Significant saving on computations can be achieved using ERA and the frequency-domain NESI, as compared to the traditional method. The NESI technique was also experimentally validated using practical sources including a 125 cc scooter and a wooden box model with a loudspeaker fitted inside. The NESI technique proved effective in identifying broadband and non-stationary sources produced by the sources.

  14. Revisiting the age of enlightenment from a collective decision making systems perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Marko A; Watkins, Jennifer H

    2009-01-01

    The ideals of the eighteenth century's Age of Enlightenment are the foundation of modern democracies. The era was characterized by thinkers who promoted progressive social reforms that opposed the long-established aristocracies and monarchies of the time. Prominent examples of such reforms include the establishment of inalienable human rights, self-governing republics, and market capitalism. Twenty-first century democratic nations can benefit from revisiting the systems developed during the Enlightenment and reframing them within the techno-social context of the Information Age. This article explores the application of social algorithms that make use of Thomas Paine's (English: 1737--1809) representatives, Adam Smith's (Scottish: 1723--1790) self-interestedmore » actors, and Marquis de Condorcet's (French: 1743--1794) optimal decision making groups. It is posited that technology-enabled social algorithms can better realize the ideals articulated during the Enlightenment.« less

  15. Loop quantum cosmology scalar field models

    NASA Astrophysics Data System (ADS)

    Kleidis, K.; Oikonomou, V. K.

    In this work, we use the Loop Quantum Cosmology (LQC) modified scalar-tensor reconstruction techniques in order to investigate how bouncing and inflationary cosmologies can be realized. With regard to the inflationary cosmologies, we shall be interested in realizing the intermediate inflation and the Type IV singular inflation, while with regard to bouncing cosmologies, we shall realize the superbounce and the symmetric bounce. In all the cases, we shall find the kinetic term of the LQC holonomy corrected scalar-tensor theory and the corresponding scalar potential. In addition, we shall include a study of the effective Equation of State (EoS), emphasizing at the early- and late-time eras. As we demonstrate, in some cases it is possible to have a nearly de Sitter EoS at the late-time era, a result that could be interpreted as the description of a late-time acceleration era. Also, in all cases we shall examine the dynamical stability of the LQC holonomy corrected scalar-tensor theory, and we shall confront the results with those coming from the corresponding classical dynamical stability theory. The most appealing cosmological scenario is that of a Type IV singular inflationary scenario, in which the singularity may occur at the late-time era. As we demonstrate, for this model, during the dark energy era, a transition from non-phantom to a phantom dark energy era occurs.

  16. Output-only cyclo-stationary linear-parameter time-varying stochastic subspace identification method for rotating machinery and spinning structures

    NASA Astrophysics Data System (ADS)

    Velazquez, Antonio; Swartz, R. Andrew

    2015-02-01

    Economical maintenance and operation are critical issues for rotating machinery and spinning structures containing blade elements, especially large slender dynamic beams (e.g., wind turbines). Structural health monitoring systems represent promising instruments to assure reliability and good performance from the dynamics of the mechanical systems. However, such devices have not been completely perfected for spinning structures. These sensing technologies are typically informed by both mechanistic models coupled with data-driven identification techniques in the time and/or frequency domain. Frequency response functions are popular but are difficult to realize autonomously for structures of higher order, especially when overlapping frequency content is present. Instead, time-domain techniques have shown to possess powerful advantages from a practical point of view (i.e. low-order computational effort suitable for real-time or embedded algorithms) and also are more suitable to differentiate closely-related modes. Customarily, time-varying effects are often neglected or dismissed to simplify this analysis, but such cannot be the case for sinusoidally loaded structures containing spinning multi-bodies. A more complex scenario is constituted when dealing with both periodic mechanisms responsible for the vibration shaft of the rotor-blade system and the interaction of the supporting substructure. Transformations of the cyclic effects on the vibrational data can be applied to isolate inertial quantities that are different from rotation-generated forces that are typically non-stationary in nature. After applying these transformations, structural identification can be carried out by stationary techniques via data-correlated eigensystem realizations. In this paper, an exploration of a periodic stationary or cyclo-stationary subspace identification technique is presented here for spinning multi-blade systems by means of a modified Eigensystem Realization Algorithm (ERA) via stochastic subspace identification (SSI) and linear parameter time-varying (LPTV) techniques. Structural response is assumed to be stationary ambient excitation produced by a Gaussian (white) noise within the operative range bandwidth of the machinery or structure in study. ERA-OKID analysis is driven by correlation-function matrices from the stationary ambient response aiming to reduce noise effects. Singular value decomposition (SVD) and eigenvalue analysis are computed in a last stage to identify frequencies and complex-valued mode shapes. Proposed assumptions are carefully weighted to account for the uncertainty of the environment. A numerical example is carried out based a spinning finite element (SFE) model, and verified using ANSYS® Ver. 12. Finally, comments and observations are provided on how this subspace realization technique can be extended to the problem of modal-parameter identification using only ambient vibration data.

  17. Hamiltonian identifiability assisted by single-probe measurement

    NASA Astrophysics Data System (ADS)

    Sone, Akira; Cappellaro, Paola; Quantum Engineering Group Team

    2017-04-01

    We study the Hamiltonian identifiability of a many-body spin- 1 / 2 system assisted by the measurement on a single quantum probe based on the eigensystem realization algorithm (ERA) approach employed in. We demonstrate a potential application of Gröbner basis to the identifiability test of the Hamiltonian, and provide the necessary experimental resources, such as the lower bound in the number of the required sampling points, the upper bound in total required evolution time, and thus the total measurement time. Focusing on the examples of the identifiability in the spin chain model with nearest-neighbor interaction, we classify the spin-chain Hamiltonian based on its identifiability, and provide the control protocols to engineer the non-identifiable Hamiltonian to be an identifiable Hamiltonian.

  18. Vehicle Maneuver Detection with Accelerometer-Based Classification.

    PubMed

    Cervantes-Villanueva, Javier; Carrillo-Zapata, Daniel; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F

    2016-09-29

    In the mobile computing era, smartphones have become instrumental tools to develop innovative mobile context-aware systems. In that sense, their usage in the vehicular domain eases the development of novel and personal transportation solutions. In this frame, the present work introduces an innovative mechanism to perceive the current kinematic state of a vehicle on the basis of the accelerometer data from a smartphone mounted in the vehicle. Unlike previous proposals, the introduced architecture targets the computational limitations of such devices to carry out the detection process following an incremental approach. For its realization, we have evaluated different classification algorithms to act as agents within the architecture. Finally, our approach has been tested with a real-world dataset collected by means of the ad hoc mobile application developed.

  19. The information science of microbial ecology.

    PubMed

    Hahn, Aria S; Konwar, Kishori M; Louca, Stilianos; Hanson, Niels W; Hallam, Steven J

    2016-06-01

    A revolution is unfolding in microbial ecology where petabytes of 'multi-omics' data are produced using next generation sequencing and mass spectrometry platforms. This cornucopia of biological information has enormous potential to reveal the hidden metabolic powers of microbial communities in natural and engineered ecosystems. However, to realize this potential, the development of new technologies and interpretative frameworks grounded in ecological design principles are needed to overcome computational and analytical bottlenecks. Here we explore the relationship between microbial ecology and information science in the era of cloud-based computation. We consider microorganisms as individual information processing units implementing a distributed metabolic algorithm and describe developments in ecoinformatics and ubiquitous computing with the potential to eliminate bottlenecks and empower knowledge creation and translation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. The Analysis of RDF Semantic Data Storage Optimization in Large Data Era

    NASA Astrophysics Data System (ADS)

    He, Dandan; Wang, Lijuan; Wang, Can

    2018-03-01

    With the continuous development of information technology and network technology in China, the Internet has also ushered in the era of large data. In order to obtain the effective acquisition of information in the era of large data, it is necessary to optimize the existing RDF semantic data storage and realize the effective query of various data. This paper discusses the storage optimization of RDF semantic data under large data.

  1. Singular F(R) cosmology unifying early- and late-time acceleration with matter and radiation domination era

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We present some cosmological models which unify the late- and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of F(R) gravity. Particularly, the first model unifies the late- and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the R 2 inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination era follows, which lasts until the second Type IV singularity, and then the late-time acceleration era follows. The models have two appealing features: firstly they produce a nearly scale invariant power spectrum of primordial curvature perturbations and a scalar-to-tensor ratio which are compatible with the most recent observational data and secondly, it seems that the deceleration-acceleration transition is crucially affected by the presence of the second Type IV singularity which occurs at the end of the matter domination era. As we demonstrate, the Hubble horizon at early times shrinks, as expected for an initially accelerating Universe, then during the matter domination era, it expands and finally after the Type IV singularity, the Hubble horizon starts to shrink again, during the late-time acceleration era. Intriguingly enough, the deceleration-acceleration transition, occurs after the second Type IV singularity. In addition, we investigate which F(R) gravity can successfully realize each of the four cosmological epochs.

  2. Academic Dishonesty in Distance Higher Education: Challenges and Models for Moral Education in the Digital Era

    ERIC Educational Resources Information Center

    Farisi, Mohammad Imam

    2013-01-01

    Today, in the era of open access to digital-based information and communication, one of the biggest challenges in higher education to realize moral education and to build academic culture and integrity is the emergence of academic dishonesty behaviors among academic members. The paper describes academic dishonesty behaviors in Distance Higher…

  3. UARS in-flight jitter study for EOS

    NASA Technical Reports Server (NTRS)

    Molnar, John; Garnek, Mike

    1993-01-01

    Response data collected from gyroscopes on board the Upper Atmosphere Research Satellite (UARS) provided a unique opportunity to analyze actual flight pointing jitter data. Flight modal frequencies and damping values are derived from the measured data using an Eigensystem Realization Algorithm (ERA). Flight frequencies at various solar array positions are compared to analytical predictions obtained with a Finite Element Model. The solar array modal frequencies change with position due to the modes acting about different spacecraft inertial axes. Higher order modes were difficult to identify due to the limited instrumentation. Future flight jitter studies on other spacecraft would be significantly aided by additional instrumentation. Spacecraft jitter due to continuous disturbance sources such as the 1.6 meter scanning microwave antenna, the solar array drive, and reaction wheels is presented. The solar array drive disturbance dominates the spacecraft response during normal operation.

  4. Global Precipitation Measurement

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Kummerow, Christian D.; Shepherd, James Marshall

    2008-01-01

    This chapter begins with a brief history and background of microwave precipitation sensors, with a discussion of the sensitivity of both passive and active instruments, to trace the evolution of satellite-based rainfall techniques from an era of inference to an era of physical measurement. Next, the highly successful Tropical Rainfall Measuring Mission will be described, followed by the goals and plans for the Global Precipitation Measurement (GPM) Mission and the status of precipitation retrieval algorithm development. The chapter concludes with a summary of the need for space-based precipitation measurement, current technological capabilities, near-term algorithm advancements and anticipated new sciences and societal benefits in the GPM era.

  5. Latino Demographics, Democratic Individuality, and Educational Accountability: A Pragmatist's View

    ERIC Educational Resources Information Center

    Martinez Aleman, Ana M.

    2006-01-01

    In an era of heightened teacher and school accountability, what are the implications of standards-based reform for individual Latino children and their democratic self-realization? The educational demography of the fastest-growing and largest ethnic group in the United States suggests that the future of Latino self-realization is in jeopardy.…

  6. Cavity control as a new quantum algorithms implementation treatment

    NASA Astrophysics Data System (ADS)

    AbuGhanem, M.; Homid, A. H.; Abdel-Aty, M.

    2018-02-01

    Based on recent experiments [ Nature 449, 438 (2007) and Nature Physics 6, 777 (2010)], a new approach for realizing quantum gates for the design of quantum algorithms was developed. Accordingly, the operation times of such gates while functioning in algorithm applications depend on the number of photons present in their resonant cavities. Multi-qubit algorithms can be realized in systems in which the photon number is increased slightly over the qubit number. In addition, the time required for operation is considerably less than the dephasing and relaxation times of the systems. The contextual use of the photon number as a main control in the realization of any algorithm was demonstrated. The results indicate the possibility of a full integration into the realization of multi-qubit multiphoton states and its application in algorithm designs. Furthermore, this approach will lead to a successful implementation of these designs in future experiments.

  7. Comparison of Modal Analysis Methods Applied to a Vibro-Acoustic Test Article

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn; Pappa, Richard; Buehrle, Ralph; Grosveld, Ferdinand

    2001-01-01

    Modal testing of a vibro-acoustic test article referred to as the Aluminum Testbed Cylinder (ATC) has provided frequency response data for the development of validated numerical models of complex structures for interior noise prediction and control. The ATC is an all aluminum, ring and stringer stiffened cylinder, 12 feet in length and 4 feet in diameter. The cylinder was designed to represent typical aircraft construction. Modal tests were conducted for several different configurations of the cylinder assembly under ambient and pressurized conditions. The purpose of this paper is to present results from dynamic testing of different ATC configurations using two modal analysis software methods: Eigensystem Realization Algorithm (ERA) and MTS IDEAS Polyreference method. The paper compares results from the two analysis methods as well as the results from various test configurations. The effects of pressurization on the modal characteristics are discussed.

  8. High-Speed Current dq PI Controller for Vector Controlled PMSM Drive

    PubMed Central

    Reaz, Mamun Bin Ibne; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era. PMID:24574913

  9. Surface segregation effects of erbium in GaAs growth and their implications for optical devices containing ErAs nanostructures

    NASA Astrophysics Data System (ADS)

    Crook, Adam M.; Nair, Hari P.; Bank, Seth R.

    2011-03-01

    We report on the integration of semimetallic ErAs nanoparticles with high optical quality GaAs-based semiconductors, grown by molecular beam epitaxy. Secondary ion mass spectrometry and photoluminescence measurements provide evidence of surface segregation and incorporation of erbium into layers grown with the erbium cell hot, despite the closed erbium source shutter. We establish the existence of a critical areal density of the surface erbium layer, below which the formation of ErAs precipitates is suppressed. Based upon these findings, we demonstrate a method for overgrowing ErAs nanoparticles with III-V layers of high optical quality, using subsurface ErAs nanoparticles as a sink to deplete the surface erbium concentration. This approach provides a path toward realizing optical devices based on plasmonic effects in an epitaxially-compatible semimetal/semiconductor system.

  10. Generate stepper motor linear speed profile in real time

    NASA Astrophysics Data System (ADS)

    Stoychitch, M. Y.

    2018-01-01

    In this paper we consider the problem of realization of linear speed profile of stepper motors in real time. We considered the general case when changes of speed in the phases of acceleration and deceleration are different. The new and practical algorithm of the trajectory planning is given. The algorithms of the real time speed control which are suitable for realization to the microcontroller and FPGA circuits are proposed. The practical realization one of these algorithms, using Arduino platform, is given also.

  11. Optimization and experimental realization of the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Yalçınkaya, I.; Gedik, Z.

    2017-12-01

    The quantum permutation algorithm provides computational speed-up over classical algorithms for determining the parity of a given cyclic permutation. For its n -qubit implementations, the number of required quantum gates scales quadratically with n due to the quantum Fourier transforms included. We show here for the n -qubit case that the algorithm can be simplified so that it requires only O (n ) quantum gates, which theoretically reduces the complexity of the implementation. To test our results experimentally, we utilize IBM's 5-qubit quantum processor to realize the algorithm by using the original and simplified recipes for the 2-qubit case. It turns out that the latter results in a significantly higher success probability which allows us to verify the algorithm more precisely than the previous experimental realizations. We also verify the algorithm for the first time for the 3-qubit case with a considerable success probability by taking the advantage of our simplified scheme.

  12. Algorithm for space-time analysis of data on geomagnetic field

    NASA Technical Reports Server (NTRS)

    Kulanin, N. V.; Golokov, V. P. (Editor); Tyupkin, S. (Editor)

    1984-01-01

    The algorithm for the execution of the space-time analysis of data on geomagnetic fields is described. The primary constraints figuring in the specific realization of the algorithm on a computer stem exclusively from the limited possibilities of the computer involved. It is realized in the form of a program for the BESM-6 computer.

  13. State-Space System Realization with Input- and Output-Data Correlation

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    1997-01-01

    This paper introduces a general version of the information matrix consisting of the autocorrelation and cross-correlation matrices of the shifted input and output data. Based on the concept of data correlation, a new system realization algorithm is developed to create a model directly from input and output data. The algorithm starts by computing a special type of correlation matrix derived from the information matrix. The special correlation matrix provides information on the system-observability matrix and the state-vector correlation. A system model is then developed from the observability matrix in conjunction with other algebraic manipulations. This approach leads to several different algorithms for computing system matrices for use in representing the system model. The relationship of the new algorithms with other realization algorithms in the time and frequency domains is established with matrix factorization of the information matrix. Several examples are given to illustrate the validity and usefulness of these new algorithms.

  14. Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houshmand, Monireh; Hosseini-Khayat, Saied

    2011-02-15

    Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a ''pearl-necklace'' encoder. Despite their algorithm's theoretical significance as a neat way of representing quantum convolutional codes, it is not well suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation andmore » practical implementation. In our previous work, we presented an efficient algorithm to find a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work is an extension of our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the noncommutative paths through the pearl necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.« less

  15. Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system.

    PubMed

    Xu, Nanyang; Zhu, Jing; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng

    2012-03-30

    Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.

  16. [The study of medical supplies automation replenishment algorithm in hospital on medical supplies supplying chain].

    PubMed

    Sheng, Xi

    2012-07-01

    The thesis aims to study the automation replenishment algorithm in hospital on medical supplies supplying chain. The mathematical model and algorithm of medical supplies automation replenishment are designed through referring to practical data form hospital on the basis of applying inventory theory, greedy algorithm and partition algorithm. The automation replenishment algorithm is proved to realize automatic calculation of the medical supplies distribution amount and optimize medical supplies distribution scheme. A conclusion could be arrived that the model and algorithm of inventory theory, if applied in medical supplies circulation field, could provide theoretical and technological support for realizing medical supplies automation replenishment of hospital on medical supplies supplying chain.

  17. Acoustooptic linear algebra processors - Architectures, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1984-01-01

    Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.

  18. Paradigms for Realizing Machine Learning Algorithms.

    PubMed

    Agneeswaran, Vijay Srinivas; Tonpay, Pranay; Tiwary, Jayati

    2013-12-01

    The article explains the three generations of machine learning algorithms-with all three trying to operate on big data. The first generation tools are SAS, SPSS, etc., while second generation realizations include Mahout and RapidMiner (that work over Hadoop), and the third generation paradigms include Spark and GraphLab, among others. The essence of the article is that for a number of machine learning algorithms, it is important to look beyond the Hadoop's Map-Reduce paradigm in order to make them work on big data. A number of promising contenders have emerged in the third generation that can be exploited to realize deep analytics on big data.

  19. Achieving Transformational Materials Performance in a New Era of Science

    ScienceCinema

    Sarrao, John

    2017-12-22

    The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

  20. Integrated structural control design of large space structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.J.; Lauffer, J.P.

    1995-01-01

    Active control of structures has been under intensive development for the last ten years. Reference 2 reviews much of the identification and control technology for structural control developed during this time. The technology was initially focused on space structure and weapon applications; however, recently the technology is also being directed toward applications in manufacturing and transportation. Much of this technology focused on multiple-input/multiple-output (MIMO) identification and control methodology because many of the applications require a coordinated control involving multiple disturbances and control objectives where multiple actuators and sensors are necessary for high performance. There have been many optimal robust controlmore » methods developed for the design of MIMO robust control laws; however, there appears to be a significant gap between the theoretical development and experimental evaluation of control and identification methods to address structural control applications. Many methods have been developed for MIMO identification and control of structures, such as the Eigensystem Realization Algorithm (ERA), Q-Markov Covariance Equivalent Realization (Q-Markov COVER) for identification; and, Linear Quadratic Gaussian (LQG), Frequency Weighted LQG and H-/ii-synthesis methods for control. Upon implementation, many of the identification and control methods have shown limitations such as the excitation of unmodelled dynamics and sensitivity to system parameter variations. As a result, research on methods which address these problems have been conducted.« less

  1. GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model

    NASA Astrophysics Data System (ADS)

    Takaishi, Tetsuya

    2015-01-01

    The realized stochastic volatility (RSV) model that utilizes the realized volatility as additional information has been proposed to infer volatility of financial time series. We consider the Bayesian inference of the RSV model by the Hybrid Monte Carlo (HMC) algorithm. The HMC algorithm can be parallelized and thus performed on the GPU for speedup. The GPU code is developed with CUDA Fortran. We compare the computational time in performing the HMC algorithm on GPU (GTX 760) and CPU (Intel i7-4770 3.4GHz) and find that the GPU can be up to 17 times faster than the CPU. We also code the program with OpenACC and find that appropriate coding can achieve the similar speedup with CUDA Fortran.

  2. Recent Reanalysis Activities at ECMWF: Results from ERA-20C and Plans for ERA5

    NASA Astrophysics Data System (ADS)

    Dragani, R.; Hersbach, H.; Poli, P.; Pebeuy, C.; Hirahara, S.; Simmons, A.; Dee, D.

    2015-12-01

    This presentation will provide an overview of the most recent reanalysis activities performed at the European Centre for Medium-Range Weather Forecasts (ECMWF). A pilot reanalysis of the 20th-century (ERA-20C) has recently been completed. Funded through the European FP7 collaborative project ERA-CLIM, ERA-20C is part of a suite of experiments that also includes a model-only integration (ERA-20CM) and a land-surface reanalysis (ERA-20CL). Its data assimilation system is constrained by only surface observations obtained from ISPD (3.2.6) and ICOADS (2.5.1). Surface boundary conditions are provided by the Hadley Centre (HadISST2.1.0.0) and radiative forcing follows CMIP5 recommended data sets. First-guess uncertainty estimates are based on a 10-member ensemble of Data Assimilations, ERA-20C ensemble, run prior to ERA-20C using ten SST and sea-ice realizations from the Hadley Centre. In November 2014, the European Commission entrusted ECMWF to run on its behalf the Copernicus Climate Change Service (C3S) aiming at producing quality-assured information about the past, current and future states of the climate at both European and global scales. Reanalysis will be one of the main components of the C3S portfolio and the first one to be produced is a global modern era reanalysis (ERA5) covering the period from 1979 onwards. Based on a recent version of the ECMWF data assimilation system, ERA5 will replace the widely used ERA-Interim dataset. This new production will benefit from a much improved model, and better characterized and exploited observations compared to its predecessor. The first part of the presentation will focus on the ERA-20C production, provide an overview of its main characteristics and discuss some of the key results from its assessment. The second part of the talk will give an overview of ERA5, and briefly discuss some of its challenges.

  3. Realization of preconditioned Lanczos and conjugate gradient algorithms on optical linear algebra processors.

    PubMed

    Ghosh, A

    1988-08-01

    Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.

  4. A noise-immune cryptographic information protection method for facsimile information transmission and the realization algorithms

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Bardachenko, Vitaliy F.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Ogorodnik, Konstantin V.

    2006-04-01

    We analyse the existent methods of cryptographic defence for the facsimile information transfer, consider their shortcomings and prove the necessity of better information protection degree. The method of information protection that is based on presentation of input data as images is proposed. We offer a new noise-immune algorithm for realization of this method which consists in transformation of an input frame by pixels transposition according to an entered key. At decoding mode the reverse transformation of image with the use of the same key is used. Practical realization of the given method takes into account noise in the transmission channels and information distortions by scanners, faxes and others like that. We show that the given influences are reduced to the transformation of the input image coordinates. We show the algorithm in detail and consider its basic steps. We show the possibility of the offered method by the means of the developed software. The realized algorithm corrects curvature of frames: turn, scaling, fallout of pixels and others like that. At low noise level (loss of pixel information less than 10 percents) it is possible to encode, transfer and decode any types of images and texts with 12-size font character. The software filters for information restore and noise removing allow to transfer fax data with 30 percents pixels loss at 18-size font text. This percent of data loss can be considerably increased by the use of the software character recognition block that can be realized on fuzzy-neural algorithms. Examples of encoding and decryption of images and texts are shown.

  5. Historical Perspective on Mitochondrial Medicine

    PubMed Central

    DiMauro, Salvatore; Garone, Caterina

    2010-01-01

    In this review, we trace the origins and follow the development of mitochondrial medicine from the pre-molecular era (1962-1988) based on clinical clues, muscle morphology, and biochemistry into the molecular era that started in 1988 and is still advancing at a brisk pace. We have tried to stress conceptual advances, such as endosymbiosis, uniparental inheritance, intergenomic signaling and its defects, and mitochondrial dynamics. We hope that this historical review also provides an update on mitochondrial medicine, although we fully realize that the speed of progress in this area makes any such endeavor akin to writing on water. PMID:20818724

  6. The Urban Crisis and Pathways to a Multiracial Democracy

    ERIC Educational Resources Information Center

    Ivery, Curtis L.

    2013-01-01

    Realization of a multiracial democracy is challenged like never before by a new era of color-blind politics and postracial supposition, fueled in part by the election of our first black President in 2008, but contradicted by the chronic persistence of racial segregation and social inequality.

  7. The application of mixed recommendation algorithm with user clustering in the microblog advertisements promotion

    NASA Astrophysics Data System (ADS)

    Gong, Lina; Xu, Tao; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-03-01

    The traditional microblog recommendation algorithm has the problems of low efficiency and modest effect in the era of big data. In the aim of solving these issues, this paper proposed a mixed recommendation algorithm with user clustering. This paper first introduced the situation of microblog marketing industry. Then, this paper elaborates the user interest modeling process and detailed advertisement recommendation methods. Finally, this paper compared the mixed recommendation algorithm with the traditional classification algorithm and mixed recommendation algorithm without user clustering. The results show that the mixed recommendation algorithm with user clustering has good accuracy and recall rate in the microblog advertisements promotion.

  8. Ares I-X In-Flight Modal Identification

    NASA Technical Reports Server (NTRS)

    Bartkowicz, Theodore J.; James, George H., III

    2011-01-01

    Operational modal analysis is a procedure that allows the extraction of modal parameters of a structure in its operating environment. It is based on the idealized premise that input to the structure is white noise. In some cases, when free decay responses are corrupted by unmeasured random disturbances, the response data can be processed into cross-correlation functions that approximate free decay responses. Modal parameters can be computed from these functions by time domain identification methods such as the Eigenvalue Realization Algorithm (ERA). The extracted modal parameters have the same characteristics as impulse response functions of the original system. Operational modal analysis is performed on Ares I-X in-flight data. Since the dynamic system is not stationary due to propellant mass loss, modal identification is only possible by analyzing the system as a series of linearized models over short periods of time via a sliding time-window of short time intervals. A time-domain zooming technique was also employed to enhance the modal parameter extraction. Results of this study demonstrate that free-decay time domain modal identification methods can be successfully employed for in-flight launch vehicle modal extraction.

  9. Chinese Education Agent Views of American Community Colleges

    ERIC Educational Resources Information Center

    Zhang, Yi; Serra Hagedorn, Linda

    2014-01-01

    In an era of increasing global competition in education related markets, many higher education institutions in the United States have come to realize the need to market better for international students. Community colleges are no exception and have become increasingly active in recruiting international students using education agents. Using…

  10. Dimensions of Creativity. Creativity: "A Social Approach"

    ERIC Educational Resources Information Center

    Cropley, Arthur

    2006-01-01

    Early thinking in the modern era often regarded creativity as a somewhat asocial means of individual expression, self-realization, and self-fulfillment. However, it also is a socially influenced phenomenon that serves society. A social approach offers the opportunity of distinguishing between large and small amounts of novelty, as well as between…

  11. Bayesian estimation of realized stochastic volatility model by Hybrid Monte Carlo algorithm

    NASA Astrophysics Data System (ADS)

    Takaishi, Tetsuya

    2014-03-01

    The hybrid Monte Carlo algorithm (HMCA) is applied for Bayesian parameter estimation of the realized stochastic volatility (RSV) model. Using the 2nd order minimum norm integrator (2MNI) for the molecular dynamics (MD) simulation in the HMCA, we find that the 2MNI is more efficient than the conventional leapfrog integrator. We also find that the autocorrelation time of the volatility variables sampled by the HMCA is very short. Thus it is concluded that the HMCA with the 2MNI is an efficient algorithm for parameter estimations of the RSV model.

  12. An algebraic structure of discrete-time biaffine systems

    NASA Technical Reports Server (NTRS)

    Tarn, T.-J.; Nonoyama, S.

    1979-01-01

    New results on the realization of finite-dimensional, discrete-time, internally biaffine systems are presented in this paper. The external behavior of such systems is described by multiaffine functions and the state space is constructed via Nerode equivalence relations. We prove that the state space is an affine space. An algorithm which amounts to choosing a frame for the affine space is presented. Our algorithm reduces in the linear and bilinear case to a generalization of algorithms existing in the literature. Explicit existence criteria for span-canonical realizations as well as an affine isomorphism theorem are given.

  13. Realization and optimization of AES algorithm on the TMS320DM6446 based on DaVinci technology

    NASA Astrophysics Data System (ADS)

    Jia, Wen-bin; Xiao, Fu-hai

    2013-03-01

    The application of AES algorithm in the digital cinema system avoids video data to be illegal theft or malicious tampering, and solves its security problems. At the same time, in order to meet the requirements of the real-time, scene and transparent encryption of high-speed data streams of audio and video in the information security field, through the in-depth analysis of AES algorithm principle, based on the hardware platform of TMS320DM6446, with the software framework structure of DaVinci, this paper proposes the specific realization methods of AES algorithm in digital video system and its optimization solutions. The test results show digital movies encrypted by AES128 can not play normally, which ensures the security of digital movies. Through the comparison of the performance of AES128 algorithm before optimization and after, the correctness and validity of improved algorithm is verified.

  14. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization.

    PubMed

    Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling

    2016-10-31

    In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms.

  15. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization

    PubMed Central

    Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling

    2016-01-01

    In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms. PMID:27809230

  16. Robot Tracking of Human Subjects in Field Environments

    NASA Technical Reports Server (NTRS)

    Graham, Jeffrey; Shillcutt, Kimberly

    2003-01-01

    Future planetary exploration will involve both humans and robots. Understanding and improving their interaction is a main focus of research in the Intelligent Systems Branch at NASA's Johnson Space Center. By teaming intelligent robots with astronauts on surface extra-vehicular activities (EVAs), safety and productivity can be improved. The EVA Robotic Assistant (ERA) project was established to study the issues of human-robot teams, to develop a testbed robot to assist space-suited humans in exploration tasks, and to experimentally determine the effectiveness of an EVA assistant robot. A companion paper discusses the ERA project in general, its history starting with ASRO (Astronaut-Rover project), and the results of recent field tests in Arizona. This paper focuses on one aspect of the research, robot tracking, in greater detail: the software architecture and algorithms. The ERA robot is capable of moving towards and/or continuously following mobile or stationary targets or sequences of targets. The contributions made by this research include how the low-level pose data is assembled, normalized and communicated, how the tracking algorithm was generalized and implemented, and qualitative performance reports from recent field tests.

  17. Rethinking Teacher Leader Development: A Study of Early Career Mathematics Teachers

    ERIC Educational Resources Information Center

    Huggins, Kristin Shawn; Lesseig, Kristin; Rhodes, Heidi

    2017-01-01

    In the era of standards-based reforms, informal teacher leadership is a critical factor in realizing instructional improvement. In this paper, we report on data from a one-year study of four early career mathematics teachers engaging in professional development around Common Core mathematical practices and leadership. Our findings highlight how…

  18. Financing American Higher Education in the Era of Globalization

    ERIC Educational Resources Information Center

    Zumeta, William; Breneman, David W.; Callan, Patrick M.; Finney, Joni E.

    2012-01-01

    This ambitious book grows out of the realization that a convergence of economic, demographic, and political forces in the early twenty-first century requires a fundamental reexamination of the financing of American higher education. The authors identify and address basic issues and trends that cut across the sectors of higher education, focusing…

  19. Gauss-Bonnet cosmology unifying late and early-time acceleration eras with intermediate eras

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2016-07-01

    In this paper we demonstrate that with vacuum F(G) gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the F(G) description is no, since the resulting power spectrum is not scale invariant, in contrast to the F(R) description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum F(G) gravity, the evolution is not compatible with the observational data, in contrast to the F(R) gravity description of the same cosmological evolution.

  20. Simple-random-sampling-based multiclass text classification algorithm.

    PubMed

    Liu, Wuying; Wang, Lin; Yi, Mianzhu

    2014-01-01

    Multiclass text classification (MTC) is a challenging issue and the corresponding MTC algorithms can be used in many applications. The space-time overhead of the algorithms must be concerned about the era of big data. Through the investigation of the token frequency distribution in a Chinese web document collection, this paper reexamines the power law and proposes a simple-random-sampling-based MTC (SRSMTC) algorithm. Supported by a token level memory to store labeled documents, the SRSMTC algorithm uses a text retrieval approach to solve text classification problems. The experimental results on the TanCorp data set show that SRSMTC algorithm can achieve the state-of-the-art performance at greatly reduced space-time requirements.

  1. A coarse-to-fine kernel matching approach for mean-shift based visual tracking

    NASA Astrophysics Data System (ADS)

    Liangfu, L.; Zuren, F.; Weidong, C.; Ming, J.

    2009-03-01

    Mean shift is an efficient pattern match algorithm. It is widely used in visual tracking fields since it need not perform whole search in the image space. It employs gradient optimization method to reduce the time of feature matching and realize rapid object localization, and uses Bhattacharyya coefficient as the similarity measure between object template and candidate template. This thesis presents a mean shift algorithm based on coarse-to-fine search for the best kernel matching. This paper researches for object tracking with large motion area based on mean shift. To realize efficient tracking of such an object, we present a kernel matching method from coarseness to fine. If the motion areas of the object between two frames are very large and they are not overlapped in image space, then the traditional mean shift method can only obtain local optimal value by iterative computing in the old object window area, so the real tracking position cannot be obtained and the object tracking will be disabled. Our proposed algorithm can efficiently use a similarity measure function to realize the rough location of motion object, then use mean shift method to obtain the accurate local optimal value by iterative computing, which successfully realizes object tracking with large motion. Experimental results show its good performance in accuracy and speed when compared with background-weighted histogram algorithm in the literature.

  2. Multi-AUV autonomous task planning based on the scroll time domain quantum bee colony optimization algorithm in uncertain environment

    PubMed Central

    Zhang, Rubo; Yang, Yu

    2017-01-01

    Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution. PMID:29186166

  3. Multi-AUV autonomous task planning based on the scroll time domain quantum bee colony optimization algorithm in uncertain environment.

    PubMed

    Li, Jianjun; Zhang, Rubo; Yang, Yu

    2017-01-01

    Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution.

  4. Saline Contrast Echocardiography in the Era of Multimodality Imaging--Importance of "Bubbling It Right".

    PubMed

    Gupta, Saurabh K; Shetkar, Sudhir S; Ramakrishnan, Sivasubramanian; Kothari, Shyam S

    2015-11-01

    Saline contrast echocardiography is an established imaging modality. Logical interpretation of a carefully performed study is vital to realize its diagnostic potential. In this review, we discuss utility of saline contrast echocardiography in evaluation of various pathologies within and outside the heart other than a patent foramen ovale. © 2015, Wiley Periodicals, Inc.

  5. Literacy Learning in a Digitally Rich Humanities Classroom: Embracing Multiple, Collaborative, and Simultaneous Texts

    ERIC Educational Resources Information Center

    Buckley-Marudas, Mary Frances

    2016-01-01

    Understanding what happens when teachers embrace digital media for literacy learning is critical to realizing the potential of learning in the digital era. This article examines some of the ways that a high school teacher and his students leverage digital technologies for literacy learning in their humanities classrooms. The author introduces the…

  6. Introducing Filters and Amplifiers Using a Two-Channel Light Organ

    ERIC Educational Resources Information Center

    Zavrel, Erik; Sharpsteen, Eric

    2015-01-01

    In an era when many students carry iPods, iPhones, and iPads, physics teachers are realizing that in order to continue to inspire and convey the amazing things made possible by a few fundamental principles, they must expand laboratory coverage of electricity and circuits beyond the conventional staples of constructing series and parallel…

  7. Embracing Big Data in Complex Educational Systems: The Learning Analytics Imperative and the Policy Challenge

    ERIC Educational Resources Information Center

    Macfadyen, Leah P.; Dawson, Shane; Pardo, Abelardo; Gaševic, Dragan

    2014-01-01

    In the new era of big educational data, learning analytics (LA) offer the possibility of implementing real-time assessment and feedback systems and processes at scale that are focused on improvement of learning, development of self-regulated learning skills, and student success. However, to realize this promise, the necessary shifts in the…

  8. Quadtree of TIN: a new algorithm of dynamic LOD

    NASA Astrophysics Data System (ADS)

    Zhang, Junfeng; Fei, Lifan; Chen, Zhen

    2009-10-01

    Currently, Real-time visualization of large-scale digital elevation model mainly employs the regular structure of GRID based on quadtree and triangle simplification methods based on irregular triangulated network (TIN). TIN is a refined means to express the terrain surface in the computer science, compared with GRID. However, the data structure of TIN model is complex, and is difficult to realize view-dependence representation of level of detail (LOD) quickly. GRID is a simple method to realize the LOD of terrain, but contains more triangle count. A new algorithm, which takes full advantage of the two methods' merit, is presented in this paper. This algorithm combines TIN with quadtree structure to realize the view-dependence LOD controlling over the irregular sampling point sets, and holds the details through the distance of viewpoint and the geometric error of terrain. Experiments indicate that this approach can generate an efficient quadtree triangulation hierarchy over any irregular sampling point sets and achieve dynamic and visual multi-resolution performance of large-scale terrain at real-time.

  9. Research on personalized recommendation algorithm based on spark

    NASA Astrophysics Data System (ADS)

    Li, Zeng; Liu, Yu

    2018-04-01

    With the increasing amount of data in the past years, the traditional recommendation algorithm has been unable to meet people's needs. Therefore, how to better recommend their products to users of interest, become the opportunities and challenges of the era of big data development. At present, each platform enterprise has its own recommendation algorithm, but how to make efficient and accurate push information is still an urgent problem for personalized recommendation system. In this paper, a hybrid algorithm based on user collaborative filtering and content-based recommendation algorithm is proposed on Spark to improve the efficiency and accuracy of recommendation by weighted processing. The experiment shows that the recommendation under this scheme is more efficient and accurate.

  10. Feedback Control of Unsteady Flow and Vortex-Induced Vibration

    NASA Astrophysics Data System (ADS)

    Jaiman, Rajeev; Yao, Weigang

    2017-11-01

    We present an active feedback blowing and suction (AFBS) procedure via model reduction for unsteady wake flow and the vortex-induced vibration (VIV) of circular cylinders. The reduced-order model (ROM) for the AFBS procedure is developed by the eigensystem realization (ERA) algorithm, which provides a low-order representation of the unsteady flow dynamics in the neighbourhood of the equilibrium steady state. The actuation is considered via vertical suction and blowing jet at the porous surface of a circular cylinder with a body mounted force sensor. The resulting controller designed by linear low-order approximation is able to suppress the nonlinear saturated state. A systematic linear ROM-based stability analysis is performed to understand the eigenvalue distributions of elastically mounted circular cylinders. The results from the ROM analysis are consistent with those obtained from full nonlinear fluid-structure interaction simulations. A sensitivity study on the number of suction/blowing actuators, the angular arrangement of actuators, and the combined versus independent control architectures has been performed. Overall, the proposed control is found to be effective in suppressing the vortex street and the VIV for a range of reduced velocities and mass ratios.

  11. Robustness of reduced-order observer-based controllers in transitional 2D Blasius boundary layers

    NASA Astrophysics Data System (ADS)

    Belson, Brandt; Semeraro, Onofrio; Rowley, Clarence; Pralits, Jan; Henningson, Dan

    2011-11-01

    In this work, we seek to delay transition in the Blasius boundary layer. We trip the flow with an upstream disturbance and dampen the growth of the resulting structures downstream. The observer-based controllers use a single sensor and a single localized body force near the wall. To formulate the controllers, we first find a reduced-order model of the system via the Eigensystem Realization Algorithm (ERA), then find the H2 optimal controller for this reduced-order system. We find the resulting controllers are effective only when the sensor is upstream of the actuator (in a feedforward configuration), but as is expected, are sensitive to model uncertainty. When the sensor is downstream of the actuator (in a feedback configuration), the reduced-order observer-based controllers are not robust and ineffective on the full system. In order to investigate the robustness properties of the system, an iterative technique called the adjoint of the direct adjoint (ADA) is employed to find a full-dimensional H2 optimal controller. This avoids the reduced-order modelling step and serves as a reference point. ADA is promising for investigating the lack of robustness previously mentioned.

  12. A continental strategy for the national ecological observatory network

    Treesearch

    Michael Keller; David S. Schimel; W. William Hargrove; Forrest M. Hoffman

    2008-01-01

    One of the great realizations of the past half-century in both biological and Earth sciences is that, throughout geologic time, life has been shaping the Earth’s surface and regulating the chemistry of its oceans and atmosphere (eg Berkner and Marshall 1964). In the present Anthropocene Era (Crutzen and Steffen 2003; Ruddiman 2003), humanity is directly shaping the...

  13. Eucalyptus helped solve a timber problem: 1853-1880

    Treesearch

    Gayle M. Groenendaal

    1983-01-01

    California was settled in an era before the full impact of the industrial revolution that was taking place in Great Britain was fully realized, a revolution that was to change the course of western culture more drastically than any previous time in history. Friedrich Engels wrote in 1845 of the industrial revolution as "a revolution which at the same time changed...

  14. A New Algorithm with Plane Waves and Wavelets for Random Velocity Fields with Many Spatial Scales

    NASA Astrophysics Data System (ADS)

    Elliott, Frank W.; Majda, Andrew J.

    1995-03-01

    A new Monte Carlo algorithm for constructing and sampling stationary isotropic Gaussian random fields with power-law energy spectrum, infrared divergence, and fractal self-similar scaling is developed here. The theoretical basis for this algorithm involves the fact that such a random field is well approximated by a superposition of random one-dimensional plane waves involving a fixed finite number of directions. In general each one-dimensional plane wave is the sum of a random shear layer and a random acoustical wave. These one-dimensional random plane waves are then simulated by a wavelet Monte Carlo method for a single space variable developed recently by the authors. The computational results reported in this paper demonstrate remarkable low variance and economical representation of such Gaussian random fields through this new algorithm. In particular, the velocity structure function for an imcorepressible isotropic Gaussian random field in two space dimensions with the Kolmogoroff spectrum can be simulated accurately over 12 decades with only 100 realizations of the algorithm with the scaling exponent accurate to 1.1% and the constant prefactor accurate to 6%; in fact, the exponent of the velocity structure function can be computed over 12 decades within 3.3% with only 10 realizations. Furthermore, only 46,592 active computational elements are utilized in each realization to achieve these results for 12 decades of scaling behavior.

  15. Research on Ecological Civilization Construction and Environmental Sustainable Development in the New Era

    NASA Astrophysics Data System (ADS)

    Xiang-chao, Pan

    2018-05-01

    After the 19th National Congress of the Communist Party of China, the Socialism with Chinese Characteristics entered a new era. However, the contradiction between China’s economic and social development and the sustainable development of environment is still outstanding. That is mainly due to the fact that China pays some attention to the economic development but neglects the ecological protection to a certain extent. In the report of the 19th National Congress of the Communist Party of China, it is clearly proposed that it is necessary to adhere to the harmonious coexistence between man and nature, and to establish the concept of green development firmly, focusing on solving the problem of the environmental pollution and destruction and other outstanding issues, and strengthening the construction of the ecological environment supervision system, and the legal guarantee of the construction of ecological civilization. Only by adhering to the concept of ecological civilization in the new era can we finally realize the fundamental improvement of ecological environment.

  16. Global trends in significant wave height and marine wind speed from the ERA-20CM

    NASA Astrophysics Data System (ADS)

    Aarnes, Ole Johan; Breivik, Øyvind

    2016-04-01

    The ERA-20CM is one of the latest additions to the ERA-series produced at the European Center for Medium-Range Weather Forecasts (ECMWF). This 10 member ensemble is generated with a version of the Integrated Forecast System (IFS), a coupled atmosphere-wave model. The model integration is run as a AMIP (Atmospheric Model Intercomparison Project) constrained by CMIP5 recommended radiative forcing and different realizations of sea-surface temperature (SST) and sea-ice cover (SIC) prescribed by the HadISST2 (Met Office Hadley Center). While the ERA-20CM is unable to reproduce the actual synoptic conditions, it is designed to offer a realistic statistical representation of the past climate, spanning the period 1899-2010. In this study we investigate global trends in significant wave height and marine wind speed based on ERA-20CM, using monthly mean data, upper percentiles and monthly/annual maxima. The aim of the study is to assess the quality of the trends and how these estimates are affected by different SST and SIC. Global trends are compared against corresponding estimates obtained with ERA-Interim (1979-2009), but also crosschecked against ERA-20C - an ECMWF pilot reanalysis of the 20th-century, known to most trustworthy in the Northern Hemisphere extratropics. Over the period 1900-2009, the 10 member ensemble yields trends mainly within +/- 5% per century. However, significant trends of opposite signs are found locally. Certain areas, like the eastern equatorial Pacific, highly affected by the El Niño Southern Oscillation, show stronger trends. In general, trends based on statistical quantities further into the tail of the distribution are found less reliable.

  17. RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing

    NASA Astrophysics Data System (ADS)

    Gui, Guan; Xu, Li; Adachi, Fumiyuki

    2014-12-01

    Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing in many applications such as radar imaging. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS) approach using the reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends on several given parameters, i.e., reweighted factor, regularization parameter, and initial step size. First, based on the independent assumption, Cramer-Rao lower bound (CRLB) is derived as for the performance comparisons. In addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to verify the algorithm, Monte Carlo-based computer simulations are given to show that the ASS achieves much better mean square error (MSE) performance than the NSS.

  18. Experimental realization of a one-way quantum computer algorithm solving Simon's problem.

    PubMed

    Tame, M S; Bell, B A; Di Franco, C; Wadsworth, W J; Rarity, J G

    2014-11-14

    We report an experimental demonstration of a one-way implementation of a quantum algorithm solving Simon's problem-a black-box period-finding problem that has an exponential gap between the classical and quantum runtime. Using an all-optical setup and modifying the bases of single-qubit measurements on a five-qubit cluster state, key representative functions of the logical two-qubit version's black box can be queried and solved. To the best of our knowledge, this work represents the first experimental realization of the quantum algorithm solving Simon's problem. The experimental results are in excellent agreement with the theoretical model, demonstrating the successful performance of the algorithm. With a view to scaling up to larger numbers of qubits, we analyze the resource requirements for an n-qubit version. This work helps highlight how one-way quantum computing provides a practical route to experimentally investigating the quantum-classical gap in the query complexity model.

  19. Lithography-induced limits to scaling of design quality

    NASA Astrophysics Data System (ADS)

    Kahng, Andrew B.

    2014-03-01

    Quality and value of an IC product are functions of power, performance, area, cost and reliability. The forthcoming 2013 ITRS roadmap observes that while manufacturers continue to enable potential Moore's Law scaling of layout densities, the "realizable" scaling in competitive products has for some years been significantly less. In this paper, we consider aspects of the question, "To what extent should this scaling gap be blamed on lithography?" Non-ideal scaling of layout densities has been attributed to (i) layout restrictions associated with multi-patterning technologies (SADP, LELE, LELELE), as well as (ii) various ground rule and layout style choices that stem from misalignment, reliability, variability, device architecture, and electrical performance vs. power constraints. Certain impacts seem obvious, e.g., loss of 2D flexibility and new line-end placement constraints with SADP, or algorithmically intractable layout stitching and mask coloring formulations with LELELE. However, these impacts may well be outweighed by weaknesses in design methodology and tooling. Arguably, the industry has entered a new era in which many new factors - (i) standard-cell library architecture, and layout guardbanding for automated place-and-route: (ii) performance model guardbanding and signoff analyses: (iii) physical design and manufacturing handoff algorithms spanning detailed placement and routing, stitching and RET; and (iv) reliability guardbanding - all contribute, hand in hand with lithography, to a newly-identified "design capability gap". How specific aspects of process and design enablements limit the scaling of design quality is a fundamental question whose answer must guide future RandD investment at the design-manufacturing interface. terface.

  20. Health 2050: The Realization of Personalized Medicine through Crowdsourcing, the Quantified Self, and the Participatory Biocitizen

    PubMed Central

    Swan, Melanie

    2012-01-01

    The concepts of health and health care are moving towards the notion of personalized preventive health maintenance and away from an exclusive focus on the cure of disease. This is against the backdrop of contemporary public health challenges that include increasing costs, worsening outcomes, ‘diabesity’ epidemics, and anticipated physician shortages. Personalized preventive medicine could be critical to solving public health challenges at their causal root. This paper sets forth a vision and plan for the realization of preventive medicine by 2050 and examines efforts already underway such as participatory health initiatives, the era of big health data, and qualitative shifts in mindset. PMID:25562203

  1. Experimental identification of closely spaced modes using NExT-ERA

    NASA Astrophysics Data System (ADS)

    Hosseini Kordkheili, S. A.; Momeni Massouleh, S. H.; Hajirezayi, S.; Bahai, H.

    2018-01-01

    This article presents a study on the capability of the time domain OMA method, NExT-ERA, to identify closely spaced structural dynamic modes. A survey in the literature reveals that few experimental studies have been conducted on the effectiveness of the NExT-ERA methodology in case of closely spaced modes specifically. In this paper we present the formulation for NExT-ERA. This formulation is then implemented in an algorithm and a code, developed in house to identify the modal parameters of different systems using their generated time history data. Some numerical models are firstly investigated to validate the code. Two different case studies involving a plate with closely spaced modes and a pulley ring with greater extent of closeness in repeated modes are presented. Both structures are excited by random impulses under the laboratory condition. The resulting time response acceleration data are then used as input in the developed code to extract modal parameters of the structures. The accuracy of the results is checked against those obtained from experimental tests.

  2. Application of ant colony Algorithm and particle swarm optimization in architectural design

    NASA Astrophysics Data System (ADS)

    Song, Ziyi; Wu, Yunfa; Song, Jianhua

    2018-02-01

    By studying the development of ant colony algorithm and particle swarm algorithm, this paper expounds the core idea of the algorithm, explores the combination of algorithm and architectural design, sums up the application rules of intelligent algorithm in architectural design, and combines the characteristics of the two algorithms, obtains the research route and realization way of intelligent algorithm in architecture design. To establish algorithm rules to assist architectural design. Taking intelligent algorithm as the beginning of architectural design research, the authors provide the theory foundation of ant colony Algorithm and particle swarm algorithm in architectural design, popularize the application range of intelligent algorithm in architectural design, and provide a new idea for the architects.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Jeffrey F.

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as amore » means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.« less

  4. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  5. Evaluation of GPUs as a level-1 track trigger for the High-Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Mohr, H.; Dritschler, T.; Ardila, L. E.; Balzer, M.; Caselle, M.; Chilingaryan, S.; Kopmann, A.; Rota, L.; Schuh, T.; Vogelgesang, M.; Weber, M.

    2017-04-01

    In this work, we investigate the use of GPUs as a way of realizing a low-latency, high-throughput track trigger, using CMS as a showcase example. The CMS detector at the Large Hadron Collider (LHC) will undergo a major upgrade after the long shutdown from 2024 to 2026 when it will enter the high luminosity era. During this upgrade, the silicon tracker will have to be completely replaced. In the High Luminosity operation mode, luminosities of 5-7 × 1034 cm-2s-1 and pileups averaging at 140 events, with a maximum of up to 200 events, will be reached. These changes will require a major update of the triggering system. The demonstrated systems rely on dedicated hardware such as associative memory ASICs and FPGAs. We investigate the use of GPUs as an alternative way of realizing the requirements of the L1 track trigger. To this end we implemeted a Hough transformation track finding step on GPUs and established a low-latency RDMA connection using the PCIe bus. To showcase the benefits of floating point operations, made possible by the use of GPUs, we present a modified algorithm. It uses hexagonal bins for the parameter space and leads to a more truthful representation of the possible track parameters of the individual hits in Hough space. This leads to fewer duplicate candidates and reduces fake track candidates compared to the regular approach. With data-transfer latencies of 2 μs and processing times for the Hough transformation as low as 3.6 μs, we can show that latencies are not as critical as expected. However, computing throughput proves to be challenging due to hardware limitations.

  6. Ant colony optimization algorithm for signal coordination of oversaturated traffic networks.

    DOT National Transportation Integrated Search

    2010-05-01

    Traffic congestion is a daily and growing problem of the modern era in mostly all major cities in the world. : Increasing traffic demand strains the existing transportation system, leading to oversaturated network : conditions, especially at peak hou...

  7. VLSI architectures for computing multiplications and inverses in GF(2m)

    NASA Technical Reports Server (NTRS)

    Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.

    1985-01-01

    Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  8. VLSI architectures for computing multiplications and inverses in GF(2-m)

    NASA Technical Reports Server (NTRS)

    Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.; Reed, I. S.

    1983-01-01

    Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  9. VLSI architectures for computing multiplications and inverses in GF(2m).

    PubMed

    Wang, C C; Truong, T K; Shao, H M; Deutsch, L J; Omura, J K; Reed, I S

    1985-08-01

    Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that can be easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. In this paper, a pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal basis representation used together with this multiplier, a pipeline architecture is developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable, and therefore, naturally suitable for VLSI implementation.

  10. Discovery of Deep Structure from Unlabeled Data

    DTIC Science & Technology

    2014-11-01

    GPU processors . To evaluate the unsupervised learning component of the algorithms (which has become of less importance in the era of “big data...representations to those in biological visual, auditory, and somatosensory cortex ; and ran numerous control experiments investigating the impact of

  11. Gait Planning and Stability Control of a Quadruped Robot

    PubMed Central

    Li, Junmin; Wang, Jinge; Yang, Simon X.; Zhou, Kedong; Tang, Huijuan

    2016-01-01

    In order to realize smooth gait planning and stability control of a quadruped robot, a new controller algorithm based on CPG-ZMP (central pattern generator-zero moment point) is put forward in this paper. To generate smooth gait and shorten the adjusting time of the model oscillation system, a new CPG model controller and its gait switching strategy based on Wilson-Cowan model are presented in the paper. The control signals of knee-hip joints are obtained by the improved multi-DOF reduced order control theory. To realize stability control, the adaptive speed adjustment and gait switch are completed by the real-time computing of ZMP. Experiment results show that the quadruped robot's gaits are efficiently generated and the gait switch is smooth in the CPG control algorithm. Meanwhile, the stability of robot's movement is improved greatly with the CPG-ZMP algorithm. The algorithm in this paper has good practicability, which lays a foundation for the production of the robot prototype. PMID:27143959

  12. Gait Planning and Stability Control of a Quadruped Robot.

    PubMed

    Li, Junmin; Wang, Jinge; Yang, Simon X; Zhou, Kedong; Tang, Huijuan

    2016-01-01

    In order to realize smooth gait planning and stability control of a quadruped robot, a new controller algorithm based on CPG-ZMP (central pattern generator-zero moment point) is put forward in this paper. To generate smooth gait and shorten the adjusting time of the model oscillation system, a new CPG model controller and its gait switching strategy based on Wilson-Cowan model are presented in the paper. The control signals of knee-hip joints are obtained by the improved multi-DOF reduced order control theory. To realize stability control, the adaptive speed adjustment and gait switch are completed by the real-time computing of ZMP. Experiment results show that the quadruped robot's gaits are efficiently generated and the gait switch is smooth in the CPG control algorithm. Meanwhile, the stability of robot's movement is improved greatly with the CPG-ZMP algorithm. The algorithm in this paper has good practicability, which lays a foundation for the production of the robot prototype.

  13. An iterative ensemble quasi-linear data assimilation approach for integrated reservoir monitoring

    NASA Astrophysics Data System (ADS)

    Li, J. Y.; Kitanidis, P. K.

    2013-12-01

    Reservoir forecasting and management are increasingly relying on an integrated reservoir monitoring approach, which involves data assimilation to calibrate the complex process of multi-phase flow and transport in the porous medium. The numbers of unknowns and measurements arising in such joint inversion problems are usually very large. The ensemble Kalman filter and other ensemble-based techniques are popular because they circumvent the computational barriers of computing Jacobian matrices and covariance matrices explicitly and allow nonlinear error propagation. These algorithms are very useful but their performance is not well understood and it is not clear how many realizations are needed for satisfactory results. In this presentation we introduce an iterative ensemble quasi-linear data assimilation approach for integrated reservoir monitoring. It is intended for problems for which the posterior or conditional probability density function is not too different from a Gaussian, despite nonlinearity in the state transition and observation equations. The algorithm generates realizations that have the potential to adequately represent the conditional probability density function (pdf). Theoretical analysis sheds light on the conditions under which this algorithm should work well and explains why some applications require very few realizations while others require many. This algorithm is compared with the classical ensemble Kalman filter (Evensen, 2003) and with Gu and Oliver's (2007) iterative ensemble Kalman filter on a synthetic problem of monitoring a reservoir using wellbore pressure and flux data.

  14. Quantum-secured blockchain

    NASA Astrophysics Data System (ADS)

    Kiktenko, E. O.; Pozhar, N. O.; Anufriev, M. N.; Trushechkin, A. S.; Yunusov, R. R.; Kurochkin, Y. V.; Lvovsky, A. I.; Fedorov, A. K.

    2018-07-01

    Blockchain is a distributed database which is cryptographically protected against malicious modifications. While promising for a wide range of applications, current blockchain platforms rely on digital signatures, which are vulnerable to attacks by means of quantum computers. The same, albeit to a lesser extent, applies to cryptographic hash functions that are used in preparing new blocks, so parties with access to quantum computation would have unfair advantage in procuring mining rewards. Here we propose a possible solution to the quantum era blockchain challenge and report an experimental realization of a quantum-safe blockchain platform that utilizes quantum key distribution across an urban fiber network for information-theoretically secure authentication. These results address important questions about realizability and scalability of quantum-safe blockchains for commercial and governmental applications.

  15. A model and solving algorithm of combination planning for weapon equipment based on Epoch-era analysis method

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Zhang, Huaiqiang; Zhang, Kan

    2017-10-01

    Focused on the circumstance that the equipment using demand in the short term and the development demand in the long term should be made overall plans and took into consideration in the weapons portfolio planning and the practical problem of the fuzziness in the definition of equipment capacity demand. The expression of demand is assumed to be an interval number or a discrete number. With the analysis method of epoch-era, a long planning cycle is broke into several short planning cycles with different demand value. The multi-stage stochastic programming model is built aimed at maximize long-term planning cycle demand under the constraint of budget, equipment development time and short planning cycle demand. The scenario tree is used to discretize the interval value of the demand, and genetic algorithm is designed to solve the problem. At last, a case is studied to demonstrate the feasibility and effectiveness of the proposed mode.

  16. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].

    PubMed

    Wang, Lulu; Hu, Xin; Hu, Jie; Fang, Youfang; He, Rongrong; Yu, Hongliu

    2016-12-01

    In order to help the patients with upper-limb disfunction go on rehabilitation training,this paper proposed an upper-limb exoskeleton rehabilitation robot with four degrees of freedom(DOF),and realized two control schemes,i.e.,voice control and electromyography control.The hardware and software design of the voice control system was completed based on RSC-4128 chips,which realized the speech recognition technology of a specific person.Besides,this study adapted self-made surface eletromyogram(sEMG)signal extraction electrodes to collect sEMG signals and realized pattern recognition by conducting sEMG signals processing,extracting time domain features and fixed threshold algorithm.In addition,the pulse-width modulation(PWM)algorithm was used to realize the speed adjustment of the system.Voice control and electromyography control experiments were then carried out,and the results showed that the mean recognition rate of the voice control and electromyography control reached 93.1%and 90.9%,respectively.The results proved the feasibility of the control system.This study is expected to lay a theoretical foundation for the further improvement of the control system of the upper-limb rehabilitation robot.

  17. A DVE Time Management Simulation and Verification Platform Based on Causality Consistency Middleware

    NASA Astrophysics Data System (ADS)

    Zhou, Hangjun; Zhang, Wei; Peng, Yuxing; Li, Sikun

    During the course of designing a time management algorithm for DVEs, the researchers always become inefficiency for the distraction from the realization of the trivial and fundamental details of simulation and verification. Therefore, a platform having realized theses details is desirable. However, this has not been achieved in any published work to our knowledge. In this paper, we are the first to design and realize a DVE time management simulation and verification platform providing exactly the same interfaces as those defined by the HLA Interface Specification. Moreover, our platform is based on a new designed causality consistency middleware and might offer the comparison of three kinds of time management services: CO, RO and TSO. The experimental results show that the implementation of the platform only costs small overhead, and that the efficient performance of it is highly effective for the researchers to merely focus on the improvement of designing algorithms.

  18. Estimation of Comfortable/Uncomfortable Feeling Based on EEG by Using NN and k-means Algorithm for Massage Chair

    NASA Astrophysics Data System (ADS)

    Teramae, Tatsuya; Kushida, Daisuke; Takemori, Fumiaki; Kitamura, Akira

    A present massage chair realizes the massage motion and force designed by a professional masseur. However, appropriate massage force to the user can not be provided by the massage chair in such a method. On the other hand, the professional masseur can realize an appropriate massage force to more than one patient, because, the masseur considers the physical condition of the patient. Our research proposed the intelligent massage system of applying masseur's procedure for the massage chair using estimated skin elasticity and DB to relate skin elasticity and massage force. However, proposed system has a problem that DB does not adjust to unknown user, because user's feeling by massage can not be estimated. Then, this paper proposed the estimation method of comfortable/uncomfortable feeling based on EEG using the neural network and k-means algorithm. The realizability of the proposed method is verified by the experimental works.

  19. Low power sensor network for wireless condition monitoring

    NASA Astrophysics Data System (ADS)

    Richter, Ch.; Frankenstein, B.; Schubert, L.; Weihnacht, B.; Friedmann, H.; Ebert, C.

    2009-03-01

    For comprehensive fatigue tests and surveillance of large scale structures, a vibration monitoring system working in the Hz and sub Hz frequency range was realized and tested. The system is based on a wireless sensor network and focuses especially on the realization of a low power measurement, signal processing and communication. Regarding the development, we met the challenge of synchronizing the wireless connected sensor nodes with sufficient accuracy. The sensor nodes ware realized by compact, sensor near signal processing structures containing components for analog preprocessing of acoustic signals, their digitization, algorithms for data reduction and network communication. The core component is a digital micro controller which performs the basic algorithms necessary for the data acquisition synchronization and the filtering. As a first application, the system was installed in a rotor blade of a wind power turbine in order to monitor the Eigen modes over a longer period of time. Currently the sensor nodes are battery powered.

  20. The effect of collision avoidance for autonomous robot team formation

    NASA Astrophysics Data System (ADS)

    Seidman, Mark H.; Yang, Shanchieh J.

    2007-04-01

    As technology and research advance to the era of cooperative robots, many autonomous robot team algorithms have emerged. Shape formation is a common and critical task in many cooperative robot applications. While theoretical studies of robot team formation have shown success, it is unclear whether such algorithms will perform well in a real-world environment. This work examines the effect of collision avoidance schemes on an ideal circle formation algorithm, but behaves similarly if robot-to-robot communications are in place. Our findings reveal that robots with basic collision avoidance capabilities are still able to form into a circle, under most conditions. Moreover, the robot sizes, sensing ranges, and other critical physical parameters are examined to determine their effects on algorithm's performance.

  1. Vibration Sensor-Based Bearing Fault Diagnosis Using Ellipsoid-ARTMAP and Differential Evolution Algorithms

    PubMed Central

    Liu, Chang; Wang, Guofeng; Xie, Qinglu; Zhang, Yanchao

    2014-01-01

    Effective fault classification of rolling element bearings provides an important basis for ensuring safe operation of rotating machinery. In this paper, a novel vibration sensor-based fault diagnosis method using an Ellipsoid-ARTMAP network (EAM) and a differential evolution (DE) algorithm is proposed. The original features are firstly extracted from vibration signals based on wavelet packet decomposition. Then, a minimum-redundancy maximum-relevancy algorithm is introduced to select the most prominent features so as to decrease feature dimensions. Finally, a DE-based EAM (DE-EAM) classifier is constructed to realize the fault diagnosis. The major characteristic of EAM is that the sample distribution of each category is realized by using a hyper-ellipsoid node and smoothing operation algorithm. Therefore, it can depict the decision boundary of disperse samples accurately and effectively avoid over-fitting phenomena. To optimize EAM network parameters, the DE algorithm is presented and two objectives, including both classification accuracy and nodes number, are simultaneously introduced as the fitness functions. Meanwhile, an exponential criterion is proposed to realize final selection of the optimal parameters. To prove the effectiveness of the proposed method, the vibration signals of four types of rolling element bearings under different loads were collected. Moreover, to improve the robustness of the classifier evaluation, a two-fold cross validation scheme is adopted and the order of feature samples is randomly arranged ten times within each fold. The results show that DE-EAM classifier can recognize the fault categories of the rolling element bearings reliably and accurately. PMID:24936949

  2. Applications of data compression techniques in modal analysis for on-orbit system identification

    NASA Technical Reports Server (NTRS)

    Carlin, Robert A.; Saggio, Frank; Garcia, Ephrahim

    1992-01-01

    Data compression techniques have been investigated for use with modal analysis applications. A redundancy-reduction algorithm was used to compress frequency response functions (FRFs) in order to reduce the amount of disk space necessary to store the data and/or save time in processing it. Tests were performed for both single- and multiple-degree-of-freedom (SDOF and MDOF, respectively) systems, with varying amounts of noise. Analysis was done on both the compressed and uncompressed FRFs using an SDOF Nyquist curve fit as well as the Eigensystem Realization Algorithm. Significant savings were realized with minimal errors incurred by the compression process.

  3. MIMO system identification using frequency response data

    NASA Technical Reports Server (NTRS)

    Medina, Enrique A.; Irwin, R. D.; Mitchell, Jerrel R.; Bukley, Angelia P.

    1992-01-01

    A solution to the problem of obtaining a multi-input, multi-output statespace model of a system from its individual input/output frequency responses is presented. The Residue Identification Algorithm (RID) identifies the system poles from a transfer function model of the determinant of the frequency response data matrix. Next, the residue matrices of the modes are computed guaranteeing that each input/output frequency response is fitted in the least squares sense. Finally, a realization of the system is computed. Results of the application of RID to experimental frequency responses of a large space structure ground test facility are presented and compared to those obtained via the Eigensystem Realization Algorithm.

  4. Generalized Jaynes-Cummings model as a quantum search algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanelli, A.

    2009-07-15

    We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings model. In this model the states of the atom are the elements among which the algorithm realizes the search, exciting resonances between the initial and the searched states. This algorithm behaves like Grover's algorithm; the optimal search time is proportional to the square root of the size of the search set and the probability to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual Jaynes-Cummings model as a trivial case of the quantum search algorithm.

  5. Event-chain algorithm for the Heisenberg model: Evidence for z≃1 dynamic scaling.

    PubMed

    Nishikawa, Yoshihiko; Michel, Manon; Krauth, Werner; Hukushima, Koji

    2015-12-01

    We apply the event-chain Monte Carlo algorithm to the three-dimensional ferromagnetic Heisenberg model. The algorithm is rejection-free and also realizes an irreversible Markov chain that satisfies global balance. The autocorrelation functions of the magnetic susceptibility and the energy indicate a dynamical critical exponent z≈1 at the critical temperature, while that of the magnetization does not measure the performance of the algorithm. We show that the event-chain Monte Carlo algorithm substantially reduces the dynamical critical exponent from the conventional value of z≃2.

  6. Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network

    NASA Astrophysics Data System (ADS)

    Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao

    2018-03-01

    Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.

  7. Machine Learning in the Big Data Era: Are We There Yet?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar, Sreenivas Rangan

    In this paper, we discuss the machine learning challenges of the Big Data era. We observe that recent innovations in being able to collect, access, organize, integrate, and query massive amounts of data from a wide variety of data sources have brought statistical machine learning under more scrutiny and evaluation for gleaning insights from the data than ever before. In that context, we pose and debate the question - Are machine learning algorithms scaling with the ability to store and compute? If yes, how? If not, why not? We survey recent developments in the state-of-the-art to discuss emerging and outstandingmore » challenges in the design and implementation of machine learning algorithms at scale. We leverage experience from real-world Big Data knowledge discovery projects across domains of national security and healthcare to suggest our efforts be focused along the following axes: (i) the data science challenge - designing scalable and flexible computational architectures for machine learning (beyond just data-retrieval); (ii) the science of data challenge the ability to understand characteristics of data before applying machine learning algorithms and tools; and (iii) the scalable predictive functions challenge the ability to construct, learn and infer with increasing sample size, dimensionality, and categories of labels. We conclude with a discussion of opportunities and directions for future research.« less

  8. Power efficient control algorithm of electromechanical unbalance vibration exciter with induction motor

    NASA Astrophysics Data System (ADS)

    Topovskiy, V. V.; Simakov, G. M.

    2017-10-01

    A control algorithm of an electromechanical unbalance vibration exciter that provides a free rotational movement is offered in the paper. The unbalance vibration exciter control system realizing a free rotational movement has been synthesized. The structured modeling of the synthesized system has been carried out and its transients are presented. The advantages and disadvantages of the proposed control algorithm applied to the unbalance vibration exciter are shown.

  9. [A modified speech enhancement algorithm for electronic cochlear implant and its digital signal processing realization].

    PubMed

    Wang, Yulin; Tian, Xuelong

    2014-08-01

    In order to improve the speech quality and auditory perceptiveness of electronic cochlear implant under strong noise background, a speech enhancement system used for electronic cochlear implant front-end was constructed. Taking digital signal processing (DSP) as the core, the system combines its multi-channel buffered serial port (McBSP) data transmission channel with extended audio interface chip TLV320AIC10, so speech signal acquisition and output with high speed are realized. Meanwhile, due to the traditional speech enhancement method which has the problems as bad adaptability, slow convergence speed and big steady-state error, versiera function and de-correlation principle were used to improve the existing adaptive filtering algorithm, which effectively enhanced the quality of voice communications. Test results verified the stability of the system and the de-noising performance of the algorithm, and it also proved that they could provide clearer speech signals for the deaf or tinnitus patients.

  10. Web Mining: Machine Learning for Web Applications.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Chau, Michael

    2004-01-01

    Presents an overview of machine learning research and reviews methods used for evaluating machine learning systems. Ways that machine-learning algorithms were used in traditional information retrieval systems in the "pre-Web" era are described, and the field of Web mining and how machine learning has been used in different Web mining…

  11. Smartphone-based integrated PDR/GPS/Bluetooth pedestrian location

    NASA Astrophysics Data System (ADS)

    Li, Xianghong; Wei, Dongyan; Lai, Qifeng; Xu, Ying; Yuan, Hong

    2017-02-01

    Typical indoor location method is fingerprint and traditional outdoor location system is GPS. Both of them are of poor accuracy and limited only for indoor or outdoor environments. As the smartphones are equipped with MEMS sensors, it means PDR can be widely used. In this paper, an algorithm of smartphone-based integrated PDR/GPS/Bluetooth for pedestrian location in the indoor/outdoor is proposed, which can be highly expected to realize seamless indoor/outdoor localization of the pedestrian. In addition, we also provide technologies to estimate orientation with Magnetometer and Gyroscope and detect context with output of sensors. The extensive experimental results show that the proposed algorithm can realize seamless indoor/outdoor localization.

  12. New fast DCT algorithms based on Loeffler's factorization

    NASA Astrophysics Data System (ADS)

    Hong, Yoon Mi; Kim, Il-Koo; Lee, Tammy; Cheon, Min-Su; Alshina, Elena; Han, Woo-Jin; Park, Jeong-Hoon

    2012-10-01

    This paper proposes a new 32-point fast discrete cosine transform (DCT) algorithm based on the Loeffler's 16-point transform. Fast integer realizations of 16-point and 32-point transforms are also provided based on the proposed transform. For the recent development of High Efficiency Video Coding (HEVC), simplified quanti-zation and de-quantization process are proposed. Three different forms of implementation with the essentially same performance, namely matrix multiplication, partial butterfly, and full factorization can be chosen accord-ing to the given platform. In terms of the number of multiplications required for the realization, our proposed full-factorization is 3~4 times faster than a partial butterfly, and about 10 times faster than direct matrix multiplication.

  13. Linear system identification via backward-time observer models

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1993-01-01

    This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.

  14. Hyperspectral feature mapping classification based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli

    2016-03-01

    This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.

  15. Naturally selecting solutions: the use of genetic algorithms in bioinformatics.

    PubMed

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2013-01-01

    For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.

  16. Parallel Algorithms for the Exascale Era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robey, Robert W.

    New parallel algorithms are needed to reach the Exascale level of parallelism with millions of cores. We look at some of the research developed by students in projects at LANL. The research blends ideas from the early days of computing while weaving in the fresh approach brought by students new to the field of high performance computing. We look at reproducibility of global sums and why it is important to parallel computing. Next we look at how the concept of hashing has led to the development of more scalable algorithms suitable for next-generation parallel computers. Nearly all of this workmore » has been done by undergraduates and published in leading scientific journals.« less

  17. Anesthesiology, automation, and artificial intelligence.

    PubMed

    Alexander, John C; Joshi, Girish P

    2018-01-01

    There have been many attempts to incorporate automation into the practice of anesthesiology, though none have been successful. Fundamentally, these failures are due to the underlying complexity of anesthesia practice and the inability of rule-based feedback loops to fully master it. Recent innovations in artificial intelligence, especially machine learning, may usher in a new era of automation across many industries, including anesthesiology. It would be wise to consider the implications of such potential changes before they have been fully realized.

  18. Adiabatic quantum computation along quasienergies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Atushi; Nemoto, Kae; National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430

    2010-02-15

    The parametric deformations of quasienergies and eigenvectors of unitary operators are applied to the design of quantum adiabatic algorithms. The conventional, standard adiabatic quantum computation proceeds along eigenenergies of parameter-dependent Hamiltonians. By contrast, discrete adiabatic computation utilizes adiabatic passage along the quasienergies of parameter-dependent unitary operators. For example, such computation can be realized by a concatenation of parameterized quantum circuits, with an adiabatic though inevitably discrete change of the parameter. A design principle of adiabatic passage along quasienergy was recently proposed: Cheon's quasienergy and eigenspace anholonomies on unitary operators is available to realize anholonomic adiabatic algorithms [A. Tanaka and M.more » Miyamoto, Phys. Rev. Lett. 98, 160407 (2007)], which compose a nontrivial family of discrete adiabatic algorithms. It is straightforward to port a standard adiabatic algorithm to an anholonomic adiabatic one, except an introduction of a parameter |v>, which is available to adjust the gaps of the quasienergies to control the running time steps. In Grover's database search problem, the costs to prepare |v> for the qualitatively different (i.e., power or exponential) running time steps are shown to be qualitatively different.« less

  19. Implementation of real-time digital signal processing systems

    NASA Technical Reports Server (NTRS)

    Narasimha, M.; Peterson, A.; Narayan, S.

    1978-01-01

    Special purpose hardware implementation of DFT Computers and digital filters is considered in the light of newly introduced algorithms and IC devices. Recent work by Winograd on high-speed convolution techniques for computing short length DFT's, has motivated the development of more efficient algorithms, compared to the FFT, for evaluating the transform of longer sequences. Among these, prime factor algorithms appear suitable for special purpose hardware implementations. Architectural considerations in designing DFT computers based on these algorithms are discussed. With the availability of monolithic multiplier-accumulators, a direct implementation of IIR and FIR filters, using random access memories in place of shift registers, appears attractive. The memory addressing scheme involved in such implementations is discussed. A simple counter set-up to address the data memory in the realization of FIR filters is also described. The combination of a set of simple filters (weighting network) and a DFT computer is shown to realize a bank of uniform bandpass filters. The usefulness of this concept in arriving at a modular design for a million channel spectrum analyzer, based on microprocessors, is discussed.

  20. Application of machine learning methods in bioinformatics

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; An, Zheng; Zhou, Haotian; Hou, Yawen

    2018-05-01

    Faced with the development of bioinformatics, high-throughput genomic technology have enabled biology to enter the era of big data. [1] Bioinformatics is an interdisciplinary, including the acquisition, management, analysis, interpretation and application of biological information, etc. It derives from the Human Genome Project. The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets.[2]. This paper analyzes and compares various algorithms of machine learning and their applications in bioinformatics.

  1. The VLSI design of a Reed-Solomon encoder using Berlekamps bit-serial multiplier algorithm

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Deutsch, L. J.; Reed, I. S.; Hsu, I. S.; Wang, K.; Yeh, C. S.

    1982-01-01

    Realization of a bit-serial multiplication algorithm for the encoding of Reed-Solomon (RS) codes on a single VLSI chip using NMOS technology is demonstrated to be feasible. A dual basis (255, 223) over a Galois field is used. The conventional RS encoder for long codes ofter requires look-up tables to perform the multiplication of two field elements. Berlekamp's algorithm requires only shifting and exclusive-OR operations.

  2. Gas flow calculation method of a ramjet engine

    NASA Astrophysics Data System (ADS)

    Kostyushin, Kirill; Kagenov, Anuar; Eremin, Ivan; Zhiltsov, Konstantin; Shuvarikov, Vladimir

    2017-11-01

    At the present study calculation methodology of gas dynamics equations in ramjet engine is presented. The algorithm is based on Godunov`s scheme. For realization of calculation algorithm, the system of data storage is offered, the system does not depend on mesh topology, and it allows using the computational meshes with arbitrary number of cell faces. The algorithm of building a block-structured grid is given. Calculation algorithm in the software package "FlashFlow" is implemented. Software package is verified on the calculations of simple configurations of air intakes and scramjet models.

  3. Trapping photons on the line: controllable dynamics of a quantum walk

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Qin, Hao; Tang, Bao

    2014-04-01

    Optical interferometers comprising birefringent-crystal beam displacers, wave plates, and phase shifters serve as stable devices for simulating quantum information processes such as heralded coined quantum walks. Quantum walks are important for quantum algorithms, universal quantum computing circuits, quantum transport in complex systems, and demonstrating intriguing nonlinear dynamical quantum phenomena. We introduce fully controllable polarization-independent phase shifters in optical pathes in order to realize site-dependent phase defects. The effectiveness of our interferometer is demonstrated through realizing single-photon quantum-walk dynamics in one dimension. By applying site-dependent phase defects, the translational symmetry of an ideal standard quantum walk is broken resulting in localization effect in a quantum walk architecture. The walk is realized for different site-dependent phase defects and coin settings, indicating the strength of localization signature depends on the level of phase due to site-dependent phase defects and coin settings and opening the way for the implementation of a quantum-walk-based algorithm.

  4. Retrospective case-control non-inferiority analysis of intravenous lidocaine in a colorectal surgery enhanced recovery program.

    PubMed

    Naik, Bhiken I; Tsang, Siny; Knisely, Anne; Yerra, Sandeep; Durieux, Marcel E

    2017-01-31

    Enhanced recovery after surgery (ERAS) programs typically utilizes multi-modal analgesia to reduce perioperative opioid consumption. Systemic lidocaine is used in several of these ERAS algorithms and has been shown to reduce opioid use after colorectal surgery. However it is unclear how much the other components of an ERAS protocol contribute to the final outcome. Using a noninferiority analysis we sought to assess the role of perioperative lidocaine in an ERAS program for colorectal surgery, using pain and opioid consumption as outcomes. We conducted a retrospective review of patients who had received intravenous lidocaine perioperatively during colorectal surgery. We matched them with patients who were managed using a multi-component ERAS protocol, which included perioperative lidocaine. We tested a joint hypothesis of noninferiority of lidocaine infusion to ERAS protocol in postoperative pain scores and opioid consumption. We assigned a noninferiority margin of 1 point (on an 11-point numerical rating scale) difference in pain and a ratio [mean (lidocaine) / mean (ERAS)] of 1.2 in opioid consumption, respectively. Fifty-two patients in the lidocaine group were matched with patients in the ERAS group. With regards to opioid consumption, in the overall [1.68 (1.43-1.98)] [odds ratio (95% confidence interval)] analysis and on postoperative day (POD) 1 [2.38 (1.74-3.31)] lidocaine alone was inferior to multi-modal analgesia. On POD 2 and beyond, although the mean odds ratio for opioid consumption was 1.43 [1.43 (1.17-1.73)], the lower limit extended beyond the pre-defined cut-off of 1.2, rendering the outcome inconclusive. For pain scores lidocaine is non-inferior to ERAS [-0.17 (-1.08-0.74)] on POD 2 and beyond. Pain scores on POD 1 and in the overall cohort were inconclusive based on the noninferiority analysis. The addition of a multi-component ERAS protocol to intravenous lidocaine incrementally reduces opioid consumption, most evident on POD 1. For pain scores the data is inconclusive on POD 1, however on POD 2 and beyond lidocaine alone is non-inferior to an ERAS program with lidocaine. Opioid-related complications, including return of bowel function, were not different between the groups despite reduced opioid use in the ERAS group.

  5. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

    NASA Astrophysics Data System (ADS)

    Mugnai, A.; Smith, E. A.; Tripoli, G. J.; Bizzarri, B.; Casella, D.; Dietrich, S.; Di Paola, F.; Panegrossi, G.; Sanò, P.

    2013-04-01

    Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters) over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW) radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome), and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD) algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR) algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale), and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are provided including a few examples of their performance. This aspect of the development of the two algorithms is placed in the context of what we refer to as the TRMM era, which is the era denoting the active and ongoing period of the Tropical Rainfall Measuring Mission (TRMM) that helped inspire their original development. In 2015, the ISAC-Rome precipitation algorithms will undergo a transformation beginning with the upcoming Global Precipitation Measurement (GPM) mission, particularly the GPM Core Satellite technologies. A few years afterward, the first pair of imaging and sounding Meteosat Third Generation (MTG) satellites will be launched, providing additional technological advances. Various of the opportunities presented by the GPM Core and MTG satellites for improving the current CDRD and PNPR precipitation retrieval algorithms, as well as extending their product capability, are discussed.

  6. Leadership by collaboration: Nursing's bold new vision for academic-practice partnerships.

    PubMed

    Sebastian, Juliann G; Breslin, Eileen T; Trautman, Deborah E; Cary, Ann H; Rosseter, Robert J; Vlahov, David

    In 2016 the American Association of Colleges of Nursing issued a report, Advancing Healthcare Transformation: A New Era for Academic Nursing that included recommendations for more fully integrating nursing education, research, and practice. The report calls for a paradigm shift in how nursing leaders in academia and practice work together and with other leaders in higher education and clinical practice. Only by doing so can we realize the full benefits of academic nursing in this new era in which integration and collaboration are essential to success. In this paper we: 1) examine how academic nursing can contribute to healthcare innovation across environments; 2) explore leadership skills for deans of nursing to advance the goals of academic nursing in collaboration with clinical nursing partners, other health professions and clinical service leaders, academic administrators, and community members; and, 3) consider how governance structures and policy initiatives can advance this work. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The forthcoming era of precision medicine.

    PubMed

    Gamulin, Stjepan

    2016-11-01

    The aim of this essay is to present the definition and principles of personalized or precision medicine, the perspective and barriers to its development and clinical application. The implementation of precision medicine in health care requires the coordinated efforts of all health care stakeholders (the biomedical community, government, regulatory bodies, patients' groups). Particularly, translational research with the integration of genomic and comprehensive data from all levels of the organism ("big data"), development of bioinformatics platforms enabling network analysis of disease etiopathogenesis, development of a legislative framework for handling personal data, and new paradigms of medical education are necessary for successful application of the concept of precision medicine in health care. In the present and future era of precision medicine, the collaboration of all participants in health care is necessary for its realization, resulting in improvement of diagnosis, prevention and therapy, based on a holistic, individually tailored approach. Copyright © 2016 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  8. Optimal Bi-Objective Redundancy Allocation for Systems Reliability and Risk Management.

    PubMed

    Govindan, Kannan; Jafarian, Ahmad; Azbari, Mostafa E; Choi, Tsan-Ming

    2016-08-01

    In the big data era, systems reliability is critical to effective systems risk management. In this paper, a novel multiobjective approach, with hybridization of a known algorithm called NSGA-II and an adaptive population-based simulated annealing (APBSA) method is developed to solve the systems reliability optimization problems. In the first step, to create a good algorithm, we use a coevolutionary strategy. Since the proposed algorithm is very sensitive to parameter values, the response surface method is employed to estimate the appropriate parameters of the algorithm. Moreover, to examine the performance of our proposed approach, several test problems are generated, and the proposed hybrid algorithm and other commonly known approaches (i.e., MOGA, NRGA, and NSGA-II) are compared with respect to four performance measures: 1) mean ideal distance; 2) diversification metric; 3) percentage of domination; and 4) data envelopment analysis. The computational studies have shown that the proposed algorithm is an effective approach for systems reliability and risk management.

  9. Investigations of quantum heuristics for optimization

    NASA Astrophysics Data System (ADS)

    Rieffel, Eleanor; Hadfield, Stuart; Jiang, Zhang; Mandra, Salvatore; Venturelli, Davide; Wang, Zhihui

    We explore the design of quantum heuristics for optimization, focusing on the quantum approximate optimization algorithm, a metaheuristic developed by Farhi, Goldstone, and Gutmann. We develop specific instantiations of the of quantum approximate optimization algorithm for a variety of challenging combinatorial optimization problems. Through theoretical analyses and numeric investigations of select problems, we provide insight into parameter setting and Hamiltonian design for quantum approximate optimization algorithms and related quantum heuristics, and into their implementation on hardware realizable in the near term.

  10. Reductions of topologically massive gravity I: Hamiltonian analysis of second order degenerate Lagrangians

    NASA Astrophysics Data System (ADS)

    Ćaǧatay Uçgun, Filiz; Esen, Oǧul; Gümral, Hasan

    2018-01-01

    We present Skinner-Rusk and Hamiltonian formalisms of second order degenerate Clément and Sarıoğlu-Tekin Lagrangians. The Dirac-Bergmann constraint algorithm is employed to obtain Hamiltonian realizations of Lagrangian theories. The Gotay-Nester-Hinds algorithm is used to investigate Skinner-Rusk formalisms of these systems.

  11. Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotsuga menziesii: realized climate niches

    Treesearch

    Gerald E. Rehfeldt; Barry C. Jaquish; Javier Lopez-Upton; Cuauhtemoc Saenz-Romero; J. Bradley St Clair; Laura P. Leites; Dennis G. Joyce

    2014-01-01

    The Random Forests classification algorithm was used to predict the occurrence of the realized climate niche for two sub-specific varieties of Pinus ponderosa and three varieties of Pseudotsuga menziesii from presence-absence data in forest inventory ground plots. Analyses were based on ca. 271,000 observations for P. ponderosa and ca. 426,000 observations for P....

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omet, M.; Michizono, S.; Matsumoto, T.

    We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successfulmore » implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.« less

  13. Anesthesiology, automation, and artificial intelligence

    PubMed Central

    Alexander, John C.; Joshi, Girish P.

    2018-01-01

    ABSTRACT There have been many attempts to incorporate automation into the practice of anesthesiology, though none have been successful. Fundamentally, these failures are due to the underlying complexity of anesthesia practice and the inability of rule-based feedback loops to fully master it. Recent innovations in artificial intelligence, especially machine learning, may usher in a new era of automation across many industries, including anesthesiology. It would be wise to consider the implications of such potential changes before they have been fully realized. PMID:29686578

  14. Microbial taxonomy in the post-genomic era: Rebuilding from scratch?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Cristiane C.; Amaral, Gilda R.; Campeão, Mariana

    2014-12-23

    Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. We re-evaluated the prokaryote species twice. It is time to revisit polyphasic taxonomy, its principles, and its practice, including its underlying pragmatic species concept. We will be able to realize an old dream of our predecessor taxonomists and build a genomic-based microbial taxonomy, using standardized and automated curation of high-quality complete genome sequences as the new gold standard.

  15. Unimodular sequence design under frequency hopping communication compatibility requirements

    NASA Astrophysics Data System (ADS)

    Ge, Peng; Cui, Guolong; Kong, Lingjiang; Yang, Jianyu

    2016-12-01

    The integrated design for both radar and anonymous communication has drawn more attention recently since wireless communication system appeals to enhance security and reliability. Given the frequency hopping (FH) communication system, an effective way to realize integrated design is to meet the spectrum compatibility between these two systems. The paper deals with a unimodular sequence design technique which considers optimizing both the spectrum compatibility and peak sidelobes levels (PSL) of auto-correlation function (ACF). The spectrum compatibility requirement realizes anonymous communication for the FH system and provides this system lower probability of intercept (LPI) since the spectrum of the FH system is hidden in that of the radar system. The proposed algorithm, named generalized fitting template (GFT) technique, converts the sequence optimization design problem to a iterative fitting process. In this process, the power spectrum density (PSD) and PSL behaviors of the generated sequences fit both PSD and PSL templates progressively. Two templates are established based on the spectrum compatibility requirement and the expected PSL. As noted, in order to ensure the communication security and reliability, spectrum compatibility requirement is given a higher priority to achieve in the GFT algorithm. This algorithm realizes this point by adjusting the weight adaptively between these two terms during the iteration process. The simulation results are analyzed in terms of bit error rate (BER), PSD, PSL, and signal-interference rate (SIR) for both the radar and FH systems. The performance of GFT is compared with SCAN, CAN, FRE, CYC, and MAT algorithms in the above aspects, which shows its good effectiveness.

  16. Singular cosmological evolution using canonical and ghost scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nojiri, Shin'ichi; Odintsov, S.D.; Oikonomou, V.K.

    2015-09-01

    We demonstrate that finite time singularities of Type IV can be consistently incorporated in the Universe's cosmological evolution, either appearing in the inflationary era, or in the late-time regime. While using only one scalar field instabilities can in principle occur at the time of the phantom-divide crossing, when two fields are involved we are able to avoid such instabilities. Additionally, the two-field scalar-tensor theories prove to be able to offer a plethora of possible viable cosmological scenarios, at which various types of cosmological singularities can be realized. Amongst others, it is possible to describe inflation with the appearance of amore » Type IV singularity, and phantom late-time acceleration which ends in a Big Rip. Finally, for completeness, we also present the Type IV realization in the context of suitably reconstructed F(R) gravity.« less

  17. Iris Location Algorithm Based on the CANNY Operator and Gradient Hough Transform

    NASA Astrophysics Data System (ADS)

    Zhong, L. H.; Meng, K.; Wang, Y.; Dai, Z. Q.; Li, S.

    2017-12-01

    In the iris recognition system, the accuracy of the localization of the inner and outer edges of the iris directly affects the performance of the recognition system, so iris localization has important research meaning. Our iris data contain eyelid, eyelashes, light spot and other noise, even the gray transformation of the images is not obvious, so the general methods of iris location are unable to realize the iris location. The method of the iris location based on Canny operator and gradient Hough transform is proposed. Firstly, the images are pre-processed; then, calculating the gradient information of images, the inner and outer edges of iris are coarse positioned using Canny operator; finally, according to the gradient Hough transform to realize precise localization of the inner and outer edge of iris. The experimental results show that our algorithm can achieve the localization of the inner and outer edges of the iris well, and the algorithm has strong anti-interference ability, can greatly reduce the location time and has higher accuracy and stability.

  18. Multi-particle phase space integration with arbitrary set of singularities in CompHEP

    NASA Astrophysics Data System (ADS)

    Kovalenko, D. N.; Pukhov, A. E.

    1997-02-01

    We describe an algorithm of multi-particle phase space integration for collision and decay processes realized in CompHEP package version 3.2. In the framework of this algorithm it is possible to regularize an arbitrary set of singularities caused by virtual particle propagators. The algorithm is based on the method of the recursive representation of kinematics and on the multichannel Monte Carlo approach. CompHEP package is available by WWW: http://theory.npi.msu.su/pukhov/comphep.html

  19. The research of network database security technology based on web service

    NASA Astrophysics Data System (ADS)

    Meng, Fanxing; Wen, Xiumei; Gao, Liting; Pang, Hui; Wang, Qinglin

    2013-03-01

    Database technology is one of the most widely applied computer technologies, its security is becoming more and more important. This paper introduced the database security, network database security level, studies the security technology of the network database, analyzes emphatically sub-key encryption algorithm, applies this algorithm into the campus-one-card system successfully. The realization process of the encryption algorithm is discussed, this method is widely used as reference in many fields, particularly in management information system security and e-commerce.

  20. Design of permanent magnet synchronous motor speed control system based on SVPWM

    NASA Astrophysics Data System (ADS)

    Wu, Haibo

    2017-04-01

    The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.

  1. Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits.

    PubMed

    Lu, Chao-Yang; Browne, Daniel E; Yang, Tao; Pan, Jian-Wei

    2007-12-21

    We report an experimental demonstration of a complied version of Shor's algorithm using four photonic qubits. We choose the simplest instance of this algorithm, that is, factorization of N=15 in the case that the period r=2 and exploit a simplified linear optical network to coherently implement the quantum circuits of the modular exponential execution and semiclassical quantum Fourier transformation. During this computation, genuine multiparticle entanglement is observed which well supports its quantum nature. This experiment represents an essential step toward full realization of Shor's algorithm and scalable linear optics quantum computation.

  2. A Study on the Effects of Teachers' Information Literacy on Information Technology Integrated Instruction and Teaching Effectiveness

    ERIC Educational Resources Information Center

    Xu, Anxin; Chen, Guisong

    2016-01-01

    The approach of information digitalization era has largely changed the teaching environment on campus. The application of information technology to education has become a concern in modern education.Traditional basic literacy of reading, writing, and algorithm could no longer cope with the demands in information societies that the information…

  3. Fast transform decoding of nonsystematic Reed-Solomon codes

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Cheung, K.-M.; Reed, I. S.; Shiozaki, A.

    1989-01-01

    A Reed-Solomon (RS) code is considered to be a special case of a redundant residue polynomial (RRP) code, and a fast transform decoding algorithm to correct both errors and erasures is presented. This decoding scheme is an improvement of the decoding algorithm for the RRP code suggested by Shiozaki and Nishida, and can be realized readily on very large scale integration chips.

  4. Enhanced factoring with a bose-einstein condensate.

    PubMed

    Sadgrove, Mark; Kumar, Sanjay; Nakagawa, Ken'ichi

    2008-10-31

    We present a novel method to realize analog sum computation with a Bose-Einstein condensate in an optical lattice potential subject to controlled phase jumps. We use the method to implement the Gauss sum algorithm for factoring numbers. By exploiting higher order quantum momentum states, we are able to improve the algorithm's accuracy beyond the limits of the usual classical implementation.

  5. A DSP-based neural network non-uniformity correction algorithm for IRFPA

    NASA Astrophysics Data System (ADS)

    Liu, Chong-liang; Jin, Wei-qi; Cao, Yang; Liu, Xiu

    2009-07-01

    An effective neural network non-uniformity correction (NUC) algorithm based on DSP is proposed in this paper. The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with a fixed-pattern noise(FPN).We introduced and analyzed the artificial neural network scene-based non-uniformity correction (SBNUC) algorithm. A design of DSP-based NUC development platform for IRFPA is described. The DSP hardware platform designed is of low power consumption, with 32-bit fixed point DSP TMS320DM643 as the kernel processor. The dependability and expansibility of the software have been improved by DSP/BIOS real-time operating system and Reference Framework 5. In order to realize real-time performance, the calibration parameters update is set at a lower task priority then video input and output in DSP/BIOS. In this way, calibration parameters updating will not affect video streams. The work flow of the system and the strategy of real-time realization are introduced. Experiments on real infrared imaging sequences demonstrate that this algorithm requires only a few frames to obtain high quality corrections. It is computationally efficient and suitable for all kinds of non-uniformity.

  6. Theory and generation of conditional, scalable sub-Gaussian random fields

    NASA Astrophysics Data System (ADS)

    Panzeri, M.; Riva, M.; Guadagnini, A.; Neuman, S. P.

    2016-03-01

    Many earth and environmental (as well as a host of other) variables, Y, and their spatial (or temporal) increments, ΔY, exhibit non-Gaussian statistical scaling. Previously we were able to capture key aspects of such non-Gaussian scaling by treating Y and/or ΔY as sub-Gaussian random fields (or processes). This however left unaddressed the empirical finding that whereas sample frequency distributions of Y tend to display relatively mild non-Gaussian peaks and tails, those of ΔY often reveal peaks that grow sharper and tails that become heavier with decreasing separation distance or lag. Recently we proposed a generalized sub-Gaussian model (GSG) which resolves this apparent inconsistency between the statistical scaling behaviors of observed variables and their increments. We presented an algorithm to generate unconditional random realizations of statistically isotropic or anisotropic GSG functions and illustrated it in two dimensions. Most importantly, we demonstrated the feasibility of estimating all parameters of a GSG model underlying a single realization of Y by analyzing jointly spatial moments of Y data and corresponding increments, ΔY. Here, we extend our GSG model to account for noisy measurements of Y at a discrete set of points in space (or time), present an algorithm to generate conditional realizations of corresponding isotropic or anisotropic random fields, introduce two approximate versions of this algorithm to reduce CPU time, and explore them on one and two-dimensional synthetic test cases.

  7. FPGA-based Klystron linearization implementations in scope of ILC

    DOE PAGES

    Omet, M.; Michizono, S.; Matsumoto, T.; ...

    2015-01-23

    We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successfulmore » implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.« less

  8. Quantum Algorithm for K-Nearest Neighbors Classification Based on the Metric of Hamming Distance

    NASA Astrophysics Data System (ADS)

    Ruan, Yue; Xue, Xiling; Liu, Heng; Tan, Jianing; Li, Xi

    2017-11-01

    K-nearest neighbors (KNN) algorithm is a common algorithm used for classification, and also a sub-routine in various complicated machine learning tasks. In this paper, we presented a quantum algorithm (QKNN) for implementing this algorithm based on the metric of Hamming distance. We put forward a quantum circuit for computing Hamming distance between testing sample and each feature vector in the training set. Taking advantage of this method, we realized a good analog for classical KNN algorithm by setting a distance threshold value t to select k - n e a r e s t neighbors. As a result, QKNN achieves O( n 3) performance which is only relevant to the dimension of feature vectors and high classification accuracy, outperforms Llyod's algorithm (Lloyd et al. 2013) and Wiebe's algorithm (Wiebe et al. 2014).

  9. Research on intelligent recommendation algorithm of e-commerce based on association rules

    NASA Astrophysics Data System (ADS)

    Shen, Jiajie; Cheng, Xianyi

    2017-09-01

    As the commodities of e-commerce are more and more rich, more and more consumers are willing to choose online shopping, because of these rich varieties of commodity information, customers will often appear aesthetic fatigue. Therefore, we need a recommendation algorithm according to the recent behavior of customers including browsing and consuming to predicate and intelligently recommend goods which the customers need, thus to improve the satisfaction of customers and to increase the profit of e-commerce. This paper first discusses recommendation algorithm, then improves Apriori. Finally, using R language realizes a recommendation algorithm of commodities. The result shows that this algorithm provides a certain decision-making role for customers to buy commodities.

  10. Research on fast algorithm of small UAV navigation in non-linear matrix reductionism method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Fang, Jiancheng; Sheng, Wei; Cao, Juanjuan

    2008-10-01

    The low Reynolds numbers of small UAV will result in unfavorable aerodynamic conditions to support controlled flight. And as operated near ground, the small UAV will be affected seriously by low-frequency interference caused by atmospheric disturbance. Therefore, the GNC system needs high frequency of attitude estimation and control to realize the steady of the UAV. In company with the dimensional of small UAV dwindling away, its GNC system is more and more taken embedded designing technology to reach the purpose of compactness, light weight and low power consumption. At the same time, the operational capability of GNC system also gets limit in a certain extent. Therefore, a kind of high speed navigation algorithm design becomes the imminence demand of GNC system. Aiming at such requirement, a kind of non-linearity matrix reduction approach is adopted in this paper to create a new high speed navigation algorithm which holds the radius of meridian circle and prime vertical circle as constant and linearizes the position matrix calculation formulae of navigation equation. Compared with normal navigation algorithm, this high speed navigation algorithm decreases 17.3% operand. Within small UAV"s mission radius (20km), the accuracy of position error is less than 0.13m. The results of semi-physical experiments and small UAV's auto pilot testing proved that this algorithm can realize high frequency attitude estimation and control. It will avoid low-frequency interference caused by atmospheric disturbance properly.

  11. An adaptive grid algorithm for 3-D GIS landform optimization based on improved ant algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Chenhan; Meng, Lingkui; Deng, Shijun

    2005-07-01

    The key technique of 3-D GIS is to realize quick and high-quality 3-D visualization, in which 3-D roaming system based on landform plays an important role. However how to increase efficiency of 3-D roaming engine and process a large amount of landform data is a key problem in 3-D landform roaming system and improper process of the problem would result in tremendous consumption of system resources. Therefore it has become the key of 3-D roaming system design that how to realize high-speed process of distributed data for landform DEM (Digital Elevation Model) and high-speed distributed modulation of various 3-D landform data resources. In the paper we improved the basic ant algorithm and designed the modulation strategy of 3-D GIS landform resources based on the improved ant algorithm. By initially hypothetic road weights σi , the change of the information factors in the original algorithm would transform from ˜τj to ∆τj+σi and the weights was decided by 3-D computative capacity of various nodes in network environment. So during the course of initial phase of task assignment, increasing the resource information factors of high task-accomplishing rate and decreasing ones of low accomplishing rate would make load accomplishing rate approach the same value as quickly as possible, then in the later process of task assignment, the load balanced ability of the system was further improved. Experimental results show by improving ant algorithm, our system not only decreases many disadvantage of the traditional ant algorithm, but also like ants looking for food effectively distributes the complicated landform algorithm to many computers to process cooperatively and gains a satisfying search result.

  12. An Innovative Thinking-Based Intelligent Information Fusion Algorithm

    PubMed Central

    Hu, Liang; Liu, Gang; Zhou, Jin

    2013-01-01

    This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information. PMID:23956699

  13. An innovative thinking-based intelligent information fusion algorithm.

    PubMed

    Lu, Huimin; Hu, Liang; Liu, Gang; Zhou, Jin

    2013-01-01

    This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.

  14. Prognostic significance of immunohistochemistry-based markers and algorithms in immunochemotherapy-treated diffuse large B cell lymphoma patients.

    PubMed

    Culpin, Rachel E; Sieniawski, Michal; Angus, Brian; Menon, Geetha K; Proctor, Stephen J; Milne, Paul; McCabe, Kate; Mainou-Fowler, Tryfonia

    2013-12-01

    To reassess the prognostic validity of immunohistochemical markers and algorithms identified in the CHOP era in immunochemotherapy-treated diffuse large B cell lymphoma patients. The prognostic significance of immunohistochemical markers (CD10, Bcl-6, Bcl-2, MUM1, Ki-67, CD5, GCET1, FoxP1, LMO2) and algorithms (Hans, Hans*, Muris, Choi, Choi*, Nyman, Visco-Young, Tally) was assessed using clinical diagnostic blocks taken from an unselected, population-based cohort of 190 patients treated with R-CHOP. Dichotomizing expression, low CD10 (<10%), low LMO2 (<70%) or high Bcl-2 (≥80%) predicted shorter overall survival (OS; P = 0.033, P = 0.010 and P = 0.008, respectively). High Bcl-2 (≥80%), low Bcl-6 (<60%), low GCET1 (<20%) or low LMO2 (<70%) predicted shorter progression-free survival (PFS; P = 0.001, P = 0.048, P = 0.045 and P = 0.002, respectively). The Hans, Hans* and Muris classifiers predicted OS (P = 0.022, P = 0.037 and P = 0.011) and PFS (P = 0.021, P = 0.020 and P = 0.004). The Choi, Choi* and Tally were associated with PFS (P = 0.049, P = 0.009 and P = 0.023). In multivariate analysis, the International Prognostic Index (IPI) was the only independent predictor of outcome (OS; HR: 2.60, P < 0.001 and PFS; HR: 2.91, P < 0.001). Results highlight the controversy surrounding immunohistochemistry-based algorithms in the R-CHOP era. The need for more robust markers, applicable to the clinic, for incorporation into improved prognostic systems is emphasized. © 2013 John Wiley & Sons Ltd.

  15. PerSubs: A Graph-Based Algorithm for the Identification of Perturbed Subpathways Caused by Complex Diseases.

    PubMed

    Vrahatis, Aristidis G; Rapti, Angeliki; Sioutas, Spyros; Tsakalidis, Athanasios

    2017-01-01

    In the era of Systems Biology and growing flow of omics experimental data from high throughput techniques, experimentalists are in need of more precise pathway-based tools to unravel the inherent complexity of diseases and biological processes. Subpathway-based approaches are the emerging generation of pathway-based analysis elucidating the biological mechanisms under the perspective of local topologies onto a complex pathway network. Towards this orientation, we developed PerSub, a graph-based algorithm which detects subpathways perturbed by a complex disease. The perturbations are imprinted through differentially expressed and co-expressed subpathways as recorded by RNA-seq experiments. Our novel algorithm is applied on data obtained from a real experimental study and the identified subpathways provide biological evidence for the brain aging.

  16. Ocean Observations with EOS/MODIS: Algorithm Development and Post Launch Studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Conboy, Barbara (Technical Monitor)

    1999-01-01

    This separation has been logical thus far; however, as launch of AM-1 approaches, it must be recognized that many of these activities will shift emphasis from algorithm development to validation. For example, the second, third, and fifth bullets will become almost totally validation-focussed activities in the post-launch era, providing the core of our experimental validation effort. Work under the first bullet will continue into the post-launch time frame, driven in part by algorithm deficiencies revealed as a result of validation activities. Prior to the start of the 1999 fiscal year (FY99) we were requested to prepare a brief plan for our FY99 activities. This plan is included as Appendix 1. The present report describes the progress made on our planned activities.

  17. Induced pluripotent stem cells for the treatment of stroke: the potential and the pitfalls.

    PubMed

    Yu, Fenggang; Li, Yingying; Morshead, Cindi M

    2013-09-01

    The extraordinary discovery of induced pluripotent stem cells (iPSCs) has led to the very real possibility that patient-specific cell therapy can be realized. The potential to develop cell replacement therapies outside the ethical and legal limitations, has initiated a new era of hope for regenerative strategies to treat human neurological disease including stroke. In this article, we will review and compare the current approaches to derive iPSCs from different somatic cells, and the induction into neuronal phenotypes, considering the advantages and disadvantages to the methodologies of derivation. We will highlight the work relating to the use of iPSC-based therapies in models of stroke and their potential use in clinical trials. Finally, we will consider future directions and areas of exploration which may promote the realization of iPSC-based cell replacement strategies for the treatment of stroke.

  18. The Basic Principles and Methods of the System Approach to Compression of Telemetry Data

    NASA Astrophysics Data System (ADS)

    Levenets, A. V.

    2018-01-01

    The task of data compressing of measurement data is still urgent for information-measurement systems. In paper the basic principles necessary for designing of highly effective systems of compression of telemetric information are offered. A basis of the offered principles is representation of a telemetric frame as whole information space where we can find of existing correlation. The methods of data transformation and compressing algorithms realizing the offered principles are described. The compression ratio for offered compression algorithm is about 1.8 times higher, than for a classic algorithm. Thus, results of a research of methods and algorithms showing their good perspectives.

  19. Reversible Data Hiding Based on DNA Computing

    PubMed Central

    Xie, Yingjie

    2017-01-01

    Biocomputing, especially DNA, computing has got great development. It is widely used in information security. In this paper, a novel algorithm of reversible data hiding based on DNA computing is proposed. Inspired by the algorithm of histogram modification, which is a classical algorithm for reversible data hiding, we combine it with DNA computing to realize this algorithm based on biological technology. Compared with previous results, our experimental results have significantly improved the ER (Embedding Rate). Furthermore, some PSNR (peak signal-to-noise ratios) of test images are also improved. Experimental results show that it is suitable for protecting the copyright of cover image in DNA-based information security. PMID:28280504

  20. The Application Research of Modern Intelligent Cold Chain Distribution System Based on Internet of Things Technology

    NASA Astrophysics Data System (ADS)

    Fan, Dehui; Gao, Shan

    This paper implemented an intelligent cold chain distribution system based on the technology of Internet of things, and took the protoplasmic beer logistics transport system as example. It realized the remote real-time monitoring material status, recorded the distribution information, dynamically adjusted the distribution tasks and other functions. At the same time, the system combined the Internet of things technology with weighted filtering algorithm, realized the real-time query of condition curve, emergency alarming, distribution data retrieval, intelligent distribution task arrangement, etc. According to the actual test, it can realize the optimization of inventory structure, and improve the efficiency of cold chain distribution.

  1. [Design and Implementation of Image Interpolation and Color Correction for Ultra-thin Electronic Endoscope on FPGA].

    PubMed

    Luo, Qiang; Yan, Zhuangzhi; Gu, Dongxing; Cao, Lei

    This paper proposed an image interpolation algorithm based on bilinear interpolation and a color correction algorithm based on polynomial regression on FPGA, which focused on the limited number of imaging pixels and color distortion of the ultra-thin electronic endoscope. Simulation experiment results showed that the proposed algorithm realized the real-time display of 1280 x 720@60Hz HD video, and using the X-rite color checker as standard colors, the average color difference was reduced about 30% comparing with that before color correction.

  2. Algorithm for optimizing bipolar interconnection weights with applications in associative memories and multitarget classification.

    PubMed

    Chang, S; Wong, K W; Zhang, W; Zhang, Y

    1999-08-10

    An algorithm for optimizing a bipolar interconnection weight matrix with the Hopfield network is proposed. The effectiveness of this algorithm is demonstrated by computer simulation and optical implementation. In the optical implementation of the neural network the interconnection weights are biased to yield a nonnegative weight matrix. Moreover, a threshold subchannel is added so that the system can realize, in real time, the bipolar weighted summation in a single channel. Preliminary experimental results obtained from the applications in associative memories and multitarget classification with rotation invariance are shown.

  3. Algorithm for Optimizing Bipolar Interconnection Weights with Applications in Associative Memories and Multitarget Classification

    NASA Astrophysics Data System (ADS)

    Chang, Shengjiang; Wong, Kwok-Wo; Zhang, Wenwei; Zhang, Yanxin

    1999-08-01

    An algorithm for optimizing a bipolar interconnection weight matrix with the Hopfield network is proposed. The effectiveness of this algorithm is demonstrated by computer simulation and optical implementation. In the optical implementation of the neural network the interconnection weights are biased to yield a nonnegative weight matrix. Moreover, a threshold subchannel is added so that the system can realize, in real time, the bipolar weighted summation in a single channel. Preliminary experimental results obtained from the applications in associative memories and multitarget classification with rotation invariance are shown.

  4. EEG Artifact Removal Using a Wavelet Neural Network

    NASA Technical Reports Server (NTRS)

    Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom

    2011-01-01

    !n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.

  5. A pipeline design of a fast prime factor DFT on a finite field

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Hsu, In-Shek; Shao, H. M.; Reed, Irving S.; Shyu, Hsuen-Chyun

    1988-01-01

    A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented.

  6. CONEDEP: COnvolutional Neural network based Earthquake DEtection and Phase Picking

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Huang, Y.; Yue, H.; Zhou, S.; An, S.; Yun, N.

    2017-12-01

    We developed an automatic local earthquake detection and phase picking algorithm based on Fully Convolutional Neural network (FCN). The FCN algorithm detects and segments certain features (phases) in 3 component seismograms to realize efficient picking. We use STA/LTA algorithm and template matching algorithm to construct the training set from seismograms recorded 1 month before and after the Wenchuan earthquake. Precise P and S phases are identified and labeled to construct the training set. Noise data are produced by combining back-ground noise and artificial synthetic noise to form the equivalent scale of noise set as the signal set. Training is performed on GPUs to achieve efficient convergence. Our algorithm has significantly improved performance in terms of the detection rate and precision in comparison with STA/LTA and template matching algorithms.

  7. A Double-function Digital Watermarking Algorithm Based on Chaotic System and LWT

    NASA Astrophysics Data System (ADS)

    Yuxia, Zhao; Jingbo, Fan

    A double- function digital watermarking technology is studied and a double-function digital watermarking algorithm of colored image is presented based on chaotic system and the lifting wavelet transformation (LWT).The algorithm has realized the double aims of the copyright protection and the integrity authentication of image content. Making use of feature of human visual system (HVS), the watermark image is embedded into the color image's low frequency component and middle frequency components by different means. The algorithm has great security by using two kinds chaotic mappings and Arnold to scramble the watermark image at the same time. The algorithm has good efficiency by using LWT. The emulation experiment indicates the algorithm has great efficiency and security, and the effect of concealing is really good.

  8. QCE: A Simulator for Quantum Computer Hardware

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; de Raedt, Hans

    2003-09-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms. QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of physically realizable quantum processors and as an interactive educational tool to learn about quantum computers and quantum algorithms. A detailed exposition is given of the implementation of the CNOT and the Toffoli gate, the quantum Fourier transform, Grover's database search algorithm, an order finding algorithm, Shor's algorithm, a three-input adder and a number partitioning algorithm. We also review the results of simulations of an NMR-like quantum computer.

  9. Balancing Economic and other Discourses in the Internationalization of Higher Education in South Africa

    NASA Astrophysics Data System (ADS)

    Dunn, Mel; Nilan, Pam

    2007-05-01

    Since the end of the apartheid era in South Africa, "internationalization" of higher education has been a popular theme as the country takes its place as a regional leader in education and research in sub-Saharan Africa. However, competing discourses of internationalization have produced economic and moral dilemmas rather than the realization of philanthropic academic aims. The process of internationalizing higher education in South Africa has been greatly compromised by under-funding and over-crowding of post-secondary education institutions in the country.

  10. NASA's Long-range Technology Goals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This document is part of the Final Report performed under contract NASW-3864, titled "NASA's Long-Range Technology Goals". The objectives of the effort were: To identify technologies whose development falls within NASA's capability and purview, and which have high potential for leapfrog advances in the national industrial posture in the 2005-2010 era. To define which of these technologies can also enable quantum jumps in the national space program. To assess mechanisms of interaction between NASA and industry constituencies for realizing the leapfrog technologies. This Volume details the findings pertaining to the advanced space-enabling technologies.

  11. Quantum matter bounce with a dark energy expanding phase

    NASA Astrophysics Data System (ADS)

    Colin, Samuel; Pinto-Neto, Nelson

    2017-09-01

    Analyzing quantum cosmological scenarios containing one scalar field with exponential potential, we have obtained a universe model which realizes a classical dust contraction from very large scales, the initial repeller of the model, and moves to a stiff matter contraction near the singularity, which is avoided due to a quantum bounce. The universe is then launched in a stiff matter expanding phase, which then moves to a dark energy era, finally returning to the dust expanding phase, the final attractor of the model. Hence, one has obtained a nonsingular cosmological model where a single scalar field can describe both the matter contracting phase of a bouncing model, necessary to give an almost scale invariant spectrum of scalar cosmological perturbations, and a transient expanding dark energy phase. As the universe is necessarily dust dominated in the far past, usual adiabatic vacuum initial conditions can be easily imposed in this era, avoiding the usual issues appearing when dark energy is considered in bouncing models.

  12. Land Surface Modeling and Data Assimilation to Support Physical Precipitation Retrievals for GPM

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Tian. Yudong; Kumar, Sujay; Geiger, James; Choudhury, Bhaskar

    2010-01-01

    Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land.

  13. An Improved Adaptive model for Information Recommending and Spreading

    NASA Astrophysics Data System (ADS)

    Chen, Duan-Bing; Gao, Hui

    2012-04-01

    People in the Internet era have to cope with information overload and expend great effort on finding what they need. Recent experiments indicate that recommendations based on users' past activities are usually less favored than those based on social relationships, and thus many researchers have proposed adaptive algorithms on social recommendation. However, in those methods, quite a number of users have little chance to recommend information, which might prevent valuable information from spreading. We present an improved algorithm that allows more users to have enough followers to spread information. Experimental results demonstrate that both recommendation precision and spreading effectiveness of our method can be improved significantly.

  14. Extreme Trust Region Policy Optimization for Active Object Recognition.

    PubMed

    Liu, Huaping; Wu, Yupei; Sun, Fuchun; Huaping Liu; Yupei Wu; Fuchun Sun; Sun, Fuchun; Liu, Huaping; Wu, Yupei

    2018-06-01

    In this brief, we develop a deep reinforcement learning method to actively recognize objects by choosing a sequence of actions for an active camera that helps to discriminate between the objects. The method is realized using trust region policy optimization, in which the policy is realized by an extreme learning machine and, therefore, leads to efficient optimization algorithm. The experimental results on the publicly available data set show the advantages of the developed extreme trust region optimization method.

  15. Computer-generated holographic near-eye display system based on LCoS phase only modulator

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Chang, Shengqian; Zhang, Siman; Xie, Ting; Li, Huaye; Liu, Siqi; Wang, Chang; Tao, Xiao; Zheng, Zhenrong

    2017-09-01

    Augmented reality (AR) technology has been applied in various areas, such as large-scale manufacturing, national defense, healthcare, movie and mass media and so on. An important way to realize AR display is using computer-generated hologram (CGH), which is accompanied by low image quality and heavy computing defects. Meanwhile, the diffraction of Liquid Crystal on Silicon (LCoS) has a negative effect on image quality. In this paper, a modified algorithm based on traditional Gerchberg-Saxton (GS) algorithm was proposed to improve the image quality, and new method to establish experimental system was used to broaden field of view (FOV). In the experiment, undesired zero-order diffracted light was eliminated and high definition 2D image was acquired with FOV broadened to 36.1 degree. We have also done some pilot research in 3D reconstruction with tomography algorithm based on Fresnel diffraction. With the same experimental system, experimental results demonstrate the feasibility of 3D reconstruction. These modifications are effective and efficient, and may provide a better solution in AR realization.

  16. The spectral positioning algorithm of new spectrum vehicle based on convex programming in wireless sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun; Lu, Zhixin

    2017-10-01

    Spectrum resources are very precious, so it is increasingly important to locate interference signals rapidly. Convex programming algorithms in wireless sensor networks are often used as localization algorithms. But in view of the traditional convex programming algorithm is too much overlap of wireless sensor nodes that bring low positioning accuracy, the paper proposed a new algorithm. Which is mainly based on the traditional convex programming algorithm, the spectrum car sends unmanned aerial vehicles (uses) that can be used to record data periodically along different trajectories. According to the probability density distribution, the positioning area is segmented to further reduce the location area. Because the algorithm only increases the communication process of the power value of the unknown node and the sensor node, the advantages of the convex programming algorithm are basically preserved to realize the simple and real-time performance. The experimental results show that the improved algorithm has a better positioning accuracy than the original convex programming algorithm.

  17. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-01-01

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified. PMID:29649173

  18. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor.

    PubMed

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-04-12

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified.

  19. ERP Reliability Analysis (ERA) Toolbox: An open-source toolbox for analyzing the reliability of event-related brain potentials.

    PubMed

    Clayson, Peter E; Miller, Gregory A

    2017-01-01

    Generalizability theory (G theory) provides a flexible, multifaceted approach to estimating score reliability. G theory's approach to estimating score reliability has important advantages over classical test theory that are relevant for research using event-related brain potentials (ERPs). For example, G theory does not require parallel forms (i.e., equal means, variances, and covariances), can handle unbalanced designs, and provides a single reliability estimate for designs with multiple sources of error. This monograph provides a detailed description of the conceptual framework of G theory using examples relevant to ERP researchers, presents the algorithms needed to estimate ERP score reliability, and provides a detailed walkthrough of newly-developed software, the ERP Reliability Analysis (ERA) Toolbox, that calculates score reliability using G theory. The ERA Toolbox is open-source, Matlab software that uses G theory to estimate the contribution of the number of trials retained for averaging, group, and/or event types on ERP score reliability. The toolbox facilitates the rigorous evaluation of psychometric properties of ERP scores recommended elsewhere in this special issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Different realizations of Cooper-Frye sampling with conservation laws

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Oliinychenko, D.; Pang, L.-G.; Ryu, S.; Petersen, H.

    2018-01-01

    Approaches based on viscous hydrodynamics for the hot and dense stage and hadronic transport for the final dilute rescattering stage are successfully applied to the dynamic description of heavy ion reactions at high beam energies. One crucial step in such hybrid approaches is the so-called particlization, which is the transition between the hydrodynamic description and the microscopic degrees of freedom. For this purpose, individual particles are sampled on the Cooper-Frye hypersurface. In this work, four different realizations of the sampling algorithms are compared, with three of them incorporating the global conservation laws of quantum numbers in each event. The algorithms are compared within two types of scenarios: a simple ‘box’ hypersurface consisting of only one static cell and a typical particlization hypersurface for Au+Au collisions at \\sqrt{{s}{NN}}=200 {GeV}. For all algorithms the mean multiplicities (or particle spectra) remain unaffected by global conservation laws in the case of large volumes. In contrast, the fluctuations of the particle numbers are affected considerably. The fluctuations of the newly developed SPREW algorithm based on the exponential weight, and the recently suggested SER algorithm based on ensemble rejection, are smaller than those without conservation laws and agree with the expectation from the canonical ensemble. The previously applied mode sampling algorithm produces dramatically larger fluctuations than expected in the corresponding microcanonical ensemble, and therefore should be avoided in fluctuation studies. This study might be of interest for the investigation of particle fluctuations and correlations, e.g. the suggested signatures for a phase transition or a critical endpoint, in hybrid approaches that are affected by global conservation laws.

  1. Source Finding in the Era of the SKA (Precursors): Aegean 2.0

    NASA Astrophysics Data System (ADS)

    Hancock, Paul J.; Trott, Cathryn M.; Hurley-Walker, Natasha

    2018-03-01

    In the era of the SKA precursors, telescopes are producing deeper, larger images of the sky on increasingly small time-scales. The greater size and volume of images place an increased demand on the software that we use to create catalogues, and so our source finding algorithms need to evolve accordingly. In this paper, we discuss some of the logistical and technical challenges that result from the increased size and volume of images that are to be analysed, and demonstrate how the Aegean source finding package has evolved to address these challenges. In particular, we address the issues of source finding on spatially correlated data, and on images in which the background, noise, and point spread function vary across the sky. We also introduce the concept of forced or prioritised fitting.

  2. Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Qing; Zhang, Dan-Wei; Yan, Hui; Xing, Ding-Yu; Zhu, Shi-Liang

    2017-09-01

    The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter or artificial systems opens a new era in modern physics. An interesting but rarely explored question is whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two- and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.

  3. Sparse and Large-Scale Learning Models and Algorithms for Mining Heterogeneous Big Data

    ERIC Educational Resources Information Center

    Cai, Xiao

    2013-01-01

    With the development of PC, internet as well as mobile devices, we are facing a data exploding era. On one hand, more and more features can be collected to describe the data, making the size of the data descriptor larger and larger. On the other hand, the number of data itself explodes and can be collected from multiple resources. When the data…

  4. Minimization of Delay Costs in the Realization of Production Orders in Two-Machine System

    NASA Astrophysics Data System (ADS)

    Dylewski, Robert; Jardzioch, Andrzej; Dworak, Oliver

    2018-03-01

    The article presents a new algorithm that enables the allocation of the optimal scheduling of the production orders in the two-machine system based on the minimum cost of order delays. The formulated algorithm uses the method of branch and bounds and it is a particular generalisation of the algorithm enabling for the determination of the sequence of the production orders with the minimal sum of the delays. In order to illustrate the proposed algorithm in the best way, the article contains examples accompanied by the graphical trees of solutions. The research analysing the utility of the said algorithm was conducted. The achieved results proved the usefulness of the proposed algorithm when applied to scheduling of orders. The formulated algorithm was implemented in the Matlab programme. In addition, the studies for different sets of production orders were conducted.

  5. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.; Som, Sukhamony

    1990-01-01

    The performance modeling and enhancement for periodic execution of large-grain, decision-free algorithms in data flow architectures is examined. Applications include real-time implementation of control and signal processing algorithms where performance is required to be highly predictable. The mapping of algorithms onto the specified class of data flow architectures is realized by a marked graph model called ATAMM (Algorithm To Architecture Mapping Model). Performance measures and bounds are established. Algorithm transformation techniques are identified for performance enhancement and reduction of resource (computing element) requirements. A systematic design procedure is described for generating operating conditions for predictable performance both with and without resource constraints. An ATAMM simulator is used to test and validate the performance prediction by the design procedure. Experiments on a three resource testbed provide verification of the ATAMM model and the design procedure.

  6. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Som, Sukhamoy; Stoughton, John W.; Mielke, Roland R.

    1990-01-01

    Performance modeling and performance enhancement for periodic execution of large-grain, decision-free algorithms in data flow architectures are discussed. Applications include real-time implementation of control and signal processing algorithms where performance is required to be highly predictable. The mapping of algorithms onto the specified class of data flow architectures is realized by a marked graph model called algorithm to architecture mapping model (ATAMM). Performance measures and bounds are established. Algorithm transformation techniques are identified for performance enhancement and reduction of resource (computing element) requirements. A systematic design procedure is described for generating operating conditions for predictable performance both with and without resource constraints. An ATAMM simulator is used to test and validate the performance prediction by the design procedure. Experiments on a three resource testbed provide verification of the ATAMM model and the design procedure.

  7. Duality quantum algorithm efficiently simulates open quantum systems

    PubMed Central

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  8. Five strategies for accelerating the war on cancer in an era of budget deficits.

    PubMed

    Doroshow, James H; Croyle, Robert T; Niederhuber, John E

    2009-02-01

    In recent years, the National Institutes of Health's largest institute, the National Cancer Institute (NCI), has adapted to difficult economic conditions by leveraging its robust infrastructure -- which includes risk factor surveillance and population monitoring, research centers (focused on basic, translation, clinical, and behavioral sciences), clinical trials and health care research networks, and rigorously validated statistical models -- to maximize the impact of scientific progress on the public health. To continue advancement and realize the opportunity of significant, population-level changes in cancer mortality, the NCI recommends that five national-level actions be taken: (1) significantly increase enrollment of Medicare patients into cancer clinical trials through adequate physician reimbursement, (2) increase NCI/Centers for Medicare and Medicaid Services collaboration on clinical trials research to evaluate the therapeutic efficacy of anticancer drugs, (3) establish a national outcomes research demonstration project to test strategies for measuring and improving health care quality and provide an evidence base for public policy, (4) leverage existing tobacco-control collaborations and possible new authorities at the U.S. Food and Drug Administration to realize the outstanding health gains possible from a reduction in tobacco use, and (5) increase colorectal cancer screening rates though intensified collaboration between federal agencies working to address barriers to access and use of screening. These cost-effective strategies provide the opportunity for extraordinary results in an era of budget deficits. Of the chronic diseases, cancer has the strongest national research infrastructure that can be leveraged to produce rapid results to inform budget prioritization and public policy, as well as mobilize new projects to answer critical public health questions.

  9. Experimental quantum computing to solve systems of linear equations.

    PubMed

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  10. Algorithmic support for graphic images rotation in avionics

    NASA Astrophysics Data System (ADS)

    Kniga, E. V.; Gurjanov, A. V.; Shukalov, A. V.; Zharinov, I. O.

    2018-05-01

    The avionics device designing has an actual problem of development and research algorithms to rotate the images which are being shown in the on-board display. The image rotation algorithms are a part of program software of avionics devices, which are parts of the on-board computers of the airplanes and helicopters. Images to be rotated have the flight location map fragments. The image rotation in the display system can be done as a part of software or mechanically. The program option is worse than the mechanic one in its rotation speed. The comparison of some test images of rotation several algorithms is shown which are being realized mechanically with the program environment Altera QuartusII.

  11. Envisioning engineering education and practice in the coming intelligence convergence era — a complex adaptive systems approach

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2013-12-01

    Some of the recent attempts for improving and transforming engineering education are reviewed. The attempts aim at providing the entry level engineers with the skills needed to address the challenges of future large-scale complex systems and projects. Some of the frontier sectors and future challenges for engineers are outlined. The major characteristics of the coming intelligence convergence era (the post-information age) are identified. These include the prevalence of smart devices and environments, the widespread applications of anticipatory computing and predictive / prescriptive analytics, as well as a symbiotic relationship between humans and machines. Devices and machines will be able to learn from, and with, humans in a natural collaborative way. The recent game changers in learnscapes (learning paradigms, technologies, platforms, spaces, and environments) that can significantly impact engineering education in the coming era are identified. Among these are open educational resources, knowledge-rich classrooms, immersive interactive 3D learning, augmented reality, reverse instruction / flipped classroom, gamification, robots in the classroom, and adaptive personalized learning. Significant transformative changes in, and mass customization of, learning are envisioned to emerge from the synergistic combination of the game changers and other technologies. The realization of the aforementioned vision requires the development of a new multidisciplinary framework of emergent engineering for relating innovation, complexity and cybernetics, within the future learning environments. The framework can be used to treat engineering education as a complex adaptive system, with dynamically interacting and communicating components (instructors, individual, small, and large groups of learners). The emergent behavior resulting from the interactions can produce progressively better, and continuously improving, learning environment. As a first step towards the realization of the vision, intelligent adaptive cyber-physical ecosystems need to be developed to facilitate collaboration between the various stakeholders of engineering education, and to accelerate the development of a skilled engineering workforce. The major components of the ecosystems include integrated knowledge discovery and exploitation facilities, blended learning and research spaces, novel ultra-intelligent software agents, multimodal and autonomous interfaces, and networked cognitive and tele-presence robots.

  12. Design and realization of flash translation layer in tiny embedded system

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoping; Sui, Chaoya; Luo, Zhenghua; Cao, Wenji

    2018-05-01

    We design a solution of tiny embedded device NAND Flash storage system on the basis of deeply studying the characteristics of widely used NAND Flash in the embedded devices in order to adapt to the development of intelligent interconnection trend and solve the storage problem of large data volume in tiny embedded system. The hierarchical structure and function purposes of the system are introduced. The design and realization of address mapping, error correction, bad block management, wear balance, garbage collection and other algorithms in flash memory transformation layer are described in details. NAND Flash drive and management are realized on STM32 micro-controller, thereby verifying design effectiveness and feasibility.

  13. Physical realization of topological quantum walks on IBM-Q and beyond

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan; Castillo, Daniel; Siopsis, George

    2018-07-01

    We discuss an efficient physical realization of topological quantum walks on a one-dimensional finite lattice with periodic boundary conditions (circle). The N-point lattice is realized with {log}}2N qubits, and the quantum circuit utilizes a number of quantum gates that are polynomial in the number of qubits. In a certain scaling limit, we show that a large number of steps are implemented with a number of quantum gates which are independent of the number of steps. We ran the quantum algorithm on the IBM-Q five-qubit quantum computer, thus experimentally demonstrating topological features, such as boundary bound states, on a one-dimensional lattice with N = 4 points.

  14. Algorithm for computing descriptive statistics for very large data sets and the exa-scale era

    NASA Astrophysics Data System (ADS)

    Beekman, Izaak

    2017-11-01

    An algorithm for Single-point, Parallel, Online, Converging Statistics (SPOCS) is presented. It is suited for in situ analysis that traditionally would be relegated to post-processing, and can be used to monitor the statistical convergence and estimate the error/residual in the quantity-useful for uncertainty quantification too. Today, data may be generated at an overwhelming rate by numerical simulations and proliferating sensing apparatuses in experiments and engineering applications. Monitoring descriptive statistics in real time lets costly computations and experiments be gracefully aborted if an error has occurred, and monitoring the level of statistical convergence allows them to be run for the shortest amount of time required to obtain good results. This algorithm extends work by Pébay (Sandia Report SAND2008-6212). Pébay's algorithms are recast into a converging delta formulation, with provably favorable properties. The mean, variance, covariances and arbitrary higher order statistical moments are computed in one pass. The algorithm is tested using Sillero, Jiménez, & Moser's (2013, 2014) publicly available UPM high Reynolds number turbulent boundary layer data set, demonstrating numerical robustness, efficiency and other favorable properties.

  15. Statistical algorithms improve accuracy of gene fusion detection

    PubMed Central

    Hsieh, Gillian; Bierman, Rob; Szabo, Linda; Lee, Alex Gia; Freeman, Donald E.; Watson, Nathaniel; Sweet-Cordero, E. Alejandro

    2017-01-01

    Abstract Gene fusions are known to play critical roles in tumor pathogenesis. Yet, sensitive and specific algorithms to detect gene fusions in cancer do not currently exist. In this paper, we present a new statistical algorithm, MACHETE (Mismatched Alignment CHimEra Tracking Engine), which achieves highly sensitive and specific detection of gene fusions from RNA-Seq data, including the highest Positive Predictive Value (PPV) compared to the current state-of-the-art, as assessed in simulated data. We show that the best performing published algorithms either find large numbers of fusions in negative control data or suffer from low sensitivity detecting known driving fusions in gold standard settings, such as EWSR1-FLI1. As proof of principle that MACHETE discovers novel gene fusions with high accuracy in vivo, we mined public data to discover and subsequently PCR validate novel gene fusions missed by other algorithms in the ovarian cancer cell line OVCAR3. These results highlight the gains in accuracy achieved by introducing statistical models into fusion detection, and pave the way for unbiased discovery of potentially driving and druggable gene fusions in primary tumors. PMID:28541529

  16. Computationally efficient stochastic optimization using multiple realizations

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Bürger, C. M.; Finkel, M.

    2008-02-01

    The presented study is concerned with computationally efficient methods for solving stochastic optimization problems involving multiple equally probable realizations of uncertain parameters. A new and straightforward technique is introduced that is based on dynamically ordering the stack of realizations during the search procedure. The rationale is that a small number of critical realizations govern the output of a reliability-based objective function. By utilizing a problem, which is typical to designing a water supply well field, several variants of this "stack ordering" approach are tested. The results are statistically assessed, in terms of optimality and nominal reliability. This study demonstrates that the simple ordering of a given number of 500 realizations while applying an evolutionary search algorithm can save about half of the model runs without compromising the optimization procedure. More advanced variants of stack ordering can, if properly configured, save up to more than 97% of the computational effort that would be required if the entire number of realizations were considered. The findings herein are promising for similar problems of water management and reliability-based design in general, and particularly for non-convex problems that require heuristic search techniques.

  17. The Calculation of VOCs Diffusion Coefficient for Building Materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Deng, Quancai; Chen, Haijiang; Wu, Xiaoyun

    2018-05-01

    Volatile Organic Compounds (VOCS), as one of the major sources of air contaminations, has an important bearing on one’s general health. The adsorption capacity and velocity of the material for VOCs can be described separately using. In this paper, the detailed process and method of VOCs diffusion and partition coefficients by genetic algorithm is introduced, the algorithm is realized easily by computer program and the result by the method is precise and practical.

  18. Image segmentation algorithm based on improved PCNN

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Wu, Chengdong; Yu, Xiaosheng; Wu, Jiahui

    2017-11-01

    A modified simplified Pulse Coupled Neural Network (PCNN) model is proposed in this article based on simplified PCNN. Some work have done to enrich this model, such as imposing restrictions items of the inputs, improving linking inputs and internal activity of PCNN. A self-adaptive parameter setting method of linking coefficient and threshold value decay time constant is proposed here, too. At last, we realized image segmentation algorithm for five pictures based on this proposed simplified PCNN model and PSO. Experimental results demonstrate that this image segmentation algorithm is much better than method of SPCNN and OTSU.

  19. QoS support over ultrafast TDM optical networks

    NASA Astrophysics Data System (ADS)

    Narvaez, Paolo; Siu, Kai-Yeung; Finn, Steven G.

    1999-08-01

    HLAN is a promising architecture to realize Tb/s access networks based on ultra-fast optical TDM technologies. This paper presents new research results on efficient algorithms for the support of quality of service over the HLAN network architecture. In particular, we propose a new scheduling algorithm that emulates fair queuing in a distributed manner for bandwidth allocation purpose. The proposed scheduler collects information on the queue of each host on the network and then instructs each host how much data to send. Our new scheduling algorithm ensures full bandwidth utilization, while guaranteeing fairness among all hosts.

  20. Research of the effectiveness of parallel multithreaded realizations of interpolation methods for scaling raster images

    NASA Astrophysics Data System (ADS)

    Vnukov, A. A.; Shershnev, M. B.

    2018-01-01

    The aim of this work is the software implementation of three image scaling algorithms using parallel computations, as well as the development of an application with a graphical user interface for the Windows operating system to demonstrate the operation of algorithms and to study the relationship between system performance, algorithm execution time and the degree of parallelization of computations. Three methods of interpolation were studied, formalized and adapted to scale images. The result of the work is a program for scaling images by different methods. Comparison of the quality of scaling by different methods is given.

  1. A new clustering strategy

    NASA Astrophysics Data System (ADS)

    Feng, Jian-xin; Tang, Jia-fu; Wang, Guang-xing

    2007-04-01

    On the basis of the analysis of clustering algorithm that had been proposed for MANET, a novel clustering strategy was proposed in this paper. With the trust defined by statistical hypothesis in probability theory and the cluster head selected by node trust and node mobility, this strategy can realize the function of the malicious nodes detection which was neglected by other clustering algorithms and overcome the deficiency of being incapable of implementing the relative mobility metric of corresponding nodes in the MOBIC algorithm caused by the fact that the receiving power of two consecutive HELLO packet cannot be measured. It's an effective solution to cluster MANET securely.

  2. [Research and realization of signal processing algorithms based on FPGA in digital ophthalmic ultrasonography imaging].

    PubMed

    Fang, Simin; Zhou, Sheng; Wang, Xiaochun; Ye, Qingsheng; Tian, Ling; Ji, Jianjun; Wang, Yanqun

    2015-01-01

    To design and improve signal processing algorithms of ophthalmic ultrasonography based on FPGA. Achieved three signal processing modules: full parallel distributed dynamic filter, digital quadrature demodulation, logarithmic compression, using Verilog HDL hardware language in Quartus II. Compared to the original system, the hardware cost is reduced, the whole image shows clearer and more information of the deep eyeball contained in the image, the depth of detection increases from 5 cm to 6 cm. The new algorithms meet the design requirements and achieve the system's optimization that they can effectively improve the image quality of existing equipment.

  3. Blended control, predictor-corrector guidance algorithm: an enabling technology for Mars aerocapture.

    PubMed

    Jits, Roman Y; Walberg, Gerald D

    2004-03-01

    A guidance scheme designed for coping with significant dispersion in the vehicle's state and atmospheric conditions is presented. In order to expand the flyable aerocapture envelope, control of the vehicle is realized through bank angle and angle-of-attack modulation. Thus, blended control of the vehicle is achieved, where the lateral and vertical motions of the vehicle are decoupled. The overall implementation approach is described, together with the guidance algorithm macrologic and structure. Results of guidance algorithm tests in the presence of various single and multiple off-nominal conditions are presented and discussed. c2003 Published by Elsevier Ltd.

  4. GPM Ground Validation: Pre to Post-Launch Era

    NASA Astrophysics Data System (ADS)

    Petersen, Walt; Skofronick-Jackson, Gail; Huffman, George

    2015-04-01

    NASA GPM Ground Validation (GV) activities have transitioned from the pre to post-launch era. Prior to launch direct validation networks and associated partner institutions were identified world-wide, covering a plethora of precipitation regimes. In the U.S. direct GV efforts focused on use of new operational products such as the NOAA Multi-Radar Multi-Sensor suite (MRMS) for TRMM validation and GPM radiometer algorithm database development. In the post-launch, MRMS products including precipitation rate, accumulation, types and data quality are being routinely generated to facilitate statistical GV of instantaneous (e.g., Level II orbit) and merged (e.g., IMERG) GPM products. Toward assessing precipitation column impacts on product uncertainties, range-gate to pixel-level validation of both Dual-Frequency Precipitation Radar (DPR) and GPM microwave imager data are performed using GPM Validation Network (VN) ground radar and satellite data processing software. VN software ingests quality-controlled volumetric radar datasets and geo-matches those data to coincident DPR and radiometer level-II data. When combined MRMS and VN datasets enable more comprehensive interpretation of both ground and satellite-based estimation uncertainties. To support physical validation efforts eight (one) field campaigns have been conducted in the pre (post) launch era. The campaigns span regimes from northern latitude cold-season snow to warm tropical rain. Most recently the Integrated Precipitation and Hydrology Experiment (IPHEx) took place in the mountains of North Carolina and involved combined airborne and ground-based measurements of orographic precipitation and hydrologic processes underneath the GPM Core satellite. One more U.S. GV field campaign (OLYMPEX) is planned for late 2015 and will address cold-season precipitation estimation, process and hydrology in the orographic and oceanic domains of western Washington State. Finally, continuous direct and physical validation measurements are also being conducted at the NASA Wallops Flight Facility multi-radar, gauge and disdrometer facility located in coastal Virginia. This presentation will summarize the evolution of the NASA GPM GV program from pre to post-launch eras and place focus on evaluation of year-1 post-launch GPM satellite datasets including Level II GPROF, DPR and Combined algorithms, and Level III IMERG products.

  5. Dreaming of Atmospheres

    NASA Astrophysics Data System (ADS)

    Waldmann, I. P.

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  6. A generalized algorithm to design finite field normal basis multipliers

    NASA Technical Reports Server (NTRS)

    Wang, C. C.

    1986-01-01

    Finite field arithmetic logic is central in the implementation of some error-correcting coders and some cryptographic devices. There is a need for good multiplication algorithms which can be easily realized. Massey and Omura recently developed a new multiplication algorithm for finite fields based on a normal basis representation. Using the normal basis representation, the design of the finite field multiplier is simple and regular. The fundamental design of the Massey-Omura multiplier is based on a design of a product function. In this article, a generalized algorithm to locate a normal basis in a field is first presented. Using this normal basis, an algorithm to construct the product function is then developed. This design does not depend on particular characteristics of the generator polynomial of the field.

  7. Systolic array processing of the sequential decoding algorithm

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Yao, K.

    1989-01-01

    A systolic array processing technique is applied to implementing the stack algorithm form of the sequential decoding algorithm. It is shown that sorting, a key function in the stack algorithm, can be efficiently realized by a special type of systolic arrays known as systolic priority queues. Compared to the stack-bucket algorithm, this approach is shown to have the advantages that the decoding always moves along the optimal path, that it has a fast and constant decoding speed and that its simple and regular hardware architecture is suitable for VLSI implementation. Three types of systolic priority queues are discussed: random access scheme, shift register scheme and ripple register scheme. The property of the entries stored in the systolic priority queue is also investigated. The results are applicable to many other basic sorting type problems.

  8. Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)

    NASA Astrophysics Data System (ADS)

    Li, Xin-ran; Wang, Xin

    2017-04-01

    When the genetic algorithm is used to solve the problem of too short-arc (TSA) orbit determination, due to the difference of computing process between the genetic algorithm and the classical method, the original method for outlier deletion is no longer applicable. In the genetic algorithm, the robust estimation is realized by introducing different loss functions for the fitness function, then the outlier problem of the TSA orbit determination is solved. Compared with the classical method, the genetic algorithm is greatly simplified by introducing in different loss functions. Through the comparison on the calculations of multiple loss functions, it is found that the least median square (LMS) estimation and least trimmed square (LTS) estimation can greatly improve the robustness of the TSA orbit determination, and have a high breakdown point.

  9. Patch-based iterative conditional geostatistical simulation using graph cuts

    NASA Astrophysics Data System (ADS)

    Li, Xue; Mariethoz, Gregoire; Lu, DeTang; Linde, Niklas

    2016-08-01

    Training image-based geostatistical methods are increasingly popular in groundwater hydrology even if existing algorithms present limitations that often make real-world applications difficult. These limitations include a computational cost that can be prohibitive for high-resolution 3-D applications, the presence of visual artifacts in the model realizations, and a low variability between model realizations due to the limited pool of patterns available in a finite-size training image. In this paper, we address these issues by proposing an iterative patch-based algorithm which adapts a graph cuts methodology that is widely used in computer graphics. Our adapted graph cuts method optimally cuts patches of pixel values borrowed from the training image and assembles them successively, each time accounting for the information of previously stitched patches. The initial simulation result might display artifacts, which are identified as regions of high cost. These artifacts are reduced by iteratively placing new patches in high-cost regions. In contrast to most patch-based algorithms, the proposed scheme can also efficiently address point conditioning. An advantage of the method is that the cut process results in the creation of new patterns that are not present in the training image, thereby increasing pattern variability. To quantify this effect, a new measure of variability is developed, the merging index, quantifies the pattern variability in the realizations with respect to the training image. A series of sensitivity analyses demonstrates the stability of the proposed graph cuts approach, which produces satisfying simulations for a wide range of parameters values. Applications to 2-D and 3-D cases are compared to state-of-the-art multiple-point methods. The results show that the proposed approach obtains significant speedups and increases variability between realizations. Connectivity functions applied to 2-D models transport simulations in 3-D models are used to demonstrate that pattern continuity is preserved.

  10. Development of the Landsat Data Continuity Mission Cloud Cover Assessment Algorithms

    USGS Publications Warehouse

    Scaramuzza, Pat; Bouchard, M.A.; Dwyer, John L.

    2012-01-01

    The upcoming launch of the Operational Land Imager (OLI) will start the next era of the Landsat program. However, the Automated Cloud-Cover Assessment (CCA) (ACCA) algorithm used on Landsat 7 requires a thermal band and is thus not suited for OLI. There will be a thermal instrument on the Landsat Data Continuity Mission (LDCM)-the Thermal Infrared Sensor-which may not be available during all OLI collections. This illustrates a need for CCA for LDCM in the absence of thermal data. To research possibilities for full-resolution OLI cloud assessment, a global data set of 207 Landsat 7 scenes with manually generated cloud masks was created. It was used to evaluate the ACCA algorithm, showing that the algorithm correctly classified 79.9% of a standard test subset of 3.95 109 pixels. The data set was also used to develop and validate two successor algorithms for use with OLI data-one derived from an off-the-shelf machine learning package and one based on ACCA but enhanced by a simple neural network. These comprehensive CCA algorithms were shown to correctly classify pixels as cloudy or clear 88.5% and 89.7% of the time, respectively.

  11. The king is dead, long live the king: entering a new era of stem cell research and clinical development.

    PubMed

    Ichim, Thomas; Riordan, Neil H; Stroncek, David F

    2011-12-20

    In mid November the biopharma industry was shocked by the announcement from Geron that they were ending work on embryonic stem cell research and therapy. For more than 10 years the public image of all stem cell research has been equated with embryonic stem cells. Unfortunately, a fundamentally important medical and financial fact was being ignored: embryonic stem cell therapy is extremely immature. In parallel to efforts in embryonic stem cell research and development, scientists and physicians in the field of adult stem cells realized that the natural role of adult stem cells in the body is to promote healing and to act like endogenous "repair cells" and, as a result, numerous companies have entered the field of adult stem cell therapy with the goal of expanding numbers of adult stem cells for administration to patients with various conditions. In contrast to embryonic stem cells, which are extremely expensive and potentially dangerous, adult cell cells are inexpensive and have an excellent safety record when used in humans. Many studies are now showing that adult stem cells are practical, patient-applicable, therapeutics that are very close to being available for incorporation into the practice of medicine. These events signal the entrance of the field of stem cells into a new era: an era where hype and misinformation no longer triumph over economic and medical realities.

  12. Design of all-weather celestial navigation system

    NASA Astrophysics Data System (ADS)

    Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng

    2018-03-01

    In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.

  13. The fuzzy algorithm in the die casting mould for the application of multi-channel temperature control

    NASA Astrophysics Data System (ADS)

    Sun, Jin-gen; Chen, Yi; Zhang, Jia-nan

    2017-01-01

    Mould manufacturing is one of the most basic elements in the production chain of China. The mould manufacturing technology has become an important symbol to measure the level of a country's manufacturing industry. The die-casting mould multichannel intelligent temperature control method is studied by cooling water circulation, which uses fuzzy control to realize, aiming at solving the shortcomings of slow speed and big energy consumption during the cooling process of current die-casting mould. At present, the traditional PID control method is used to control the temperature, but it is difficult to ensure the control precision. While , the fuzzy algorithm is used to realize precise control of mould temperature in cooling process. The design is simple, fast response, strong anti-interference ability and good robustness. Simulation results show that the control method is completely feasible, which has higher control precision.

  14. Coordinate Systems, Numerical Objects and Algorithmic Operations of Computational Experiment in Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Degtyarev, Alexander; Khramushin, Vasily

    2016-02-01

    The paper deals with the computer implementation of direct computational experiments in fluid mechanics, constructed on the basis of the approach developed by the authors. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the effciency of the algorithms developed by numerical procedures with natural parallelism. The paper examines the main objects and operations that let you manage computational experiments and monitor the status of the computation process. Special attention is given to a) realization of tensor representations of numerical schemes for direct simulation; b) realization of representation of large particles of a continuous medium motion in two coordinate systems (global and mobile); c) computing operations in the projections of coordinate systems, direct and inverse transformation in these systems. Particular attention is paid to the use of hardware and software of modern computer systems.

  15. Development of an effective and potentially scalable weather generator for temperature and growing degree days

    NASA Astrophysics Data System (ADS)

    Rahmani, Elham; Friederichs, Petra; Keller, Jan; Hense, Andreas

    2016-05-01

    The main purpose of this study is to develop an easy-to-use weather generator (WG) for the downscaling of gridded data to point measurements at regional scale. The WG is applied to daily averaged temperatures and annual growing degree days (GDD) of wheat. This particular choice of variables is motivated by future investigations on temperature impacts as the most important climate variable for wheat cultivation under irrigation in Iran. The proposed statistical downscaling relates large-scale ERA-40 reanalysis to local daily temperature and annual GDD. Long-term local observations in Iran are used at 16 synoptic stations from 1961 to 2001, which is the common period with ERA-40 data. We perform downscaling using two approaches: the first is a linear regression model that uses the ERA-40 fingerprints (FP) defined by the squared correlation with local variability, and the second employs a linear multiple regression (MR) analysis to relate the large-scale information at the neighboring grid points to the station data. Extending the usual downscaling, we implement a WG providing uncertainty information and realizations of the local temperatures and GDD by adding a Gaussian random noise. ERA-40 reanalysis well represents the local daily temperature as well as the annual GDD variability. For 2-m temperature, the FPs are more localized during the warm compared with the cold season. While MR is slightly superior for daily temperature time series, FP seems to perform best for annual GDD. We further assess the quality of the WGs applying probabilistic verification scores like the continuous ranked probability score (CRPS) and the respective skill score. They clearly demonstrate the superiority of WGs compared with a deterministic downscaling.

  16. Least significant qubit algorithm for quantum images

    NASA Astrophysics Data System (ADS)

    Sang, Jianzhi; Wang, Shen; Li, Qiong

    2016-11-01

    To study the feasibility of the classical image least significant bit (LSB) information hiding algorithm on quantum computer, a least significant qubit (LSQb) information hiding algorithm of quantum image is proposed. In this paper, we focus on a novel quantum representation for color digital images (NCQI). Firstly, by designing the three qubits comparator and unitary operators, the reasonability and feasibility of LSQb based on NCQI are presented. Then, the concrete LSQb information hiding algorithm is proposed, which can realize the aim of embedding the secret qubits into the least significant qubits of RGB channels of quantum cover image. Quantum circuit of the LSQb information hiding algorithm is also illustrated. Furthermore, the secrets extracting algorithm and circuit are illustrated through utilizing control-swap gates. The two merits of our algorithm are: (1) it is absolutely blind and (2) when extracting secret binary qubits, it does not need any quantum measurement operation or any other help from classical computer. Finally, simulation and comparative analysis show the performance of our algorithm.

  17. Multi-Target Angle Tracking Algorithm for Bistatic MIMO Radar Based on the Elements of the Covariance Matrix

    PubMed Central

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-01-01

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar. PMID:29518957

  18. Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO) Radar Based on the Elements of the Covariance Matrix.

    PubMed

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-03-07

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.

  19. Optimizing Tissue Sampling for the Diagnosis, Subtyping, and Molecular Analysis of Lung Cancer

    PubMed Central

    Ofiara, Linda Marie; Navasakulpong, Asma; Beaudoin, Stephane; Gonzalez, Anne Valerie

    2014-01-01

    Lung cancer has entered the era of personalized therapy with histologic subclassification and the presence of molecular biomarkers becoming increasingly important in therapeutic algorithms. At the same time, biopsy specimens are becoming increasingly smaller as diagnostic algorithms seek to establish diagnosis and stage with the least invasive techniques. Here, we review techniques used in the diagnosis of lung cancer including bronchoscopy, ultrasound-guided bronchoscopy, transthoracic needle biopsy, and thoracoscopy. In addition to discussing indications and complications, we focus our discussion on diagnostic yields and the feasibility of testing for molecular biomarkers such as epidermal growth factor receptor and anaplastic lymphoma kinase, emphasizing the importance of a sufficient tumor biopsy. PMID:25295226

  20. A Holistic Approach to Networked Information Systems Design and Analysis

    DTIC Science & Technology

    2016-04-15

    attain quite substantial savings. 11. Optimal algorithms for energy harvesting in wireless networks. We use a Markov- decision-process (MDP) based...approach to obtain optimal policies for transmissions . The key advantage of our approach is that it holistically considers information and energy in a...Coding technique to minimize delays and the number of transmissions in Wireless Systems. As we approach an era of ubiquitous computing with information

  1. Dynamic Analysis of Sounding Rocket Pneumatic System Revision

    NASA Technical Reports Server (NTRS)

    Armen, Jerald

    2010-01-01

    The recent fusion of decades of advancements in mathematical models, numerical algorithms and curve fitting techniques marked the beginning of a new era in the science of simulation. It is becoming indispensable to the study of rockets and aerospace analysis. In pneumatic system, which is the main focus of this paper, particular emphasis will be placed on the efforts of compressible flow in Attitude Control System of sounding rocket.

  2. Hubs and authorities in the world trade network using a weighted HITS algorithm.

    PubMed

    Deguchi, Tsuyoshi; Takahashi, Katsuhide; Takayasu, Hideki; Takayasu, Misako

    2014-01-01

    We investigate the economic hubs and authorities of the world trade network (WTN) from 1992 to 2012, an era of rapid economic globalization. Using a well-defined weighted hyperlink-induced topic search (HITS) algorithm, we can calculate the values of the weighted HITS hub and authority for each country in a conjugate way. In the context of the WTN, authority values are large for countries with significant imports from large hub countries, and hub values are large for countries with significant exports to high-authority countries. The United States was the largest economic authority in the WTN from 1992 to 2012. The authority value of the United States has declined since 2001, and China has now become the largest hub in the WTN. At the same time, China's authority value has grown as China is transforming itself from the "factory of the world" to the "market of the world." European countries show a tendency to trade mostly within the European Union, which has decreased Europe's hub and authority values. Japan's authority value has increased slowly, while its hub value has declined. These changes are consistent with Japan's transition from being an export-driven economy in its high economic growth era in the latter half of the twentieth century to being a more mature, economically balanced nation.

  3. Climatology and Impact of Polar Lows in the North Atlantic: Present and Future

    NASA Astrophysics Data System (ADS)

    Michel, Clio; Haukeland, Magnus; Spengler, Thomas

    2016-04-01

    Polar lows are maritime cyclones occurring during cold air outbreaks in high latitudes. We use the Melbourne University algorithm to detect and track polar lows in the North Atlantic. The algorithm is applied to ERA-Interim reanalyses as well as high resolution (25 and 50 km) global climate model data from GFDL for present and future climates. Cyclone track densities for the GFDL present climate and the ERA-Interim reanalyses compare well for the occurrence of present day polar lows. We also present cyclone track densities for future climates under RCP4.5 and RCP8.5 for the early and late 21st century. Polar lows mainly form close to Svalbard but also along the coast of Greenland, in the Norwegian Sea and Barents Sea. We present the shifts in location and intensity of polar lows for future climates and discuss potential reasons for these changes. During their lifetime, they travel several 100 kilometres and can reach the Norwegian coast as well as off-shore infrastructures. Therefore we also assess the difference between current and future occurrence of polar lows reaching the coast of Norway as well as areas with oil platforms and active fisheries. This analysis pinpoints the exposure to current and future impacts of polar lows on these socio-economic assets.

  4. Hubs and Authorities in the World Trade Network Using a Weighted HITS Algorithm

    PubMed Central

    Deguchi, Tsuyoshi; Takahashi, Katsuhide; Takayasu, Hideki; Takayasu, Misako

    2014-01-01

    We investigate the economic hubs and authorities of the world trade network (WTN) from to , an era of rapid economic globalization. Using a well-defined weighted hyperlink-induced topic search (HITS) algorithm, we can calculate the values of the weighted HITS hub and authority for each country in a conjugate way. In the context of the WTN, authority values are large for countries with significant imports from large hub countries, and hub values are large for countries with significant exports to high-authority countries. The United States was the largest economic authority in the WTN from to . The authority value of the United States has declined since , and China has now become the largest hub in the WTN. At the same time, China's authority value has grown as China is transforming itself from the “factory of the world” to the “market of the world.” European countries show a tendency to trade mostly within the European Union, which has decreased Europe's hub and authority values. Japan's authority value has increased slowly, while its hub value has declined. These changes are consistent with Japan's transition from being an export-driven economy in its high economic growth era in the latter half of the twentieth century to being a more mature, economically balanced nation. PMID:25050940

  5. Modal Identification of Tsing MA Bridge by Using Improved Eigensystem Realization Algorithm

    NASA Astrophysics Data System (ADS)

    QIN, Q.; LI, H. B.; QIAN, L. Z.; LAU, C.-K.

    2001-10-01

    This paper presents the results of research work on modal identification of Tsing Ma bridge ambient testing data by using an improved eigensystem realization algorithm. The testing was carried out before the bridge was open to traffic and after the completion of surfacing. Without traffic load, ambient excitations were much less intensive, and the bridge responses to such ambient excitation were also less intensive. Consequently, the bridge responses were significantly influenced by the random movement of heavy construction vehicles on the deck. To cut off noises in the testing data and make the ambient signals more stationary, the Chebyshev digital filter was used instead of the digital filter with a Hanning window. Random decrement (RD) functions were built to convert the ambient responses to free vibrations. An improved eigensystem realization algorithm was employed to improve the accuracy and the efficiency of modal identification. It uses cross-correlation functions ofRD functions to form the Hankel matrix instead of RD functions themselves and uses eigenvalue decomposition instead of singular value decomposition. The data for response accelerations were acquired group by group because of limited number of high-quality accelerometers and channels of data loggers available. The modes were identified group by group and then assembled by using response accelerations acquired at reference points to form modes of the complete bridge. Seventy-nine modes of the Tsing Ma bridge were identified, including five complex modes formed in accordance with unevenly distributed damping in the bridge. The identified modes in time domain were then compared with those identified in frequency domain and finite element analytical results.

  6. Enhancement of Fast Face Detection Algorithm Based on a Cascade of Decision Trees

    NASA Astrophysics Data System (ADS)

    Khryashchev, V. V.; Lebedev, A. A.; Priorov, A. L.

    2017-05-01

    Face detection algorithm based on a cascade of ensembles of decision trees (CEDT) is presented. The new approach allows detecting faces other than the front position through the use of multiple classifiers. Each classifier is trained for a specific range of angles of the rotation head. The results showed a high rate of productivity for CEDT on images with standard size. The algorithm increases the area under the ROC-curve of 13% compared to a standard Viola-Jones face detection algorithm. Final realization of given algorithm consist of 5 different cascades for frontal/non-frontal faces. One more thing which we take from the simulation results is a low computational complexity of CEDT algorithm in comparison with standard Viola-Jones approach. This could prove important in the embedded system and mobile device industries because it can reduce the cost of hardware and make battery life longer.

  7. On Study of Building Smart Campus under Conditions of Cloud Computing and Internet of Things

    NASA Astrophysics Data System (ADS)

    Huang, Chao

    2017-12-01

    two new concepts in the information era are cloud computing and internet of things, although they are defined differently, they share close relationship. It is a new measure to realize leap-forward development of campus by virtue of cloud computing, internet of things and other internet technologies to build smart campus. This paper, centering on the construction of smart campus, analyzes and compares differences between network in traditional campus and that in smart campus, and makes proposals on how to build smart campus finally from the perspectives of cloud computing and internet of things.

  8. The Role in the Virtual Astronomical Observatory in the Era of Massive Data Sets

    NASA Technical Reports Server (NTRS)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.

    2012-01-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.

  9. CRM System Implementation in a Multinational Enterprise

    NASA Astrophysics Data System (ADS)

    Mishra, Alok; Mishra, Deepti

    The concept of customer relationship management (CRM) resonates with managers in today's competitive economy. As more and more organizations realize the significance of becoming customer-centric in today's competitive era, they embrace CRM as a core business strategy. CRM an integration of information technology and relationship marketing provides the infrastructure that facilitates long-term relationship building with customers at an enterprise-wide level. Successful CRM implementation is a complex, expensive and rarely technical projects. This paper presents the successful implementation of CRM in a multinational organization. This study will facilitate in understanding transition, constraints and implementation of CRM in multinational enterprises.

  10. The role in the Virtual Astronomical Observatory in the era of massive data sets

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.

    2012-09-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.

  11. Ecology and genomics of Bacillus subtilis.

    PubMed

    Earl, Ashlee M; Losick, Richard; Kolter, Roberto

    2008-06-01

    Bacillus subtilis is a remarkably diverse bacterial species that is capable of growth within many environments. Recent microarray-based comparative genomic analyses have revealed that members of this species also exhibit considerable genomic diversity. The identification of strain-specific genes might explain how B. subtilis has become so broadly adapted. The goal of identifying ecologically adaptive genes could soon be realized with the imminent release of several new B. subtilis genome sequences. As we embark upon this exciting new era of B. subtilis comparative genomics we review what is currently known about the ecology and evolution of this species.

  12. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald

    2015-05-15

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravitymore » field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.« less

  13. Novel Methods in Disease Biogeography: A Case Study with Heterosporosis

    PubMed Central

    Escobar, Luis E.; Qiao, Huijie; Lee, Christine; Phelps, Nicholas B. D.

    2017-01-01

    Disease biogeography is currently a promising field to complement epidemiology, and ecological niche modeling theory and methods are a key component. Therefore, applying the concepts and tools from ecological niche modeling to disease biogeography and epidemiology will provide biologically sound and analytically robust descriptive and predictive analyses of disease distributions. As a case study, we explored the ecologically important fish disease Heterosporosis, a relatively poorly understood disease caused by the intracellular microsporidian parasite Heterosporis sutherlandae. We explored two novel ecological niche modeling methods, the minimum-volume ellipsoid (MVE) and the Marble algorithm, which were used to reconstruct the fundamental and the realized ecological niche of H. sutherlandae, respectively. Additionally, we assessed how the management of occurrence reports can impact the output of the models. Ecological niche models were able to reconstruct a proxy of the fundamental and realized niche for this aquatic parasite, identifying specific areas suitable for Heterosporosis. We found that the conceptual and methodological advances in ecological niche modeling provide accessible tools to update the current practices of spatial epidemiology. However, careful data curation and a detailed understanding of the algorithm employed are critical for a clear definition of the assumptions implicit in the modeling process and to ensure biologically sound forecasts. In this paper, we show how sensitive MVE is to the input data, while Marble algorithm may provide detailed forecasts with a minimum of parameters. We showed that exploring algorithms of different natures such as environmental clusters, climatic envelopes, and logistic regressions (e.g., Marble, MVE, and Maxent) provide different scenarios of potential distribution. Thus, no single algorithm should be used for disease mapping. Instead, different algorithms should be employed for a more informed and complete understanding of the pathogen or parasite in question. PMID:28770215

  14. Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad

    2015-05-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  15. An Information Theoretic Clustering Approach for Unveiling Authorship Affinities in Shakespearean Era Plays and Poems

    PubMed Central

    Arefin, Ahmed Shamsul; Vimieiro, Renato; Riveros, Carlos; Craig, Hugh; Moscato, Pablo

    2014-01-01

    In this paper we analyse the word frequency profiles of a set of works from the Shakespearean era to uncover patterns of relationship between them, highlighting the connections within authorial canons. We used a text corpus comprising 256 plays and poems from the 16th and 17th centuries, with 17 works of uncertain authorship. Our clustering approach is based on the Jensen-Shannon divergence and a graph partitioning algorithm, and our results show that authors' characteristic styles are very powerful factors in explaining the variation of word use, frequently transcending cross-cutting factors like the differences between tragedy and comedy, early and late works, and plays and poems. Our method also provides an empirical guide to the authorship of plays and poems where this is unknown or disputed. PMID:25347727

  16. Single-Layer Wire Routing.

    DTIC Science & Technology

    1987-08-01

    techniques for routing and testing the rout- ability of designs. The design model is ill- suited for the developement of routing algorithms, but the...circular ordering of ca- bles at a feature endpoint. The arrows de - pict the circular ordering of cables at feature ’ 3 cables endpoints p and q. There can...Figure le -1, whose only proper realizations have size fQ(n 2 ). From a practical standpoint, however, the sketch algorithms do not seem as good. Most

  17. Survey of Methods and Algorithms of Robot Swarm Aggregation

    NASA Astrophysics Data System (ADS)

    E Shlyakhov, N.; Vatamaniuk, I. V.; Ronzhin, A. L.

    2017-01-01

    The paper considers the problem of swarm aggregation of autonomous robots with the use of three methods based on the analogy of the behavior of biological objects. The algorithms substantiating the requirements for hardware realization of sensor, computer and network resources and propulsion devices are presented. Techniques for efficiency estimation of swarm aggregation via space-time characteristics are described. The developed model of the robot swarm reconfiguration into a predetermined three-dimensional shape is presented.

  18. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  19. A spectrum fractal feature classification algorithm for agriculture crops with hyper spectrum image

    NASA Astrophysics Data System (ADS)

    Su, Junying

    2011-11-01

    A fractal dimension feature analysis method in spectrum domain for hyper spectrum image is proposed for agriculture crops classification. Firstly, a fractal dimension calculation algorithm in spectrum domain is presented together with the fast fractal dimension value calculation algorithm using the step measurement method. Secondly, the hyper spectrum image classification algorithm and flowchart is presented based on fractal dimension feature analysis in spectrum domain. Finally, the experiment result of the agricultural crops classification with FCL1 hyper spectrum image set with the proposed method and SAM (spectral angle mapper). The experiment results show it can obtain better classification result than the traditional SAM feature analysis which can fulfill use the spectrum information of hyper spectrum image to realize precision agricultural crops classification.

  20. How well do Reanalysis represent polar lows?

    NASA Astrophysics Data System (ADS)

    Zappa, G.; Shaffrey, L.; Hodges, K.

    2013-12-01

    Polar lows are intense maritime mesocyclones forming at high latitudes during polar air outbreaks. The associated high surface winds can be an important cause of coastal damage.They also seem to play a relevant role in the climate system by modulating the oceanic surface heat fluxes. This creates strong interest in understanding whether modern reanalysis datasets are able to represent polar lows, as well as how their representation may be sensitive to the model resolution. In this talk we investigate how ERA-Interim reanalysis represents the polar lows identified by the Norwegian meteorological services and listed in the STARS (Combination of Sea Surface Temperature and AltimeteR Synergy) dataset for the period 2002-2011. The sensitivity to resolution is explored by comparing ERA-Interim to the ECMWF operational analyses (2008-2011), which have three times higher horizontal resolution compared to ERA-Interim. We show that ERAI-Interim has excellent ability to capture the observed polar lows events with up to 90% of the observed events being found in the reanalysis. However, ERA-Interim tends to have polar lows of weaker dynamical intensity, in terms of both winds and vorticity, and with less spatial structure than in the ECMWF operational analyses (See Fig 1). Furthermore, we apply an objective feature tracking algorithm to the 3 hourly vorticity at 850 hPa with constraints on vorticity intensity and atmospheric static stability to objectively identify polar lows in the ERA-Interim reanalysis. We show that for the stronger polar lows the objective climatology shows good agreement with the STARS dataset over the 2002-2011 period. This allows us to extend the polar lows climatology over the whole ERA Interim period. Differences with another reanalysis product (NCEP-CFSR) will be also discussed. Fig 1: Composite of the tangential wind speed at 925 hPa for 34 polar lows observed in the Norwegian sea between 2008-2010 as represented by the ERA-Interim reanalysis (left) and by the ECMWF Operational analysis (right). Positive values indicate cyclonic circulation. The composite is centered on the polar low vorticity maxima and it is presented for a radial cap of 5 degrees of radius on the sphere (~550Km).

  1. Design and realization of photoelectric instrument binocular optical axis parallelism calibration system

    NASA Astrophysics Data System (ADS)

    Ying, Jia-ju; Chen, Yu-dan; Liu, Jie; Wu, Dong-sheng; Lu, Jun

    2016-10-01

    The maladjustment of photoelectric instrument binocular optical axis parallelism will affect the observe effect directly. A binocular optical axis parallelism digital calibration system is designed. On the basis of the principle of optical axis binocular photoelectric instrument calibration, the scheme of system is designed, and the binocular optical axis parallelism digital calibration system is realized, which include four modules: multiband parallel light tube, optical axis translation, image acquisition system and software system. According to the different characteristics of thermal infrared imager and low-light-level night viewer, different algorithms is used to localize the center of the cross reticle. And the binocular optical axis parallelism calibration is realized for calibrating low-light-level night viewer and thermal infrared imager.

  2. Storm-Tracks in ERA-40 and ERA-Interim Reanalyses

    NASA Astrophysics Data System (ADS)

    Liberato, M. L. R.; Trigo, I. F.; Trigo, R. M.

    2009-04-01

    Extratropical cyclones, their dominant paths, frequency and intensity have long been the object of climatological studies. The analysis of cyclone characteristics for the Euro-Atlantic sector (85°W-70°E; 20°N-75°N) presented here is based on the cyclone detecting and tracking algorithm first developed for the Mediterranean region (Trigo et al., 1999, 2002) and recently extended to a larger Euro-Atlantic region (Trigo, 2006). The objective methodology, which identifies and follows individual lows (Trigo et al. 1999), is applied to 6-hourly geopotential data at 1000-hPa from two reanalyses datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-40 and ERA-Interim reanalyses. Two storm-track databases are built over the Northern Atlantic European area, spanning the common available extended winter seasons from October 1989 to March 2002. Although relatively short, this common period allows a comparison of systems represented in reanalyses datasets with distinct horizontal resolutions (T106 and T255, respectively). This exercise is mostly focused on the key areas of cyclone formation and dissipation and main cyclone characteristics for the Euro-Atlantic sector. Trigo, I. F., T. D. Davies, and G. R. Bigg, 1999: Objective climatology of cyclones in the Mediterranean region. J. Climate, 12, 1685-1696. Trigo I. F., G. R. Bigg and T. D. Davies, 2002: Climatology of Cyclogenesis Mechanisms in the Mediterranean. Mon. Weather Rev. 130, 549-569. Trigo, I. F. 2006: Climatology and Interannual Variability of Storm-Tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR Reanalyses. Clim. Dyn. DOI 10.1007/s00382-005-0065-9.

  3. Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wang, Sheng; Liu, Huaping; Peng, Lian-Mao

    2017-06-01

    Single material-based monolithic optoelectronic integration with complementary metal oxide semiconductor-compatible signal processing circuits is one of the most pursued approaches in the post-Moore era to realize rapid data communication and functional diversification in a limited three-dimensional space. Here, we report an electrically driven carbon nanotube-based on-chip three-dimensional optoelectronic integrated circuit. We demonstrate that photovoltaic receivers, electrically driven transmitters and on-chip electronic circuits can all be fabricated using carbon nanotubes via a complementary metal oxide semiconductor-compatible low-temperature process, providing a seamless integration platform for realizing monolithic three-dimensional optoelectronic integrated circuits with diversified functionality such as the heterogeneous AND gates. These circuits can be vertically scaled down to sub-30 nm and operates in photovoltaic mode at room temperature. Parallel optical communication between functional layers, for example, bottom-layer digital circuits and top-layer memory, has been demonstrated by mapping data using a 2 × 2 transmitter/receiver array, which could be extended as the next generation energy-efficient signal processing paradigm.

  4. Hardware architecture design of image restoration based on time-frequency domain computation

    NASA Astrophysics Data System (ADS)

    Wen, Bo; Zhang, Jing; Jiao, Zipeng

    2013-10-01

    The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.

  5. Research on Localization Algorithms Based on Acoustic Communication for Underwater Sensor Networks

    PubMed Central

    Fan, Liying; Wu, Shan; Yan, Xueting

    2017-01-01

    The water source, as a significant body of the earth, with a high value, serves as a hot topic to study Underwater Sensor Networks (UWSNs). Various applications can be realized based on UWSNs. Our paper mainly concentrates on the localization algorithms based on the acoustic communication for UWSNs. An in-depth survey of localization algorithms is provided for UWSNs. We first introduce the acoustic communication, network architecture, and routing technique in UWSNs. The localization algorithms are classified into five aspects, namely, computation algorithm, spatial coverage, range measurement, the state of the nodes and communication between nodes that are different from all other survey papers. Moreover, we collect a lot of pioneering papers, and a comprehensive comparison is made. In addition, some challenges and open issues are raised in our paper. PMID:29301369

  6. Frequency-domain beamformers using conjugate gradient techniques for speech enhancement.

    PubMed

    Zhao, Shengkui; Jones, Douglas L; Khoo, Suiyang; Man, Zhihong

    2014-09-01

    A multiple-iteration constrained conjugate gradient (MICCG) algorithm and a single-iteration constrained conjugate gradient (SICCG) algorithm are proposed to realize the widely used frequency-domain minimum-variance-distortionless-response (MVDR) beamformers and the resulting algorithms are applied to speech enhancement. The algorithms are derived based on the Lagrange method and the conjugate gradient techniques. The implementations of the algorithms avoid any form of explicit or implicit autocorrelation matrix inversion. Theoretical analysis establishes formal convergence of the algorithms. Specifically, the MICCG algorithm is developed based on a block adaptation approach and it generates a finite sequence of estimates that converge to the MVDR solution. For limited data records, the estimates of the MICCG algorithm are better than the conventional estimators and equivalent to the auxiliary vector algorithms. The SICCG algorithm is developed based on a continuous adaptation approach with a sample-by-sample updating procedure and the estimates asymptotically converge to the MVDR solution. An illustrative example using synthetic data from a uniform linear array is studied and an evaluation on real data recorded by an acoustic vector sensor array is demonstrated. Performance of the MICCG algorithm and the SICCG algorithm are compared with the state-of-the-art approaches.

  7. Study of Anticyclogenesis Affecting the Mediterranean

    NASA Astrophysics Data System (ADS)

    Hatzaki, M.; Flocas, H. A.; Simmonds, I.; Kouroutzoglou, J.; Garde, L.; Keay, K.; Bitsa, E.

    2014-12-01

    A comprehensive climatology of migratory anticyclones affecting the Mediterranean was generated by the University of Melbourne finding and tracking algorithm (MS algorithm), applied to 34 years (1979-2012) of ERA-Interim MSLP on a 1.5°x1.5° resolution. The algorithm was employed for the first time for anticyclones in this region, thus, its robustness and reliability in efficiently capturing the individual characteristics of the anticyclonic tracks in such a closed basin with complex topography were checked and verified. Then, the tracks and the statistical properties of the migratory systems were calculated and analyzed. Considering that cold-core anticyclones are shallow and weaken with height contrary to the warm-core that exhibit a vertically well-organized structure, the vertical thermal extend of the systems was studied with an algorithm developed as an extension module of the MS algorithm using ERA-Interim temperatures on several isobaric levels from 1000hPa to 100hPa on an 1.5°x1.5° resolution. The results verified that during both cold and warm period, cold-core anticyclones mainly affect the northern parts of the Mediterranean basin, with their behavior to be strongly regulated by cyclonic activity from the main storm track areas of the North Atlantic and Europe. On the other hand, warm-core anticyclones were found mainly in the southern Mediterranean and North African areas. Here, in order to get a perspective on the dynamic and thermodynamic processes in anticyclonic formation, a dynamical analysis at several vertical levels is performed. The study of mean fields of potential vorticity, temperature advection, vorticity advection at various levels can elucidate the role of upper and low levels during anticyclogenesis and system evolvement and help to further understand the dynamic mechanisms which are responsible for the anticyclogenesis over the Mediterranean region. Acknowledgement: This research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology) and is co-financed by the European Social Fund (ESF) and the Greek State. Some funding from the Australian Research Council is also acknowledged.

  8. Mean-variance analysis of block-iterative reconstruction algorithms modeling 3D detector response in SPECT

    NASA Astrophysics Data System (ADS)

    Lalush, D. S.; Tsui, B. M. W.

    1998-06-01

    We study the statistical convergence properties of two fast iterative reconstruction algorithms, the rescaled block-iterative (RBI) and ordered subset (OS) EM algorithms, in the context of cardiac SPECT with 3D detector response modeling. The Monte Carlo method was used to generate nearly noise-free projection data modeling the effects of attenuation, detector response, and scatter from the MCAT phantom. One thousand noise realizations were generated with an average count level approximating a typical T1-201 cardiac study. Each noise realization was reconstructed using the RBI and OS algorithms for cases with and without detector response modeling. For each iteration up to twenty, we generated mean and variance images, as well as covariance images for six specific locations. Both OS and RBI converged in the mean to results that were close to the noise-free ML-EM result using the same projection model. When detector response was not modeled in the reconstruction, RBI exhibited considerably lower noise variance than OS for the same resolution. When 3D detector response was modeled, the RBI-EM provided a small improvement in the tradeoff between noise level and resolution recovery, primarily in the axial direction, while OS required about half the number of iterations of RBI to reach the same resolution. We conclude that OS is faster than RBI, but may be sensitive to errors in the projection model. Both OS-EM and RBI-EM are effective alternatives to the EVIL-EM algorithm, but noise level and speed of convergence depend on the projection model used.

  9. Structural Equation Models in a Redundancy Analysis Framework With Covariates.

    PubMed

    Lovaglio, Pietro Giorgio; Vittadini, Giorgio

    2014-01-01

    A recent method to specify and fit structural equation modeling in the Redundancy Analysis framework based on so-called Extended Redundancy Analysis (ERA) has been proposed in the literature. In this approach, the relationships between the observed exogenous variables and the observed endogenous variables are moderated by the presence of unobservable composites, estimated as linear combinations of exogenous variables. However, in the presence of direct effects linking exogenous and endogenous variables, or concomitant indicators, the composite scores are estimated by ignoring the presence of the specified direct effects. To fit structural equation models, we propose a new specification and estimation method, called Generalized Redundancy Analysis (GRA), allowing us to specify and fit a variety of relationships among composites, endogenous variables, and external covariates. The proposed methodology extends the ERA method, using a more suitable specification and estimation algorithm, by allowing for covariates that affect endogenous indicators indirectly through the composites and/or directly. To illustrate the advantages of GRA over ERA we propose a simulation study of small samples. Moreover, we propose an application aimed at estimating the impact of formal human capital on the initial earnings of graduates of an Italian university, utilizing a structural model consistent with well-established economic theory.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane

    This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less

  11. Design and evaluation of basic standard encryption algorithm modules using nanosized complementary metal oxide semiconductor molecular circuits

    NASA Astrophysics Data System (ADS)

    Masoumi, Massoud; Raissi, Farshid; Ahmadian, Mahmoud; Keshavarzi, Parviz

    2006-01-01

    We are proposing that the recently proposed semiconductor-nanowire-molecular architecture (CMOL) is an optimum platform to realize encryption algorithms. The basic modules for the advanced encryption standard algorithm (Rijndael) have been designed using CMOL architecture. The performance of this design has been evaluated with respect to chip area and speed. It is observed that CMOL provides considerable improvement over implementation with regular CMOS architecture even with a 20% defect rate. Pseudo-optimum gate placement and routing are provided for Rijndael building blocks and the possibility of designing high speed, attack tolerant and long key encryptions are discussed.

  12. A new approach of watermarking technique by means multichannel wavelet functions

    NASA Astrophysics Data System (ADS)

    Agreste, Santa; Puccio, Luigia

    2012-12-01

    The digital piracy involving images, music, movies, books, and so on, is a legal problem that has not found a solution. Therefore it becomes crucial to create and to develop methods and numerical algorithms in order to solve the copyright problems. In this paper we focus the attention on a new approach of watermarking technique applied to digital color images. Our aim is to describe the realized watermarking algorithm based on multichannel wavelet functions with multiplicity r = 3, called MCWM 1.0. We report a large experimentation and some important numerical results in order to show the robustness of the proposed algorithm to geometrical attacks.

  13. [Fluorescent signal detection of chromatographic chip by algorithms of pyramid connection and Gaussian mixture model].

    PubMed

    Hu, Beibei; Zhang, Xueqing; Chen, Haopeng; Cui, Daxiang

    2011-03-01

    We proposed a new algorithm for automatic identification of fluorescent signal. Based on the features of chromatographic chips, mathematic morphology in RGB color space was used to filter and enhance the images, pyramid connection was used to segment the areas of fluorescent signal, and then the method of Gaussian Mixture Model was used to detect the fluorescent signal. Finally we calculated the average fluorescent intensity in obtained fluorescent areas. Our results show that the algorithm has a good efficacy to segment the fluorescent areas, can detect the fluorescent signal quickly and accurately, and finally realize the quantitative detection of fluorescent signal in chromatographic chip.

  14. A VLSI pipeline design of a fast prime factor DFT on a finite field

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Hsu, I. S.; Shao, H. M.; Reed, I. S.; Shyu, H. C.

    1986-01-01

    A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). A pipeline structure is used to implement this prime factor DFT over GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented.

  15. Nonuniformity correction for an infrared focal plane array based on diamond search block matching.

    PubMed

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    In scene-based nonuniformity correction algorithms, artificial ghosting and image blurring degrade the correction quality severely. In this paper, an improved algorithm based on the diamond search block matching algorithm and the adaptive learning rate is proposed. First, accurate transform pairs between two adjacent frames are estimated by the diamond search block matching algorithm. Then, based on the error between the corresponding transform pairs, the gradient descent algorithm is applied to update correction parameters. During the process of gradient descent, the local standard deviation and a threshold are utilized to control the learning rate to avoid the accumulation of matching error. Finally, the nonuniformity correction would be realized by a linear model with updated correction parameters. The performance of the proposed algorithm is thoroughly studied with four real infrared image sequences. Experimental results indicate that the proposed algorithm can reduce the nonuniformity with less ghosting artifacts in moving areas and can also overcome the problem of image blurring in static areas.

  16. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  17. An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features.

    PubMed

    He, Ying; Liang, Bin; Yang, Jun; Li, Shunzhi; He, Jin

    2017-08-11

    The Iterative Closest Points (ICP) algorithm is the mainstream algorithm used in the process of accurate registration of 3D point cloud data. The algorithm requires a proper initial value and the approximate registration of two point clouds to prevent the algorithm from falling into local extremes, but in the actual point cloud matching process, it is difficult to ensure compliance with this requirement. In this paper, we proposed the ICP algorithm based on point cloud features (GF-ICP). This method uses the geometrical features of the point cloud to be registered, such as curvature, surface normal and point cloud density, to search for the correspondence relationships between two point clouds and introduces the geometric features into the error function to realize the accurate registration of two point clouds. The experimental results showed that the algorithm can improve the convergence speed and the interval of convergence without setting a proper initial value.

  18. An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features

    PubMed Central

    Liang, Bin; Yang, Jun; Li, Shunzhi; He, Jin

    2017-01-01

    The Iterative Closest Points (ICP) algorithm is the mainstream algorithm used in the process of accurate registration of 3D point cloud data. The algorithm requires a proper initial value and the approximate registration of two point clouds to prevent the algorithm from falling into local extremes, but in the actual point cloud matching process, it is difficult to ensure compliance with this requirement. In this paper, we proposed the ICP algorithm based on point cloud features (GF-ICP). This method uses the geometrical features of the point cloud to be registered, such as curvature, surface normal and point cloud density, to search for the correspondence relationships between two point clouds and introduces the geometric features into the error function to realize the accurate registration of two point clouds. The experimental results showed that the algorithm can improve the convergence speed and the interval of convergence without setting a proper initial value. PMID:28800096

  19. Predicting fundamental and realized distributions based on thermal niche: A case study of a freshwater turtle

    NASA Astrophysics Data System (ADS)

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco; Ribeiro, Bruno R.

    2018-04-01

    Species distribution models (SDM) have been broadly used in ecology to address theoretical and practical problems. Currently, there are two main approaches to generate SDMs: (i) correlative, which is based on species occurrences and environmental predictor layers and (ii) process-based models, which are constructed based on species' functional traits and physiological tolerances. The distributions estimated by each approach are based on different components of species niche. Predictions of correlative models approach species realized niches, while predictions of process-based are more akin to species fundamental niche. Here, we integrated the predictions of fundamental and realized distributions of the freshwater turtle Trachemys dorbigni. Fundamental distribution was estimated using data of T. dorbigni's egg incubation temperature, and realized distribution was estimated using species occurrence records. Both types of distributions were estimated using the same regression approaches (logistic regression and support vector machines), both considering macroclimatic and microclimatic temperatures. The realized distribution of T. dorbigni was generally nested in its fundamental distribution reinforcing theoretical assumptions that the species' realized niche is a subset of its fundamental niche. Both modelling algorithms produced similar results but microtemperature generated better results than macrotemperature for the incubation model. Finally, our results reinforce the conclusion that species realized distributions are constrained by other factors other than just thermal tolerances.

  20. Medical education: part of the problem and part of the solution.

    PubMed

    Lucey, Catherine Reinis

    2013-09-23

    Medical education today is pedagogically superb, but the graduates of our educational programs are still unable to successfully translate decades of biomedical advances into health care that reliably meets the Institute of Medicine quality criteria. Realizing the promise of high-quality health care will require that medical educators accept that they must fulfill their contract with society to reduce the burden of suffering and disease through the education of physicians. Educational redesign must begin with the understanding that the professional identity of the physician who was successful in the acute disease era of the 20th century will not be effective in the complex chronic disease era of the 21st century. Medical schools and residency programs must restructure their views of basic and clinical science and workplace learning to give equal emphasis to the science and skills needed to practice in and lead in complex systems. They must also rethink their relationships with clinical environments so that the education of students and residents accelerates the transformation in health care delivery needed to fulfill our contract with society.

  1. Transmission of drug-susceptible and drug-resistant tuberculosis and the critical importance of airborne infection control in the era of HIV infection and highly active antiretroviral therapy rollouts.

    PubMed

    Shenoi, Sheela V; Escombe, A Roderick; Friedland, Gerald

    2010-05-15

    Comprehensive and successful tuberculosis (TB) care and treatment must incorporate effective airborne infection-control strategies. This is particularly and critically important for health care workers and all persons with or at risk of human immunodeficiency virus (HIV) infection. Past and current outbreaks and epidemics of drug-susceptible, multidrug-resistant, and extensively drug-resistant TB have been fueled by HIV infection, with high rates of morbidity and mortality and linked to the absence or limited application of airborne infection-control strategies in both resource-rich and resource-limited settings. Airborne infection-control strategies are available--grouped into administrative, environmental, and personal protection categories--and have been shown to be associated with decreases in nosocomial transmission of TB; their efficacy has not been fully demonstrated, and their implementation is extremely limited, particularly in resource-limited settings. New research and resources are required to fully realize the potential benefits of infection control in the era of TB and HIV epidemics.

  2. Metabolic Design and Control for Production in Prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhabra, Swapnil R.; Keasling, J.D.

    2010-11-10

    Prokaryotic life on earth is manifested by its diversity and omnipresence. These microbes serve as natural sources of a large variety of compounds with the potential to serve the ever growing, medicinal, chemical and transportation needs of the human population. However, commercially viable production of these compounds can be realized only through significant improvement of the native production capacity of natural isolates. The most favorable way to achieve this goal is through the genetic manipulation of metabolic pathways that direct the production of these molecules. While random mutagenesis and screening have dominated the industrial production of such compounds in themore » past our increased understanding of microbial physiology over the last five decades has shifted this trend towards rational approaches for metabolic design. Major drivers of this trend include recombinant DNA technology, high throughput characterization of macromolecular cellular components, quantitative modeling for metabolic engine ring, targeted combinatorial engineering and synthetic biology. In this chapter we track the evolution of microbial engineering technologies from the black box era of random mutagenesis to the science and engineering-driven era of metabolic design.« less

  3. Speeding up image quality improvement in random phase-free holograms using ringing artifact characteristics.

    PubMed

    Nagahama, Yuki; Shimobaba, Tomoyoshi; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2017-05-01

    A holographic projector utilizes holography techniques. However, there are several barriers to realizing holographic projections. One is deterioration of hologram image quality caused by speckle noise and ringing artifacts. The combination of the random phase-free method and the Gerchberg-Saxton (GS) algorithm has improved the image quality of holograms. However, the GS algorithm requires significant computation time. We propose faster methods for image quality improvement of random phase-free holograms using the characteristics of ringing artifacts.

  4. Monte Carlo sampling of Wigner functions and surface hopping quantum dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kube, Susanna; Lasser, Caroline; Weber, Marcus

    2009-04-01

    The article addresses the achievable accuracy for a Monte Carlo sampling of Wigner functions in combination with a surface hopping algorithm for non-adiabatic quantum dynamics. The approximation of Wigner functions is realized by an adaption of the Metropolis algorithm for real-valued functions with disconnected support. The integration, which is necessary for computing values of the Wigner function, uses importance sampling with a Gaussian weight function. The numerical experiments agree with theoretical considerations and show an error of 2-3%.

  5. Study of nanometer-level precise phase-shift system used in electronic speckle shearography and phase-shift pattern interferometry

    NASA Astrophysics Data System (ADS)

    Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo

    2011-11-01

    The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.

  6. An Indoor Continuous Positioning Algorithm on the Move by Fusing Sensors and Wi-Fi on Smartphones.

    PubMed

    Li, Huaiyu; Chen, Xiuwan; Jing, Guifei; Wang, Yuan; Cao, Yanfeng; Li, Fei; Zhang, Xinlong; Xiao, Han

    2015-12-11

    Wi-Fi indoor positioning algorithms experience large positioning error and low stability when continuously positioning terminals that are on the move. This paper proposes a novel indoor continuous positioning algorithm that is on the move, fusing sensors and Wi-Fi on smartphones. The main innovative points include an improved Wi-Fi positioning algorithm and a novel positioning fusion algorithm named the Trust Chain Positioning Fusion (TCPF) algorithm. The improved Wi-Fi positioning algorithm was designed based on the properties of Wi-Fi signals on the move, which are found in a novel "quasi-dynamic" Wi-Fi signal experiment. The TCPF algorithm is proposed to realize the "process-level" fusion of Wi-Fi and Pedestrians Dead Reckoning (PDR) positioning, including three parts: trusted point determination, trust state and positioning fusion algorithm. An experiment is carried out for verification in a typical indoor environment, and the average positioning error on the move is 1.36 m, a decrease of 28.8% compared to an existing algorithm. The results show that the proposed algorithm can effectively reduce the influence caused by the unstable Wi-Fi signals, and improve the accuracy and stability of indoor continuous positioning on the move.

  7. AUTOCLASSIFICATION OF THE VARIABLE 3XMM SOURCES USING THE RANDOM FOREST MACHINE LEARNING ALGORITHM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, Sean A.; Murphy, Tara; Lo, Kitty K., E-mail: s.farrell@physics.usyd.edu.au

    In the current era of large surveys and massive data sets, autoclassification of astrophysical sources using intelligent algorithms is becoming increasingly important. In this paper we present the catalog of variable sources in the Third XMM-Newton Serendipitous Source catalog (3XMM) autoclassified using the Random Forest machine learning algorithm. We used a sample of manually classified variable sources from the second data release of the XMM-Newton catalogs (2XMMi-DR2) to train the classifier, obtaining an accuracy of ∼92%. We also evaluated the effectiveness of identifying spurious detections using a sample of spurious sources, achieving an accuracy of ∼95%. Manual investigation of amore » random sample of classified sources confirmed these accuracy levels and showed that the Random Forest machine learning algorithm is highly effective at automatically classifying 3XMM sources. Here we present the catalog of classified 3XMM variable sources. We also present three previously unidentified unusual sources that were flagged as outlier sources by the algorithm: a new candidate supergiant fast X-ray transient, a 400 s X-ray pulsar, and an eclipsing 5 hr binary system coincident with a known Cepheid.« less

  8. Improved pulse laser ranging algorithm based on high speed sampling

    NASA Astrophysics Data System (ADS)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  9. Reuse, Recycle, Reweigh: Combating Influenza through Efficient Sequential Bayesian Computation for Massive Data.

    PubMed

    Tom, Jennifer A; Sinsheimer, Janet S; Suchard, Marc A

    Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, often compared using point estimates that fail to account for the variability within and correlation between the distributions these realizations approximate. However, although the initial concession to stratify generally precludes the more sensible analysis using a single joint hierarchical model, we can circumvent this outcome and capitalize on the intermediate realizations by extending the dynamic iterative reweighting MCMC algorithm. In doing so, we reuse the available realizations by reweighting them with importance weights, recycling them into a now tractable joint hierarchical model. We apply this technique to intermediate realizations generated from stratified analyses of 687 influenza A genomes spanning 13 years allowing us to revisit hypotheses regarding the evolutionary history of influenza within a hierarchical statistical framework.

  10. Reuse, Recycle, Reweigh: Combating Influenza through Efficient Sequential Bayesian Computation for Massive Data

    PubMed Central

    Tom, Jennifer A.; Sinsheimer, Janet S.; Suchard, Marc A.

    2015-01-01

    Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, often compared using point estimates that fail to account for the variability within and correlation between the distributions these realizations approximate. However, although the initial concession to stratify generally precludes the more sensible analysis using a single joint hierarchical model, we can circumvent this outcome and capitalize on the intermediate realizations by extending the dynamic iterative reweighting MCMC algorithm. In doing so, we reuse the available realizations by reweighting them with importance weights, recycling them into a now tractable joint hierarchical model. We apply this technique to intermediate realizations generated from stratified analyses of 687 influenza A genomes spanning 13 years allowing us to revisit hypotheses regarding the evolutionary history of influenza within a hierarchical statistical framework. PMID:26681992

  11. Data fusion algorithm for rapid multi-mode dust concentration measurement system based on MEMS

    NASA Astrophysics Data System (ADS)

    Liao, Maohao; Lou, Wenzhong; Wang, Jinkui; Zhang, Yan

    2018-03-01

    As single measurement method cannot fully meet the technical requirements of dust concentration measurement, the multi-mode detection method is put forward, as well as the new requirements for data processing. This paper presents a new dust concentration measurement system which contains MEMS ultrasonic sensor and MEMS capacitance sensor, and presents a new data fusion algorithm for this multi-mode dust concentration measurement system. After analyzing the relation between the data of the composite measurement method, the data fusion algorithm based on Kalman filtering is established, which effectively improve the measurement accuracy, and ultimately forms a rapid data fusion model of dust concentration measurement. Test results show that the data fusion algorithm is able to realize the rapid and exact concentration detection.

  12. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  13. A Polar Initial Alignment Algorithm for Unmanned Underwater Vehicles

    PubMed Central

    Yan, Zheping; Wang, Lu; Wang, Tongda; Zhang, Honghan; Zhang, Xun; Liu, Xiangling

    2017-01-01

    Due to its highly autonomy, the strapdown inertial navigation system (SINS) is widely used in unmanned underwater vehicles (UUV) navigation. Initial alignment is crucial because the initial alignment results will be used as the initial SINS value, which might affect the subsequent SINS results. Due to the rapid convergence of Earth meridians, there is a calculation overflow in conventional initial alignment algorithms, making conventional initial algorithms are invalid for polar UUV navigation. To overcome these problems, a polar initial alignment algorithm for UUV is proposed in this paper, which consists of coarse and fine alignment algorithms. Based on the principle of the conical slow drift of gravity, the coarse alignment algorithm is derived under the grid frame. By choosing the velocity and attitude as the measurement, the fine alignment with the Kalman filter (KF) is derived under the grid frame. Simulation and experiment are realized among polar, conventional and transversal initial alignment algorithms for polar UUV navigation. Results demonstrate that the proposed polar initial alignment algorithm can complete the initial alignment of UUV in the polar region rapidly and accurately. PMID:29168735

  14. Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining.

    PubMed

    Cheng, Wenlong; Zhao, Mingbo; Xiong, Naixue; Chui, Kwok Tai

    2017-07-15

    Parsimony, including sparsity and low-rank, has shown great importance for data mining in social networks, particularly in tasks such as segmentation and recognition. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with convex l ₁-norm or nuclear norm constraints. However, the obtained results by convex optimization are usually suboptimal to solutions of original sparse or low-rank problems. In this paper, a novel robust subspace segmentation algorithm has been proposed by integrating l p -norm and Schatten p -norm constraints. Our so-obtained affinity graph can better capture local geometrical structure and the global information of the data. As a consequence, our algorithm is more generative, discriminative and robust. An efficient linearized alternating direction method is derived to realize our model. Extensive segmentation experiments are conducted on public datasets. The proposed algorithm is revealed to be more effective and robust compared to five existing algorithms.

  15. Stokes space modulation format classification based on non-iterative clustering algorithm for coherent optical receivers.

    PubMed

    Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui

    2017-02-06

    A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.

  16. Calculation method of water injection forward modeling and inversion process in oilfield water injection network

    NASA Astrophysics Data System (ADS)

    Liu, Long; Liu, Wei

    2018-04-01

    A forward modeling and inversion algorithm is adopted in order to determine the water injection plan in the oilfield water injection network. The main idea of the algorithm is shown as follows: firstly, the oilfield water injection network is inversely calculated. The pumping station demand flow is calculated. Then, forward modeling calculation is carried out for judging whether all water injection wells meet the requirements of injection allocation or not. If all water injection wells meet the requirements of injection allocation, calculation is stopped, otherwise the demand injection allocation flow rate of certain step size is reduced aiming at water injection wells which do not meet requirements, and next iterative operation is started. It is not necessary to list the algorithm into water injection network system algorithm, which can be realized easily. Iterative method is used, which is suitable for computer programming. Experimental result shows that the algorithm is fast and accurate.

  17. Research on Image Encryption Based on DNA Sequence and Chaos Theory

    NASA Astrophysics Data System (ADS)

    Tian Zhang, Tian; Yan, Shan Jun; Gu, Cheng Yan; Ren, Ran; Liao, Kai Xin

    2018-04-01

    Nowadays encryption is a common technique to protect image data from unauthorized access. In recent years, many scientists have proposed various encryption algorithms based on DNA sequence to provide a new idea for the design of image encryption algorithm. Therefore, a new method of image encryption based on DNA computing technology is proposed in this paper, whose original image is encrypted by DNA coding and 1-D logistic chaotic mapping. First, the algorithm uses two modules as the encryption key. The first module uses the real DNA sequence, and the second module is made by one-dimensional logistic chaos mapping. Secondly, the algorithm uses DNA complementary rules to encode original image, and uses the key and DNA computing technology to compute each pixel value of the original image, so as to realize the encryption of the whole image. Simulation results show that the algorithm has good encryption effect and security.

  18. Efficient geometric rectification techniques for spectral analysis algorithm

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Pang, S. S.; Curlander, J. C.

    1992-01-01

    The spectral analysis algorithm is a viable technique for processing synthetic aperture radar (SAR) data in near real time throughput rates by trading the image resolution. One major challenge of the spectral analysis algorithm is that the output image, often referred to as the range-Doppler image, is represented in the iso-range and iso-Doppler lines, a curved grid format. This phenomenon is known to be the fanshape effect. Therefore, resampling is required to convert the range-Doppler image into a rectangular grid format before the individual images can be overlaid together to form seamless multi-look strip imagery. An efficient algorithm for geometric rectification of the range-Doppler image is presented. The proposed algorithm, realized in two one-dimensional resampling steps, takes into consideration the fanshape phenomenon of the range-Doppler image as well as the high squint angle and updates of the cross-track and along-track Doppler parameters. No ground reference points are required.

  19. Fundamental plant biology enabled by the space shuttle.

    PubMed

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  20. Planck 2015 results. XII. Full focal plane simulations

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Karakci, A.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising 104 mission realizations reduced to about 106 maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects, and the remaining subdominant effects will be included in future updates. Generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms, FFP8 is used to validate and verify analysis algorithms and their implementations, and to remove biases from and quantify uncertainties in the results of analyses of the real data.

  1. DREAMING OF ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as themore » “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.« less

  2. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection.

    PubMed

    Zeng, Xueqiang; Luo, Gang

    2017-12-01

    Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.

  3. Measurements of axisymmetric temperature and H2O concentration distributions on a circular flat flame burner based on tunable diode laser absorption tomography

    NASA Astrophysics Data System (ADS)

    Xia, Huihui; Kan, Ruifeng; Xu, Zhenyu; Liu, Jianguo; He, Yabai; Yang, Chenguang; Chen, Bing; Wei, Min; Yao, Lu; Zhang, Guangle

    2016-10-01

    In this paper, the reconstruction of axisymmetric temperature and H2O concentration distributions in a flat flame burner is realized by tunable diode laser absorption spectroscopy (TDLAS) and filtered back-projection (FBP) algorithm. Two H2O absorption transitions (7154.354/7154.353 cm-1 and 7467.769 cm-1) are selected as line pair for temperature measurement, and time division multiplexing technology is adopted to scan this two H2O absorption transitions simultaneously at 1 kHz repetition rate. In the experiment, FBP algorithm can be used for reconstructing axisymmetric distributions of flow field parameters with only single view parallel-beam TDLAS measurements, and the same data sets from the given parallel beam are used for other virtual projection angles and beams scattered between 0° and 180°. The real-time online measurements of projection data, i.e., integrated absorbance both for pre-selected transitions on CH4/air flat flame burner are realized by Voigt on-line fitting, and the fitting residuals are less than 0.2%. By analyzing the projection data from different views based on FBP algorithm, the distributions of temperature and concentration along radial direction can be known instantly. The results demonstrate that the system and the proposed innovative FBP algorithm are capable for accurate reconstruction of axisymmetric temperature and H2O concentration distribution in combustion systems and facilities.

  4. Ensemble-type numerical uncertainty information from single model integrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauser, Florian, E-mail: florian.rauser@mpimet.mpg.de; Marotzke, Jochem; Korn, Peter

    2015-07-01

    We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of themore » influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.« less

  5. The application of data encryption technology in computer network communication security

    NASA Astrophysics Data System (ADS)

    Gong, Lina; Zhang, Li; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-04-01

    With the rapid development of Intemet and the extensive application of computer technology, the security of information becomes more and more serious, and the information security technology with data encryption technology as the core has also been developed greatly. Data encryption technology not only can encrypt and decrypt data, but also can realize digital signature, authentication and authentication and other functions, thus ensuring the confidentiality, integrity and confirmation of data transmission over the network. In order to improve the security of data in network communication, in this paper, a hybrid encryption system is used to encrypt and decrypt the triple DES algorithm with high security, and the two keys are encrypted with RSA algorithm, thus ensuring the security of the triple DES key and solving the problem of key management; At the same time to realize digital signature using Java security software, to ensure data integrity and non-repudiation. Finally, the data encryption system is developed by Java language. The data encryption system is simple and effective, with good security and practicality.

  6. A hybrid data compression approach for online backup service

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Zhou, Ke; Qin, MingKang

    2009-08-01

    With the popularity of Saas (Software as a service), backup service has becoming a hot topic of storage application. Due to the numerous backup users, how to reduce the massive data load is a key problem for system designer. Data compression provides a good solution. Traditional data compression application used to adopt a single method, which has limitations in some respects. For example data stream compression can only realize intra-file compression, de-duplication is used to eliminate inter-file redundant data, compression efficiency cannot meet the need of backup service software. This paper proposes a novel hybrid compression approach, which includes two levels: global compression and block compression. The former can eliminate redundant inter-file copies across different users, the latter adopts data stream compression technology to realize intra-file de-duplication. Several compressing algorithms were adopted to measure the compression ratio and CPU time. Adaptability using different algorithm in certain situation is also analyzed. The performance analysis shows that great improvement is made through the hybrid compression policy.

  7. Combining point context and dynamic time warping for online gesture recognition

    NASA Astrophysics Data System (ADS)

    Mao, Xia; Li, Chen

    2017-05-01

    Previous gesture recognition methods usually focused on recognizing gestures after the entire gesture sequences were obtained. However, in many practical applications, a system has to identify gestures before they end to give instant feedback. We present an online gesture recognition approach that can realize early recognition of unfinished gestures with low latency. First, a curvature buffer-based point context (CBPC) descriptor is proposed to extract the shape feature of a gesture trajectory. The CBPC descriptor is a complete descriptor with a simple computation, and thus has its superiority in online scenarios. Then, we introduce an online windowed dynamic time warping algorithm to realize online matching between the ongoing gesture and the template gestures. In the algorithm, computational complexity is effectively decreased by adding a sliding window to the accumulative distance matrix. Lastly, the experiments are conducted on the Australian sign language data set and the Kinect hand gesture (KHG) data set. Results show that the proposed method outperforms other state-of-the-art methods especially when gesture information is incomplete.

  8. A numerical analysis of the aortic blood flow pattern during pulsed cardiopulmonary bypass.

    PubMed

    Gramigna, V; Caruso, M V; Rossi, M; Serraino, G F; Renzulli, A; Fragomeni, G

    2015-01-01

    In the modern era, stroke remains a main cause of morbidity after cardiac surgery despite continuing improvements in the cardiopulmonary bypass (CPB) techniques. The aim of the current work was to numerically investigate the blood flow in aorta and epiaortic vessels during standard and pulsed CPB, obtained with the intra-aortic balloon pump (IABP). A multi-scale model, realized coupling a 3D computational fluid dynamics study with a 0D model, was developed and validated with in vivo data. The presence of IABP improved the flow pattern directed towards the epiaortic vessels with a mean flow increase of 6.3% and reduced flow vorticity.

  9. History of telescopic observations of the Martian satellites

    NASA Astrophysics Data System (ADS)

    Pascu, D.; Erard, S.; Thuillot, W.; Lainey, V.

    2014-11-01

    This article intends to review the different studies of the Mars satellites Phobos and Deimos realized by means of ground-based telescopic observations as well in the astrometry and dynamics domain as in the physical one. This study spans the first period of investigations of the Martian satellites since their discovery in 1877 through the astrometry and the spectrometry methods, mainly before the modern period of the space era. It includes also some other observations performed thanks to the Hubble Space Telescope. The different techniques used and the main results obtained for the positionning, the size estimate, the albedo and surface composition are described.

  10. Deadbeat Predictive Controllers

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1997-01-01

    Several new computational algorithms are presented to compute the deadbeat predictive control law. The first algorithm makes use of a multi-step-ahead output prediction to compute the control law without explicitly calculating the controllability matrix. The system identification must be performed first and then the predictive control law is designed. The second algorithm uses the input and output data directly to compute the feedback law. It combines the system identification and the predictive control law into one formulation. The third algorithm uses an observable-canonical form realization to design the predictive controller. The relationship between all three algorithms is established through the use of the state-space representation. All algorithms are applicable to multi-input, multi-output systems with disturbance inputs. In addition to the feedback terms, feed forward terms may also be added for disturbance inputs if they are measurable. Although the feedforward terms do not influence the stability of the closed-loop feedback law, they enhance the performance of the controlled system.

  11. [An improved medical image fusion algorithm and quality evaluation].

    PubMed

    Chen, Meiling; Tao, Ling; Qian, Zhiyu

    2009-08-01

    Medical image fusion is of very important value for application in medical image analysis and diagnosis. In this paper, the conventional method of wavelet fusion is improved,so a new algorithm of medical image fusion is presented and the high frequency and low frequency coefficients are studied respectively. When high frequency coefficients are chosen, the regional edge intensities of each sub-image are calculated to realize adaptive fusion. The choice of low frequency coefficient is based on the edges of images, so that the fused image preserves all useful information and appears more distinctly. We apply the conventional and the improved fusion algorithms based on wavelet transform to fuse two images of human body and also evaluate the fusion results through a quality evaluation method. Experimental results show that this algorithm can effectively retain the details of information on original images and enhance their edge and texture features. This new algorithm is better than the conventional fusion algorithm based on wavelet transform.

  12. Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar

    PubMed Central

    Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu

    2015-01-01

    Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm. PMID:25806871

  13. Multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement

    NASA Astrophysics Data System (ADS)

    Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing

    2018-02-01

    For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.

  14. Quantitative Image Informatics for Cancer Research (QIICR) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Imaging has enormous untapped potential to improve cancer research through software to extract and process morphometric and functional biomarkers. In the era of non-cytotoxic treatment agents, multi- modality image-guided ablative therapies and rapidly evolving computational resources, quantitative imaging software can be transformative in enabling minimally invasive, objective and reproducible evaluation of cancer treatment response. Post-processing algorithms are integral to high-throughput analysis and fine- grained differentiation of multiple molecular targets.

  15. Computation of Material Demand in the Risk Assessment and Mitigation Framework for Strategic Materials (RAMF-SM) Process

    DTIC Science & Technology

    2015-08-01

    Congress concerning requirements for the National Defense Stockpile (NDS) of strategic and critical non- fuel materials. 1 RAMF-SM, which was...critical non- fuel materials. The NDS was established in the World War II era and has been managed by the Department of Defense (DOD) since 1988. By...Department of the Interior. An alternative algorithm is used for materials with intensive defense demands. v Contents 1 .  Introduction

  16. An entropy regularization method applied to the identification of wave distribution function for an ELF hiss event

    NASA Astrophysics Data System (ADS)

    Prot, Olivier; SantolíK, OndřEj; Trotignon, Jean-Gabriel; Deferaudy, Hervé

    2006-06-01

    An entropy regularization algorithm (ERA) has been developed to compute the wave-energy density from electromagnetic field measurements. It is based on the wave distribution function (WDF) concept. To assess its suitability and efficiency, the algorithm is applied to experimental data that has already been analyzed using other inversion techniques. The FREJA satellite data that is used consists of six spectral matrices corresponding to six time-frequency points of an ELF hiss-event spectrogram. The WDF analysis is performed on these six points and the results are compared with those obtained previously. A statistical stability analysis confirms the stability of the solutions. The WDF computation is fast and without any prespecified parameters. The regularization parameter has been chosen in accordance with the Morozov's discrepancy principle. The Generalized Cross Validation and L-curve criterions are then tentatively used to provide a fully data-driven method. However, these criterions fail to determine a suitable value of the regularization parameter. Although the entropy regularization leads to solutions that agree fairly well with those already published, some differences are observed, and these are discussed in detail. The main advantage of the ERA is to return the WDF that exhibits the largest entropy and to avoid the use of a priori models, which sometimes seem to be more accurate but without any justification.

  17. Molecular Diagnosis and Biomarker Identification on SELDI proteomics data by ADTBoost method.

    PubMed

    Wang, Lu-Yong; Chakraborty, Amit; Comaniciu, Dorin

    2005-01-01

    Clinical proteomics is an emerging field that will have great impact on molecular diagnosis, identification of disease biomarkers, drug discovery and clinical trials in the post-genomic era. Protein profiling in tissues and fluids in disease and pathological control and other proteomics techniques will play an important role in molecular diagnosis with therapeutics and personalized healthcare. We introduced a new robust diagnostic method based on ADTboost algorithm, a novel algorithm in proteomics data analysis to improve classification accuracy. It generates classification rules, which are often smaller and easier to interpret. This method often gives most discriminative features, which can be utilized as biomarkers for diagnostic purpose. Also, it has a nice feature of providing a measure of prediction confidence. We carried out this method in amyotrophic lateral sclerosis (ALS) disease data acquired by surface enhanced laser-desorption/ionization-time-of-flight mass spectrometry (SELDI-TOF MS) experiments. Our method is shown to have outstanding prediction capacity through the cross-validation, ROC analysis results and comparative study. Our molecular diagnosis method provides an efficient way to distinguish ALS disease from neurological controls. The results are expressed in a simple and straightforward alternating decision tree format or conditional format. We identified most discriminative peaks in proteomic data, which can be utilized as biomarkers for diagnosis. It will have broad application in molecular diagnosis through proteomics data analysis and personalized medicine in this post-genomic era.

  18. Research of cartographer laser SLAM algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Liu, Zhengjun; Fu, Yiran; Zhang, Changsai

    2017-11-01

    As the indoor is a relatively closed and small space, total station, GPS, close-range photogrammetry technology is difficult to achieve fast and accurate indoor three-dimensional space reconstruction task. LIDAR SLAM technology does not rely on the external environment a priori knowledge, only use their own portable lidar, IMU, odometer and other sensors to establish an independent environment map, a good solution to this problem. This paper analyzes the Google Cartographer laser SLAM algorithm from the point cloud matching and closed loop detection. Finally, the algorithm is presented in the 3D visualization tool RViz from the data acquisition and processing to create the environment map, complete the SLAM technology and realize the process of indoor threedimensional space reconstruction

  19. Estimation of the Arrival Time and Duration of a Radio Signal with Unknown Amplitude and Initial Phase

    NASA Astrophysics Data System (ADS)

    Trifonov, A. P.; Korchagin, Yu. E.; Korol'kov, S. V.

    2018-05-01

    We synthesize the quasi-likelihood, maximum-likelihood, and quasioptimal algorithms for estimating the arrival time and duration of a radio signal with unknown amplitude and initial phase. The discrepancies between the hardware and software realizations of the estimation algorithm are shown. The characteristics of the synthesized-algorithm operation efficiency are obtained. Asymptotic expressions for the biases, variances, and the correlation coefficient of the arrival-time and duration estimates, which hold true for large signal-to-noise ratios, are derived. The accuracy losses of the estimates of the radio-signal arrival time and duration because of the a priori ignorance of the amplitude and initial phase are determined.

  20. Projection pursuit water quality evaluation model based on chicken swam algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Zhe

    2018-03-01

    In view of the uncertainty and ambiguity of each index in water quality evaluation, in order to solve the incompatibility of evaluation results of individual water quality indexes, a projection pursuit model based on chicken swam algorithm is proposed. The projection index function which can reflect the water quality condition is constructed, the chicken group algorithm (CSA) is introduced, the projection index function is optimized, the best projection direction of the projection index function is sought, and the best projection value is obtained to realize the water quality evaluation. The comparison between this method and other methods shows that it is reasonable and feasible to provide decision-making basis for water pollution control in the basin.

  1. Fast Generation of Ensembles of Cosmological N-Body Simulations via Mode-Resampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, M D; Cole, S; Frenk, C S

    2011-02-14

    We present an algorithm for quickly generating multiple realizations of N-body simulations to be used, for example, for cosmological parameter estimation from surveys of large-scale structure. Our algorithm uses a new method to resample the large-scale (Gaussian-distributed) Fourier modes in a periodic N-body simulation box in a manner that properly accounts for the nonlinear mode-coupling between large and small scales. We find that our method for adding new large-scale mode realizations recovers the nonlinear power spectrum to sub-percent accuracy on scales larger than about half the Nyquist frequency of the simulation box. Using 20 N-body simulations, we obtain a powermore » spectrum covariance matrix estimate that matches the estimator from Takahashi et al. (from 5000 simulations) with < 20% errors in all matrix elements. Comparing the rates of convergence, we determine that our algorithm requires {approx}8 times fewer simulations to achieve a given error tolerance in estimates of the power spectrum covariance matrix. The degree of success of our algorithm indicates that we understand the main physical processes that give rise to the correlations in the matter power spectrum. Namely, the large-scale Fourier modes modulate both the degree of structure growth through the variation in the effective local matter density and also the spatial frequency of small-scale perturbations through large-scale displacements. We expect our algorithm to be useful for noise modeling when constraining cosmological parameters from weak lensing (cosmic shear) and galaxy surveys, rescaling summary statistics of N-body simulations for new cosmological parameter values, and any applications where the influence of Fourier modes larger than the simulation size must be accounted for.« less

  2. Postinjection single photon transmission tomography with ordered-subset algorithms for whole-body PET imaging

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Kinahan, P. E.; Brasse, D.; Comtat, C.; Townsend, D. W.

    2002-02-01

    We have evaluated the penalized ordered-subset transmission reconstruction (OSTR) algorithm for postinjection single photon transmission scanning. The OSTR algorithm of Erdogan and Fessler (1999) uses a more accurate model for transmission tomography than ordered-subsets expectation-maximization (OSEM) when OSEM is applied to the logarithm of the transmission data. The OSTR algorithm is directly applicable to postinjection transmission scanning with a single photon source, as emission contamination from the patient mimics the effect, in the original derivation of OSTR, of random coincidence contamination in a positron source transmission scan. Multiple noise realizations of simulated postinjection transmission data were reconstructed using OSTR, filtered backprojection (FBP), and OSEM algorithms. Due to the nonspecific task performance, or multiple uses, of the transmission image, multiple figures of merit were evaluated, including image noise, contrast, uniformity, and root mean square (rms) error. We show that: 1) the use of a three-dimensional (3-D) regularizing image roughness penalty with OSTR improves the tradeoffs in noise, contrast, and rms error relative to the use of a two-dimensional penalty; 2) OSTR with a 3-D penalty has improved tradeoffs in noise, contrast, and rms error relative to FBP or OSEM; and 3) the use of image standard deviation from a single realization to estimate the true noise can be misleading in the case of OSEM. We conclude that using OSTR with a 3-D penalty potentially allows for shorter postinjection transmission scans in single photon transmission tomography in positron emission tomography (PET) relative to FBP or OSEM reconstructed images with the same noise properties. This combination of singles+OSTR is particularly suitable for whole-body PET oncology imaging.

  3. Ranking and averaging independent component analysis by reproducibility (RAICAR).

    PubMed

    Yang, Zhi; LaConte, Stephen; Weng, Xuchu; Hu, Xiaoping

    2008-06-01

    Independent component analysis (ICA) is a data-driven approach that has exhibited great utility for functional magnetic resonance imaging (fMRI). Standard ICA implementations, however, do not provide the number and relative importance of the resulting components. In addition, ICA algorithms utilizing gradient-based optimization give decompositions that are dependent on initialization values, which can lead to dramatically different results. In this work, a new method, RAICAR (Ranking and Averaging Independent Component Analysis by Reproducibility), is introduced to address these issues for spatial ICA applied to fMRI. RAICAR utilizes repeated ICA realizations and relies on the reproducibility between them to rank and select components. Different realizations are aligned based on correlations, leading to aligned components. Each component is ranked and thresholded based on between-realization correlations. Furthermore, different realizations of each aligned component are selectively averaged to generate the final estimate of the given component. Reliability and accuracy of this method are demonstrated with both simulated and experimental fMRI data. Copyright 2007 Wiley-Liss, Inc.

  4. Hardware realization of an SVM algorithm implemented in FPGAs

    NASA Astrophysics Data System (ADS)

    Wiśniewski, Remigiusz; Bazydło, Grzegorz; Szcześniak, Paweł

    2017-08-01

    The paper proposes a technique of hardware realization of a space vector modulation (SVM) of state function switching in matrix converter (MC), oriented on the implementation in a single field programmable gate array (FPGA). In MC the SVM method is based on the instantaneous space-vector representation of input currents and output voltages. The traditional computation algorithms usually involve digital signal processors (DSPs) which consumes the large number of power transistors (18 transistors and 18 independent PWM outputs) and "non-standard positions of control pulses" during the switching sequence. Recently, hardware implementations become popular since computed operations may be executed much faster and efficient due to nature of the digital devices (especially concurrency). In the paper, we propose a hardware algorithm of SVM computation. In opposite to the existing techniques, the presented solution applies COordinate Rotation DIgital Computer (CORDIC) method to solve the trigonometric operations. Furthermore, adequate arithmetic modules (that is, sub-devices) used for intermediate calculations, such as code converters or proper sectors selectors (for output voltages and input current) are presented in detail. The proposed technique has been implemented as a design described with the use of Verilog hardware description language. The preliminary results of logic implementation oriented on the Xilinx FPGA (particularly, low-cost device from Artix-7 family from Xilinx was used) are also presented.

  5. QPSO-Based Adaptive DNA Computing Algorithm

    PubMed Central

    Karakose, Mehmet; Cigdem, Ugur

    2013-01-01

    DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409

  6. 21st century locomotive technology: quarterly technical status report 26

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lembit Salasoo; Ramu Chandra

    2009-08-24

    Parasitic losses due to hybrid sodium battery thermal management do not significantly reduce the fuel saving benefits of the hybrid locomotive. Optimal thermal management trajectories were converted into realizable algorithms which were robust and gave excellent performance to limit thermal excusions and maintain fuel savings.

  7. Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range.

    PubMed

    He, Chenlong; Feng, Zuren; Ren, Zhigang

    2018-02-03

    For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham's Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm.

  8. Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range

    PubMed Central

    Feng, Zuren; Ren, Zhigang

    2018-01-01

    For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham’s Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm. PMID:29401649

  9. An Indoor Continuous Positioning Algorithm on the Move by Fusing Sensors and Wi-Fi on Smartphones

    PubMed Central

    Li, Huaiyu; Chen, Xiuwan; Jing, Guifei; Wang, Yuan; Cao, Yanfeng; Li, Fei; Zhang, Xinlong; Xiao, Han

    2015-01-01

    Wi-Fi indoor positioning algorithms experience large positioning error and low stability when continuously positioning terminals that are on the move. This paper proposes a novel indoor continuous positioning algorithm that is on the move, fusing sensors and Wi-Fi on smartphones. The main innovative points include an improved Wi-Fi positioning algorithm and a novel positioning fusion algorithm named the Trust Chain Positioning Fusion (TCPF) algorithm. The improved Wi-Fi positioning algorithm was designed based on the properties of Wi-Fi signals on the move, which are found in a novel “quasi-dynamic” Wi-Fi signal experiment. The TCPF algorithm is proposed to realize the “process-level” fusion of Wi-Fi and Pedestrians Dead Reckoning (PDR) positioning, including three parts: trusted point determination, trust state and positioning fusion algorithm. An experiment is carried out for verification in a typical indoor environment, and the average positioning error on the move is 1.36 m, a decrease of 28.8% compared to an existing algorithm. The results show that the proposed algorithm can effectively reduce the influence caused by the unstable Wi-Fi signals, and improve the accuracy and stability of indoor continuous positioning on the move. PMID:26690447

  10. Texture orientation-based algorithm for detecting infrared maritime targets.

    PubMed

    Wang, Bin; Dong, Lili; Zhao, Ming; Wu, Houde; Xu, Wenhai

    2015-05-20

    Infrared maritime target detection is a key technology for maritime target searching systems. However, in infrared maritime images (IMIs) taken under complicated sea conditions, background clutters, such as ocean waves, clouds or sea fog, usually have high intensity that can easily overwhelm the brightness of real targets, which is difficult for traditional target detection algorithms to deal with. To mitigate this problem, this paper proposes a novel target detection algorithm based on texture orientation. This algorithm first extracts suspected targets by analyzing the intersubband correlation between horizontal and vertical wavelet subbands of the original IMI on the first scale. Then the self-adaptive wavelet threshold denoising and local singularity analysis of the original IMI is combined to remove false alarms further. Experiments show that compared with traditional algorithms, this algorithm can suppress background clutter much better and realize better single-frame detection for infrared maritime targets. Besides, in order to guarantee accurate target extraction further, the pipeline-filtering algorithm is adopted to eliminate residual false alarms. The high practical value and applicability of this proposed strategy is backed strongly by experimental data acquired under different environmental conditions.

  11. A cellular automata based FPGA realization of a new metaheuristic bat-inspired algorithm

    NASA Astrophysics Data System (ADS)

    Progias, Pavlos; Amanatiadis, Angelos A.; Spataro, William; Trunfio, Giuseppe A.; Sirakoulis, Georgios Ch.

    2016-10-01

    Optimization algorithms are often inspired by processes occuring in nature, such as animal behavioral patterns. The main concern with implementing such algorithms in software is the large amounts of processing power they require. In contrast to software code, that can only perform calculations in a serial manner, an implementation in hardware, exploiting the inherent parallelism of single-purpose processors, can prove to be much more efficient both in speed and energy consumption. Furthermore, the use of Cellular Automata (CA) in such an implementation would be efficient both as a model for natural processes, as well as a computational paradigm implemented well on hardware. In this paper, we propose a VHDL implementation of a metaheuristic algorithm inspired by the echolocation behavior of bats. More specifically, the CA model is inspired by the metaheuristic algorithm proposed earlier in the literature, which could be considered at least as efficient than other existing optimization algorithms. The function of the FPGA implementation of our algorithm is explained in full detail and results of our simulations are also demonstrated.

  12. Multicamera polarized vision for the orientation with the skylight polarization patterns

    NASA Astrophysics Data System (ADS)

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Zhang, Lilian; Wang, Yujie

    2018-04-01

    A robust orientation algorithm based on the skylight polarization patterns for the urban ground vehicle is presented. We present the orientation model with the Rayleigh scattering and propose the robust orientation algorithm with the total least square. The proposed algorithm can utilize the whole sky area polarization patterns for realizing a more robust and accurate orientation. To enhance the algorithm's robustness in the urban environment, we develop a real-time method that uses the gradient of the degree of the polarization to remove the obstacles in the polarization image. In addition, our algorithm can solve the ambiguity problem of the polarized orientation without any other sensors. We also conduct a static rotating and a dynamic car experiments to evaluate the algorithm. The results demonstrate that our proposed algorithm can provide an accurate orientation estimation for the ground vehicle in the open and urban environments-the root-mean-square error in the static experiment is 0.28 deg and in the dynamic experiment is 0.81 deg. Finally, we discuss insights gained with respect to further work in optics and robotics.

  13. Self-recovery fragile watermarking algorithm based on SPHIT

    NASA Astrophysics Data System (ADS)

    Xin, Li Ping

    2015-12-01

    A fragile watermark algorithm is proposed, based on SPIHT coding, which can recover the primary image itself. The novelty of the algorithm is that it can tamper location and Self-restoration. The recovery has been very good effect. The first, utilizing the zero-tree structure, the algorithm compresses and encodes the image itself, and then gained self correlative watermark data, so as to greatly reduce the quantity of embedding watermark. Then the watermark data is encoded by error correcting code, and the check bits and watermark bits are scrambled and embedded to enhance the recovery ability. At the same time, by embedding watermark into the latter two bit place of gray level image's bit-plane code, the image after embedded watermark can gain nicer visual effect. The experiment results show that the proposed algorithm may not only detect various processing such as noise adding, cropping, and filtering, but also recover tampered image and realize blind-detection. Peak signal-to-noise ratios of the watermark image were higher than other similar algorithm. The attack capability of the algorithm was enhanced.

  14. An S N Algorithm for Modern Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Randal Scott

    2016-08-29

    LANL discrete ordinates transport packages are required to perform large, computationally intensive time-dependent calculations on massively parallel architectures, where even a single such calculation may need many months to complete. While KBA methods scale out well to very large numbers of compute nodes, we are limited by practical constraints on the number of such nodes we can actually apply to any given calculation. Instead, we describe a modified KBA algorithm that allows realization of the reductions in solution time offered by both the current, and future, architectural changes within a compute node.

  15. An Upwind Multigrid Algorithm for Calculating Flows on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Bonhaus, Daryl L.

    1993-01-01

    An algorithm is described that calculates inviscid, laminar, and turbulent flows on triangular meshes with an upwind discretization. A brief description of the base solver and the multigrid implementation is given, followed by results that consist mainly of convergence rates for inviscid and viscous flows over a NACA four-digit airfoil section. The results show that multigrid does accelerate convergence when the same relaxation parameters that yield good single-grid performance are used; however, larger gains in performance can be realized by doing less work in the relaxation scheme.

  16. Verification hybrid control of a wheeled mobile robot and manipulator

    NASA Astrophysics Data System (ADS)

    Muszynska, Magdalena; Burghardt, Andrzej; Kurc, Krzysztof; Szybicki, Dariusz

    2016-04-01

    In this article, innovative approaches to realization of the wheeled mobile robots and manipulator tracking are presented. Conceptions include application of the neural-fuzzy systems to compensation of the controlled system's nonlinearities in the tracking control task. Proposed control algorithms work on-line, contain structure, that adapt to the changeable work conditions of the controlled systems, and do not require the preliminary learning. The algorithm was verification on the real object which was a Scorbot - ER 4pc robotic manipulator and a Pioneer - 2DX mobile robot.

  17. Low dose reconstruction algorithm for differential phase contrast imaging.

    PubMed

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  18. A hand tracking algorithm with particle filter and improved GVF snake model

    NASA Astrophysics Data System (ADS)

    Sun, Yi-qi; Wu, Ai-guo; Dong, Na; Shao, Yi-zhe

    2017-07-01

    To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow (GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.

  19. The Design and Implementation of Indoor Localization System Using Magnetic Field Based on Smartphone

    NASA Astrophysics Data System (ADS)

    Liu, J.; Jiang, C.; Shi, Z.

    2017-09-01

    Sufficient signal nodes are mostly required to implement indoor localization in mainstream research. Magnetic field take advantage of high precision, stable and reliability, and the reception of magnetic field signals is reliable and uncomplicated, it could be realized by geomagnetic sensor on smartphone, without external device. After the study of indoor positioning technologies, choose the geomagnetic field data as fingerprints to design an indoor localization system based on smartphone. A localization algorithm that appropriate geomagnetic matching is designed, and present filtering algorithm and algorithm for coordinate conversion. With the implement of plot geomagnetic fingerprints, the indoor positioning of smartphone without depending on external devices can be achieved. Finally, an indoor positioning system which is based on Android platform is successfully designed, through the experiments, proved the capability and effectiveness of indoor localization algorithm.

  20. Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode.

    PubMed

    Shen, Shijian; Nie, Xin; Zhang, Xinggan

    2018-02-03

    Gaofen-3 (GF-3) is China' first C-band multi-polarization synthetic aperture radar (SAR) satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP) and PFA (Polar Format Algorithm) imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.

  1. Objective tropical cyclone extratropical transition detection in high-resolution reanalysis and climate model data

    DOE PAGES

    Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane

    2017-01-22

    This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less

  2. Classification of heavy metal ions present in multi-frequency multi-electrode potable water data using evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Karkra, Rashmi; Kumar, Prashant; Bansod, Baban K. S.; Bagchi, Sudeshna; Sharma, Pooja; Krishna, C. Rama

    2017-11-01

    Access to potable water for the common people is one of the most challenging tasks in the present era. Contamination of drinking water has become a serious problem due to various anthropogenic and geogenic events. The paper demonstrates the application of evolutionary algorithms, viz., particle swan optimization and genetic algorithm to 24 water samples containing eight different heavy metal ions (Cd, Cu, Co, Pb, Zn, Ar, Cr and Ni) for the optimal estimation of electrode and frequency to classify the heavy metal ions. The work has been carried out on multi-variate data, viz., single electrode multi-frequency, single frequency multi-electrode and multi-frequency multi-electrode water samples. The electrodes used are platinum, gold, silver nanoparticles and glassy carbon electrodes. Various hazardous metal ions present in the water samples have been optimally classified and validated by the application of Davis Bouldin index. Such studies are useful in the segregation of hazardous heavy metal ions found in water resources, thereby quantifying the degree of water quality.

  3. Planck 2015 results: XII. Full focal plane simulations

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    In this paper, we present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising 10 4 mission realizations reduced to about 10 6 maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects, and the remaining subdominant effects will be included in future updates. Finally, generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms,more » FFP8 is used to validate and verify analysis algorithms and their implementations, and to remove biases from and quantify uncertainties in the results of analyses of the real data.« less

  4. Realizable optimal control for a remotely piloted research vehicle. [stability augmentation

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1980-01-01

    The design of a control system using the linear-quadratic regulator (LQR) control law theory for time invariant systems in conjunction with an incremental gradient procedure is presented. The incremental gradient technique reduces the full-state feedback controller design, generated by the LQR algorithm, to a realizable design. With a realizable controller, the feedback gains are based only on the available system outputs instead of being based on the full-state outputs. The design is for a remotely piloted research vehicle (RPRV) stability augmentation system. The design includes methods for accounting for noisy measurements, discrete controls with zero-order-hold outputs, and computational delay errors. Results from simulation studies of the response of the RPRV to a step in the elevator and frequency analysis techniques are included to illustrate these abnormalities and their influence on the controller design.

  5. A Geostatistical Scaling Approach for the Generation of Non Gaussian Random Variables and Increments

    NASA Astrophysics Data System (ADS)

    Guadagnini, Alberto; Neuman, Shlomo P.; Riva, Monica; Panzeri, Marco

    2016-04-01

    We address manifestations of non-Gaussian statistical scaling displayed by many variables, Y, and their (spatial or temporal) increments. Evidence of such behavior includes symmetry of increment distributions at all separation distances (or lags) with sharp peaks and heavy tails which tend to decay asymptotically as lag increases. Variables reported to exhibit such distributions include quantities of direct relevance to hydrogeological sciences, e.g. porosity, log permeability, electrical resistivity, soil and sediment texture, sediment transport rate, rainfall, measured and simulated turbulent fluid velocity, and other. No model known to us captures all of the documented statistical scaling behaviors in a unique and consistent manner. We recently proposed a generalized sub-Gaussian model (GSG) which reconciles within a unique theoretical framework the probability distributions of a target variable and its increments. We presented an algorithm to generate unconditional random realizations of statistically isotropic or anisotropic GSG functions and illustrated it in two dimensions. In this context, we demonstrated the feasibility of estimating all key parameters of a GSG model underlying a single realization of Y by analyzing jointly spatial moments of Y data and corresponding increments. Here, we extend our GSG model to account for noisy measurements of Y at a discrete set of points in space (or time), present an algorithm to generate conditional realizations of corresponding isotropic or anisotropic random field, and explore them on one- and two-dimensional synthetic test cases.

  6. Simulation and analysis of scalable non-Gaussian statistically anisotropic random functions

    NASA Astrophysics Data System (ADS)

    Riva, Monica; Panzeri, Marco; Guadagnini, Alberto; Neuman, Shlomo P.

    2015-12-01

    Many earth and environmental (as well as other) variables, Y, and their spatial or temporal increments, ΔY, exhibit non-Gaussian statistical scaling. Previously we were able to capture some key aspects of such scaling by treating Y or ΔY as standard sub-Gaussian random functions. We were however unable to reconcile two seemingly contradictory observations, namely that whereas sample frequency distributions of Y (or its logarithm) exhibit relatively mild non-Gaussian peaks and tails, those of ΔY display peaks that grow sharper and tails that become heavier with decreasing separation distance or lag. Recently we overcame this difficulty by developing a new generalized sub-Gaussian model which captures both behaviors in a unified and consistent manner, exploring it on synthetically generated random functions in one dimension (Riva et al., 2015). Here we extend our generalized sub-Gaussian model to multiple dimensions, present an algorithm to generate corresponding random realizations of statistically isotropic or anisotropic sub-Gaussian functions and illustrate it in two dimensions. We demonstrate the accuracy of our algorithm by comparing ensemble statistics of Y and ΔY (such as, mean, variance, variogram and probability density function) with those of Monte Carlo generated realizations. We end by exploring the feasibility of estimating all relevant parameters of our model by analyzing jointly spatial moments of Y and ΔY obtained from a single realization of Y.

  7. Design and realization of disaster assessment algorithm after forest fire

    NASA Astrophysics Data System (ADS)

    Xu, Aijun; Wang, Danfeng; Tang, Lihua

    2008-10-01

    Based on GIS technology, this paper mainly focuses on the application of disaster assessment algorithm after forest fire and studies on the design and realization of disaster assessment based on GIS. After forest fire through the analysis and processing of multi-sources and heterogeneous data, this paper integrates the foundation that the domestic and foreign scholars laid of the research on assessment for forest fire loss with the related knowledge of assessment, accounting and forest resources appraisal so as to study and approach the theory framework and assessment index of the research on assessment for forest fire loss. The technologies of extracting boundary, overlay analysis, and division processing of multi-sources spatial data are available to realize the application of the investigation method of the burnt forest area and the computation of the fire area. The assessment provides evidence for fire cleaning in burnt areas and new policy making on restoration in terms of the direct and the indirect economic loss and ecological and environmental damage caused by forest fire under the condition of different fire danger classes and different amounts of forest accumulation, thus makes forest resources protection operated in a faster, more efficient and more economical way. Finally, this paper takes Lin'an city of Zhejiang province as a test area to confirm the method mentioned in the paper in terms of key technologies.

  8. Energy management and cooperation in microgrids

    NASA Astrophysics Data System (ADS)

    Rahbar, Katayoun

    Microgrids are key components of future smart power grids, which integrate distributed renewable energy generators to efficiently serve the load demand locally. However, random and intermittent characteristics of renewable energy generations may hinder the reliable operation of microgrids. This thesis is thus devoted to investigating new strategies for microgrids to optimally manage their energy consumption, energy storage system (ESS) and cooperation in real time to achieve the reliable and cost-effective operation. This thesis starts with a single microgrid system. The optimal energy scheduling and ESS management policy is derived to minimize the energy cost of the microgrid resulting from drawing conventional energy from the main grid under both the off-line and online setups, where the renewable energy generation/load demand are assumed to be non-causally known and causally known at the microgrid, respectively. The proposed online algorithm is designed based on the optimal off-line solution and works under arbitrary (even unknown) realizations of future renewable energy generation/load demand. Therefore, it is more practically applicable as compared to solutions based on conventional techniques such as dynamic programming and stochastic programming that require the prior knowledge of renewable energy generation and load demand realizations/distributions. Next, for a group of microgrids that cooperate in energy management, we study efficient methods for sharing energy among them for both fully and partially cooperative scenarios, where microgrids are of common interests and self-interested, respectively. For the fully cooperative energy management, the off-line optimization problem is first formulated and optimally solved, where a distributed algorithm is proposed to minimize the total (sum) energy cost of microgrids. Inspired by the results obtained from the off-line optimization, efficient online algorithms are proposed for the real-time energy management, which are of low complexity and work given arbitrary realizations of renewable energy generation/load demand. On the other hand, for self-interested microgrids, the partially cooperative energy management is formulated and a distributed algorithm is proposed to optimize the energy cooperation such that energy costs of individual microgrids reduce simultaneously over the case without energy cooperation while limited information is shared among the microgrids and the central controller.

  9. An overview of the essential differences and similarities of system identification techniques

    NASA Technical Reports Server (NTRS)

    Mehra, Raman K.

    1991-01-01

    Information is given in the form of outlines, graphs, tables and charts. Topics include system identification, Bayesian statistical decision theory, Maximum Likelihood Estimation, identification methods, structural mode identification using a stochastic realization algorithm, and identification results regarding membrane simulations and X-29 flutter flight test data.

  10. Cycle Counting Methods of the Aircraft Engine

    ERIC Educational Resources Information Center

    Fedorchenko, Dmitrii G.; Novikov, Dmitrii K.

    2016-01-01

    The concept of condition-based gas turbine-powered aircraft operation is realized all over the world, which implementation requires knowledge of the end-of-life information related to components of aircraft engines in service. This research proposes an algorithm for estimating the equivalent cyclical running hours. This article provides analysis…

  11. Mathematical Methods of Communication Signal Design

    DTIC Science & Technology

    1990-09-30

    Labelling of Annals of Discrete Math ., 1989-90. iv. T. Etzion, S.W. Golomb, and H. Taylor, "Polygonal Path Constructions for Tuscan-k Squares...the Special Issue on Graph Labellings of A,.nals of Discrete Math ., 1989-1990. vi. T. Etzion, "An Algorithm for Realization of Permutations in a

  12. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve the speed and orientation efficiency of target identification effectively, and validate the feasibility of this method primarily.

  13. Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution

    NASA Astrophysics Data System (ADS)

    Li, Jimeng; Li, Ming; Zhang, Jinfeng

    2017-08-01

    Rolling bearings are the key components in the modern machinery, and tough operation environments often make them prone to failure. However, due to the influence of the transmission path and background noise, the useful feature information relevant to the bearing fault contained in the vibration signals is weak, which makes it difficult to identify the fault symptom of rolling bearings in time. Therefore, the paper proposes a novel weak signal detection method based on time-delayed feedback monostable stochastic resonance (TFMSR) system and adaptive minimum entropy deconvolution (MED) to realize the fault diagnosis of rolling bearings. The MED method is employed to preprocess the vibration signals, which can deconvolve the effect of transmission path and clarify the defect-induced impulses. And a modified power spectrum kurtosis (MPSK) index is constructed to realize the adaptive selection of filter length in the MED algorithm. By introducing the time-delayed feedback item in to an over-damped monostable system, the TFMSR method can effectively utilize the historical information of input signal to enhance the periodicity of SR output, which is beneficial to the detection of periodic signal. Furthermore, the influence of time delay and feedback intensity on the SR phenomenon is analyzed, and by selecting appropriate time delay, feedback intensity and re-scaling ratio with genetic algorithm, the SR can be produced to realize the resonance detection of weak signal. The combination of the adaptive MED (AMED) method and TFMSR method is conducive to extracting the feature information from strong background noise and realizing the fault diagnosis of rolling bearings. Finally, some experiments and engineering application are performed to evaluate the effectiveness of the proposed AMED-TFMSR method in comparison with a traditional bistable SR method.

  14. Study on Adaptive Parameter Determination of Cluster Analysis in Urban Management Cases

    NASA Astrophysics Data System (ADS)

    Fu, J. Y.; Jing, C. F.; Du, M. Y.; Fu, Y. L.; Dai, P. P.

    2017-09-01

    The fine management for cities is the important way to realize the smart city. The data mining which uses spatial clustering analysis for urban management cases can be used in the evaluation of urban public facilities deployment, and support the policy decisions, and also provides technical support for the fine management of the city. Aiming at the problem that DBSCAN algorithm which is based on the density-clustering can not realize parameter adaptive determination, this paper proposed the optimizing method of parameter adaptive determination based on the spatial analysis. Firstly, making analysis of the function Ripley's K for the data set to realize adaptive determination of global parameter MinPts, which means setting the maximum aggregation scale as the range of data clustering. Calculating every point object's highest frequency K value in the range of Eps which uses K-D tree and setting it as the value of clustering density to realize the adaptive determination of global parameter MinPts. Then, the R language was used to optimize the above process to accomplish the precise clustering of typical urban management cases. The experimental results based on the typical case of urban management in XiCheng district of Beijing shows that: The new DBSCAN clustering algorithm this paper presents takes full account of the data's spatial and statistical characteristic which has obvious clustering feature, and has a better applicability and high quality. The results of the study are not only helpful for the formulation of urban management policies and the allocation of urban management supervisors in XiCheng District of Beijing, but also to other cities and related fields.

  15. A Multi-Scale Analysis of Tropical Cyclogenesis Within the Critical Layer of Tropical Easterly Waves in the Atlantic and Western North Pacific Sectors

    DTIC Science & Technology

    2010-09-01

    Electra Doppler Radar (ELDORA), dropwindsonde capability, a Doppler wind lidar , and the ability to collect flight-level data] flew aircraft research...ELDORA Electra Doppler Radar ECMWF European Center for Medium-range Weather Prediction Forecasts ER Equatorial Rossby ERA-40 ECMWF Reanalysis Data...2006) use Dual Doppler radar and rain gauge data to evaluate the performance of the TRMM TMI V6 rainfall algorithm. They 23 conclude that: “In

  16. Floating-point performance of ARM cores and their efficiency in classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Nikolskiy, V.; Stegailov, V.

    2016-02-01

    Supercomputing of the exascale era is going to be inevitably limited by power efficiency. Nowadays different possible variants of CPU architectures are considered. Recently the development of ARM processors has come to the point when their floating point performance can be seriously considered for a range of scientific applications. In this work we present the analysis of the floating point performance of the latest ARM cores and their efficiency for the algorithms of classical molecular dynamics.

  17. The design of free structure granular mappings: the use of the principle of justifiable granularity.

    PubMed

    Pedrycz, Witold; Al-Hmouz, Rami; Morfeq, Ali; Balamash, Abdullah

    2013-12-01

    The study introduces a concept of mappings realized in presence of information granules and offers a design framework supporting the formation of such mappings. Information granules are conceptually meaningful entities formed on a basis of a large number of experimental input–output numeric data available for the construction of the model. We develop a conceptually and algorithmically sound way of forming information granules. Considering the directional nature of the mapping to be formed, this directionality aspect needs to be taken into account when developing information granules. The property of directionality implies that while the information granules in the input space could be constructed with a great deal of flexibility, the information granules formed in the output space have to inherently relate to those built in the input space. The input space is granulated by running a clustering algorithm; for illustrative purposes, the focus here is on fuzzy clustering realized with the aid of the fuzzy C-means algorithm. The information granules in the output space are constructed with the aid of the principle of justifiable granularity (being one of the underlying fundamental conceptual pursuits of Granular Computing). The construct exhibits two important features. First, the constructed information granules are formed in the presence of information granules already constructed in the input space (and this realization is reflective of the direction of the mapping from the input to the output space). Second, the principle of justifiable granularity does not confine the realization of information granules to a single formalism such as fuzzy sets but helps form the granules expressed any required formalism of information granulation. The quality of the granular mapping (viz. the mapping realized for the information granules formed in the input and output spaces) is expressed in terms of the coverage criterion (articulating how well the experimental data are “covered” by information granules produced by the granular mapping for any input experimental data). Some parametric studies are reported by quantifying the performance of the granular mapping (expressed in terms of the coverage and specificity criteria) versus the values of a certain parameters utilized in the construction of output information granules through the principle of justifiable granularity. The plots of coverage–specificity dependency help determine a knee point and reach a sound compromise between these two conflicting requirements imposed on the quality of the granular mapping. Furthermore, quantified is the quality of the mapping with regard to the number of information granules (implying a certain granularity of the mapping). A series of experiments is reported as well.

  18. An improved non-uniformity correction algorithm and its hardware implementation on FPGA

    NASA Astrophysics Data System (ADS)

    Rong, Shenghui; Zhou, Huixin; Wen, Zhigang; Qin, Hanlin; Qian, Kun; Cheng, Kuanhong

    2017-09-01

    The Non-uniformity of Infrared Focal Plane Arrays (IRFPA) severely degrades the infrared image quality. An effective non-uniformity correction (NUC) algorithm is necessary for an IRFPA imaging and application system. However traditional scene-based NUC algorithm suffers the image blurring and artificial ghosting. In addition, few effective hardware platforms have been proposed to implement corresponding NUC algorithms. Thus, this paper proposed an improved neural-network based NUC algorithm by the guided image filter and the projection-based motion detection algorithm. First, the guided image filter is utilized to achieve the accurate desired image to decrease the artificial ghosting. Then a projection-based moving detection algorithm is utilized to determine whether the correction coefficients should be updated or not. In this way the problem of image blurring can be overcome. At last, an FPGA-based hardware design is introduced to realize the proposed NUC algorithm. A real and a simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. Experimental results indicated that the proposed NUC algorithm can effectively eliminate the fix pattern noise with less image blurring and artificial ghosting. The proposed hardware design takes less logic elements in FPGA and spends less clock cycles to process one frame of image.

  19. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.

    PubMed

    Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar

    2017-08-01

    Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

  20. Exploiting Genomic Knowledge in Optimising Molecular Breeding Programmes: Algorithms from Evolutionary Computing

    PubMed Central

    O'Hagan, Steve; Knowles, Joshua; Kell, Douglas B.

    2012-01-01

    Comparatively few studies have addressed directly the question of quantifying the benefits to be had from using molecular genetic markers in experimental breeding programmes (e.g. for improved crops and livestock), nor the question of which organisms should be mated with each other to best effect. We argue that this requires in silico modelling, an approach for which there is a large literature in the field of evolutionary computation (EC), but which has not really been applied in this way to experimental breeding programmes. EC seeks to optimise measurable outcomes (phenotypic fitnesses) by optimising in silico the mutation, recombination and selection regimes that are used. We review some of the approaches from EC, and compare experimentally, using a biologically relevant in silico landscape, some algorithms that have knowledge of where they are in the (genotypic) search space (G-algorithms) with some (albeit well-tuned ones) that do not (F-algorithms). For the present kinds of landscapes, F- and G-algorithms were broadly comparable in quality and effectiveness, although we recognise that the G-algorithms were not equipped with any ‘prior knowledge’ of epistatic pathway interactions. This use of algorithms based on machine learning has important implications for the optimisation of experimental breeding programmes in the post-genomic era when we shall potentially have access to the full genome sequence of every organism in a breeding population. The non-proprietary code that we have used is made freely available (via Supplementary information). PMID:23185279

  1. Research on logistics scheduling based on PSO

    NASA Astrophysics Data System (ADS)

    Bao, Huifang; Zhou, Linli; Liu, Lei

    2017-08-01

    With the rapid development of e-commerce based on the network, the logistics distribution support of e-commerce is becoming more and more obvious. The optimization of vehicle distribution routing can improve the economic benefit and realize the scientific of logistics [1]. Therefore, the study of logistics distribution vehicle routing optimization problem is not only of great theoretical significance, but also of considerable value of value. Particle swarm optimization algorithm is a kind of evolutionary algorithm, which is based on the random solution and the optimal solution by iteration, and the quality of the solution is evaluated through fitness. In order to obtain a more ideal logistics scheduling scheme, this paper proposes a logistics model based on particle swarm optimization algorithm.

  2. Learning Extended Finite State Machines

    NASA Technical Reports Server (NTRS)

    Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard

    2014-01-01

    We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.

  3. No drive line, no seal, no bearing and no wear: magnetics for impeller suspension and flow assessment in a new VAD.

    PubMed

    Huber, Christoph H; Tozzi, Piergiorgio; Hurni, Michel; von Segesser, Ludwig K

    2004-06-01

    The new magnetically suspended axial pump is free of seals, bearings, mechanical friction and wear. In the absence of a drive shaft or flow meter, pump flow assessment is made with an algorithm based on currents required for impeller rotation and stabilization. The aim of this study is to validate pump performance, algorithm-based flow and effective flow. A series of bovine experiments was realized after equipment with pressure transducers, continuous-cardiac-output-catheter, intracardiac ultrasound (AcuNav) over 6 h. Pump implantation was through a median sternotomy (LV-->VAD-->calibrated transonic-flow-probe-->aorta). A transonic-HT311-flow-probe was fixed onto the outflow cannula for flow comparison. Animals were electively sacrificed and at necropsy systematic pump inspection and renal embolus score was realized. Observation period was 340+/-62.4 min. The axial pump generated a mean arterial pressure of 58.8+/-14.3 mmHg (max 117 mmHg) running at a speed of 6591.3+/-1395.4 rev./min (min 5000/max 8500 rev./min) and generating 2.5+/-1.0 l/min (min 1.4/max 6.0 l/min) of flow. Correlation between the results of the pump flow algorithm and measured pump flow was linear (y=1.0339x, R2=0.9357). VAD explants were free of macroscopic thrombi. Renal embolus score was 0+/-0. The magnetically suspended axial flow pump provides excellent left ventricular support. The pump flow algorithm used is accurate and reliable. Therefore, there is no need for direct flow measurement.

  4. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    NASA Astrophysics Data System (ADS)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  5. Wave Extremes in the Northeast Atlantic from Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Aarnes, Ole Johan; Bidlot, Jean-Raymond; Carrasco, Ana; Saetra, Øyvind

    2013-10-01

    A method for estimating return values from ensembles of forecasts at advanced lead times is presented. Return values of significant wave height in the North-East Atlantic, the Norwegian Sea and the North Sea are computed from archived +240-h forecasts of the ECMWF ensemble prediction system (EPS) from 1999 to 2009. We make three assumptions: First, each forecast is representative of a six-hour interval and collectively the data set is then comparable to a time period of 226 years. Second, the model climate matches the observed distribution, which we confirm by comparing with buoy data. Third, the ensemble members are sufficiently uncorrelated to be considered independent realizations of the model climate. We find anomaly correlations of 0.20, but peak events (>P97) are entirely uncorrelated. By comparing return values from individual members with return values of subsamples of the data set we also find that the estimates follow the same distribution and appear unaffected by correlations in the ensemble. The annual mean and variance over the 11-year archived period exhibit no significant departures from stationarity compared with a recent reforecast, i.e., there is no spurious trend due to model upgrades. EPS yields significantly higher return values than ERA-40 and ERA-Interim and is in good agreement with the high-resolution hindcast NORA10, except in the lee of unresolved islands where EPS overestimates and in enclosed seas where it is biased low. Confidence intervals are half the width of those found for ERA-Interim due to the magnitude of the data set.

  6. Efficient Constant-Time Complexity Algorithm for Stochastic Simulation of Large Reaction Networks.

    PubMed

    Thanh, Vo Hong; Zunino, Roberto; Priami, Corrado

    2017-01-01

    Exact stochastic simulation is an indispensable tool for a quantitative study of biochemical reaction networks. The simulation realizes the time evolution of the model by randomly choosing a reaction to fire and update the system state according to a probability that is proportional to the reaction propensity. Two computationally expensive tasks in simulating large biochemical networks are the selection of next reaction firings and the update of reaction propensities due to state changes. We present in this work a new exact algorithm to optimize both of these simulation bottlenecks. Our algorithm employs the composition-rejection on the propensity bounds of reactions to select the next reaction firing. The selection of next reaction firings is independent of the number reactions while the update of propensities is skipped and performed only when necessary. It therefore provides a favorable scaling for the computational complexity in simulating large reaction networks. We benchmark our new algorithm with the state of the art algorithms available in literature to demonstrate its applicability and efficiency.

  7. Control strategy of grid-connected photovoltaic generation system based on GMPPT method

    NASA Astrophysics Data System (ADS)

    Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen

    2018-02-01

    There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.

  8. Highly parallel sparse Cholesky factorization

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Schreiber, Robert

    1990-01-01

    Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms.

  9. ABCluster: the artificial bee colony algorithm for cluster global optimization.

    PubMed

    Zhang, Jun; Dolg, Michael

    2015-10-07

    Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.

  10. Fast and efficient search for MPEG-4 video using adjacent pixel intensity difference quantization histogram feature

    NASA Astrophysics Data System (ADS)

    Lee, Feifei; Kotani, Koji; Chen, Qiu; Ohmi, Tadahiro

    2010-02-01

    In this paper, a fast search algorithm for MPEG-4 video clips from video database is proposed. An adjacent pixel intensity difference quantization (APIDQ) histogram is utilized as the feature vector of VOP (video object plane), which had been reliably applied to human face recognition previously. Instead of fully decompressed video sequence, partially decoded data, namely DC sequence of the video object are extracted from the video sequence. Combined with active search, a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by total 15 hours of video contained of TV programs such as drama, talk, news, etc. to search for given 200 MPEG-4 video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 2 % in drama and news categories are achieved, which are more accurately and robust than conventional fast video search algorithm.

  11. Design and realization of a new agorithm of calculating the absolute positon angle based on the incremental encoder

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Yang, Yong-qing; Li, Zhi-guo; Han, Jun-feng; Wei, Yu; Jing, Feng

    2018-02-01

    Aiming at the shortage of the incremental encoder with simple process to change along the count "in the presence of repeatability and anti disturbance ability, combined with its application in a large project in the country, designed an electromechanical switch for generating zero, zero crossing signal. A mechanical zero electric and zero coordinate transformation model is given to meet the path optimality, single, fast and accurate requirements of adaptive fast change algorithm, the proposed algorithm can effectively solve the contradiction between the accuracy and the change of the time change. A test platform is built to verify the effectiveness and robustness of the proposed algorithm. The experimental data show that the effect of the algorithm accuracy is not influenced by the change of the speed of change, change the error of only 0.0013. Meet too fast, the change of system accuracy, and repeated experiments show that this algorithm has high robustness.

  12. Mining algorithm for association rules in big data based on Hadoop

    NASA Astrophysics Data System (ADS)

    Fu, Chunhua; Wang, Xiaojing; Zhang, Lijun; Qiao, Liying

    2018-04-01

    In order to solve the problem that the traditional association rules mining algorithm has been unable to meet the mining needs of large amount of data in the aspect of efficiency and scalability, take FP-Growth as an example, the algorithm is realized in the parallelization based on Hadoop framework and Map Reduce model. On the basis, it is improved using the transaction reduce method for further enhancement of the algorithm's mining efficiency. The experiment, which consists of verification of parallel mining results, comparison on efficiency between serials and parallel, variable relationship between mining time and node number and between mining time and data amount, is carried out in the mining results and efficiency by Hadoop clustering. Experiments show that the paralleled FP-Growth algorithm implemented is able to accurately mine frequent item sets, with a better performance and scalability. It can be better to meet the requirements of big data mining and efficiently mine frequent item sets and association rules from large dataset.

  13. The scalable implementation of quantum walks using classical light

    NASA Astrophysics Data System (ADS)

    Goyal, Sandeep K.; Roux, F. S.; Forbes, Andrew; Konrad, Thomas

    2014-02-01

    A quantum walk is the quantum analog of the classical random walks. Despite their simple structure they form a universal platform to implement any algorithm of quantum computation. However, it is very hard to realize quantum walks with a sufficient number of iterations in quantum systems due to their sensitivity to environmental influences and subsequent loss of coherence. Here we present a scalable implementation scheme for one-dimensional quantum walks for arbitrary number of steps using the orbital angular momentum modes of classical light beams. Furthermore, we show that using the same setup with a minor adjustment we can also realize electric quantum walks.

  14. Design of two wheel self balancing car

    NASA Astrophysics Data System (ADS)

    He, Chun-hong; Ren, Bin

    2018-02-01

    This paper proposes a design scheme of the two-wheel self-balancing dolly, the integration of the gyroscope and accelerometer MPU6050 constitutes the car position detection device.System selects 32-bit MCU stmicroelectronics company as the control core, completed the processing of sensor signals, the realization of the filtering algorithm, motion control and human-computer interaction. Produced and debugging in the whole system is completed, the car can realize the independent balance under the condition of no intervention. The introduction of a suitable amount of interference, the car can adjust quickly to recover and steady state. Through remote control car bluetooth module complete forward, backward, turn left and other basic action..

  15. Distributed Optimal Power Flow of AC/DC Interconnected Power Grid Using Synchronous ADMM

    NASA Astrophysics Data System (ADS)

    Liang, Zijun; Lin, Shunjiang; Liu, Mingbo

    2017-05-01

    Distributed optimal power flow (OPF) is of great importance and challenge to AC/DC interconnected power grid with different dispatching centres, considering the security and privacy of information transmission. In this paper, a fully distributed algorithm for OPF problem of AC/DC interconnected power grid called synchronous ADMM is proposed, and it requires no form of central controller. The algorithm is based on the fundamental alternating direction multiplier method (ADMM), by using the average value of boundary variables of adjacent regions obtained from current iteration as the reference values of both regions for next iteration, which realizes the parallel computation among different regions. The algorithm is tested with the IEEE 11-bus AC/DC interconnected power grid, and by comparing the results with centralized algorithm, we find it nearly no differences, and its correctness and effectiveness can be validated.

  16. Sensor Network Localization by Eigenvector Synchronization Over the Euclidean Group

    PubMed Central

    CUCURINGU, MIHAI; LIPMAN, YARON; SINGER, AMIT

    2013-01-01

    We present a new approach to localization of sensors from noisy measurements of a subset of their Euclidean distances. Our algorithm starts by finding, embedding, and aligning uniquely realizable subsets of neighboring sensors called patches. In the noise-free case, each patch agrees with its global positioning up to an unknown rigid motion of translation, rotation, and possibly reflection. The reflections and rotations are estimated using the recently developed eigenvector synchronization algorithm, while the translations are estimated by solving an overdetermined linear system. The algorithm is scalable as the number of nodes increases and can be implemented in a distributed fashion. Extensive numerical experiments show that it compares favorably to other existing algorithms in terms of robustness to noise, sparse connectivity, and running time. While our approach is applicable to higher dimensions, in the current article, we focus on the two-dimensional case. PMID:23946700

  17. A novel interplanetary optical navigation algorithm based on Earth-Moon group photos by Chang'e-5T1 probe

    NASA Astrophysics Data System (ADS)

    Bu, Yanlong; Zhang, Qiang; Ding, Chibiao; Tang, Geshi; Wang, Hang; Qiu, Rujin; Liang, Libo; Yin, Hejun

    2017-02-01

    This paper presents an interplanetary optical navigation algorithm based on two spherical celestial bodies. The remarkable characteristic of the method is that key navigation parameters can be estimated depending entirely on known sizes and ephemerides of two celestial bodies, especially positioning is realized through a single image and does not rely on traditional terrestrial radio tracking any more. Actual Earth-Moon group photos captured by China's Chang'e-5T1 probe were used to verify the effectiveness of the algorithm. From 430,000 km away from the Earth, the camera pointing accuracy reaches 0.01° (one sigma) and the inertial positioning error is less than 200 km, respectively; meanwhile, the cost of the ground control and human resources are greatly reduced. The algorithm is flexible, easy to implement, and can provide reference to interplanetary autonomous navigation in the solar system.

  18. Application of the DMRG in two dimensions: a parallel tempering algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Shijie; Zhao, Jize; Zhang, Xuefeng; Eggert, Sebastian

    The Density Matrix Renormalization Group (DMRG) is known to be a powerful algorithm for treating one-dimensional systems. When the DMRG is applied in two dimensions, however, the convergence becomes much less reliable and typically ''metastable states'' may appear, which are unfortunately quite robust even when keeping a very high number of DMRG states. To overcome this problem we have now successfully developed a parallel tempering DMRG algorithm. Similar to parallel tempering in quantum Monte Carlo, this algorithm allows the systematic switching of DMRG states between different model parameters, which is very efficient for solving convergence problems. Using this method we have figured out the phase diagram of the xxz model on the anisotropic triangular lattice which can be realized by hardcore bosons in optical lattices. SFB Transregio 49 of the Deutsche Forschungsgemeinschaft (DFG) and the Allianz fur Hochleistungsrechnen Rheinland-Pfalz (AHRP).

  19. Optimization of Stereo Matching in 3D Reconstruction Based on Binocular Vision

    NASA Astrophysics Data System (ADS)

    Gai, Qiyang

    2018-01-01

    Stereo matching is one of the key steps of 3D reconstruction based on binocular vision. In order to improve the convergence speed and accuracy in 3D reconstruction based on binocular vision, this paper adopts the combination method of polar constraint and ant colony algorithm. By using the line constraint to reduce the search range, an ant colony algorithm is used to optimize the stereo matching feature search function in the proposed search range. Through the establishment of the stereo matching optimization process analysis model of ant colony algorithm, the global optimization solution of stereo matching in 3D reconstruction based on binocular vision system is realized. The simulation results show that by the combining the advantage of polar constraint and ant colony algorithm, the stereo matching range of 3D reconstruction based on binocular vision is simplified, and the convergence speed and accuracy of this stereo matching process are improved.

  20. Research on fully distributed optical fiber sensing security system localization algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Xu; Hou, Jiacheng; Liu, Kun; Liu, Tiegen

    2013-12-01

    A new fully distributed optical fiber sensing and location technology based on the Mach-Zehnder interferometers is studied. In this security system, a new climbing point locating algorithm based on short-time average zero-crossing rate is presented. By calculating the zero-crossing rates of the multiple grouped data separately, it not only utilizes the advantages of the frequency analysis method to determine the most effective data group more accurately, but also meets the requirement of the real-time monitoring system. Supplemented with short-term energy calculation group signal, the most effective data group can be quickly picked out. Finally, the accurate location of the climbing point can be effectively achieved through the cross-correlation localization algorithm. The experimental results show that the proposed algorithm can realize the accurate location of the climbing point and meanwhile the outside interference noise of the non-climbing behavior can be effectively filtered out.

  1. Research on Xi Jinping's Thought of Ecological Civilization and Environment Sustainable Development

    NASA Astrophysics Data System (ADS)

    Xiang-chao, Pan

    2018-05-01

    Since the reform and opening up, China’s sustained and rapid economic development, but the environment problem increasingly is prominent in our country. It has seriously affected the sustainability of economic development in China. Environment overall situation is not optimistic, and environmental management is imperative. Since the 18th national congress of the Communist Party of China (CPC), Xi Jin-ping has put forward the thought of building a beautiful China with ecological civilization and realizing the sustainable development of economic construction and environmental protection. Sticking to Xi's Thought of Ecological Civilization is a fundamental guarantee for the sustainable development of environment and building a new era of ecological civilization.

  2. The economy of science.

    PubMed

    Marks, Andrew R

    2004-10-01

    We are in the midst of an era of plummeting pay lines at the NIH. History shows that when the federal deficit is high, NIH pay lines tend to fall, and the impact on biomedical research can be disastrous. Equally bad is the disincentive for the future generations of biomedical researchers who observe their mentors struggling to get adequate funding. How many bright young people will be turned away from careers in biomedical research? How much innovative science will be delayed or never initiated, how many new cures never realized? At a time of unprecedented challenges and remarkable technological advances that enable us to address those challenges, lack of funding is a threat to our society.

  3. A topology visualization early warning distribution algorithm for large-scale network security incidents.

    PubMed

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  4. Developing the fuzzy c-means clustering algorithm based on maximum entropy for multitarget tracking in a cluttered environment

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing

    2018-01-01

    For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.

  5. Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.

    2005-01-01

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.

  6. An identification method of orbit responses rooting in vibration analysis of rotor during touchdowns of active magnetic bearings

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Lyu, Mindong; Wang, Zixi; Yan, Shaoze

    2018-02-01

    Identification of orbit responses can make the active protection operation more easily realize for active magnetic bearings (AMB) in case of touchdowns. This paper presents an identification method of the orbit responses rooting on signal processing of rotor displacements during touchdowns. The recognition method consists of two major steps. Firstly, the combined rub and bouncing is distinguished from the other orbit responses by the mathematical expectation of axis displacements of the rotor. Because when the combined rub and bouncing occurs, the rotor of AMB will not be always close to the touchdown bearings (TDB). Secondly, we recognize the pendulum vibration and the full rub by the Fourier spectrum of displacement in horizontal direction, as the frequency characteristics of the two responses are different. The principle of the whole identification algorithm is illustrated by two sets of signal generated by a dynamic model of the specific rotor-TDB system. The universality of the method is validated by other four sets of signal. Besides, the adaptability of noise is also tested by adding white noises with different strengths, and the result is promising. As the mathematical expectation and Discrete Fourier transform are major calculations of the algorithm, the calculation quantity of the algorithm is low, so it is fast, easily realized and embedded in the AMB controller, which has an important engineering value for the protection of AMBs during touchdowns.

  7. Keyhole imaging method for dynamic objects behind the occlusion area

    NASA Astrophysics Data System (ADS)

    Hao, Conghui; Chen, Xi; Dong, Liquan; Zhao, Yuejin; Liu, Ming; Kong, Lingqin; Hui, Mei; Liu, Xiaohua; Wu, Hong

    2018-01-01

    A method of keyhole imaging based on camera array is realized to obtain the video image behind a keyhole in shielded space at a relatively long distance. We get the multi-angle video images by using a 2×2 CCD camera array to take the images behind the keyhole in four directions. The multi-angle video images are saved in the form of frame sequences. This paper presents a method of video frame alignment. In order to remove the non-target area outside the aperture, we use the canny operator and morphological method to realize the edge detection of images and fill the images. The image stitching of four images is accomplished on the basis of the image stitching algorithm of two images. In the image stitching algorithm of two images, the SIFT method is adopted to accomplish the initial matching of images, and then the RANSAC algorithm is applied to eliminate the wrong matching points and to obtain a homography matrix. A method of optimizing transformation matrix is proposed in this paper. Finally, the video image with larger field of view behind the keyhole can be synthesized with image frame sequence in which every single frame is stitched. The results show that the screen of the video is clear and natural, the brightness transition is smooth. There is no obvious artificial stitching marks in the video, and it can be applied in different engineering environment .

  8. Design of minimum multiplier fractional order differentiator based on lattice wave digital filter.

    PubMed

    Barsainya, Richa; Rawat, Tarun Kumar; Kumar, Manjeet

    2017-01-01

    In this paper, a novel design of fractional order differentiator (FOD) based on lattice wave digital filter (LWDF) is proposed which requires minimum number of multiplier for its structural realization. Firstly, the FOD design problem is formulated as an optimization problem using the transfer function of lattice wave digital filter. Then, three optimization algorithms, namely, genetic algorithm (GA), particle swarm optimization (PSO) and cuckoo search algorithm (CSA) are applied to determine the optimal LWDF coefficients. The realization of FOD using LWD structure increases the design accuracy, as only N number of coefficients are to be optimized for Nth order FOD. Finally, two design examples of 3rd and 5th order lattice wave digital fractional order differentiator (LWDFOD) are demonstrated to justify the design accuracy. The performance analysis of the proposed design is carried out based on magnitude response, absolute magnitude error (dB), root mean square (RMS) magnitude error, arithmetic complexity, convergence profile and computation time. Simulation results are attained to show the comparison of the proposed LWDFOD with the published works and it is observed that an improvement of 29% is obtained in the proposed design. The proposed LWDFOD approximates the ideal FOD and surpasses the existing ones reasonably well in mid and high frequency range, thereby making the proposed LWDFOD a promising technique for the design of digital FODs. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating.

    PubMed

    Hu, Run; Luo, Xiaobing; Zheng, Huai; Qin, Zong; Gan, Zhiqiang; Wu, Bulong; Liu, Sheng

    2012-06-18

    A conformal phosphor coating can realize a phosphor layer with uniform thickness, which could enhance the angular color uniformity (ACU) of light-emitting diode (LED) packaging. In this study, a novel freeform lens was designed for simultaneous realization of LED uniform illumination and conformal phosphor coating. The detailed algorithm of the design method, which involves an extended light source and double refractions, was presented. The packaging configuration of the LED modules and the modeling of the light-conversion process were also presented. Monte Carlo ray-tracing simulations were conducted to validate the design method by comparisons with a conventional freeform lens. It is demonstrated that for the LED module with the present freeform lens, the illumination uniformity and ACU was 0.89 and 0.9283, respectively. The present freeform lens can realize equivalent illumination uniformity, but the angular color uniformity can be enhanced by 282.3% when compared with the conventional freeform lens.

  10. A quantum Fredkin gate.

    PubMed

    Patel, Raj B; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C; Pryde, Geoff J

    2016-03-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently.

  11. Computer aided design of digital controller for radial active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Shen, Zupei; Zhang, Zuming; Zhao, Hongbin

    1992-01-01

    A five degree of freedom Active Magnetic Bearing (AMB) system is developed which is controlled by digital controllers. The model of the radial AMB system is linearized and the state equation is derived. Based on the state variables feedback theory, digital controllers are designed. The performance of the controllers are evaluated according to experimental results. The Computer Aided Design (CAD) method is used to design controllers for magnetic bearings. The controllers are implemented with a digital signal processing (DSP) system. The control algorithms are realized with real-time programs. It is very easy to change the controller by changing or modifying the programs. In order to identify the dynamic parameters of the controlled magnetic system, a special experiment was carried out. Also, the online Recursive Least Squares (RLS) parameter identification method is studied. It can be realized with the digital controllers. Online parameter identification is essential for the realization of an adaptive controller.

  12. Modeling and Simulation of High Dimensional Stochastic Multiscale PDE Systems at the Exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevrekidis, Ioannis

    2017-03-22

    The thrust of the proposal was to exploit modern data-mining tools in a way that will create a systematic, computer-assisted approach to the representation of random media -- and also to the representation of the solutions of an array of important physicochemical processes that take place in/on such media. A parsimonious representation/parametrization of the random media links directly (via uncertainty quantification tools) to good sampling of the distribution of random media realizations. It also links directly to modern multiscale computational algorithms (like the equation-free approach that has been developed in our group) and plays a crucial role in accelerating themore » scientific computation of solutions of nonlinear PDE models (deterministic or stochastic) in such media – both solutions in particular realizations of the random media, and estimation of the statistics of the solutions over multiple realizations (e.g. expectations).« less

  13. Self-Grading: A Simple Strategy for Formative Assessment in Activity-Based Instruction.

    ERIC Educational Resources Information Center

    Ulmer, M. B.

    This paper discusses the author's personal experiences in developing and implementing a problem-based college mathematics course for liberal arts majors. This project was initiated in response to the realization that most students are dependent on "patterning" learning algorithms and have no expectation that self-initiated thinking is a…

  14. Estimation's Role in Calculations with Fractions

    ERIC Educational Resources Information Center

    Johanning, Debra I.

    2011-01-01

    Estimation is more than a skill or an isolated topic. It is a thinking tool that needs to be emphasized during instruction so that students will learn to develop algorithmic procedures and meaning for fraction operations. For students to realize when fractions should be added, subtracted, multiplied, or divided, they need to develop a sense of…

  15. Sequential Syndrome Decoding of Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1984-01-01

    The algebraic structure of convolutional codes are reviewed and sequential syndrome decoding is applied to those codes. These concepts are then used to realize by example actual sequential decoding, using the stack algorithm. The Fano metric for use in sequential decoding is modified so that it can be utilized to sequentially find the minimum weight error sequence.

  16. Using CLIPS in the domain of knowledge-based massively parallel programming

    NASA Technical Reports Server (NTRS)

    Dvorak, Jiri J.

    1994-01-01

    The Program Development Environment (PDE) is a tool for massively parallel programming of distributed-memory architectures. Adopting a knowledge-based approach, the PDE eliminates the complexity introduced by parallel hardware with distributed memory and offers complete transparency in respect of parallelism exploitation. The knowledge-based part of the PDE is realized in CLIPS. Its principal task is to find an efficient parallel realization of the application specified by the user in a comfortable, abstract, domain-oriented formalism. A large collection of fine-grain parallel algorithmic skeletons, represented as COOL objects in a tree hierarchy, contains the algorithmic knowledge. A hybrid knowledge base with rule modules and procedural parts, encoding expertise about application domain, parallel programming, software engineering, and parallel hardware, enables a high degree of automation in the software development process. In this paper, important aspects of the implementation of the PDE using CLIPS and COOL are shown, including the embedding of CLIPS with C++-based parts of the PDE. The appropriateness of the chosen approach and of the CLIPS language for knowledge-based software engineering are discussed.

  17. Dolphin Sounds-Inspired Covert Underwater Acoustic Communication and Micro-Modem

    PubMed Central

    Qiao, Gang; Liu, Songzuo; Bilal, Muhammad

    2017-01-01

    A novel portable underwater acoustic modem is proposed in this paper for covert communication between divers or underwater unmanned vehicles (UUVs) and divers at a short distance. For the first time, real dolphin calls are used in the modem to realize biologically inspired Covert Underwater Acoustic Communication (CUAC). A variety of dolphin whistles and clicks stored in an SD card inside the modem helps to realize different biomimetic CUAC algorithms based on the specified covert scenario. In this paper, the information is conveyed during the time interval between dolphin clicks. TMS320C6748 and TLV320AIC3106 are the core processors used in our unique modem for fast digital processing and interconnection with other terminals or sensors. Simulation results show that the bit error rate (BER) of the CUAC algorithm is less than 10−5 when the signal to noise ratio is over ‒5 dB. The modem was tested in an underwater pool, and a data rate of 27.1 bits per second at a distance of 10 m was achieved. PMID:29068363

  18. Unbiased clustering estimation in the presence of missing observations

    NASA Astrophysics Data System (ADS)

    Bianchi, Davide; Percival, Will J.

    2017-11-01

    In order to be efficient, spectroscopic galaxy redshift surveys do not obtain redshifts for all galaxies in the population targeted. The missing galaxies are often clustered, commonly leading to a lower proportion of successful observations in dense regions. One example is the close-pair issue for SDSS spectroscopic galaxy surveys, which have a deficit of pairs of observed galaxies with angular separation closer than the hardware limit on placing neighbouring fibres. Spatially clustered missing observations will exist in the next generations of surveys. Various schemes have previously been suggested to mitigate these effects, but none works for all situations. We argue that the solution is to link the missing galaxies to those observed with statistically equivalent clustering properties, and that the best way to do this is to rerun the targeting algorithm, varying the angular position of the observations. Provided that every pair has a non-zero probability of being observed in one realization of the algorithm, then a pair-upweighting scheme linking targets to successful observations, can correct these issues. We present such a scheme, and demonstrate its validity using realizations of an idealized simple survey strategy.

  19. Advanced control concepts. [for shuttle ascent vehicles

    NASA Technical Reports Server (NTRS)

    Sharp, J. B.; Coppey, J. M.

    1973-01-01

    The problems of excess control devices and insufficient trim control capability on shuttle ascent vehicles were investigated. The trim problem is solved at all time points of interest using Lagrangian multipliers and a Simplex based iterative algorithm developed as a result of the study. This algorithm has the capability to solve any bounded linear problem with physically realizable constraints, and to minimize any piecewise differentiable cost function. Both solution methods also automatically distribute the command torques to the control devices. It is shown that trim requirements are unrealizable if only the orbiter engines and the aerodynamic surfaces are used.

  20. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    NASA Astrophysics Data System (ADS)

    Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.

    2011-09-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  1. Research of grasping algorithm based on scara industrial robot

    NASA Astrophysics Data System (ADS)

    Peng, Tao; Zuo, Ping; Yang, Hai

    2018-04-01

    As the tobacco industry grows, facing the challenge of the international tobacco giant, efficient logistics service is one of the key factors. How to complete the tobacco sorting task of efficient economy is the goal of tobacco sorting and optimization research. Now the cigarette distribution system uses a single line to carry out the single brand sorting task, this article adopts a single line to realize the cigarette sorting task of different brands. Using scara robot special algorithm for sorting and packaging, the optimization scheme significantly enhances the indicators of smoke sorting system. Saving labor productivity, obviously improve production efficiency.

  2. Low Cost Design of an Advanced Encryption Standard (AES) Processor Using a New Common-Subexpression-Elimination Algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Chih; Hsiao, Shen-Fu

    In this paper, we propose an area-efficient design of Advanced Encryption Standard (AES) processor by applying a new common-expression-elimination (CSE) method to the sub-functions of various transformations required in AES. The proposed method reduces the area cost of realizing the sub-functions by extracting the common factors in the bit-level XOR/AND-based sum-of-product expressions of these sub-functions using a new CSE algorithm. Cell-based implementation results show that the AES processor with our proposed CSE method has significant area improvement compared with previous designs.

  3. Application of particle swarm optimization in path planning of mobile robot

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Cai, Feng; Wang, Ying

    2017-08-01

    In order to realize the optimal path planning of mobile robot in unknown environment, a particle swarm optimization algorithm based on path length as fitness function is proposed. The location of the global optimal particle is determined by the minimum fitness value, and the robot moves along the points of the optimal particles to the target position. The process of moving to the target point is done with MATLAB R2014a. Compared with the standard particle swarm optimization algorithm, the simulation results show that this method can effectively avoid all obstacles and get the optimal path.

  4. Quantum Hamiltonian identification from measurement time traces.

    PubMed

    Zhang, Jun; Sarovar, Mohan

    2014-08-22

    Precise identification of parameters governing quantum processes is a critical task for quantum information and communication technologies. In this Letter, we consider a setting where system evolution is determined by a parametrized Hamiltonian, and the task is to estimate these parameters from temporal records of a restricted set of system observables (time traces). Based on the notion of system realization from linear systems theory, we develop a constructive algorithm that provides estimates of the unknown parameters directly from these time traces. We illustrate the algorithm and its robustness to measurement noise by applying it to a one-dimensional spin chain model with variable couplings.

  5. Infrared small target tracking based on SOPC

    NASA Astrophysics Data System (ADS)

    Hu, Taotao; Fan, Xiang; Zhang, Yu-Jin; Cheng, Zheng-dong; Zhu, Bin

    2011-01-01

    The paper presents a low cost FPGA based solution for a real-time infrared small target tracking system. A specialized architecture is presented based on a soft RISC processor capable of running kernel based mean shift tracking algorithm. Mean shift tracking algorithm is realized in NIOS II soft-core with SOPC (System on a Programmable Chip) technology. Though mean shift algorithm is widely used for target tracking, the original mean shift algorithm can not be directly used for infrared small target tracking. As infrared small target only has intensity information, so an improved mean shift algorithm is presented in this paper. How to describe target will determine whether target can be tracked by mean shift algorithm. Because color target can be tracked well by mean shift algorithm, imitating color image expression, spatial component and temporal component are advanced to describe target, which forms pseudo-color image. In order to improve the processing speed parallel technology and pipeline technology are taken. Two RAM are taken to stored images separately by ping-pong technology. A FLASH is used to store mass temp data. The experimental results show that infrared small target is tracked stably in complicated background.

  6. Lattice QCD Calculations in Nuclear Physics towards the Exascale

    NASA Astrophysics Data System (ADS)

    Joo, Balint

    2017-01-01

    The combination of algorithmic advances and new highly parallel computing architectures are enabling lattice QCD calculations to tackle ever more complex problems in nuclear physics. In this talk I will review some computational challenges that are encountered in large scale cold nuclear physics campaigns such as those in hadron spectroscopy calculations. I will discuss progress in addressing these with algorithmic improvements such as multi-grid solvers and software for recent hardware architectures such as GPUs and Intel Xeon Phi, Knights Landing. Finally, I will highlight some current topics for research and development as we head towards the Exascale era This material is funded by the U.S. Department of Energy, Office Of Science, Offices of Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research, as well as the Office of Nuclear Physics under contract DE-AC05-06OR23177.

  7. Network and data security design for telemedicine applications.

    PubMed

    Makris, L; Argiriou, N; Strintzis, M G

    1997-01-01

    The maturing of telecommunication technologies has ushered in a whole new era of applications and services in the health care environment. Teleworking, teleconsultation, mutlimedia conferencing and medical data distribution are rapidly becoming commonplace in clinical practice. As a result, a set of problems arises, concerning data confidentiality and integrity. Public computer networks, such as the emerging ISDN technology, are vulnerable to eavesdropping. Therefore it is important for telemedicine applications to employ end-to-end encryption mechanisms securing the data channel from unauthorized access of modification. We propose a network access and encryption system that is both economical and easily implemented for integration in developing or existing applications, using well-known and thoroughly tested encryption algorithms. Public-key cryptography is used for session-key exchange, while symmetric algorithms are used for bulk encryption. Mechanisms for session-key generation and exchange are also provided.

  8. Enhancing multiple-point geostatistical modeling: 1. Graph theory and pattern adjustment

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Sahimi, Muhammad

    2016-03-01

    In recent years, higher-order geostatistical methods have been used for modeling of a wide variety of large-scale porous media, such as groundwater aquifers and oil reservoirs. Their popularity stems from their ability to account for qualitative data and the great flexibility that they offer for conditioning the models to hard (quantitative) data, which endow them with the capability for generating realistic realizations of porous formations with very complex channels, as well as features that are mainly a barrier to fluid flow. One group of such models consists of pattern-based methods that use a set of data points for generating stochastic realizations by which the large-scale structure and highly-connected features are reproduced accurately. The cross correlation-based simulation (CCSIM) algorithm, proposed previously by the authors, is a member of this group that has been shown to be capable of simulating multimillion cell models in a matter of a few CPU seconds. The method is, however, sensitive to pattern's specifications, such as boundaries and the number of replicates. In this paper the original CCSIM algorithm is reconsidered and two significant improvements are proposed for accurately reproducing large-scale patterns of heterogeneities in porous media. First, an effective boundary-correction method based on the graph theory is presented by which one identifies the optimal cutting path/surface for removing the patchiness and discontinuities in the realization of a porous medium. Next, a new pattern adjustment method is proposed that automatically transfers the features in a pattern to one that seamlessly matches the surrounding patterns. The original CCSIM algorithm is then combined with the two methods and is tested using various complex two- and three-dimensional examples. It should, however, be emphasized that the methods that we propose in this paper are applicable to other pattern-based geostatistical simulation methods.

  9. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems

    DOE PAGES

    Feng, Fei; Chen, Jiquan; Li, Xianglan; ...

    2015-12-09

    Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid ecosystems. Many LE algorithms have been developed during the past few decades. However, the algorithms have not been directly compared, particularly over global semiarid ecosystems. In this paper, we evaluated the performance of five LE models over semiarid ecosystems such as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites during the period 2000–2009. We also used a modern-era retrospective analysis for research and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolutionmore » imaging spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography mission (SRTM30) dataset to generate LE at region scale during the period 2003–2006. The models were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley–Taylor LE algorithm (MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over semiarid ecosystems with the coefficient of determination (R2) ranging from 0.6 to 0.8 and root mean squared error (RMSE) of approximately 20 W/m 2. Empirical parameters in the structure algorithms of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the reduced performance of these LE algorithms with R2 ranging from 0.5 to 0.7 and RMSE ranging from 20 to 35 W/m 2 for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and vegetation terms were the dominating variables affecting LE Fluxes in global semiarid ecosystem.« less

  10. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Fei; Chen, Jiquan; Li, Xianglan

    Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid ecosystems. Many LE algorithms have been developed during the past few decades. However, the algorithms have not been directly compared, particularly over global semiarid ecosystems. In this paper, we evaluated the performance of five LE models over semiarid ecosystems such as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites during the period 2000–2009. We also used a modern-era retrospective analysis for research and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolutionmore » imaging spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography mission (SRTM30) dataset to generate LE at region scale during the period 2003–2006. The models were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley–Taylor LE algorithm (MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over semiarid ecosystems with the coefficient of determination (R2) ranging from 0.6 to 0.8 and root mean squared error (RMSE) of approximately 20 W/m 2. Empirical parameters in the structure algorithms of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the reduced performance of these LE algorithms with R2 ranging from 0.5 to 0.7 and RMSE ranging from 20 to 35 W/m 2 for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and vegetation terms were the dominating variables affecting LE Fluxes in global semiarid ecosystem.« less

  11. An algorithm for variational data assimilation of contact concentration measurements for atmospheric chemistry models

    NASA Astrophysics Data System (ADS)

    Penenko, Alexey; Penenko, Vladimir

    2014-05-01

    Contact concentration measurement data assimilation problem is considered for convection-diffusion-reaction models originating from the atmospheric chemistry study. High dimensionality of models imposes strict requirements on the computational efficiency of the algorithms. Data assimilation is carried out within the variation approach on a single time step of the approximated model. A control function is introduced into the source term of the model to provide flexibility for data assimilation. This function is evaluated as the minimum of the target functional that connects its norm to a misfit between measured and model-simulated data. In the case mathematical model acts as a natural Tikhonov regularizer for the ill-posed measurement data inversion problem. This provides flow-dependent and physically-plausible structure of the resulting analysis and reduces a need to calculate model error covariance matrices that are sought within conventional approach to data assimilation. The advantage comes at the cost of the adjoint problem solution. This issue is solved within the frameworks of splitting-based realization of the basic convection-diffusion-reaction model. The model is split with respect to physical processes and spatial variables. A contact measurement data is assimilated on each one-dimensional convection-diffusion splitting stage. In this case a computationally-efficient direct scheme for both direct and adjoint problem solution can be constructed based on the matrix sweep method. Data assimilation (or regularization) parameter that regulates ratio between model and data in the resulting analysis is obtained with Morozov discrepancy principle. For the proper performance the algorithm takes measurement noise estimation. In the case of Gaussian errors the probability that the used Chi-squared-based estimate is the upper one acts as the assimilation parameter. A solution obtained can be used as the initial guess for data assimilation algorithms that assimilate outside the splitting stages and involve iterations. Splitting method stage that is responsible for chemical transformation processes is realized with the explicit discrete-analytical scheme with respect to time. The scheme is based on analytical extraction of the exponential terms from the solution. This provides unconditional positive sign for the evaluated concentrations. Splitting-based structure of the algorithm provides means for efficient parallel realization. The work is partially supported by the Programs No 4 of Presidium RAS and No 3 of Mathematical Department of RAS, by RFBR project 11-01-00187 and Integrating projects of SD RAS No 8 and 35. Our studies are in the line with the goals of COST Action ES1004.

  12. The study and realization of BDS un-differenced network-RTK based on raw observations

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Zhang, Pengfei; Zhang, Rui; Lu, Cuixian; Liu, Jinhai; Lu, Xiaochun

    2017-06-01

    A BeiDou Navigation Satellite System (BDS) Un-Differenced (UD) Network Real Time Kinematic (URTK) positioning algorithm, which is based on raw observations, is developed in this study. Given an integer ambiguity datum, the UD integer ambiguity can be recovered from Double-Differenced (DD) integer ambiguities, thus the UD observation corrections can be calculated and interpolated for the rover station to achieve the fast positioning. As this URTK model uses raw observations instead of the ionospheric-free combinations, it is applicable for both dual- and single-frequency users to realize the URTK service. The algorithm was validated with the experimental BDS data collected at four regional stations from day of year 080 to 083 in 2016. The achieved results confirmed the high efficiency of the proposed URTK for providing the rover users a rapid and precise positioning service compared to the standard NRTK. In our test, the BDS URTK can provide a positioning service with cm level accuracy, i.e., 1 cm in the horizontal components, and 2-3 cm in the vertical component. Within the regional network, the mean convergence time for the users to fix the UD ambiguities is 2.7 s for the dual-frequency observations and of 6.3 s for the single-frequency observations after the DD ambiguity resolution. Furthermore, due to the feature of realizing URTK technology under the UD processing mode, it is possible to integrate the global Precise Point Positioning (PPP) and the local NRTK into a seamless positioning service.

  13. A Sustainable City Planning Algorithm Based on TLBO and Local Search

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Lin, Li; Huang, Xuanxuan; Liu, Yiming; Zhang, Yonggang

    2017-09-01

    Nowadays, how to design a city with more sustainable features has become a center problem in the field of social development, meanwhile it has provided a broad stage for the application of artificial intelligence theories and methods. Because the design of sustainable city is essentially a constraint optimization problem, the swarm intelligence algorithm of extensive research has become a natural candidate for solving the problem. TLBO (Teaching-Learning-Based Optimization) algorithm is a new swarm intelligence algorithm. Its inspiration comes from the “teaching” and “learning” behavior of teaching class in the life. The evolution of the population is realized by simulating the “teaching” of the teacher and the student “learning” from each other, with features of less parameters, efficient, simple thinking, easy to achieve and so on. It has been successfully applied to scheduling, planning, configuration and other fields, which achieved a good effect and has been paid more and more attention by artificial intelligence researchers. Based on the classical TLBO algorithm, we propose a TLBO_LS algorithm combined with local search. We design and implement the random generation algorithm and evaluation model of urban planning problem. The experiments on the small and medium-sized random generation problem showed that our proposed algorithm has obvious advantages over DE algorithm and classical TLBO algorithm in terms of convergence speed and solution quality.

  14. A Dynamic Scheduling Method of Earth-Observing Satellites by Employing Rolling Horizon Strategy

    PubMed Central

    Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma

    2013-01-01

    Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments. PMID:23690742

  15. A dynamic scheduling method of Earth-observing satellites by employing rolling horizon strategy.

    PubMed

    Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma

    2013-01-01

    Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments.

  16. Highly uniform parallel microfabrication using a large numerical aperture system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zi-Yu; Su, Ya-Hui, E-mail: ustcsyh@ahu.edu.cn, E-mail: dongwu@ustc.edu.cn; Zhang, Chen-Chu

    In this letter, we report an improved algorithm to produce accurate phase patterns for generating highly uniform diffraction-limited multifocal arrays in a large numerical aperture objective system. It is shown that based on the original diffraction integral, the uniformity of the diffraction-limited focal arrays can be improved from ∼75% to >97%, owing to the critical consideration of the aperture function and apodization effect associated with a large numerical aperture objective. The experimental results, e.g., 3 × 3 arrays of square and triangle, seven microlens arrays with high uniformity, further verify the advantage of the improved algorithm. This algorithm enables the laser parallelmore » processing technology to realize uniform microstructures and functional devices in the microfabrication system with a large numerical aperture objective.« less

  17. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  18. A Double Perturbation Method for Reducing Dynamical Degradation of the Digital Baker Map

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Lin, Jun; Miao, Suoxia; Liu, Bocheng

    2017-06-01

    The digital Baker map is widely used in different kinds of cryptosystems, especially for image encryption. However, any chaotic map which is realized on the finite precision device (e.g. computer) will suffer from dynamical degradation, which refers to short cycle lengths, low complexity and strong correlations. In this paper, a novel double perturbation method is proposed for reducing the dynamical degradation of the digital Baker map. Both state variables and system parameters are perturbed by the digital logistic map. Numerical experiments show that the perturbed Baker map can achieve good statistical and cryptographic properties. Furthermore, a new image encryption algorithm is provided as a simple application. With a rather simple algorithm, the encrypted image can achieve high security, which is competitive to the recently proposed image encryption algorithms.

  19. A Parallel Saturation Algorithm on Shared Memory Architectures

    NASA Technical Reports Server (NTRS)

    Ezekiel, Jonathan; Siminiceanu

    2007-01-01

    Symbolic state-space generators are notoriously hard to parallelize. However, the Saturation algorithm implemented in the SMART verification tool differs from other sequential symbolic state-space generators in that it exploits the locality of ring events in asynchronous system models. This paper explores whether event locality can be utilized to efficiently parallelize Saturation on shared-memory architectures. Conceptually, we propose to parallelize the ring of events within a decision diagram node, which is technically realized via a thread pool. We discuss the challenges involved in our parallel design and conduct experimental studies on its prototypical implementation. On a dual-processor dual core PC, our studies show speed-ups for several example models, e.g., of up to 50% for a Kanban model, when compared to running our algorithm only on a single core.

  20. Subsea release of oil from a riser: an ecological risk assessment.

    PubMed

    Nazir, Muddassir; Khan, Faisal; Amyotte, Paul; Sadiq, Rehan

    2008-10-01

    This study illustrates a newly developed methodology, as a part of the U.S. EPA ecological risk assessment (ERA) framework, to predict exposure concentrations in a marine environment due to underwater release of oil and gas. It combines the hydrodynamics of underwater blowout, weathering algorithms, and multimedia fate and transport to measure the exposure concentration. Naphthalene and methane are used as surrogate compounds for oil and gas, respectively. Uncertainties are accounted for in multimedia input parameters in the analysis. The 95th percentile of the exposure concentration (EC(95%)) is taken as the representative exposure concentration for the risk estimation. A bootstrapping method is utilized to characterize EC(95%) and associated uncertainty. The toxicity data of 19 species available in the literature are used to calculate the 5th percentile of the predicted no observed effect concentration (PNEC(5%)) by employing the bootstrapping method. The risk is characterized by transforming the risk quotient (RQ), which is the ratio of EC(95%) to PNEC(5%), into a cumulative risk distribution. This article describes a probabilistic basis for the ERA, which is essential from risk management and decision-making viewpoints. Two case studies of underwater oil and gas mixture release, and oil release with no gaseous mixture are used to show the systematic implementation of the methodology, elements of ERA, and the probabilistic method in assessing and characterizing the risk.

  1. Research on compressive sensing reconstruction algorithm based on total variation model

    NASA Astrophysics Data System (ADS)

    Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin

    2017-12-01

    Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately recovers target image.

  2. The Era of International Space Station Utilization Begins: Research Strategy, International Collaboration, and Realized Potential

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy; Robinson, Julie A.; Ruttley, Tara; Johnson-Green, Perry; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Jean, Sabbagh

    2010-01-01

    With the assembly of the International Space Station (ISS) nearing completion and the support of a full-time crew of six, a new era of utilization for research is beginning. For more than 15 years, the ISS international partnership has weathered financial, technical and political challenges proving that nations can work together to complete assembly of the largest space vehicle in history. And while the ISS partners can be proud of having completed one of the most ambitious engineering projects ever conceived, the challenge of successfully using the platform remains. During the ISS assembly phase, the potential benefits of space-based research and development were demonstrated; including the advancement of scientific knowledge based on experiments conducted in space, development and testing of new technologies, and derivation of Earth applications from new understanding. The configurability and human-tended capabilities of the ISS provide a unique platform. The international utilization strategy is based on research ranging from physical sciences, biology, medicine, psychology, to Earth observation, human exploration preparation and technology demonstration. The ability to complete follow-on investigations in a period of months allows researchers to make rapid advances based on new knowledge gained from ISS activities. During the utilization phase, the ISS partners are working together to track the objectives, accomplishments, and the applications of the new knowledge gained. This presentation will summarize the consolidated international results of these tracking activities and approaches. Areas of current research on ISS with strong international cooperation will be highlighted including cardiovascular studies, cell and plant biology studies, radiation, physics of matter, and advanced alloys. Scientific knowledge and new technologies derived from research on the ISS will be realized through improving quality of life on Earth and future spaceflight endeavours. Extension of the ISS through 2020 and beyond will insure that the benefits of research will be achievable for the International Partnership.

  3. Structural changes and out-of-sample prediction of realized range-based variance in the stock market

    NASA Astrophysics Data System (ADS)

    Gong, Xu; Lin, Boqiang

    2018-03-01

    This paper aims to examine the effects of structural changes on forecasting the realized range-based variance in the stock market. Considering structural changes in variance in the stock market, we develop the HAR-RRV-SC model on the basis of the HAR-RRV model. Subsequently, the HAR-RRV and HAR-RRV-SC models are used to forecast the realized range-based variance of S&P 500 Index. We find that there are many structural changes in variance in the U.S. stock market, and the period after the financial crisis contains more structural change points than the period before the financial crisis. The out-of-sample results show that the HAR-RRV-SC model significantly outperforms the HAR-BV model when they are employed to forecast the 1-day, 1-week, and 1-month realized range-based variances, which means that structural changes can improve out-of-sample prediction of realized range-based variance. The out-of-sample results remain robust across the alternative rolling fixed-window, the alternative threshold value in ICSS algorithm, and the alternative benchmark models. More importantly, we believe that considering structural changes can help improve the out-of-sample performances of most of other existing HAR-RRV-type models in addition to the models used in this paper.

  4. A Novel Zero Velocity Interval Detection Algorithm for Self-Contained Pedestrian Navigation System with Inertial Sensors

    PubMed Central

    Tian, Xiaochun; Chen, Jiabin; Han, Yongqiang; Shang, Jianyu; Li, Nan

    2016-01-01

    Zero velocity update (ZUPT) plays an important role in pedestrian navigation algorithms with the premise that the zero velocity interval (ZVI) should be detected accurately and effectively. A novel adaptive ZVI detection algorithm based on a smoothed pseudo Wigner–Ville distribution to remove multiple frequencies intelligently (SPWVD-RMFI) is proposed in this paper. The novel algorithm adopts the SPWVD-RMFI method to extract the pedestrian gait frequency and to calculate the optimal ZVI detection threshold in real time by establishing the function relationships between the thresholds and the gait frequency; then, the adaptive adjustment of thresholds with gait frequency is realized and improves the ZVI detection precision. To put it into practice, a ZVI detection experiment is carried out; the result shows that compared with the traditional fixed threshold ZVI detection method, the adaptive ZVI detection algorithm can effectively reduce the false and missed detection rate of ZVI; this indicates that the novel algorithm has high detection precision and good robustness. Furthermore, pedestrian trajectory positioning experiments at different walking speeds are carried out to evaluate the influence of the novel algorithm on positioning precision. The results show that the ZVI detected by the adaptive ZVI detection algorithm for pedestrian trajectory calculation can achieve better performance. PMID:27669266

  5. Forget the hype or reality. Big data presents new opportunities in Earth Science.

    NASA Astrophysics Data System (ADS)

    Lee, T. J.

    2015-12-01

    Earth science is arguably one of the most mature science discipline which constantly acquires, curates, and utilizes a large volume of data with diverse variety. We deal with big data before there is big data. For example, while developing the EOS program in the 1980s, the EOS data and information system (EOSDIS) was developed to manage the vast amount of data acquired by the EOS fleet of satellites. EOSDIS continues to be a shining example of modern science data systems in the past two decades. With the explosion of internet, the usage of social media, and the provision of sensors everywhere, the big data era has bring new challenges. First, Goggle developed the search algorithm and a distributed data management system. The open source communities quickly followed up and developed Hadoop file system to facility the map reduce workloads. The internet continues to generate tens of petabytes of data every day. There is a significant shortage of algorithms and knowledgeable manpower to mine the data. In response, the federal government developed the big data programs that fund research and development projects and training programs to tackle these new challenges. Meanwhile, comparatively to the internet data explosion, Earth science big data problem has become quite small. Nevertheless, the big data era presents an opportunity for Earth science to evolve. We learned about the MapReduce algorithms, in memory data mining, machine learning, graph analysis, and semantic web technologies. How do we apply these new technologies to our discipline and bring the hype to Earth? In this talk, I will discuss how we might want to apply some of the big data technologies to our discipline and solve many of our challenging problems. More importantly, I will propose new Earth science data system architecture to enable new type of scientific inquires.

  6. GLEAM version 3: Global Land Evaporation Datasets and Model

    NASA Astrophysics Data System (ADS)

    Martens, B.; Miralles, D. G.; Lievens, H.; van der Schalie, R.; de Jeu, R.; Fernandez-Prieto, D.; Verhoest, N.

    2015-12-01

    Terrestrial evaporation links energy, water and carbon cycles over land and is therefore a key variable of the climate system. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to limitations in in situ measurements. As a result, several methods have risen to estimate global patterns of land evaporation from satellite observations. However, these algorithms generally differ in their approach to model evaporation, resulting in large differences in their estimates. One of these methods is GLEAM, the Global Land Evaporation: the Amsterdam Methodology. GLEAM estimates terrestrial evaporation based on daily satellite observations of meteorological variables, vegetation characteristics and soil moisture. Since the publication of the first version of the algorithm (2011), the model has been widely applied to analyse trends in the water cycle and land-atmospheric feedbacks during extreme hydrometeorological events. A third version of the GLEAM global datasets is foreseen by the end of 2015. Given the relevance of having a continuous and reliable record of global-scale evaporation estimates for climate and hydrological research, the establishment of an online data portal to host these data to the public is also foreseen. In this new release of the GLEAM datasets, different components of the model have been updated, with the most significant change being the revision of the data assimilation algorithm. In this presentation, we will highlight the most important changes of the methodology and present three new GLEAM datasets and their validation against in situ observations and an alternative dataset of terrestrial evaporation (ERA-Land). Results of the validation exercise indicate that the magnitude and the spatiotemporal variability of the modelled evaporation agree reasonably well with the estimates of ERA-Land and the in situ observations. It is also shown that the performance of the revised model is higher compared to the original one.

  7. Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: A report from the International DLBCL Rituximab-CHOP Consortium Program Study

    PubMed Central

    Visco, Carlo; Li, Yan; Xu-Monette, Zijun Y.; Miranda, Roberto N.; Green, Tina M.; Li, Yong; Tzankov, Alexander; Wen, Wei; Liu, Wei-min; Kahl, Brad S.; d’Amore, Emanuele S. G.; Montes-Moreno, Santiago; Dybkær, Karen; Chiu, April; Tam, Wayne; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Winter, Jane N.; Wang, Huan-You; O’Neill, Stacey; Dunphy, Cherie H.; Hsi, Eric D.; Zhao, X. Frank; Go, Ronald S.; Choi, William W. L.; Zhou, Fan; Czader, Magdalena; Tong, Jiefeng; Zhao, Xiaoying; van Krieken, J. Han; Huang, Qing; Ai, Weiyun; Etzell, Joan; Ponzoni, Maurilio; Ferreri, Andres J. M.; Piris, Miguel A.; Møller, Michael B.; Bueso-Ramos, Carlos E.; Medeiros, L. Jeffrey; Wu, Lin; Young, Ken H.

    2013-01-01

    Gene expression profiling (GEP) has stratified diffuse large B-cell lymphoma (DLBCL) into molecular subgroups that correspond to different stages of lymphocyte development - namely germinal center B-cell-like and activated B-cell-like. This classification has prognostic significance, but GEP is expensive and not readily applicable into daily practice, which has lead to immunohistochemical algorithms proposed as a surrogate for GEP analysis. We assembled tissue microarrays from 475 de novo DLBCL patients who were treated with rituximab-CHOP chemotherapy. All cases were successfully profiled by GEP on formalin-fixed, paraffin-embedded tissue samples. Sections were stained with antibodies reactive with CD10, GCET1, FOXP1, MUM1, and BCL6 and cases were classified following a rationale of sequential steps of differentiation of B-cells. Cutoffs for each marker were obtained using receiver operating characteristic curves, obviating the need for any arbitrary method. An algorithm based on the expression of CD10, FOXP1, and BCL6 was developed that had a simpler structure than other recently proposed algorithms and 92.6% concordance with GEP. In multivariate analysis, both the International Prognostic Index and our proposed algorithm were significant independent predictors of progression-free and overall survival. In conclusion, this algorithm effectively predicts prognosis of DLBCL patients matching GEP subgroups in the era of rituximab therapy. PMID:22437443

  8. Corticostriatal circuit mechanisms of value-based action selection: Implementation of reinforcement learning algorithms and beyond.

    PubMed

    Morita, Kenji; Jitsev, Jenia; Morrison, Abigail

    2016-09-15

    Value-based action selection has been suggested to be realized in the corticostriatal local circuits through competition among neural populations. In this article, we review theoretical and experimental studies that have constructed and verified this notion, and provide new perspectives on how the local-circuit selection mechanisms implement reinforcement learning (RL) algorithms and computations beyond them. The striatal neurons are mostly inhibitory, and lateral inhibition among them has been classically proposed to realize "Winner-Take-All (WTA)" selection of the maximum-valued action (i.e., 'max' operation). Although this view has been challenged by the revealed weakness, sparseness, and asymmetry of lateral inhibition, which suggest more complex dynamics, WTA-like competition could still occur on short time scales. Unlike the striatal circuit, the cortical circuit contains recurrent excitation, which may enable retention or temporal integration of information and probabilistic "soft-max" selection. The striatal "max" circuit and the cortical "soft-max" circuit might co-implement an RL algorithm called Q-learning; the cortical circuit might also similarly serve for other algorithms such as SARSA. In these implementations, the cortical circuit presumably sustains activity representing the executed action, which negatively impacts dopamine neurons so that they can calculate reward-prediction-error. Regarding the suggested more complex dynamics of striatal, as well as cortical, circuits on long time scales, which could be viewed as a sequence of short WTA fragments, computational roles remain open: such a sequence might represent (1) sequential state-action-state transitions, constituting replay or simulation of the internal model, (2) a single state/action by the whole trajectory, or (3) probabilistic sampling of state/action. Copyright © 2016. Published by Elsevier B.V.

  9. Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology.

    PubMed

    Hsu, Yu-Liang; Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen

    2017-07-15

    This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents' wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident's feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment.

  10. Eigenvector synchronization, graph rigidity and the molecule problemR

    PubMed Central

    Cucuringu, Mihai; Singer, Amit; Cowburn, David

    2013-01-01

    The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend the previous work and propose the 3D-As-Synchronized-As-Possible (3D-ASAP) algorithm, for the graph realization problem in ℝ3, given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch, there corresponds an element of the Euclidean group, Euc(3), of rigid transformations in ℝ3, and the goal was to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-spectral-partitioning (SP)-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a pre-processing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably with similar state-of-the-art localization algorithms. PMID:24432187

  11. Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology

    PubMed Central

    Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen

    2017-01-01

    This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents’ wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident’s feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment. PMID:28714884

  12. The hospital tech laboratory: quality innovation in a new era of value-conscious care.

    PubMed

    Keteyian, Courtland K; Nallamothu, Brahmajee K; Ryan, Andrew M

    2017-08-01

    For decades, the healthcare industry has been incentivized to develop new diagnostic technologies, but this limitless progress fueled rapidly growing expenditures. With an emphasis on value, the future will favor information synthesis and processing over pure data generation, and hospitals will play a critical role in developing these systems. A Michigan Medicine, IBM, and AirStrip partnership created a robust streaming analytics platform tasked with creating predictive algorithms for critical care with the potential to support clinical decisions and deliver significant value.

  13. Methods of Measurement the Quality Metrics in a Printing System

    NASA Astrophysics Data System (ADS)

    Varepo, L. G.; Brazhnikov, A. Yu; Nagornova, I. V.; Novoselskaya, O. A.

    2018-04-01

    One of the main criteria for choosing ink as a component of printing system is scumming ability of the ink. The realization of algorithm for estimating the quality metrics in a printing system is shown. The histograms of ink rate of various printing systems are presented. A quantitative estimation of stability of offset inks emulsifiability is given.

  14. The research of binocular vision ranging system based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Li, Shikuan; Yang, Xu

    2017-10-01

    Based on the study of the principle of binocular parallax ranging, a binocular vision ranging system is designed and built. The stereo matching algorithm is realized by LabVIEW software. The camera calibration and distance measurement are completed. The error analysis shows that the system fast, effective, can be used in the corresponding industrial occasions.

  15. Arctic Sea Ice Parameters from AMSR-E Data using Two Techniques, and Comparisons with Sea Ice from SSM

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Parkinson, Claire L.

    2007-01-01

    We use two algorithms to process AMSR-E data in order to determine algorithm dependence, if any, on the estimates of sea ice concentration, ice extent and area, and trends and to evaluate how AMSR-E data compare with historical SSM/I data. The monthly ice concentrations derived from the two algorithms from AMSR-E data (the AMSR-E Bootstrap Algorithm, or ABA, and the enhanced NASA Team algorithm, or NT2) differ on average by about 1 to 3%, with data from the consolidated ice region being generally comparable for ABA and NT2 retrievals while data in the marginal ice zones and thin ice regions show higher values when the NT2 algorithm is used. The ice extents and areas derived separately from AMSR-E using these two algorithms are, however, in good agreement, with the differences (ABA-NT2) being about 6.6 x 10(exp 4) square kilometers on average for ice extents and -6.6 x 10(exp 4) square kilometers for ice area which are small compared to mean seasonal values of 10.5 x 10(exp 6) and 9.8 x 10(exp 6) for ice extent and area: respectively. Likewise, extents and areas derived from the same algorithm but from AMSR-E and SSM/I data are consistent but differ by about -24.4 x 10(exp 4) square kilometers and -13.9 x 10(exp 4) square kilometers, respectively. The discrepancies are larger with the estimates of extents than area mainly because of differences in channel selection and sensor resolutions. Trends in extent during the AMSR-E era were also estimated and results from all three data sets are shown to be in good agreement (within errors).

  16. Climatologies at high resolution for the earth’s land surface areas

    PubMed Central

    Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E.; Linder, H. Peter; Kessler, Michael

    2017-01-01

    High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth’s land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979–2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better. PMID:28872642

  17. Uncovering robust patterns of microRNA co-expression across cancers using Bayesian Relevance Networks

    PubMed Central

    2017-01-01

    Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing—with its unique statistical properties—became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates) to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca. PMID:28817636

  18. Climatologies at high resolution for the earth's land surface areas

    NASA Astrophysics Data System (ADS)

    Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E.; Linder, H. Peter; Kessler, Michael

    2017-09-01

    High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth's land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979-2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better.

  19. Indoor-Outdoor Detection Using a Smart Phone Sensor.

    PubMed

    Wang, Weiping; Chang, Qiang; Li, Qun; Shi, Zesen; Chen, Wei

    2016-09-22

    In the era of mobile internet, Location Based Services (LBS) have developed dramatically. Seamless Indoor and Outdoor Navigation and Localization (SNAL) has attracted a lot of attention. No single positioning technology was capable of meeting the various positioning requirements in different environments. Selecting different positioning techniques for different environments is an alternative method. Detecting the users' current environment is crucial for this technique. In this paper, we proposed to detect the indoor/outdoor environment automatically without high energy consumption. The basic idea was simple: we applied a machine learning algorithm to classify the neighboring Global System for Mobile (GSM) communication cellular base station's signal strength in different environments, and identified the users' current context by signal pattern recognition. We tested the algorithm in four different environments. The results showed that the proposed algorithm was capable of identifying open outdoors, semi-outdoors, light indoors and deep indoors environments with 100% accuracy using the signal strength of four nearby GSM stations. The required hardware and signal are widely available in our daily lives, implying its high compatibility and availability.

  20. Uncovering robust patterns of microRNA co-expression across cancers using Bayesian Relevance Networks.

    PubMed

    Ramachandran, Parameswaran; Sánchez-Taltavull, Daniel; Perkins, Theodore J

    2017-01-01

    Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing-with its unique statistical properties-became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates) to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca.

  1. Peak Seeking Control for Reduced Fuel Consumption with Preliminary Flight Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2012-01-01

    The Environmentally Responsible Aviation project seeks to accomplish the simultaneous reduction of fuel burn, noise, and emissions. A project at NASA Dryden Flight Research Center is contributing to ERAs goals by exploring the practical application of real-time trim configuration optimization for enhanced performance and reduced fuel consumption. This peak-seeking control approach is based on Newton-Raphson algorithm using a time-varying Kalman filter to estimate the gradient of the performance function. In real-time operation, deflection of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of a modified F-18 are directly optimized, and the horizontal stabilators and angle of attack are indirectly optimized. Preliminary results from three research flights are presented herein. The optimization system found a trim configuration that required approximately 3.5% less fuel flow than the baseline trim at the given flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These preliminary results show the algorithm has good performance and is expected to show similar results at other flight conditions and aircraft configurations.

  2. State Recognition and Visualization of Hoisting Motor of Quayside Container Crane Based on SOFM

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; He, P.; Tang, G.; Hu, X.

    2017-07-01

    The neural network structure and algorithm of self-organizing feature map (SOFM) are researched and analysed. The method is applied to state recognition and visualization of the quayside container crane hoisting motor. By using SOFM, the clustering and visualization of attribute reduction of data are carried out, and three kinds motor states are obtained with Root Mean Square(RMS), Impulse Index and Margin Index, and the simulation visualization interface is realized by MATLAB. Through the processing of the sample data, it can realize the accurate identification of the motor state, thus provide better monitoring of the quayside container crane hoisting motor and a new way for the mechanical state recognition.

  3. Design of a Multi-Sensor Cooperation Travel Environment Perception System for Autonomous Vehicle

    PubMed Central

    Chen, Long; Li, Qingquan; Li, Ming; Zhang, Liang; Mao, Qingzhou

    2012-01-01

    This paper describes the environment perception system designed for intelligent vehicle SmartV-II, which won the 2010 Future Challenge. This system utilizes the cooperation of multiple lasers and cameras to realize several necessary functions of autonomous navigation: road curb detection, lane detection and traffic sign recognition. Multiple single scan lasers are integrated to detect the road curb based on Z-variance method. Vision based lane detection is realized by two scans method combining with image model. Haar-like feature based method is applied for traffic sign detection and SURF matching method is used for sign classification. The results of experiments validate the effectiveness of the proposed algorithms and the whole system.

  4. Development of Control System for Hydrolysis Crystallization Process

    NASA Astrophysics Data System (ADS)

    Wan, Feng; Shi, Xiao-Ming; Feng, Fang-Fang

    2016-05-01

    Sulfate method for producing titanium dioxide is commonly used in China, but the determination of crystallization time is artificially which leads to a big error and is harmful to the operators. In this paper a new method for determining crystallization time is proposed. The method adopts the red laser as the light source, uses the silicon photocell as reflection light receiving component, using optical fiber as the light transmission element, differential algorithm is adopted in the software to realize the determination of the crystallizing time. The experimental results show that the method can realize the determination of crystallization point automatically and accurately, can replace manual labor and protect the health of workers, can be applied to practice completely.

  5. Realization of the FPGA-based reconfigurable computing environment by the example of morphological processing of a grayscale image

    NASA Astrophysics Data System (ADS)

    Shatravin, V.; Shashev, D. V.

    2018-05-01

    Currently, robots are increasingly being used in every industry. One of the most high-tech areas is creation of completely autonomous robotic devices including vehicles. The results of various global research prove the efficiency of vision systems in autonomous robotic devices. However, the use of these systems is limited because of the computational and energy resources available in the robot device. The paper describes the results of applying the original approach for image processing on reconfigurable computing environments by the example of morphological operations over grayscale images. This approach is prospective for realizing complex image processing algorithms and real-time image analysis in autonomous robotic devices.

  6. Structures and Algorithms in Stochastic Realization Theory and the Smoothing Problem

    DTIC Science & Technology

    1980-01-01

    w satisfying (2.2) and i. H(w) for all i) having y as its output is called a rezlization of y. Clearly, the components of x, y and w belong to H...FCt)x,(t) + B,(t)w,(t) ; x,(0) Z 0 y(t) a H(t)x,(t) + R,(t) w,(t) , which clearly belongs to S. It can be immediately seen that the co- variance... it is seen that the realization i,(t-) = P’(t)i,(t) + B,(t),(t) ; i,(T) - 0(90,) (2.37) )y(t) = G’(t)iCt) + 9,(t)hQ,(t) belongs to S. By Lemma 2.7

  7. Trapped Ion Qubits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maunz, Peter; Wilhelm, Lukas

    Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systemsmore » of 5 to 15 qubits [6–8].« less

  8. Dynamic biometric identification from multiple views using the GLBP-TOP method.

    PubMed

    Wang, Yu; Shen, Xuanjing; Chen, Haipeng; Zhai, Yujie

    2014-01-01

    To realize effective and rapid dynamic biometric identification with low computational complexity, a video-based facial texture program that extracts local binary patterns from three orthogonal planes in the frequency domain of the Gabor transform (GLBP-TOP) was proposed. Firstly, each normalized face was transformed by Gabor wavelet to get the enhanced Gabor magnitude map, and then the LBP-TOP operator was applied to the maps to extract video texture. Finally, weighted Chi square statistics based on the Fisher Criterion were used to realize the identification. The proposed algorithm was proved effective through the biometric experiments using the Honda/UCSD database, and was robust against changes of illumination and expressions.

  9. System identification using Nuclear Norm & Tabu Search optimization

    NASA Astrophysics Data System (ADS)

    Ahmed, Asif A.; Schoen, Marco P.; Bosworth, Ken W.

    2018-01-01

    In recent years, subspace System Identification (SI) algorithms have seen increased research, stemming from advanced minimization methods being applied to the Nuclear Norm (NN) approach in system identification. These minimization algorithms are based on hard computing methodologies. To the authors’ knowledge, as of now, there has been no work reported that utilizes soft computing algorithms to address the minimization problem within the nuclear norm SI framework. A linear, time-invariant, discrete time system is used in this work as the basic model for characterizing a dynamical system to be identified. The main objective is to extract a mathematical model from collected experimental input-output data. Hankel matrices are constructed from experimental data, and the extended observability matrix is employed to define an estimated output of the system. This estimated output and the actual - measured - output are utilized to construct a minimization problem. An embedded rank measure assures minimum state realization outcomes. Current NN-SI algorithms employ hard computing algorithms for minimization. In this work, we propose a simple Tabu Search (TS) algorithm for minimization. TS algorithm based SI is compared with the iterative Alternating Direction Method of Multipliers (ADMM) line search optimization based NN-SI. For comparison, several different benchmark system identification problems are solved by both approaches. Results show improved performance of the proposed SI-TS algorithm compared to the NN-SI ADMM algorithm.

  10. An enhanced fast scanning algorithm for image segmentation

    NASA Astrophysics Data System (ADS)

    Ismael, Ahmed Naser; Yusof, Yuhanis binti

    2015-12-01

    Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.

  11. A Modified Differential Coherent Bit Synchronization Algorithm for BeiDou Weak Signals with Large Frequency Deviation.

    PubMed

    Han, Zhifeng; Liu, Jianye; Li, Rongbing; Zeng, Qinghua; Wang, Yi

    2017-07-04

    BeiDou system navigation messages are modulated with a secondary NH (Neumann-Hoffman) code of 1 kbps, where frequent bit transitions limit the coherent integration time to 1 millisecond. Therefore, a bit synchronization algorithm is necessary to obtain bit edges and NH code phases. In order to realize bit synchronization for BeiDou weak signals with large frequency deviation, a bit synchronization algorithm based on differential coherent and maximum likelihood is proposed. Firstly, a differential coherent approach is used to remove the effect of frequency deviation, and the differential delay time is set to be a multiple of bit cycle to remove the influence of NH code. Secondly, the maximum likelihood function detection is used to improve the detection probability of weak signals. Finally, Monte Carlo simulations are conducted to analyze the detection performance of the proposed algorithm compared with a traditional algorithm under the CN0s of 20~40 dB-Hz and different frequency deviations. The results show that the proposed algorithm outperforms the traditional method with a frequency deviation of 50 Hz. This algorithm can remove the effect of BeiDou NH code effectively and weaken the influence of frequency deviation. To confirm the feasibility of the proposed algorithm, real data tests are conducted. The proposed algorithm is suitable for BeiDou weak signal bit synchronization with large frequency deviation.

  12. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    PubMed

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  13. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  14. Early Post-Operative Outcomes and Blood Product Utilization in Adult Cardiac Surgery- The Post Aprotinin Era

    PubMed Central

    DeSantis, Stacia; Toole, J. Matthew; Kratz, John M.; Uber, Walter E.; Wheat, Margaret J.; Stroud, Martha R.; Ikonomidis, John S.; Spinale, Francis G.

    2011-01-01

    Background Aprotinin was a commonly utilized pharmacological agent for homeostasis in cardiac surgery but was discontinued resulting in the extensive use of lysine analogues. This study tested the hypothesis that early post-operative adverse events and blood product utilization would affected in this post-aprotinin era. Methods/Results Adult patients (n=781) undergoing coronary artery bypass (CABG), valve replacement, or both from November 1, 2005-October 31, 2008 at a single institution were included. Multiple logistic regression modeling and propensity scoring were performed on 29 pre-operative and intra-operative variables in patients receiving aprotinin (n=325) or lysine analogues (n=456). The propensity adjusted relative risk (RR;95% confidence interval;CI) for the intra-operative use of packed red blood cells (RR:0.75;CI:0.57–0.99), fresh frozen plasma (RR:0.37;0.21–0.64), and cryoprecipitate (RR:0.06;CI:0.02–0.22) were lower in the aprotinin versus lysine analogue group (all p<0.05). The risk for mortality (RR:0.53;CI:0.16–1.79) and neurological events (RR:0.87;CI:0.35–2.18) remained similar between groups, whereas a trend for reduced risk for renal dysfunction was observed in the aprotinin group. Conclusions In the post-aprotinin era with the exclusive use of lysine analogues, the relative risk of early post-operative outcomes such as mortality and renal dysfunction have not improved, but the risk for the intra-operative use of blood products has increased. Thus, improvements in early post-operative outcomes have not been realized with the discontinued use of aprotinin, but rather increased blood product utilization has occurred with the attendant costs and risks inherent with this strategy. PMID:21911820

  15. An Algorithm for Pedestrian Detection in Multispectral Image Sequences

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.; Fedorenko, V. V.

    2017-05-01

    The growing interest for self-driving cars provides a demand for scene understanding and obstacle detection algorithms. One of the most challenging problems in this field is the problem of pedestrian detection. Main difficulties arise from a diverse appearances of pedestrians. Poor visibility conditions such as fog and low light conditions also significantly decrease the quality of pedestrian detection. This paper presents a new optical flow based algorithm BipedDetet that provides robust pedestrian detection on a single-borad computer. The algorithm is based on the idea of simplified Kalman filtering suitable for realization on modern single-board computers. To detect a pedestrian a synthetic optical flow of the scene without pedestrians is generated using slanted-plane model. The estimate of a real optical flow is generated using a multispectral image sequence. The difference of the synthetic optical flow and the real optical flow provides the optical flow induced by pedestrians. The final detection of pedestrians is done by the segmentation of the difference of optical flows. To evaluate the BipedDetect algorithm a multispectral dataset was collected using a mobile robot.

  16. A novel N-input voting algorithm for X-by-wire fault-tolerant systems.

    PubMed

    Karimi, Abbas; Zarafshan, Faraneh; Al-Haddad, S A R; Ramli, Abdul Rahman

    2014-01-01

    Voting is an important operation in multichannel computation paradigm and realization of ultrareliable and real-time control systems that arbitrates among the results of N redundant variants. These systems include N-modular redundant (NMR) hardware systems and diversely designed software systems based on N-version programming (NVP). Depending on the characteristics of the application and the type of selected voter, the voting algorithms can be implemented for either hardware or software systems. In this paper, a novel voting algorithm is introduced for real-time fault-tolerant control systems, appropriate for applications in which N is large. Then, its behavior has been software implemented in different scenarios of error-injection on the system inputs. The results of analyzed evaluations through plots and statistical computations have demonstrated that this novel algorithm does not have the limitations of some popular voting algorithms such as median and weighted; moreover, it is able to significantly increase the reliability and availability of the system in the best case to 2489.7% and 626.74%, respectively, and in the worst case to 3.84% and 1.55%, respectively.

  17. An Improved Aerial Target Localization Method with a Single Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2017-01-01

    This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment. PMID:29135956

  18. Automatic Whistler Detector and Analyzer system: Implementation of the analyzer algorithm

    NASA Astrophysics Data System (ADS)

    Lichtenberger, JáNos; Ferencz, Csaba; Hamar, Daniel; Steinbach, Peter; Rodger, Craig J.; Clilverd, Mark A.; Collier, Andrew B.

    2010-12-01

    The full potential of whistlers for monitoring plasmaspheric electron density variations has not yet been realized. The primary reason is the vast human effort required for the analysis of whistler traces. Recently, the first part of a complete whistler analysis procedure was successfully automated, i.e., the automatic detection of whistler traces from the raw broadband VLF signal was achieved. This study describes a new algorithm developed to determine plasmaspheric electron density measurements from whistler traces, based on a Virtual (Whistler) Trace Transformation, using a 2-D fast Fourier transform transformation. This algorithm can be automated and can thus form the final step to complete an Automatic Whistler Detector and Analyzer (AWDA) system. In this second AWDA paper, the practical implementation of the Automatic Whistler Analyzer (AWA) algorithm is discussed and a feasible solution is presented. The practical implementation of the algorithm is able to track the variations of plasmasphere in quasi real time on a PC cluster with 100 CPU cores. The electron densities obtained by the AWA method can be used in investigations such as plasmasphere dynamics, ionosphere-plasmasphere coupling, or in space weather models.

  19. Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm.

    PubMed

    Sun, Peng; Chang, Shengqian; Liu, Siqi; Tao, Xiao; Wang, Chang; Zheng, Zhenrong

    2018-04-16

    In this paper, a method is proposed to implement noises reduced three-dimensional (3D) holographic near-eye display by phase-only computer-generated hologram (CGH). The CGH is calculated from a double-convergence light Gerchberg-Saxton (GS) algorithm, in which the phases of two virtual convergence lights are introduced into GS algorithm simultaneously. The first phase of convergence light is a replacement of random phase as the iterative initial value and the second phase of convergence light will modulate the phase distribution calculated by GS algorithm. Both simulations and experiments are carried out to verify the feasibility of the proposed method. The results indicate that this method can effectively reduce the noises in the reconstruction. Field of view (FOV) of the reconstructed image reaches 40 degrees and experimental light path in the 4-f system is shortened. As for 3D experiments, the results demonstrate that the proposed algorithm can present 3D images with 180cm zooming range and continuous depth cues. This method may provide a promising solution in future 3D augmented reality (AR) realization.

  20. Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale.

    PubMed

    Espinosa, J R; Grojean, C; Panico, G; Pomarol, A; Pujolàs, O; Servant, G

    2015-12-18

    Recently, a new mechanism to generate a naturally small electroweak scale has been proposed. It exploits the coupling of the Higgs boson to an axionlike field and a long era in the early Universe where the axion unchains a dynamical screening of the Higgs mass. We present a new realization of this idea with the new feature that it leaves no sign of new physics at the electroweak scale, and up to a rather large scale, 10^{9}  GeV, except for two very light and weakly coupled axionlike states. One of the scalars can be a viable dark matter candidate. Such a cosmological Higgs-axion interplay could be tested with a number of experimental strategies.

  1. Introducing Filters and Amplifiers Using a Two-Channel Light Organ

    NASA Astrophysics Data System (ADS)

    Zavrel, Erik; Sharpsteen, Eric

    2015-11-01

    In an era when many students carry iPods, iPhones, and iPads, physics teachers are realizing that in order to continue to inspire and convey the amazing things made possible by a few fundamental principles, they must expand laboratory coverage of electricity and circuits beyond the conventional staples of constructing series and parallel arrangements of light bulbs and confirming Kirchhoff's laws. Indeed, physics teachers are already incorporating smartphones into their laboratory activities in an effort to convey concepts in a more contemporary and relatable manner. As part of Cornell's Learning Initiative in Medicine and Bioengineering (CLIMB), we set out to design and implement an engaging curriculum to introduce high school physics students to filters and amplifiers.

  2. Environmental consequences of impact cratering events as a function of ambient conditions on Earth.

    PubMed

    Kring, David A

    2003-01-01

    The end of the Mesozoic Era is defined by a dramatic floral and faunal turnover that has been linked with the Chicxulub impact event, thus leading to the realization that impact cratering can affect both the geologic and biologic evolution of Earth. However, the environmental consequences of an impact event and any subsequent biological effects rely on several factors, including the ambient environmental conditions and the extant ecosystem structures at the time of impact. Some of the severest environmental perturbations of the Chicxulub impact event would not have been significant in some periods of Earth history. Consequently, the environmental and biological effects of an impact event must be evaluated in the context in which it occurs.

  3. A General, Adaptive, Roadmap-Based Algorithm for Protein Motion Computation.

    PubMed

    Molloy, Kevin; Shehu, Amarda

    2016-03-01

    Precious information on protein function can be extracted from a detailed characterization of protein equilibrium dynamics. This remains elusive in wet and dry laboratories, as function-modulating transitions of a protein between functionally-relevant, thermodynamically-stable and meta-stable structural states often span disparate time scales. In this paper we propose a novel, robotics-inspired algorithm that circumvents time-scale challenges by drawing analogies between protein motion and robot motion. The algorithm adapts the popular roadmap-based framework in robot motion computation to handle the more complex protein conformation space and its underlying rugged energy surface. Given known structures representing stable and meta-stable states of a protein, the algorithm yields a time- and energy-prioritized list of transition paths between the structures, with each path represented as a series of conformations. The algorithm balances computational resources between a global search aimed at obtaining a global view of the network of protein conformations and their connectivity and a detailed local search focused on realizing such connections with physically-realistic models. Promising results are presented on a variety of proteins that demonstrate the general utility of the algorithm and its capability to improve the state of the art without employing system-specific insight.

  4. Optimal control of hybrid qubits: Implementing the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.

    2018-03-01

    The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.

  5. An optimized routing algorithm for the automated assembly of standard multimode ribbon fibers in a full-mesh optical backplane

    NASA Astrophysics Data System (ADS)

    Basile, Vito; Guadagno, Gianluca; Ferrario, Maddalena; Fassi, Irene

    2018-03-01

    In this paper a parametric, modular and scalable algorithm allowing a fully automated assembly of a backplane fiber-optic interconnection circuit is presented. This approach guarantees the optimization of the optical fiber routing inside the backplane with respect to specific criteria (i.e. bending power losses), addressing both transmission performance and overall costs issues. Graph theory has been exploited to simplify the complexity of the NxN full-mesh backplane interconnection topology, firstly, into N independent sub-circuits and then, recursively, into a limited number of loops easier to be generated. Afterwards, the proposed algorithm selects a set of geometrical and architectural parameters whose optimization allows to identify the optimal fiber optic routing for each sub-circuit of the backplane. The topological and numerical information provided by the algorithm are then exploited to control a robot which performs the automated assembly of the backplane sub-circuits. The proposed routing algorithm can be extended to any array architecture and number of connections thanks to its modularity and scalability. Finally, the algorithm has been exploited for the automated assembly of an 8x8 optical backplane realized with standard multimode (MM) 12-fiber ribbons.

  6. Distributed Storage Algorithm for Geospatial Image Data Based on Data Access Patterns.

    PubMed

    Pan, Shaoming; Li, Yongkai; Xu, Zhengquan; Chong, Yanwen

    2015-01-01

    Declustering techniques are widely used in distributed environments to reduce query response time through parallel I/O by splitting large files into several small blocks and then distributing those blocks among multiple storage nodes. Unfortunately, however, many small geospatial image data files cannot be further split for distributed storage. In this paper, we propose a complete theoretical system for the distributed storage of small geospatial image data files based on mining the access patterns of geospatial image data using their historical access log information. First, an algorithm is developed to construct an access correlation matrix based on the analysis of the log information, which reveals the patterns of access to the geospatial image data. Then, a practical heuristic algorithm is developed to determine a reasonable solution based on the access correlation matrix. Finally, a number of comparative experiments are presented, demonstrating that our algorithm displays a higher total parallel access probability than those of other algorithms by approximately 10-15% and that the performance can be further improved by more than 20% by simultaneously applying a copy storage strategy. These experiments show that the algorithm can be applied in distributed environments to help realize parallel I/O and thereby improve system performance.

  7. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.

    PubMed

    Pelet, S; Previte, M J R; Laiho, L H; So, P T C

    2004-10-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society

  8. An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.

    PubMed

    Cheng, Jing; Xia, Linyuan

    2016-08-31

    Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.

  9. An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network

    PubMed Central

    Cheng, Jing; Xia, Linyuan

    2016-01-01

    Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm. PMID:27589756

  10. Automatic Correction Algorithm of Hyfrology Feature Attribute in National Geographic Census

    NASA Astrophysics Data System (ADS)

    Li, C.; Guo, P.; Liu, X.

    2017-09-01

    A subset of the attributes of hydrologic features data in national geographic census are not clear, the current solution to this problem was through manual filling which is inefficient and liable to mistakes. So this paper proposes an automatic correction algorithm of hydrologic features attribute. Based on the analysis of the structure characteristics and topological relation, we put forward three basic principles of correction which include network proximity, structure robustness and topology ductility. Based on the WJ-III map workstation, we realize the automatic correction of hydrologic features. Finally, practical data is used to validate the method. The results show that our method is highly reasonable and efficient.

  11. Quantum image processing: A review of advances in its security technologies

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Iliyasu, Abdullah M.; Le, Phuc Q.

    In this review, we present an overview of the advances made in quantum image processing (QIP) comprising of the image representations, the operations realizable on them, and the likely protocols and algorithms for their applications. In particular, we focus on recent progresses on QIP-based security technologies including quantum watermarking, quantum image encryption, and quantum image steganography. This review is aimed at providing readers with a succinct, yet adequate compendium of the progresses made in the QIP sub-area. Hopefully, this effort will stimulate further interest aimed at the pursuit of more advanced algorithms and experimental validations for available technologies and extensions to other domains.

  12. Model of depositing layer on cylindrical surface produced by induction-assisted laser cladding process

    NASA Astrophysics Data System (ADS)

    Kotlan, Václav; Hamar, Roman; Pánek, David; Doležel, Ivo

    2017-12-01

    A model of hybrid cladding on a cylindrical surface is built and numerically solved. Heating of both substrate and the powder material to be deposited on its surface is realized by laser beam and preheating inductor. The task represents a hard-coupled electromagnetic-thermal problem with time-varying geometry. Two specific algorithms are developed to incorporate this effect into the model, driven by local distribution of temperature and its gradients. The algorithms are implemented into the COMSOL Multiphysics 5.2 code that is used for numerical computations of the task. The methodology is illustrated with a typical example whose results are discussed.

  13. Adding control to arbitrary unknown quantum operations

    PubMed Central

    Zhou, Xiao-Qi; Ralph, Timothy C.; Kalasuwan, Pruet; Zhang, Mian; Peruzzo, Alberto; Lanyon, Benjamin P.; O'Brien, Jeremy L.

    2011-01-01

    Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations—a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. Here, we demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity. PMID:21811242

  14. Video data compression using artificial neural network differential vector quantization

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.

    1991-01-01

    An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.

  15. A novel cloning template designing method by using an artificial bee colony algorithm for edge detection of CNN based imaging sensors.

    PubMed

    Parmaksızoğlu, Selami; Alçı, Mustafa

    2011-01-01

    Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods.

  16. A Novel Cloning Template Designing Method by Using an Artificial Bee Colony Algorithm for Edge Detection of CNN Based Imaging Sensors

    PubMed Central

    Parmaksızoğlu, Selami; Alçı, Mustafa

    2011-01-01

    Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods. PMID:22163903

  17. Oak Ridge Graph Analytics for Medical Innovation (ORiGAMI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Larry W.; Lee, Sangkeun

    2016-01-01

    In this era of data-driven decisions and discovery where Big Data is producing Bigger Data, data scientists at the Oak Ridge National Laboratory are leveraging unique leadership infrastructure (e.g., Urika XA and Urika GD appliances) to develop scalable algorithms for semantic, logical and statistical reasoning with Big Data (i.e., data stored in databases as well as unstructured data in documents). ORiGAMI is a next-generation knowledge-discovery framework that is: (a) knowledge nurturing (i.e., evolves seamlessly with newer knowledge and data), (b) smart and curious (i.e. using information-foraging and reasoning algorithms to digest content) and (c) synergistic (i.e., interfaces computers with whatmore » they do best to help subject-matter-experts do their best. ORiGAMI has been demonstrated using the National Library of Medicine's SEMANTIC MEDLINE (archive of medical knowledge since 1994).« less

  18. An algorithm of opinion leaders mining based on signed network

    NASA Astrophysics Data System (ADS)

    Cao, Linlin; Zheng, Mingchun; Zhang, Yuanyuan; Zhang, Fuming

    2018-04-01

    With the rapid development of mobile Internet, user gradually become the leader of social media, the abruptly rise of new media has changed the traditional information's dissemination pattern and regularity. There is new era significance of opinion leaders, gatekeepers in the classical theory of mass communication, and it has further expansion and extension to a certain extent. In the existing mining of opinion leaders, it is mainly from the research of network structure and user behavior without considering an important attribute: whether the user has a real impact. In this paper, we take the symbolic network as the research tool, by giving symbol which correspondingly represents support or oppose to the link about point of view relationship between users and combining traditional algorithms of mining with symbolism which can describe the change of view between users, we will get the opinion leader who has real impact on users, then the result is more accurate and effective.

  19. COINSTAC: Decentralizing the future of brain imaging analysis

    PubMed Central

    Ming, Jing; Verner, Eric; Sarwate, Anand; Kelly, Ross; Reed, Cory; Kahleck, Torran; Silva, Rogers; Panta, Sandeep; Turner, Jessica; Plis, Sergey; Calhoun, Vince

    2017-01-01

    In the era of Big Data, sharing neuroimaging data across multiple sites has become increasingly important. However, researchers who want to engage in centralized, large-scale data sharing and analysis must often contend with problems such as high database cost, long data transfer time, extensive manual effort, and privacy issues for sensitive data. To remove these barriers to enable easier data sharing and analysis, we introduced a new, decentralized, privacy-enabled infrastructure model for brain imaging data called COINSTAC in 2016. We have continued development of COINSTAC since this model was first introduced. One of the challenges with such a model is adapting the required algorithms to function within a decentralized framework. In this paper, we report on how we are solving this problem, along with our progress on several fronts, including additional decentralized algorithms implementation, user interface enhancement, decentralized regression statistic calculation, and complete pipeline specifications. PMID:29123643

  20. Obtaining gravitational waves from inspiral binary systems using LIGO data

    NASA Astrophysics Data System (ADS)

    Antelis, Javier M.; Moreno, Claudia

    2017-01-01

    The discovery of the astrophysical events GW150926 and GW151226 has experimentally confirmed the existence of gravitational waves (GW) and has demonstrated the existence of binary stellar-mass black hole systems. This finding marks the beginning of a new era that will reveal unexpected features of our universe. This work presents a basic insight to the fundamental theory of GW emitted by inspiral binary systems and describes the scientific and technological efforts developed to measure these waves using the interferometer-based detector called LIGO. Subsequently, the work presents a comprehensive data analysis methodology based on the matched filter algorithm, which aims to recovery GW signals emitted by inspiral binary systems of astrophysical sources. This algorithm was evaluated with freely available LIGO data containing injected GW waveforms. Results of the experiments performed to assess detection accuracy showed the recovery of 85% of the injected GW.

  1. Formation Algorithms and Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Wette, Matthew; Sohl, Garett; Scharf, Daniel; Benowitz, Edward

    2004-01-01

    Formation flying for spacecraft is a rapidly developing field that will enable a new era of space science. For one of its missions, the Terrestrial Planet Finder (TPF) project has selected a formation flying interferometer design to detect earth-like planets orbiting distant stars. In order to advance technology needed for the TPF formation flying interferometer, the TPF project has been developing a distributed real-time testbed to demonstrate end-to-end operation of formation flying with TPF-like functionality and precision. This is the Formation Algorithms and Simulation Testbed (FAST) . This FAST was conceived to bring out issues in timing, data fusion, inter-spacecraft communication, inter-spacecraft sensing and system-wide formation robustness. In this paper we describe the FAST and show results from a two-spacecraft formation scenario. The two-spacecraft simulation is the first time that precision end-to-end formation flying operation has been demonstrated in a distributed real-time simulation environment.

  2. An Automatic Web Service Composition Framework Using QoS-Based Web Service Ranking Algorithm.

    PubMed

    Mallayya, Deivamani; Ramachandran, Baskaran; Viswanathan, Suganya

    2015-01-01

    Web service has become the technology of choice for service oriented computing to meet the interoperability demands in web applications. In the Internet era, the exponential addition of web services nominates the "quality of service" as essential parameter in discriminating the web services. In this paper, a user preference based web service ranking (UPWSR) algorithm is proposed to rank web services based on user preferences and QoS aspect of the web service. When the user's request cannot be fulfilled by a single atomic service, several existing services should be composed and delivered as a composition. The proposed framework allows the user to specify the local and global constraints for composite web services which improves flexibility. UPWSR algorithm identifies best fit services for each task in the user request and, by choosing the number of candidate services for each task, reduces the time to generate the composition plans. To tackle the problem of web service composition, QoS aware automatic web service composition (QAWSC) algorithm proposed in this paper is based on the QoS aspects of the web services and user preferences. The proposed framework allows user to provide feedback about the composite service which improves the reputation of the services.

  3. An Automatic Web Service Composition Framework Using QoS-Based Web Service Ranking Algorithm

    PubMed Central

    Mallayya, Deivamani; Ramachandran, Baskaran; Viswanathan, Suganya

    2015-01-01

    Web service has become the technology of choice for service oriented computing to meet the interoperability demands in web applications. In the Internet era, the exponential addition of web services nominates the “quality of service” as essential parameter in discriminating the web services. In this paper, a user preference based web service ranking (UPWSR) algorithm is proposed to rank web services based on user preferences and QoS aspect of the web service. When the user's request cannot be fulfilled by a single atomic service, several existing services should be composed and delivered as a composition. The proposed framework allows the user to specify the local and global constraints for composite web services which improves flexibility. UPWSR algorithm identifies best fit services for each task in the user request and, by choosing the number of candidate services for each task, reduces the time to generate the composition plans. To tackle the problem of web service composition, QoS aware automatic web service composition (QAWSC) algorithm proposed in this paper is based on the QoS aspects of the web services and user preferences. The proposed framework allows user to provide feedback about the composite service which improves the reputation of the services. PMID:26504894

  4. Convolving engineering and medical pedagogies for training of tomorrow's health care professionals.

    PubMed

    Lee, Raphael C

    2013-03-01

    Several fundamental benefits justify why biomedical engineering and medicine should form a more convergent alliance, especially for the training of tomorrow's physicians and biomedical engineers. Herein, we review the rationale underlying the benefits. Biological discovery has advanced beyond the era of molecular biology well into today's era of molecular systems biology, which focuses on understanding the rules that govern the behavior of complex living systems. This has important medical implications. To realize cost-effective personalized medicine, it is necessary to translate the advances in molecular systems biology to higher levels of biological organization (organ, system, and organismal levels) and then to develop new medical therapeutics based on simulation and medical informatics analysis. Higher education in biological and medical sciences must adapt to a new set of training objectives. This will involve a shifting away from reductionist problem solving toward more integrative, continuum, and predictive modeling approaches which traditionally have been more associated with engineering science. Future biomedical engineers and MDs must be able to predict clinical response to therapeutic intervention. Medical education will involve engineering pedagogies, wherein basic governing rules of complex system behavior and skill sets in manipulating these systems to achieve a practical desired outcome are taught. Similarly, graduate biomedical engineering programs will include more practical exposure to clinical problem solving.

  5. Vascular surgery trainees still need to learn how to sew: importance of learning surgical techniques in the era of endovascular surgery.

    PubMed

    Aziz, Faisal

    2015-01-01

    Vascular surgery represents one of the most rapidly evolving specialties in the field of surgery. It was merely 100 years ago when Dr. Alexis Carrel described vascular anastomosis. Over the course of next several decades, vascular surgeons distinguished themselves from general surgeons by horning the techniques of vascular surgery operations. In the era of minimally invasive interventions, the number of endovascular interventions performed by vascular surgeons has increased exponentially. Vascular surgery trainees in the current times spend considerable time in mastering the techniques of endovascular operations. Unfortunately, the reduction in number of open surgical operations has lead to concerns in regards to adequacy of learning open surgical techniques. In future, majority of vascular interventions will be done with minimally invasive techniques. Combination of poor training in open operations and increasing complexity of open surgical operations may lead to poor surgical outcomes. It is the need of the hour for vascular surgery trainees to realize the importance of learning and mastering open surgical techniques. One of the most distinguishing features of contemporary vascular surgeons is their ability to perform both endovascular and open vascular surgery operations, and we should strive to maintain our excellence in both of these arenas.

  6. 3D model retrieval method based on mesh segmentation

    NASA Astrophysics Data System (ADS)

    Gan, Yuanchao; Tang, Yan; Zhang, Qingchen

    2012-04-01

    In the process of feature description and extraction, current 3D model retrieval algorithms focus on the global features of 3D models but ignore the combination of global and local features of the model. For this reason, they show less effective performance to the models with similar global shape and different local shape. This paper proposes a novel algorithm for 3D model retrieval based on mesh segmentation. The key idea is to exact the structure feature and the local shape feature of 3D models, and then to compares the similarities of the two characteristics and the total similarity between the models. A system that realizes this approach was built and tested on a database of 200 objects and achieves expected results. The results show that the proposed algorithm improves the precision and the recall rate effectively.

  7. The algorithm of fast image stitching based on multi-feature extraction

    NASA Astrophysics Data System (ADS)

    Yang, Chunde; Wu, Ge; Shi, Jing

    2018-05-01

    This paper proposed an improved image registration method combining Hu-based invariant moment contour information and feature points detection, aiming to solve the problems in traditional image stitching algorithm, such as time-consuming feature points extraction process, redundant invalid information overload and inefficiency. First, use the neighborhood of pixels to extract the contour information, employing the Hu invariant moment as similarity measure to extract SIFT feature points in those similar regions. Then replace the Euclidean distance with Hellinger kernel function to improve the initial matching efficiency and get less mismatching points, further, estimate affine transformation matrix between the images. Finally, local color mapping method is adopted to solve uneven exposure, using the improved multiresolution fusion algorithm to fuse the mosaic images and realize seamless stitching. Experimental results confirm high accuracy and efficiency of method proposed in this paper.

  8. Parallel algorithm of VLBI software correlator under multiprocessor environment

    NASA Astrophysics Data System (ADS)

    Zheng, Weimin; Zhang, Dong

    2007-11-01

    The correlator is the key signal processing equipment of a Very Lone Baseline Interferometry (VLBI) synthetic aperture telescope. It receives the mass data collected by the VLBI observatories and produces the visibility function of the target, which can be used to spacecraft position, baseline length measurement, synthesis imaging, and other scientific applications. VLBI data correlation is a task of data intensive and computation intensive. This paper presents the algorithms of two parallel software correlators under multiprocessor environments. A near real-time correlator for spacecraft tracking adopts the pipelining and thread-parallel technology, and runs on the SMP (Symmetric Multiple Processor) servers. Another high speed prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm is realized on a small Beowulf cluster platform. Both correlators have the characteristic of flexible structure, scalability, and with 10-station data correlating abilities.

  9. A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei

    2018-01-01

    Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.

  10. An Adaptive Method for Switching between Pedestrian/Car Indoor Positioning Algorithms based on Multilayer Time Sequences

    PubMed Central

    Gu, Zhining; Guo, Wei; Li, Chaoyang; Zhu, Xinyan; Guo, Tao

    2018-01-01

    Pedestrian dead reckoning (PDR) positioning algorithms can be used to obtain a target’s location only for movement with step features and not for driving, for which the trilateral Bluetooth indoor positioning method can be used. In this study, to obtain the precise locations of different states (pedestrian/car) using the corresponding positioning algorithms, we propose an adaptive method for switching between the PDR and car indoor positioning algorithms based on multilayer time sequences (MTSs). MTSs, which consider the behavior context, comprise two main aspects: filtering of noisy data in small-scale time sequences and using a state chain to reduce the time delay of algorithm switching in large-scale time sequences. The proposed method can be expected to realize the recognition of stationary, walking, driving, or other states; switch to the correct indoor positioning algorithm; and improve the accuracy of localization compared to using a single positioning algorithm. Our experiments show that the recognition of static, walking, driving, and other states improves by 5.5%, 45.47%, 26.23%, and 21% on average, respectively, compared with convolutional neural network (CNN) method. The time delay decreases by approximately 0.5–8.5 s for the transition between states and by approximately 24 s for the entire process. PMID:29495503

  11. Cooperative Scheduling of Imaging Observation Tasks for High-Altitude Airships Based on Propagation Algorithm

    PubMed Central

    Chuan, He; Dishan, Qiu; Jin, Liu

    2012-01-01

    The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible. PMID:23365522

  12. Efficient state initialization by a quantum spectral filtering algorithm

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; MacLean, Steve; Laflamme, Raymond

    2017-04-01

    An algorithm that initializes a quantum register to a state with a specified energy range is given, corresponding to a quantum implementation of the celebrated Feit-Fleck method. This is performed by introducing a nondeterministic quantum implementation of a standard spectral filtering procedure combined with an apodization technique, allowing for accurate state initialization. It is shown that the implementation requires only two ancilla qubits. A lower bound for the total probability of success of this algorithm is derived, showing that this scheme can be realized using a finite, relatively low number of trials. Assuming the time evolution can be performed efficiently and using a trial state polynomially close to the desired states, it is demonstrated that the number of operations required scales polynomially with the number of qubits. Tradeoffs between accuracy and performance are demonstrated in a simple example: the harmonic oscillator. This algorithm would be useful for the initialization phase of the simulation of quantum systems on digital quantum computers.

  13. A Gradient-Based Multistart Algorithm for Multimodal Aerodynamic Shape Optimization Problems Based on Free-Form Deformation

    NASA Astrophysics Data System (ADS)

    Streuber, Gregg Mitchell

    Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.

  14. Development of a teaching system for an industrial robot using stereo vision

    NASA Astrophysics Data System (ADS)

    Ikezawa, Kazuya; Konishi, Yasuo; Ishigaki, Hiroyuki

    1997-12-01

    The teaching and playback method is mainly a teaching technique for industrial robots. However, this technique takes time and effort in order to teach. In this study, a new teaching algorithm using stereo vision based on human demonstrations in front of two cameras is proposed. In the proposed teaching algorithm, a robot is controlled repetitively according to angles determined by the fuzzy sets theory until it reaches an instructed teaching point, which is relayed through cameras by an operator. The angles are recorded and used later in playback. The major advantage of this algorithm is that no calibrations are needed. This is because the fuzzy sets theory, which is able to express qualitatively the control commands to the robot, is used instead of conventional kinematic equations. Thus, a simple and easy teaching operation is realized with this teaching algorithm. Simulations and experiments have been performed on the proposed teaching system, and data from testing has confirmed the usefulness of our design.

  15. Obstacle Detection Algorithms for Aircraft Navigation: Performance Characterization of Obstacle Detection Algorithms for Aircraft Navigation

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia; Coraor, Lee

    2000-01-01

    The research reported here is a part of NASA's Synthetic Vision System (SVS) project for the development of a High Speed Civil Transport Aircraft (HSCT). One of the components of the SVS is a module for detection of potential obstacles in the aircraft's flight path by analyzing the images captured by an on-board camera in real-time. Design of such a module includes the selection and characterization of robust, reliable, and fast techniques and their implementation for execution in real-time. This report describes the results of our research in realizing such a design. It is organized into three parts. Part I. Data modeling and camera characterization; Part II. Algorithms for detecting airborne obstacles; and Part III. Real time implementation of obstacle detection algorithms on the Datacube MaxPCI architecture. A list of publications resulting from this grant as well as a list of relevant publications resulting from prior NASA grants on this topic are presented.

  16. Evolving neural networks with genetic algorithms to study the string landscape

    NASA Astrophysics Data System (ADS)

    Ruehle, Fabian

    2017-08-01

    We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of (physically) appealing features, to find a concrete realization for a computation for which the precise algorithm is known in principle but very tedious to actually implement, and to predict or approximate the outcome of some involved mathematical computation which performs too inefficient to apply it, e.g. in model scans within the string landscape. We present simple examples that arise in string phenomenology for all three types of problems and discuss how they can be addressed by evolving neural networks from genetic algorithms.

  17. Vertex shading of the three-dimensional model based on ray-tracing algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Sang, Xinzhu; Xing, Shujun; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Ray Tracing Algorithm is one of the research hotspots in Photorealistic Graphics. It is an important light and shadow technology in many industries with the three-dimensional (3D) structure, such as aerospace, game, video and so on. Unlike the traditional method of pixel shading based on ray tracing, a novel ray tracing algorithm is presented to color and render vertices of the 3D model directly. Rendering results are related to the degree of subdivision of the 3D model. A good light and shade effect is achieved by realizing the quad-tree data structure to get adaptive subdivision of a triangle according to the brightness difference of its vertices. The uniform grid algorithm is adopted to improve the rendering efficiency. Besides, the rendering time is independent of the screen resolution. In theory, as long as the subdivision of a model is adequate, cool effects as the same as the way of pixel shading will be obtained. Our practical application can be compromised between the efficiency and the effectiveness.

  18. Test-state approach to the quantum search problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehrawat, Arun; Nguyen, Le Huy; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117597

    2011-05-15

    The search for 'a quantum needle in a quantum haystack' is a metaphor for the problem of finding out which one of a permissible set of unitary mappings - the oracles - is implemented by a given black box. Grover's algorithm solves this problem with quadratic speedup as compared with the analogous search for 'a classical needle in a classical haystack'. Since the outcome of Grover's algorithm is probabilistic - it gives the correct answer with high probability, not with certainty - the answer requires verification. For this purpose we introduce specific test states, one for each oracle. These testmore » states can also be used to realize 'a classical search for the quantum needle' which is deterministic - it always gives a definite answer after a finite number of steps - and 3.41 times as fast as the purely classical search. Since the test-state search and Grover's algorithm look for the same quantum needle, the average number of oracle queries of the test-state search is the classical benchmark for Grover's algorithm.« less

  19. Research on robust optimization of emergency logistics network considering the time dependence characteristic

    NASA Astrophysics Data System (ADS)

    WANG, Qingrong; ZHU, Changfeng; LI, Ying; ZHANG, Zhengkun

    2017-06-01

    Considering the time dependence of emergency logistic network and complexity of the environment that the network exists in, in this paper the time dependent network optimization theory and robust discrete optimization theory are combined, and the emergency logistics dynamic network optimization model with characteristics of robustness is built to maximize the timeliness of emergency logistics. On this basis, considering the complexity of dynamic network and the time dependence of edge weight, an improved ant colony algorithm is proposed to realize the coupling of the optimization algorithm and the network time dependence and robustness. Finally, a case study has been carried out in order to testify validity of this robustness optimization model and its algorithm, and the value of different regulation factors was analyzed considering the importance of the value of the control factor in solving the optimal path. Analysis results show that this model and its algorithm above-mentioned have good timeliness and strong robustness.

  20. Software designs of image processing tasks with incremental refinement of computation.

    PubMed

    Anastasia, Davide; Andreopoulos, Yiannis

    2010-08-01

    Software realizations of computationally-demanding image processing tasks (e.g., image transforms and convolution) do not currently provide graceful degradation when their clock-cycles budgets are reduced, e.g., when delay deadlines are imposed in a multitasking environment to meet throughput requirements. This is an important obstacle in the quest for full utilization of modern programmable platforms' capabilities since worst-case considerations must be in place for reasonable quality of results. In this paper, we propose (and make available online) platform-independent software designs performing bitplane-based computation combined with an incremental packing framework in order to realize block transforms, 2-D convolution and frame-by-frame block matching. The proposed framework realizes incremental computation: progressive processing of input-source increments improves the output quality monotonically. Comparisons with the equivalent nonincremental software realization of each algorithm reveal that, for the same precision of the result, the proposed approach can lead to comparable or faster execution, while it can be arbitrarily terminated and provide the result up to the computed precision. Application examples with region-of-interest based incremental computation, task scheduling per frame, and energy-distortion scalability verify that our proposal provides significant performance scalability with graceful degradation.

  1. Closed, analytic, boson realizations for Sp(4)

    NASA Astrophysics Data System (ADS)

    Klein, Abraham; Zhang, Qing-Ying

    1986-08-01

    The problem of determing a boson realization for an arbitrary irrep of the unitary simplectic algebra Sp(2d) [or of the corresponding discrete unitary irreps of the unbounded algebra Sp(2d,R)] has been solved completely in recent papers by Deenen and Quesne [J. Deenen and C. Quesne, J. Math. Phys. 23, 878, 2004 (1982); 25, 1638 (1984); 26, 2705 (1985)] and by Moshinsky and co-workers [O. Castaños, E. Chacón, M. Moshinsky, and C. Quesne, J. Math. Phys. 26, 2107 (1985); M. Moshinsky, ``Boson realization of symplectic algebras,'' to be published]. This solution is not known in closed analytic form except for d=1 and for special classes of irreps for d>1. A different method of obtaining a boson realization that solves the full problem for Sp(4) is described. The method utilizes the chain Sp(2d)⊇SU(2)×SU(2) ×ṡṡṡ×SU(2) (d times), which, for d≥4, does not provide a complete set of quantum numbers. Though a simple solution of the missing label problem can be given, this solution does not help in the construction of a mapping algorithm for general d.

  2. The skill of ECMWF long range Forecasting System to drive impact models for health and hydrology in Africa

    NASA Astrophysics Data System (ADS)

    Di Giuseppe, F.; Tompkins, A. M.; Lowe, R.; Dutra, E.; Wetterhall, F.

    2012-04-01

    As the quality of numerical weather prediction over the monthly to seasonal leadtimes steadily improves there is an increasing motivation to apply these fruitfully to the impacts sectors of health, water, energy and agriculture. Despite these improvements, the accuracy of fields such as temperature and precipitation that are required to drive sectoral models can still be poor. This is true globally, but particularly so in Africa, the region of focus in the present study. In the last year ECMWF has been particularly active through EU research founded projects in demonstrating the capability of its longer range forecasting system to drive impact modeling systems in this region. A first assessment on the consequences of the documented errors in ECMWF forecasting system is therefore presented here looking at two different application fields which we found particularly critical for Africa - vector-born diseases prevention and hydrological monitoring. A new malaria community model (VECTRI) has been developed at ICTP and tested for the 3 target regions participating in the QWECI project. The impacts on the mean malaria climate is assessed using the newly realized seasonal forecasting system (Sys4) with the dismissed system 3 (Sys3) which had the same model cycle of the up-to-date ECMWF re-analysis product (ERA-Interim). The predictive skill of Sys4 to be employed for malaria monitoring and forecast are also evaluated by aggregating the fields to country level. As a part of the DEWFORA projects, ECMWF is also developing a system for drought monitoring and forecasting over Africa whose main meteorological input is precipitation. Similarly to what is done for the VECTRI model, the skill of seasonal forecasts of precipitation is, in this application, translated into the capability of predicting drought while ERA-Interim is used in monitoring. On a monitoring level, the near real-time update of ERA-Interim could compensate the lack of observations in the regions. However, ERA-Interim suffers from biases and drifts that limit its application for drought monitoring purposes in some regions.

  3. The VLSI design of an error-trellis syndrome decoder for certain convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Jensen, J. M.; Hsu, I.-S.; Truong, T. K.

    1986-01-01

    A recursive algorithm using the error-trellis decoding technique is developed to decode convolutional codes (CCs). An example, illustrating the very large scale integration (VLSI) architecture of such a decode, is given for a dual-K CC. It is demonstrated that such a decoder can be realized readily on a single chip with metal-nitride-oxide-semiconductor technology.

  4. Spatial Data Structures for Robotic Vehicle Route Planning

    DTIC Science & Technology

    1988-12-01

    goal will be realized in an intelligent Spatial Data Structure Development System (SDSDS) intended for use by Terrain Analysis applications...from the user the details of representation and to permit the infrastructure itself to decide which representations will be most efficient or effective ...to intelligently predict performance of algorithmic sequences and thereby optimize the application (within the accuracy of the prediction models). The

  5. The VLSI design of error-trellis syndrome decoding for convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Jensen, J. M.; Truong, T. K.; Hsu, I. S.

    1985-01-01

    A recursive algorithm using the error-trellis decoding technique is developed to decode convolutional codes (CCs). An example, illustrating the very large scale integration (VLSI) architecture of such a decode, is given for a dual-K CC. It is demonstrated that such a decoder can be realized readily on a single chip with metal-nitride-oxide-semiconductor technology.

  6. A Paradigm Shift in Nuclear Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Westmeier, Wolfram; Siemon, Klaus

    2012-08-01

    An overview of the latest developments in quantitative spectrometry software is presented. New strategies and algorithms introduced are characterized by buzzwords “Physics, no numerology”, “Fuzzy logic” and “Repeated analyses”. With the implementation of these new ideas one arrives at software capabilities that were unreachable before and which are now realized in the GAMMA-W, SODIGAM and ALPS packages.

  7. SMERFS: Stochastic Markov Evaluation of Random Fields on the Sphere

    NASA Astrophysics Data System (ADS)

    Creasey, Peter; Lang, Annika

    2018-04-01

    SMERFS (Stochastic Markov Evaluation of Random Fields on the Sphere) creates large realizations of random fields on the sphere. It uses a fast algorithm based on Markov properties and fast Fourier Transforms in 1d that generates samples on an n X n grid in O(n2 log n) and efficiently derives the necessary conditional covariance matrices.

  8. Application of cluster technology in location-based service

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Wang, Xiaoman; Gong, Jianya

    2005-10-01

    This paper introduces the principle, algorithmic and realization of the Load Balancing Technology. It also designs a clustered method in the application of Location-Based Service (LBS), and explains its function characteristics and its whole system structure, followed by some experimental comparisons, showing that the Cluster Technology could ensure a LBS's continuous running and the sharing of fault-tolerance and cluster.

  9. PCTO-SIM: Multiple-point geostatistical modeling using parallel conditional texture optimization

    NASA Astrophysics Data System (ADS)

    Pourfard, Mohammadreza; Abdollahifard, Mohammad J.; Faez, Karim; Motamedi, Sayed Ahmad; Hosseinian, Tahmineh

    2017-05-01

    Multiple-point Geostatistics is a well-known general statistical framework by which complex geological phenomena have been modeled efficiently. Pixel-based and patch-based are two major categories of these methods. In this paper, the optimization-based category is used which has a dual concept in texture synthesis as texture optimization. Our extended version of texture optimization uses the energy concept to model geological phenomena. While honoring the hard point, the minimization of our proposed cost function forces simulation grid pixels to be as similar as possible to training images. Our algorithm has a self-enrichment capability and creates a richer training database from a sparser one through mixing the information of all surrounding patches of the simulation nodes. Therefore, it preserves pattern continuity in both continuous and categorical variables very well. It also shows a fuzzy result in its every realization similar to the expected result of multi realizations of other statistical models. While the main core of most previous Multiple-point Geostatistics methods is sequential, the parallel main core of our algorithm enabled it to use GPU efficiently to reduce the CPU time. One new validation method for MPS has also been proposed in this paper.

  10. Three-Dimensional Reconstruction of the Virtual Plant Branching Structure Based on Terrestrial LIDAR Technologies and L-System

    NASA Astrophysics Data System (ADS)

    Gong, Y.; Yang, Y.; Yang, X.

    2018-04-01

    For the purpose of extracting productions of some specific branching plants effectively and realizing its 3D reconstruction, Terrestrial LiDAR data was used as extraction source of production, and a 3D reconstruction method based on Terrestrial LiDAR technologies combined with the L-system was proposed in this article. The topology structure of the plant architectures was extracted using the point cloud data of the target plant with space level segmentation mechanism. Subsequently, L-system productions were obtained and the structural parameters and production rules of branches, which fit the given plant, was generated. A three-dimensional simulation model of target plant was established combined with computer visualization algorithm finally. The results suggest that the method can effectively extract a given branching plant topology and describes its production, realizing the extraction of topology structure by the computer algorithm for given branching plant and also simplifying the extraction of branching plant productions which would be complex and time-consuming by L-system. It improves the degree of automation in the L-system extraction of productions of specific branching plants, providing a new way for the extraction of branching plant production rules.

  11. Spacetime Replication of Quantum Information Using (2 , 3) Quantum Secret Sharing and Teleportation

    NASA Astrophysics Data System (ADS)

    Wu, Yadong; Khalid, Abdullah; Davijani, Masoud; Sanders, Barry

    The aim of this work is to construct a protocol to replicate quantum information in any valid configuration of causal diamonds and assess resources required to physically realize spacetime replication. We present a set of codes to replicate quantum information along with a scheme to realize these codes using continuous-variable quantum optics. We use our proposed experimental realizations to determine upper bounds on the quantum and classical resources required to simulate spacetime replication. For four causal diamonds, our implementation scheme is more efficient than the one proposed previously. Our codes are designed using a decomposition algorithm for complete directed graphs, (2 , 3) quantum secret sharing, quantum teleportation and entanglement swapping. These results show the simulation of spacetime replication of quantum information is feasible with existing experimental methods. Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter, which is an NSF Physics Frontiers Center (NSF Grant PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-2644).

  12. Study on on-machine defects measuring system on high power laser optical elements

    NASA Astrophysics Data System (ADS)

    Luo, Chi; Shi, Feng; Lin, Zhifan; Zhang, Tong; Wang, Guilin

    2017-10-01

    The influence of surface defects on high power laser optical elements will cause some harm to the performances of imaging system, including the energy consumption and the damage of film layer. To further increase surface defects on high power laser optical element, on-machine defects measuring system was investigated. Firstly, the selection and design are completed by the working condition analysis of the on-machine defects detection system. By designing on processing algorithms to realize the classification recognition and evaluation of surface defects. The calibration experiment of the scratch was done by using the self-made standard alignment plate. Finally, the detection and evaluation of surface defects of large diameter semi-cylindrical silicon mirror are realized. The calibration results show that the size deviation is less than 4% that meet the precision requirement of the detection of the defects. Through the detection of images the on-machine defects detection system can realize the accurate identification of surface defects.

  13. A quantum Fredkin gate

    PubMed Central

    Patel, Raj B.; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C.; Pryde, Geoff J.

    2016-01-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently. PMID:27051868

  14. Implementation and image processing of a multi-focusing bionic compound eye

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Guo, Yongcai; Luo, Jiasai

    2018-01-01

    In this paper, a new BCE with multi-focusing microlens array (MLA) was proposed. The BCE consist of detachable micro-hole array (MHA), multi-focusing MLA and spherical substrate, thus allowing it to have a large FOV without crosstalk and stray light. The MHA was fabricated by the precision machining and the parameters of the microlens varied depend on the aperture of micro-hole, through which the implementation of the multi-focusing MLA was realized under the negative pressure. Without the pattern transfer and substrate reshaping, the whole fabrication method was capable of accomplishing within several minutes by using microinjection technology. Furthermore, the method is cost-effective and easy for operation, thus providing a feasible method for the mass production of the BCE. The corresponding image processing was used to realize the image stitching for the sub-image of each single microlens, which offering an integral image in large FOV. The image stitching was implemented through the overlap between the adjacent sub-images and the feature points between the adjacent sub-images were captured by the Harris point detection. By using the adaptive non-maximal suppression, numerous potential mismatching points were eliminated and the algorithm efficiency was proved effectively. Following this, the random sample consensus (RANSAC) was used for feature points matching, by which the relation of projection transformation of the image is obtained. The implementation of the accurate image matching was then realized after the smooth transition by weighted average method. Experimental results indicate that the image-stitching algorithm can be applied for the curved BCE in large field.

  15. Gait planning for a quadruped robot with one faulty actuator

    NASA Astrophysics Data System (ADS)

    Chen, Xianbao; Gao, Feng; Qi, Chenkun; Tian, Xinghua

    2015-01-01

    Fault tolerance is essential for quadruped robots when they work in remote areas or hazardous environments. Many fault-tolerant gaits planning method proposed in the past decade constrained more degrees of freedom(DOFs) of a robot than necessary. Thus a novel method to realize the fault-tolerant walking is proposed. The mobility of the robot is analyzed first by using the screw theory. The result shows that the translation of the center of body(CoB) can be kept with one faulty actuator if the rotations of the body are controlled. Thus the DOFs of the robot body are divided into two parts: the translation of the CoB and the rotation of the body. The kinematic model of the whole robot is built, the algorithm is developed to actively control the body orientations at the velocity level so that the planned CoB trajectory can be realized in spite of the constraint of the faulty actuator. This gait has a similar generation sequence with the normal gait and can be applied to the robot at any position. Simulations and experiments of the fault-tolerant gait with one faulty actuator are carried out. The CoB errors and the body rotation angles are measured. Comparing to the traditional fault-tolerant gait they can be reduced by at least 50%. A fault-tolerant gait planning algorithm is presented, which not only realizes the walking of a quadruped robot with a faulty actuator, but also efficiently improves the walking performances by taking full advantage of the remaining operational actuators according to the results of the simulations and experiments.

  16. A cloud platform for remote diagnosis of breast cancer in mammography by fusion of machine and human intelligence

    NASA Astrophysics Data System (ADS)

    Jiang, Guodong; Fan, Ming; Li, Lihua

    2016-03-01

    Mammography is the gold standard for breast cancer screening, reducing mortality by about 30%. The application of a computer-aided detection (CAD) system to assist a single radiologist is important to further improve mammographic sensitivity for breast cancer detection. In this study, a design and realization of the prototype for remote diagnosis system in mammography based on cloud platform were proposed. To build this system, technologies were utilized including medical image information construction, cloud infrastructure and human-machine diagnosis model. Specifically, on one hand, web platform for remote diagnosis was established by J2EE web technology. Moreover, background design was realized through Hadoop open-source framework. On the other hand, storage system was built up with Hadoop distributed file system (HDFS) technology which enables users to easily develop and run on massive data application, and give full play to the advantages of cloud computing which is characterized by high efficiency, scalability and low cost. In addition, the CAD system was realized through MapReduce frame. The diagnosis module in this system implemented the algorithms of fusion of machine and human intelligence. Specifically, we combined results of diagnoses from doctors' experience and traditional CAD by using the man-machine intelligent fusion model based on Alpha-Integration and multi-agent algorithm. Finally, the applications on different levels of this system in the platform were also discussed. This diagnosis system will have great importance for the balanced health resource, lower medical expense and improvement of accuracy of diagnosis in basic medical institutes.

  17. Research on particle swarm optimization algorithm based on optimal movement probability

    NASA Astrophysics Data System (ADS)

    Ma, Jianhong; Zhang, Han; He, Baofeng

    2017-01-01

    The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.

  18. Quantum Image Steganography and Steganalysis Based On LSQu-Blocks Image Information Concealing Algorithm

    NASA Astrophysics Data System (ADS)

    A. AL-Salhi, Yahya E.; Lu, Songfeng

    2016-08-01

    Quantum steganography can solve some problems that are considered inefficient in image information concealing. It researches on Quantum image information concealing to have been widely exploited in recent years. Quantum image information concealing can be categorized into quantum image digital blocking, quantum image stereography, anonymity and other branches. Least significant bit (LSB) information concealing plays vital roles in the classical world because many image information concealing algorithms are designed based on it. Firstly, based on the novel enhanced quantum representation (NEQR), image uniform blocks clustering around the concrete the least significant Qu-block (LSQB) information concealing algorithm for quantum image steganography is presented. Secondly, a clustering algorithm is proposed to optimize the concealment of important data. Finally, we used Con-Steg algorithm to conceal the clustered image blocks. Information concealing located on the Fourier domain of an image can achieve the security of image information, thus we further discuss the Fourier domain LSQu-block information concealing algorithm for quantum image based on Quantum Fourier Transforms. In our algorithms, the corresponding unitary Transformations are designed to realize the aim of concealing the secret information to the least significant Qu-block representing color of the quantum cover image. Finally, the procedures of extracting the secret information are illustrated. Quantum image LSQu-block image information concealing algorithm can be applied in many fields according to different needs.

  19. Profiling Arthritis Pain with a Decision Tree.

    PubMed

    Hung, Man; Bounsanga, Jerry; Liu, Fangzhou; Voss, Maren W

    2018-06-01

    Arthritis is the leading cause of work disability and contributes to lost productivity. Previous studies showed that various factors predict pain, but they were limited in sample size and scope from a data analytics perspective. The current study applied machine learning algorithms to identify predictors of pain associated with arthritis in a large national sample. Using data from the 2011 to 2012 Medical Expenditure Panel Survey, data mining was performed to develop algorithms to identify factors and patterns that contribute to risk of pain. The model incorporated over 200 variables within the algorithm development, including demographic data, medical claims, laboratory tests, patient-reported outcomes, and sociobehavioral characteristics. The developed algorithms to predict pain utilize variables readily available in patient medical records. Using the machine learning classification algorithm J48 with 50-fold cross-validations, we found that the model can significantly distinguish those with and without pain (c-statistics = 0.9108). The F measure was 0.856, accuracy rate was 85.68%, sensitivity was 0.862, specificity was 0.852, and precision was 0.849. Physical and mental function scores, the ability to climb stairs, and overall assessment of feeling were the most discriminative predictors from the 12 identified variables, predicting pain with 86% accuracy for individuals with arthritis. In this era of rapid expansion of big data application, the nature of healthcare research is moving from hypothesis-driven to data-driven solutions. The algorithms generated in this study offer new insights on individualized pain prediction, allowing the development of cost-effective care management programs for those experiencing arthritis pain. © 2017 World Institute of Pain.

  20. A Novel Clustering Methodology Based on Modularity Optimisation for Detecting Authorship Affinities in Shakespearean Era Plays

    PubMed Central

    Craig, Hugh; Berretta, Regina; Moscato, Pablo

    2016-01-01

    In this study we propose a novel, unsupervised clustering methodology for analyzing large datasets. This new, efficient methodology converts the general clustering problem into the community detection problem in graph by using the Jensen-Shannon distance, a dissimilarity measure originating in Information Theory. Moreover, we use graph theoretic concepts for the generation and analysis of proximity graphs. Our methodology is based on a newly proposed memetic algorithm (iMA-Net) for discovering clusters of data elements by maximizing the modularity function in proximity graphs of literary works. To test the effectiveness of this general methodology, we apply it to a text corpus dataset, which contains frequencies of approximately 55,114 unique words across all 168 written in the Shakespearean era (16th and 17th centuries), to analyze and detect clusters of similar plays. Experimental results and comparison with state-of-the-art clustering methods demonstrate the remarkable performance of our new method for identifying high quality clusters which reflect the commonalities in the literary style of the plays. PMID:27571416

Top