Science.gov

Sample records for reca-mediated strand invasion

  1. Strand displacement and duplex invasion into double-stranded DNA by pyrrolidinyl peptide nucleic acids.

    PubMed

    Bohländer, Peggy R; Vilaivan, Tirayut; Wagenknecht, Hans-Achim

    2015-09-21

    The so-called acpcPNA system bears a peptide backbone consisting of 4'-substituted proline units with (2'R,4'R) configuration in an alternating combination with (2S)-amino-cyclopentane-(1S)-carboxylic acids. acpcPNA forms exceptionally stable hybrids with complementary DNA. We demonstrate herein (i) strand displacements by single-stranded DNA from acpcPNA-DNA hybrids, and by acpcPNA strands from DNA duplexes, and (ii) strand invasions by acpcPNA into double-stranded DNA. These processes were studied in vitro using synthetic oligonucleotides and by means of our concept of wavelength-shifting fluorescent nucleic acid probes, including fluorescence lifetime measurements that allow quantifying energy transfer efficiencies. The strand displacements of preannealed 14mer acpcPNA-7mer DNA hybrids consecutively by 10mer and 14mer DNA strands occur with rather slow kinetics but yield high fluorescence color ratios (blue : yellow or blue : red), fluorescence intensity enhancements, and energy transfer efficiencies. Furthermore, 14mer acpcPNA strands are able to invade into 30mer double-stranded DNA, remarkably with quantitative efficiency in all studied cases. These processes can also be quantified by means of fluorescence. This remarkable behavior corroborates the extraordinary versatile properties of acpcPNA. In contrast to conventional PNA systems which require 3 or more equivalents PNA, only 1.5 equivalents acpcPNA are sufficient to get efficient double duplex invasion. Invasions also take place even in the presence of 250 mM NaCl which represents an ionic strength nearly twice as high as the physiological ion concentration. These remarkable results corroborate the extraordinary properties of acpcPNA, and thus acpcPNA represents an eligible tool for biological analytics and antigene applications.

  2. Invasive reaction assisted strand-displacement signal amplification for sensitive DNA detection.

    PubMed

    Zou, Bingjie; Song, Qinxin; Wang, Jianping; Liu, Yunlong; Zhou, Guohua

    2014-11-18

    A novel DNA detection assay was proposed by invasive reaction coupled with molecular beacon assisted strand-displacement signal amplification (IRASA). Target DNAs are firstly hybridized to two probes to initiate invasive reaction to produce amplified flaps. Then these flaps are further amplified by strand-displacement signal amplification. The detection limit was around 0.2 pM.

  3. Probing 3D Collective Cancer Invasion Using Double-Stranded Locked Nucleic Acid Biosensors.

    PubMed

    Dean, Zachary S; Elias, Paul; Jamilpour, Nima; Utzinger, Urs; Wong, Pak Kin

    2016-09-01

    Cancer is a leading cause of death worldwide and metastases are responsible for over 90% of human cancer deaths. There is an urgent need to develop novel therapeutics for suppressing cancer invasion, the initial step of metastasis. Nevertheless, the regulation of cancer invasion is poorly understood due to a paucity of tools for monitoring the invasion process in 3D microenvironments. Here, we report a double-stranded locked nucleic acid (dsLNA) biosensor for investigating 3D collective cancer invasion. By incorporating multiphoton microscopy and the dsLNA biosensor, we perform dynamic single cell gene expression analysis while simultaneously characterizing the biomechanical interaction between the invading sprouts and the extracellular matrix. Gene profiling of invasive leader cells and detached cells suggest distinctive signaling mechanisms involved in collective and individual invasion in the 3D microenvironment. Our results underscore the involvement of Notch signaling in 3D collective cancer invasion, which warrants further investigation toward antimetastasis therapy in the future.

  4. Strand invasion by mixed base PNAs and a PNA-peptide chimera.

    PubMed

    Zhang, X; Ishihara, T; Corey, D R

    2000-09-01

    Peptide nucleic acid oligomers (PNAs) have a remarkable ability to invade duplex DNA at polypurine-polypyrimidine target sequences. Applications for PNAs in medicine and biotechnology would increase if the rules governing their hybridization to mixed base sequences were also clear. Here we describe hybridization of PNAs to mixed base sequences and demonstrate that simple chemical modifications can enhance recognition. Easily synthesized and readily soluble eight and 10 base PNAs bind to plasmid DNA at an inverted repeat that is likely to form a cruciform structure, providing convenient tags for creating PNA-plasmid complexes. PNAs also bind to mixed base sequences that cannot form cruciforms, suggesting that recognition is a general phenomenon. Rates of strand invasion are temperature dependent and can be enhanced by attaching PNAs to positively charged peptides. Our results support use of PNAs to access the information within duplex DNA and demonstrate that simple chemical modifications can make PNAs even more powerful agents for strand invasion. Simple strategies for enhancing strand invasion should facilitate the use of PNAs: (i) as biophysical probes of double-stranded DNA; (ii) to target promoters to control gene expression; and (iii) to direct sequence-specific mutagenesis.

  5. Probing 3D Collective Cancer Invasion Using Double-Stranded Locked Nucleic Acid Biosensors.

    PubMed

    Dean, Zachary S; Elias, Paul; Jamilpour, Nima; Utzinger, Urs; Wong, Pak Kin

    2016-09-01

    Cancer is a leading cause of death worldwide and metastases are responsible for over 90% of human cancer deaths. There is an urgent need to develop novel therapeutics for suppressing cancer invasion, the initial step of metastasis. Nevertheless, the regulation of cancer invasion is poorly understood due to a paucity of tools for monitoring the invasion process in 3D microenvironments. Here, we report a double-stranded locked nucleic acid (dsLNA) biosensor for investigating 3D collective cancer invasion. By incorporating multiphoton microscopy and the dsLNA biosensor, we perform dynamic single cell gene expression analysis while simultaneously characterizing the biomechanical interaction between the invading sprouts and the extracellular matrix. Gene profiling of invasive leader cells and detached cells suggest distinctive signaling mechanisms involved in collective and individual invasion in the 3D microenvironment. Our results underscore the involvement of Notch signaling in 3D collective cancer invasion, which warrants further investigation toward antimetastasis therapy in the future. PMID:27529634

  6. Equilibrious Strand Exchange Promoted by DNA Conformational Switching

    NASA Astrophysics Data System (ADS)

    Wu, Zhiguo; Xie, Xiao; Li, Puzhen; Zhao, Jiayi; Huang, Lili; Zhou, Xiang

    2013-01-01

    Most of DNA strand exchange reactions in vitro are based on toehold strategy which is generally nonequilibrium, and intracellular strand exchange mediated by proteins shows little sequence specificity. Herein, a new strand exchange promoted by equilibrious DNA conformational switching is verified. Duplexes containing c-myc sequence which is potentially converted into G-quadruplex are designed in this strategy. The dynamic equilibrium between duplex and G4-DNA is response to the specific exchange of homologous single-stranded DNA (ssDNA). The SER is enzyme free and sequence specific. No ATP is needed and the displaced ssDNAs are identical to the homologous ssDNAs. The SER products and exchange kenetics are analyzed by PAGE and the RecA mediated SER is performed as the contrast. This SER is a new feature of G4-DNAs and a novel strategy to utilize the dynamic equilibrium of DNA conformations.

  7. Site-Selective Binding of Nanoparticles to Double-Stranded DNA via Peptide Nucleic Acid "Invasion"

    SciTech Connect

    Stadler, A.L.; van der Lelie, D.; Sun, D.; Maye, M. M.; Gang, O.

    2011-04-01

    We demonstrate a novel method for by-design placement of nano-objects along double-stranded (ds) DNA. A molecular intercalator, designed as a peptide nucleic acid (PNA)-DNA chimera, is able to invade dsDNA at the PNA-side due to the hybridization specificity between PNA and one of the duplex strands. At the same time, the single-stranded (ss) DNA tail of the chimera, allows for anchoring of nano-objects that have been functionalized with complementary ssDNA. The developed method is applied for interparticle attachment and for the fabrication of particle clusters using a dsDNA template. This method significantly broadens the molecular toolbox for constructing nanoscale systems by including the most conventional not yet utilized DNA motif, double helix DNA.

  8. Multiplex Strand Invasion Based Amplification (mSIBA) assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae.

    PubMed

    Eboigbodin, Kevin E; Hoser, Mark J

    2016-01-01

    Nucleic acid amplification tests have become a common method for diagnosis of STIs due to their improved sensitivity over immunoassays and traditional culture-based methods. Isothermal nucleic acid amplification methods offer significant advantages over polymerase chain reaction (PCR) because they do not require sophisticated instruments needed for thermal cycling of PCR. We recently reported a novel isothermal nucleic acid amplification method, Strand Invasion-Based Amplification (SIBA), which exhibited high analytical sensitivity and specificity for amplification of DNA. However, because the reactions were detected using an intercalating dye, this method was only suitable for amplifying a single genomic target. Here, we report the development of multiplexed SIBA (mSIBA) that allows simultaneous detection of Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and an internal control in the same reaction tube. SIBA is compatible with probes, allowing the detection of multiple DNA targets in the same reaction tube. The IC was developed to assess the quality of the isolated DNA and the integrity of the enzyme system, as well as to test oligonucleotides. The mSIBA assay retained high analytical sensitivity and specificity for the detection of CT and NG. The development of mSIBA enables rapid screening for CT and NG within point-of-care or central laboratory settings. PMID:26837460

  9. Saccharomyces cerevisiae Dmc1 and Rad51 proteins preferentially function with Tid1 and Rad54 proteins, respectively, to promote DNA strand invasion during genetic recombination.

    PubMed

    Nimonkar, Amitabh V; Dombrowski, Christopher C; Siino, Joseph S; Stasiak, Alicja Z; Stasiak, Andrzej; Kowalczykowski, Stephen C

    2012-08-17

    The Saccharomyces cerevisiae Dmc1 and Tid1 proteins are required for the pairing of homologous chromosomes during meiotic recombination. This pairing is the precursor to the formation of crossovers between homologs, an event that is necessary for the accurate segregation of chromosomes. Failure to form crossovers can have serious consequences and may lead to chromosomal imbalance. Dmc1, a meiosis-specific paralog of Rad51, mediates the pairing of homologous chromosomes. Tid1, a Rad54 paralog, although not meiosis-specific, interacts with Dmc1 and promotes crossover formation between homologs. In this study, we show that purified Dmc1 and Tid1 interact physically and functionally. Dmc1 forms stable nucleoprotein filaments that can mediate DNA strand invasion. Tid1 stimulates Dmc1-mediated formation of joint molecules. Under conditions optimal for Dmc1 reactions, Rad51 is specifically stimulated by Rad54, establishing that Dmc1-Tid1 and Rad51-Rad54 function as specific pairs. Physical interaction studies show that specificity in function is not dictated by direct interactions between the proteins. Our data are consistent with the hypothesis that Rad51-Rad54 function together to promote intersister DNA strand exchange, whereas Dmc1-Tid1 tilt the bias toward interhomolog DNA strand exchange.

  10. Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    PubMed

    Hoser, Mark J; Mansukoski, Hannu K; Morrical, Scott W; Eboigbodin, Kevin E

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  11. Strand Invasion Based Amplification (SIBA®): A Novel Isothermal DNA Amplification Technology Demonstrating High Specificity and Sensitivity for a Single Molecule of Target Analyte

    PubMed Central

    Hoser, Mark J.; Mansukoski, Hannu K.; Morrical, Scott W.; Eboigbodin, Kevin E.

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2′-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella. PMID:25419812

  12. Bacillus subtilis RecO Nucleates RecA onto SsbA-coated Single-stranded DNA*

    PubMed Central

    Manfredi, Candela; Carrasco, Begoña; Ayora, Silvia; Alonso, Juan C.

    2008-01-01

    Subsaturating amounts of Bacillus subtilis SsbA, independently of the order of addition, partially inhibit the single-stranded DNA-dependent dATPase activity of RecA. This negative effect is fully overcome when a substoichiometric amount of RecO is added. SsbA added prior to RecA does not stimulate the dATP-dependent DNA strand exchange activity; however, added after RecA it enhances the extent of strand exchange. The addition of RecO stimulates RecA-mediated joint molecule formation, although it limits the accumulation of final recombination products. Thus we suggest that RecO has a dual activity: RecO acts as a RecA mediator enabling RecA to utilize SsbA-coated single-stranded DNA as a polymerization substrate and controls RecA-mediated DNA strand exchange by limiting its extent. We herein discuss the possible mechanisms of RecO involvement in the regulation of double strand break repair and genetic transformation. PMID:18599486

  13. Bacillus subtilis RecO nucleates RecA onto SsbA-coated single-stranded DNA.

    PubMed

    Manfredi, Candela; Carrasco, Begoña; Ayora, Silvia; Alonso, Juan C

    2008-09-01

    Subsaturating amounts of Bacillus subtilis SsbA, independently of the order of addition, partially inhibit the single-stranded DNA-dependent dATPase activity of RecA. This negative effect is fully overcome when a substoichiometric amount of RecO is added. SsbA added prior to RecA does not stimulate the dATP-dependent DNA strand exchange activity; however, added after RecA it enhances the extent of strand exchange. The addition of RecO stimulates RecA-mediated joint molecule formation, although it limits the accumulation of final recombination products. Thus we suggest that RecO has a dual activity: RecO acts as a RecA mediator enabling RecA to utilize SsbA-coated single-stranded DNA as a polymerization substrate and controls RecA-mediated DNA strand exchange by limiting its extent. We herein discuss the possible mechanisms of RecO involvement in the regulation of double strand break repair and genetic transformation. PMID:18599486

  14. Genetic recombination in Bacillus subtilis: a division of labor between two single-strand DNA-binding proteins.

    PubMed

    Yadav, Tribhuwan; Carrasco, Begoña; Myers, Angela R; George, Nicholas P; Keck, James L; Alonso, Juan C

    2012-07-01

    We have investigated the structural, biochemical and cellular roles of the two single-stranded (ss) DNA-binding proteins from Bacillus subtilis, SsbA and SsbB. During transformation, SsbB localizes at the DNA entry pole where it binds and protects internalized ssDNA. The 2.8-Å resolution structure of SsbB bound to ssDNA reveals a similar overall protein architecture and ssDNA-binding surface to that of Escherichia coli SSB. SsbA, which binds ssDNA with higher affinity than SsbB, co-assembles onto SsbB-coated ssDNA and the two proteins inhibit ssDNA binding by the recombinase RecA. During chromosomal transformation, the RecA mediators RecO and DprA provide RecA access to ssDNA. Interestingly, RecO interaction with ssDNA-bound SsbA helps to dislodge both SsbA and SsbB from the DNA more efficiently than if the DNA is coated only with SsbA. Once RecA is nucleated onto the ssDNA, RecA filament elongation displaces SsbA and SsbB and enables RecA-mediated DNA strand exchange. During plasmid transformation, RecO localizes to the entry pole and catalyzes annealing of SsbA- or SsbA/SsbB-coated complementary ssDNAs to form duplex DNA with ssDNA tails. Our results provide a mechanistic framework for rationalizing the coordinated events modulated by SsbA, SsbB and RecO that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation. PMID:22373918

  15. Stressed Kevlar strand test

    SciTech Connect

    Golopol, H.; Clarkson, J.; Moore, R.; Hetherington, N.

    1981-09-10

    Kevlar is a polyaramid fiber used in fiber composites. In order to characterize this material, we determined the effect of time, temperature, and chemical environment on the strength retention of stressed Kevlar strands. In this work, we applied a stress load of 20% of the ultimate tensile strength (UTS). Strands were hung with a suitable weight in a closed container. Each container was then provided with its own heater and chemical environment. No significant loss of strength retention was found on these stressed strands. 4 figures, 5 tables.

  16. Investigating Invasives

    ERIC Educational Resources Information Center

    Lightbody, Mary

    2008-01-01

    Invasive species, commonly known as "invasives," are nonnative plants, animals, and microbes that completely take over and change an established ecosystem. The consequences of invasives' spread are significant. In fact, many of the species that appear on the Endangered Species list are threatened by invasives. Therefore, the topic of invasive…

  17. Invasive Candidiasis

    MedlinePlus

    ... Invasive candidiasis is an infection caused by a yeast (a type of fungus) called Candida . Unlike Candida ... mouth and throat (also called “thrush”) or vaginal “yeast infections,” invasive candidiasis is a serious infection that ...

  18. Cryptography with DNA binary strands.

    PubMed

    Leier, A; Richter, C; Banzhaf, W; Rauhe, H

    2000-06-01

    Biotechnological methods can be used for cryptography. Here two different cryptographic approaches based on DNA binary strands are shown. The first approach shows how DNA binary strands can be used for steganography, a technique of encryption by information hiding, to provide rapid encryption and decryption. It is shown that DNA steganography based on DNA binary strands is secure under the assumption that an interceptor has the same technological capabilities as sender and receiver of encrypted messages. The second approach shown here is based on steganography and a method of graphical subtraction of binary gel-images. It can be used to constitute a molecular checksum and can be combined with the first approach to support encryption. DNA cryptography might become of practical relevance in the context of labelling organic and inorganic materials with DNA 'barcodes'.

  19. Report on marine mammal stranding

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2006-06-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) released a report on 27 April indicating that U.S. Navy sonar transmissions may have played a role in the stranding of more than 150 melon-headed whales on 3 July 2004 off the coast of Kauai, Hawaii. At the time of the stranding, which resulted in one whale death, the Navy was preparing to conduct sonar activities as part of a military exercise. The report notes that six naval surface vessels transiting to the area on the previous night intermittenly transmitted mid-frequency active sonar. That activity is ``a plausible, if not likely, contributing factor'' to the stranding event. There was no significant weather, natural oceanographic event, or known biological factors that would explain the animals' movement into the bay nor the group's continued presence in the bay, according to report lead author Teri Rowles, NOAA marine mammal veterinarian.

  20. Double stranded nucleic acid biochips

    DOEpatents

    Chernov, Boris; Golova, Julia

    2006-05-23

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  1. Library construction for ancient genomics: single strand or double strand?

    PubMed

    Bennett, E Andrew; Massilani, Diyendo; Lizzo, Giulia; Daligault, Julien; Geigl, Eva-Maria; Grange, Thierry

    2014-06-01

    A novel method of library construction that takes advantage of a single-stranded DNA ligase has been recently described and used to generate high-resolution genomes from ancient DNA samples. While this method is effective and appears to recover a greater fraction of endogenous ancient material, there has been no direct comparison of results from different library construction methods on a diversity of ancient DNA samples. In addition, the single-stranded method is limited by high cost and lengthy preparation time and is restricted to the Illumina sequencing platform. Here we present in-depth comparisons of the different available library construction methods for DNA purified from 16 ancient and modern faunal and human remains, covering a range of different taphonomic and climatic conditions. We further present a DNA purification method for ancient samples that permits the concentration of a large volume of dissolved extract with minimal manipulation and methodological improvements to the single-stranded method to render it more economical and versatile, in particular to expand its use to both the Illumina and the Ion Torrent sequencing platforms. We show that the single-stranded library construction method improves the relative recovery of endogenous to exogenous DNA for most, but not all, of our ancient extracts.

  2. Library construction for ancient genomics: single strand or double strand?

    PubMed

    Bennett, E Andrew; Massilani, Diyendo; Lizzo, Giulia; Daligault, Julien; Geigl, Eva-Maria; Grange, Thierry

    2014-06-01

    A novel method of library construction that takes advantage of a single-stranded DNA ligase has been recently described and used to generate high-resolution genomes from ancient DNA samples. While this method is effective and appears to recover a greater fraction of endogenous ancient material, there has been no direct comparison of results from different library construction methods on a diversity of ancient DNA samples. In addition, the single-stranded method is limited by high cost and lengthy preparation time and is restricted to the Illumina sequencing platform. Here we present in-depth comparisons of the different available library construction methods for DNA purified from 16 ancient and modern faunal and human remains, covering a range of different taphonomic and climatic conditions. We further present a DNA purification method for ancient samples that permits the concentration of a large volume of dissolved extract with minimal manipulation and methodological improvements to the single-stranded method to render it more economical and versatile, in particular to expand its use to both the Illumina and the Ion Torrent sequencing platforms. We show that the single-stranded library construction method improves the relative recovery of endogenous to exogenous DNA for most, but not all, of our ancient extracts. PMID:24924389

  3. Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair.

    PubMed

    Ward, Jordan D; Muzzini, Diego M; Petalcorin, Mark I R; Martinez-Perez, Enrique; Martin, Julie S; Plevani, Paolo; Cassata, Giuseppe; Marini, Federica; Boulton, Simon J

    2010-01-29

    Homologous recombination (HR) is essential for repair of meiotic DNA double-strand breaks (DSBs). Although the mechanisms of RAD-51-DNA filament assembly and strand exchange are well characterized, the subsequent steps of HR are less well defined. Here, we describe a synthetic lethal interaction between the C. elegans helicase helq-1 and RAD-51 paralog rfs-1, which results in a block to meiotic DSB repair after strand invasion. Whereas RAD-51-ssDNA filaments assemble at meiotic DSBs with normal kinetics in helq-1, rfs-1 double mutants, persistence of RAD-51 foci and genetic interactions with rtel-1 suggest a failure to disassemble RAD-51 from strand invasion intermediates. Indeed, purified HELQ-1 and RFS-1 independently bind to and promote the disassembly of RAD-51 from double-stranded, but not single-stranded, DNA filaments via distinct mechanisms in vitro. These results indicate that two compensating activities are required to promote postsynaptic RAD-51 filament disassembly, which are collectively essential for completion of meiotic DSB repair.

  4. DNA Strand-Transfer Activity in Pea (Pisum sativum L.) Chloroplasts.

    PubMed Central

    Cerutti, H.; Jagendorf, A. T.

    1993-01-01

    The occurrence of DNA recombination in plastids of higher plants is well documented. However, little is known at the enzymic level. To begin dissecting the biochemical mechanism(s) involved we focused on a key step: strand transfer between homologous parental DNAs. We detected a RecA-like strand transfer activity in stromal extracts from pea (Pisum sativum L.) chloroplasts. Formation of joint molecules requires Mg2+, ATP, and homologous substrates. This activity is inhibited by excess single-stranded DNA (ssDNA), suggesting a necessary stoichiometric relation between enzyme and ssDNA. In a novel assay with Triton X-100-permeabilized chloroplasts, we also detected strand invasion of the endogenous chloroplast DNA by 32P-labeled ssDNA complementary to the 16S rRNA gene. Joint molecules, analyzed by electron microscopy, contained the expected displacement loops. PMID:12231805

  5. A sensitive method for the quantification of virion-sense and complementary-sense DNA strands of circular single-stranded DNA viruses.

    PubMed

    Rodríguez-Negrete, Edgar A; Sánchez-Campos, Sonia; Cañizares, M Carmen; Navas-Castillo, Jesús; Moriones, Enrique; Bejarano, Eduardo R; Grande-Pérez, Ana

    2014-01-01

    Circular single-stranded DNA (ssDNA) viruses are the smallest viruses known to infect eukaryotes. High recombination and mutation rates have conferred these viruses with an evolutionary potential that has facilitated their emergence. Their damaging effects on livestock (circoviruses) and crops (geminiviruses and nanoviruses), and the ubiquity of anelloviruses in human populations and other mammalian species, have resulted in increased interest in better understanding their epidemiology and infection mechanisms. Circular ssDNA viral replication involves the synthesis of dsDNA intermediates containing complementary-sense (CS) and virion-sense (VS) strands. Precise quantification of VS and CS accumulation during viral infections can provide insights into the molecular mechanisms underlying viral replication and the host invasion process. Although qPCR protocols for quantifying viral molecules exist, none of them discriminate VS and CS strands. Here, using a two-step qPCR protocol we have quantified VS and CS molecule accumulation during the infection process of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) (genus Begomovirus, family Geminiviridae). Our results show that the VS/CS strand ratio and overall dsDNA amounts vary throughout the infection process. Moreover, we show that these values depend on the virus-host combination, and that most CS strands are present as double-stranded molecules. PMID:25241765

  6. A general solution for opening double-stranded DNA for isothermal amplification

    PubMed Central

    Chen, Gangyi; Dong, Juan; Yuan, Yi; Li, Na; Huang, Xin; Cui, Xin; Tang, Zhuo

    2016-01-01

    Nucleic acid amplification is the core technology of molecular biology and genetic engineering. Various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). However, most of these methods can only detect single stranded nucleic acid. Herein, we put forward a simple solution for opening double-stranded DNA for isothermal detection methods. The strategy employs recombination protein from E. coli (RecA) to form nucleoprotein complex with single-stranded DNA, which could scan double-stranded template for homologous sites. Then, the nucleoprotein can invade the double-stranded template to form heteroduplex in the presence of ATP, resulting in the strand exchange. The ATP regeneration system could be eliminated by using high concentration of ATP, and the 3′-OH terminal of the invasion strand can be recognized by other DNA modifying enzymes such as DNA polymerase or DNA ligase. Moreover, dATP was found to be a better cofactor for RecA, which make the system more compatible to DNA polymerase. The method described here is a general solution to open dsDNA, serving as a platform to develop more isothermal nucleic acids detection methods for real DNA samples based on it. PMID:27687498

  7. Invasive arthropods.

    PubMed

    Sanders, C J; Mellor, P S; Wilson, A J

    2010-08-01

    Many arthropod species have been transported around the globe and successfully invaded new regions. Invasive arthropods can have severe impacts on animal and human health, agriculture and forestry, and the biodiversity of natural habitats as well as those modified by humans. The economic and environmental effects of invasion can be both direct, through feeding and competition, and indirect, such as the transmission of pathogens. In this paper, the authors consider ten examples that illustrate the main mechanisms of introduction, the characteristics that enable species to rapidly expand their ranges and some of the consequences of their arrival.

  8. Repair of DNA double strand breaks: in vivo biochemistry.

    PubMed

    Sugawara, Neal; Haber, James E

    2006-01-01

    Double strand breaks (DSBs) can cause damage to the genomic integrity of a cell as well as initiate genetic recombination processes. The HO and I-SceI endonucleases from budding yeast have provided a way to study these events by inducing a unique DSB in vivo under the control of a galactose-inducible promoter. The GAL::HO construct has been used extensively to study processes such as nonhomologous end joining, intra- and interchromosomal gene conversion, single strand annealing and break-induced recombination. Synchronously induced DSBs have also been important in the study of the DNA damage checkpoint, adaptation, and recovery pathways of yeast. This chapter describes methods of using GAL::HO to physically monitor the progression of events following a DSB, specifically the events leading to the switching of mating type by gene conversion of MAT using the silent donors at HML and HMR. Southern blot analysis can be used to follow the overall events in this process such as the formation of the DSB and product. Denaturing alkaline gels and slot blot techniques can be employed to follow the 5' to 3' resection of DNA starting at the DSB. After resection, the 3' tail initiates a homology search and then strand invades its homologous sequence at the donor cassette. Polymerase chain reaction is an important means to assay strand invasion and the priming of new DNA synthesis as well as the completion of gene conversion. Methods such as chromatin immunoprecipitation have provided a means to study many proteins that associate with a DSB, including not only recombination proteins, but also proteins involved in nonhomologous end joining, cell cycle arrest, chromatin remodeling, cohesin function, and mismatch repair.

  9. Heat transfer characteristics of an emergent strand

    NASA Technical Reports Server (NTRS)

    Simon, W. E.; Witte, L. C.; Hedgcoxe, P. G.

    1974-01-01

    A mathematical model was developed to describe the heat transfer characteristics of a hot strand emerging into a surrounding coolant. A stable strand of constant efflux velocity is analyzed, with a constant (average) heat transfer coefficient on the sides and leading surface of the strand. After developing a suitable governing equation to provide an adequate description of the physical system, the dimensionless governing equation is solved with Laplace transform methods. The solution yields the temperature within the strand as a function of axial distance and time. Generalized results for a wide range of parameters are presented, and the relationship of the results and experimental observations is discussed.

  10. Unraveling the strands of Saturn's F ring

    USGS Publications Warehouse

    Murray, C.D.; Gordon, M.K.; Giuliatti, Winter S.M.

    1997-01-01

    Several high-resolution Voyager 2 images of Saturn's F ring show that it is composed of at least four separate, non-intersecting strands extending ~45?? in longitude. Voyager 1 images show that the two brightest strands appear to intersect, giving rise to a "braided" morphology. From a study of all available Voyager images the detectable radial structure is cataloged and reviewed. Previous indications that there is fine material interior to the orbit of the F ring are confirmed. Evidence is presented that a model of four strands with comparable eccentricities and nearly aligned perichrones is consistent with all the Voyager observations. The observed perichrone offset of the two brightest strands suggests a minimum radial separation of ~20 km, which implies intersection of these strands when their finite radial widths are taken into account. The longitude range of such an intersection includes that observed in the Voyager 1 "braid" images. The proximity of these two strands at some longitudes may account for the apparent differences in the ring between the Voyager encounters, as well as provide a source for the short-lived features detected in the Hubble Space Telescope images of the F ring. There is no evidence that the locations of the individual strands are determined by resonant perturbations with known satellites. It is proposed that the radial structure is formed by the localized action of small satellites orbiting within the strand region. ?? 1997 Academic Press.

  11. Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday's model.

    PubMed Central

    Haber, James E; Ira, Gregorz; Malkova, Anna; Sugawara, Neal

    2004-01-01

    Since the pioneering model for homologous recombination proposed by Robin Holliday in 1964, there has been great progress in understanding how recombination occurs at a molecular level. In the budding yeast Saccharomyces cerevisiae, one can follow recombination by physically monitoring DNA after the synchronous induction of a double-strand break (DSB) in both wild-type and mutant cells. A particularly well-studied system has been the switching of yeast mating-type (MAT) genes, where a DSB can be induced synchronously by expression of the site-specific HO endonuclease. Similar studies can be performed in meiotic cells, where DSBs are created by the Spo11 nuclease. There appear to be at least two competing mechanisms of homologous recombination: a synthesis-dependent strand annealing pathway leading to noncrossovers and a two-end strand invasion mechanism leading to formation and resolution of Holliday junctions (HJs), leading to crossovers. The establishment of a modified replication fork during DSB repair links gene conversion to another important repair process, break-induced replication. Despite recent revelations, almost 40 years after Holliday's model was published, the essential ideas he proposed of strand invasion and heteroduplex DNA formation, the formation and resolution of HJs, and mismatch repair, remain the basis of our thinking. PMID:15065659

  12. Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday's model.

    PubMed

    Haber, James E; Ira, Gregorz; Malkova, Anna; Sugawara, Neal

    2004-01-29

    Since the pioneering model for homologous recombination proposed by Robin Holliday in 1964, there has been great progress in understanding how recombination occurs at a molecular level. In the budding yeast Saccharomyces cerevisiae, one can follow recombination by physically monitoring DNA after the synchronous induction of a double-strand break (DSB) in both wild-type and mutant cells. A particularly well-studied system has been the switching of yeast mating-type (MAT) genes, where a DSB can be induced synchronously by expression of the site-specific HO endonuclease. Similar studies can be performed in meiotic cells, where DSBs are created by the Spo11 nuclease. There appear to be at least two competing mechanisms of homologous recombination: a synthesis-dependent strand annealing pathway leading to noncrossovers and a two-end strand invasion mechanism leading to formation and resolution of Holliday junctions (HJs), leading to crossovers. The establishment of a modified replication fork during DSB repair links gene conversion to another important repair process, break-induced replication. Despite recent revelations, almost 40 years after Holliday's model was published, the essential ideas he proposed of strand invasion and heteroduplex DNA formation, the formation and resolution of HJs, and mismatch repair, remain the basis of our thinking.

  13. Double-Stranded RNA Is Detected by Immunofluorescence Analysis in RNA and DNA Virus Infections, Including Those by Negative-Stranded RNA Viruses

    PubMed Central

    Son, Kyung-No; Liang, Zhiguo

    2015-01-01

    ABSTRACT Early biochemical studies of viral replication suggested that most viruses produce double-stranded RNA (dsRNA), which is essential for the induction of the host immune response. However, it was reported in 2006 that dsRNA could be detected by immunofluorescence antibody staining in double-stranded DNA and positive-strand RNA virus infections but not in negative-strand RNA virus infections. Other reports in the literature seemed to support these observations. This suggested that negative-strand RNA viruses produce little, if any, dsRNA or that more efficient viral countermeasures to mask dsRNA are mounted. Because of our interest in the use of dsRNA antibodies for virus discovery, particularly in pathological specimens, we wanted to determine how universal immunostaining for dsRNA might be in animal virus infections. We have detected the in situ formation of dsRNA in cells infected with vesicular stomatitis virus, measles virus, influenza A virus, and Nyamanini virus, which represent viruses from different negative-strand RNA virus families. dsRNA was also detected in cells infected with lymphocytic choriomeningitis virus, an ambisense RNA virus, and minute virus of mice (MVM), a single-stranded DNA (ssDNA) parvovirus, but not hepatitis B virus. Although dsRNA staining was primarily observed in the cytoplasm, it was also seen in the nucleus of cells infected with influenza A virus, Nyamanini virus, and MVM. Thus, it is likely that most animal virus infections produce dsRNA species that can be detected by immunofluorescence staining. The apoptosis induced in several uninfected cell lines failed to upregulate dsRNA formation. IMPORTANCE An effective antiviral host immune response depends on recognition of viral invasion and an intact innate immune system as a first line of defense. Double-stranded RNA (dsRNA) is a viral product essential for the induction of innate immunity, leading to the production of type I interferons (IFNs) and the activation of hundreds

  14. Stranded investment and non-utility generation

    SciTech Connect

    Dismukes, D.E. . Center for Energy Studies); Maloney, M.T. )

    1999-06-01

    Stranded cost recovery continues to be a focal point of electricity deregulation. Restructuring has ground to a halt in many places largely due to the contentiousness of the issue, and even where there has been action states have granted substantial stranded cost recovery to utilities, vitiating much of the price reductions that competition is forecast to bring. While a surprisingly large amount of non-utility generation capacity already has been shut down due to obsolescence, this has not choked off capital investment. The example suggests that stranded-cost recovery is neither warranted nor necessary.

  15. Antimicrobials & cholera: are we stranded?

    PubMed

    Ghosh, Amit; Ramamurthy, T

    2011-02-01

    Antimicrobial resistance poses a major threat in the treatment of infectious diseases. Though significant progress in the management of diarrhoeal diseases has been achieved by improved hygiene, development of new antimicrobials and vaccines, the burden remains the same, especially in children below 5 yr of age. In the case of cholera, though oral rehydration treatment is the mainstay, antimicrobial therapy is mandatory at times to reduce the volume of stool and shorten the duration of the disease. Though for many pathogens, antimicrobial resistance emerged soon after the introduction of antibiotics, Vibrio cholerae remained sensitive to most of the antibiotics for quite a long period. However, the scenario changed over the years and today, V. cholerae strains isolated world over are resistant to multiple antibiotics. A myriad number of mechanisms underlie this phenomenon. These include production of extended-spectrum beta-lactamases, enhanced multi-drug efflux pump activity, plasmid-mediated quinolone and fluoroquinolone resistance, and chromosomal mutations. Horizontal transfer of resistance determinants with mobile genetic elements like integrons and the integrating conjugative elements (ICEs), SXTs help in the dissemination of drug resistance. Though all strains isolated are not resistant to all antibiotics and we are not as yet "stranded", expanding spectrum of drug resistance is a definite cause for concern. Pipelines of discovery of new antibiotics are drying up as major pharmaceutical companies are losing interest in investing money in this endeavour, mainly due to the short shelf-life of the antibiotics and also due to the fast emergence of drug resistance. To address this issue, attempts are now being made to discover drugs which are pathogen specific and target their "virulence mechanisms". It is expected that development of resistance against such antibiotics would take much longer. This review briefly focuses on all these issues.

  16. DNA strand displacement system running logic programs.

    PubMed

    Rodríguez-Patón, Alfonso; Sainz de Murieta, Iñaki; Sosík, Petr

    2014-01-01

    The paper presents a DNA-based computing model which is enzyme-free and autonomous, not requiring a human intervention during the computation. The model is able to perform iterated resolution steps with logical formulae in conjunctive normal form. The implementation is based on the technique of DNA strand displacement, with each clause encoded in a separate DNA molecule. Propositions are encoded assigning a strand to each proposition p, and its complementary strand to the proposition ¬p; clauses are encoded comprising different propositions in the same strand. The model allows to run logic programs composed of Horn clauses by cascading resolution steps. The potential of the model is demonstrated also by its theoretical capability of solving SAT. The resulting SAT algorithm has a linear time complexity in the number of resolution steps, whereas its spatial complexity is exponential in the number of variables of the formula.

  17. DNA strand displacement system running logic programs.

    PubMed

    Rodríguez-Patón, Alfonso; Sainz de Murieta, Iñaki; Sosík, Petr

    2014-01-01

    The paper presents a DNA-based computing model which is enzyme-free and autonomous, not requiring a human intervention during the computation. The model is able to perform iterated resolution steps with logical formulae in conjunctive normal form. The implementation is based on the technique of DNA strand displacement, with each clause encoded in a separate DNA molecule. Propositions are encoded assigning a strand to each proposition p, and its complementary strand to the proposition ¬p; clauses are encoded comprising different propositions in the same strand. The model allows to run logic programs composed of Horn clauses by cascading resolution steps. The potential of the model is demonstrated also by its theoretical capability of solving SAT. The resulting SAT algorithm has a linear time complexity in the number of resolution steps, whereas its spatial complexity is exponential in the number of variables of the formula. PMID:24211259

  18. Bubbles in live-stranded dolphins.

    PubMed

    Dennison, S; Moore, M J; Fahlman, A; Moore, K; Sharp, S; Harry, C T; Hoppe, J; Niemeyer, M; Lentell, B; Wells, R S

    2012-04-01

    Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber-muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness.

  19. Correlation Between Strand Stability and Magnet Performance

    SciTech Connect

    Dietderich, D.R.; Bartlett, S.E.; Caspi, S.; Ferracin, P.; Gourlay, S.A.; Higley, H.C.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Sabbi, G.L.; Scanlan, R.M.

    2005-06-01

    Magnet programs at BNL, LBNL and FNAL have observed instabilities in high J{sub c} Nb{sub 3}Sn strands and magnets made from these strands. This paper correlates the strand stability determined from a short sample-strand test to the observed magnet performance. It has been observed that strands that carry high currents at high fields (greater than 10 T) cannot sustain these same currents at low fields (1-3 T) when the sample current is fixed and the magnetic field is ramped. This suggests that the present generation of strand is susceptible to flux jumps (FJ). To prevent flux jumps from limiting stand performance, one must accommodate the energy released during a flux jump. To better understand FJ this work has focused on wire with a given sub-element diameter and shows that one can significantly improve stability by increasing the copper conductivity (higher residual resistivity ratio, RRR, of the Cu). This increased stability significantly improves the conductor performance and permits it to carry more current.

  20. Correlation between Strand Stability and Magnet Performance

    SciTech Connect

    Dietderich, Daniel R.; Bartlett, Scott E.; Caspi, Shlomo; Ferracin, Paolo; G ourlay, Stephen A.; Higley, Hugh C.; Lietzke, Alan F.; Mattafirri, Sara; McInturff, Alfred D.; Sabbi, GianLuca L.; Scanlan,Ronald M.

    2005-04-16

    Magnet programs at BNL, LBNL and FNAL have observed instabilities in high J{sub c} Nb{sub 3}Sn strands and magnets made from these strands. This paper correlates the strand stability determined from a short sample-strand test to the observed magnet performance. It has been observed that strands that carry high currents at high fields (greater than 10T) cannot sustain these same currents at low fields (1-3T) when the sample current is fixed and the magnetic field is ramped. This suggests that the present generation of strand is susceptible to flux jumps (FJ). To prevent flux jumps from limiting stand performance, one must accommodate the energy released during a flux jump. To better understand FJ this work has focused on wire with a given sub-element diameter and shows that one can significantly improve stability by increasing the copper conductivity (higher residual resistivity ratio, RRR, of the Cu). This increased stability significantly improves the conductor performance and permits it to carry more current.

  1. Bubbles in live-stranded dolphins

    PubMed Central

    Dennison, S.; Moore, M. J.; Fahlman, A.; Moore, K.; Sharp, S.; Harry, C. T.; Hoppe, J.; Niemeyer, M.; Lentell, B.; Wells, R. S.

    2012-01-01

    Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber–muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness. PMID:21993505

  2. Esophagectomy - minimally invasive

    MedlinePlus

    Minimally invasive esophagectomy; Robotic esophagectomy; Removal of the esophagus - minimally invasive; Achalasia - esophagectomy; Barrett esophagus - esophagectomy; Esophageal cancer - esophagectomy - laparoscopic; Cancer of the ...

  3. Monitoring steel strands via ultrasonic measurements

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Lanza di Scalea, Francesco

    2002-06-01

    Steel strands are widely used in civil structures as pre- stressing tendons and stay-cables. The structural criticality of strands has led to an increasing interest in developing methods able to monitor applied loads as well as detect potential defects. In this paper ultrasonic guided waves, generated and detected via magnetostrictive sensors, are exploited to address this need. The sensors were developed in collaboration with the US Federal Highway Administration NDE Validation Center. An acousto elastic formulation of the Pochhammer-Chree longitudinal vibrations in cylindrical waveguides is proposed to predict the change of ultrasonic velocity as a function of applied stress. Results from acousto elastic experiments performed on seven- wire strands and on single wires are presented and compared to the theoretical predictions. Ways to enhance the inhernetly-low sensitivity of the acousto elastic measurements are proposed and investigated. The different behavior exhibited by the strand when compared to the single wire suggests the need for widening the theory governing the acousto elastic phenomenon in multi-wire members. The role of the strand anchorages is examined in the context of wave attenuation. The suitability of the guided wave method for the detection of defects is demonstrated including the possibility of inspecting the critical anchored regions.

  4. 5. CABLE STRAND ALARM: Photocopy of December 1966 photograph showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. CABLE STRAND ALARM: Photocopy of December 1966 photograph showing cable strand alarm located at Beach and Hyde Streets. A strand in the cable (see CA-12-7) forces the fork forward, alerting the powerhouse to the strand by means of an electrical warning device. This strand alarm operates in essentially the same manner as those first used in the 1880s. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  5. Real-time analysis of double-strand DNA break repair by homologous recombination

    PubMed Central

    Hicks, Wade M.; Yamaguchi, Miyuki; Haber, James E.

    2011-01-01

    The ability to induce synchronously a single site-specific double-strand break (DSB) in a budding yeast chromosome has made it possible to monitor the kinetics and genetic requirements of many molecular steps during DSB repair. Special attention has been paid to the switching of mating-type genes in Saccharomyces cerevisiae, a process initiated by the HO endonuclease by cleaving the MAT locus. A DSB in MATa is repaired by homologous recombination—specifically, by gene conversion—using a heterochromatic donor, HMLα. Repair results in the replacement of the a-specific sequences (Ya) by Yα and switching from MATa to MATα. We report that MAT switching requires the DNA replication factor Dpb11, although it does not require the Cdc7-Dbf4 kinase or the Mcm and Cdc45 helicase components. Using Southern blot, PCR, and ChIP analysis of samples collected every 10 min, we extend previous studies of this process to identify the times for the loading of Rad51 recombinase protein onto the DSB ends at MAT, the subsequent strand invasion by the Rad51 nucleoprotein filament into the donor sequences, the initiation of new DNA synthesis, and the removal of the nonhomologous Y sequences. In addition we report evidence for the transient displacement of well-positioned nucleosomes in the HML donor locus during strand invasion. PMID:21292986

  6. Real-time analysis of double-strand DNA break repair by homologous recombination.

    PubMed

    Hicks, Wade M; Yamaguchi, Miyuki; Haber, James E

    2011-02-22

    The ability to induce synchronously a single site-specific double-strand break (DSB) in a budding yeast chromosome has made it possible to monitor the kinetics and genetic requirements of many molecular steps during DSB repair. Special attention has been paid to the switching of mating-type genes in Saccharomyces cerevisiae, a process initiated by the HO endonuclease by cleaving the MAT locus. A DSB in MATa is repaired by homologous recombination--specifically, by gene conversion--using a heterochromatic donor, HMLα. Repair results in the replacement of the a-specific sequences (Ya) by Yα and switching from MATa to MATα. We report that MAT switching requires the DNA replication factor Dpb11, although it does not require the Cdc7-Dbf4 kinase or the Mcm and Cdc45 helicase components. Using Southern blot, PCR, and ChIP analysis of samples collected every 10 min, we extend previous studies of this process to identify the times for the loading of Rad51 recombinase protein onto the DSB ends at MAT, the subsequent strand invasion by the Rad51 nucleoprotein filament into the donor sequences, the initiation of new DNA synthesis, and the removal of the nonhomologous Y sequences. In addition we report evidence for the transient displacement of well-positioned nucleosomes in the HML donor locus during strand invasion.

  7. Convergent strand array liquid pumping system

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1989-01-01

    A surface-tension liquid pumping system is provided by one or more arrays of converging solid monofilament fibers or metal wires (strands) spaced apart at an input end to gather liquid, and gathered close together at the opposite end where menisci forms between wetted strands to force liquid in the direction of convergence of the strands. The liquid pumping system is independent of gravity. It is illustrated as being used in a heat pump having a heating box to vaporize the liquid and a condensing chamber. Condensed liquid is returned by the pumping system to the heating box where it is again vaporized. A vapor tube carries the vapor to the condensing chamber. In that way, a closed system pumps heat from the heating box to the evaporating chamber and from there radiated to the atmosphere.

  8. Low-residue euthanasia of stranded mysticetes.

    PubMed

    Harms, Craig A; McLellan, William A; Moore, Michael J; Barco, Susan G; Clarke, Elsburgh O; Thayer, Victoria G; Rowles, Teresa K

    2014-01-01

    Euthanasia of stranded large whales poses logistic, safety, pharmaceutical, delivery, public relations, and disposal challenges. Reasonable arguments may be made for allowing a stranded whale to expire naturally. However, slow cardiovascular collapse from gravitational effects outside of neutral buoyancy, often combined with severely debilitating conditions, motivate humane efforts to end the animal's suffering. The size of the animal and prevailing environmental conditions often pose safety concerns for stranding personnel, which take priority over other considerations. When considering chemical euthanasia, the size of the animal also necessitates large quantities of euthanasia agents. Drug residues are a concern for relay toxicity to scavengers, particularly for pentobarbital-containing euthanasia solutions. Pentobarbital is also an environmental concern because of its stability and long persistence in aquatic environments. We describe a euthanasia technique for stranded mysticetes using readily available, relatively inexpensive, preanesthetic and anesthetic drugs (midazolam, acepromazine, xylazine) followed by saturated KCl delivered via custom-made needles and a low-cost, basic, pressurized canister. This method provides effective euthanasia while moderating personnel exposure to hazardous situations and minimizing drug residues of concern for relay toxicity.

  9. Rescue Your Campus from "Stranded" Costs.

    ERIC Educational Resources Information Center

    Kadamus, David A.

    2003-01-01

    Discusses how to deal with the pressures to defer maintenance on campus buildings, including the issue of accelerated cycles of obsolescence, which "stranded" costs to avoid and to accept, and specific strategies to gain control of the physical asset portfolio. (EV)

  10. Untangling the Strands of the Fourteenth Amendment.

    ERIC Educational Resources Information Center

    Lupu, Ira C.

    1979-01-01

    Explores trends in the Court's interpretation of the libertarian and egalitarian dimensions of the Fourteenth Amendment and offers a theory of the two strands. Available from Michigan Law Review, Hutchins Hall, Ann Arbor, MI 48109; single issues $3.50. (Author/IRT)

  11. Neurobrucellosis in Stranded Dolphins, Costa Rica

    PubMed Central

    Hernández-Mora, Gabriela; González-Barrientos, Rocío; Morales, Juan-Alberto; Chaves-Olarte, Esteban; Guzmán-Verri, Caterina; Baquero-Calvo, Elías; De-Miguel, María-Jesús; Marín, Clara-María; Blasco, José-María

    2008-01-01

    Ten striped dolphins, Stenella coeruleoalba, stranded along the Costa Rican Pacific coast, had meningoencephalitis and antibodies against Brucella spp. Brucella ceti was isolated from cerebrospinal fluid of 6 dolphins and 1 fetus. S. coeruleoalba constitutes a highly susceptible host and a potential reservoir for B. ceti transmission. PMID:18760012

  12. Effect of iontophoresis on the in vitro trans-scleral transport of three single stranded oligonucleotides.

    PubMed

    Pescina, Silvia; Antopolsky, Maxim; Santi, Patrizia; Nicoli, Sara; Murtomäki, Lasse

    2013-05-13

    Oligonucleotides represent a subject of clinical interest due to their potential ability to treat several diseases, including those affecting the posterior segment of the eye. Unfortunately, therapeutic oligonucleotides are currently administered by means of highly invasive approaches, such as intravitreal injections. The aim of the present work was to study in vitro, across isolated bovine sclera, the effect of iontophoresis on the transport of three single stranded oligonucleotides (ssDNA), 12-, 24- and 36-mer, selected as reference compounds in view of a non-invasive drug delivery to the back of the eye. All the three sequences were able to cross bovine sclera in vitro without iontophoresis. When anodal iontophoresis was applied, no change in flux was observed, while in the presence of cathodal iontophoresis the permeability coefficients increased four-fold compared to passive conditions. This behavior can be ascribed to the electrorepulsive mechanism, due to the negative charge of the nucleic acid backbone. It was also observed that the molecular weights of the three sequences did not affect trans-scleral transport, neither in passive, nor in current assisted permeation. Furthermore, increasing the current intensity from 1.75 mA to 3 mA, no effect on the trans-scleral transport of the 24-mer was noticed. Although preliminary, the results demonstrate that cathodal iontophoresis enhances trans-scleral transport of single stranded oligonucleotides and suggest its use as a novel non-invasive approach for the treatment of diseases affecting the posterior segment of the eye.

  13. RNA-catalysed synthesis of complementary-strand RNA

    NASA Astrophysics Data System (ADS)

    Doudna, Jennifer A.; Szostak, Jack W.

    1989-06-01

    The Tetrahymena ribozyme can splice together multiple oligonucleotides aligned on a template strand to yield a fully complementary product strand. This reaction demonstrates the feasibility of RNA-catalysed RNA replications.

  14. Attacking invasive grasses

    USGS Publications Warehouse

    Keeley, Jon E.

    2015-01-01

    In grasslands fire may play a role in the plant invasion process, both by creating disturbances that potentially favour non-native invasions and as a possible tool for controlling alien invasions. Havill et al. (Applied Vegetation Science, 18, 2015, this issue) determine how native and non-native species respond to different fire regimes as a first step in understanding the potential control of invasive grasses.

  15. Alignment of Homologous Chromosomes and Effective Repair of Programmed DNA Double-Strand Breaks during Mouse Meiosis Require the Minichromosome Maintenance Domain Containing 2 (MCMDC2) Protein

    PubMed Central

    Ravindranathan, Ramya; Dereli, Ihsan; Stanzione, Marcello; Tóth, Attila

    2016-01-01

    Orderly chromosome segregation during the first meiotic division requires meiotic recombination to form crossovers between homologous chromosomes (homologues). Members of the minichromosome maintenance (MCM) helicase family have been implicated in meiotic recombination. In addition, they have roles in initiation of DNA replication, DNA mismatch repair and mitotic DNA double-strand break repair. Here, we addressed the function of MCMDC2, an atypical yet conserved MCM protein, whose function in vertebrates has not been reported. While we did not find an important role for MCMDC2 in mitotically dividing cells, our work revealed that MCMDC2 is essential for fertility in both sexes due to a crucial function in meiotic recombination. Meiotic recombination begins with the introduction of DNA double-strand breaks into the genome. DNA ends at break sites are resected. The resultant 3-prime single-stranded DNA overhangs recruit RAD51 and DMC1 recombinases that promote the invasion of homologous duplex DNAs by the resected DNA ends. Multiple strand invasions on each chromosome promote the alignment of homologous chromosomes, which is a prerequisite for inter-homologue crossover formation during meiosis. We found that although DNA ends at break sites were evidently resected, and they recruited RAD51 and DMC1 recombinases, these recombinases were ineffective in promoting alignment of homologous chromosomes in the absence of MCMDC2. Consequently, RAD51 and DMC1 foci, which are thought to mark early recombination intermediates, were abnormally persistent in Mcmdc2-/- meiocytes. Importantly, the strand invasion stabilizing MSH4 protein, which marks more advanced recombination intermediates, did not efficiently form foci in Mcmdc2-/- meiocytes. Thus, our work suggests that MCMDC2 plays an important role in either the formation, or the stabilization, of DNA strand invasion events that promote homologue alignment and provide the basis for inter-homologue crossover formation during

  16. Fish stranding in freshwater systems: sources, consequences, and mitigation.

    PubMed

    Nagrodski, Alexander; Raby, Graham D; Hasler, Caleb T; Taylor, Mark K; Cooke, Steven J

    2012-07-30

    Fish can become stranded when water levels decrease, often rapidly, as a result of anthropogenic (e.g., canal drawdown, hydropeaking, vessel wakes) and natural (e.g., floods, drought, winter ice dynamics) events. We summarize existing research on stranding of fish in freshwater, discuss the sources, consequences, and mitigation options for stranding, and report current knowledge gaps. Our literature review revealed that ∼65.5% of relevant peer-reviewed articles were found to focus on stranding associated with hydropower operations and irrigation projects. In fact, anthropogenic sources of fish stranding represented 81.8% of available literature compared to only 19.9% attributed to natural fish stranding events. While fish mortality as a result of stranding is well documented, our analysis revealed that little is known about the sublethal and long-term consequences of stranding on growth and population dynamics. Furthermore, the contribution of stranding to annual mortality rates is poorly understood as are the potential ecosystem-scale impacts. Mitigation strategies available to deal with stranding include fish salvage, ramping rate limitations, and physical habitat works (e.g., to contour substrate to minimize stranding). However, a greater knowledge of the factors that cause fish stranding would promote the development and refinement of mitigation strategies that are economically and ecologically sustainable. PMID:22481278

  17. Analog Computation by DNA Strand Displacement Circuits.

    PubMed

    Song, Tianqi; Garg, Sudhanshu; Mokhtar, Reem; Bui, Hieu; Reif, John

    2016-08-19

    DNA circuits have been widely used to develop biological computing devices because of their high programmability and versatility. Here, we propose an architecture for the systematic construction of DNA circuits for analog computation based on DNA strand displacement. The elementary gates in our architecture include addition, subtraction, and multiplication gates. The input and output of these gates are analog, which means that they are directly represented by the concentrations of the input and output DNA strands, respectively, without requiring a threshold for converting to Boolean signals. We provide detailed domain designs and kinetic simulations of the gates to demonstrate their expected performance. On the basis of these gates, we describe how DNA circuits to compute polynomial functions of inputs can be built. Using Taylor Series and Newton Iteration methods, functions beyond the scope of polynomials can also be computed by DNA circuits built upon our architecture. PMID:27363950

  18. Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism

    PubMed Central

    Brown, Timothy A.; Cecconi, Ciro; Tkachuk, Ariana N.; Bustamante, Carlos; Clayton, David A.

    2005-01-01

    The established strand-displacement model for mammalian mitochondrial DNA (mtDNA) replication has recently been questioned in light of new data using two-dimensional (2D) agarose gel electrophoresis. It has been proposed that a synchronous, strand-coupled mode of replication occurs in tissues, thereby casting doubt on the general validity of the “orthodox,” or strand-displacement model. We have examined mtDNA replicative intermediates from mouse liver using atomic force microscopy and 2D agarose gel electrophoresis in order to resolve this issue. The data provide evidence for only the orthodox, strand-displacement mode of replication and reveal the presence of additional, alternative origins of lagging light-strand mtDNA synthesis. The conditions used for 2D agarose gel analysis are favorable for branch migration of asymmetrically replicating nascent strands. These data reconcile the original displacement mode of replication with the data obtained from 2D gel analyses. PMID:16230534

  19. Method and apparatus for testing a forward-moving strand

    DOEpatents

    Ducommun, Joel; Vulliens, Philippe

    1980-01-01

    In a method for testing a continuously forward-moving strand a light beam which passes along a plane that extends approximately perpendicularly to the longitudinal axis of the strand is introduced into the strand. The brightness value is measured on a place of the strand exterior which is distal from the light incidence place by means of at least one photoelectronic element disposed directly on the strand exterior and the measured result is evaluated in a gating circuit which is electrically connected to the photoelectronic element.

  20. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1991-07-02

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. The probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations. No Drawings

  1. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1991-01-01

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. Probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations.

  2. The role of aromatic-aromatic interactions in strand-strand stabilization of β-sheets

    PubMed Central

    Budyak, Ivan L.; Zhuravleva, Anastasia; Gierasch, Lila M.

    2013-01-01

    Aromatic-aromatic interactions have long been believed to play key roles in protein structure, folding, and binding functions. Yet we still lack full understanding of the contributions of aromatic-aromatic interactions to protein stability and the timing of their formation during folding. Here, using as a case study an aromatic ladder in the β-barrel protein, cellular retinoic acid binding protein 1 (CRABP1), we find aromatic π stacking plays a greater role in the Phe65-Phe71 cross-strand pair while in another pair, Phe50-Phe65, hydrophobic interactions are dominant. The Phe65/Phe71 pair spans β-strands 4 and 5 in the β-barrel, which lack interstrand hydrogen bonding, and we speculate that it compensates energetically for the absence of strand-strand backbone interactions. Using perturbation analysis, we find that both aromatic-aromatic pairs form after the transition state for folding of CRABP1, thus playing a role in the final stabilization of the β-sheet rather than in its nucleation as had been earlier proposed. The aromatic interaction between strands 4–5 in CRABP1 is highly conserved in the intracellular lipid-binding protein (iLBP) family, and several lines of evidence combine to support a model wherein it acts to maintain barrel structure while allowing the dynamic opening that is necessary for ligand entry. Lastly, we carried out a bioinformatic analysis and found 51 examples of aromatic-aromatic interactions across non-hydrogen-bonded β-strands outside the iLBPs, arguing for the generality of the role played by this structural motif. PMID:23810905

  3. Blocking single-stranded transferred DNA conversion to double-stranded intermediates by overexpression of yeast DNA REPLICATION FACTOR A.

    PubMed

    Dafny-Yelin, Mery; Levy, Avner; Dafny, Raz; Tzfira, Tzvi

    2015-01-01

    Agrobacterium tumefaciens delivers its single-stranded transferred DNA (T-strand) into the host cell nucleus, where it can be converted into double-stranded molecules. Various studies have revealed that double-stranded transfer DNA (T-DNA) intermediates can serve as substrates by as yet uncharacterized integration machinery. Nevertheless, the possibility that T-strands are themselves substrates for integration cannot be ruled out. We attempted to block the conversion of T-strands into double-stranded intermediates prior to integration in order to further investigate the route taken by T-DNA molecules on their way to integration. Transgenic tobacco (Nicotiana benthamiana) plants that overexpress three yeast (Saccharomyces cerevisiae) protein subunits of DNA REPLICATION FACTOR A (RFA) were produced. In yeast, these subunits (RFA1-RFA3) function as a complex that can bind single-stranded DNA molecules, promoting the repair of genomic double strand breaks. Overexpression of the RFA complex in tobacco resulted in decreased T-DNA expression, as determined by infection with A. tumefaciens cells carrying the β-glucuronidase intron reporter gene. Gene expression was not blocked when the reporter gene was delivered by microbombardment. Enhanced green fluorescent protein-assisted localization studies indicated that the three-protein complex was predominantly nuclear, thus indicating its function within the plant cell nucleus, possibly by binding naked T-strands and blocking their conversion into double-stranded intermediates. This notion was further supported by the inhibitory effect of RFA expression on the cell-to-cell movement of Bean dwarf mosaic virus, a single-stranded DNA virus. The observation that RFA complex plants dramatically inhibited the transient expression level of T-DNA and only reduced T-DNA integration by 50% suggests that double-stranded T-DNA intermediates, as well as single-stranded T-DNA, play significant roles in the integration process. PMID:25424309

  4. Flow field studies on yawed, stranded cables

    NASA Astrophysics Data System (ADS)

    Batill, S. M.; Nelson, R. C.; Nebres, J. V.

    A study of the flowfield near yawed, stranded cables was conducted in order to investigate the mechanisms associated with the generation of both steady and unsteady fluid forces on the cables. Rigid cable models and a circular cylinder were tested in a wind tunnel at four different cable angles over a Reynolds number range from 6000 to 14,600 based on the nominal cable diameter. The smoke-wire and the kerosene smoke flow visualization techniques were used to qualitatively evaluate the flowfields associated with each cable geometry.

  5. Method for producing labeled single-stranded nucleic acid probes

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-10-19

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  6. Why double-stranded RNA resists condensation.

    PubMed

    Tolokh, Igor S; Pabit, Suzette A; Katz, Andrea M; Chen, Yujie; Drozdetski, Aleksander; Baker, Nathan; Pollack, Lois; Onufriev, Alexey V

    2014-01-01

    The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to inter-DNA attraction and eventual condensation. Surprisingly, the condensation is suppressed in double-stranded RNA, which carries the same negative charge as DNA, but assumes a different double helical form. Here, we combine experiment and atomistic simulations to propose a mechanism that explains the variations in condensation of short (25 base-pairs) nucleic acid (NA) duplexes, from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA. Circular dichroism measurements suggest that duplex helical geometry is not the fundamental property that ultimately determines the observed differences in condensation. Instead, these differences are governed by the spatial variation of cobalt hexammine (CoHex) binding to NA. There are two major NA-CoHex binding modes--internal and external--distinguished by the proximity of bound CoHex to the helical axis. We find a significant difference, up to 5-fold, in the fraction of ions bound to the external surfaces of the different NA constructs studied. NA condensation propensity is determined by the fraction of CoHex ions in the external binding mode.

  7. Repair of DNA Double-Strand Breaks

    NASA Astrophysics Data System (ADS)

    Falk, Martin; Lukasova, Emilie; Kozubek, Stanislav

    The genetic information of cells continuously undergoes damage induced by intracellular processes including energy metabolism, DNA replication and transcription, and by environmental factors such as mutagenic chemicals and UV and ionizing radiation. This causes numerous DNA lesions, including double strand breaks (DSBs). Since cells cannot escape this damage or normally function with a damaged genome, several DNA repair mechanisms have evolved. Although most "single-stranded" DNA lesions are rapidly removed from DNA without permanent damage, DSBs completely break the DNA molecule, presenting a real challenge for repair mechanisms, with the highest risk among DNA lesions of incorrect repair. Hence, DSBs can have serious consequences for human health. Therefore, in this chapter, we will refer only to this type of DNA damage. In addition to the biochemical aspects of DSB repair, which have been extensively studied over a long period of time, the spatio-temporal organization of DSB induction and repair, the importance of which was recognized only recently, will be considered in terms of current knowledge and remaining questions.

  8. Euler-Poincaré equations for G-Strands

    NASA Astrophysics Data System (ADS)

    Holm, Darryl D.; Ivanov, Rossen I.

    2014-03-01

    The G-strand equations for a map Bbb R × Bbb R into a Lie group G are associated to a G-invariant Lagrangian. The Lie group manifold is also the configuration space for the Lagrangian. The G-strand itself is the map g(t, s) : Bbb R × Bbb R → G, where t and s are the independent variables of the G-strand equations. The Euler-Poincaré reduction of the variational principle leads to a formulation where the dependent variables of the G-strand equations take values in the corresponding Lie algebra and its co-algebra, * with respect to the pairing provided by the variational derivatives of the Lagrangian. We review examples of different G-strand constructions, including matrix Lie groups and diffeomorphism group. In some cases the G-strand equations are completely integrable 1+1 Hamiltonian systems that admit soliton solutions.

  9. Translocation of double strand DNA into a biological nanopore

    NASA Astrophysics Data System (ADS)

    Chatkaew, Sunita; Mlayeh, Lamia; Leonetti, Marc; Homble, Fabrice

    2009-03-01

    Translocation of double strand DNA across a unique mitochondrial biological nanopore (VDAC) is observed by an electrophysiological method. Characteristics of opened and sub-conductance states of VDAC are studied. When the applied electric potential is beyond ± 20 mV, VDAC transits to a sub-conductance state. Plasmids (circular double strand DNA) with a diameter greater than that of the channel shows the current reduction into the channel during the interaction but the state with zero-current is not observed. On the contrary, the interaction of linear double strand DNA with the channel shows the current reduction along with the zero-current state. These show the passages of linear double strand DNA across the channel and the electrostatic effect due to the surface charges of double strand DNA and channel for circular and linear double strand DNA.

  10. New progress of ITER-PF strand production in WST

    NASA Astrophysics Data System (ADS)

    Li, J. F.; Liu, W. T.; Yan, L. X.; H, J.; Gao, H. X.; Liu, J. W.; Du, S. J.; Liu, X. H.; Feng, Y.; Zhang, P. X.; Liu, S.; Li, H. W.; Niu, E. W.

    2014-05-01

    ITER Poloidal Field (PF) systems consist of 6 independent coils with different dimensions and require NbTi superconductor and copper strands. Western Superconducting Technologies Co.,Ltd.(WST) will supply PF2-5 NbTi strand for ITER, and over 14,000 km of NbTi strands have been produced in the past two years. Main performance of NbTi strands, including critical current, n value, wire diameter, Cu/non-Cu ratio, hysteresis loss and RRR are reported and analysed in this paper.

  11. Acoustical dead zones and the spatial aggregation of whale strandings.

    PubMed

    Sundaram, Bala; Poje, Andrew C; Veit, Richard R; Nganguia, Herve

    2006-02-21

    Cetacean strandings display a marked geographical clustering. We propose a simple, two-dimensional ray-dynamics model of cetacean echolocation to examine the role played by coastline topography in influencing the location and clustering of stranding sites. We find that a number of coastlines known to attract cetacean strandings produce acoustical "Dead Zones" where echolocation signals are severely distorted by purely geometric effects. Using available cetacean stranding data bases from four disparate areas, we show that the geographical clusters in the observations correlate strongly with the regions of distorted echolocation signals as predicted by the model.

  12. A methodology to identify stranded generation facilities and estimate stranded costs for Louisiana's electric utility industry

    NASA Astrophysics Data System (ADS)

    Cope, Robert Frank, III

    1998-12-01

    The electric utility industry in the United States is currently experiencing a new and different type of growing pain. It is the pain of having to restructure itself into a competitive business. Many industry experts are trying to explain how the nation as a whole, as well as individual states, will implement restructuring and handle its numerous "transition problems." One significant transition problem for federal and state regulators rests with determining a utility's stranded costs. Stranded generation facilities are assets which would be uneconomic in a competitive environment or costs for assets whose regulated book value is greater than market value. At issue is the methodology which will be used to estimate stranded costs. The two primary methods are known as "Top-Down" and "Bottom-Up." The "Top-Down" approach simply determines the present value of the losses in revenue as the market price for electricity changes over a period of time into the future. The problem with this approach is that it does not take into account technical issues associated with the generation and wheeling of electricity. The "Bottom-Up" approach computes the present value of specific strandable generation facilities and compares the resulting valuations with their historical costs. It is regarded as a detailed and difficult, but more precise, approach to identifying stranded assets and their associated costs. This dissertation develops a "Bottom-Up" quantitative, optimization-based approach to electric power wheeling within the state of Louisiana. It optimally evaluates all production capabilities and coordinates the movement of bulk power through transmission interconnections of competing companies in and around the state. Sensitivity analysis to this approach is performed by varying seasonal consumer demand, electric power imports, and transmission inter-connection cost parameters. Generation facility economic dispatch and transmission interconnection bulk power transfers, specific

  13. RecBCD is required to Complete Chromosomal Replication: Implications for Double-Strand Break Frequencies and Repair Mechanisms

    PubMed Central

    Courcelle, Justin; Wendel, Brian M.; Livingstone, Dena D.; Courcelle, Charmain T.

    2015-01-01

    Several aspects of the mechanism of homologous double strand break repair remain unclear. Although intensive efforts have focused on how recombination reactions initiate, far less is known about the molecular events that follow. Based upon biochemical studies, current models propose that RecBCD processes double strand ends and loads RecA to initiate recombinational repair. However, recent studies have shown that RecBCD plays a critical role in completing replication events on the chromosome through a mechanism that does not involve RecA or recombination. Here, we examine several studies, both early and recent, that suggest RecBCD also operates late in the recombination process- after initiation, strand invasion, and crossover resolution have occurred. Similar to its role in completing replication, we propose a model in which RecBCD is required to resect and resolve the DNA synthesis associated with homologous recombination at the point where the missing sequences on the broken molecule have been restored. We explain how the impaired ability to complete chromosome replication in recBC and recD mutants is likely to account for the loss of viability and genome instability in these mutants, and conclude that spontaneous double strand breaks and replication fork collapse occur far less frequently than previously speculated. PMID:26003632

  14. Why double-stranded RNA resists condensation

    SciTech Connect

    Tolokh, Igor S.; Pabit, Suzette; Katz, Andrea M.; Chen, Yujie; Drozdetski, Aleksander; Baker, Nathan A.; Pollack, Lois; Onufriev, Alexey

    2014-09-15

    The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to attraction between the negatively charged helices and eventually to condensation. Surprisingly, this effect is suppressed in double-stranded RNA, which carries the same charge as the DNA, but assumes a different double helical form. However, additional characterization of short (25 base-pairs) nucleic acid (NA) duplex structures by circular dichroism shows that measured differences in condensation are not solely determined by duplex helical geometry. Here we combine experiment, theory, and atomistic simulations to propose a mechanism that connects the observed variations in condensation of short NA duplexes with the spatial variation of cobalt hexammine (CoHex) binding at the NA duplex surface. The atomistic picture that emerged showed that CoHex distributions around the NA reveals two major NA-CoHex binding modes -- internal and external -- distinguished by the proximity of bound CoHex to the helical axis. Decreasing trends in experimentally observed condensation propensity of the four studied NA duplexes (from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA) are explained by the progressive decrease of a single quantity: the fraction of CoHex ions in the external binding mode. Thus, while NA condensation depends on a complex interplay between various structural and sequence features, our coupled experimental and theoretical results suggest a new model in which a single parameter connects the NA condensation propensity with geometry and sequence dependence of CoHex binding.

  15. New insights on single-stranded versus double-stranded DNA library preparation for ancient DNA.

    PubMed

    Wales, Nathan; Carøe, Christian; Sandoval-Velasco, Marcela; Gamba, Cristina; Barnett, Ross; Samaniego, José Alfredo; Madrigal, Jazmín Ramos; Orlando, Ludovic; Gilbert, M Thomas P

    2015-12-01

    An innovative single-stranded DNA (ssDNA) library preparation method has sparked great interest among ancient DNA (aDNA) researchers, especially after reports of endogenous DNA content increases >20-fold in some samples. To investigate the behavior of this method, we generated ssDNA and conventional double-stranded DNA (dsDNA) libraries from 23 ancient and historic plant and animal specimens. We found ssDNA library preparation substantially increased endogenous content when dsDNA libraries contained <3% endogenous DNA, but this enrichment is less pronounced when dsDNA preparations successfully recover short endogenous DNA fragments (mean size < 70 bp). Our findings can help researchers determine when to utilize the time- and resource-intensive ssDNA library preparation method.

  16. Asymmetric segregation of template DNA strands in basal-like human breast cancer cell lines

    PubMed Central

    2013-01-01

    Background and methods Stem or progenitor cells from healthy tissues have the capacity to co-segregate their template DNA strands during mitosis. Here, we set out to test whether breast cancer cell lines also possess the ability to asymmetrically segregate their template DNA strands via non-random chromosome co-segregation, and whether this ability correlates with certain properties attributed to breast cancer stem cells (CSCs). We quantified the frequency of asymmetric segregation of template DNA strands in 12 human breast cancer cell lines, and correlated the frequency to molecular subtype, CD44+/CD24-/lo phenotype, and invasion/migration ability. We tested if co-culture with human mesenchymal stem cells, which are known to increase self-renewal, can alter the frequency of asymmetric segregation of template DNA in breast cancer. Results We found a positive correlation between asymmetric segregation of template DNA and the breast cancer basal-like and claudin-low subtypes. There was an inverse correlation between asymmetric segregation of template DNA and Her2 expression. Breast cancer samples with evidence of asymmetric segregation of template DNA had significantly increased invasion and borderline significantly increased migration abilities. Samples with high CD44+/CD24-/lo surface expression were more likely to harbor a consistent population of cells that asymmetrically segregated its template DNA; however, symmetric self-renewal was enriched in the CD44+/CD24-/lo population. Co-culturing breast cancer cells with human mesenchymal stem cells expanded the breast CSC pool and decreased the frequency of asymmetric segregation of template DNA. Conclusions Breast cancer cells within the basal-like subtype can asymmetrically segregate their template DNA strands through non-random chromosome segregation. The frequency of asymmetric segregation of template DNA can be modulated by external factors that influence expansion or self-renewal of CSC populations. Future

  17. Minimally Invasive Valve Surgery

    PubMed Central

    Pope, Nicolas H.; Ailawadi, Gorav

    2014-01-01

    Cardiac valve surgery is life saving for many patients. The advent of minimally invasive surgical techniques has historically allowed for improvement in both post-operative convalescence and important clinical outcomes. The development of minimally invasive cardiac valve repair and replacement surgery over the past decade is poised to revolutionize the care of cardiac valve patients. Here, we present a review of the history and current trends in minimally invasive aortic and mitral valve repair and replacement, including the development of sutureless bioprosthetic valves. PMID:24797148

  18. Double strand binding – single strand incision mechanism for human flap endonuclease: implications for the superfamily

    PubMed Central

    Tsutakawa, Susan E.; Tainer, John A.

    2012-01-01

    Detailed structural, mutational, and biochemical analyses of human FEN1/DNA complexes have revealed the mechanism for recognition of 5′ flaps formed during lagging strand replication and DNA repair. FEN1 processes 5′ flaps through a previously unknown, but structurally elegant double-stranded (ds) recognition/single stranded (ss) incision mechanism that both selects for 5′ flaps and selects against ss DNA or RNA, intact dsDNA, and 3′ flaps. Two major DNA binding interfaces, including a K+ bridge between the DNA and the H2TH motif, are spaced one helical turn apart and together select for substrates with dsDNA. A conserved helical gateway and a helical cap protects the two-metal active site and selects for ss flaps with free termini. Structures of substrate and product reveal an unusual step between binding substrate and incision that involves a double base unpairing with incision occurring in the resulting unpaired DNA or RNA. Ordering of the active site requires a disorder-to-order transition induced by binding of an unpaired 3′ flap, which ensures that the product is ligatable. Comparison with FEN superfamily members, including XPG, EXO1, and GEN1, identifies superfamily motifs such as the helical gateway that select for ss-dsDNA junctions and provides key biological insights into nuclease specificity and regulation. PMID:22244820

  19. Saliva of Lygus lineolaris digests double stranded ribonucleic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prospects for development of highly specific pesticides based on double stranded ribonucleic acid have been a recent focus of scientific research. Creative applications have been proposed and demonstrated. However, not all insects are sensitive to double stranded RNA (dsRNA) gene knockdown effec...

  20. Relationship between marine mammal stranding events and offshore earthquakes

    NASA Astrophysics Data System (ADS)

    Grant, Rachel; Savirina, Anna; Hoppit, Will

    2014-05-01

    The causes of marine mammal stranding events are largely unknown, but may relate to ocean currents, severe weather, anthropogenic noise pollution, and other factors. Large stranding events have been suggested to occur as a result of offshore earthquakes but there is little evidence as yet to support this hypothesis. Stranding events occur in hotspots, which are sometimes areas of high seismic activity, such as Taiwan, and other times, in areas that are removed from seismic zones, such as Cape Cod. We analyse a large and robust dataset of marine mammal stranding data collected off the coast of Washington and Oregon from 1999 to 2010, to look for statistical connections to offshore earthquakes. We looked forward, as well as backward in time from significant seismic events, to ascertain whether stranding occurrences, if connected to earthquakes, are a result of the earthquake preparation period or the earthquake itself. Possible mechanisms are discussed.

  1. Computing in mammalian cells with nucleic acid strand exchange

    NASA Astrophysics Data System (ADS)

    Groves, Benjamin; Chen, Yuan-Jyue; Zurla, Chiara; Pochekailov, Sergii; Kirschman, Jonathan L.; Santangelo, Philip J.; Seelig, Georg

    2016-03-01

    DNA strand displacement has been widely used for the design of molecular circuits, motors, and sensors in cell-free settings. Recently, it has been shown that this technology can also operate in biological environments, but capabilities remain limited. Here, we look to adapt strand displacement and exchange reactions to mammalian cells and report DNA circuitry that can directly interact with a native mRNA. We began by optimizing the cellular performance of fluorescent reporters based on four-way strand exchange reactions and identified robust design principles by systematically varying the molecular structure, chemistry and delivery method. Next, we developed and tested AND and OR logic gates based on four-way strand exchange, demonstrating the feasibility of multi-input logic. Finally, we established that functional siRNA could be activated through strand exchange, and used native mRNA as programmable scaffolds for co-localizing gates and visualizing their operation with subcellular resolution.

  2. Computing in mammalian cells with nucleic acid strand exchange

    PubMed Central

    Pochekailov, Sergii; Kirschman, Jonathan L.; Santangelo, Philip J.; Seelig, Georg

    2015-01-01

    DNA strand displacement has been widely used for the design of molecular circuits, motors, and sensors in cell-free settings. Recently, it has been shown that this technology can also operate in biological environments, but capabilities remain limited. Here, we look to adapt strand displacement and exchange reactions to mammalian cells and report DNA circuitry that can directly interact with a native mRNA. We began by optimizing the cellular performance of fluorescent reporters based on four-way strand exchange reactions and identified robust design principles by systematically varying the molecular structure, chemistry and delivery method. Next, we developed and tested AND and OR logic gates based on four-way strand exchange, demonstrating the feasibility of multi-input logic. Finally, we established that functional siRNA could be activated through strand exchange, and used native mRNA as programmable scaffolds for co-localizing gates and visualizing their operation with subcellular resolution. PMID:26689378

  3. Coccidioidomycosis and other systemic mycoses of marine mammals stranding along the central California, USA coast: 1998-2012.

    PubMed

    Huckabone, Sara E; Gulland, Frances M D; Johnson, Suzanne M; Colegrove, Kathleen M; Dodd, Erin M; Pappagianis, Demosthenes; Dunkin, Robin C; Casper, David; Carlson, Erin L; Sykes, Jane E; Meyer, Weiland; Miller, Melissa A

    2015-04-01

    A wide range of systemic mycoses have been reported from captive and wild marine mammals from North America. Examples include regionally endemic pathogens such as Coccidioides and Blastomyces spp., and novel pathogens like Cryptococcus gattii, which appear may have been introduced to North America by humans. Stranding and necropsy data were analyzed from three marine mammal stranding and response facilities on the central California coast to assess the prevalence, host demographics, and lesion distribution of systemic mycoses affecting locally endemic marine mammals. Between 1 January 1998 and 30 June 2012, >7,000 stranded marine mammals were necropsied at the three facilities. Necropsy and histopathology records were reviewed to identify cases of locally invasive or systemic mycoses and determine the nature and distribution of fungal lesions. Forty-one animals (0.6%) exhibited cytological, culture- or histologically confirmed locally invasive or systemic mycoses: 36 had coccidioidomycosis, two had zygomycosis, two had cryptococcosis, and one was systemically infected with Scedosporium apiospermum (an Ascomycota). Infected animals included 18 California sea lions (Zalophus californianus), 20 southern sea otters (Enhydra lutris nereis), two Pacific harbor seals (Phoca vitulina richardsi), one Dall's porpoise (Phocoenoides dalli), and one northern elephant seal (Mirounga angustirostris). Coccidioidomycosis was reported from 15 sea lions, 20 sea otters, and one harbor seal, confirming that Coccidioides spp. is the most common pathogen causing systemic mycosis in marine mammals stranding along the central California coast. We also report the first confirmation of C. gattii infection in a wild marine mammal from California and the first report of coccidioidomycosis in a wild harbor seal. Awareness of these pathogenic fungi during clinical care and postmortem examination is an important part of marine mammal population health surveillance and human health protection

  4. Coccidioidomycosis and other systemic mycoses of marine mammals stranding along the central California, USA coast: 1998-2012.

    PubMed

    Huckabone, Sara E; Gulland, Frances M D; Johnson, Suzanne M; Colegrove, Kathleen M; Dodd, Erin M; Pappagianis, Demosthenes; Dunkin, Robin C; Casper, David; Carlson, Erin L; Sykes, Jane E; Meyer, Weiland; Miller, Melissa A

    2015-04-01

    A wide range of systemic mycoses have been reported from captive and wild marine mammals from North America. Examples include regionally endemic pathogens such as Coccidioides and Blastomyces spp., and novel pathogens like Cryptococcus gattii, which appear may have been introduced to North America by humans. Stranding and necropsy data were analyzed from three marine mammal stranding and response facilities on the central California coast to assess the prevalence, host demographics, and lesion distribution of systemic mycoses affecting locally endemic marine mammals. Between 1 January 1998 and 30 June 2012, >7,000 stranded marine mammals were necropsied at the three facilities. Necropsy and histopathology records were reviewed to identify cases of locally invasive or systemic mycoses and determine the nature and distribution of fungal lesions. Forty-one animals (0.6%) exhibited cytological, culture- or histologically confirmed locally invasive or systemic mycoses: 36 had coccidioidomycosis, two had zygomycosis, two had cryptococcosis, and one was systemically infected with Scedosporium apiospermum (an Ascomycota). Infected animals included 18 California sea lions (Zalophus californianus), 20 southern sea otters (Enhydra lutris nereis), two Pacific harbor seals (Phoca vitulina richardsi), one Dall's porpoise (Phocoenoides dalli), and one northern elephant seal (Mirounga angustirostris). Coccidioidomycosis was reported from 15 sea lions, 20 sea otters, and one harbor seal, confirming that Coccidioides spp. is the most common pathogen causing systemic mycosis in marine mammals stranding along the central California coast. We also report the first confirmation of C. gattii infection in a wild marine mammal from California and the first report of coccidioidomycosis in a wild harbor seal. Awareness of these pathogenic fungi during clinical care and postmortem examination is an important part of marine mammal population health surveillance and human health protection

  5. Invasive Prenatal Testing

    PubMed Central

    Hunter, A.

    1988-01-01

    Invasive prenatal diagnosis is a major diagnostic tool which is used in modern obstetrical care. A synopsis of these techniques is provided to assist the family practitioner in providing this information to his patients. PMID:21253097

  6. Quantitative cooling histories from stranded diffusion profiles

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Cherniak, D. J.

    2015-06-01

    Stranded elemental or isotopic diffusion profiles in geological materials have the potential to reveal information on the thermal history of the host sample. In the specific case of a concentration step that is established at high temperature, the extent of diffusive relaxation during cooling depends on the details of the cooling path and the Arrhenius diffusion law of the species of interest: In principle, a measured profile in a sample can provide quantitative information on the nature of the cooling path if the diffusion law is known. Using a combination of mathematics and numerical simulations, we derive a simple relationship describing the extent of profile relaxation (as gauged by the slope S 0 of a diffusion profile) as a function of the initial temperature ( T i) and cooling rate () of the system and the activation energy ( E a) and pre-exponential factor ( D 0) for diffusion: The initial temperature T i is expressed in K, is in °/s, D 0 is in m2/s, and E a is in kJ/mol. The slope of the profile of interest can be estimated either at the midpoint of an interdiffusion profile or at a crystal margin. In the former case, concentrations are normalized to a difference of 100 between the upper (=100) and lower (=0) initial concentration plateaus. For profiles at crystal margins, the normalization range is 0 to 50. The equation above applies equally well to linear and exponential cooling paths because the extent of relaxation indicated by S 0 is essentially the same for a given linear cooling path and an exponential one characterized by the same initial cooling rate. Cooling from the top of parabolic T- t "dome" results in more extensive profile relaxation; this is also well described by the above equation if the leading constant 2.504 is changed to 2.165. If S 0 of a stranded profile has been characterized in the laboratory, and if the Arrhenius law of the diffusant is known, the above equation can be solved uniquely for one of the cooling path parameters ( T i

  7. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall.

    PubMed

    Yu, Chuanhe; Gan, Haiyun; Han, Junhong; Zhou, Zhi-Xiong; Jia, Shaodong; Chabes, Andrei; Farrugia, Gianrico; Ordog, Tamas; Zhang, Zhiguo

    2014-11-20

    In eukaryotic cells, DNA replication proceeds with continuous synthesis of leading-strand DNA and discontinuous synthesis of lagging-strand DNA. Here we describe a method, eSPAN (enrichment and sequencing of protein-associated nascent DNA), which reveals the genome-wide association of proteins with leading and lagging strands of DNA replication forks. Using this approach in budding yeast, we confirm the strand specificities of DNA polymerases delta and epsilon and show that the PCNA clamp is enriched at lagging strands compared with leading-strand replication. Surprisingly, at stalled forks, PCNA is unloaded specifically from lagging strands. PCNA unloading depends on the Elg1-containing alternative RFC complex, ubiquitination of PCNA, and the checkpoint kinases Mec1 and Rad53. Cells deficient in PCNA unloading exhibit increased chromosome breaks. Our studies provide a tool for studying replication-related processes and reveal a mechanism whereby checkpoint kinases regulate strand-specific unloading of PCNA from stalled replication forks to maintain genome stability.

  8. Parasites and marine invasions

    USGS Publications Warehouse

    Torchin, M.E.; Lafferty, K.D.; Kuris, A.M.

    2002-01-01

    Introduced marine species are a major environmental and economic problem. The rate of these biological invasions has substantially increased in recent years due to the globalization of the world's economies. The damage caused by invasive species is often a result of the higher densities and larger sizes they attain compared to where they are native. A prominent hypothesis explaining the success of introduced species is that they are relatively free of the effects of natural enemies. Most notably, they may encounter fewer parasites in their introduced range compared to their native range. Parasites are ubiquitous and pervasive in marine systems, yet their role in marine invasions is relatively unexplored. Although data on parasites of marine organisms exist, the extent to which parasites can mediate marine invasions, or the extent to which invasive parasites and pathogens are responsible for infecting or potentially decimating native marine species have not been examined. In this review, we present a theoretical framework to model invasion success and examine the evidence for a relationship between parasite presence and the success of introduced marine species. For this, we compare the prevalence and species richness of parasites in several introduced populations of marine species with populations where they are native. We also discuss the potential impacts of introduced marine parasites on native ecosystems.

  9. Recombination in Eukaryotic Single Stranded DNA Viruses

    PubMed Central

    Martin, Darren P.; Biagini, Philippe; Lefeuvre, Pierre; Golden, Michael; Roumagnac, Philippe; Varsani, Arvind

    2011-01-01

    Although single stranded (ss) DNA viruses that infect humans and their domesticated animals do not generally cause major diseases, the arthropod borne ssDNA viruses of plants do, and as a result seriously constrain food production in most temperate regions of the world. Besides the well known plant and animal-infecting ssDNA viruses, it has recently become apparent through metagenomic surveys of ssDNA molecules that there also exist large numbers of other diverse ssDNA viruses within almost all terrestrial and aquatic environments. The host ranges of these viruses probably span the tree of life and they are likely to be important components of global ecosystems. Various lines of evidence suggest that a pivotal evolutionary process during the generation of this global ssDNA virus diversity has probably been genetic recombination. High rates of homologous recombination, non-homologous recombination and genome component reassortment are known to occur within and between various different ssDNA virus species and we look here at the various roles that these different types of recombination may play, both in the day-to-day biology, and in the longer term evolution, of these viruses. We specifically focus on the ecological, biochemical and selective factors underlying patterns of genetic exchange detectable amongst the ssDNA viruses and discuss how these should all be considered when assessing the adaptive value of recombination during ssDNA virus evolution. PMID:21994803

  10. A double-stranded DNA rotaxane

    NASA Astrophysics Data System (ADS)

    Ackermann, Damian; Schmidt, Thorsten L.; Hannam, Jeffrey S.; Purohit, Chandra S.; Heckel, Alexander; Famulok, Michael

    2010-06-01

    Mechanically interlocked molecules such as rotaxanes and catenanes have potential as components of molecular machinery. Rotaxanes consist of a dumb-bell-shaped molecule encircled by a macrocycle that can move unhindered along the axle, trapped by bulky stoppers. Previously, rotaxanes have been made from a variety of molecules, but not from DNA. Here, we report the design, assembly and characterization of rotaxanes in which both the dumb-bell-shaped molecule and the macrocycle are made of double-stranded DNA, and in which the axle of the dumb-bell is threaded through the macrocycle by base pairing. The assembly involves the formation of pseudorotaxanes, in which the macrocycle and the axle are locked together by hybridization. Ligation of stopper modules to the axle leads to the characteristic dumb-bell topology. When an oligonucleotide is added to release the macrocycle from the axle, the pseudorotaxanes are either converted to mechanically stable rotaxanes, or they disassemble by means of a slippage mechanism to yield a dumb-bell and a free macrocycle. Our DNA rotaxanes allow the fields of mechanically interlocked molecules and DNA nanotechnology to be combined, thus opening new possibilities for research into molecular machines and synthetic biology.

  11. Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA

    PubMed Central

    Moreno, Pedro M. D.; Geny, Sylvain; Pabon, Y. Vladimir; Bergquist, Helen; Zaghloul, Eman M.; Rocha, Cristina S. J.; Oprea, Iulian I.; Bestas, Burcu; Andaloussi, Samir EL; Jørgensen, Per T.; Pedersen, Erik B.; Lundin, Karin E.; Zain, Rula; Wengel, Jesper; Smith, C. I. Edvard

    2013-01-01

    In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasion into duplex DNA (DSI). We thus report on the development of a clamp type of LNA ON—bisLNA—with capacity to bind and invade into supercoiled double-stranded DNA. The bisLNA links a triplex-forming, Hoogsteen-binding, targeting arm with a strand-invading Watson–Crick binding arm. Optimization was carried out by varying the number and location of LNA nucleotides and the length of the triplex-forming versus strand-invading arms. Single-strand regions in target duplex DNA were mapped using chemical probing. By combining design and increase in LNA content, it was possible to achieve a 100-fold increase in potency with 30% DSI at 450 nM using a bisLNA to plasmid ratio of only 21:1. Although this first conceptual report does not address the utility of bisLNA for the targeting of DNA in a chromosomal context, it shows bisLNA as a promising candidate for interfering also with cellular genes. PMID:23345620

  12. Fluid mechanics of DNA double-strand filter elution.

    PubMed Central

    Rudinger, George; Blazek, Ed Robert

    2002-01-01

    Measurement of infrequent DNA double-strand breaks (DSB) in mammalian cells is essential for the understanding of cell damage by ionizing radiation and many DNA-reactive drugs. One of the most important assays for measuring DSB in cellular DNA is filter elution. This study is an attempt to determine whether standard concepts of fluid mechanics can yield a self-consistent model of this process. Major assumptions of the analysis are reptation through a channel formed by surrounding strands, with only strand ends captured by filter pores. Both viscosity and entanglement with surrounding strands are considered to determine the resistance to this motion. One important result is that the average elution time of a strand depends not only on its length, but also on the size distribution of the surrounding strands. This model is consistent with experimental observations, such as the dependence of elution kinetics upon radiation dose, but independence from the size of the DNA sample up to a critical filter loading, and possible overlap of elution times for strands of different length. It indicates how the dependence of elution time on the flow rate could reveal the relative importance of viscous and entanglement resistance, and also predicts the consequences of using different filters. PMID:11751292

  13. Minimally invasive procedures

    PubMed Central

    Baltayiannis, Nikolaos; Michail, Chandrinos; Lazaridis, George; Anagnostopoulos, Dimitrios; Baka, Sofia; Mpoukovinas, Ioannis; Karavasilis, Vasilis; Lampaki, Sofia; Papaiwannou, Antonis; Karavergou, Anastasia; Kioumis, Ioannis; Pitsiou, Georgia; Katsikogiannis, Nikolaos; Tsakiridis, Kosmas; Rapti, Aggeliki; Trakada, Georgia; Zissimopoulos, Athanasios; Zarogoulidis, Konstantinos

    2015-01-01

    Minimally invasive procedures, which include laparoscopic surgery, use state-of-the-art technology to reduce the damage to human tissue when performing surgery. Minimally invasive procedures require small “ports” from which the surgeon inserts thin tubes called trocars. Carbon dioxide gas may be used to inflate the area, creating a space between the internal organs and the skin. Then a miniature camera (usually a laparoscope or endoscope) is placed through one of the trocars so the surgical team can view the procedure as a magnified image on video monitors in the operating room. Specialized equipment is inserted through the trocars based on the type of surgery. There are some advanced minimally invasive surgical procedures that can be performed almost exclusively through a single point of entry—meaning only one small incision, like the “uniport” video-assisted thoracoscopic surgery (VATS). Not only do these procedures usually provide equivalent outcomes to traditional “open” surgery (which sometimes require a large incision), but minimally invasive procedures (using small incisions) may offer significant benefits as well: (I) faster recovery; (II) the patient remains for less days hospitalized; (III) less scarring and (IV) less pain. In our current mini review we will present the minimally invasive procedures for thoracic surgery. PMID:25861610

  14. Minimally invasive pancreatic surgery.

    PubMed

    Yiannakopoulou, E

    2015-12-01

    Minimally invasive pancreatic surgery is feasible and safe. Laparoscopic distal pancreatectomy should be widely adopted for benign lesions of the pancreas. Laparoscopic pancreaticoduodenectomy, although technically demanding, in the setting of pancreatic ductal adenocarcinoma has a number of advantages including shorter hospital stay, faster recovery, allowing patients to recover in a timelier manner and pursue adjuvant treatment options. Furthermore, it seems that progression-free survival is longer in patients undergoing laparoscopic pancreaticoduodenectomy in comparison with those undergoing open pancreaticoduodenectomy. Minimally invasive middle pancreatectomy seems appropriate for benign or borderline tumors of the neck of the pancreas. Technological advances including intraoperative ultrasound and intraoperative fluorescence imaging systems are expected to facilitate the wide adoption of minimally invasive pancreatic surgery. Although, the oncological outcome seems similar with that of open surgery, there are still concerns, as the majority of relevant evidence comes from retrospective studies. Large multicenter randomized studies comparing laparoscopic with open pancreatectomy as well as robotic assisted with both open and laparoscopic approaches are needed. Robotic approach could be possibly shown to be less invasive than conventional laparoscopic approach through the less traumatic intra-abdominal handling of tissues. In addition, robotic approach could enable the wide adoption of the technique by surgeon who is not that trained in advanced laparoscopic surgery. A putative clinical benefit of minimally invasive pancreatic surgery could be the attenuated surgical stress response leading to reduced morbidity and mortality as well as lack of the detrimental immunosuppressive effect especially for the oncological patients. PMID:26530291

  15. Alien invasive birds.

    PubMed

    Brochier, B; Vangeluwe, D; van den Berg, T

    2010-08-01

    A bird species is regarded as alien invasive if it has been introduced, intentionally or accidentally, to a location where it did not previously occur naturally, becomes capable of establishing a breeding population without further intervention by humans, spreads and becomes a pest affecting the environment, the local biodiversity, the economy and/or society, including human health. European Starling (Sturnus vulgaris), Common Myna (Acridotheres tristis) and Red-vented Bulbul (Pycnonotus cafer) have been included on the list of '100 of the World's Worst Invasive Alien Species', a subset of the Global Invasive Species Database. The 'Delivering Alien Invasive Species Inventories for Europe' project has selected Canada Goose (Branta canadensis), Ruddy Duck (Oxyura jamaicensis), Rose-ringed Parakeet (Psittacula krameri) and Sacred Ibis (Threskiornis aethiopicus) as among 100 of the worst invasive species in Europe. For each of these alien bird species, the geographic range (native and introduced range), the introduction pathway, the general impacts and the management methods are presented. PMID:20919578

  16. Hairpin-dimer equilibrium of a parallel-stranded DNA hairpin: formation of a four-stranded complex.

    PubMed Central

    Dornberger, U; Behlke, J; Birch-Hirschfeld, E; Fritzsche, H

    1997-01-01

    The 24mer deoxyoligonucleotide 3'-d(T)10-5'-5'-d(C)4- d(A)10-3'(psC4) with an uncommon 5'-p-5'phosphodiester linkage was designed to enable the formation of a hairpin structure with unusual parallel-stranded stem. As reference hairpin structure with an antiparallel-stranded stem, the 24mer 5'-d(T)10-d(C)4-d(A)10-3'(apsC4) was chosen. The behaviour of these oligonucleotides at different temperatures, DNA and salt concentrations was characterised by a combination of UV melting, CD, CD melting, infrared and Raman spectroscopy, infrared melting and analytical ultracentrifugation. The parallel-stranded hairpin structure was found to be formed by psC4 only under conditions of low DNA concentration and low salt concentration. Increase of the NaCl concentration beyond the physiological level or high DNA concentration supports the formation of intermolecular multi-stranded structures. The experimental data are in agreement with a four-stranded complex formed by two molecules of psC4. The base pairing model of this asymmetric four-stranded complex is based on the pyrimidine motif of a triple helix with two bifurcated hydrogen bonds at the O4 of the thymine each directed towards one of the amino protons of both adenines. In contrast, the reference oligonucleotide apsC4 forms only an antiparallel-stranded hairpin under all experimental conditions. PMID:9016633

  17. Hairpin-dimer equilibrium of a parallel-stranded DNA hairpin: formation of a four-stranded complex.

    PubMed

    Dornberger, U; Behlke, J; Birch-Hirschfeld, E; Fritzsche, H

    1997-02-15

    The 24mer deoxyoligonucleotide 3'-d(T)10-5'-5'-d(C)4- d(A)10-3'(psC4) with an uncommon 5'-p-5'phosphodiester linkage was designed to enable the formation of a hairpin structure with unusual parallel-stranded stem. As reference hairpin structure with an antiparallel-stranded stem, the 24mer 5'-d(T)10-d(C)4-d(A)10-3'(apsC4) was chosen. The behaviour of these oligonucleotides at different temperatures, DNA and salt concentrations was characterised by a combination of UV melting, CD, CD melting, infrared and Raman spectroscopy, infrared melting and analytical ultracentrifugation. The parallel-stranded hairpin structure was found to be formed by psC4 only under conditions of low DNA concentration and low salt concentration. Increase of the NaCl concentration beyond the physiological level or high DNA concentration supports the formation of intermolecular multi-stranded structures. The experimental data are in agreement with a four-stranded complex formed by two molecules of psC4. The base pairing model of this asymmetric four-stranded complex is based on the pyrimidine motif of a triple helix with two bifurcated hydrogen bonds at the O4 of the thymine each directed towards one of the amino protons of both adenines. In contrast, the reference oligonucleotide apsC4 forms only an antiparallel-stranded hairpin under all experimental conditions.

  18. OVERVIEW OF AMERICAN BRASS BUFFALO PLANT FROM ROOF OF STRAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF AMERICAN BRASS BUFFALO PLANT FROM ROOF OF STRAND ANNEALING TOWER, INCLUDING ORIGINAL BRASS MILL (1906-7,1911) TUBE MILL (1915), COPPER MILL (1921). - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  19. OVERVIEW OF AMERICAN BRASS BUFFALO PLANT FROM ROOF OF STRAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF AMERICAN BRASS BUFFALO PLANT FROM ROOF OF STRAND ANNEALING TOWER, INCLUDING CASTING SHOP AND BAG HOUSE (CENTER-LEFT) AND PORTION OF REROLL BAY (R). VIEW LOOKING SOUTHWEST. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  20. Programmable energy landscapes for kinetic control of DNA strand displacement.

    PubMed

    Machinek, Robert R F; Ouldridge, Thomas E; Haley, Natalie E C; Bath, Jonathan; Turberfield, Andrew J

    2014-11-10

    DNA is used to construct synthetic systems that sense, actuate, move and compute. The operation of many dynamic DNA devices depends on toehold-mediated strand displacement, by which one DNA strand displaces another from a duplex. Kinetic control of strand displacement is particularly important in autonomous molecular machinery and molecular computation, in which non-equilibrium systems are controlled through rates of competing processes. Here, we introduce a new method based on the creation of mismatched base pairs as kinetic barriers to strand displacement. Reaction rate constants can be tuned across three orders of magnitude by altering the position of such a defect without significantly changing the stabilities of reactants or products. By modelling reaction free-energy landscapes, we explore the mechanistic basis of this control mechanism. We also demonstrate that oxDNA, a coarse-grained model of DNA, is capable of accurately predicting and explaining the impact of mismatches on displacement kinetics.

  1. DNA nanotechnology. Programming colloidal phase transitions with DNA strand displacement.

    PubMed

    Rogers, W Benjamin; Manoharan, Vinothan N

    2015-02-01

    DNA-grafted nanoparticles have been called "programmable atom-equivalents": Like atoms, they form three-dimensional crystals, but unlike atoms, the particles themselves carry information (the sequences of the grafted strands) that can be used to "program" the equilibrium crystal structures. We show that the programmability of these colloids can be generalized to the full temperature-dependent phase diagram, not just the crystal structures themselves. We add information to the buffer in the form of soluble DNA strands designed to compete with the grafted strands through strand displacement. Using only two displacement reactions, we program phase behavior not found in atomic systems or other DNA-grafted colloids, including arbitrarily wide gas-solid coexistence, reentrant melting, and even reversible transitions between distinct crystal phases. PMID:25657244

  2. Background meeting and technology demonstration: Chromium electroplating of superconductor strand

    SciTech Connect

    1995-05-01

    A meeting concerned with electroplating copper onto superconducting wires was held. Topics of discussion were concerned with the market, strand cleanliness, and an improved rinsing system for the process.

  3. DNA nanotechnology. Programming colloidal phase transitions with DNA strand displacement.

    PubMed

    Rogers, W Benjamin; Manoharan, Vinothan N

    2015-02-01

    DNA-grafted nanoparticles have been called "programmable atom-equivalents": Like atoms, they form three-dimensional crystals, but unlike atoms, the particles themselves carry information (the sequences of the grafted strands) that can be used to "program" the equilibrium crystal structures. We show that the programmability of these colloids can be generalized to the full temperature-dependent phase diagram, not just the crystal structures themselves. We add information to the buffer in the form of soluble DNA strands designed to compete with the grafted strands through strand displacement. Using only two displacement reactions, we program phase behavior not found in atomic systems or other DNA-grafted colloids, including arbitrarily wide gas-solid coexistence, reentrant melting, and even reversible transitions between distinct crystal phases.

  4. 215. Dennis Hill, Photographer May 1998 DETAIL VIEW OF STRAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    215. Dennis Hill, Photographer May 1998 DETAIL VIEW OF STRAND SHOES AND STORM CABLE EYE BARS IN YERBA BUENA ANCHORAGE, FACING EAST. - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  5. Over-invasion by functionally equivalent invasive species.

    PubMed

    Russell, James C; Sataruddin, Nurul S; Heard, Allison D

    2014-08-01

    Multiple invasive species have now established at most locations around the world, and the rate of new species invasions and records of new invasive species continue to grow. Multiple invasive species interact in complex and unpredictable ways, altering their invasion success and impacts on biodiversity. Incumbent invasive species can be replaced by functionally similar invading species through competitive processes; however the generalized circumstances leading to such competitive displacement have not been well investigated. The likelihood of competitive displacement is a function of the incumbent advantage of the resident invasive species and the propagule pressure of the colonizing invasive species. We modeled interactions between populations of two functionally similar invasive species and indicated the circumstances under which dominance can be through propagule pressure and incumbent advantage. Under certain circumstances, a normally subordinate species can be incumbent and reject a colonizing dominant species, or successfully colonize in competition with a dominant species during simultaneous invasion. Our theoretical results are supported by empirical studies of the invasion of islands by three invasive Rattus species. Competitive displacement is prominent in invasive rats and explains the replacement of R. exulans on islands subsequently invaded by European populations of R. rattus and R. norvegicus. These competition outcomes between invasive species can be found in a broad range of taxa and biomes, and are likely to become more common. Conservation management must consider that removing an incumbent invasive species may facilitate invasion by another invasive species. Under very restricted circumstances of dominant competitive ability but lesser impact, competitive displacement may provide a novel method of biological control.

  6. Molecular architecture of tailed double-stranded DNA phages

    PubMed Central

    Fokine, Andrei; Rossmann, Michael G

    2014-01-01

    The tailed double-stranded DNA bacteriophages, or Caudovirales, constitute ~96% of all the known phages. Although these phages come in a great variety of sizes and morphology, their virions are mainly constructed of similar molecular building blocks via similar assembly pathways. Here we review the structure of tailed double-stranded DNA bacteriophages at a molecular level, emphasizing the structural similarity and common evolutionary origin of proteins that constitute these virions. PMID:24616838

  7. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis

    SciTech Connect

    Pozo-Yauner, Luis del; Wall, Jonathan S.; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L.; Pérez Carreón, Julio I.; and others

    2014-01-10

    Highlights: •We evaluated the impact of mutations in the N-terminal strand of 6aJL2 protein. •Mutations destabilized the protein in a position-dependent manner. •Destabilizing mutations accelerated the fibrillogenesis by shortening the lag time. •The effect on the kinetic of fibril elongation by seeding was of different nature. •The N-terminal strand is buried in the fibrillar state of 6aJL2 protein. -- Abstract: It has been suggested that the N-terminal strand of the light chain variable domain (V{sub L}) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V{sub L} protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.

  8. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand*

    PubMed Central

    Teasley, Daniel C.; Parajuli, Shankar; Nguyen, Mai; Moore, Hayley R.; Alspach, Elise; Lock, Ying Jie; Honaker, Yuchi; Saharia, Abhishek; Piwnica-Worms, Helen; Stewart, Sheila A.

    2015-01-01

    The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer. PMID:25922071

  9. Hearing loss in stranded odontocete dolphins and whales.

    PubMed

    Mann, David; Hill-Cook, Mandy; Manire, Charles; Greenhow, Danielle; Montie, Eric; Powell, Jessica; Wells, Randall; Bauer, Gordon; Cunningham-Smith, Petra; Lingenfelser, Robert; DiGiovanni, Robert; Stone, Abigale; Brodsky, Micah; Stevens, Robert; Kieffer, George; Hoetjes, Paul

    2010-01-01

    The causes of dolphin and whale stranding can often be difficult to determine. Because toothed whales rely on echolocation for orientation and feeding, hearing deficits could lead to stranding. We report on the results of auditory evoked potential measurements from eight species of odontocete cetaceans that were found stranded or severely entangled in fishing gear during the period 2004 through 2009. Approximately 57% of the bottlenose dolphins and 36% of the rough-toothed dolphins had significant hearing deficits with a reduction in sensitivity equivalent to severe (70-90 dB) or profound (>90 dB) hearing loss in humans. The only stranded short-finned pilot whale examined had profound hearing loss. No impairments were detected in seven Risso's dolphins from three different stranding events, two pygmy killer whales, one Atlantic spotted dolphin, one spinner dolphin, or a juvenile Gervais' beaked whale. Hearing impairment could play a significant role in some cetacean stranding events, and the hearing of all cetaceans in rehabilitation should be tested. PMID:21072206

  10. Characterization of strand exchange activity of yeast Rad51 protein.

    PubMed Central

    Namsaraev, E; Berg, P

    1997-01-01

    The Saccharomyces cerevisiae RAD51 gene product takes part in genetic recombination and repair of DNA double strand breaks. Rad51, like Escherichia coli RecA, catalyzes strand exchange between homologous circular single-stranded DNA (ssDNA) and linear double-stranded DNA (dsDNA) in the presence of ATP and ssDNA-binding protein. The formation of joint molecules between circular ssDNA and linear dsDNA is initiated at either the 5' or the 3' overhanging end of the complementary strand; joint molecules are formed only if the length of the overhanging end is more than 1 nucleotide. Linear dsDNAs with recessed complementary or blunt ends are not utilized. The polarity of strand exchange depends upon which end is used to initiate the formation of joint molecules. Joint molecules formed via the 5' end are processed by branch migration in the 3'-to-5' direction with respect to ssDNA, and joint molecules formed with a 3' end are processed in the opposite direction. PMID:9271413

  11. Elongation of discotic liquid crystal strands and lubricant effects.

    PubMed

    Bhattacharyya, Surjya Sarathi; Galerne, Yves

    2014-05-19

    After a short review on the physics of pulled threads and their mechanical properties, the paper reports and discusses the strand elongation of disordered columnar phases, hexagonal or lamella-columnar, of small molecules or polymers. The mechanical properties appear to be relevant to the length of the columns of molecules compared to the thread length, instead of the usual correlation length. If, taking the entanglement effect into account, the column length is short, the strand exhibits rather fluid-like properties that may even look nematic-like at the macroscopic scale. The Plateau-Rayleigh instability breaks the thread shortly thereafter. However, because the hydrodynamic objects are the columns instead of the molecules, the viscosity is anomalously large. The observations show that the strands in the columnar phases are made of filaments, or fibrils, which are bundles of columns of molecules. This explains the grooves and rings, which are observed on the antenna or bamboo-like strand profiles. On pulling a strand, the elongation stress eventually exceeds the plasticity threshold, thus breaking the columns and the filaments. As a result, cracks, more exactly, giant dislocations are formed. These change the strand thickness by steps of different birefringence colors. Interestingly, the addition of a solute may drastically change the effective viscosity of the columnar phase and its mechanical properties. Some solutes, such as alkanes, exhibit lubricant and detangling properties, whereas others such as triphenylene, are antilubricant. PMID:24302445

  12. A model capturing novel strand symmetries in bacterial DNA

    SciTech Connect

    Sobottka, Marcelo; Hart, Andrew G.

    2011-07-15

    Highlights: {yields} We propose a simple stochastic model to construct primitive DNA sequences. {yields} The model provide an explanation for Chargaff's second parity rule in primitive DNA sequences. {yields} The model is also used to predict a novel type of strand symmetry in primitive DNA sequences. {yields} We extend the results for bacterial DNA sequences and compare distributional properties intrinsic to the model to statistical estimates from 1049 bacterial genomes. {yields} We find out statistical evidences that the novel type of strand symmetry holds for bacterial DNA sequences. -- Abstract: Chargaff's second parity rule for short oligonucleotides states that the frequency of any short nucleotide sequence on a strand is approximately equal to the frequency of its reverse complement on the same strand. Recent studies have shown that, with the exception of organellar DNA, this parity rule generally holds for double-stranded DNA genomes and fails to hold for single-stranded genomes. While Chargaff's first parity rule is fully explained by the Watson-Crick pairing in the DNA double helix, a definitive explanation for the second parity rule has not yet been determined. In this work, we propose a model based on a hidden Markov process for approximating the distributional structure of primitive DNA sequences. Then, we use the model to provide another possible theoretical explanation for Chargaff's second parity rule, and to predict novel distributional aspects of bacterial DNA sequences.

  13. Red Tide Strands South African Rock Lobsters

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide.

    The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine.

    The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington

  14. Red Tide Strands South African Rock Lobsters

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide. The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine. The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra

  15. Minimally Invasive Anterolateral Ligament Reconstruction in the Setting of Anterior Cruciate Ligament Injury.

    PubMed

    Sonnery-Cottet, Bertrand; Barbosa, Nuno Camelo; Tuteja, Sanesh; Daggett, Matt; Kajetanek, Charles; Thaunat, Mathieu

    2016-02-01

    Recent evidence on the anatomy, function, and biomechanical properties of the anterolateral ligament has led to the recognition of the importance of this structure in the rotational control of the knee. This article describes a technique that allows for minimally invasive anterolateral ligament reconstruction as a complement to most techniques of anterior cruciate ligament reconstruction. A gracilis tendon autograft is harvested and prepared in a double-strand, inverted V-shaped graft. The graft is percutaneously placed through a femoral stab incision, and each strand is then passed deep to the iliotibial band, emerging through each tibial stab incision. After the femoral-end loop graft is fixed, the tibial fixation of each strand is performed in full extension for optimal isometry. PMID:27274456

  16. Early Primary Invasion Scientists

    ERIC Educational Resources Information Center

    Spellman, Katie V.; Villano, Christine P.

    2011-01-01

    "We really need to get the government involved," said one student, holding his graph up to USDA scientist Steve Seefeldt. Dr. Steve studies methods to control "invasive" plants, plants that have been introduced to an area by humans and have potential to spread rapidly and negatively affect ecosystems. The first grader and his classmates had become…

  17. Aquatic invasive species

    USGS Publications Warehouse

    Thorsteinson, Lyman

    2005-01-01

    Invasive species are plants or animals that are present in an ecosystem beyond their native range. They may have few natural controls in their new environment and proliferate. They can threaten native species and interfere with human activities. The Western Fisheries Research Center (WFRC) has been conducting research to understand how non-native species invade and affect ecosystems, thus aiding management efforts.

  18. BRG1 promotes the repair of DNA double-strand breaks by facilitating the replacement of RPA with RAD51

    PubMed Central

    Qi, Wenjing; Wang, Ruoxi; Chen, Hongyu; Wang, Xiaolin; Xiao, Ting; Boldogh, Istvan; Ba, Xueqing; Han, Liping; Zeng, Xianlu

    2015-01-01

    ABSTRACT DNA double-strand breaks (DSBs) are a type of lethal DNA damage. The repair of DSBs requires tight coordination between the factors modulating chromatin structure and the DNA repair machinery. BRG1, the ATPase subunit of the chromatin remodelling complex Switch/Sucrose non-fermentable (SWI/SNF), is often linked to tumorigenesis and genome instability, and its role in DSB repair remains largely unclear. In the present study, we show that BRG1 is recruited to DSB sites and enhances DSB repair. Using DR-GFP and EJ5-GFP reporter systems, we demonstrate that BRG1 facilitates homologous recombination repair rather than nonhomologous end-joining (NHEJ) repair. Moreover, the BRG1–RAD52 complex mediates the replacement of RPA with RAD51 on single-stranded DNA (ssDNA) to initiate DNA strand invasion. Loss of BRG1 results in a failure of RAD51 loading onto ssDNA, abnormal homologous recombination repair and enhanced DSB-induced lethality. Our present study provides a mechanistic insight into how BRG1, which is known to be involved in chromatin remodelling, plays a substantial role in the homologous recombination repair pathway in mammalian cells. PMID:25395584

  19. The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis

    SciTech Connect

    Poeschla, Eric

    2013-06-20

    Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient “central DNA flap” in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins, and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. - Highlights: • Two main functional models for HIV central plus strand synthesis have been proposed. • In one, a transient central DNA flap in the viral cDNA mediates HIV-1 nuclear import. • In the other, multiple kinetic consequences are emphasized. • One is defense against APOBEC3G, which deaminates single-stranded DNA. • Future questions pertain to antiviral restriction, uncoating and nuclear import.

  20. Microvascular invasion in hepatocellular carcinoma

    PubMed Central

    Ünal, Emre; İdilman, İlkay Sedakat; Akata, Deniz; Özmen, Mustafa Nasuh; Karçaaltıncaba, Muşturay

    2016-01-01

    Microvascular invasion is a crucial histopathologic prognostic factor for hepatocellular carcinoma. We reviewed the literature and aimed to draw attention to clinicopathologic and imaging findings that may predict the presence of microvascular invasion in hepatocellular carcinoma. Imaging findings suggesting microvascular invasion are disruption of capsule, irregular tumor margin, peritumoral enhancement, multifocal tumor, increased tumor size, and increased glucose metabolism on positron emission tomography-computed tomography. In the presence of typical findings, microvascular invasion may be predicted. PMID:26782155

  1. [Pathogenesis of invasive fungal infections].

    PubMed

    Garcia-Vidal, Carolina; Carratalà, Jordi

    2012-03-01

    Invasive fungal infections remain a life-threatening disease. The development of invasive fungal disease is dependent on multiple factors, such us colonization and efficient host immune response. We aimed to review the pathogenesis of invasive fungal infections, in particular, those caused by Candida and Aspergillus. For this we propose, to describe the fungal characteristics, to detail the host defence mechanisms against fungus and to analyse the host risk factors for invasive fungal infection.

  2. Stranding Events of Kogia Whales along the Brazilian Coast.

    PubMed

    Moura, Jailson F; Acevedo-Trejos, Esteban; Tavares, Davi C; Meirelles, Ana C O; Silva, Cristine P N; Oliveira, Larissa R; Santos, Roberta A; Wickert, Janaína C; Machado, Rodrigo; Siciliano, Salvatore; Merico, Agostino

    2016-01-01

    The genus Kogia, which comprises only two extant species, Kogia sima and Kogia breviceps, represents one of the least known groups of cetaceans in the global ocean. In some coastal regions, however, stranding events of these species have been relatively common over the last decades. Stranding provides the opportunity to investigate the biology of these cetaceans and to explore the epidemiological aspects associated with the mortality of the organisms found on the beach. A number of disturbances (including pelagic fisheries, chemical pollution, boat strikes, and noise pollution) have been confirmed to pose a particular threat to the Kogia species. However, no study has yet investigated potential relationships between environmental conditions and stranding events. Here we analyse how a collection of environmental, physical, and biological variables, such as wind, sea surface temperature (SST), water depth, and chlorophyll-a, correlate to Kogia stranding events along the Brazilian coast. The results of our statistical analyses suggest that K. sima is more likely found in warm tropical waters, which provide an explanation for the high frequency of stranding in northeastern Brazilian coast. In contrast, K. breviceps appears to have a preference for temperate and productive waters. Wind speed results to be also an important factor for predicting Kogia strandings in Brazilian coast. Additionally, literature information in combination with our own data and analyses of stomach contents confirms that oceanic cephalopods constitute the primary nutritional source of both Kogia species. By using the available information as a qualitative proxy for habitat preference and feeding ecology, our study provides a novel and comprehensive assessment of Kogia stranding data in relation to environmental conditions along the Brazilian coast. PMID:26730951

  3. Role of stranded gas in increasing global gas supplies

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2013-01-01

    This report synthesizes the findings of three regional studies in order to evaluate, at the global scale, the contribution that stranded gas resources can make to global natural gas supplies. Stranded gas, as defined for this study, is natural gas in discovered conventional gas and oil fields that is currently not commercially producible for either physical or economic reasons. The regional studies evaluated the cost of bringing the large volumes of undeveloped gas in stranded gas fields to selected markets. In particular, stranded gas fields of selected Atlantic Basin countries, north Africa, Russia, and central Asia are screened to determine whether the volumes are sufficient to meet Europe’s increasing demand for gas imports. Stranded gas fields in Russia, central Asia, Southeast Asia, and Australia are also screened to estimate development, production, and transport costs and corresponding gas volumes that could be supplied to Asian markets in China, India, Japan, and South Korea. The data and cost analysis presented here suggest that for the European market and the markets examined in Asia, the development of stranded gas provides a way to meet projected gas import demands for the 2020-to-2040 period. Although this is a reconnaissance-type appraisal, it is based on volumes of gas that are associated with individual identified fields. Individual field data were carefully examined. Some fields were not evaluated because current technology was insufficient or it appeared the gas was likely to be held off the export market. Most of the evaluated stranded gas can be produced and delivered to markets at costs comparable to historical prices. Moreover, the associated volumes of gas are sufficient to provide an interim supply while additional technologies are developed to unlock gas diffused in shale and hydrates or while countries transition to making a greater use of renewable energy sources.

  4. New Views on Strand Asymmetry in Insect Mitochondrial Genomes

    PubMed Central

    Wei, Shu-Jun; Shi, Min; Chen, Xue-Xin; Sharkey, Michael J.; van Achterberg, Cornelis; Ye, Gong-Yin; He, Jun-Hua

    2010-01-01

    Strand asymmetry in nucleotide composition is a remarkable feature of animal mitochondrial genomes. Understanding the mutation processes that shape strand asymmetry is essential for comprehensive knowledge of genome evolution, demographical population history and accurate phylogenetic inference. Previous studies found that the relative contributions of different substitution types to strand asymmetry are associated with replication alone or both replication and transcription. However, the relative contributions of replication and transcription to strand asymmetry remain unclear. Here we conducted a broad survey of strand asymmetry across 120 insect mitochondrial genomes, with special reference to the correlation between the signs of skew values and replication orientation/gene direction. The results show that the sign of GC skew on entire mitochondrial genomes is reversed in all species of three distantly related families of insects, Philopteridae (Phthiraptera), Aleyrodidae (Hemiptera) and Braconidae (Hymenoptera); the replication-related elements in the A+T-rich regions of these species are inverted, confirming that reversal of strand asymmetry (GC skew) was caused by inversion of replication origin; and finally, the sign of GC skew value is associated with replication orientation but not with gene direction, while that of AT skew value varies with gene direction, replication and codon positions used in analyses. These findings show that deaminations during replication and other mutations contribute more than selection on amino acid sequences to strand compositions of G and C, and that the replication process has a stronger affect on A and T content than does transcription. Our results may contribute to genome-wide studies of replication and transcription mechanisms. PMID:20856815

  5. Stranding Events of Kogia Whales along the Brazilian Coast

    PubMed Central

    Moura, Jailson F.; Acevedo-Trejos, Esteban; Tavares, Davi C.; Meirelles, Ana C. O.; Silva, Cristine P. N.; Oliveira, Larissa R.; Santos, Roberta A.; Wickert, Janaína C.; Machado, Rodrigo; Siciliano, Salvatore; Merico, Agostino

    2016-01-01

    The genus Kogia, which comprises only two extant species, Kogia sima and Kogia breviceps, represents one of the least known groups of cetaceans in the global ocean. In some coastal regions, however, stranding events of these species have been relatively common over the last decades. Stranding provides the opportunity to investigate the biology of these cetaceans and to explore the epidemiological aspects associated with the mortality of the organisms found on the beach. A number of disturbances (including pelagic fisheries, chemical pollution, boat strikes, and noise pollution) have been confirmed to pose a particular threat to the Kogia species. However, no study has yet investigated potential relationships between environmental conditions and stranding events. Here we analyse how a collection of environmental, physical, and biological variables, such as wind, sea surface temperature (SST), water depth, and chlorophyll-a, correlate to Kogia stranding events along the Brazilian coast. The results of our statistical analyses suggest that K. sima is more likely found in warm tropical waters, which provide an explanation for the high frequency of stranding in northeastern Brazilian coast. In contrast, K. breviceps appears to have a preference for temperate and productive waters. Wind speed results to be also an important factor for predicting Kogia strandings in Brazilian coast. Additionally, literature information in combination with our own data and analyses of stomach contents confirms that oceanic cephalopods constitute the primary nutritional source of both Kogia species. By using the available information as a qualitative proxy for habitat preference and feeding ecology, our study provides a novel and comprehensive assessment of Kogia stranding data in relation to environmental conditions along the Brazilian coast. PMID:26730951

  6. Stranding Events of Kogia Whales along the Brazilian Coast.

    PubMed

    Moura, Jailson F; Acevedo-Trejos, Esteban; Tavares, Davi C; Meirelles, Ana C O; Silva, Cristine P N; Oliveira, Larissa R; Santos, Roberta A; Wickert, Janaína C; Machado, Rodrigo; Siciliano, Salvatore; Merico, Agostino

    2016-01-01

    The genus Kogia, which comprises only two extant species, Kogia sima and Kogia breviceps, represents one of the least known groups of cetaceans in the global ocean. In some coastal regions, however, stranding events of these species have been relatively common over the last decades. Stranding provides the opportunity to investigate the biology of these cetaceans and to explore the epidemiological aspects associated with the mortality of the organisms found on the beach. A number of disturbances (including pelagic fisheries, chemical pollution, boat strikes, and noise pollution) have been confirmed to pose a particular threat to the Kogia species. However, no study has yet investigated potential relationships between environmental conditions and stranding events. Here we analyse how a collection of environmental, physical, and biological variables, such as wind, sea surface temperature (SST), water depth, and chlorophyll-a, correlate to Kogia stranding events along the Brazilian coast. The results of our statistical analyses suggest that K. sima is more likely found in warm tropical waters, which provide an explanation for the high frequency of stranding in northeastern Brazilian coast. In contrast, K. breviceps appears to have a preference for temperate and productive waters. Wind speed results to be also an important factor for predicting Kogia strandings in Brazilian coast. Additionally, literature information in combination with our own data and analyses of stomach contents confirms that oceanic cephalopods constitute the primary nutritional source of both Kogia species. By using the available information as a qualitative proxy for habitat preference and feeding ecology, our study provides a novel and comprehensive assessment of Kogia stranding data in relation to environmental conditions along the Brazilian coast.

  7. Invasive species and climate change

    USGS Publications Warehouse

    Middleton, Beth A.

    2006-01-01

    Invasive species challenge managers in their work of conserving and managing natural areas and are one of the most serious problems these managers face. Because invasive species are likely to spread in response to changes in climate, managers may need to change their approaches to invasive species management accordingly.

  8. Structure of the EMMPRIN N-terminal domain 1: Dimerization via [beta]-strand swapping

    SciTech Connect

    Luo, Jinquan; Teplyakov, Alexey; Obmolova, Galina; Malia, Thomas; Wu, Sheng-Jiun; Beil, Eric; Baker, Audrey; Swencki-Underwood, Bethany; Zhao, Yonghong; Sprenkle, Justin; Dixon, Ken; Sweet, Raymond; Gilliland, Gary L.

    2010-09-27

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as Hab18G, CD147, Basigin, M6, and neurothelin, is a membrane glycoprotein expressed on the surface of various cell types and many cancer cells. EMMPRIN stimulates adjacent fibroblasts and tumor cells to produce matrix metalloproteinases and plays an important role in tumor invasion and metastasis, angiogenesis, spermatogensis and fertilization, cell-cell adhesion and communication, and other biological processes (reviewed in Ref. 1 and references therein). It was demonstrated that the EMMPRIN extracellular domain (ECD), which structurally belongs to the IgG superfamily, can form homo-oligomers in a cis dependent manner and the N-terminal domain 1 (residues 22-101) was necessary and sufficient to mediate this interaction. The crystal structure of the ECD of recombinant human EMMPRIN (Hab18G/CD147) expressed in E. coli was reported at 2.8 {angstrom} resolution (Yu et al. 2008). The construct consists of residues 22-205 of the mature protein and has both an N-terminal IgC2 domain (ND1, residues 22-101) and a C-terminal IgC2 domain (ND2, residues 107-205). The two domains are joined by a five amino acid residue linker that constitutes a flexible hinge between the two domains. The crystal form has four copies of the molecule in the asymmetric unit, each of which has a different inter-domain angle that varies from 121{sup o} to 144{sup o}. The two domains each have a conserved disulfide bridge and both are comprised of two {beta}-sheets formed by strands EBA and GFCC, and DEBA and AGFCC for ND1 and ND2, respectively. Based on the crystal packing in this structure, the authors proposed that lateral packing between the two IgG domains of EMMPRIN ECD represents a potential mechanism for cell adhesion. Here we report the 2.0-{angstrom} crystal structure of the N-terminal domain of EMMPRIN ECD (ND1) expressed in mammalian cells. The overall structure of the domain is very similar to that in the full length

  9. Giant invasive prolactinomas

    SciTech Connect

    Murphy, F.Y.; Vesely, D.L.; Jordan, R.M.; Flanigan, S.; Kohler, P.O.

    1987-11-01

    Two of the largest prolactinomas ever documented that have been followed for nine and 10 years, respectively, demonstrate how aggressive prolactinomas may become and how difficult invasive prolactinomas are to treat. One of these prolactinomas invaded both internal auditory canals and simultaneously grew inferiorly, reducing the bony support of the skull and necessitating the patient to utilize both hands to hold his head up. The second patient's prolactinoma invaded the sphenoidal, ethmoidal, and cavernous sinuses. Both of these patients had neurosurgical debulking of their tumors followed by radiation therapy. Neither patient's prolactin levels decreased significantly during their first five years post-surgically, at which time bromocriptine was added. Since then, there has been a gradual lowering of serum prolactin levels and a decrease in the size of these tumors. These cases demonstrate that prolonged treatment and very large doses of bromocriptine may be necessary for tumor reduction in patients with invasive prolactinomas.

  10. DNA-directed mutations. Leading and lagging strand specificity

    NASA Technical Reports Server (NTRS)

    Sinden, R. R.; Hashem, V. I.; Rosche, W. A.

    1999-01-01

    The fidelity of replication has evolved to reproduce B-form DNA accurately, while allowing a low frequency of mutation. The fidelity of replication can be compromised, however, by defined order sequence DNA (dosDNA) that can adopt unusual or non B-DNA conformations. These alternative DNA conformations, including hairpins, cruciforms, triplex DNAs, and slipped-strand structures, may affect enzyme-template interactions that potentially lead to mutations. To analyze the effect of dosDNA elements on spontaneous mutagenesis, various mutational inserts containing inverted repeats or direct repeats were cloned in a plasmid containing a unidirectional origin of replication and a selectable marker for the mutation. This system allows for analysis of mutational events that are specific for the leading or lagging strands during DNA replication in Escherichia coli. Deletions between direct repeats, involving misalignment stabilized by DNA secondary structure, occurred preferentially on the lagging strand. Intermolecular strand switch events, correcting quasipalindromes to perfect inverted repeats, occurred preferentially during replication of the leading strand.

  11. An intercalation-locked parallel-stranded DNA tetraplex

    SciTech Connect

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    2015-01-27

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A base pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.

  12. An intercalation-locked parallel-stranded DNA tetraplex

    DOE PAGES

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    2015-01-27

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A base pairs betweenmore » adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less

  13. Heavy ion induced double strand breaks in bacteria and bacteriophages

    NASA Astrophysics Data System (ADS)

    Micke, U.; Schäfer, M.; Anton, A.; Horneck, G.; Bücker, H.

    DNA damage induced by heavy ions in bacterial cells and bacteriophages such as Bacillus subtilis, E. coli and Bacteriophage Tl were investigated by analyzing the double strand breaks in the chromosomal DNA. This kind of lesion is considered as one of the main reasons for lethal events. To analyze double strand breaks in long molecules of DNA - up to some Mbp in length - the technique of pulse field agarose gel electrophoresis has been used. This allows the detection of one double strand break per genome. Cell lysis and DNA isolation were performed in small agarose blocks directly. This procedure secured minimum DNA destruction by shearing forces. After running a gel, the DNA was stained with ethidium bromide. The light intensity of ethidium bromide fluorescence for both the outcoming (running) DNA and the remaining intact DNA were measured by scanning. The mean number of double strand breaks was calculated by determining the quotient of these intensities. Strand break induction after heavy ion and X-ray irradiation was compared.

  14. An intercalation-locked parallel-stranded DNA tetraplex

    PubMed Central

    Tripathi, Shailesh; Zhang, Daoning; Paukstelis, Paul J.

    2015-01-01

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5′-most A–A base pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures. PMID:25628357

  15. Proceedings of a Workshop on Antarctic Meteorite Stranding Surfaces

    NASA Technical Reports Server (NTRS)

    Cassidy, W. A. (Editor); Whillans, I. M. (Editor)

    1990-01-01

    The discovery of large numbers of meteorites on the Antarctic Ice Sheet is one of the most exciting developments in polar science in recent years. The meteorites are found on areas of ice called stranding surfaces. Because of the sudden availability of hundreds, and then thousands, of new meteorite specimens at these sites, the significance of the discovery of meteorite stranding surfaces in Antarctica had an immediate and profound impact on planetary science, but there is also in this discovery an enormous, largely unrealized potential to glaciology for records of climatic and ice sheet changes. The glaciological interest derives from the antiquity of the ice in meteorite stranding surfaces. This exposed ice covers a range of ages, probably between zero and more than 500,000 years. The Workshop on Antarctic Meteorite Stranding Surfaces was convened to explore this potential and to devise a course of action that could be recommended to granting agencies. The workshop recognized three prime functions of meteorite stranding surfaces. They provide: (1) A proxy record of climatic change (i.e., a long record of climatic change is probably preserved in the exposed ice stratigraphy); (2) A proxy record of ice volume change; and (3) A source of unique nonterrestrial material.

  16. Mass stranding of wedge-tailed shearwater chicks in Hawaii

    USGS Publications Warehouse

    Work, T.M.; Rameyer, R.A.

    1999-01-01

    Unusual numbers of wedge-tailed shearwater (Puffinus pacificus) chicks stranded on Oahu (Hawaii, USA) in 1994. Compared to healthy wedge-tailed shearwater (WTSW) chicks, stranded chicks were underweight, dehydrated, leukopenic, lymphopenic, eosinopenic, and heterophilic; some birds were toxemic and septic. Stranded chicks also were hypoglycemic and had elevated aspartate amino transferase levels. Most chicks apparently died from emaciation, dehydration, or bacteremia. Because many birds with bacteremia also had severe necrosis of the gastrointestinal (GI) mucosa associated with bacteria, we suspect the GI tract to be the source of disseminated bacterial infection. The identity of the bacteria was not confirmed. The daily number of chicks stranded was significantly related to average wind speeds, and the mortality coincided with the fledging period for WTSW. Strong southeasterly winds were a distinguishing meteorologic factor in 1994 and contributed to the distribution of stranded chicks on Oahu. More objective data on WTSW demographics would enhance future efforts to determine predisposing causes of WTSW wrecks and their effects on seabird colonies.

  17. Proceedings of a Workshop on Antarctic Meteorite Stranding Surfaces

    SciTech Connect

    Cassidy, W.A.; Whillans, I.M.

    1990-08-01

    The discovery of large numbers of meteorites on the Antarctic Ice Sheet is one of the most exciting developments in polar science in recent years. The meteorites are found on areas of ice called stranding surfaces. Because of the sudden availability of hundreds, and then thousands, of new meteorite specimens at these sites, the significance of the discovery of meteorite stranding surfaces in Antarctica had an immediate and profound impact on planetary science, but there is also in this discovery an enormous, largely unrealized potential to glaciology for records of climatic and ice sheet changes. The glaciological interest derives from the antiquity of the ice in meteorite stranding surfaces. This exposed ice covers a range of ages, probably between zero and more than 500,000 years. The Workshop on Antarctic Meteorite Stranding Surfaces was convened to explore this potential and to devise a course of action that could be recommended to granting agencies. The workshop recognized three prime functions of meteorite stranding surfaces. They provide: (1) A proxy record of climatic change (i.e., a long record of climatic change is probably preserved in the exposed ice stratigraphy); (2) A proxy record of ice volume change; and (3) A source of unique nonterrestrial material.

  18. [Emerging invasive fungal infections].

    PubMed

    Alvez, F; Figueras, C; Roselló, E

    2010-07-01

    The frequency and diversity of invasive fungal infections has changed over the last 25 years. The emergence of less common, but medically important fungi has increased, and the children at risk has expanded, with the inclusion of medical conditions such as cancer, mainly haematological malignancy or stem cell transplant, immunosuppressive therapy, prolonged neutropenia, and T-cell immunodeficiency. Among mould infections, fusariosis and phaeohyphomycosis (Dematiaceous fungi) have been increasingly reported in this group of patients. To successfully manage these challenging infections, it is imperative that paediatricians and sub-specialists remain aware of the optimal and timely diagnosis and therapeutic options. Unlike other common mycoses that cause human disease, there no simple antigen or serological tests available to detect these pathogens in tissue or blood. The outcome for these disseminate, and often refractory fungal infections in neutropenic patients and transplant recipients remains extremely poor, requiring early and aggressive therapy. Unfortunately there are no guidelines outlining the choices for optimal therapy in the treatment of paediatric invasive fungal infections do not exist, and on the other hand are limited paediatric data available comparing antifungal agents in children with proven, probable or suspected invasive fungal infection. The options for treatment rest mainly on some adult guidelines that comment on the treatment of these emerging and uncommon important fungi in children. Despite the sparse clinical trials available on treatment and its poor outcome, options for treatment of invasive fungal infections have increased with the advance of new antifungal agents, with improved tolerability and increased range of activity. The epidemiology, clinical manifestations, diagnosis and treatment of fusariosis and phaeohyphomycosis are discussed in this article.

  19. USGS invasive species solutions

    USGS Publications Warehouse

    Simpson, Annie

    2011-01-01

    Land managers must meet the invasive species challenge every day, starting with identification of problem species, then the collection of best practices for their control, and finally the implementation of a plan to remove the problem. At each step of the process, the availability of reliable information is essential to success. The U.S. Geological Survey (USGS) has developed a suite of resources for early detection and rapid response, along with data management and sharing.

  20. Minimally invasive periodontal therapy.

    PubMed

    Dannan, Aous

    2011-10-01

    Minimally invasive dentistry is a concept that preserves dentition and supporting structures. However, minimally invasive procedures in periodontal treatment are supposed to be limited within periodontal surgery, the aim of which is to represent alternative approaches developed to allow less extensive manipulation of surrounding tissues than conventional procedures, while accomplishing the same objectives. In this review, the concept of minimally invasive periodontal surgery (MIPS) is firstly explained. An electronic search for all studies regarding efficacy and effectiveness of MIPS between 2001 and 2009 was conducted. For this purpose, suitable key words from Medical Subject Headings on PubMed were used to extract the required studies. All studies are demonstrated and important results are concluded. Preliminary data from case cohorts and from many studies reveal that the microsurgical access flap, in terms of MIPS, has a high potential to seal the healing wound from the contaminated oral environment by achieving and maintaining primary closure. Soft tissues are mostly preserved and minimal gingival recession is observed, an important feature to meet the demands of the patient and the clinician in the esthetic zone. However, although the potential efficacy of MIPS in the treatment of deep intrabony defects has been proved, larger studies are required to confirm and extend the reported positive preliminary outcomes.

  1. Hop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis

    PubMed Central

    Cho, Hong-Rae; Kong, Yoon-Ju; Hong, Soo-Gil; Kim, Keun Pil

    2016-01-01

    During meiosis, exchange of DNA segments occurs between paired homologous chromosomes in order to produce recombinant chromosomes, helping to increase genetic diversity within a species. This genetic exchange process is tightly controlled by the eukaryotic RecA homologs Rad51 and Dmc1, which are involved in strand exchange of meiotic recombination, with Rad51 participating specifically in mitotic recombination. Meiotic recombination requires an interaction between homologous chromosomes to repair programmed double-strand breaks (DSBs). In this study, we investigated the budding yeast meiosis-specific proteins Hop2 and Sae3, which function in the Dmc1-dependent pathway. This pathway mediates the homology searching and strand invasion processes. Mek1 kinase participates in switching meiotic recombination from sister bias to homolog bias after DSB formation. In the absence of Hop2 and Sae3, DSBs were produced normally, but showed defects in the DSB-to-single-end invasion transition mediated by Dmc1 and auxiliary factors, and mutant strains failed to complete proper chromosome segregation. However, in the absence of Mek1 kinase activity, Rad51-dependent recombination progressed via sister bias in the hop2Δ or sae3Δ mutants, even in the presence of Dmc1. Thus, Hop2 and Sae3 actively modulate Dmc1-dependent recombination, effectively progressing homolog bias, a process requiring Mek1 kinase activation. PMID:27329041

  2. Hop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis.

    PubMed

    Cho, Hong-Rae; Kong, Yoon-Ju; Hong, Soo-Gil; Kim, Keun Pil

    2016-07-01

    During meiosis, exchange of DNA segments occurs between paired homologous chromosomes in order to produce recombinant chromosomes, helping to increase genetic diversity within a species. This genetic exchange process is tightly controlled by the eukaryotic RecA homologs Rad51 and Dmc1, which are involved in strand exchange of meiotic recombination, with Rad51 participating specifically in mitotic recombination. Meiotic recombination requires an interaction between homologous chromosomes to repair programmed double-strand breaks (DSBs). In this study, we investigated the budding yeast meiosis-specific proteins Hop2 and Sae3, which function in the Dmc1-dependent pathway. This pathway mediates the homology searching and strand invasion processes. Mek1 kinase participates in switching meiotic recombination from sister bias to homolog bias after DSB formation. In the absence of Hop2 and Sae3, DSBs were produced normally, but showed defects in the DSB-to-single-end invasion transition mediated by Dmc1 and auxiliary factors, and mutant strains failed to complete proper chromosome segregation. However, in the absence of Mek1 kinase activity, Rad51-dependent recombination progressed via sister bias in the hop2Δ or sae3Δ mutants, even in the presence of Dmc1. Thus, Hop2 and Sae3 actively modulate Dmc1-dependent recombination, effectively progressing homolog bias, a process requiring Mek1 kinase activation.

  3. Persistence and breakdown of strand symmetry in the human genome.

    PubMed

    Zhang, Shang-Hong

    2015-04-01

    Afreixo, V., Bastos, C.A.C., Garcia, S.P., Rodrigues, J.M.O.S., Pinho, A.J., Ferreira, P.J.S.G., 2013. The breakdown of the word symmetry in the human genome. J. Theor. Biol. 335, 153-159 analyzed the word symmetry (strand symmetry or the second parity rule) in the human genome. They concluded that strand symmetry holds for oligonucleotides up to 6 nt and is no longer statistically significant for oligonucleotides of higher orders. However, although they provided some new results for the issue, their interpretation would not be fully justified. Also, their conclusion needs to be further evaluated. Further analysis of their results, especially those of equivalence tests and word symmetry distance, shows that strand symmetry would persist for higher-order oligonucleotides up to 9 nt in the human genome, at least for its overall frequency framework (oligonucleotide frequency pattern). PMID:25576243

  4. Error-Prone Repair of DNA Double-Strand Breaks.

    PubMed

    Rodgers, Kasey; McVey, Mitch

    2016-01-01

    Preserving the integrity of the DNA double helix is crucial for the maintenance of genomic stability. Therefore, DNA double-strand breaks represent a serious threat to cells. In this review, we describe the two major strategies used to repair double strand breaks: non-homologous end joining and homologous recombination, emphasizing the mutagenic aspects of each. We focus on emerging evidence that homologous recombination, long thought to be an error-free repair process, can in fact be highly mutagenic, particularly in contexts requiring large amounts of DNA synthesis. Recent investigations have begun to illuminate the molecular mechanisms by which error-prone double-strand break repair can create major genomic changes, such as translocations and complex chromosome rearrangements. We highlight these studies and discuss proposed models that may explain some of the more extreme genetic changes observed in human cancers and congenital disorders.

  5. Double-strand break-induced targeted mutagenesis in plants.

    PubMed

    Lyznik, L Alexander; Djukanovic, Vesna; Yang, Meizhu; Jones, Spencer

    2012-01-01

    Double-strand breaks are very potent inducers of DNA recombination. There is no recombination between DNA molecules unless one or two DNA strands are broken. It has become feasible to introduce double-strand breaks at specific chromosomal loci by using dedicated, redesigned endonucleases with altered DNA-binding specificities. Such breaks are mainly repaired by error-prone nonhomologous recombination pathways in somatic cells, thus frequently producing mutations at the preselected chromosomal sites. Although the art and science of reengineering protein properties have been advancing quickly, an empirical validation of new endonucleases in a particular experimental environment is essential for successful targeted mutagenesis experiments. This chapter presents methods that were developed for a comprehensive evaluation of the DNA-binding and DNA-cutting activities of homing endonucleases in maize cells; however, they can be adopted for similar evaluation studies of other endonucleases and other plant species that are amenable for Agrobacterium-mediated transformation. PMID:22351025

  6. Apparatus and method for fabricating multi-strand superconducting cable

    DOEpatents

    Borden, Albert R.

    1986-01-01

    Multi-strand superconducting cables adapted to be used, for example, to wind a magnet is fabricated by directing wire strands inwardly from spools disposed on the perimeter of a rotating disk and wrapping them diagonally around a tapered mandrel with a flattened cross-sectional shape with a core having a wedge-shaped channel. As the cable is pulled axially, flexibly coupled wedge-shaped pieces are continuously passed through the channel in the mandrel and inserted into the cable as an internal support therefor.

  7. Method for fabricating multi-strand superconducting cable

    DOEpatents

    Borden, A.R.

    1985-04-01

    Multi-strand superconducting cables adapted to be used, for example, to wind a magnet are fabricated by directing wire strands inwardly from spools disposed on the perimeter of a rotating disk and wrapping them diagonally around a tapered mandrel with a flattened cross-sectional shape with a core having a wedge-shaped channel. As the cable is pulled axially, flexibly coupled wedge-shaped pieces are continuously passed through the channel in the mandrel and inserted into the cable as an internal support therefor.

  8. Electrodeless dielectrophoresis of single- and double-stranded DNA.

    PubMed Central

    Chou, Chia-Fu; Tegenfeldt, Jonas O; Bakajin, Olgica; Chan, Shirley S; Cox, Edward C; Darnton, Nicholas; Duke, Thomas; Austin, Robert H

    2002-01-01

    Dielectrophoretic trapping of molecules is typically carried out using metal electrodes to provide high field gradients. In this paper we demonstrate dielectrophoretic trapping using insulating constrictions at far lower frequencies than are feasible with metallic trapping structures because of water electrolysis. We demonstrate that electrodeless dielectrophoresis (EDEP) can be used for concentration and patterning of both single-strand and double-strand DNA. A possible mechanism for DNA polarization in ionic solution is discussed based on the frequency, viscosity, and field dependence of the observed trapping force. PMID:12324434

  9. Assembly of highly aligned DNA strands onto Si chips.

    PubMed

    Zhang, Jianming; Ma, Yufeng; Stachura, Sylwia; He, Huixin

    2005-04-26

    This paper reports a robust and efficient approach to assemble highly aligned DNA strands onto Si chips. The method combines advantages from molecular combing and microcontact printing to realize controlling both the density and direction of DNA strands on the Si chip. In addition, it also can be utilized to prepare stretched DNA structures on solid surfaces. Compared to approaches that use molecular combing directly on silanated surfaces, the stretched single-chain DNA structures are straighter. Furthermore, by exploiting the hydrophobic property of the intrinsic poly(dimethylsiloxane) stamp, this study also describes a simple way to produce straight bundled DNA arrays on Si and other substrates.

  10. Correlation between strand asymmetry and phylogeny in mitochondrial DNA.

    PubMed

    Barral P, J; Cantini, L; Hasmy, A; Jiménez, J; Marcano, A

    2005-10-21

    An evolutionary distance is introduced in order to propose an efficient and feasible procedure for phylogeny studies. Our analysis are based on the strand asymmetry property of mitochondrial DNA, but can be applied to other genomes. Comparison of our results with those reported in conventional phylogenetic trees, gives confidence about our approximation. Our findings support the hypotheses about the origin of the skew and its dependence upon evolutionary pressures, and improves previous efforts on using the strand asymmetry property of genomes for phylogeny inference. For the evolutionary distance introduced here, we observe that the more adequate technique for tree reconstructions correspond to an average link method which employs a sequential clustering algorithm.

  11. Crystal structure of four-stranded Oxytricha telomeric DNA

    NASA Technical Reports Server (NTRS)

    Kang, C.; Zhang, X.; Ratliff, R.; Moyzis, R.; Rich, A.

    1992-01-01

    The sequence d(GGGGTTTTGGGG) from the 3' overhang of the Oxytricha telomere has been crystallized and its three-dimensional structure solved to 2.5 A resolution. The oligonucleotide forms hairpins, two of which join to make a four-stranded helical structure with the loops containing four thymine residues at either end. The guanine residues are held together by cyclic hydrogen bonding and an ion is located in the centre. The four guanine residues in each segment have a glycosyl conformation that alternates between anti and syn. There are two four-stranded molecules in the asymmetric unit showing that the structure has some intrinsic flexibility.

  12. Three dimensional FEM quench simulations of superconducting strands

    SciTech Connect

    Yamada, Ryuji; Wake, Masayoshi; /KEK, Tsukuba

    2005-09-01

    The detailed phenomena in quench starting of Nb{sub 3}Sn strands are simulated in 3-D and in time using ANSYS and FEMLAB programs. The current sharing between the superconductor and copper stabilizer in strands at the beginning of a quench was studied and displayed in time. The differences in copper configuration and RRR value of copper were found to have large effect to the stability and quench propagation velocity. The MPZ theory was found to be effective for 3D multifilament situation.

  13. Industry participation workshop: Chromium electroplating of superconductor strand. Proceedings

    SciTech Connect

    1994-12-13

    The primary objective of the workshop was to inform US plating vendors about the opportunity to participate in the effort on Cr plating of large quantities of superconducting wires required for the ITER and the TPX projects and DOE`s interest in developing several reliable and high quality suppliers of Chromium plating services for the superconducting strand industry. The objective was also to inform plating vendors about the Cr plating technology developed in LLNL and invite interested plating vendors to get the technology. Finally the workshop was intended to inform the plating vendors about the plan to get verification of capability of two to four vendors for Cr plating of superconducting strands.

  14. Measles Virus Host Invasion and Pathogenesis

    PubMed Central

    Laksono, Brigitta M.; de Vries, Rory D.; McQuaid, Stephen; Duprex, W. Paul; de Swart, Rik L.

    2016-01-01

    Measles virus is a highly contagious negative strand RNA virus that is transmitted via the respiratory route and causes systemic disease in previously unexposed humans and non-human primates. Measles is characterised by fever and skin rash and usually associated with cough, coryza and conjunctivitis. A hallmark of measles is the transient immune suppression, leading to increased susceptibility to opportunistic infections. At the same time, the disease is paradoxically associated with induction of a robust virus-specific immune response, resulting in lifelong immunity to measles. Identification of CD150 and nectin-4 as cellular receptors for measles virus has led to new perspectives on tropism and pathogenesis. In vivo studies in non-human primates have shown that the virus initially infects CD150+ lymphocytes and dendritic cells, both in circulation and in lymphoid tissues, followed by virus transmission to nectin-4 expressing epithelial cells. The abilities of the virus to cause systemic infection, to transmit to numerous new hosts via droplets or aerosols and to suppress the host immune response for several months or even years after infection make measles a remarkable disease. This review briefly highlights current topics in studies of measles virus host invasion and pathogenesis. PMID:27483301

  15. Measles Virus Host Invasion and Pathogenesis.

    PubMed

    Laksono, Brigitta M; de Vries, Rory D; McQuaid, Stephen; Duprex, W Paul; de Swart, Rik L

    2016-01-01

    Measles virus is a highly contagious negative strand RNA virus that is transmitted via the respiratory route and causes systemic disease in previously unexposed humans and non-human primates. Measles is characterised by fever and skin rash and usually associated with cough, coryza and conjunctivitis. A hallmark of measles is the transient immune suppression, leading to increased susceptibility to opportunistic infections. At the same time, the disease is paradoxically associated with induction of a robust virus-specific immune response, resulting in lifelong immunity to measles. Identification of CD150 and nectin-4 as cellular receptors for measles virus has led to new perspectives on tropism and pathogenesis. In vivo studies in non-human primates have shown that the virus initially infects CD150⁺ lymphocytes and dendritic cells, both in circulation and in lymphoid tissues, followed by virus transmission to nectin-4 expressing epithelial cells. The abilities of the virus to cause systemic infection, to transmit to numerous new hosts via droplets or aerosols and to suppress the host immune response for several months or even years after infection make measles a remarkable disease. This review briefly highlights current topics in studies of measles virus host invasion and pathogenesis. PMID:27483301

  16. Double-strand breaks from a radical commonly produced by DNA-damaging agents.

    PubMed

    Taverna Porro, Marisa L; Greenberg, Marc M

    2015-04-20

    Double-strand breaks are widely accepted to be the most toxic form of DNA damage. Molecules that produce double-strand breaks via a single chemical event are typically very cytotoxic and far less common than those that form single-strand breaks. It was recently reported that a commonly formed C4'-radical produces double-strand breaks under aerobic conditions. Experiments described herein indicate that a peroxyl radical initiates strand damage on the complementary strand via C4'-hydrogen atom abstraction. Inferential evidence suggests that a C3'-peroxyl radical induces complementary strand damage more efficiently than does a C4'-peroxyl radical. Complementary strand hydrogen atom abstraction by the peroxyl radical is efficiently quenched by thiols. This mechanism could contribute to the higher than expected yield of double-strand breaks produced by ionizing radiation.

  17. Minimally invasive parathyroid surgery

    PubMed Central

    Noureldine, Salem I.; Gooi, Zhen

    2015-01-01

    Traditionally, bilateral cervical exploration for localization of all four parathyroid glands and removal of any that are grossly enlarged has been the standard surgical treatment for primary hyperparathyroidism (PHPT). With the advances in preoperative localization studies and greater public demand for less invasive procedures, novel targeted, minimally invasive techniques to the parathyroid glands have been described and practiced over the past 2 decades. Minimally invasive parathyroidectomy (MIP) can be done either through the standard Kocher incision, a smaller midline incision, with video assistance (purely endoscopic and video-assisted techniques), or through an ectopically placed, extracervical, incision. In current practice, once PHPT is diagnosed, preoperative evaluation using high-resolution radiographic imaging to localize the offending parathyroid gland is essential if MIP is to be considered. The imaging study results suggest where the surgeon should begin the focused procedure and serve as a road map to allow tailoring of an efficient, imaging-guided dissection while eliminating the unnecessary dissection of multiple glands or a bilateral exploration. Intraoperative parathyroid hormone (IOPTH) levels may be measured during the procedure, or a gamma probe used during radioguided parathyroidectomy, to ascertain that the correct gland has been excised and that no other hyperfunctional tissue is present. MIP has many advantages over the traditional bilateral, four-gland exploration. MIP can be performed using local anesthesia, requires less operative time, results in fewer complications, and offers an improved cosmetic result and greater patient satisfaction. Additional advantages of MIP are earlier hospital discharge and decreased overall associated costs. This article aims to address the considerations for accomplishing MIP, including the role of preoperative imaging studies, intraoperative adjuncts, and surgical techniques. PMID:26425454

  18. Minimally invasive mediastinal surgery

    PubMed Central

    Melfi, Franca M. A.; Mussi, Alfredo

    2016-01-01

    In the past, mediastinal surgery was associated with the necessity of a maximum exposure, which was accomplished through various approaches. In the early 1990s, many surgical fields, including thoracic surgery, observed the development of minimally invasive techniques. These included video-assisted thoracic surgery (VATS), which confers clear advantages over an open approach, such as less trauma, short hospital stay, increased cosmetic results and preservation of lung function. However, VATS is associated with several disadvantages. For this reason, it is not routinely performed for resection of mediastinal mass lesions, especially those located in the anterior mediastinum, a tiny and remote space that contains vital structures at risk of injury. Robotic systems can overcome the limits of VATS, offering three-dimensional (3D) vision and wristed instrumentations, and are being increasingly used. With regards to thymectomy for myasthenia gravis (MG), unilateral and bilateral VATS approaches have demonstrated good long-term neurologic results with low complication rates. Nevertheless, some authors still advocate the necessity of maximum exposure, especially when considering the distribution of normal and ectopic thymic tissue. In recent studies, the robotic approach has shown to provide similar neurological outcomes when compared to transsternal and VATS approaches, and is associated with a low morbidity. Importantly, through a unilateral robotic technique, it is possible to dissect and remove at least the same amount of mediastinal fat tissue. Preliminary results on early-stage thymomatous disease indicated that minimally invasive approaches are safe and feasible, with a low rate of pleural recurrence, underlining the necessity of a “no-touch” technique. However, especially for thymomatous disease characterized by an indolent nature, further studies with long follow-up period are necessary in order to assess oncologic and neurologic results through minimally

  19. Bioterrorism and invasive species.

    PubMed

    Chomel, B B; Sun, B

    2010-08-01

    The risk of dispersing invasive species, especially human pathogens, through acts of bioterrorism, cannot be neglected. However, that risk appears quite low in comparison with the risk of dispersing animal pathogens that could dramatically burden the agricultural economy of food animal producing countries, such as Australia and countries in Europe and North and South America. Although it is not directly related to bioterrorism, the intentional release of non-native species, particularly undesired companion animals or wildlife, may also have a major economic impact on the environment and, possibly, on animal and human health, in the case of accidental release of zoonotic agents.

  20. Blocking Single-Stranded Transferred DNA Conversion to Double-Stranded Intermediates by Overexpression of Yeast DNA REPLICATION FACTOR A1

    PubMed Central

    Levy, Avner; Dafny, Raz; Tzfira, Tzvi

    2015-01-01

    Agrobacterium tumefaciens delivers its single-stranded transferred DNA (T-strand) into the host cell nucleus, where it can be converted into double-stranded molecules. Various studies have revealed that double-stranded transfer DNA (T-DNA) intermediates can serve as substrates by as yet uncharacterized integration machinery. Nevertheless, the possibility that T-strands are themselves substrates for integration cannot be ruled out. We attempted to block the conversion of T-strands into double-stranded intermediates prior to integration in order to further investigate the route taken by T-DNA molecules on their way to integration. Transgenic tobacco (Nicotiana benthamiana) plants that overexpress three yeast (Saccharomyces cerevisiae) protein subunits of DNA REPLICATION FACTOR A (RFA) were produced. In yeast, these subunits (RFA1–RFA3) function as a complex that can bind single-stranded DNA molecules, promoting the repair of genomic double strand breaks. Overexpression of the RFA complex in tobacco resulted in decreased T-DNA expression, as determined by infection with A. tumefaciens cells carrying the β-glucuronidase intron reporter gene. Gene expression was not blocked when the reporter gene was delivered by microbombardment. Enhanced green fluorescent protein-assisted localization studies indicated that the three-protein complex was predominantly nuclear, thus indicating its function within the plant cell nucleus, possibly by binding naked T-strands and blocking their conversion into double-stranded intermediates. This notion was further supported by the inhibitory effect of RFA expression on the cell-to-cell movement of Bean dwarf mosaic virus, a single-stranded DNA virus. The observation that RFA complex plants dramatically inhibited the transient expression level of T-DNA and only reduced T-DNA integration by 50% suggests that double-stranded T-DNA intermediates, as well as single-stranded T-DNA, play significant roles in the integration process. PMID

  1. Purification and characterization of a protein from Saccharomyces cerevisiae that binds tightly to single-stranded DNA and stimulates a cognate strand exchange protein.

    PubMed

    Heyer, W D; Kolodner, R D

    1989-04-01

    A single-stranded DNA binding protein (yeast SSB protein) was purified to near-homogeneity from mitotic Saccharomyces cerevisiae cells. The Mr 34,000 protein specifically eluted at high salt (approximately 1200 mM NaCl) during chromatography on a single-stranded DNA-cellulose column. The protein formed stable complexes with single-stranded DNA in an apparent cooperative fashion. As judged from titration and competition experiments, the affinity of the protein was much higher for single-stranded DNA than for double-stranded DNA or single-stranded RNA. The SSB protein also was found to stimulate the strand exchange reaction between linear M13mp19 RF DNA and circular M13mp19 viral DNA as catalyzed by a yeast strand exchange protein previously purified in this laboratory [Kolodner, R., Evans, D. H., & Morrison, P. T. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 5660-5664]. Titration experiments showed maximum stimulation of joint molecule formation at a stoichiometry of about 1 Mr 34,000 monomer yeast SSB per 18 nucleotides of single-stranded DNA. Kinetic experiments demonstrated at least an 18-fold increase in the rate of strand exchange due to the presence of the SSB in reactions where the amount of strand exchange protein was limiting. The yeast SSB protein stimulated the Escherichia coli RecA protein in the strand exchange reaction involving linear M13mp19 RF DNA and circular M13mp19 viral DNA as efficiently as E. coli SSB. However, the E. coli SSB protein did not substitute for the yeast SSB protein in reactions with the yeast strand exchange protein. This suggests that the stimulation of the yeast strand exchange protein by the yeast SSB may involve specific protein/protein interactions.

  2. TOP OF STRAND ANNEALING TOWER, ONE OF FIVE SUCH STRUCTURES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOP OF STRAND ANNEALING TOWER, ONE OF FIVE SUCH STRUCTURES THE BUFFALO PLANT OF AMERICAN BRASS. HEAVIER-GAUGE STRIP IS CONTINUOUSLY ANNEALED TO GIVE THE PRODUCT A MORE UNIFORM GRAIN SIZE AND RENDER IT MORE DUCTILE. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  3. Polarity, continuity, and alignment in plant vascular strands.

    PubMed

    Sawchuk, Megan G; Scarpella, Enrico

    2013-09-01

    Plant vascular cells are joined end to end along uninterrupted lines to connect shoot organs with roots; vascular strands are thus polar, continuous, and internally aligned. What controls the formation of vascular strands with these properties? The "auxin canalization hypothesis"-based on positive feedback between auxin flow through a cell and the cell's capacity for auxin transport-predicts the selection of continuous files of cells that transport auxin polarly, thus accounting for the polarity and continuity of vascular strands. By contrast, polar, continuous auxin transport-though required-is insufficient to promote internal alignment of vascular strands, implicating additional factors. The auxin canalization hypothesis was derived from the response of mature tissue to auxin application but is consistent with molecular and cellular events in embryo axis formation and shoot organ development. Objections to the hypothesis have been raised based on vascular organizations in callus tissue and shoot organs but seem unsupported by available evidence. Other objections call instead for further research; yet the inductive and orienting influence of auxin on continuous vascular differentiation remains unique.

  4. On the Distinction between Preposition Stranding and Orphan Prepositions

    ERIC Educational Resources Information Center

    Roberge, Yves

    2012-01-01

    Poplack, Zentz and Dion (PZD; Poplack, Zentz & Dion, 2011, this issue) examine the often unquestioned assumption that the existence of preposition stranding (PS) in Canadian French is linked to the presence of a contact situation with English in the North American context. Although this issue has been the topic of previous research from a…

  5. Short interfering RNA guide strand modifiers from computational screening.

    PubMed

    Onizuka, Kazumitsu; Harrison, Jason G; Ball-Jones, Alexi A; Ibarra-Soza, José M; Zheng, Yuxuan; Ly, Diana; Lam, Walter; Mac, Stephanie; Tantillo, Dean J; Beal, Peter A

    2013-11-13

    Short interfering RNAs (siRNAs) are promising drug candidates for a wide range of targets including those previously considered "undruggable". However, properties associated with the native RNA structure limit drug development, and chemical modifications are necessary. Here we describe the structure-guided discovery of functional modifications for the guide strand 5'-end using computational screening with the high-resolution structure of human Ago2, the key nuclease on the RNA interference pathway. Our results indicate the guide strand 5'-end nucleotide need not engage in Watson-Crick (W/C) H-bonding but must fit the general shape of the 5'-end binding site in MID/PIWI domains of hAgo2 for efficient knockdown. 1,2,3-Triazol-4-yl bases formed from the CuAAC reaction of azides and 1-ethynylribose, which is readily incorporated into RNA via the phosphoramidite, perform well at the guide strand 5'-end. In contrast, purine derivatives with modified Hoogsteen faces or N2 substituents are poor choices for 5'-end modifications. Finally, we identified a 1,2,3-triazol-4-yl base incapable of W/C H-bonding that performs well at guide strand position 12, where base pairing to target was expected to be important. This work expands the repertoire of functional nucleotide analogues for siRNAs. PMID:24152142

  6. Unused and useless: The strange economics of stranded investment

    SciTech Connect

    Michaels, R.J.

    1994-10-01

    Stranded investment cost claims are the last gasp of cost-of-service ratemaking in the face of competition. Even if compensation were theoretically sound, efficient implementation is so problematic that the world would be better off without it. The author discusses this issue which is being raised by some electric utilities in the face of impending competition in the marketplace.

  7. Solid phase sequencing of double-stranded nucleic acids

    DOEpatents

    Fu, Dong-Jing; Cantor, Charles R.; Koster, Hubert; Smith, Cassandra L.

    2002-01-01

    This invention relates to methods for detecting and sequencing of target double-stranded nucleic acid sequences, to nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probe comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include nucleic acids in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated determination of molecular weights and identification of the target sequence.

  8. Antiparallel Triple-strand Architecture for Prefibrillar Aβ42 Oligomers*

    PubMed Central

    Gu, Lei; Liu, Cong; Stroud, James C.; Ngo, Sam; Jiang, Lin; Guo, Zhefeng

    2014-01-01

    Aβ42 oligomers play key roles in the pathogenesis of Alzheimer disease, but their structures remain elusive partly due to their transient nature. Here, we show that Aβ42 in a fusion construct can be trapped in a stable oligomer state, which recapitulates characteristics of prefibrillar Aβ42 oligomers and enables us to establish their detailed structures. Site-directed spin labeling and electron paramagnetic resonance studies provide structural restraints in terms of side chain mobility and intermolecular distances at all 42 residue positions. Using these restraints and other biophysical data, we present a novel atomic-level oligomer model. In our model, each Aβ42 protein forms a single β-sheet with three β-strands in an antiparallel arrangement. Each β-sheet consists of four Aβ42 molecules in a head-to-tail arrangement. Four β-sheets are packed together in a face-to-back fashion. The stacking of identical segments between different β-sheets within an oligomer suggests that prefibrillar oligomers may interconvert with fibrils via strand rotation, wherein β-strands undergo an ∼90° rotation along the strand direction. This work provides insights into rational design of therapeutics targeting the process of interconversion between toxic oligomers and non-toxic fibrils. PMID:25118290

  9. 75 FR 4104 - Prestressed Concrete Steel Wire Strand From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... Harmonized Tariff Schedule of the United States (``HTSUS'').'' 74 FR 30536, December 23, 2009. For further... FR 68036 (November 8, 2002). Even where electronic filing of a document is permitted, certain... COMMISSION Prestressed Concrete Steel Wire Strand From China AGENCY: United States International...

  10. 75 FR 8113 - Prestressed Concrete Steel Wire Strand From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... subject investigations (75 FR 4104, January 26, 2010). On January 28, 2010, the Commission was notified by... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Prestressed Concrete Steel Wire Strand From China AGENCY: United States International...

  11. Euler buckling and nonlinear kinking of double-stranded DNA.

    PubMed

    Fields, Alexander P; Meyer, Elisabeth A; Cohen, Adam E

    2013-11-01

    The bending stiffness of double-stranded DNA (dsDNA) at high curvatures is fundamental to its biological activity, yet this regime has been difficult to probe experimentally, and literature results have not been consistent. We created a 'molecular vise' in which base-pairing interactions generated a compressive force on sub-persistence length segments of dsDNA. Short dsDNA strands (<41 base pairs) resisted this force and remained straight; longer strands became bent, a phenomenon called 'Euler buckling'. We monitored the buckling transition via Förster Resonance Energy Transfer (FRET) between appended fluorophores. For low-to-moderate concentrations of monovalent salt (up to ∼150 mM), our results are in quantitative agreement with the worm-like chain (WLC) model of DNA elasticity, without the need to invoke any 'kinked' states. Greater concentrations of monovalent salts or 1 mM Mg(2+) induced an apparent softening of the dsDNA, which was best accounted for by a kink in the region of highest curvature. We tested the effects of all single-nucleotide mismatches on the DNA bending. Remarkably, the propensity to kink correlated with the thermodynamic destabilization of the mismatched DNA relative the perfectly complementary strand, suggesting that the kinked state is locally melted. The molecular vise is exquisitely sensitive to the sequence-dependent linear and nonlinear elastic properties of dsDNA.

  12. Isolating single stranded DNA using a microfluidic dialysis device

    PubMed Central

    Sheng, Yixiao

    2013-01-01

    Isolating a particular strand of DNA from a double stranded DNA duplex is an important step in aptamer generation as well as many other biotechnology applications. Here we describe a microfluidic, flow-through, dialysis device for isolating single-stranded DNA (ssDNA) from double-stranded DNA (dsDNA). The device consists of two channels fabricated in polydimethylsiloxane (PDMS) separated by a track etched polycarbonate membrane (800 nm pore size). To isolate ssDNA, dual-biotin labelled dsDNA was immobilized onto streptavidin-coated polystyrene beads. Alkaline treatment was used to denature dsDNA, releasing the non-biotinylated ssDNA. In the flow-through dialysis device the liberated ssDNA was able to cross the membrane and was collected in an outlet channel. The complementary sequence bound to the bead was unable to cross the membrane and was directed to a waste channel. The effect of NaOH concentration and flow rate on purity and yield were compared. >95% ssDNA purity was achieved at 25mM NaOH. However, lower flow rates were necessary to achieve ssDNA yields approaching the 50% theoretical maximum of the concurrent-flow device. Under optimized conditions the microfluidic isolation achieved even higher purity ssDNA than analogous manual procedures. PMID:24213273

  13. Enzymatic Synthesis of Single-Stranded Clonal Pure Oligonucleotides.

    PubMed

    Ducani, Cosimo; Högberg, Björn

    2017-01-01

    Single-stranded oligonucleotides, or oligodeoxyribonucleotides (ODNs), are very important in several fields of science such as molecular biology, diagnostics, nanotechnology, and gene therapy. They are usually chemically synthesized. Here we describe an enzymatic method which enables us to synthesize pure oligonucleotides which can be up to several hundred long bases. PMID:27671934

  14. The Extra Strand of the Maori Science Curriculum

    ERIC Educational Resources Information Center

    Stewart, Georgina

    2011-01-01

    This paper comments on the process of re-development of the Maori-medium Science (Putaiao) curriculum, as part of overall curriculum development in Aotearoa New Zealand. A significant difference from the English Science curriculum was the addition of an "extra strand" covering the history and philosophy of science. It is recommended that this…

  15. A method for assessing strand breaks in DNA.

    PubMed

    Peng, L; Brisco, M J; Morley, A A

    1998-08-15

    A simple method has been developed to assess strand breaks in extracted DNA. The method uses the enzyme terminal deoxynucleotidyl transferase (TDT) to incorporate labeled deoxycytidine triphosphate (dCTP) in the presence of dideoxy-CTP (ddCTP) which is added to ensure that the reaction goes to completion. Following development of the method, the extent of DNA degradation in 21 blood or bone marrow samples, which had varying degrees of DNA degradation, was measured by the TDT assay, by gel electrophoresis, or by a laborious PCR-based method which quantifies the number of amplifiable N-ras targets in a sample. The TDT assay was more sensitive at detecting strand breaks than electrophoresis and there was good correlation between the results of the TDT assay and the N-ras assay. The TDT assay was also used to demonstrate the development of strand breaks during induced apoptosis. The TDT assay is thus a simple and semiquantitative method to study strand breaks produced by DNA damage.

  16. Malignant cancer and invasive placentation

    PubMed Central

    D'Souza, Alaric W.; Wagner, Günter P.

    2014-01-01

    Cancer metastasis is an invasive process that involves the transplantation of cells into new environments. Since human placentation is also invasive, hypotheses about a relationship between invasive placentation in eutherian mammals and metastasis have been proposed. The relationship between metastatic cancer and invasive placentation is usually presented in terms of antagonistic pleiotropy. According to this hypothesis, evolution of invasive placentation also established the mechanisms for cancer metastasis. Here, in contrast, we argue that the secondary evolution of less invasive placentation in some mammalian lineages may have resulted in positive pleiotropic effects on cancer survival by lowering malignancy rates. These positive pleiotropic effects would manifest themselves as resistance to cancer cell invasion. To provide a preliminary test of this proposal, we re-analyze data from Priester and Mantel (Occurrence of tumors in domestic animals. Data from 12 United States and Canadian colleges of veterinary medicine. J Natl Cancer Inst 1971;47:1333-44) about malignancy rates in cows, horses, cats and dogs. From our analysis we found that equines and bovines, animals with less invasive placentation, have lower rates of metastatic cancer than felines and canines in skin and glandular epithelial cancers as well as connective tissue sarcomas. We conclude that a link between type of placentation and species-specific malignancy rates is more likely related to derived mechanisms that suppress invasion rather than different degrees of fetal placental aggressiveness. PMID:25324490

  17. Excited states in DNA strands investigated by ultrafast laser spectroscopy.

    PubMed

    Chen, Jinquan; Zhang, Yuyuan; Kohler, Bern

    2015-01-01

    Ultrafast laser experiments on carefully selected DNA model compounds probe the effects of base stacking, base pairing, and structural disorder on excited electronic states formed by UV absorption in single and double DNA strands. Direct π-orbital overlap between two stacked bases in a dinucleotide or in a longer single strand creates new excited states that decay orders of magnitude more slowly than the generally subpicosecond excited states of monomeric bases. Half or more of all excited states in single strands decay in this manner. Ultrafast mid-IR transient absorption experiments reveal that the long-lived excited states in a number of model compounds are charge transfer states formed by interbase electron transfer, which subsequently decay by charge recombination. The lifetimes of the charge transfer states are surprisingly independent of how the stacked bases are oriented, but disruption of π-stacking, either by elevating temperature or by adding a denaturing co-solvent, completely eliminates this decay channel. Time-resolved emission measurements support the conclusion that these states are populated very rapidly from initial excitons. These experiments also reveal the existence of populations of emissive excited states that decay on the nanosecond time scale. The quantum yield of these states is very small for UVB/UVC excitation, but increases at UVA wavelengths. In double strands, hydrogen bonding between bases perturbs, but does not quench, the long-lived excited states. Kinetic isotope effects on the excited-state dynamics suggest that intrastrand electron transfer may couple to interstrand proton transfer. By revealing how structure and non-covalent interactions affect excited-state dynamics, on-going experimental and theoretical studies of excited states in DNA strands can advance understanding of fundamental photophysics in other nanoscale systems.

  18. Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules.

    PubMed

    Nimonkar, Amitabh V; Sica, R Alejandro; Kowalczykowski, Stephen C

    2009-03-01

    Saccharomyces cerevisiae Rad52 performs multiple functions during the recombinational repair of double-stranded DNA (dsDNA) breaks (DSBs). It mediates assembly of Rad51 onto single-stranded DNA (ssDNA) that is complexed with replication protein A (RPA); the resulting nucleoprotein filament pairs with homologous dsDNA to form joint molecules. Rad52 also catalyzes the annealing of complementary strands of ssDNA, even when they are complexed with RPA. Both Rad51 and Rad52 can be envisioned to promote "second-end capture," a step that pairs the ssDNA generated by processing of the second end of a DSB to the joint molecule formed by invasion of the target dsDNA by the first processed end. Here, we show that Rad52 promotes annealing of complementary ssDNA that is complexed with RPA to the displaced strand of a joint molecule, to form a complement-stabilized joint molecule. RecO, a prokaryotic homolog of Rad52, cannot form complement-stabilized joint molecules with RPA-ssDNA complexes, nor can Rad52 promote second-end capture when the ssDNA is bound with either human RPA or the prokaryotic ssDNA-binding protein, SSB, indicating a species-specific process. We conclude that Rad52 participates in second-end capture by annealing a resected DNA break, complexed with RPA, to the joint molecule product of single-end invasion event. These studies support a role for Rad52-promoted annealing in the formation of Holliday junctions in DSB repair. PMID:19204284

  19. Clarifying debates in invasion biology: a survey of invasion biologists.

    PubMed

    Young, Ashley M; Larson, Brendon M H

    2011-10-01

    Invasion biology is a relatively new field, so there are ongoing debates about foundational issues regarding terminology and assessment of the causes and consequences of invasive species. These debates largely reflect differing views about the extent to which invasion biologists should advocate on behalf of native species. We surveyed reviewers of the journal Biological Invasions to obtain a better sense of how invasion biologists evaluate several foundational issues. We received 422 replies, which represented a very good response rate for an online survey of 42.5% of those contacted. Responses to several debates in the field were distributed bimodally, but respondents consistently indicated that contemporary biological invasions are unprecedented. Even still, this was not seen as justification for exaggerated language (hyperbole). In contrast to prevalent claims in the literature, only 27.3% of respondents ranked invasive species as the first or second greatest threat to biodiversity. The responses also highlighted the interaction of invasive species with other threats and the role of human activity in their spread. Finally, the respondents agreed that they need to be both more objective and better at communicating their results so that those results can be effectively integrated into management. PMID:21757195

  20. Resolving the genetic basis of invasiveness and predicting invasions.

    PubMed

    Weinig, Cynthia; Brock, Marcus T; Dechaine, Jenny A; Welch, Stephen M

    2007-02-01

    Considerable effort has been invested in determining traits underlying invasiveness. Yet, identifying a set of traits that commonly confers invasiveness in a range of species has proven elusive, and almost nothing is known about genetic loci affecting invasive success. Incorporating genetic model organisms into ecologically relevant studies is one promising avenue to begin dissecting the genetic underpinnings of invasiveness. Molecular biologists are rapidly characterizing genes mediating developmental responses to diverse environmental cues, i.e., genes for plasticity, as well as to environmental factors likely to impose strong selection on invading species, e.g., resistance to herbivores and competitors, coordination of life-history events with seasonal changes, and physiological tolerance of heat, drought, or cold. Here, we give an overview of molecular genetic tools increasingly used to characterize the genetic basis of adaptation and that may be used to begin identifying genetic mechanisms of invasiveness. Given the divergent traits that affect invasiveness, "invasiveness genes" common to many clades are unlikely, but the combination of developmental genetic advances with further evolutionary studies and modeling may provide a framework for identifying genes that account for invasiveness in related species.

  1. TrmBL2 from Pyrococcus furiosus Interacts Both with Double-Stranded and Single-Stranded DNA

    PubMed Central

    Wierer, Sebastian; Daldrop, Peter; Ud Din Ahmad, Misbha; Boos, Winfried; Drescher, Malte; Welte, Wolfram; Seidel, Ralf

    2016-01-01

    In many hyperthermophilic archaea the DNA binding protein TrmBL2 or one of its homologues is abundantly expressed. TrmBL2 is thought to play a significant role in modulating the chromatin architecture in combination with the archaeal histone proteins and Alba. However, its precise physiological role is poorly understood. It has been previously shown that upon binding TrmBL2 covers double-stranded DNA, which leads to the formation of a thick and fibrous filament. Here we investigated the filament formation process as well as the stabilization of DNA by TrmBL2 from Pyroccocus furiosus in detail. We used magnetic tweezers that allow to monitor changes of the DNA mechanical properties upon TrmBL2 binding on the single-molecule level. Extended filaments formed in a cooperative manner and were considerably stiffer than bare double-stranded DNA. Unlike Alba, TrmBL2 did not form DNA cross-bridges. The protein was found to bind double- and single-stranded DNA with similar affinities. In mechanical disruption experiments of DNA hairpins this led to stabilization of both, the double- (before disruption) and the single-stranded (after disruption) DNA forms. Combined, these findings suggest that the biological function of TrmBL2 is not limited to modulating genome architecture and acting as a global repressor but that the protein acts additionally as a stabilizer of DNA secondary structure. PMID:27214207

  2. Four-Strand Core Suture Improves Flexor Tendon Repair Compared to Two-Strand Technique in a Rabbit Model

    PubMed Central

    Beyersdoerfer, Sascha Tobias; Vollmar, Brigitte; Mittlmeier, Thomas; Gierer, Philip

    2016-01-01

    Introduction. This study was designed to investigate the influence of the amount of suture material on the formation of peritendinous adhesions of intrasynovial flexor tendon repairs. Materials and Methods. In 14 rabbits, the flexor tendons of the third and the fourth digit of the right hind leg were cut and repaired using a 2- or 4-strand core suture technique. The repaired tendons were harvested after three and eight weeks. The range of motion of the affected toes was measured and the tendons were processed histologically. The distance between the transected tendon ends, the changes in the peritendinous space, and cellular and extracellular inflammatory reaction were quantified by different staining. Results. A 4-strand core suture resulted in significantly less gap formation. The 2-strand core suture showed a tendency to less adhesion formation. Doubling of the intratendinous suture material was accompanied by an initial increase in leukocyte infiltration and showed a greater amount of formation of myofibroblasts. From the third to the eighth week after flexor tendon repair, both the cellular and the extracellular inflammation decreased significantly. Conclusion. A 4-strand core suture repair leads to a significantly better tendon healing process with less diastasis between the sutured tendon ends despite initially pronounced inflammatory response. PMID:27446949

  3. TrmBL2 from Pyrococcus furiosus Interacts Both with Double-Stranded and Single-Stranded DNA.

    PubMed

    Wierer, Sebastian; Daldrop, Peter; Ud Din Ahmad, Misbha; Boos, Winfried; Drescher, Malte; Welte, Wolfram; Seidel, Ralf

    2016-01-01

    In many hyperthermophilic archaea the DNA binding protein TrmBL2 or one of its homologues is abundantly expressed. TrmBL2 is thought to play a significant role in modulating the chromatin architecture in combination with the archaeal histone proteins and Alba. However, its precise physiological role is poorly understood. It has been previously shown that upon binding TrmBL2 covers double-stranded DNA, which leads to the formation of a thick and fibrous filament. Here we investigated the filament formation process as well as the stabilization of DNA by TrmBL2 from Pyroccocus furiosus in detail. We used magnetic tweezers that allow to monitor changes of the DNA mechanical properties upon TrmBL2 binding on the single-molecule level. Extended filaments formed in a cooperative manner and were considerably stiffer than bare double-stranded DNA. Unlike Alba, TrmBL2 did not form DNA cross-bridges. The protein was found to bind double- and single-stranded DNA with similar affinities. In mechanical disruption experiments of DNA hairpins this led to stabilization of both, the double- (before disruption) and the single-stranded (after disruption) DNA forms. Combined, these findings suggest that the biological function of TrmBL2 is not limited to modulating genome architecture and acting as a global repressor but that the protein acts additionally as a stabilizer of DNA secondary structure.

  4. The Importance of becoming double-stranded: innate immunity and the kinetic model of HIV-1 central plus strand synthesis

    PubMed Central

    Poeschla, Eric

    2013-01-01

    Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient “central DNA flap” in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins, and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. PMID:23561461

  5. Dietary Flexibility Aids Asian Earthworm Invasion in North American Forests

    EPA Science Inventory

    On a local scale, invasiveness of introduced species and invasibility of habitats together determine invasion success. A key issue in invasion ecology has been how to quantify the contribution of species invasiveness and habitat invasibility separately. Conventional approaches, s...

  6. Transanal Minimally Invasive Surgery

    PubMed Central

    deBeche-Adams, Teresa; Nassif, George

    2015-01-01

    Transanal minimally invasive surgery (TAMIS) was first described in 2010 as a crossover between single-incision laparoscopic surgery and transanal endoscopic microsurgery (TEM) to allow access to the proximal and mid-rectum for resection of benign and early-stage malignant rectal lesions. The TAMIS technique can also be used for noncurative intent surgery of more advanced lesions in patients who are not candidates for radical surgery. Proper workup and staging should be done before surgical decision-making. In addition to the TAMIS port, instrumentation and set up include readily available equipment found in most operating suites. TAMIS has proven its usefulness in a wide range of applications outside of local excision, including repair of rectourethral fistula, removal of rectal foreign body, control of rectal hemorrhage, and as an adjunct in total mesorectal excision for rectal cancer. TAMIS is an easily accessible, technically feasible, and cost-effective alternative to TEM. PMID:26491410

  7. [Minimal invasive implantology].

    PubMed

    Bruck, N; Zagury, A; Nahlieli, O

    2015-07-01

    Endoscopic surgery has changed the philosophy and practice of modern surgery in all aspects of medicine. It gave rise to minimally invasive surgery procedures based on the ability to visualize and to operate via small channels. In maxillofacial surgery, our ability to see clearly the surgical field opened an entirely new world of exploration, as conditions that were once almost impossible to control and whose outcome was uncertain can be now predictably managed. in this article we will descripe the advantage of using the oral endoscope during the dental implantology procedure, and we will describe a unique implant which enable us in combination with the oral endoscope to create a maxillary sinus lift with out the need of the major surgery with all of its risks and complication.

  8. 78 FR 54867 - Proposed Information Collection; Comment Request; Marine Mammal Health and Stranding Response...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Marine Mammal Health and Stranding Response Program, Level A Stranding and Rehabilitation Disposition Data...

  9. [Minimally invasive breast surgery].

    PubMed

    Mátrai, Zoltán; Gulyás, Gusztáv; Kunos, Csaba; Sávolt, Akos; Farkas, Emil; Szollár, András; Kásler, Miklós

    2014-02-01

    Due to the development in medical science and industrial technology, minimally invasive procedures have appeared in the surgery of benign and malignant breast diseases. In general , such interventions result in significantly reduced breast and chest wall scars, shorter hospitalization and less pain, but they require specific, expensive devices, longer surgical time compared to open surgery. Furthermore, indications or oncological safety have not been established yet. It is quite likely, that minimally invasive surgical procedures with high-tech devices - similar to other surgical subspecialties -, will gradually become popular and it may form part of routine breast surgery even. Vacuum-assisted core biopsy with a therapeutic indication is suitable for the removal of benign fibroadenomas leaving behind an almost invisible scar, while endoscopically assisted skin-sparing and nipple-sparing mastectomy, axillary staging and reconstruction with latissimus dorsi muscle flap are all feasible through the same short axillary incision. Endoscopic techniques are also suitable for the diagnostics and treatment of intracapsular complications of implant-based breast reconstructions (intracapsular fluid, implant rupture, capsular contracture) and for the biopsy of intracapsular lesions with uncertain pathology. Perception of the role of radiofrequency ablation of breast tumors requires further hands-on experience, but it is likely that it can serve as a replacement of surgical removal in a portion of primary tumors in the future due to the development in functional imaging and anticancer drugs. With the reduction of the price of ductoscopes routine examination of the ductal branch system, guided microdochectomy and targeted surgical removal of terminal ducto-lobular units or a "sick lobe" as an anatomical unit may become feasible. The paper presents the experience of the authors and provides a literature review, for the first time in Hungarian language on the subject. Orv. Hetil

  10. Spread dynamics of invasive species

    PubMed Central

    Arim, Matías; Abades, Sebastián R.; Neill, Paula E.; Lima, Mauricio; Marquet, Pablo A.

    2006-01-01

    Species invasions are a principal component of global change, causing large losses in biodiversity as well as economic damage. Invasion theory attempts to understand and predict invasion success and patterns of spread. However, there is no consensus regarding which species or community attributes enhance invader success or explain spread dynamics. Experimental and theoretical studies suggest that regulation of spread dynamics is possible; however, the conditions for its existence have not yet been empirically demonstrated. If invasion spread is a regulated process, the structure that accounts for this regulation will be a main determinant of invasion dynamics. Here we explore the existence of regulation underlying changes in the rate of new site colonization. We employ concepts and analytical tools from the study of abundance dynamics and show that spread dynamics are, in fact, regulated processes and that the regulation structure is notably consistent among invasions occurring in widely different contexts. We base our conclusions on the analysis of the spread dynamics of 30 species invasions, including birds, amphibians, fish, invertebrates, plants, and a virus, all of which exhibited similar regulation structures. In contrast to current beliefs that species invasions are idiosyncratic phenomena, here we provide evidence that general patterns do indeed exist. PMID:16387862

  11. Genetic reconstructions of invasion history.

    PubMed

    Cristescu, Melania E

    2015-05-01

    A diverse array of molecular markers and constantly evolving analytical approaches have been employed to reconstruct the invasion histories of the most notorious invasions. Detailed information on the source(s) of introduction, invasion route, type of vectors, number of independent introductions and pathways of secondary spread has been corroborated for a large number of biological invasions. In this review, I present the promises and limitations of current techniques while discussing future directions. Broad phylogeographic surveys of native and introduced populations have traced back invasion routes with surprising precision. These approaches often further clarify species boundaries and reveal complex patterns of genetic relationships with noninvasive relatives. Moreover, fine-scale analyses of population genetics or genomics allow deep inferences on the colonization dynamics across invaded ranges and can reveal the extent of gene flow among populations across various geographical scales, major demographic events such as genetic bottlenecks as well as other important evolutionary events such as hybridization with native taxa, inbreeding and selective sweeps. Genetic data have been often corroborated successfully with historical, geographical and ecological data to enable a comprehensive reconstruction of the invasion process. The advent of next-generation sequencing, along with the availability of extensive databases of repository sequences generated by barcoding projects opens the opportunity to broadly monitor biodiversity, to identify early invasions and to quantify failed invasions that would otherwise remain inconspicuous to the human eye. PMID:25703061

  12. Integrated assessment of biological invasions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the main annalists of the ecological and economic impacts of invasions on ecosystems around the world, ecologists should be able to provide information that can guide management practices. Managers often want to know about the potential for invasion of specific organisms in the sites under their ...

  13. Neural invasion in gastric carcinoma.

    PubMed Central

    Mori, M; Adachi, Y; Kamakura, T; Ikeda, Y; Maehara, Y; Sugimachi, K

    1995-01-01

    AIMS--To determine whether neural invasion in advanced gastric cancer is of clinicopathological significance. METHODS--The study population comprised 121 cases of primary advanced gastric carcinoma. Two paraffin wax embedded blocks taken from the central tissue slice in each primary tumour were used. For definitive recognition of neural invasion, immunostaining for S-100 protein was applied to one slide; the other slide was stained with haematoxylin and eosin. RESULTS--Neural invasion was recognised in 34 of 121 (28%) primary gastric carcinomas. There were significant differences in tumour size, depth of tumour invasion, stage, and curability between patients with and without neural invasion. The five year survival rates of patients with and without neural invasion were 10 and 50%, respectively. Multivariate analysis, however, demonstrated that neural invasion was not an independent prognostic factor. CONCLUSIONS--Neural invasion could be an additional useful factor for providing information about the malignant potential of gastric carcinoma. This may be analogous to vessel permeation which is thought to be important, but is not an independent prognostic factor. Images PMID:7745113

  14. Prioritizing invasive plant management strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive plants are seriously impacting rangelands by displacing desirable species. Management of these species is expensive and careful allocation of scarce dollars is necessary. Ecologically-based invasive plant management (EBIPM) has the potential to provide an improved decision-making process ...

  15. 75 FR 62820 - Screening Framework Guidance for Providers of Synthetic Double-Stranded DNA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ...- Stranded DNA AGENCY: Department of Health and Human Services, Office of the Secretary. ACTION: Notice... provides a framework for screening synthetic double-stranded DNA (dsDNA). This document, the Screening Framework Guidance for Providers of Synthetic Double-Stranded DNA (the Guidance), sets forth...

  16. 75 FR 36678 - Prestressed Concrete Steel Wire Strand From China; Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... publishing the notice in the Federal Register of February 23, 2010 (75 FR 8113). The hearing was held in... COMMISSION Prestressed Concrete Steel Wire Strand From China; Determinations On the basis of the record \\1... of prestressed concrete steel wire strand (PC strand), provided for in subheading 7312.10.30 of...

  17. Molecular aptamer beacon tuned DNA strand displacement to transform small molecules into DNA logic outputs.

    PubMed

    Zhu, Jinbo; Zhang, Libing; Zhou, Zhixue; Dong, Shaojun; Wang, Erkang

    2014-03-28

    A molecular aptamer beacon tuned DNA strand displacement reaction was introduced in this work. This strand displacement mode can be used to transform the adenosine triphosphate (ATP) input into a DNA strand output signal for the downstream gates to process. A simple logic circuit was built on the basis of this mechanism.

  18. The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer

    PubMed Central

    Fernandez, Agustin F.; Rosales, Cecilia; Lopez-Nieva, Pilar; Graña, Osvaldo; Ballestar, Esteban; Ropero, Santiago; Espada, Jesus; Melo, Sonia A.; Lujambio, Amaia; Fraga, Mario F.; Pino, Irene; Javierre, Biola; Carmona, Francisco J.; Acquadro, Francesco; Steenbergen, Renske D.M.; Snijders, Peter J.F.; Meijer, Chris J.; Pineau, Pascal; Dejean, Anne; Lloveras, Belen; Capella, Gabriel; Quer, Josep; Buti, Maria; Esteban, Juan-Ignacio; Allende, Helena; Rodriguez-Frias, Francisco; Castellsague, Xavier; Minarovits, Janos; Ponce, Jordi; Capello, Daniela; Gaidano, Gianluca; Cigudosa, Juan Cruz; Gomez-Lopez, Gonzalo; Pisano, David G.; Valencia, Alfonso; Piris, Miguel Angel; Bosch, Francesc X.; Cahir-McFarland, Ellen; Kieff, Elliott; Esteller, Manel

    2009-01-01

    The natural history of cancers associated with virus exposure is intriguing, since only a minority of human tissues infected with these viruses inevitably progress to cancer. However, the molecular reasons why the infection is controlled or instead progresses to subsequent stages of tumorigenesis are largely unknown. In this article, we provide the first complete DNA methylomes of double-stranded DNA viruses associated with human cancer that might provide important clues to help us understand the described process. Using bisulfite genomic sequencing of multiple clones, we have obtained the DNA methylation status of every CpG dinucleotide in the genome of the Human Papilloma Viruses 16 and 18 and Human Hepatitis B Virus, and in all the transcription start sites of the Epstein-Barr Virus. These viruses are associated with infectious diseases (such as hepatitis B and infectious mononucleosis) and the development of human tumors (cervical, hepatic, and nasopharyngeal cancers, and lymphoma), and are responsible for 1 million deaths worldwide every year. The DNA methylomes presented provide evidence of the dynamic nature of the epigenome in contrast to the genome. We observed that the DNA methylome of these viruses evolves from an unmethylated to a highly methylated genome in association with the progression of the disease, from asymptomatic healthy carriers, through chronically infected tissues and pre-malignant lesions, to the full-blown invasive tumor. The observed DNA methylation changes have a major functional impact on the biological behavior of the viruses. PMID:19208682

  19. Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro

    SciTech Connect

    Eke, Iris; Storch, Katja; Kaestner, Ina; Vehlow, Anne; Faethe, Christina; Mueller-Klieser, Wolfgang; Taucher-Scholz, Gisela; Temme, Achim; Schackert, Gabriele

    2012-11-15

    Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg, {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.

  20. Cold plasma activation of continuously moving fiber glass strand

    SciTech Connect

    Das, B.

    1992-03-01

    A few selectively activated products were made using 13.6 MHz radio frequency cold plasma induced gases; such as, argon, oxygen, ammonia, Freon{trademark}, and the 30:70 mixture of Freon{trademark} and oxygen. Surface wetting force measurements of random filaments drawn from the activated strands were made using a Wilhelmy Balance. These measurements indicated that chemical modifications of filaments had indeed occurred on all the filaments drawn either from the interior or the surface of the activated strand bundle. In some cases, Ion Scattering Spectrometry was used at Pennsylvania State University to confirm that surface modification of the fiber glass surface had, in fact, taken place during cold plasma activation. While argon and ammonia induced plasma activation did not cause any strength degradation of Emery or organic size coated fibers, the oxygen and Freon{trademark} induced activation did. 16 refs., 7 figs., 3 tabs.

  1. Cardiomyopathy in stranded pygmy and dwarf sperm whales.

    PubMed

    Bossart, G D; Odell, D K; Altman, N H

    1985-12-01

    Necropsy and histologic examinations were performed in 23 pygmy sperm whales (Kogia breviceps) and 6 dwarf sperm whales (Kogia simus) that had been stranded singly or in cow-calf pairs along the southeastern coastline of the United States. At necropsy, the gross findings in the adult whales included pale, flabby right ventricles. Microscopically, lesions in the hearts of the whales were characterized by moderate to extensive myocellular degeneration, atrophy, and fibrosis. Similar changes were not seen in 5 of 6 sexually immature whales or in the whale calves. Hepatic changes were consistent with heart failure. The cause of the myocardial lesions was not determined. The systemic effects of failing myocardium probably were a major reason for the stranding of the adult whales.

  2. Single-strand stacking free energy from DNA beacon kinetics.

    PubMed

    Aalberts, Daniel P; Parman, John M; Goddard, Noel L

    2003-05-01

    DNA beacons are short single-stranded chains which can form closed hairpin shapes through complementary base pairing at their ends. Contrary to the common polymer theory assumption that only their loop length matters, experiments show that their closing kinetics depend on the loop composition. We have modeled the closing kinetics and in so doing have obtained stacking enthalpies and entropies for single-stranded nucleic acids. The resulting change of persistence length with temperature effects the dynamics. With a Monte Carlo study, we answer another polymer question of how the closing time scales with chain length, finding tau approximately N(2.44+/-0.02). There is a significant crossover for shorter chains, bringing the effective exponent into good agreement with experiment.

  3. HOMFLY polynomials in representation [3, 1] for 3-strand braids

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Morozov, A.; Morozov, An.; Sleptsov, A.

    2016-09-01

    This paper is a new step in the project of systematic description of colored knot polynomials started in [1]. In this paper, we managed to explicitly find the inclusive Racah matrix, i.e. the whole set of mixing matrices in channels R ⊗3 -→ Q with all possible Q, for R = [3 , 1]. The calculation is made possible by the use of a newly-developed efficient highest-weight method, still it remains tedious. The result allows one to evaluate and investigate [3 , 1]-colored polynomials for arbitrary 3-strand knots, and this confirms many previous conjectures on various factorizations, universality, and differential expansions. We consider in some detail the next-to-twist-knots three-strand family ( n, -1 | 1 , -1) and deduce its colored HOMFLY. Also confirmed and clarified is the eigenvalue hypothesis for the Racah matrices, which promises to provide a shortcut to generic formulas for arbitrary representations.

  4. Neural network computation with DNA strand displacement cascades.

    PubMed

    Qian, Lulu; Winfree, Erik; Bruck, Jehoshua

    2011-07-21

    The impressive capabilities of the mammalian brain--ranging from perception, pattern recognition and memory formation to decision making and motor activity control--have inspired their re-creation in a wide range of artificial intelligence systems for applications such as face recognition, anomaly detection, medical diagnosis and robotic vehicle control. Yet before neuron-based brains evolved, complex biomolecular circuits provided individual cells with the 'intelligent' behaviour required for survival. However, the study of how molecules can 'think' has not produced an equal variety of computational models and applications of artificial chemical systems. Although biomolecular systems have been hypothesized to carry out neural-network-like computations in vivo and the synthesis of artificial chemical analogues has been proposed theoretically, experimental work has so far fallen short of fully implementing even a single neuron. Here, building on the richness of DNA computing and strand displacement circuitry, we show how molecular systems can exhibit autonomous brain-like behaviours. Using a simple DNA gate architecture that allows experimental scale-up of multilayer digital circuits, we systematically transform arbitrary linear threshold circuits (an artificial neural network model) into DNA strand displacement cascades that function as small neural networks. Our approach even allows us to implement a Hopfield associative memory with four fully connected artificial neurons that, after training in silico, remembers four single-stranded DNA patterns and recalls the most similar one when presented with an incomplete pattern. Our results suggest that DNA strand displacement cascades could be used to endow autonomous chemical systems with the capability of recognizing patterns of molecular events, making decisions and responding to the environment. PMID:21776082

  5. Double-Stranded Water on Stepped Platinum Surfaces

    NASA Astrophysics Data System (ADS)

    Kolb, Manuel J.; Farber, Rachael G.; Derouin, Jonathan; Badan, Cansin; Calle-Vallejo, Federico; Juurlink, Ludo B. F.; Killelea, Daniel R.; Koper, Marc T. M.

    2016-04-01

    The interaction of platinum with water plays a key role in (electro)catalysis. Herein, we describe a combined theoretical and experimental study that resolves the preferred adsorption structure of water wetting the Pt(111)-step type with adjacent (111) terraces. Double stranded lines wet the step edge forming water tetragons with dissimilar hydrogen bonds within and between the lines. Our results qualitatively explain experimental observations of water desorption and impact our thinking of solvation at the Pt electrochemical interface.

  6. Electrostatic Origin of Single-Stranded Genome Packing in Viruses

    NASA Astrophysics Data System (ADS)

    Belyi, Vladimir; Muthukumar, M.

    2006-03-01

    We develop an electrostatic model for single-stranded RNA/DNA viruses that bind their genome via highly basic semiflexible peptide arms. We show that genome-capsid binding is dominated by non-specific electrostatic interactions, rather than actual amino-acid content. Proposed model explains many universal features of the viral genome. Good agreement is found with wide range of qualified wild-type and mutant viruses.

  7. Commercial possibilities for stranded conventional gas from Alaska's North Slope

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2014-01-01

    Stranded gas resources are defined for this study as gas resources in discrete accumulations that are not currently commercially producible, or producible at full potential, for either physical or economic reasons. Approximately 35 trillion cubic feet (TCF) of stranded gas was identified on Alaska’s North Slope. The commercialization of this resource requires facilities to transport gas to markets where sales revenue will be sufficient to offset the cost of constructing and operating a gas delivery system. With the advent of the shale gas revolution, plans for a gas pipeline to the conterminous US have been shelved (at least temporarily) and the State and resource owners are considering a liquefied natural gas (LNG) export project that targets Asian markets. This paper focuses on competitive conditions for Asian gas import markets by estimating delivered costs of competing supplies from central Asia, Russia, Indonesia, Malaysia, and Australia in the context of a range of import gas demand projections for the period from 2020 to 2040. These suppliers’ costs are based on the cost of developing, producing, and delivering to markets tranches of the nearly 600 TCF of recoverable gas from their own conventional stranded gas fields. The results of these analyses imply that Alaska’s gas exports to Asia will likely encounter substantial competitive challenges. The sustainability of Asia’s oil-indexed LNG pricing is also discussed in light of a potentially intense level of competition.

  8. Single strand transposition at the host replication fork

    PubMed Central

    Lavatine, Laure; He, Susu; Caumont-Sarcos, Anne; Guynet, Catherine; Marty, Brigitte; Chandler, Mick; Ton-Hoang, Bao

    2016-01-01

    Members of the IS200/IS605 insertion sequence family differ fundamentally from classical IS essentially by their specific single-strand (ss) transposition mechanism, orchestrated by the Y1 transposase, TnpA, a small HuH enzyme which recognizes and processes ss DNA substrates. Transposition occurs by the ‘peel and paste’ pathway composed of two steps: precise excision of the top strand as a circular ss DNA intermediate; and subsequent integration into a specific ssDNA target. Transposition of family members was experimentally shown or suggested by in silico high-throughput analysis to be intimately coupled to the lagging strand template of the replication fork. In this study, we investigated factors involved in replication fork targeting and analysed DNA-binding properties of the transposase which can assist localization of ss DNA substrates on the replication fork. We showed that TnpA interacts with the β sliding clamp, DnaN and recognizes DNA which mimics replication fork structures. We also showed that dsDNA can facilitate TnpA targeting ssDNA substrates. We analysed the effect of Ssb and RecA proteins on TnpA activity in vitro and showed that while RecA does not show a notable effect, Ssb inhibits integration. Finally we discuss the way(s) in which integration may be directed into ssDNA at the replication fork. PMID:27466393

  9. Carbon Fiber Strand Tensile Failure Dynamic Event Characterization

    NASA Technical Reports Server (NTRS)

    Johnson, Kenneth L.; Reeder, James

    2016-01-01

    There are few if any clear, visual, and detailed images of carbon fiber strand failures under tension useful for determining mechanisms, sequences of events, different types of failure modes, etc. available to researchers. This makes discussion of physics of failure difficult. It was also desired to find out whether the test article-to-test rig interface (grip) played a part in some failures. These failures have nothing to do with stress rupture failure, thus representing a source of waste for the larger 13-00912 investigation into that specific failure type. Being able to identify or mitigate any competing failure modes would improve the value of the 13-00912 test data. The beginnings of the solution to these problems lay in obtaining images of strand failures useful for understanding physics of failure and the events leading up to failure. Necessary steps include identifying imaging techniques that result in useful data, using those techniques to home in on where in a strand and when in the sequence of events one should obtain imaging data.

  10. Force-Driven Separation of Short Double-Stranded DNA

    PubMed Central

    Ho, Dominik; Zimmermann, Julia L.; Dehmelt, Florian A.; Steinbach, Uta; Erdmann, Matthias; Severin, Philip; Falter, Katja; Gaub, Hermann E.

    2009-01-01

    Abstract Short double-stranded DNA is used in a variety of nanotechnological applications, and for many of them, it is important to know for which forces and which force loading rates the DNA duplex remains stable. In this work, we develop a theoretical model that describes the force-dependent dissociation rate for DNA duplexes tens of basepairs long under tension along their axes (“shear geometry”). Explicitly, we set up a three-state equilibrium model and apply the canonical transition state theory to calculate the kinetic rates for strand unpairing and the rupture-force distribution as a function of the separation velocity of the end-to-end distance. Theory is in excellent agreement with actual single-molecule force spectroscopy results and even allows for the prediction of the rupture-force distribution for a given DNA duplex sequence and separation velocity. We further show that for describing double-stranded DNA separation kinetics, our model is a significant refinement of the conventionally used Bell-Evans model. PMID:20006953

  11. Yields of single-strand breaks in double-stranded calf thymus DNA irradiated in aqueous solution in the presence of oxygen and scavengers

    SciTech Connect

    Udovicic, Lj.; Mark, F.; Bothe, E.

    1994-11-01

    Yields of radiation-induced single-strand breaks in double-stranded calf thymus DNA have been measured as a function of OH scavenger concentration in N{sub 2}O/O{sub 2}-saturated aqueous solution. The experimental data are well represented by a theoretical model based on non-homogeneous reaction kinetics, without the need to adjust any parameter. The good agreement between experimental and theoretical data is taken as evidence that, in the presence of oxygen, the main effect of added scavengers with respect to the formation of single-strand breaks in double-stranded DNA is OH radical scavenging. 30 refs., 3 figs., 1 tab.

  12. Integrated assessment of biological invasions.

    PubMed

    Ibáñez, Ines; Diez, Jeffrey M; Miller, Luke P; Olden, Julian D; Sorte, Cascade J B; Blumenthal, Dana M; Bradley, Bethany A; D'Antonio, Carla M; Dukes, Jeffrey S; Early, Regan I; Grosholz, Edwin D; Lawler, Joshua J

    2014-01-01

    As the main witnesses of the ecological and economic impacts of invasions on ecosystems around the world, ecologists seek to provide the relevant science that informs managers about the potential for invasion of specific organisms in their region(s) of interest. Yet, the assorted literature that could inform such forecasts is rarely integrated to do so, and further, the diverse nature of the data available complicates synthesis and quantitative prediction. Here we present a set of analytical tools for synthesizing different levels of distributional and/or demographic data to produce meaningful assessments of invasion potential that can guide management at multiple phases of ongoing invasions, from dispersal to colonization to proliferation. We illustrate the utility of data-synthesis and data-model assimilation approaches with case studies of three well-known invasive species--a vine, a marine mussel, and a freshwater crayfish--under current and projected future climatic conditions. Results from the integrated assessments reflect the complexity of the invasion process and show that the most relevant climatic variables can have contrasting effects or operate at different intensities across habitat types. As a consequence, for two of the study species climate trends will increase the likelihood of invasion in some habitats and decrease it in others. Our results identified and quantified both bottlenecks and windows of opportunity for invasion, mainly related to the role of human uses of the landscape or to disruption of the flow of resources. The approach we describe has a high potential to enhance model realism, explanatory insight, and predictive capability, generating information that can inform management decisions and optimize phase-specific prevention and control efforts for a wide range of biological invasions.

  13. Carbohydrate radicals: from ethylene glycol to DNA strand breakage.

    PubMed

    von Sonntag, Clemens

    2014-06-01

    Radiation-induced DNA strand breakage results from the reactions of radicals formed at the sugar moiety of DNA. In order to elucidate the mechanism of this reaction investigations were first performed on low molecular weight model systems. Results from studies on deoxygenated aqueous solutions of ethylene glycol, 2-deoxy-d-ribose and other carbohydrates and, more relevantly, of d-ribose-5-phosphate have shown that substituents can be eliminated from the β-position of the radical site either proton and base-assisted (as in the case of the OH substituent), or spontaneously (as in the case of the phosphate substituent). In DNA the C(4') radical undergoes strand breakage via this type of reaction. In the presence of oxygen the carbon-centred radicals are rapidly converted into the corresponding peroxyl radicals. Again, low molecular weights models have been investigated to elucidate the key reactions. A typical reaction of DNA peroxyl radicals is the fragmentation of the C(4')-C(S') bond, a reaction not observed in the absence of oxygen. Although OH radicals may be the important direct precursors of the sugar radicals of DNA, results obtained with poly(U) indicate that base radicals may well be of even greater importance. The base radicals, formed by addition of the water radicals (H and OH) to the bases would in their turn attack the sugar moiety to produce sugar radicals which then give rise to strand breakage and base release. For a better understanding of strand break formation it is therefore necessary to investigate in more detail the reactions of the base radicals. For a start, the radiolysis of uracil in oxygenated solutions has been reinvestigated, and it has been shown that the major peroxyl radical in this system undergoes base-catalysed elimination of [Formula: see text], a reaction that involves the proton at N(l). In the nucleic acids the pyrimidines are bound at N(l) to the sugar moiety and this type of reaction can no longer occur. Therefore, with

  14. Sequence selective double strand DNA cleavage by peptide nucleic acid (PNA) targeting using nuclease S1.

    PubMed Central

    Demidov, V; Frank-Kamenetskii, M D; Egholm, M; Buchardt, O; Nielsen, P E

    1993-01-01

    A novel method for sequence specific double strand DNA cleavage using PNA (peptide nucleic acid) targeting is described. Nuclease S1 digestion of double stranded DNA gives rise to double strand cleavage at an occupied PNA strand displacement binding site, and under optimized conditions complete cleavage can be obtained. The efficiency of this cleavage is more than 10 fold enhanced when a tandem PNA site is targeted, and additionally enhanced if this site is in trans rather than in cis orientation. Thus in effect, the PNA targeting makes the single strand specific nuclease S1 behave like a pseudo restriction endonuclease. Images PMID:8502550

  15. The isothermal amplification detection of double-stranded DNA based on a double-stranded fluorescence probe.

    PubMed

    Shi, Chao; Shang, Fanjin; Pan, Mei; Liu, Sen; Ma, Cuiping

    2016-06-15

    Here we have developed a novel method of isothermal amplification detection of double-stranded DNA (dsDNA) based on double-stranded fluorescence probe (ds-probe). Target dsDNA repeatedly generated single-stranded DNA (ssDNA) with polymerase and nicking enzyme. The ds-probe as a primer hybridized with ssDNA and extended to its 5'-end. The displaced ssDNA served as a new detection target to initiate above-described reaction. Meanwhile, the extended ds-probe could dynamically dissociate from ssDNA and self-hybridize, converting into a turn-back structure to initiate another amplification reaction. In particular, the ds-probe played a key role in the entire experimental process, which not only was as a primer but also produced the fluorescent signal by an extension and displacement reaction. Our method could detect the pBluescript II KS(+) plasmid with a detection limit of 2.3 amol, and it was also verified to exhibit a high specificity, even one-base mismatch. Overall, it was a true isothermal dsDNA detection strategy with a strongly anti-jamming capacity and one-pot, only requiring one ds-probe, which greatly reduced the cost and the probability of contamination. With its advantages, the approach of dsDNA detection will offer a promising tool in the field of point-of-care testing (POCT).

  16. Analysis of BRCA1 Variants in Double-Strand Break Repair by Homologous Recombination and Single-Strand Annealing

    PubMed Central

    Towler, William I.; Zhang, Jie; Ransburgh, Derek J. R.; Toland, Amanda E.; Ishioka, Chikashi; Chiba, Natsuko; Parvin, Jeffrey D.

    2014-01-01

    Missense substitutions of uncertain clinical significance in the BRCA1 gene are a vexing problem in genetic counseling for women who have a family history of breast cancer. In this study, we evaluated the functions of 29 missense substitutions of BRCA1 in two DNA repair pathways. Repair of double-strand breaks by homology-directed recombination (HDR) had been previously analyzed for 16 of these BRCA1 variants, and 13 more variants were analyzed in this study. All 29 variants were also analyzed for function in double-strand break repair by the single-strand annealing (SSA) pathway. We found that among the pathogenic mutations in BRCA1, all were defective for DNA repair by either pathway. The HDR assay was accurate because all pathogenic mutants were defective for HDR, and all nonpathogenic variants were fully functional for HDR. Repair by SSA accurately identified pathogenic mutants, but several nonpathogenic variants were scored as defective or partially defective. These results indicated that specific amino acid residues of the BRCA1 protein have different effects in the two related DNA repair pathways, and these results validate the HDR assay as highly correlative with BRCA1-associated breast cancer. PMID:23161852

  17. Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases.

    PubMed

    Bruenn, J A

    1991-01-25

    The sequences of 50 RNA-dependent RNA polymerases (RDRPs) from 43 positive strand and 7 double strand RNA (dsRNA) viruses have been compared. The alignment permitted calculation of distances among the 50 viruses and a resultant dendrogram based on every amino acid, rather than just those amino acids in the conserved motifs. Remarkably, a large subgroup of these viruses, including vertebrate, plant, and insect viruses, forms a single cluster whose only common characteristic is exploitation of insect hosts or vectors. This similarity may be due to molecular constraints associated with a present and/or past ability to infect insects and/or to common descent from insect viruses. If common descent is important, as it appears to be, all the positive strand RNA viruses of eucaryotes except for the picornaviruses may have evolved from an ancestral dsRNA virus. Viral RDRPs appear to be inherited as modules rather than as portions of single RNA segments, implying that RNA recombination has played an important role in their dissemination.

  18. The isothermal amplification detection of double-stranded DNA based on a double-stranded fluorescence probe.

    PubMed

    Shi, Chao; Shang, Fanjin; Pan, Mei; Liu, Sen; Ma, Cuiping

    2016-06-15

    Here we have developed a novel method of isothermal amplification detection of double-stranded DNA (dsDNA) based on double-stranded fluorescence probe (ds-probe). Target dsDNA repeatedly generated single-stranded DNA (ssDNA) with polymerase and nicking enzyme. The ds-probe as a primer hybridized with ssDNA and extended to its 5'-end. The displaced ssDNA served as a new detection target to initiate above-described reaction. Meanwhile, the extended ds-probe could dynamically dissociate from ssDNA and self-hybridize, converting into a turn-back structure to initiate another amplification reaction. In particular, the ds-probe played a key role in the entire experimental process, which not only was as a primer but also produced the fluorescent signal by an extension and displacement reaction. Our method could detect the pBluescript II KS(+) plasmid with a detection limit of 2.3 amol, and it was also verified to exhibit a high specificity, even one-base mismatch. Overall, it was a true isothermal dsDNA detection strategy with a strongly anti-jamming capacity and one-pot, only requiring one ds-probe, which greatly reduced the cost and the probability of contamination. With its advantages, the approach of dsDNA detection will offer a promising tool in the field of point-of-care testing (POCT). PMID:26803414

  19. Cheatgrass invasion and wildlife habitat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The introduction and subsequent invasion of cheatgrass (Bromus tectorum) has altered native plant communities and the wildlife species that depend on these communities. Cheatgrass has truncated secondary succession by outcompeting native plant species for limited resources, thus building persistent...

  20. Nonpalpable invasive breast cancer.

    PubMed Central

    Wilhelm, M C; Edge, S B; Cole, D D; deParedes, E; Frierson, H F

    1991-01-01

    The use of mammography has resulted in 1464 breast biopsies for nonpalpable abnormalities at the University of Virginia in the 10 years 1980 to 1989. Two hundred sixty-four cancerous lesions (18%) were found. One hundred seventy-eight of these (67%) were in situ lesions. Invasive cancer (86 of 264 lesions or 33%) forms the basis for this report. Mammographic findings leading to biopsy were a mass in 61 of 86 cases (71%), microcalcifications in 23 of 86 (27%), or both in 2 of 86 cases. Histologic subtypes were infiltrating ductal (63 of 86), infiltrating lobular (14 of 86), and other infiltrating (9 of 86). Mastectomy was performed in 71 of 86 lesions (82%), lumpectomy/radiation in 14 of 86 (16%), and lumpectomy alone in 1 of 86 lesions. Division of the tumors into size with nodal status revealed 19 of 86 lesions (22%) less than 0.5 cm with 0 of 14 positive nodes. Thirty-nine of eighty-six lesions (46%) measured 0.6 to 1.0 cm with 10 (26%) positive nodes. Twenty-eight of eighty-six lesions (32%) measured more than 1.0 cm with 8 of 28 (28%) positive nodes. Nodal status is unknown for eight patients. Overall 18 of 78 lesions (23%) had positive nodes. Median follow-up is 44 months. Disease-free survival rate is 92% (79 of 86 patients) and overall survival rate is 94% (81 of 86 patients). Six of seven recurrences occurred in node-positive patients. For those with negative or unknown nodes, the disease-free survival rate is 98% (67 of 68 patients). These findings emphasize the benefit of early detection of breast cancer through the use of mammography. PMID:2039291

  1. Structure of a group A streptococcal phage-encoded virulence factor reveals a catalytically active triple-stranded beta-helix.

    PubMed

    Smith, Nicola L; Taylor, Edward J; Lindsay, Anna-Marie; Charnock, Simon J; Turkenburg, Johan P; Dodson, Eleanor J; Davies, Gideon J; Black, Gary W

    2005-12-01

    Streptococcus pyogenes (group A Streptococcus) causes severe invasive infections including scarlet fever, pharyngitis (streptococcal sore throat), skin infections, necrotizing fasciitis (flesh-eating disease), septicemia, erysipelas, cellulitis, acute rheumatic fever, and toxic shock. The conversion from nonpathogenic to toxigenic strains of S. pyogenes is frequently mediated by bacteriophage infection. One of the key bacteriophage-encoded virulence factors is a putative "hyaluronidase," HylP1, a phage tail-fiber protein responsible for the digestion of the S. pyogenes hyaluronan capsule during phage infection. Here we demonstrate that HylP1 is a hyaluronate lyase. The 3D structure, at 1.8-angstroms resolution, reveals an unusual triple-stranded beta-helical structure and provides insight into the structural basis for phage tail assembly and the role of phage tail proteins in virulence. Unlike the triple-stranded beta-helix assemblies of the bacteriophage T4 injection machinery and the tailspike endosialidase of the Escherichia coli K1 bacteriophage K1F, HylP1 possesses three copies of the active center on the triple-helical fiber itself without the need for an accessory catalytic domain. The triple-stranded beta-helix is not simply a structural scaffold, as previously envisaged; it is harnessed to provide a 200-angstroms-long substrate-binding groove for the optimal reduction in hyaluronan viscosity to aid phage penetration of the capsule.

  2. Adenovirus-associated virus multiplication. VI. Base compostion of the deoxyribonucleic acid strand species and strand-specific in vivo transcription.

    PubMed

    Rose, J A; Koczot, F

    1971-11-01

    The two complementary strand species of 5-bromodeoxyuridine-substituted, adenovirus-associated virus type 2 (AAV-2) deoxyribonucleic acid were preparatively separated in CsCl density gradients and further purified by sedimentation through 5 to 20% sucrose. The base composition of each strand species was determined, and it was found that the species banding at a greater density in CsCl (heavy strands) had an expected higher thymidine content (26.5%) than that 21.7%) of the less dense species (light strands). Furthermore, the base composition of in vivo-synthesized, AAV-specific ribonucleic acid was similar to that of light-strand deoxyribonucleic acid, and this ribonucleic acid apparently hybridized only with heavy strands. These observations indicate that the heavy-strand species alone serves as the transcriptional template in vivo. This study represents the first instance in which the base composition and specificity of in vivo transcription have been determined for each of the complementary strands of an animal virus deoxyribonucleic acid.

  3. Prostate brachytherapy postimplant dosimetry: Automatic plan reconstruction of stranded implants

    SciTech Connect

    Chng, N.; Spadinger, I.; Morris, W. J.; Usmani, N.; Salcudean, S.

    2011-01-15

    Purpose: Plan reconstruction for permanent implant prostate brachytherapy is the process of determining the correspondence between planned and implanted seeds in postimplant analysis. Plan reconstruction informs many areas of brachytherapy quality assurance, including the verification of seed segmentation, misplacement and migration assessment, implant simulations, and the dosimetry of mixed-activity or mixed-species implants. Methods: An algorithm has been developed for stranded implants which uses the interseed spacing constraints imposed by the suture to improve the accuracy of reconstruction. Seventy randomly selected clinical cases with a mean of 23.6 (range 18-30) needles and mean density of 2.0 (range 1.6-2.6) 2.0 (range 1.6-2.6) seeds/cm{sup 3} were automatically reconstructed and the accuracy compared to manual reconstructions performed using a custom 3D graphical interface. Results: Using the automatic algorithm, the mean accuracy of the assignment relative to manual reconstruction was found to be 97.7{+-}0.5%. Fifty-two of the 70 cases (74%) were error-free; of seeds in the remaining cases, 96.7{+-}0.3% were found to be attributed to the correct strand and 97.0{+-}0.3% were correctly connected to their neighbors. Any necessary manual correction using the interface is usually straightforward. For the clinical data set tested, neither the number of seeds or needles, average density, nor the presence of clusters was found to have an effect on reconstruction accuracy using this method. Conclusions: Routine plan reconstruction of stranded implants can be performed with a high degree of accuracy to support postimplant dosimetry and quality analyses.

  4. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes

    PubMed Central

    Morales, Maria E.; Derbes, Rebecca S.; Ade, Catherine M.; Ortego, Jonathan C.; Stark, Jeremy; Deininger, Prescott L.; Roy-Engel, Astrid M.

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the “error prone” non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair. PMID:26966913

  5. Targeting cancer cell invasiveness using homing peptide-nanocomplexes

    NASA Astrophysics Data System (ADS)

    Suarato, Giulia; Cathcart, Jillian; Li, Weiyi; Cao, Jian; Meng, Yizhi

    Matrix metalloproteinase-14 (MMP-14) plays critical roles in digesting the basement membrane and extracellular matrix and inducing cancer migration. We recently unraveled a unique role in cell invasion of the hemopexin (PEX) domain of MMP-14. The minimal motif located at the outmost strand of the fourth blade of the PEX domain was identified to form homodimers of MMP-14. A peptide (IVS4) mimicking the binding motif was shown to interrupt MMP-14 dimerization and decrease MMP-14-mediated functions. Since most invasive cancer cells express upregulated MMP-14 at the surface, IVS4 could be used as a cancer homing peptide to specifically deliver cytotoxic drugs for cancer therapy. We developed cancer homing nanocarriers by linking IVS4 to polysaccharide-based micellar nanoparticles (NPs). To determine if conjugation of IVS4 to NPs maintains the IVS4 inhibition of MMP-14 function, substrate degradation and cell migration assays were performed. IVS4-NPs efficiently prevented MMP-14-mediated substrate degradation and cell migration, and were minimally uptaken by non-cancer cells. Importantly, IVS4 confers an uptake advantage compared to the control peptide in MMP-14-expressing cells. Taken together, our findings demonstrate the potential use of IVS4-NPs as novel cancer nanotherapeutics.

  6. Replication of murine coronavirus defective interfering RNA from negative-strand transcripts.

    PubMed

    Joo, M; Banerjee, S; Makino, S

    1996-09-01

    The positive-strand defective interfering (DI) RNA of the murine coronavirus mouse hepatitis virus (MHV), when introduced into MHV-infected cells, results in DI RNA replication and accumulation. We studied whether the introduction of negative-strand transcripts of MHV DI RNA would also result in replication. At a location downstream of the T7 promoter and upstream of the human hepatitis delta virus ribozyme domain, we inserted a complete cDNA clone of MHV DI RNA in reverse orientation; in vitro-synthesized RNA from this plasmid yielded a negative-strand RNA copy of the MHV DI RNA. When the negative-strand transcripts of the DI RNA were expressed in MHV-infected cells by a vaccinia virus T7 expression system, positive-strand DI RNAs accumulated in the plasmid-transfected cells. DI RNA replication depended on the expression of T7 polymerase and on the presence of the T7 promoter. Transfection of in vitro-synthesized negative-strand transcripts into MHV-infected cells and serial passage of virus samples from RNA-transfected cells also resulted in accumulation of the DI RNA. Positive-strand DI RNA transcripts were undetectable in sample preparations of the in vitro-synthesized negative-strand DI RNA transcripts, and DI RNA did not accumulate after cotransfection of a small amount of positive-strand DI RNA and truncated-replication-disabled negative-strand transcripts; clearly, the DI RNA replicated from the transfected negative-strand transcripts and not from minute amounts of positive-strand DI RNAs that might be envisioned as artifacts of T7 transcription. Sequence analysis of positive-strand DI RNAs in the cells transfected with negative-strand transcripts showed that DI RNAs maintained the DI-specific unique sequences introduced within the leader sequence. These data indicated that positive-strand DI RNA synthesis occurred from introduced negative-strand transcripts in the MHV-infected cells; this demonstration, using MHV, of DI RNA replication from transfected

  7. Bluegill virus is a ribovirus of positive-strand polarity.

    PubMed

    Robin, J; Larivière-Durand, C

    1983-01-01

    RNA was extracted from purified Bluegill virus (BGV) and fractionated onto a poly (U)-Sepharose-4 B column. More than 70 per cent of this RNA became bound and could be subsequently eluted from the column. By polynucleotide phosphorylase digestion, the poly (A) sequences were located at the 3'-terminus of the RNA. This RNA and purified BGV RNA were infectious as shown by plaque assay titration of the virus produced. Furthermore, we were unable to detect RNA polymerase activity in preparations of BGV. These results indicate that the genome in the BGV particle is a positive-strand RNA.

  8. The growing problem of stranded used nuclear fuel.

    PubMed

    Alley, William M; Alley, Rosemarie

    2014-02-18

    By 2050, almost all U.S. nuclear reactors will have reached their 60 year maximum expected life. Many will shut down sooner. With no assurance that the current approach for finding a geologic repository or interim storage sites will succeed, used nuclear fuel could be stranded indefinitely at more than 70 sites in 35 states. Societal discussions about the future of nuclear waste should be framed in terms of the relative risks of all alternatives. We review and compare onsite storage, interim storage, and a geologic repository, as well as how these alternatives are presented to the public.

  9. Reachability bounds for chemical reaction networks and strand displacement systems.

    PubMed

    Condon, Anne; Kirkpatrick, Bonnie; Maňuch, Ján

    2014-01-01

    Chemical reaction networks (CRNs) and DNA strand displacement systems (DSDs) are widely-studied and useful models of molecular programming. However, in order for some DSDs in the literature to behave in an expected manner, the initial number of copies of some reagents is required to be fixed. In this paper we show that, when multiple copies of all initial molecules are present, general types of CRNs and DSDs fail to work correctly if the length of the shortest sequence of reactions needed to produce any given molecule exceeds a threshold that grows polynomially with attributes of the system.

  10. Double strand breaks: hurdles for RNA polymerase II transcription?

    PubMed

    Pankotai, Tibor; Soutoglou, Evi

    2013-01-01

    DNA lesions pose a physical obstacle to DNA-dependent cellular transactions such as replication and transcription. A great deal is known regarding RNA polymerase II (RNAP II) transcription stalling in the presence of lesions induced by UV, but recent studies have uncovered previously uncharacterized behavior of the RNAP II machinery in the presence of double strand breaks (DSBs). These new data, although contradictory, contribute to our understanding of a vital cellular mechanism that defends against the production of aberrant transcripts and protects cell viability.

  11. Herpetic keratoconjunctivitis: Therapy with synthetic double-stranded RNA

    USGS Publications Warehouse

    Friedman, I.; Evans, C.; Meighan, C.W.; Foote, L.J.; Aiello, P.V.; Park, J.H.; Baron, S.

    1968-01-01

    A study was undertaken in rabbits to determine how late in the course of keratoconjunctivitis caused by herpes simplex recovery could be effected by an inducer of interferon. Interferon was induced by means of synthetic double-stranded RNA copolymer formed with polynosinic acid : polycytidilic acid RNA. Therapy promotes recovery from severe and fully established keratoconjunctivitis for which treatment was begun as late as 3 days after virus inoculation. No drug toxicity was observed in the therapeutic dose range. These findings further support the proposed role of the interferon mechanism in the natural recovery of already established viral infection. They also suggest the usefulness of interferon inducers in viral infections of man.

  12. Mechanical Separation of the Complementary Strands of DNA

    NASA Astrophysics Data System (ADS)

    Essevaz-Roulet, B.; Bockelmann, U.; Heslot, F.

    1997-10-01

    We describe the mechanical separation of the two complementary strands of a single molecule of bacteriophage λ DNA. The 3' and 5' extremities on one end of the molecule are pulled progressively apart, and this leads to the opening of the double helix. The typical forces along the opening are in the range of 10-15 pN. The separation force signal is shown to be related to the local GC vs. AT content along the molecule. Variations of this content on a typical scale of 100-500 bases are presently detected.

  13. The growing problem of stranded used nuclear fuel.

    PubMed

    Alley, William M; Alley, Rosemarie

    2014-02-18

    By 2050, almost all U.S. nuclear reactors will have reached their 60 year maximum expected life. Many will shut down sooner. With no assurance that the current approach for finding a geologic repository or interim storage sites will succeed, used nuclear fuel could be stranded indefinitely at more than 70 sites in 35 states. Societal discussions about the future of nuclear waste should be framed in terms of the relative risks of all alternatives. We review and compare onsite storage, interim storage, and a geologic repository, as well as how these alternatives are presented to the public. PMID:24437358

  14. Adenosine triphosphatases of thermophilic archaeal double-stranded DNA viruses

    PubMed Central

    2014-01-01

    Adenosine triphosphatases (ATPases) of double-stranded (ds) DNA archaeal viruses are structurally related to the AAA+ hexameric helicases and translocases. These ATPases have been implicated in viral life cycle functions such as DNA entry into the host, and viral genome packaging into preformed procapsids. We summarize bioinformatical analyses of a wide range of archaeal ATPases, and review the biochemical and structural properties of those archaeal ATPases that have measurable ATPase activity. We discuss their potential roles in genome delivery into the host, virus assembly and genome packaging in comparison to hexameric helicases and packaging motors from bacteriophages. PMID:25105011

  15. Silence of the strands: RNA interference in eukaryotic pathogens.

    PubMed

    Cottrell, Tricia R; Doering, Tamara L

    2003-01-01

    Double-stranded (ds) RNA interference (RNAi) is a recent technological advance that enables researchers to reduce gene expression at the post-transcriptional level. This form of RNA silencing is initiated by dsRNA, expressed in or introduced into a cell of interest, which triggers homology-dependent degradation of the corresponding mRNA. This versatile technique has remarkable promise as a tool for the study of eukaryotic pathogens. Protozoan parasites and pathogenic fungi often resist manipulation using standard molecular genetic approaches. Researchers studying these organisms need flexible molecular tools, particularly to exploit newly sequenced genomes; this review offers a practical guide to establishing RNAi in pathogenic eukaryotes.

  16. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen

    2016-01-01

    The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.

  17. SOST Inhibits Prostate Cancer Invasion

    PubMed Central

    Hudson, Bryan D.; Hum, Nicholas R.; Thomas, Cynthia B.; Kohlgruber, Ayano; Sebastian, Aimy; Collette, Nicole M.; Coleman, Matthew A.; Christiansen, Blaine A.; Loots, Gabriela G.

    2015-01-01

    Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC) metastasis; however the role of Sclerostin (Sost) has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bone-derived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings. PMID:26545120

  18. SOST Inhibits Prostate Cancer Invasion.

    PubMed

    Hudson, Bryan D; Hum, Nicholas R; Thomas, Cynthia B; Kohlgruber, Ayano; Sebastian, Aimy; Collette, Nicole M; Coleman, Matthew A; Christiansen, Blaine A; Loots, Gabriela G

    2015-01-01

    Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC) metastasis; however the role of Sclerostin (Sost) has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bone-derived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings.

  19. How to reduce invasiveness in non-invasive ventilation.

    PubMed

    Chiandotto, Valeria

    2012-10-01

    Non invasive ventilation plays a key role in neonatal intensive care unit (NICU) activity and several instruments have recently been developed that are designed to maintain positive pressure in order to improve functional residual capacity of the lung. However, devices used to provide non-invasive respiratory assistance are frequently a cause of discomfort when applied to a fragile neonate. Indeed, they are applied for lengthy periods in low birth weight (VLBW) infants. In addition to these side effects we have to consider several other stressful events. In our opinion, reducing invasiveness in the NICU is a process where the main steps are recognizing a need for the organization of diagnostic and therapeutic procedures with respect for the rhythm of the newborn, recognizing the fragility of preterm newborns and their brain plasticity, improving environmental standards in both structural terms and staff behaviour, and promoting the active role of parents in supporting the development of the newborn.

  20. Hybridization of DNA and PNA molecular beacons to single-stranded and double-stranded DNA targets.

    PubMed

    Kuhn, Heiko; Demidov, Vadim V; Coull, James M; Fiandaca, Mark J; Gildea, Brian D; Frank-Kamenetskii, Maxim D

    2002-02-13

    Molecular beacons are sensitive fluorescent probes hybridizing selectively to designated DNA and RNA targets. They have recently become practical tools for quantitative real-time monitoring of single-stranded nucleic acids. Here, we comparatively study the performance of a variety of such probes, stemless and stem-containing DNA and PNA (peptide nucleic acid) beacons, in Tris-buffer solutions containing various concentrations of NaCl and MgCl(2). We demonstrate that different molecular beacons respond differently to the change of salt concentration, which could be attributed to the differences in their backbones and constructions. We have found that the stemless PNA beacon hybridizes rapidly to the complementary oligodeoxynucleotide and is less sensitive than the DNA beacons to the change of salt thus allowing effective detection of nucleic acid targets under various conditions. Though we found stemless DNA beacons improper for diagnostic purposes due to high background fluorescence, we believe that use of these DNA and similar RNA constructs in molecular-biophysical studies may be helpful for analysis of conformational flexibility of single-stranded nucleic acids. With the aid of PNA "openers", molecular beacons were employed for the detection of a chosen target sequence directly in double-stranded DNA (dsDNA). Conditions are found where the stemless PNA beacon strongly discriminates the complementary versus mismatched dsDNA targets. Together with the insensitivity of PNA beacons to the presence of salt and DNA-binding/processing proteins, the latter results demonstrate the potential of these probes as robust tools for recognition of specific sequences within dsDNA without denaturation and deproteinization of duplex DNA.

  1. Euler buckling and nonlinear kinking of double-stranded DNA

    NASA Astrophysics Data System (ADS)

    Fields, Alexander; Axelrod, Kevin; Cohen, Adam

    2012-02-01

    Bare double-stranded DNA is a stiff biopolymer with a persistence length of roughly 53 nm under physiological conditions. Cells and viruses employ extensive protein machinery to overcome this stiffness and bend, twist, and loop DNA to accomplish tasks such as packaging, recombination, gene regulation, and repair. The mechanical properties of DNA are of fundamental importance to the mechanism and thermodynamics of these processes, but physiologically relevant curvature has been difficult to access experimentally. We designed and synthesized a DNA hairpin construct in which base-pairing interactions generated a compressive force on a short segment of duplex DNA, inducing Euler buckling followed by bending to thermally inaccessible radii of curvature. The efficiency of F"orster resonance energy transfer (FRET) between two fluorophores covalently linked to the hairpin indicated the degree of buckling. Bulk and single-molecule measurements yielded distinctly different force-compression curves for intact DNA and for strands with single nicks, base pair mismatches, and damage sites. These results suggest that changes in local mechanical properties may play a significant role in the recognition of these features by DNA-binding proteins.

  2. Single-Stranded Tile Stoppers for Interlocked DNA Architectures.

    PubMed

    Valero, Julián; Lohmann, Finn; Keppner, Daniel; Famulok, Michael

    2016-06-16

    Interlocked DNA architectures are useful for DNA nanotechnology because of their mechanically bonded components, which can move relative to one another without disassembling. We describe the design, synthesis, and characterization of novel single-stranded tile (SST) stoppers for the assembly of interlocked DNA architectures. SST stoppers are shown to self-assemble into a square-shaped rigid structure upon mixing 97 oligodeoxynucleotide (ODN) strands. The structures are equipped with a sticky end that is designed for hybridization with the sticky ends of a dsDNA axle of a DNA rotaxane. Because the diameter of the macrocycle threaded onto the axle is 14 nm, the dimension of the square-shaped stopper was designed to be bulky enough to prevent the dethreading of the macrocycle. An asymmetric rotaxane with a SST- and a ring-shaped stopper featuring two stations for hybridization of the macrocycle to the axle was assembled. The macrocycle can be directed towards one or the other station upon triggering with fuel ODNs.

  3. Dynamics of single-stranded DNA tethered to a solid

    NASA Astrophysics Data System (ADS)

    Radiom, Milad; Paul, Mark R.; Ducker, William A.

    2016-06-01

    Tethering is used to deliver specific biological and industrial functions. For example, single-stranded DNA (ssDNA) is tethered to polymerases and long sequences of double-stranded DNA (dsDNA) during replication, and to solids in DNA microarrays. However, tethering ssDNA to a large object limits not only the available ssDNA conformations, but also the range of time-scales over which the mechanical responses of ssDNA are important. In this work we examine the effect of tethering by measurement of the mechanical response of ssDNA that is tethered at each end to two separate atomic force microscope cantilevers in aqueous solution. Thermal motion of the cantilevers drives the ends of the ssDNA chain at frequencies near 2 kHz. The presence of a tethered molecule makes a large difference to the asymmetric cross-correlation of two cantilevers, which enables resolution of the mechanical properties in our experiments. By analysis of the correlated motion of the cantilevers we extract the friction and stiffness of the ssDNA. We find that the measured friction is much larger than the friction that is usually associated with the unencumbered motion of ssDNA. We also find that the measured relaxation time, ∼30 μs, is much greater than prior measurements of the free-molecule relaxation time. We attribute the difference to the loss of conformational possibilities as a result of constraining the ends of the ssDNA.

  4. Entropy in DNA Double-Strand Break, Detection and Signaling

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Schindler, Christina; Heermann, Dieter

    2014-03-01

    In biology, the term entropy is often understood as a measure of disorder - a restrictive interpretation that can even be misleading. Recently it has become clearer and clearer that entropy, contrary to conventional wisdom, can help to order and guide biological processes in living cells. DNA double-strand breaks (DSBs) are among the most dangerous lesions and efficient damage detection and repair is essential for organism viability. However, what remains unknown is the precise mechanism of targeting the site of damage within billions of intact nucleotides and a crowded nuclear environment, a process which is often referred to as recruitment or signaling. Here we show that the change in entropy associated with inflicting a DSB facilitates the recruitment of damage sensor proteins. By means of computational modeling we found that higher mobility and local chromatin structure accelerate protein association at DSB ends. We compared the effect of different chromatin architectures on protein dynamics and concentrations in the vicinity of DSBs, and related these results to experiments on repair in heterochromatin. Our results demonstrate how entropy contributes to a more efficient damage detection. We identify entropy as the physical basis for DNA double-strand break signaling.

  5. Single-Stranded Tile Stoppers for Interlocked DNA Architectures.

    PubMed

    Valero, Julián; Lohmann, Finn; Keppner, Daniel; Famulok, Michael

    2016-06-16

    Interlocked DNA architectures are useful for DNA nanotechnology because of their mechanically bonded components, which can move relative to one another without disassembling. We describe the design, synthesis, and characterization of novel single-stranded tile (SST) stoppers for the assembly of interlocked DNA architectures. SST stoppers are shown to self-assemble into a square-shaped rigid structure upon mixing 97 oligodeoxynucleotide (ODN) strands. The structures are equipped with a sticky end that is designed for hybridization with the sticky ends of a dsDNA axle of a DNA rotaxane. Because the diameter of the macrocycle threaded onto the axle is 14 nm, the dimension of the square-shaped stopper was designed to be bulky enough to prevent the dethreading of the macrocycle. An asymmetric rotaxane with a SST- and a ring-shaped stopper featuring two stations for hybridization of the macrocycle to the axle was assembled. The macrocycle can be directed towards one or the other station upon triggering with fuel ODNs. PMID:26972112

  6. The RNA synthesis machinery of negative-stranded RNA viruses

    SciTech Connect

    Ortín, Juan; Martín-Benito, Jaime

    2015-05-15

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes.

  7. Characterization of CRISPR RNA transcription by exploiting stranded metatranscriptomic data

    PubMed Central

    Ye, Yuzhen; Zhang, Quan

    2016-01-01

    CRISPR–Cas systems are bacterial adaptive immune systems, each typically composed of a locus of cas genes and a CRISPR array of spacers flanked by repeats. Processed transcripts of CRISPR arrays (crRNAs) play important roles in the interference process mediated by these systems, guiding targeted immunity. Here we developed computational approaches that allow us to characterize the expression of many CRISPRs in their natural environments, using community RNA-seq (metatranscriptomic) data. By exploiting public human gut metatranscriptomic data sets, we studied the expression of 56 repeat-sequence types of CRISPRs, revealing that most CRISPRs are transcribed in one direction (producing crRNAs). In rarer cases, including a type II system associated with Bacteroides fragilis, CRISPRs are transcribed in both directions. Type III CRISPR–Cas systems were found in the microbiomes, but metatranscriptomic reads were barely found for their CRISPRs. We observed individual-level variation of the crRNA transcription, and an even greater transcription of a CRISPR from the antisense strand than the crRNA strand in one sample. The orientations of CRISPR expression implicated by metatranscriptomic data are largely in agreement with prior predictions for CRISPRs, with exceptions. Our study shows the promise of exploiting community RNA-seq data for investigating the transcription of CRISPR–Cas systems. PMID:27190232

  8. Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation

    SciTech Connect

    Railsback, Justin; Singh, Abhishek; Pearce, Ryan; McKnight, Timothy E; Collazo, Ramon; Sitar, Zlatko; Yingling, Yaroslava; Melechko, Anatoli Vasilievich

    2012-01-01

    The understanding of interactions between double stranded (ds) DNA and charged nanoparticles will have a broad bearing on many important applications from drug delivery [ 1 4 ] to DNAtemplated metallization. [ 5 , 6 ] Cationic nanoparticles (NPs) can bind to DNA, a negatively charged molecule, through a combination of electrostatic attraction, groove binding, and intercalation. Such binding events induce changes in the conformation of a DNA strand. In nature, DNA wraps around a cylindrical protein assembly (diameter and height of 6 nm) [ 7 ] with an 220 positive charge, [ 8 ] creating the complex known as chromatin. Wrapping and bending of DNA has also been achieved in the laboratory through the binding of highly charged species such as molecular assemblies, [ 9 , 10 ] cationic dendrimers, [ 11 , 12 ] and nanoparticles. [ 13 15 ] The charge of a nanoparticle plays a crucial role in its ability to induce DNA structural changes. If a nanoparticle has a highly positive surface charge density, the DNA is likely to wrap and bend upon binding to the nanoparticle [ 13 ] (as in the case of chromatin). On the other hand, if a nanoparticle is weakly charged it will not induce dsDNA compaction. [ 9 , 10 , 15 ] Consequently, there is a transition zone from extended to compact DNA conformations which depends on the chemical nature of the nanoparticle and occurs for polycations with charges between 5 and 10. [ 9 ] While the interactions between highly charged NPs and DNA have been extensively studied, the processes that occur within the transition zone are less explored.

  9. Nucleolar responses to DNA double-strand breaks.

    PubMed

    Larsen, Dorthe Helena; Stucki, Manuel

    2016-01-29

    Maintenance of cellular homeostasis is key to prevent transformation and disease. The cellular response to DNA double-strand breaks, primarily orchestrated by the ATM/ATR kinases is one of many mechanisms that serve to uphold genome stability and homeostasis. Upon detection of double-strand breaks (DSBs), several signaling cascades are activated to halt cell cycle progression and initiate repair. Furthermore, the DNA damage response (DDR) controls cellular processes such as transcription, splicing and metabolism. Recent studies have uncovered aspects of how the DDR operates within nucleoli. It appears that the DDR controls transcription in the nucleoli, not only when DNA breaks occur in the rDNA repeats, but also when a nuclear DDR is activated. In addition, we have gained first insights into how repair of DSBs is organized in the nucleolus. Collectively, these recent studies provide a more comprehensive picture of how the DDR regulates basic cellular functions to maintain cellular homeostasis. In this review we will summarize recent findings and discuss their implications for our understanding of how the DDR regulates transcription and repair in the nucleolus.

  10. Dynamic control of strand excision during human DNA mismatch repair.

    PubMed

    Jeon, Yongmoon; Kim, Daehyung; Martín-López, Juana V; Lee, Ryanggeun; Oh, Jungsic; Hanne, Jeungphill; Fishel, Richard; Lee, Jong-Bong

    2016-03-22

    Mismatch repair (MMR) is activated by evolutionarily conserved MutS homologs (MSH) and MutL homologs (MLH/PMS). MSH recognizes mismatched nucleotides and form extremely stable sliding clamps that may be bound by MLH/PMS to ultimately authorize strand-specific excision starting at a distant 3'- or 5'-DNA scission. The mechanical processes associated with a complete MMR reaction remain enigmatic. The purified human (Homo sapien or Hs) 5'-MMR excision reaction requires the HsMSH2-HsMSH6 heterodimer, the 5' → 3' exonuclease HsEXOI, and the single-stranded binding heterotrimer HsRPA. The HsMLH1-HsPMS2 heterodimer substantially influences 5'-MMR excision in cell extracts but is not required in the purified system. Using real-time single-molecule imaging, we show that HsRPA or Escherichia coli EcSSB restricts HsEXOI excision activity on nicked or gapped DNA. HsMSH2-HsMSH6 activates HsEXOI by overcoming HsRPA/EcSSB inhibition and exploits multiple dynamic sliding clamps to increase tract length. Conversely, HsMLH1-HsPMS2 regulates tract length by controlling the number of excision complexes, providing a link to 5' MMR.

  11. Nucleolar responses to DNA double-strand breaks

    PubMed Central

    Larsen, Dorthe Helena; Stucki, Manuel

    2016-01-01

    Maintenance of cellular homeostasis is key to prevent transformation and disease. The cellular response to DNA double-strand breaks, primarily orchestrated by the ATM/ATR kinases is one of many mechanisms that serve to uphold genome stability and homeostasis. Upon detection of double-strand breaks (DSBs), several signaling cascades are activated to halt cell cycle progression and initiate repair. Furthermore, the DNA damage response (DDR) controls cellular processes such as transcription, splicing and metabolism. Recent studies have uncovered aspects of how the DDR operates within nucleoli. It appears that the DDR controls transcription in the nucleoli, not only when DNA breaks occur in the rDNA repeats, but also when a nuclear DDR is activated. In addition, we have gained first insights into how repair of DSBs is organized in the nucleolus. Collectively, these recent studies provide a more comprehensive picture of how the DDR regulates basic cellular functions to maintain cellular homeostasis. In this review we will summarize recent findings and discuss their implications for our understanding of how the DDR regulates transcription and repair in the nucleolus. PMID:26615196

  12. Chromatin modifications and DNA repair: beyond double-strand breaks

    PubMed Central

    House, Nealia C. M.; Koch, Melissa R.; Freudenreich, Catherine H.

    2014-01-01

    DNA repair must take place in the context of chromatin, and chromatin modifications and DNA repair are intimately linked. The study of double-strand break repair has revealed numerous histone modifications that occur after induction of a DSB, and modification of the repair factors themselves can also occur. In some cases the function of the modification is at least partially understood, but in many cases it is not yet clear. Although DSB repair is a crucial activity for cell survival, DSBs account for only a small percentage of the DNA lesions that occur over the lifetime of a cell. Repair of single-strand gaps, nicks, stalled forks, alternative DNA structures, and base lesions must also occur in a chromatin context. There is increasing evidence that these repair pathways are also regulated by histone modifications and chromatin remodeling. In this review, we will summarize the current state of knowledge of chromatin modifications that occur during non-DSB repair, highlighting similarities and differences to DSB repair as well as remaining questions. PMID:25250043

  13. Wheeling and stranded investment-is there a better way

    SciTech Connect

    Ferrar, T.

    1994-03-25

    Under current franchise law, retail wheeling must be addressed on a state-by-state basis, and (therefore) it will not sweep the electric power industry as deregulation has been visited upon the telecommunications, airline, natural gas and other industries. Nevertheless, many industry observers remain concerned that retail competition will create a significant stranded investment problem. That is, broadened competition among power generators for customers will result in the market value of some existing (previously market-protected) generation assets falling below book value. The significance of such asset revaluations, and the time required for adjustment, increases with the capital intensity of the industry; this is the reason for the heightened concern regarding the introduction of retail wheeling into the electric power industry. One policy direction that may be worthy of further debate and losses during the power market's transition to a more competitive equilibrium - i.e., until regulation-induced differentials between market and book values are mitigated. A two-part policy proposal is offered for consideration. First, the use of intra-pool transfer payments; second, if stranded investment continues to exist, a temporary uniform pool-wide wheeling surcharge.

  14. Invasive Cervical Cancer and Antidepressants

    PubMed Central

    Chan, Hsiang-Lin; Hsieh, Yi-Hsuan; Lin, Chiao-Fan; Liang, Hsin-Yi; Huang, Kuo-You; Chiu, Wei-Che; Lee, Yena; McIntyre, Roger S.; Chen, Vincent Chin-Hung

    2015-01-01

    Abstract To our knowledge, no prior population-based study has been published wherein the primary aim was to evaluate whether an association between psychotropic drug prescription and cervical cancer exists. Herein we have conducted the first study that primarily aimed to determine the association between antidepressants use and risk of invasive cervical cancer in the general population. This is a population-based study utilizing Taiwan's National Health Insurance Research Database. We identified 26,262 cases with invasive cervical cancer and 129,490 controls. We adopted the conditional logistic regression model as the statistical method and adjusted for potential confounding factors. The prescription of selective serotonin reuptake inhibitors (SSRIs) (adjusted OR = 0.93, 95% CI = 0.84–1.04), tricyclic antidepressants (TCAs), monoamine oxidase inhibitors (MAOIs), serotonin norepinephrine reuptake inhibitors (SNRIs), mirtazapine and bupropion, adjusting for cumulative dose, was not associated with an increased, or decreased, risk for invasive cervical cancer. An association between trazodone prescription and invasive cervical cancer was observed (adjusted OR = 1.22, 95% CI = 1.03–1.43). An association between the major classes of antidepressants and invasive cervical cancer was not observed herein. Our preliminary finding regarding a possible association between trazodone and cervical cancer requires replication. PMID:26496343

  15. The importance of quantifying propagule pressure to understand invasion: an examination of riparian forest invasibility.

    PubMed

    Eschtruth, Anne K; Battles, John J

    2011-06-01

    The widely held belief that riparian communities are highly invasible to exotic plants is based primarily on comparisons of the extent of invasion in riparian and upland communities. However, because differences in the extent of invasion may simply result from variation in propagule supply among recipient environments, true comparisons of invasibility require that both invasion success and propagule pressure are quantified. In this study, we quantified propagule pressure in order to compare the invasibility of riparian and upland forests and assess the accuracy of using a community's level of invasion as a surrogate for its invasibility. We found the extent of invasion to be a poor proxy for invasibility. The higher level of invasion in the studied riparian forests resulted from greater propagule availability rather than higher invasibility. Furthermore, failure to account for propagule pressure may confound our understanding of general invasion theories. Ecological theory suggests that species-rich communities should be less invasible. However, we found significant relationships between species diversity and invasion extent, but no diversity-invasibility relationship was detected for any species. Our results demonstrate that using a community's level of invasion as a surrogate for its invasibility can confound our understanding of invasibility and its determinants.

  16. Vacuum-ultraviolet circular dichroism reveals DNA duplex formation between short strands of adenine and thymine.

    PubMed

    Nielsen, Lisbeth Munksgaard; Hoffmann, Søren Vrønning; Brøndsted Nielsen, Steen

    2012-11-21

    Absorbance spectroscopy is used extensively to tell when two DNA single strands come together and form a double strand. Here we show that circular dichroism in the vacuum ultraviolet region provides an even stronger indication for duplex formation in the case of short strands of adenine and thymine (4 to 16 bases in each strand). Indeed, our results show that a strong positive CD band appears at 179 nm when double strands are formed. Melting experiments were done in aqueous solution with and without added Na(+) counter ions. With additional salt present a huge increase in the 179 nm CD band was observed when lowering the temperature. A 179 nm CD marker band for duplex formation can be used to measure the kinetics for the association of two single strands. Such experiments rely on large changes at one particular wavelength since it is too time-consuming to record a full-wavelength spectrum.

  17. Estimation of Prestress Force Distribution in the Multi-Strand System of Prestressed Concrete Structures

    PubMed Central

    Cho, Keunhee; Park, Sung Yong; Cho, Jeong-Rae; Kim, Sung Tae; Park, Young-Hwan

    2015-01-01

    Prestressed concrete (PSC) is one of the most reliable, durable and widely used construction materials, which overcomes the weakness of concrete in tension by the introduction of a prestress force. Smart strands enabling measurement of the prestress force have recently been developed to maintain PSC structures throughout their lifetime. However, the smart strand cannot give a representative indication of the whole prestress force when used in multi-strand systems since each strand sustains a different prestress force. In this paper, the actual distribution of the prestress force in a multi-strand system is examined using elastomagnetic (EM) sensors to develop a method for tracking representative indicators of the prestress force using smart strands. PMID:26083230

  18. A comprehensive classification of nucleic acid structural families based on strand direction and base pairing.

    PubMed Central

    Lavery, R; Zakrzewska, K; Sun, J S; Harvey, S C

    1992-01-01

    We propose a classification of DNA structures formed from 1 to 4 strands, based only on relative strand directions, base to strand orientation and base pairing geometries. This classification and its associated notation enable all nucleic acids to be grouped into structural families and bring to light possible structures which have not yet been observed experimentally. It also helps in understanding transitions between families and can assist in the design of multistrand structures. PMID:1383936

  19. Edwardsiella tarda sepsis in a live-stranded sperm whale (Physeter macrocephalus).

    PubMed

    Cools, Piet; Haelters, Jan; Lopes dos Santos Santiago, Guido; Claeys, Geert; Boelens, Jerina; Leroux-Roels, Isabel; Vaneechoutte, Mario; Deschaght, Pieter

    2013-09-27

    Whale strandings remain poorly understood, although bacterial infections have been suggested to contribute. We isolated Edwardsiella tarda from the blood of a stranded sperm whale. The pathogen was identified with MALDI-TOF MS, confirmed by 16S rRNA gene sequencing and quantified in blood by qPCR. We report the first case of sepsis in a sperm whale. The zoonotic potential of E. tarda and the possible role of bacterial infections in the enigmatic strandings of cetaceans are discussed.

  20. Interpreting the spatio-temporal patterns of sea turtle strandings: Going with the flow

    USGS Publications Warehouse

    Hart, K.M.; Mooreside, P.; Crowder, L.B.

    2006-01-01

    Knowledge of the spatial and temporal distribution of specific mortality sources is crucial for management of species that are vulnerable to human interactions. Beachcast carcasses represent an unknown fraction of at-sea mortalities. While a variety of physical (e.g., water temperature) and biological (e.g., decomposition) factors as well as the distribution of animals and their mortality sources likely affect the probability of carcass stranding, physical oceanography plays a major role in where and when carcasses strand. Here, we evaluate the influence of nearshore physical oceanographic and wind regimes on sea turtle strandings to decipher seasonal trends and make qualitative predictions about stranding patterns along oceanfront beaches. We use results from oceanic drift-bottle experiments to check our predictions and provide an upper limit on stranding proportions. We compare predicted current regimes from a 3D physical oceanographic model to spatial and temporal locations of both sea turtle carcass strandings and drift bottle landfalls. Drift bottle return rates suggest an upper limit for the proportion of sea turtle carcasses that strand (about 20%). In the South Atlantic Bight, seasonal development of along-shelf flow coincides with increased numbers of strandings of both turtles and drift bottles in late spring and early summer. The model also predicts net offshore flow of surface waters during winter - the season with the fewest relative strandings. The drift bottle data provide a reasonable upper bound on how likely carcasses are to reach land from points offshore and bound the general timeframe for stranding post-mortem (< two weeks). Our findings suggest that marine turtle strandings follow a seasonal regime predictable from physical oceanography and mimicked by drift bottle experiments. Managers can use these findings to reevaluate incidental strandings limits and fishery takes for both nearshore and offshore mortality sources. ?? 2005 Elsevier Ltd

  1. Double-stranded RNA under force and torque: Similarities to and striking differences from double-stranded DNA

    PubMed Central

    Lipfert, Jan; Skinner, Gary M.; Keegstra, Johannes M.; Hensgens, Toivo; Jager, Tessa; Dulin, David; Köber, Mariana; Yu, Zhongbo; Donkers, Serge P.; Chou, Fang-Chieh; Das, Rhiju; Dekker, Nynke H.

    2014-01-01

    RNA plays myriad roles in the transmission and regulation of genetic information that are fundamentally constrained by its mechanical properties, including the elasticity and conformational transitions of the double-stranded (dsRNA) form. Although double-stranded DNA (dsDNA) mechanics have been dissected with exquisite precision, much less is known about dsRNA. Here we present a comprehensive characterization of dsRNA under external forces and torques using magnetic tweezers. We find that dsRNA has a force–torque phase diagram similar to that of dsDNA, including plectoneme formation, melting of the double helix induced by torque, a highly overwound state termed “P-RNA,” and a highly underwound, left-handed state denoted “L-RNA.” Beyond these similarities, our experiments reveal two unexpected behaviors of dsRNA: Unlike dsDNA, dsRNA shortens upon overwinding, and its characteristic transition rate at the plectonemic buckling transition is two orders of magnitude slower than for dsDNA. Our results challenge current models of nucleic acid mechanics, provide a baseline for modeling RNAs in biological contexts, and pave the way for new classes of magnetic tweezers experiments to dissect the role of twist and torque for RNA–protein interactions at the single-molecule level. PMID:25313077

  2. DNA ligase III acts as a DNA strand break sensor in the cellular orchestration of DNA strand break repair

    PubMed Central

    Abdou, Ismail; Poirier, Guy G.; Hendzel, Michael J.; Weinfeld, Michael

    2015-01-01

    In the current model of DNA SSBR, PARP1 is regarded as the sensor of single-strand breaks (SSBs). However, biochemical studies have implicated LIG3 as another possible SSB sensor. Using a laser micro-irradiation protocol that predominantly generates SSBs, we were able to demonstrate that PARP1 is dispensable for the accumulation of different single-strand break repair (SSBR) proteins at sites of DNA damage in live cells. Furthermore, we show in live cells for the first time that LIG3 plays a role in mediating the accumulation of the SSBR proteins XRCC1 and PNKP at sites of DNA damage. Importantly, the accumulation of LIG3 at sites of DNA damage did not require the BRCT domain-mediated interaction with XRCC1. We were able to show that the N-terminal ZnF domain of LIG3 plays a key role in the enzyme's SSB sensing function. Finally, we provide cellular evidence that LIG3 and not PARP1 acts as the sensor for DNA damage caused by the topoisomerase I inhibitor, irinotecan. Our results support the existence of a second damage-sensing mechanism in SSBR involving the detection of nicks in the genome by LIG3. PMID:25539916

  3. A design principle for a single-stranded RNA genome that replicates with less double-strand formation.

    PubMed

    Usui, Kimihito; Ichihashi, Norikazu; Yomo, Tetsuya

    2015-09-18

    Single-stranded RNA (ssRNA) is the simplest form of genetic molecule and constitutes the genome in some viruses and presumably in primitive life-forms. However, an innate and unsolved problem regarding the ssRNA genome is formation of inactive double-stranded RNA (dsRNA) during replication. Here, we addressed this problem by focusing on the secondary structure. We systematically designed RNAs with various structures and observed dsRNA formation during replication using an RNA replicase (Qβ replicase). From the results, we extracted a simple rule regarding ssRNA genome replication with less dsRNA formation (less GC number in loops) and then designed an artificial RNA that encodes a domain of the β-galactosidase gene based on this rule. We also obtained evidence that this rule governs the natural genomes of all bacterial and most fungal viruses presently known. This study revealed one of the structural design principles of an ssRNA genome that replicates continuously with less dsRNA formation.

  4. Single-stranded DNA used as an efficient new vehicle for transformation of plant protoplasts.

    PubMed

    Rodenburg, K W; de Groot, M J; Schilperoort, R A; Hooykaas, P J

    1989-12-01

    In relation to the question which DNA form (single- or double-stranded) is transferred by Agrobacterium tumefaciens to plant cells, we studied the behaviour of single-stranded DNA, as compared to double-stranded DNA, when it is introduced into plant protoplasts by electroporation. To this end, we cloned a construct with a plant NPTII gene as well as a CAT gene in the M13 vectors tg130 and tg131. We found that both complementary single-stranded molecules gave rise to substantial CAT activity in plant protoplasts, suggesting that single-stranded DNA is converted into double-stranded DNA by the plant cell replication machinery. Unexpectedly, we found that single-stranded DNA leads to a 3-10-fold higher frequency of stable transformation (selection for kanamycin resistance) than double-stranded DNA. These results indicate that the use of single-stranded DNA might be considered in experiments in which optimal transformation frequencies are needed, e.g. with protoplasts from recalcitrant plant species.

  5. Transport AC loss characteristics of a nine strand YBCO Roebel cable

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenan; Badcock, R. A.; Long, N. J.; Staines, Mike; Thakur, K. P.; Lakshmi, L. S.; Wright, A.; Hamilton, K.; Sidorov, G. N.; Buckley, R. G.; Amemiya, Naoyuki; Caplin, A. D.

    2010-02-01

    Transport AC loss in a short length of 9/2 YBCO Roebel cable (nine 2 mm wide strands) is measured. The AC loss data are compared with those in a 5/2 YBCO Roebel cable (five 2 mm wide strands) as well as that in a single strand. All the strands composing the cables and the single strand are insulated and cut from the same stock material. The validity of the measurement method was reconfirmed by results at a range of frequencies. At a wide range of It/Ic, the normalized AC losses in the Roebel cable were around 6.2-6.7 times of those in the single strand. This is less than the nine times predicted for a tight bundle of nine conductors. The normalized transport AC losses in the 5/2 Roebel cable are much smaller than those in the 9/2 Roebel. This should be due to larger superposition of magnetic field in the 9/2 Roebel. The Ic of the 9/2 and 5/2 Roebel cables is determined by serial connection of the strands. This eliminates the effect where differing resistances in the current terminations cause uneven current sharing between strands when the strands are connected in parallel.

  6. A Novel Computational Method to Reduce Leaky Reaction in DNA Strand Displacement

    PubMed Central

    Li, Xin; Wang, Xun; Song, Tao; Lu, Wei; Chen, Zhihua; Shi, Xiaolong

    2015-01-01

    DNA strand displacement technique is widely used in DNA programming, DNA biosensors, and gene analysis. In DNA strand displacement, leaky reactions can cause DNA signals decay and detecting DNA signals fails. The mostly used method to avoid leakage is cleaning up after upstream leaky reactions, and it remains a challenge to develop reliable DNA strand displacement technique with low leakage. In this work, we address the challenge by experimentally evaluating the basic factors, including reaction time, ratio of reactants, and ion concentration to the leakage in DNA strand displacement. Specifically, fluorescent probes and a hairpin structure reporting DNA strand are designed to detect the output of DNA strand displacement, and thus can evaluate the leakage of DNA strand displacement reactions with different reaction time, ratios of reactants, and ion concentrations. From the obtained data, mathematical models for evaluating leakage are achieved by curve derivation. As a result, it is obtained that long time incubation, high concentration of fuel strand, and inappropriate amount of ion concentration can weaken leaky reactions. This contributes to a method to set proper reaction conditions to reduce leakage in DNA strand displacement. PMID:26491602

  7. A Novel Computational Method to Reduce Leaky Reaction in DNA Strand Displacement.

    PubMed

    Li, Xin; Wang, Xun; Song, Tao; Lu, Wei; Chen, Zhihua; Shi, Xiaolong

    2015-01-01

    DNA strand displacement technique is widely used in DNA programming, DNA biosensors, and gene analysis. In DNA strand displacement, leaky reactions can cause DNA signals decay and detecting DNA signals fails. The mostly used method to avoid leakage is cleaning up after upstream leaky reactions, and it remains a challenge to develop reliable DNA strand displacement technique with low leakage. In this work, we address the challenge by experimentally evaluating the basic factors, including reaction time, ratio of reactants, and ion concentration to the leakage in DNA strand displacement. Specifically, fluorescent probes and a hairpin structure reporting DNA strand are designed to detect the output of DNA strand displacement, and thus can evaluate the leakage of DNA strand displacement reactions with different reaction time, ratios of reactants, and ion concentrations. From the obtained data, mathematical models for evaluating leakage are achieved by curve derivation. As a result, it is obtained that long time incubation, high concentration of fuel strand, and inappropriate amount of ion concentration can weaken leaky reactions. This contributes to a method to set proper reaction conditions to reduce leakage in DNA strand displacement. PMID:26491602

  8. Workshop on effects of chromium coating on Nb{sub 3}Sn superconductor strand: Proceedings

    SciTech Connect

    Not Available

    1994-04-12

    This report discusses the following topics: Chromium coating on superconductor strand -- an overview; technology of chromium plating; comparison of wires plated by different platers; search for chromium in copper; strand manufactures` presentations; chromium plating at the Lawrence Livermore National Laboratory; a first look at a chromium plating process development project tailored for T.P.X. and I.T.E.R. strand; and influence of chromium diffusion and related phenomena on the reference ratios of bare and chromium plated Nb{sub 3}Sn strand.

  9. Isolation of invasive Plasmodium yoelii merozoites with a long half-life to evaluate invasion dynamics and potential invasion inhibitors.

    PubMed

    Mutungi, Joe Kimanthi; Yahata, Kazuhide; Sakaguchi, Miako; Kaneko, Osamu

    2015-11-01

    Malaria symptoms and pathogenesis are caused by blood stage parasite burdens of Plasmodium spp., for which invasion of red blood cells (RBCs) by merozoites is essential. Successful targeting by either drugs or vaccines directed against the whole merozoite or its antigens during its transient extracellular status would contribute to malaria control by impeding RBC invasion. To understand merozoite invasion biology and mechanisms, it is desired to obtain merozoites that retain their invasion activity in vitro. Accordingly, methods have been developed to isolate invasive Plasmodium knowlesi and Plasmodium falciparum merozoites. Rodent malaria parasite models offer ease in laboratory maintenance and experimental genetic modifications; however, no methods have been reported regarding isolation of high numbers of invasive rodent malaria merozoites. In this study, Plasmodium yoelii-infected RBCs were obtained from infected mice, and mature schizont-infected RBCs enriched via Histodenz™ density gradients. Merozoites retaining invasion activity were then isolated by passing the preparations through a filter membrane. RBC-invaded parasites developed to mature stages in vitro in a synchronous manner. Isolated merozoites were evaluated for retention of invasion activity following storage at different temperatures prior to incubation with uninfected mouse RBCs. Isolated merozoites retained their invasion activity 4h after isolation at 10 or 15 °C, whereas their invasion activity reduced to 0-10% within 30 min when incubated on ice or at 37 °C prior to RBC invasion assay. Images of merozoites at successive steps during RBC invasion were captured by light and transmission electron microscopy. Synthetic peptides derived from the amino acid sequence of the P. yoelii invasion protein RON2 efficiently inhibited RBC invasion. The developed method to isolate and keep invasive P. yoelii merozoites for up to 4h is a powerful tool to study the RBC invasion biology of this parasite

  10. Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): inhibition of bladder cancer cell aggressiveness

    PubMed Central

    Matsushita, Ryosuke; Yoshino, Hirofumi; Enokida, Hideki; Goto, Yusuke; Miyamoto, Kazutaka; Yonemori, Masaya; Inoguchi, Satoru; Nakagawa, Masayuki; Seki, Naohiko

    2016-01-01

    In microRNA (miRNA) biogenesis, the guide-strand of miRNA integrates into the RNA induced silencing complex (RISC), whereas the passenger-strand is inactivated through degradation. Analysis of our miRNA expression signature of bladder cancer (BC) by deep-sequencing revealed that microRNA (miR)-145-5p (guide-strand) and miR-145-3p (passenger-strand) were significantly downregulated in BC tissues. It is well known that miR-145-5p functions as a tumor suppressor in several types of cancer. However, the impact of miR-145-3p on cancer cells is still ambiguous. The aim of the present study was to investigate the functional significance of miR-145-3p and BC oncogenic pathways and targets regulated by miR-145-5p/miR-145-3p. Ectopic expression of either miR-145-5p or miR-145-3p in BC cells significantly suppressed cancer cell growth, migration and invasion and it also induced apoptosis. The gene encoding ubiquitin-like with PHD and ring finger domains 1 (UHRF1) was a direct target of these miRNAs. Silencing of UHRF1 induced apoptosis and inhibited cancer cell proliferation, migration, and invasion in BC cells. In addition, overexpressed UHRF1 was confirmed in BC clinical specimens, and the high UHRF1 expression group showed a significantly poorer cause specific survival rate in comparison with the low expression group. Taken together, our present data demonstrated that both strands of miR-145 (miR-145-5p: guide-strand and miR-145-3p: passenger-strand) play pivotal roles in BC cells by regulating UHRF1. The identification of the molecular target of a tumor suppressive miRNAs provides novel insights into the potential mechanisms of BC oncogenesis and suggests novel therapeutic strategies. PMID:27072587

  11. Electromagnetic fields and the induction of DNA strand breaks.

    PubMed

    Ruiz-Gómez, Miguel J; Martínez-Morillo, Manuel

    2009-01-01

    The International Agency for Research on Cancer (IARC) has classified the extremely low-frequency (ELF) electromagnetic fields (EMF) as "possible carcinogenic" based on the reported effects. The purpose of this work is to review and compare the recent findings related to the induction of DNA strand breaks (DNA-SB) by magnetic field (MF) exposure. We found 29 studies (genotoxic and epigenetic) about the induction of DNA-SB by MF. 50% showed effect of MF and 50% showed no DNA-SB. Nevertheless, considering only genotoxic or only epigenetic studies, 37.5% and 69.2% found induction of DNA-SB by MF, respectively. In relation to these data it seems that MF could act as a co-inductor of DNA damage rather than as a genotoxic agent per se. Nevertheless, the published results, in some cases conflicting with negative findings, do not facilitate to obtain a common consensus about MF effects and biophysical interaction mechanisms.

  12. DNA double-strand break repair pathway choice and cancer

    PubMed Central

    Aparicio, Tomas; Baer, Richard

    2014-01-01

    Summary Since DNA double-strand breaks (DSBs) contribute to the genomic instability that drives cancer development, DSB repair pathways serve as important mechanisms for tumor suppression. Thus, genetic lesions, such as BRCA1 and BRCA2 mutations, that disrupt DSB repair are often associated with cancer susceptibility. In addition, recent evidence suggests that DSB “mis-repair”, in which DSBs are resolved by an inappropriate repair pathway, can also promote genomic instability and presumably tumorigenesis. This notion has gained currency from recent cancer genome sequencing studies which have uncovered numerous chromosomal rearrangements harboring pathological DNA repair signatures. In this perspective, we discuss the factors that regulate DSB repair pathway choice and their consequences for genome stability and cancer. PMID:24746645

  13. Spontaneous Formation of RNA Strands, Peptidyl RNA, and Cofactors.

    PubMed

    Jauker, Mario; Griesser, Helmut; Richert, Clemens

    2015-11-23

    How the biochemical machinery evolved from simple precursors is an open question. Here we show that ribonucleotides and amino acids condense to peptidyl RNAs in the absence of enzymes under conditions established for genetic copying. Untemplated formation of RNA strands that can encode genetic information, formation of peptidyl chains linked to RNA, and formation of the cofactors NAD(+), FAD, and ATP all occur under the same conditions. In the peptidyl RNAs, the peptide chains are phosphoramidate-linked to a ribonucleotide. Peptidyl RNAs with long peptide chains were selected from an initial pool when a lipophilic phase simulating the interior of membranes was offered, and free peptides were released upon acidification. Our results show that key molecules of genetics, catalysis, and metabolism can emerge under the same conditions, without a mineral surface, without an enzyme, and without the need for chemical pre-activation.

  14. Developments in Plant Negative-Strand RNA Virus Reverse Genetics.

    PubMed

    Jackson, Andrew O; Li, Zhenghe

    2016-08-01

    Twenty years ago, breakthroughs for reverse genetics analyses of negative-strand RNA (NSR) viruses were achieved by devising conditions for generation of infectious viruses in susceptible cells. Recombinant strategies have subsequently been engineered for members of all vertebrate NSR virus families, and research arising from these advances has profoundly increased understanding of infection cycles, pathogenesis, and complexities of host interactions of animal NSR viruses. These strategies also permitted development of many applications, including attenuated vaccines and delivery vehicles for therapeutic and biotechnology proteins. However, for a variety of reasons, it was difficult to devise procedures for reverse genetics analyses of plant NSR viruses. In this review, we discuss advances that have circumvented these problems and resulted in construction of a recombinant system for Sonchus yellow net nucleorhabdovirus. We also discuss possible extensions to other plant NSR viruses as well as the applications that may emanate from recombinant analyses of these pathogens. PMID:27359368

  15. Using both strands: The fundamental nature of antisense transcription.

    PubMed

    Murray, Struan C; Mellor, Jane

    2016-01-01

    Non-coding transcription across the antisense strands of genes is an abundant, pervasive process in eukaryotes from yeast to humans, however its biological function remains elusive. Here, we provide commentary on a recent study of ours, which demonstrates a genome-wide role for antisense transcription: establishing a unique, dynamic chromatin architecture over genes. Antisense transcription increases the level of nucleosome occupancy and histone acetylation at the promoter and body of genes, without necessarily modulating the level of protein-coding sense transcription. It is also associated with high levels of histone turnover. By allowing genes to sample a wider range of chromatin configurations, antisense transcription could serve to make genes more sensitive to changing signals, priming them for responses to developmental programs or stressful cellular environments. Given the abundance of antisense transcription and the breadth of these chromatin changes, we propose that antisense transcription represents a fundamental, canonical feature of eukaryotic genes.

  16. Hepatic lesions in cetaceans stranded in the Canary Islands.

    PubMed

    Jaber, J R; Pérez, J; Arbelo, M; Andrada, M; Hidalgo, M; Gómez-Villamandos, J C; Van Den Ingh, T; Fernández, A

    2004-03-01

    This article describes the gross, histopathologic, and ultrastructural findings of the livers of cetaceans stranded on the coast of the Canary Islands between 1992 and 2000. A total of 135 cetaceans were included in the study, among which 25 were common dolphins (Delphinus delphis), 23 Atlantic spotted dolphins (Stenella frontalis), 19 striped dolphins (Stenella coeruleoalba), and 15 other species of dolphins and whales. The most common lesion observed in these animals was a nonspecific chronic reactive hepatitis (47/135), followed by hyaline intracytoplasmic inclusions in hepatocytes (33/135). Parasitic cholangitis was detected in 8/135 animals, whereas hepatic lipidosis was presented in 7/135 animals. The ultrastructure of hyaline hepatocytic cytoplasmic inclusions is described, and possible causes of these inclusions are discussed. PMID:15017028

  17. Enzymatic Production of Monoclonal Stoichiometric Single-Stranded DNA Oligonucleotides

    PubMed Central

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M.; Högberg, Björn

    2013-01-01

    Single-stranded oligonucleotides are important as research tools as probes for diagnostics and gene therapy. Today, production of oligonucleotides is done via solid-phase synthesis. However, the capabilities of current polymer chemistry are limited in comparison to what can be produced in biological systems. The errors in synthetic DNA increases with oligonucleotide length, and sequence diversity can often be a problem. Here, we present the Monoclonal Stoichiometric (MOSIC) method for enzymatic DNA oligonucleotide production. Using this method, we amplify oligonucleotides from clonal templates followed by digestion of a cutter-hairpin, resulting in pools of monoclonal oligonucleotides with precisely controlled relative stoichiometric ratios. We present data where MOSIC oligonucleotides, 14–378 nt long, were prepared either by in vitro rolling-circle amplification, or by amplification in Escherichia coli in the form of phagemid DNA. The formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides. PMID:23727986

  18. Disentangling DNA during replication: a tale of two strands.

    PubMed

    Hardy, Christine D; Crisona, Nancy J; Stone, Michael D; Cozzarelli, Nicholas R

    2004-01-29

    The seminal papers by Watson and Crick in 1953 on the structure and function of DNA clearly enunciated the challenge their model presented of how the intertwined strands of DNA are unwound and separated for replication to occur. We first give a historical overview of the major discoveries in the past 50 years that address this challenge. We then describe in more detail the cellular mechanisms responsible for the unlinking of DNA. No single strategy on its own accounts for the complete unlinking of chromosomes required for DNA segregation to proceed. Rather, it is the combined effects of topoisomerase action, chromosome organization and DNA-condensing proteins that allow the successful partitioning of chromosomes into dividing cells. Finally, we propose a model of chromosome structure, consistent with recent findings, that explains how the problem of unlinking is alleviated by the division of chromosomal DNA into manageably sized domains.

  19. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites

    PubMed Central

    Minko, Irina G.; Jacobs, Aaron C.; de Leon, Arnie R.; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M.; Rizzo, Carmelo J.; McCullough, Amanda K.; Lloyd, R. Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  20. Stranded Whole Transcriptome RNA-Seq for All RNA Types

    PubMed Central

    Yan, Pearlly X.; Fang, Fang; Buechlein, Aaron; Ford, James B.; Tang, Haixu; Huang, Tim H.; Burow, Matthew E.; Liu, Yunlong; Rusch, Douglas B.

    2015-01-01

    Stranded whole transcriptome RNA-Seq described in this unit captures quantitative expression data for all types of RNA including, but not limited to miRNA (microRNA), piRNA (Piwi-interacting RNA), snoRNA (small nucleolar RNA), lincRNA (large non-coding intergenic RNA), SRP RNA (signal recognition particle RNA), tRNA (transfer RNA), mtRNA (mitochondrial RNA) and mRNA (messenger RNA). The size and nature of these types of RNA are irrelevant to the approach described here. Barcoded libraries for multiplexing on the Illumina platform are generated with this approach but it can be applied to other platforms with a few modifications. PMID:25599667

  1. Spontaneous Formation of RNA Strands, Peptidyl RNA, and Cofactors

    PubMed Central

    Jauker, Mario; Griesser, Helmut; Richert, Clemens

    2015-01-01

    How the biochemical machinery evolved from simple precursors is an open question. Here we show that ribonucleotides and amino acids condense to peptidyl RNAs in the absence of enzymes under conditions established for genetic copying. Untemplated formation of RNA strands that can encode genetic information, formation of peptidyl chains linked to RNA, and formation of the cofactors NAD+, FAD, and ATP all occur under the same conditions. In the peptidyl RNAs, the peptide chains are phosphoramidate-linked to a ribonucleotide. Peptidyl RNAs with long peptide chains were selected from an initial pool when a lipophilic phase simulating the interior of membranes was offered, and free peptides were released upon acidification. Our results show that key molecules of genetics, catalysis, and metabolism can emerge under the same conditions, without a mineral surface, without an enzyme, and without the need for chemical pre-activation. PMID:26435376

  2. Stranded Whole Transcriptome RNA-Seq for All RNA Types.

    PubMed

    Miller, David F B; Yan, Pearlly X; Fang, Fang; Buechlein, Aaron; Ford, James B; Tang, Haixu; Huang, Tim H; Burow, Matthew E; Liu, Yunlong; Rusch, Douglas B; Nephew, Kenneth P

    2015-01-20

    Stranded whole transcriptome RNA-Seq described in this unit captures quantitative expression data for all types of RNA including, but not limited to, miRNA (microRNA), piRNA (Piwi-interacting RNA), snoRNA (small nucleolar RNA), lincRNA (large non-coding intergenic RNA), SRP RNA (signal recognition particle RNA), tRNA (transfer RNA), mtRNA (mitochondrial RNA), and mRNA (messenger RNA). The size and nature of these types of RNA are irrelevant to the approach described here. Barcoded libraries for multiplexing on the Illumina platform are generated with this approach but it can be applied to other platforms with a few modifications.

  3. RNA-directed repair of DNA double-strand breaks.

    PubMed

    Yang, Yun-Gui; Qi, Yijun

    2015-08-01

    DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity.

  4. Nuclear Proteins Hijacked by Mammalian Cytoplasmic Plus Strand RNA Viruses

    PubMed Central

    Lloyd, Richard E.

    2015-01-01

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. PMID:25818028

  5. UV-Induced Proton Transfer between DNA Strands.

    PubMed

    Zhang, Yuyuan; de La Harpe, Kimberly; Beckstead, Ashley A; Improta, Roberto; Kohler, Bern

    2015-06-10

    UV radiation creates excited states in DNA that lead to mutagenic photoproducts. Photoexcitation of single-stranded DNA can transfer an electron between stacked bases, but the fate of excited states in the double helix has been intensely debated. Here, photoinduced interstrand proton transfer (PT) triggered by intrastrand electron transfer (ET) is detected for the first time by time-resolved vibrational spectroscopy and quantum mechanical calculations. Long-lived excited states are shown to be oppositely charged base pair radical ions. In two of the duplexes, the base pair radical anions are present as tautomers formed by interstrand PT. Charge recombination occurs on the picosecond time scale preventing the accumulation of damaging radicals or mutagenic tautomers. PMID:26005794

  6. Do DNA Double-Strand Breaks Drive Aging?

    PubMed

    White, Ryan R; Vijg, Jan

    2016-09-01

    DNA double-strand breaks (DSBs) are rare, but highly toxic, lesions requiring orchestrated and conserved machinery to prevent adverse consequences, such as cell death and cancer-causing genome structural mutations. DSBs trigger the DNA damage response (DDR) that directs a cell to repair the break, undergo apoptosis, or become senescent. There is increasing evidence that the various endpoints of DSB processing by different cells and tissues are part of the aging phenotype, with each stage of the DDR associated with specific aging pathologies. In this Perspective, we discuss the possibility that DSBs are major drivers of intrinsic aging, highlighting the dynamics of spontaneous DSBs in relation to aging, the distinct age-related pathologies induced by DSBs, and the segmental progeroid phenotypes in humans and mice with genetic defects in DSB repair. A model is presented as to how DSBs could drive some of the basic mechanisms underlying age-related functional decline and death. PMID:27588601

  7. RNA-directed repair of DNA double-strand breaks.

    PubMed

    Yang, Yun-Gui; Qi, Yijun

    2015-08-01

    DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity. PMID:25960340

  8. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites.

    PubMed

    Minko, Irina G; Jacobs, Aaron C; de Leon, Arnie R; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M; Rizzo, Carmelo J; McCullough, Amanda K; Lloyd, R Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  9. Minimally invasive aortic valve surgery

    PubMed Central

    Castrovinci, Sebastiano; Emmanuel, Sam; Moscarelli, Marco; Murana, Giacomo; Caccamo, Giuseppa; Bertolino, Emanuela Clara; Nasso, Giuseppe; Speziale, Giuseppe; Fattouch, Khalil

    2016-01-01

    Aortic valve disease is a prevalent disorder that affects approximately 2% of the general adult population. Surgical aortic valve replacement is the gold standard treatment for symptomatic patients. This treatment has demonstrably proven to be both safe and effective. Over the last few decades, in an attempt to reduce surgical trauma, different minimally invasive approaches for aortic valve replacement have been developed and are now being increasingly utilized. A narrative review of the literature was carried out to describe the surgical techniques for minimally invasive aortic valve surgery and report the results from different experienced centers. Minimally invasive aortic valve replacement is associated with low perioperative morbidity, mortality and a low conversion rate to full sternotomy. Long-term survival appears to be at least comparable to that reported for conventional full sternotomy. Minimally invasive aortic valve surgery, either with a partial upper sternotomy or a right anterior minithoracotomy provides early- and long-term benefits. Given these benefits, it may be considered the standard of care for isolated aortic valve disease. PMID:27582764

  10. Hybridization increases invasive knotweed success

    PubMed Central

    Parepa, Madalin; Fischer, Markus; Krebs, Christine; Bossdorf, Oliver

    2014-01-01

    Hybridization is one of the fundamental mechanisms by which rapid evolution can occur in exotic species. If hybrids show increased vigour, this could significantly contribute to invasion success. Here, we compared the success of the two invasive knotweeds, Fallopia japonica and F. sachalinensis, and their hybrid, F. × bohemica, in competing against experimental communities of native plants. Using plant material from multiple clones of each taxon collected across a latitudinal gradient in Central Europe, we found that knotweed hybrids performed significantly better in competition with a native community and that they more strongly reduced the growth of the native plants. One of the parental species, F. sachalinensis, regenerated significantly less well from rhizomes, and this difference disappeared if activated carbon was added to the substrate, which suggests allelopathic inhibition of F. sachalinensis regeneration by native plants. We found substantial within-taxon variation in competitive success in all knotweed taxa, but variation was generally greatest in the hybrid. Interestingly, there was also significant variation within the genetically uniform F. japonica, possibly reflecting epigenetic differences. Our study shows that invasive knotweed hybrids are indeed more competitive than their parents and that hybridization increased the invasiveness of the exotic knotweed complex. PMID:24665343

  11. Minimally invasive aortic valve surgery.

    PubMed

    Castrovinci, Sebastiano; Emmanuel, Sam; Moscarelli, Marco; Murana, Giacomo; Caccamo, Giuseppa; Bertolino, Emanuela Clara; Nasso, Giuseppe; Speziale, Giuseppe; Fattouch, Khalil

    2016-09-01

    Aortic valve disease is a prevalent disorder that affects approximately 2% of the general adult population. Surgical aortic valve replacement is the gold standard treatment for symptomatic patients. This treatment has demonstrably proven to be both safe and effective. Over the last few decades, in an attempt to reduce surgical trauma, different minimally invasive approaches for aortic valve replacement have been developed and are now being increasingly utilized. A narrative review of the literature was carried out to describe the surgical techniques for minimally invasive aortic valve surgery and report the results from different experienced centers. Minimally invasive aortic valve replacement is associated with low perioperative morbidity, mortality and a low conversion rate to full sternotomy. Long-term survival appears to be at least comparable to that reported for conventional full sternotomy. Minimally invasive aortic valve surgery, either with a partial upper sternotomy or a right anterior minithoracotomy provides early- and long-term benefits. Given these benefits, it may be considered the standard of care for isolated aortic valve disease. PMID:27582764

  12. [Micro-invasive glaucoma surgery].

    PubMed

    Achiron, Asaf; Sharif, Nardeen; Achiron, Romi Noy; Nisimov, Sagee; Burgansky-Eliash, Sagee

    2014-10-01

    Intraocular pressure (IOP) reduction is the current treatment in glaucoma. In recent years, minimally invasive glaucoma surgery (MIGS) has been added to the arsenal of surgical options. MIGS can reduce trabecular meshwork resistance to outflow and decrease the IOP with mild side effects. In this article, we review the clinical experience gathered with iSTENT, Bypass, Gold Micro Shunt and the Trabectome.

  13. What is minimally invasive dentistry?

    PubMed

    Ericson, Dan

    2004-01-01

    Minimally Invasive Dentistry is the application of "a systematic respect for the original tissue." This implies that the dental profession recognizes that an artifact is of less biological value than the original healthy tissue. Minimally invasive dentistry is a concept that can embrace all aspects of the profession. The common delineator is tissue preservation, preferably by preventing disease from occurring and intercepting its progress, but also removing and replacing with as little tissue loss as possible. It does not suggest that we make small fillings to restore incipient lesions or surgically remove impacted third molars without symptoms as routine procedures. The introduction of predictable adhesive technologies has led to a giant leap in interest in minimally invasive dentistry. The concept bridges the traditional gap between prevention and surgical procedures, which is just what dentistry needs today. The evidence-base for survival of restorations clearly indicates that restoring teeth is a temporary palliative measure that is doomed to fail if the disease that caused the condition is not addressed properly. Today, the means, motives and opportunities for minimally invasive dentistry are at hand, but incentives are definitely lacking. Patients and third parties seem to be convinced that the only things that count are replacements. Namely, they are prepared to pay for a filling but not for a procedure that can help avoid having one.

  14. Advertising and Invasion of Privacy.

    ERIC Educational Resources Information Center

    Rohrer, Daniel Morgan

    The right of privacy as it relates to advertising and the use of a person's name or likeness is discussed in this paper. After an introduction that traces some of the history of invasion of privacy in court decisions, the paper examines cases involving issues such as public figures and newsworthy items, right of privacy waived, right of privacy…

  15. Hybridization increases invasive knotweed success.

    PubMed

    Parepa, Madalin; Fischer, Markus; Krebs, Christine; Bossdorf, Oliver

    2014-03-01

    Hybridization is one of the fundamental mechanisms by which rapid evolution can occur in exotic species. If hybrids show increased vigour, this could significantly contribute to invasion success. Here, we compared the success of the two invasive knotweeds, Fallopia japonica and F. sachalinensis, and their hybrid, F. × bohemica, in competing against experimental communities of native plants. Using plant material from multiple clones of each taxon collected across a latitudinal gradient in Central Europe, we found that knotweed hybrids performed significantly better in competition with a native community and that they more strongly reduced the growth of the native plants. One of the parental species, F. sachalinensis, regenerated significantly less well from rhizomes, and this difference disappeared if activated carbon was added to the substrate, which suggests allelopathic inhibition of F. sachalinensis regeneration by native plants. We found substantial within-taxon variation in competitive success in all knotweed taxa, but variation was generally greatest in the hybrid. Interestingly, there was also significant variation within the genetically uniform F. japonica, possibly reflecting epigenetic differences. Our study shows that invasive knotweed hybrids are indeed more competitive than their parents and that hybridization increased the invasiveness of the exotic knotweed complex. PMID:24665343

  16. Vaccines against invasive Salmonella disease

    PubMed Central

    MacLennan, Calman A; Martin, Laura B; Micoli, Francesca

    2014-01-01

    Though primarily enteric pathogens, Salmonellae are responsible for a considerable yet under-appreciated global burden of invasive disease. In South and South-East Asia, this manifests as enteric fever caused by serovars Typhi and Paratyphi A. In sub-Saharan Africa, a similar disease burden results from invasive nontyphoidal Salmonellae, principally serovars Typhimurium and Enteritidis. The existing Ty21a live-attenuated and Vi capsular polysaccharide vaccines target S. Typhi and are not effective in young children where the burden of invasive Salmonella disease is highest. After years of lack of investment in new Salmonella vaccines, recent times have seen increased interest in the area led by emerging-market manufacturers, global health vaccine institutes and academic partners. New glycoconjugate vaccines against S. Typhi are becoming available with similar vaccines against other invasive serovars in development. With other new vaccines under investigation, including live-attenuated, protein-based and GMMA vaccines, now is an exciting time for the Salmonella vaccine field. PMID:24804797

  17. Managing acute invasive fungal sinusitis.

    PubMed

    Dwyhalo, Kristina M; Donald, Carrlene; Mendez, Anthony; Hoxworth, Joseph

    2016-01-01

    Acute invasive fungal sinusitis is the most aggressive form of fungal sinusitis and can be fatal, especially in patients who are immunosuppressed. Early diagnosis and intervention are crucial and potentially lifesaving, so primary care providers must maintain a high index of suspicion for this disease. Patients may need to be admitted to the hospital for IV antifungal therapy and surgical debridement.

  18. Biological Warfare in Invasive Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alliaria petiolata (garlic mustard) is an invasive species in temperate forests throughout North America that has led to a decrease in species diversity and alterations in nutrient cycling. Garlic mustard produces an arsenal of secondary chemicals in the glucosinolate family that have strong biocid...

  19. Non-Specific Blocking of miR-17-5p Guide Strand in Triple Negative Breast Cancer Cells by Amplifying Passenger Strand Activity

    PubMed Central

    Jin, Yuan-Yuan; Andrade, Jade; Wickstrom, Eric

    2015-01-01

    Conventional wisdom holds that only one of the two strands in a micro ribonucleic acid (miRNA) precursor duplex is selected as the active miRNA guide strand. The complementary miRNA passenger strand, however, is thought to be inactive. High levels of the oncogenic miRNA (oncomiR) guide strand called miR-17-5p is overexpressed in triple negative breast cancer (TNBC) and can inhibit ribosomal translation of tumor suppressor gene mRNAs, such as programmed cell death 4 (PDCD4) or phosphatase and tensin homolog (PTEN). We hypothesized that knocking down the oncogenic microRNA (oncomiR) miR-17-5p might restore the expression levels of PDCD4 and PTEN tumor suppressor proteins, illustrating a route to oligonucleotide therapy of TNBC. Contrary to conventional wisdom, antisense knockdown of oncomiR miR-17-5p guide strand reduced PDCD4 and PTEN proteins by 1.8±0.3 fold in human TNBC cells instead of raising them. Bioinformatics analysis and folding energy calculations revealed that mRNA targets of miR-17-5p guide strand, such as PDCD4 and PTEN, could also be regulated by miR-17-3p passenger strand. Due to high sequence homology between the antisense molecules and miR-17-3p passenger strand, as well as the excess binding sites for the passenger strand on the 3’UTR of PDCD4 and PTEN mRNAs, introducing a miR-17-3p DNA-LNA mimic to knock down miR-17-5p reduced PDCD4 and PTEN protein expression instead of raising them. Our results imply that therapeutic antisense sequences against miRNAs should be designed to target the miRNA strand with the greatest number of putative binding sites in the target mRNAs, while minimizing affinity for the minor strand. PMID:26629823

  20. Next-generation bis-locked nucleic acids with stacking linker and 2′-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes

    PubMed Central

    Geny, Sylvain; Moreno, Pedro M. D.; Krzywkowski, Tomasz; Gissberg, Olof; Andersen, Nicolai K.; Isse, Abdirisaq J.; El-Madani, Amro M.; Lou, Chenguang; Pabon, Y. Vladimir; Anderson, Brooke A.; Zaghloul, Eman M.; Zain, Rula; Hrdlicka, Patrick J.; Jørgensen, Per T.; Nilsson, Mats; Lundin, Karin E.; Pedersen, Erik B.; Wengel, Jesper; Smith, C. I. Edvard

    2016-01-01

    Targeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson–Crick binding. To improve the bisLNA design, we investigated its mechanism of binding. Our results suggest that bisLNAs bind via Hoogsteen-arm first, followed by Watson–Crick arm invasion, initiated at the tail. Based on this proposed hybridization mechanism, we designed next-generation bisLNAs with a novel linker able to stack to adjacent nucleobases, a new strategy previously not applied for any type of clamp-constructs. Although the Hoogsteen-arm limits the invasion, upon incorporation of the stacking linker, bisLNA invasion is significantly more efficient than for non-clamp, or nucleotide-linker containing LNA-constructs. Further improvements were obtained by substituting LNA with 2′-glycylamino-LNA, contributing a positive charge. For regular bisLNAs a 14-nt tail significantly enhances invasion. However, when two stacking linkers were incorporated, tail-less bisLNAs were able to efficiently invade. Finally, successful targeting of plasmids inside bacteria clearly demonstrates that strand invasion can take place in a biologically relevant context. PMID:26857548

  1. Next-generation bis-locked nucleic acids with stacking linker and 2'-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes.

    PubMed

    Geny, Sylvain; Moreno, Pedro M D; Krzywkowski, Tomasz; Gissberg, Olof; Andersen, Nicolai K; Isse, Abdirisaq J; El-Madani, Amro M; Lou, Chenguang; Pabon, Y Vladimir; Anderson, Brooke A; Zaghloul, Eman M; Zain, Rula; Hrdlicka, Patrick J; Jørgensen, Per T; Nilsson, Mats; Lundin, Karin E; Pedersen, Erik B; Wengel, Jesper; Smith, C I Edvard

    2016-03-18

    Targeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson-Crick binding. To improve the bisLNA design, we investigated its mechanism of binding. Our results suggest that bisLNAs bind via Hoogsteen-arm first, followed by Watson-Crick arm invasion, initiated at the tail. Based on this proposed hybridization mechanism, we designed next-generation bisLNAs with a novel linker able to stack to adjacent nucleobases, a new strategy previously not applied for any type of clamp-constructs. Although the Hoogsteen-arm limits the invasion, upon incorporation of the stacking linker, bisLNA invasion is significantly more efficient than for non-clamp, or nucleotide-linker containing LNA-constructs. Further improvements were obtained by substituting LNA with 2'-glycylamino-LNA, contributing a positive charge. For regular bisLNAs a 14-nt tail significantly enhances invasion. However, when two stacking linkers were incorporated, tail-less bisLNAs were able to efficiently invade. Finally, successful targeting of plasmids inside bacteria clearly demonstrates that strand invasion can take place in a biologically relevant context. PMID:26857548

  2. A functional trait perspective on plant invasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global environmental change affects exotic plant invasions, which profoundly impact native plant populations, communities and ecosystems. In this context, we review plant functional traits, including those that drive invader abundance (invasiveness), and impacts, as well as the integration of these...

  3. Replication of simian virus 40 DNA after UV irradiation: evidence of growing fork blockage and single-stranded gaps in daughter strands

    SciTech Connect

    Mezzina, M.; Menck, C.F.M.; Courtin, P.; Sarasin, A.

    1988-11-01

    The molecular mechanisms of in vivo inhibition of mammalian DNA replication by exposure to UV light (at 254 nm) was studied in monkey and human cells infected with simian virus 40. Analysis of viral DNA by electron microscopy and sucrose gradients confirmed that the presence of UV-induced lesions severely blocks DNA synthesis, and thus the conversion of replicative intermediates (RIs) into fully replicated form I DNA is inhibited by UV irradiation. These blocked RI molecules present several special features when visualized by electron microscopy. In excision repair-proficient monkey and human cells they are composed of a double-stranded circular DNA with a double-stranded tail whose size corresponds to the average interpyrimidine dimer distance, as determined by the dimer-specific T4 endonuclease V. In excision repair-deficient human cells from patients with xeroderma pigmentosum, UV-irradiated RIs present a Carins-like structure similar to that observed for replicating molecules obtained from unirradiated infected cells. Single-stranded gaps are visualized in the replicated portions of UV-irradiated RI molecules; such regions are detected and clearly distinguishable from double-stranded DNA when probed by a specific single-stranded DNA-binding protein such as the bacteriophage T4 gene 32 product. Consistent with the presence of gaps in UV-irradiated RI molecules, single-strand-specific S1 nuclease digestion causes a shift in their sedimentation properties when analyzed in neutral sucrose gradients compared with undamaged molecules.

  4. Acid-induced molten globule state of a prion protein: crucial role of Strand 1-Helix 1-Strand 2 segment.

    PubMed

    Honda, Ryo P; Yamaguchi, Kei-ichi; Kuwata, Kazuo

    2014-10-31

    The conversion of a cellular prion protein (PrP(C)) to its pathogenic isoform (PrP(Sc)) is a critical event in the pathogenesis of prion diseases. Pathogenic conversion is usually associated with the oligomerization process; therefore, the conformational characteristics of the pre-oligomer state may provide insights into the conversion process. Previous studies indicate that PrP(C) is prone to oligomer formation at low pH, but the conformation of the pre-oligomer state remains unknown. In this study, we systematically analyzed the acid-induced conformational changes of PrP(C) and discovered a unique acid-induced molten globule state at pH 2.0 termed the "A-state." We characterized the structure of the A-state using far/near-UV CD, 1-anilino-8-naphthalene sulfonate fluorescence, size exclusion chromatography, and NMR. Deuterium exchange experiments with NMR detection revealed its first unique structure ever reported thus far; i.e. the Strand 1-Helix 1-Strand 2 segment at the N terminus was preferentially unfolded, whereas the Helix 2-Helix 3 segment at the C terminus remained marginally stable. This conformational change could be triggered by the protonation of Asp(144), Asp(147), and Glu(196), followed by disruption of key salt bridges in PrP(C). Moreover, the initial population of the A-state at low pH (pH 2.0-5.0) was well correlated with the rate of the β-rich oligomer formation, suggesting that the A-state is the pre-oligomer state. Thus, the specific conformation of the A-state would provide crucial insights into the mechanisms of oligomerization and further pathogenic conversion as well as facilitating the design of novel medical chaperones for treating prion diseases. PMID:25217639

  5. Equal Sensitivity of the Two Strands of øX174 Replicative DNA to Breakage by Ionizing Radiation

    PubMed Central

    Achey, Phillip M.; Courtney, Deborah G.

    1973-01-01

    The supertwisted, double-stranded, replicative intermediate of øX174 DNA (RFI) has been used to determine whether one of the two strands of the double helix is uniquely sensitive to induction of single-strand breaks by ionizing radiation. This could result from a particularly sensitive base sequence or a transfer of energy to a specific location of the DNA molecule. The results indicate that both strands of the double helix are equally broken, even though their base compositions are significantly different. If there are “hot spots” in the strands, then they are present in equal amounts in each strand. PMID:4575520

  6. Tracking Cryptosporidium parvum by sequence analysis of small double-stranded RNA.

    PubMed Central

    Xiao, L.; Limor, J.; Bern, C.; Lal, A. A.

    2001-01-01

    We sequenced a 173-nucleotide fragment of the small double-stranded viruslike RNA of Cryptosporidium parvum isolates from 23 calves and 38 humans. Sequence diversity was detected at 17 sites. Isolates from the same outbreak had identical double-stranded RNA sequences, suggesting that this technique may be useful for tracking Cryptosporidium infection sources. PMID:11266306

  7. Oligonucleotides containing a lysine residue as 3'-3' junction for alternate strand triple helix formation.

    PubMed

    Barone, G; De Napoli, L; Di Fabio, G; Giancola, C; Messere, A; Montesarchio, D; Petraccone, L; Piccialli, G

    2001-11-01

    Oligonucleotides with a 3'-3' inversion of polarity site assured by one lysine residue have been synthesized, characterized and used as third strands in alternate strand triple helix formation. UV melting studies and molecular mechanics calculations have been carried out to investigate the stability and the geometry of these new triplexes.

  8. Stability of triple helices containing RNA and DNA strands: experimental and molecular modeling studies.

    PubMed Central

    Escudé, C; François, J C; Sun, J S; Ott, G; Sprinzl, M; Garestier, T; Hélène, C

    1993-01-01

    UV-absorption spectrophotometry and molecular modeling have been used to study the influence of the chemical nature of sugars (ribose or deoxyribose) on triple helix stability. For the Pyrimidine.purine* Pyrimidine motif, all eight combinations were tested with each of the three strands composed of either DNA or RNA. The chemical nature of sugars has a dramatic influence on triple helix stability. For each double helix composition, a more stable triple helix was formed when the third strand was RNA rather than DNA. No stable triple helix was detected when the polypurine sequence was made of RNA with a third strand made of DNA. Energy minimization studies using the JUMNA program suggested that interactions between the 2'-hydroxyl group of the third strand and the phosphates of the polypurine strand play an important role in determining the relative stabilities of triple-helical structures in which the polypyrimidine third strand is oriented parallel to the polypurine sequence. These interactions are not allowed when the third strand adopts an antiparallel orientation with respect to the target polypurine sequence, as observed when the third strand contains G and A or G and T/U. We show by footprinting and gel retardation experiments that an oligoribonucleotide containing G and A or G and U fails to bind double helical DNA, while the corresponding DNA oligomers form stable triple-helical complexes. Images PMID:7506827

  9. Measurements of Rrr Variation in Strands Extracted from Nb3Sn-TYPE Rutherford Cables

    NASA Astrophysics Data System (ADS)

    Sumption, M. D.; Nazareth, V.; Barzi, E.; Turrioni, D.; Yamada, R.; Zlobin, A. V.; Collings, E. W.

    2008-03-01

    Modern high-Jc Nb3Sn strands and cables for use in high field accelerator magnets suffer from flux jump-related instabilities at low magnetic fields. These instabilities are determined by the values of Jc, deff, and RRR. It has been postulated that local RRR is a more relevant parameter than average RRR for stability considerations, but the range of RRR values present in a cable has not yet been quantified. Thus, longitudinal variations of RRR were estimated from multiple-tap measurements along the length of strands extracted from mixed strand cables. The cables had either 27 or 28 strands, two different keystone angles, and four different levels of compaction. One type of RRP strand was extracted from each cable, reacted, and then measured. RRR of the straight sections (on the faces) was above 100, while that at the edges of the strand was estimated to be an order of magnitude smaller ≈10. Selected regions of the strand with locally depressed RRR were examined by SEM and EDS to check for Sn leakage and examine the type of strand failure present. The implications of these measurements for stability were then discussed.

  10. The Cross-Case Analyses of Elementary Students' Engagement in the Strands of Science Proficiency

    ERIC Educational Resources Information Center

    Minogue, James; Madden, Lauren; Bedward, John; Wiebe, Eric; Carter, Mike

    2010-01-01

    Recent reports have begun to lay the foundation for a re-visioned K-8 science curriculum which includes four strands that could be used to define and assess science proficiency for all students. Using these strands as an analytic lens, this pre-post multiple-case case study explores elementary school science teachers' practices and their students'…

  11. Hairpin DNA Sequences Bound Strongly by Bleomycin Exhibit Enhanced Double-Strand Cleavage

    PubMed Central

    2014-01-01

    Clinically used bleomycin A5 has been employed in a study of double-strand cleavage of a library of 10 hairpin DNAs originally selected on the basis of their strong binding to bleomycin. Each of the DNAs underwent double-strand cleavage at more than one site, and all of the cleavage sites were within, or in close proximity to, an eight-base-pair region of the duplex that had been randomized to create the original library. A total of 31 double-strand cleavage sites were identified on the 10 DNAs, and 14 of these sites were found to represent coupled cleavage sites, that is, events in which one of the two strands was always cleaved first, followed by the associated site on the opposite strand. Most of these coupled sites underwent cleavage by a mechanism described previously by the Povirk laboratory and afforded cleavage patterns entirely analogous to those reported. However, at least one coupled cleavage event was noted that did not conform to the pattern of those described previously. More surprisingly, 17 double-strand cleavages were found not to result from coupled double-strand cleavage, and we posit that these cleavages resulted from a new mechanism not previously described. Enhanced double-strand cleavages at these sites appear to be a consequence of the dynamic nature of the interaction of Fe·BLM A5 with the strongly bound hairpin DNAs. PMID:24548300

  12. Antibiotic efficacy in eliminating leptospiruria in California sea lions (Zalophus californianus) stranding with leptospirosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection of California sea lions with leptospirosis can result in stranding and death of the animals. Shedding of the infectious organism contributes to spread of the disease to other animals and also poses a threat to human health. This is both for the public interacting with stranded animals and ...

  13. Extrachromosomal DNA of pea (Pisum sativum) root-tip cells replicates by strand displacement

    SciTech Connect

    Krimer, D.B.; Van't Hof, J.

    1983-04-01

    In cultured pea roots there is extrachromosomal DNA associated with cells that differentiate from the G/sub 2/ phase of the cell cycle that is absent from those that differentiate from the G/sub 1/ phase. The authors examined this extrachromosomal DNA by electron microscopy and found that it consisted of three types: (i) double-stranded linear molecules with single-stranded branches (74%), (ii) double-stranded molecules without branches (26%), and (iii) free single-stranded molecules. The double-stranded molecules with or without branches were similar in length, having a modal length of 10-15 ..mu..m. The free single-stranded molecules were shorter and had a mean length of 3.8 ..mu..m. The length of the branches attached to the duplex molecules was only slightly less than that of the free form. The duplex molecules with branches were interpreted as configurations reflecting an ongoing strand-displacement process that results in free single-stranded molecules. Finally, measurements on duplex molecules with multiple branches suggested that the extrachromosomal DNA may exist in the form of tandemly repeated sequences. 8 references, 8 figures.

  14. Regulation of yeast DNA polymerase δ-mediated strand displacement synthesis by 5'-flaps.

    PubMed

    Koc, Katrina N; Stodola, Joseph L; Burgers, Peter M; Galletto, Roberto

    2015-04-30

    The strand displacement activity of DNA polymerase δ is strongly stimulated by its interaction with proliferating cell nuclear antigen (PCNA). However, inactivation of the 3'-5' exonuclease activity is sufficient to allow the polymerase to carry out strand displacement even in the absence of PCNA. We have examined in vitro the basic biochemical properties that allow Pol δ-exo(-) to carry out strand displacement synthesis and discovered that it is regulated by the 5'-flaps in the DNA strand to be displaced. Under conditions where Pol δ carries out strand displacement synthesis, the presence of long 5'-flaps or addition in trans of ssDNA suppress this activity. This suggests the presence of a secondary DNA binding site on the enzyme that is responsible for modulation of strand displacement activity. The inhibitory effect of a long 5'-flap can be suppressed by its interaction with single-stranded DNA binding proteins. However, this relief of flap-inhibition does not simply originate from binding of Replication Protein A to the flap and sequestering it. Interaction of Pol δ with PCNA eliminates flap-mediated inhibition of strand displacement synthesis by masking the secondary DNA site on the polymerase. These data suggest that in addition to enhancing the processivity of the polymerase PCNA is an allosteric modulator of other Pol δ activities.

  15. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange.

    PubMed

    Borgogno, María V; Monti, Mariela R; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E; Pezza, Roberto J

    2016-03-01

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity.

  16. 77 FR 2958 - Prestressed Concrete Steel Wire Strand From Thailand: Correction to Notice of Opportunity To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ...; Opportunity To Request Administrative Review, 77 FR 83 (January 3, 2012). Subsequent to this publication, we... International Trade Administration Prestressed Concrete Steel Wire Strand From Thailand: Correction to Notice of... administrative review of the antidumping duty order on prestressed concrete steel wire strand (``PC...

  17. Characteristics of round and extracted strands of Nb3Al Rutherford cable

    SciTech Connect

    Kikuchi, A.; Yamada, R.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Iijima, Y.; Kobayashi, M.; Kitaguchi, H.; Nimori, S.; Lamm, M.; Tagawa, K.; Takeuchi, T.; Tsuchiya, K.; Turrioni, D.; Wake, M.; Zlobin, A.V.; /NIMC, Tsukuba /Fermilab /KEK, Tsukuba

    2006-08-01

    Long Nb{sub 3}Al strands with copper stabilizer are promising for future high field accelerator magnets. A 1.2 kilometer Nb{sub 3}Al strand with Cu stabilizer was fabricated at the National Institute for Materials Science in Japan. Using this strand a 30 meter Cu stabilized Nb{sub 3}Al Rutherford cable was made for the first time by a collaboration of NIMS and Fermilab. The Nb{sub 3}Al strands extracted from cable with a relatively low packing factor showed almost no J{sub c} degradation. But the extracted strands from the highly compacted cable showed some degradation in both J{sub c} and n value, which may be caused by local separation of the copper stabilizer. Still, its J{sub c} degradation is lower than that of typical Nb{sub 3}Sn strands. The current limit due to magnetic instability in low field is about 500 A at 4.2 K. The magnetization of the strands, which was measured with balanced coils at 4.2 K, showed large flux jumps, usually around 1.5 T. This value is much larger than the B{sub c2} (4.2 K) of the Nb matrix, which is around 0.4 Tesla. The magnetic instability of the Nb{sub 3}Al strand at low field is not completely understood, but it might be explained by the superconducting coupling current through the Nb matrix.

  18. Collision-induced dissociation of intact duplex and single-stranded siRNA anions.

    PubMed

    Huang, Teng-Yi; Liu, Jian; Liang, Xiaorong; Hodges, Brittany D M; McLuckey, Scott A

    2008-11-15

    A tandem mass spectrometry approach is demonstrated for complete sequencing of a model small interfering RNA (siRNA) based on ion trap collisional activation of intact single-stranded anions. Various charge states of the siRNA duplex and the individual strands were generated by nanoelectrospray (nano-ESI). The siRNA duplex anions were predominantly dissociated into the sense and antisense strands by collisional activation. The characteristic fragment ions (c/y- and a-B/w-ion series) from both strands were observed when higher activation amplitude was applied and when beam-type collisional activation was examined; however, the coexistence of fragment ions from both strands complicated spectral interpretation. The effect of precursor ion charge state on the dissociation of the individual sense and antisense strand siRNA anions was studied using ion trap collision-induced dissociation under various activation amplitudes. Through the activation of relatively low charge state precursor ions at relatively low excitation energy, selective backbone dissociation predominantly via the c/y channels was achieved. By applying relatively high excitation energy, the a-B/w channels also became prominent; however, the increase in spectral complexity made complete peak assignment difficult. In order to simplify the product ion spectra, proton-transfer reactions were applied, and complete sequencing of each strand was achieved. The application of tandem mass spectrometry to intact single-stranded anions demonstrated in this study can be adapted for the rapid identification of other noncoding RNAs in RNomics studies.

  19. 18 CFR 35.26 - Recovery of stranded costs by public utilities and transmitting utilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... POWER ACT FILING OF RATE SCHEDULES AND TARIFFS Other Filing Requirements § 35.26 Recovery of stranded... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Recovery of stranded... means any wholesale requirements contract executed on or before July 11, 1994. (c) Recovery of...

  20. 18 CFR 35.26 - Recovery of stranded costs by public utilities and transmitting utilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... POWER ACT FILING OF RATE SCHEDULES AND TARIFFS Other Filing Requirements § 35.26 Recovery of stranded... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Recovery of stranded... means any wholesale requirements contract executed on or before July 11, 1994. (c) Recovery of...

  1. 18 CFR 35.26 - Recovery of stranded costs by public utilities and transmitting utilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... POWER ACT FILING OF RATE SCHEDULES AND TARIFFS Other Filing Requirements § 35.26 Recovery of stranded... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Recovery of stranded... means any wholesale requirements contract executed on or before July 11, 1994. (c) Recovery of...

  2. 78 FR 70317 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Office of the Secretary Invasive Species Advisory Committee AGENCY: Office of the Secretary, Interior. ACTION: Notice of Public Meeting (via Teleconference) of the Invasive Species Advisory Committee. SUMMARY... Invasive Species Advisory Committee. The purpose of the Advisory Committee is to provide advice to...

  3. 78 FR 11899 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... Office of the Secretary Invasive Species Advisory Committee AGENCY: Office of the Secretary, Interior... Invasive Species Advisory Committee. The document contained incorrect dates. This document corrects those.... Meeting of the Invasive Species Advisory Committee (OPEN): Thursday, March 7, 2013 through Friday, March...

  4. CONSERVATION PROGRAMS THAT PROMOTE INVASIVE SPECIES

    EPA Science Inventory

    Invasive plant species are degrading the structure and function of ecosystems throughout the world. Although most state and federal conservation agencies in the U.S. attempt to reduce the impact of invasive species, some agency activities can contribute to the spread of invasive...

  5. Minimally Invasive Mitral Valve Surgery II

    PubMed Central

    Wolfe, J. Alan; Malaisrie, S. Chris; Farivar, R. Saeid; Khan, Junaid H.; Hargrove, W. Clark; Moront, Michael G.; Ryan, William H.; Ailawadi, Gorav; Agnihotri, Arvind K.; Hummel, Brian W.; Fayers, Trevor M.; Grossi, Eugene A.; Guy, T. Sloane; Lehr, Eric J.; Mehall, John R.; Murphy, Douglas A.; Rodriguez, Evelio; Salemi, Arash; Segurola, Romualdo J.; Shemin, Richard J.; Smith, J. Michael; Smith, Robert L.; Weldner, Paul W.; Lewis, Clifton T. P.; Barnhart, Glenn R.; Goldman, Scott M.

    2016-01-01

    Abstract Techniques for minimally invasive mitral valve repair and replacement continue to evolve. This expert opinion, the second of a 3-part series, outlines current best practices for nonrobotic, minimally invasive mitral valve procedures, and for postoperative care after minimally invasive mitral valve surgery. PMID:27654406

  6. A NEW ROLE FOR HIV NUCLEOCAPSID PROTEIN IN MODULATING THE SPECIFICITY OF PLUS STRAND PRIMING

    PubMed Central

    Jacob, Deena T.; DeStefano, Jeffrey J.

    2008-01-01

    The current study indicates a new role for HIV nucleocapsid protein (NC) in modulating the specificity of plus strand priming. RNase H cleavage by reverse transcriptase (RT) during minus strand synthesis gives rise to RNA fragments that could potentially be used as primers for synthesis of the plus strand, leading to the initiation of priming from multiple points as has been observed for other retroviruses. For HIV, the central and 3′ polypurine tracts (PPTs) are the major sites of plus strand initiation. Using reconstituted in vitro assays, results showed that NC greatly reduced the efficiency of extension of non-PPT RNA primers, but not PPT. Experiments mimicking HIV replication showed that RT generated and used both PPT and non-PPT RNAs to initiate “plus strand” synthesis, but non-PPT usage was strongly inhibited by NC. The results support a role for NC in specifying primer usage during plus strand synthesis. PMID:18632127

  7. DNA strand breaks (comet assay) in blood lymphocytes from wild bottlenose dolphins.

    PubMed

    Lee, Richard F; Bulski, Karrie; Adams, Jeffrey D; Peden-Adams, Margie; Bossart, Gregory D; King, Lydia; Fair, Patricia A

    2013-12-15

    The comet assay was carried out on blood lymphocytes from a large number of wild dolphins (71 from Indian River Lagoon, FL, USA; 51 from Charleston Harbor, SC, USA) and provides a baseline study of DNA strand breaks in wild dolphin populations. There were no significant differences in the comet assay (% DNA in tail) results between the different age and sex categories. Significant difference in DNA strand breaks were found between Charleston Harbor dolphins (median--17.4% DNA in tail) and Indian River Lagoon dolphins (median--14.0% DNA in tail). A strong correlation found between T-cell proliferation and DNA strand breaks in dolphin lymphocytes suggests that dolphins with a high numbers of DNA strand breaks have a decreased ability to respond to infection. Higher concentrations of genotoxic agents in Charleston Harbor compared with Indian River lagoon may have been one of the causes of higher DNA strand breaks in these dolphins.

  8. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Birkedal, V.; Gothelf, K. V.

    2016-05-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, which can be detected by a shift in the fluorescence resonance energy transfer signal between dyes attached to the DNA strands. In the present study we have integrated an ATP aptamer in the strand B and demonstrated the optical detection of ATP. Furthermore we explore a new readout method using a split G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection.

  9. Electronic transport in DNA sequences: The role of correlations and inter-strand coupling

    NASA Astrophysics Data System (ADS)

    Albuquerque, E. L.; Lyra, M. L.; de Moura, F. A. B. F.

    2006-10-01

    We investigate the electronic properties in sequences of single and double-strand DNA molecules made up from the nucleotides guanine G, adenine A, cytosine C and thymine T. Using a tight-binding formulation we solve the time-dependent Schrödinger equation to compute the spread of initially localized wave packets. We also compute the localization length in finite segments by employing a Green's function recursion method. We compare the results for the genomic DNA sequence with those of two artificial sequences, namely the quasiperiodic Rudin-Shapiro one, which has long-range correlations, and a intra-strand pair correlated DNA sequence. We found that the short-range character of the intra-strand correlations suffices for a quantitative description of the one-electron wave-packet dynamics in the double-strand real DNA sequences. Further, the inter-strand coupling promotes electronic transport over a longer segment.

  10. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation.

    PubMed

    Rand, Tim A; Petersen, Sean; Du, Fenghe; Wang, Xiaodong

    2005-11-18

    The mRNA-cleavage step of RNA interference is mediated by an endonuclease, Argonaute2 (Ago2), within the RNA-induced silencing complex (RISC). Ago2 uses one strand of the small interfering (si) RNA duplex as a guide to find messenger RNAs containing complementary sequences and cleaves the phosphodiester backbone at a specific site measured from the guide strand's 5' end. Here, we show that both strands of siRNA get loaded onto Ago2 protein in Drosophila S2 cell extracts. The anti-guide strand behaves as a RISC substrate and is cleaved by Ago2. This cleavage event is important for the removal of the anti-guide strand from Ago2 protein and activation of RISC.

  11. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation.

    PubMed

    Georgescu, Roxana E; Schauer, Grant D; Yao, Nina Y; Langston, Lance D; Yurieva, Olga; Zhang, Dan; Finkelstein, Jeff; O'Donnell, Mike E

    2015-01-01

    We have reconstituted a eukaryotic leading/lagging strand replisome comprising 31 distinct polypeptides. This study identifies a process unprecedented in bacterial replisomes. While bacteria and phage simply recruit polymerases to the fork, we find that suppression mechanisms are used to position the distinct eukaryotic polymerases on their respective strands. Hence, Pol ε is active with CMG on the leading strand, but it is unable to function on the lagging strand, even when Pol δ is not present. Conversely, Pol δ-PCNA is the only enzyme capable of extending Okazaki fragments in the presence of Pols ε and α. We have shown earlier that Pol δ-PCNA is suppressed on the leading strand with CMG (Georgescu et al., 2014). We propose that CMG, the 11-subunit helicase, is responsible for one or both of these suppression mechanisms that spatially control polymerase occupancy at the fork. PMID:25871847

  12. Characteristics of Cu stabilized Nb3Al strands with low Cu ratio

    SciTech Connect

    Kikuchi, A.; Yamada, R.; Barzi, E.; Kobayashi, M.; Lamm, M.; Nakagawa, K.; Sasaki, K.; Takeuchi, T.; Turrioni, D.; Zlobin, A.V.; /NIMC, Tsukuba /Fermilab /Hitachi, Tsuchiura Works /KEK, Tsukuba

    2008-12-01

    Characteristics of recently developed F4-Nb{sub 3}Al strand with low Cu ratio are described. The overall J{sub c} of the Nb{sub 3}Al strand could be easily increased by decreasing of the Cu ratio. Although the quench of a pulse-like voltage generation is usually observed in superconducting unstable conductor, the F4 strand with a low Cu ratio of 0.61 exhibited an ordinary critical transition of gradual voltage generation. The F4 strand does not have magnetic instabilities at 4.2 K because of the tantalum interfilament matrix. The overall J{sub c} of the F4 strand achieved was 80-85% of the RRP strand. In the large mechanical stress above 100 MPa, the overall J{sub c} of the F4 strand might be comparable to that of high J{sub c} RRP-Nb{sub 3}Sn strands. The Rutherford cable with a high packing factor of 86.5% has been fabricated using F4 strands. The small racetrack magnet, SR07, was also fabricated by a 14 m F4 cable. The quench current, I{sub q}, of SR07 were obtained 22.4 kA at 4.5 K and 25.2 kA at 2.2 K. The tantalum matrix Nb{sub 3}Al strands are promising for the application of super-cooled high-field magnets as well as 4.2 K operation magnets.

  13. Factors affecting stranding of juvenile salmonids by wakes from ship passage in the Lower Columbia River

    SciTech Connect

    Pearson, Walter H.; Skalski, John R.

    2011-09-01

    The effects of deep-draft vessel traffic in confined riverine channels on shorelines and fish are of widespread concern. In the Pacific Northwest of the United States, wakes and subsequent beach run-up from ships transiting the Lower Columbia River have been observed to strand juvenile salmon and other fish. As part of a before-and-after study to assess stranding effects that may be associated with channel deepening, we measured 19 co-variables from observations of 126 vessel passages at three low-slope beaches and used multiple logistic regression to discern the significant factors influencing the frequency of stranding. Subyearling Chinook salmon were 82% of the fish stranded over all sites and seasons. Given a low-slope beach, stranding frequencies for juvenile salmon were significantly related to river location, salmon density in the shallows, a proxy for ship kinetic energy, tidal height, and two interactions. The beach types selected for our study do not include all the beach types along the Lower Columbia River so that the stranding probabilities described here cannot be extrapolated river-wide. A more sophisticated modeling effort, informed by additional field data, is needed to assess salmon losses by stranding for the entire lower river. Such modeling needs to include river-scale factors such as beach type, berms, proximity to navigation channel, and perhaps, proximity to tributaries that act as sources of out-migrating juvenile salmon. At both river and beach scales, no one factor produces stranding; rather interactions among several conditions produce a stranding event and give stranding its episodic nature.

  14. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    SciTech Connect

    sumption, Mike; Majoros, Milan; Collings, E. W.; Van der Laan, D. C.

    2014-11-07

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software. Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic ) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.

  15. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    SciTech Connect

    Majoros, M.; Sumption, M. D.; Collings, E. W.; Long, N. J.

    2015-04-08

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software. Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.

  16. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE PAGES

    Majoros, M.; Sumption, M. D.; Collings, E. W.; Long, N. J.

    2015-04-08

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  17. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE PAGES

    sumption, Mike; Majoros, Milan; Collings, E. W.; Van der Laan, D. C.

    2014-11-07

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic ) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  18. Invasive cervical cancer in pregnancy.

    PubMed

    La Russa, M; Jeyarajah, A R

    2016-05-01

    Detection of invasive cervical cancer during pregnancy is rare, with reported incidence rates ranging from 0.05% to 0.1%. However, cervical cancer is one of the most common malignancies diagnosed during pregnancy. The management of invasive cervical cancer in pregnancy is extremely challenging and requires a multidisciplinary team approach to optimise the treatment for the patient by simultaneously providing the best chance of survival for the foetus. The approach is based mainly on the following factors: gestational age at the time of the diagnosis, stage, histological subtype, desire regarding fertility and quality of life. The gold standard treatment for this condition in pregnancy is not yet established. This is due to the absence of prospective studies and clinical trials. Therefore, its management presents a dilemma that requires individualisation of care. The various factors that need to be considered for obtaining a good outcome for both mother and child are described in this study. PMID:26586539

  19. Invasive procedures with questionable indications

    PubMed Central

    Jargin, Sergei V.

    2014-01-01

    Insufficient coordination of medical research and partial isolation from the international scientific community can result in application of invasive methods without sufficient indications. Here is presented an overview of renal and pancreatic biopsy studies performed in the course of the operations of pancreatic blood shunting into the systemic blood flow in type 1 diabetic patients. Furthermore a surgical procedure of lung denervation as a treatment method of asthma as well as the use of bronchoscopy for research in asthmatics are discussed here. Today, the upturn in Russian economy enables acquisition of modern equipment; and medical research is on the increase. Under these circumstances, the purpose of this letter was to remind that, performing surgical or other invasive procedures, the risk-to-benefit ratio should be kept as low as possible. PMID:25568799

  20. Dural invasion by pituitary tumours.

    PubMed

    Shaffi, O M; Wrightson, P

    1975-04-23

    In 12 cases of pituitary tumour the dura mater of the sella turcica or diaphragma sellae in contact with the tumour was examined histologically. In nine cases tumour cells were found lying deep in the substance of the dura. Dura from the sella of seven subjects without pituitary disease, obtianed at autopsy, showed no inclusions of pituitary tissue. Four of the cases studied were known before death to suffer from an invasive pituitary adenoma. Of eight surviving cases operated upon in the last two years, five showed dural invasion by tumour. The present report suggests that the condition may be more frequent than expected and that with more study it may provide an index of prognosis. It also defines a requirement for the surgeon aiming to prevent recurrence of tumour after operation or to achieve a complete endocrine ablation.

  1. Human mobility and epidemic invasion

    NASA Astrophysics Data System (ADS)

    Colizza, Vittoria

    2010-03-01

    The current H1N1 influenza pandemic is just the latest example of how human mobility helps drive infectious diseases. Travel has grown explosively in the last decades, contributing to an emerging complex pattern of traffic flows that unfolds at different scales, shaping the spread of epidemics. Restrictions on people's mobility are thus investigated to design possible containment measures. By considering a theoretical framework in terms of reaction-diffusion processes, it is possible to study the invasion dynamics of epidemics in a metapopulation system with heterogeneous mobility patterns. The system is found to exhibit a global invasion threshold that sets the critical mobility rate below which the epidemic is contained. The results provide a general framework for the understanding of the numerical evidence from detailed data-driven simulations that show the limited benefit provided by travel flows reduction in slowing down or containing an emerging epidemic.

  2. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    SciTech Connect

    Sumption, Mike D.; Collings, Edward W.

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  3. High resolution atomic force microscopy of double-stranded RNA

    NASA Astrophysics Data System (ADS)

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M.; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando

    2016-06-01

    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to

  4. Invasive Salmonellosis in Kilifi, Kenya

    PubMed Central

    Muthumbi, Esther; Morpeth, Susan C.; Ooko, Michael; Mwanzu, Alfred; Mwarumba, Salim; Mturi, Neema; Etyang, Anthony O.; Berkley, James A.; Williams, Thomas N.; Kariuki, Samuel; Scott, J. Anthony G.

    2015-01-01

    Background. Invasive salmonelloses are a major cause of morbidity and mortality in Africa, but the incidence and case fatality of each disease vary markedly by region. We aimed to describe the incidence, clinical characteristics, and antimicrobial susceptibility patterns of invasive salmonelloses among children and adults in Kilifi, Kenya. Methods. We analyzed integrated clinical and laboratory records for patients presenting to the Kilifi County Hospital between 1998 and 2014. We calculated incidence, and summarized clinical features and multidrug resistance. Results. Nontyphoidal Salmonella (NTS) accounted for 10.8% and 5.8% of bacteremia cases in children and adults, respectively, while Salmonella Typhi accounted for 0.5% and 2.1%, respectively. Among 351 NTS isolates serotyped, 160 (45.6%) were Salmonella Enteritidis and 152 (43.3%) were Salmonella Typhimurium. The incidence of NTS in children aged <5 years was 36.6 per 100 000 person-years, being highest in infants aged <7 days (174/100 000 person-years). The overall incidence of NTS in children varied markedly by location and declined significantly during the study period; the pattern of dominance of the NTS serotypes also shifted from Salmonella Enteritidis to Salmonella Typhimurium. Risk factors for invasive NTS disease were human immunodeficiency virus infection, malaria, and malnutrition; the case fatality ratio was 22.1% (71/321) in children aged <5 years and 36.7% (11/30) in adults. Multidrug resistance was present in 23.9% (84/351) of NTS isolates and 46.2% (12/26) of Salmonella Typhi isolates. Conclusions. In Kilifi, the incidence of invasive NTS was high, especially among newborn infants, but typhoid fever was uncommon. NTS remains an important cause of bacteremia in children <5 years of age. PMID:26449944

  5. Minimally invasive surgery. Future developments.

    PubMed

    Wickham, J E

    1994-01-15

    The rapid development of minimally invasive surgery means that there will be fundamental changes in interventional treatment. Technological advances will allow new minimally invasive procedures to be developed. Application of robotics will allow some procedures to be done automatically, and coupling of slave robotic instruments with virtual reality images will allow surgeons to perform operations by remote control. Miniature motors and instruments designed by microengineering could be introduced into body cavities to perform operations that are currently impossible. New materials will allow changes in instrument construction, such as use of memory metals to make heat activated scissors or forceps. With the reduced trauma associated with minimally invasive surgery, fewer operations will require long hospital stays. Traditional surgical wards will become largely redundant, and hospitals will need to cope with increased through-put of patients. Operating theatres will have to be equipped with complex high technology equipment, and hospital staff will need to be trained to manage it. Conventional nursing care will be carried out more in the community. Many traditional specialties will be merged, and surgical training will need fundamental revision to ensure that surgeons are competent to carry out the new procedures. PMID:8312776

  6. Will climate change promote future invasions?

    PubMed

    Bellard, Celine; Thuiller, Wilfried; Leroy, Boris; Genovesi, Piero; Bakkenes, Michel; Courchamp, Franck

    2013-12-01

    Biological invasion is increasingly recognized as one of the greatest threats to biodiversity. Using ensemble forecasts from species distribution models to project future suitable areas of the 100 of the world's worst invasive species defined by the International Union for the Conservation of Nature, we show that both climate and land use changes will likely cause drastic species range shifts. Looking at potential spatial aggregation of invasive species, we identify three future hotspots of invasion in Europe, northeastern North America, and Oceania. We also emphasize that some regions could lose a significant number of invasive alien species, creating opportunities for ecosystem restoration. From the list of 100, scenarios of potential range distributions show a consistent shrinking for invasive amphibians and birds, while for aquatic and terrestrial invertebrates distributions are projected to substantially increase in most cases. Given the harmful impacts these invasive species currently have on ecosystems, these species will likely dramatically influence the future of biodiversity.

  7. A proposed unified framework for biological invasions.

    PubMed

    Blackburn, Tim M; Pyšek, Petr; Bacher, Sven; Carlton, James T; Duncan, Richard P; Jarošík, Vojtěch; Wilson, John R U; Richardson, David M

    2011-07-01

    There has been a dramatic growth in research on biological invasions over the past 20 years, but a mature understanding of the field has been hampered because invasion biologists concerned with different taxa and different environments have largely adopted different model frameworks for the invasion process, resulting in a confusing range of concepts, terms and definitions. In this review, we propose a unified framework for biological invasions that reconciles and integrates the key features of the most commonly used invasion frameworks into a single conceptual model that can be applied to all human-mediated invasions. The unified framework combines previous stage-based and barrier models, and provides a terminology and categorisation for populations at different points in the invasion process.

  8. Biology of cancer invasion and metastasis.

    PubMed

    Mareel, M M; Crombez, R

    1992-01-01

    Current concepts of invasion eventually leading to metastasis are discussed and exemplified by cancers of the head and neck mucosa. Invasion occurs at a number of steps, each step making an ecosystem comprising not only the neoplastic cells but also their normal counterparts, a variety of host cells and the extracellular matrix. The ecosystem concept may explain aspects of metastasis such as site-dependence and organ-specificity of cancer metastasis as well as invasiveness of normal leucocytes. Genes implicated in invasion and metastasis are actively searched for. Recently, the epithelial cell-cell adhesion molecule E-cadherin has been identified as an i- (invasion suppressor) gene product, i.e. a molecule the expression of which counterbalances i+ (invasion promotor) gene activity. Downregulation of E-cadherin in human head and neck cancers may account for their invasive and metastatic behaviour.

  9. Will climate change promote future invasions?

    PubMed Central

    Bellard, C.; Thuiller, W.; Leroy, B.; Genovesi, P.; Bakkenes, M.; Courchamp, F.

    2013-01-01

    Biological invasion is increasingly recognized as one of the greatest threats to biodiversity. Using ensemble forecasts from species distribution models to project future suitable areas of the “100 of the world’s worst invasive species” defined by the IUCN, we show that both climate and land use changes will likely cause drastic species range shifts. Looking at potential spatial aggregation of invasive species, we identify three future hotspots of invasion in Europe, northeastern North America, and Oceania. We also emphasize that some regions could lose a significant number of invasive alien species, creating opportunities for ecosystem restoration. From the list of 100, scenarios of potential range distributions show a consistent shrinking for invasive amphibians and birds, while for aquatic and terrestrial invertebrates distributions are projected to substantially increase in most cases. Given the harmful impacts these invasive species currently have on ecosystems, these species will likely dramatically influence the future of biodiversity. PMID:23913552

  10. Holocene geologic slip rate for Mission Creek strand of the southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Fryer, R.; Behr, W. M.; Sharp, W. D.; Gold, P. O.

    2015-12-01

    The San Andreas Fault (SAF) is the primary structure accommodating motion between the Pacific and North American plates. The Coachella Valley segment of the southern SAF has not ruptured historically, and is considered overdue for an earthquake because it has exceeded its average recurrence interval. In the northwestern Coachella Valley, this fault splits into three additional fault strands: the Mission Creek strand, which strikes northwest in the San Bernardino Mountains, and the Banning and Garnet Hill strands, which continue west, transferring slip into San Gorgonio Pass. Determining how slip is partitioned between these faults is critical for southern California seismic hazard models. Recent work near the southern end of the Mission Creek strand at Biskra Palms yielded a slip rate of ~14-17 mm/yr since 50 ka, and new measurements from Pushawalla Canyon suggest a possible rate of ~20 mm/yr since 2.5 ka and 70 ka. Slip appears to transfer away from the Mission Creek strand and to the Banning and Garnet Hill strands within the Indio Hills, but the slip rate for the Garnet Hill strand is unknown and the 4-5 mm/yr slip rate for the Banning strand is applicable only since the mid Holocene. Additional constraints on the Holocene slip rate for the Mission Creek strand are critical for resolving the total slip rate for the southern SAF, and also for comparing slip rates on all three fault strands in the northern Coachella Valley over similar time scales. We have identified a new slip rate site at the southern end of the Mission Creek strand between Pushawalla and Biskra Palms. At this site, (the Three Palms Site), three alluvial fans sourced from three distinct catchments have been displaced approximately 80 meters by the Mission Creek Strand. Initial observations from an exploratory pit excavated into the central fan show soil development consistent with Holocene fan deposition and no evidence of soil profile disruption. To more precisely constrain the minimum

  11. Immunohistochemical characterization of brain-invasive meningiomas

    PubMed Central

    Backer-Grøndahl, Thomas; Moen, Bjørnar H; Arnli, Magnus B; Torseth, Kathrin; Torp, Sverre H

    2014-01-01

    Brain-invasive meningiomas have an adverse prognosis, so it is important to detect and correctly evaluate brain invasion by light microscopy. Furthermore, the underlying biological mechanisms responsible for brain-invasive growth are incompletely understood. The primary aim of this study was to identify immunohistochemical markers that could improve identification and evaluation of brain invasion in meningiomas. A second aim was to investigate the process of brain invasion using immunohistochemical markers of proliferation, extracellular matrix modulation, and cell adhesion. From a series of 196 human meningiomas, 67 cases were selected for analysis because of the presence of brain tissue in tumor specimens. Fourteen of these 67 meningiomas were brain-invasive. Invasiveness was determined primarily by evaluation of hematoxylin-erytrosin-saffron- (HES-) stained specimens, although glial fibrillary acidic protein (GFAP), anti-collagen IV, and cluster of differentiation 44 (CD44) markers provided additional information. It was important to examine microscopic sections from various levels of the paraffin-embedded tissue block to adequately assess invasiveness. Sections stained using antibodies against Ki-67/MIB-1, phospohistone-H3 (PHH3), matrix metalloproteinase-9 (MMP-9), cathepsin D, plasminogen activator inhibitor-1 (PAI-1), and E-cadherin antigens were used to characterize brain-invasive meningiomas and to investigate the process of brain invasion. Only increased expression of the extracellular matrix modulator MMP-9 correlated with brain-invasive growth (p=0.025). Examination of HES-stained sections identified brain invasion. Use of relevant immunohistochemical markers did not contribute substantially to this evaluation. Evaluation of stepwise sections should be considered when brain-invasive growth is suspected. MMP-9 may be an important mediator of brain-invasive growth. PMID:25400818

  12. How a short double-stranded DNA bends

    NASA Astrophysics Data System (ADS)

    Shin, Jaeoh; Lee, O.-Chul; Sung, Wokyung

    2015-04-01

    A recent experiment using fluorescence microscopy showed that double-stranded DNA fragments shorter than 100 base pairs loop with the probabilities higher by the factor of 102-106 than predicted by the worm-like chain (WLC) model [R. Vafabakhsh and T. Ha, Science 337, 1101(2012)]. Furthermore, the looping probabilities were found to be nearly independent of the loop size. The results signify a breakdown of the WLC model for DNA mechanics which works well on long length scales and calls for fundamental understanding for stressed DNA on shorter length scales. We develop an analytical, statistical mechanical model to investigate what emerges to the short DNA under a tight bending. A bending above a critical level initiates nucleation of a thermally induced bubble, which could be trapped for a long time, in contrast to the bubbles in both free and uniformly bent DNAs, which are either transient or unstable. The trapped bubble is none other than the previously hypothesized kink, which releases the bending energy more easily as the contour length decreases. It leads to tremendous enhancement of the cyclization probabilities, in a reasonable agreement with experiment.

  13. Prion search and cellular prion protein expression in stranded dolphins.

    PubMed

    Di Guardo, G; Cocumelli, C; Meoli, R; Barbaro, K; Terracciano, G; Di Francesco, C E; Mazzariol, S; Eleni, C

    2012-01-01

    The recent description of a prion disease (PD) case in a free-ranging bottlenose dolphin (Tursiops truncatus) prompted us to carry out an extensive search for the disease-associated isoform (PrPSc) of the cellular prion protein (PrPC) in the brain and in a range of lymphoid tissues from 23 striped dolphins (Stenella coeruleoalba), 5 bottlenose dolphins and 2 Risso s dolphins (Grampus griseus) found stranded between 2007 and 2012 along the Italian coastline. Three striped dolphins and one bottlenose dolphin showed microscopic lesions of encephalitis, with no evidence of spongiform brain lesions being detected in any of the 30 free-ranging cetaceans investigated herein. Nevertheless, we could still observe a prominent PrPC immunoreactivity in the brain as well as in lymphoid tissues from these dolphins. Although immunohistochemical and Western blot investigations yielded negative results for PrPSc deposition in all tissues from the dolphins under study, the reported occurrence of a spontaneous PD case in a wild dolphin is an intriguing issue and a matter of concern for both prion biology and intra/inter-species transmissibility, as well as for cetacean conservation medicine. PMID:23034277

  14. Architecture and regulation of negative-strand viral enzymatic machinery

    PubMed Central

    Kranzusch, Philip J.; Whelan, Sean P.J.

    2012-01-01

    Negative-strand (NS) RNA viruses initiate infection with a unique polymerase complex that mediates both mRNA transcription and subsequent genomic RNA replication. For nearly all NS RNA viruses, distinct enzymatic domains catalyzing RNA polymerization and multiple steps of 5′ mRNA cap formation are contained within a single large polymerase protein (L). While NS RNA viruses include a variety of emerging human and agricultural pathogens, the enzymatic machinery driving viral replication and gene expression remains poorly understood. Recent insights with Machupo virus and vesicular stomatitis virus have provided the first structural information of viral L proteins, and revealed how the various enzymatic domains are arranged into a conserved architecture shared by both segmented and nonsegmented NS RNA viruses. In vitro systems reconstituting RNA synthesis from purified components provide new tools to understand the viral replicative machinery, and demonstrate the arenavirus matrix protein regulates RNA synthesis by locking a polymerase–template complex. Inhibition of gene expression by the viral matrix protein is a distinctive feature also shared with influenza A virus and nonsegmented NS RNA viruses, possibly illuminating a conserved mechanism for coordination of viral transcription and polymerase packaging PMID:22767259

  15. Protein lysine methylation by seven-β-strand methyltransferases.

    PubMed

    Falnes, Pål Ø; Jakobsson, Magnus E; Davydova, Erna; Ho, Angela; Małecki, Jędrzej

    2016-07-15

    Methylation of biomolecules is a frequent biochemical reaction within the cell, and a plethora of highly specific methyltransferases (MTases) catalyse the transfer of a methyl group from S-adenosylmethionine (AdoMet) to various substrates. The posttranslational methylation of lysine residues, catalysed by numerous lysine (K)-specific protein MTases (KMTs), is a very common and important protein modification, which recently has been subject to intense studies, particularly in the case of histone proteins. The majority of KMTs belong to a class of MTases that share a defining 'SET domain', and these enzymes mostly target lysines in the flexible tails of histones. However, the so-called seven-β-strand (7BS) MTases, characterized by a twisted beta-sheet structure and certain conserved sequence motifs, represent the largest MTase class, and these enzymes methylate a wide range of substrates, including small metabolites, lipids, nucleic acids and proteins. Until recently, the histone-specific Dot1/DOT1L was the only identified eukaryotic 7BS KMT. However, a number of novel 7BS KMTs have now been discovered, and, in particular, several recently characterized human and yeast members of MTase family 16 (MTF16) have been found to methylate lysines in non-histone proteins. Here, we review the status and recent progress on the 7BS KMTs, and discuss these enzymes at the levels of sequence/structure, catalytic mechanism, substrate recognition and biological significance. PMID:27407169

  16. ATM controls meiotic double-strand break formation

    PubMed Central

    Lange, Julian; Pan, Jing; Cole, Francesca; Thelen, Michael P.; Jasin, Maria; Keeney, Scott

    2011-01-01

    In many organisms, developmentally programmed double-strand breaks (DSBs) formed by the SPO11 transesterase initiate meiotic recombination, which promotes pairing and segregation of homologous chromosomes1. Because every chromosome must receive a minimum number of DSBs, attention has focused on factors that support DSB formation2. However, improperly repaired DSBs can cause meiotic arrest or mutation3,4, thus having too many DSBs is likely as deleterious as having too few. Only a small fraction of SPO11 protein ever makes a DSB in yeast or mouse5, and SPO11 and its accessory factors remain abundant long after most DSB formation ceases1, implying the existence of mechanisms that restrain SPO11 activity to limit DSB numbers. Here we report that the number of meiotic DSBs in mouse is controlled by ATM, a kinase activated by DNA damage to trigger checkpoint signaling and promote DSB repair. Levels of SPO11-oligonucleotide complexes, by-products of meiotic DSB formation, are elevated at least ten-fold in spermatocytes lacking ATM. Moreover, Atm mutation renders SPO11-oligonucleotide levels sensitive to genetic manipulations that modulate SPO11 protein levels. We propose that ATM restrains SPO11 via a negative feedback loop in which kinase activation by DSBs suppresses further DSB formation. Our findings explain previously puzzling phenotypes of Atm-null mice and provide a molecular basis for the gonadal dysgenesis observed in ataxia telangiectasia, the human syndrome caused by ATM deficiency. PMID:22002603

  17. Patterns of evolution of research strands in the hydrologic sciences

    NASA Astrophysics Data System (ADS)

    Schwartz, F. W.; Fang, Y. C.; Parthasarathy, S.

    2005-03-01

    This paper examines issues of impact and innovation in groundwater research by using bibliometric data and citation analysis.The analysis is based on 3120 papers from the journal Water Resources Research with full contents and their citation data from the ISI Web of Science. The research is designed to develop a better understanding of the way citation numbers can be interpreted by scientists. Not surprisingly, the most highly cited papers appear to be pioneers in the field with papers departing significantly from what has come before and to be effective in creating similar, follow-on papers. Papers that are early contributions to a new research strand that is highly influential will be on average highly cited. However, the importance of a research strand as measured by citations seems to fall with time. The citation patterns of some classic papers show that the activity in the topical area and impact of follow-on papers gradually decline with time, which has similarities with Kuhn's ideas of revolutionary and normal science. The results of this study reinforce the importance of being a pioneer in a research strand, strategically shifting research strands, adopting strategies that can facilitate really major research breakthroughs. L'article examine les problèmes d'impact et d'innovation dans la recherche des eaux souterraines en utilisant les données bibliométriques et l'analyse des citations. L'analyse a été faite sur 3120 articles parus dans Water Resources Research en tenant compte de leur texte complet et de toutes citations parues dans l' ISI Web de la Science. Le but de la recherche a été de mieux comprendre comment le nombre des citations peut être interprété par les scientifiques. Ce n'est pas une surprise que les plus cités articles soient les articles-pionniers dans leurs domaines, qui s'écartent d'une manière significative de ce qui a été écrit auparavant et qui ont été suivi par des nouveaux articles. Les articles qui présentent une

  18. A Spinach molecular beacon triggered by strand displacement.

    PubMed

    Bhadra, Sanchita; Ellington, Andrew D

    2014-08-01

    We have re-engineered the fluorescent RNA aptamer Spinach to be activated in a sequence-dependent manner. The original Spinach aptamer was extended at its 5'- and 3'-ends to create Spinach.ST, which is predicted to fold into an inactive conformation and thus prevent association with the small molecule fluorophore DFHBI. Hybridization of a specific trigger oligonucleotide to a designed toehold leads to toehold-initiated strand displacement and refolds Spinach into the active, fluorophore-binding conformation. Spinach.ST not only specifically detects its target oligonucleotide but can discriminate readily against single-nucleotide mismatches. RNA amplicons produced during nucleic acid sequence-based amplification (NASBA) of DNA or RNA targets could be specifically detected and reported in real-time by conformational activation of Spinach.ST generated by in vitro transcription. In order to adapt any target sequence to detection by a Spinach reporter we used a primer design technique that brings together otherwise distal toehold sequences via hairpin formation. The same techniques could potentially be used to adapt common Spinach reporters to non-nucleic acid analytes, rather than by making fusions between aptamers and Spinach.

  19. Herpesvirus infection in stranded Pacific harbor seals of coastal California.

    PubMed

    Gulland, F M; Lowenstine, L J; Lapointe, J M; Spraker, T; King, D P

    1997-07-01

    Histopathological examination revealed multifocal acute to chronic adrenal necrosis in 74 of 162 (45%) Pacific harbor seal pups (Phoca vitulina richardsi) dying during rehabilitation following live stranding along the coast of central and northern California (USA). Necrotic adrenal cells contained amphophilic, smudgy intranuclear inclusion bodies that were stained positive for DNA. Fifty of these seals also had lesions typical of sepsis, bacterial omphalophlebitis, pneumonia or gastroenteritis. Twenty four seals had no lesions other than thymic atrophy and occasional multifocal hepatic necrosis. Prior to death, affected seals had a marked lymphopenia. Electron microscopy revealed unenveloped intranuclear hexagonal to round viral particles approximately 100 nm in diameter, and cytoplasmic enveloped virions approximately 160 nm in diameter. These were morphologically consistent with herpesvirus. Inoculation of phocine adrenal and kidney cell lines with an adrenal tissue homogenate from affected animals produced a cytopathic effect in 5 days. Electron microscopy of cell cultures showing this cytopathic effect revealed similar viral particles to those observed in affected adrenal glands. Cases with characteristic inclusion bodies were observed in 42 of 95 (44%) male and 32 of 67 (47%) female seals. Affected animals had been in rehabilitation 0 to 63 days and were below average birth weight for this species. PMID:9249689

  20. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses

    SciTech Connect

    Lloyd, Richard E.

    2015-05-15

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. - Highlights: • Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. • A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. • Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.

  1. Patterns of evolution of research strands in the hydrologic sciences

    NASA Astrophysics Data System (ADS)

    Schwartz, F. W.; Fang, Y. C.; Parthasarathy, S.

    2005-03-01

    This paper examines issues of impact and innovation in groundwater research by using bibliometric data and citation analysis.The analysis is based on 3120 papers from the journal Water Resources Research with full contents and their citation data from the ISI Web of Science. The research is designed to develop a better understanding of the way citation numbers can be interpreted by scientists. Not surprisingly, the most highly cited papers appear to be pioneers in the field with papers departing significantly from what has come before and to be effective in creating similar, follow-on papers. Papers that are early contributions to a new research strand that is highly influential will be on average highly cited. However, the importance of a research strand as measured by citations seems to fall with time. The citation patterns of some classic papers show that the activity in the topical area and impact of follow-on papers gradually decline with time, which has similarities with Kuhn's ideas of revolutionary and normal science. The results of this study reinforce the importance of being a pioneer in a research strand, strategically shifting research strands, adopting strategies that can facilitate really major research breakthroughs. L'article examine les problèmes d'impact et d'innovation dans la recherche des eaux souterraines en utilisant les données bibliométriques et l'analyse des citations. L'analyse a été faite sur 3120 articles parus dans Water Resources Research en tenant compte de leur texte complet et de toutes citations parues dans l' ISI Web de la Science. Le but de la recherche a été de mieux comprendre comment le nombre des citations peut être interprété par les scientifiques. Ce n'est pas une surprise que les plus cités articles soient les articles-pionniers dans leurs domaines, qui s'écartent d'une manière significative de ce qui a été écrit auparavant et qui ont été suivi par des nouveaux articles. Les articles qui présentent une

  2. [Double-stranded DNA microarray: principal, techniques and applications].

    PubMed

    Pan, Yan; Wang, Jin-Ke

    2013-03-01

    Double-stranded DNA (dsDNA) microarray, also known as protein binding microarray (PBM), is an important technique that can be used to assay the interaction of DNA-binding protein (such as transcription factor, TF) with vast amount of DNA molecules in high-throughput format. This technique immobilizes large amount of various dsDNA molecules on the surface of a solid support (such as glass slide) for detecting the binding interaction of a DNA-binding protein with all of the immobilized dsDNA molecules, and thus determining the DNA-binding affinity, specificity and preference of TFs. In recent years, this technique has demonstrated its valuable applications in several aspects, including rapidly characterizing DNA-binding specificity of large number of TFs, building DNA-binding profiles of TFs, identifying DNA-binding sites and target genes of TFs, discriminating the subtle DNA-binding preferences of members and their dimmers of a TF family, and examining the effects of a cofactor on the DNA-binding specificity of TFs. This paper reviews the principal, techniques, and applications of dsDNA microarray.

  3. A Spinach molecular beacon triggered by strand displacement

    PubMed Central

    Bhadra, Sanchita; Ellington, Andrew D.

    2014-01-01

    We have re-engineered the fluorescent RNA aptamer Spinach to be activated in a sequence-dependent manner. The original Spinach aptamer was extended at its 5′- and 3′-ends to create Spinach.ST, which is predicted to fold into an inactive conformation and thus prevent association with the small molecule fluorophore DFHBI. Hybridization of a specific trigger oligonucleotide to a designed toehold leads to toehold-initiated strand displacement and refolds Spinach into the active, fluorophore-binding conformation. Spinach.ST not only specifically detects its target oligonucleotide but can discriminate readily against single-nucleotide mismatches. RNA amplicons produced during nucleic acid sequence-based amplification (NASBA) of DNA or RNA targets could be specifically detected and reported in real-time by conformational activation of Spinach.ST generated by in vitro transcription. In order to adapt any target sequence to detection by a Spinach reporter we used a primer design technique that brings together otherwise distal toehold sequences via hairpin formation. The same techniques could potentially be used to adapt common Spinach reporters to non-nucleic acid analytes, rather than by making fusions between aptamers and Spinach. PMID:24942625

  4. Buried territories: heterochromatic response to DNA double-strand breaks.

    PubMed

    Feng, Yi-Li; Xiang, Ji-Feng; Kong, Na; Cai, Xiu-Jun; Xie, An-Yong

    2016-07-01

    Cellular response to DNA double-strand breaks (DSBs), the most deleterious type of DNA damage, is highly influenced by higher-order chromatin structure in eukaryotic cells. Compared with euchromatin, the compacted structure of heterochromatin not only protects heterochromatic DNA from damage, but also adds an extra layer of control over the response to DSBs occurring in heterochromatin. One key step in this response is the decondensation of heterochromatin structure. This decondensation process facilitates the DNA damage signaling and promotes proper heterochromatic DSB repair, thus helping to prevent instability of heterochromatic regions of genomes. This review will focus on the functions of the ataxia telangiectasia mutated (ATM) signaling cascade involving ATM, heterochromatin protein 1 (HP1), Krüppel-associated box (KRAB)-associated protein-1 (KAP-1), tat-interacting protein 60 (Tip60), and many other protein factors in DSB-induced decondensation of heterochromatin and subsequent repair of heterochromatic DSBs. As some subsets of DSBs may be repaired in heterochromatin independently of the ATM signaling, a possible repair model is also proposed for ATM-independent repair of these heterochromatic DSBs.

  5. Drosophila ATR in double-strand break repair.

    PubMed

    LaRocque, Jeannine R; Jaklevic, Burnley; Su, Tin Tin; Sekelsky, Jeff

    2007-03-01

    The ability of a cell to sense and respond to DNA damage is essential for genome stability. An important aspect of the response is arrest of the cell cycle, presumably to allow time for repair. Ataxia telangiectasia mutated (ATM) and ATR are essential for such cell-cycle control, but some observations suggest that they also play a direct role in DNA repair. The Drosophila ortholog of ATR, MEI-41, mediates the DNA damage-dependent G2-M checkpoint. We examined the role of MEI-41 in repair of double-strand breaks (DSBs) induced by P-element excision. We found that mei-41 mutants are defective in completing the later steps of homologous recombination repair, but have no defects in end-joining repair. We hypothesized that these repair defects are the result of loss of checkpoint control. To test this, we genetically reduced mitotic cyclin levels and also examined repair in grp (DmChk1) and lok (DmChk2) mutants. Our results suggest that a significant component of the repair defects is due to loss of MEI-41-dependent cell cycle regulation. However, this does not account for all of the defects we observed. We propose a novel role for MEI-41 in DSB repair, independent of the Chk1/Chk2-mediated checkpoint response.

  6. Architecture and regulation of negative-strand viral enzymatic machinery.

    PubMed

    Kranzusch, Philip J; Whelan, Sean P J

    2012-07-01

    Negative-strand (NS) RNA viruses initiate infection with a unique polymerase complex that mediates both mRNA transcription and subsequent genomic RNA replication. For nearly all NS RNA viruses, distinct enzymatic domains catalyzing RNA polymerization and multiple steps of 5' mRNA cap formation are contained within a single large polymerase protein (L). While NS RNA viruses include a variety of emerging human and agricultural pathogens, the enzymatic machinery driving viral replication and gene expression remains poorly understood. Recent insights with Machupo virus and vesicular stomatitis virus have provided the first structural information of viral L proteins, and revealed how the various enzymatic domains are arranged into a conserved architecture shared by both segmented and nonsegmented NS RNA viruses. In vitro systems reconstituting RNA synthesis from purified components provide new tools to understand the viral replicative machinery, and demonstrate the arenavirus matrix protein regulates RNA synthesis by locking a polymerase-template complex. Inhibition of gene expression by the viral matrix protein is a distinctive feature also shared with influenza A virus and nonsegmented NS RNA viruses, possibly illuminating a conserved mechanism for coordination of viral transcription and polymerase packaging.

  7. Invasive oral cancer stem cells display resistance to ionising radiation.

    PubMed

    Gemenetzidis, Emilios; Gammon, Luke; Biddle, Adrian; Emich, Helena; Mackenzie, Ian C

    2015-12-22

    There is a significant amount of evidence to suggest that human tumors are driven and maintained by a sub-population of cells, known as cancer stem cells (CSC). In the case of head and neck cancer, such cells have been characterised by high expression levels of CD44 cell surface glycoprotein, while we have previously shown the presence of two diverse oral CSC populations in vitro, with different capacities for cell migration and proliferation. Here, we examined the response of oral CSC populations to ionising radiation (IR), a front-line measure for the treatment of head and neck tumors. We show that oral CSC initially display resistance to IR-induced growth arrest as well as relative apoptotic resistance. We propose that this is a result of preferential activation of the DNA damagerepair pathway in oral CSC with increased activation of ATM and BRCA1, elevated levels of DNA repair proteins RAD52, XLF, and a significantly faster rate of DNA double-strand-breaks clearance 24 hours following IR. By visually identifying CSC sub-populations undergoing EMT, we show that EMT-CSC represent the majority of invasive cells, and are more radio-resistant than any other population in re-constructed 3D tissues. We provide evidence that IR is not sufficient to eliminate CSC in vitro, and that sensitization of CD44hi/ESAlow cells to IR, followed by secondary EMT blockade, could be critical in order to reduce primary tumor recurrence, but more importantly to be able to eradicate cells capable of invasion and distant metastasis.

  8. Chick Heart Invasion Assay for Testing the Invasiveness of Cancer Cells and the Activity of Potentially Anti-invasive Compounds.

    PubMed

    Bracke, Marc E; Roman, Bart I; Stevens, Christian V; Mus, Liselot M; Parmar, Virinder S; De Wever, Olivier; Mareel, Marc M

    2015-01-01

    The goal of the chick heart assay is to offer a relevant organ culture method to study tumor invasion in three dimensions. The assay can distinguish between invasive and non-invasive cells, and enables study of the effects of test compounds on tumor invasion. Cancer cells - either as aggregates or single cells - are confronted with fragments of embryonic chick heart. After organ culture in suspension for a few days or weeks the confronting cultures are fixed and embedded in paraffin for histological analysis. The three-dimensional interaction between the cancer cells and the normal tissue is then reconstructed from serial sections stained with hematoxylin-eosin or after immunohistochemical staining for epitopes in the heart tissue or the confronting cancer cells. The assay is consistent with the recent concept that cancer invasion is the result of molecular interactions between the cancer cells and their neighbouring stromal host elements (myofibroblasts, endothelial cells, extracellular matrix components, etc.). Here, this stromal environment is offered to the cancer cells as a living tissue fragment. Supporting aspects to the relevance of the assay are multiple. Invasion in the assay is in accordance with the criteria of cancer invasion: progressive occupation and replacement in time and space of the host tissue, and invasiveness and non-invasiveness in vivo of the confronting cells generally correlates with the outcome of the assay. Furthermore, the invasion pattern of cells in vivo, as defined by pathologists, is reflected in the histological images in the assay. Quantitative structure-activity relation (QSAR) analysis of the results obtained with numerous potentially anti-invasive organic congener compounds allowed the study of structure-activity relations for flavonoids and chalcones, and known anti-metastatic drugs used in the clinic (e.g., microtubule inhibitors) inhibit invasion in the assay as well. However, the assay does not take into account

  9. The kinetics of force-dependent hybridization and strand-peeling of short DNA fragments

    NASA Astrophysics Data System (ADS)

    Yang, ZhouJie; Yuan, GuoHua; Zhai, WeiLi; Yan, Jie; Chen, Hu

    2016-08-01

    Deoxyribonucleic acid (DNA) carries the genetic information in all living organisms. It consists of two interwound single-stranded (ss) strands, forming a double-stranded (ds) DNA with a right-handed double-helical conformation. The two strands are held together by highly specific basepairing interactions and are further stabilized by stacking between adjacent basepairs. A transition from a dsDNA to two separated ssDNA is called melting and the reverse transition is called hybridization. Applying a tensile force to a dsDNA can result in a particular type of DNA melting, during which one ssDNA strand is peeled away from the other. In this work, we studied the kinetics of strand-peeling and hybridization of short DNA under tensile forces. Our results show that the force-dependent strand-peeling and hybridization can be described with a simple two-state model. Importantly, detailed analysis of the force-dependent transition rates revealed that the transition state consists of several basepairs dsDNA.

  10. Development and Study of NB3SN Strands and Cables for High-Field Accelerator Magnets

    NASA Astrophysics Data System (ADS)

    Barzi, E.; Andreev, N.; Bossert, M.; Kashikhin, V. V.; Turrioni, D.; Yamada, R.; Zlobin, A. V.

    2010-04-01

    The high performance Nb3Sn strand produced by Oxford Superconducting Technology (OST) with the Restack Rod Process (RRP) and a 127 restack design is the baseline conductor presently used in the Fermilab's accelerator magnet R&D program. The original RRP-127 design was further improved in stability by increasing the Cu thickness between subelements after proving the effectiveness of this method in reducing subelement merging [1-3]. A number of RRP-127 billets of various cross sections (RRP-102/127, RRP-108/127 and RRP-114/127) were produced to optimize the design with respect to strand plastic deformation during cabling. The behavior of these new strands was studied using virgin and deformed strand samples, and compared with that of the RRP-54/61 stack design. A Rutherford cable made of 0.7 mm strands was also produced to be used in high field quadrupoles. This paper describes the RRP-127 strand development, and results of strand and cable analyses.

  11. Effect of Temperature and Deformation on Nb3Sn Strands Instabilities

    NASA Astrophysics Data System (ADS)

    Barzi, E.; Del Frate, L.; Turrioni, D.; Zlobin, A. V.

    2006-03-01

    The critical current of Nb3Sn strands used in Fermilab's high field magnets was measured at low and high fields under various experimental conditions using the voltage-current (V-I) and voltage-field (V-H) methods. The strands were commercially produced using Restack Rod Process (RRP) and Powder-in-Tube (PIT) technologies. Both round and deformed strands were studied. Measurements were performed at the Fermilab's Short Sample Test Facility using a 2-kA sample holder with a low contact resistivity. V-I characteristics at fields above 10-12T with a smooth transition from the superconducting to normal phase allowed determining strand critical current. V-I and V-H measurements at low fields showed premature quenches due to magnetic instability in strands with high critical current density and large effective filament size. The effects of strand deformation and RRR as well as test temperature were studied. This paper describes the Nb3Sn strand parameters, the equipment and measurement methods used, and the results of the critical current measurements at low and high fields. The effect of magnetic instabilities is analyzed for different measurement conditions and compared to the predictions of an instability model.

  12. A nanogold-quenched fluorescence duplex probe for homogeneous DNA detection based on strand displacement.

    PubMed

    Mo, Z-H; Yang, X-C; Guo, K-P; Wen, Z-Y

    2007-09-01

    A nanogold-quenched fluorescence duplex probe has been developed for lighting up homogenous hybridization assays. This novel probe is constructed from two strands of different lengths, and labeled by nanogold and a fluorophore at the long-strand 5'-end and the short-strand 3'-end, respectively. The two tags are in close contact, resulting in complete quenching of the probe fluorescence. If perfectly complemented to the nanogold-labeled strand, a long target oligonucleotide would displace the short fluorophore-labeled strand, and as a result, restore the fluorescence. By using nanogold in the probe, an extremely high quenching efficiency (99.1%) and removal of free fluorophore-labeled strand is achieved. The signal-to-noise ratio and the detection limit (50 pmol L(-1)) of homogenous assays are therefore improved significantly, in comparison with similar probes using organic acceptors. Moreover, the probe has a great inhibition effect on hybridization to a mismatched oligonucleotide. This effect provides the assay with a high specificity, and particularly the assay has great potential in applications for discriminating variations in sequences. The assay sensitivity could be markedly enhanced by using fluorescent materials in the signal strand that are brighter and not quenched by nucleobases.

  13. RNA-primed initiation of Moloney murine leukemia virus plus strands by reverse transcriptase in vitro.

    PubMed Central

    Finston, W I; Champoux, J J

    1984-01-01

    A 190-base-pair DNA-RNA hybrid containing the Moloney murine leukemia virus origin of plus-strand DNA synthesis was constructed and used as a source of template-primer for the reverse transcriptase in vitro. Synthesis was shown to initiate precisely at the known plus-strand origin. The observation that some of the origin fragments retained ribonucleotide residues on their 5' ends suggests that the primer for chain initiation is an RNA molecule left behind by RNase H during the degradation of the RNA moiety of the DNA-RNA hybrid. If the RNase H is responsible for creating the correct primer terminus, then it must possess a specific endonucleolytic activity capable of recognizing the sequence in the RNA where plus strands are initiated. The 16-base RNase A-resistant fragment which spans the plus-strand origin can also serve as a source of the specific plus-strand primer RNA. Evidence is presented that some of the plus-strand origin fragments synthesized in the endogenous reaction contain 5' ribonucleotides, suggesting that specific RNA primers for plus-strand initiation may be generated during reverse transcription in vivo as well. Images PMID:6202882

  14. Uniformity evaluation and optimization of fluid flow characteristics in a seven-strand tundish

    NASA Astrophysics Data System (ADS)

    Wang, Min; Zhang, Chao-jie; Li, Rui

    2016-02-01

    The effect of flow control devices (FCDs) on the uniformity of flow characteristics in a seven-strand symmetrical trapezoidal tundish was studied using both an experimental 1:2.5 hydraulic model and a numerical simulation of a 1:1 geometric model. The variation coefficient (CV) was defined to evaluate the flow uniformity of the seven-strand tundish. An optimized FCD configuration was proposed on the basis of the evaluation of experimental results. It is concluded that a turbulence inhibitor (TI) and U-type dam are essential to improve the uniformity of fluid flow in the seven-strand tundish. In addition, the configuration of inclination T-type dams with a height of 200 mm between the second and third strands and with a height of 300 mm between the third and fourth strands can minimize the proportion of dead zone. After optimizing the configuration of FCDs, the variation coefficient reduces below 20% of the mean value, and the average proportion of dead zone is just 14.6%; in addition, the temperature fluctuation between the strands could be controlled within 0.6 K. In summary, the uniformity of flow and temperature in the seven-strand tundish is greatly improved.

  15. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes.

    PubMed

    Okamura, Katsutomo; Liu, Na; Lai, Eric C

    2009-11-13

    In Drosophila, miRNA strands are predominantly sorted into AGO1 to regulate seed-matched target transcripts, while their partner miRNA* strands are thought to be mostly degraded. Here, we report that Drosophila Argonautes exhibit different strand preferences for miRNA duplexes, and that in particular, many miRNA* species accumulate in the RNAi effector AGO2. AGO2-loaded miRNA* species require canonical RNAi factors for their accumulation, are efficiently 3' modified, and are preferentially active on extensively matched target transcripts. Differential miRNA/miRNA* sorting profiles are correlated with specific central mismatches. In vitro assays revealed an active role for Watson-Crick base-pairing at positions 9 and 10 in promoting strand selection by AGO2, with little reciprocal effect on strand selection by AGO1. We conclude that miRNA strand selection and sorting are actually linked processes that stem from distinct loading preferences of AGO proteins and that independent sorting of duplex strands is a general feature of Drosophila microRNA genes.

  16. Diphosphates at the 5' end of the positive strand of yeast L-A double-stranded RNA virus as a molecular self-identity tag.

    PubMed

    Fujimura, Tsutomu; Esteban, Rosa

    2016-10-01

    The 5'end of RNA conveys important information on self-identity. In mammalian cells, double-stranded RNA (dsRNA) with 5'di- or triphosphates generated during virus infection is recognized as foreign and elicits the host innate immune response. Here, we analyze the 5' ends of the dsRNA genome of the yeast L-A virus. The positive strand has largely diphosphates with a minor amount of triphosphates, while the negative strand has only diphosphates. Although the virus can produce capped transcripts by cap snatching, neither strand carried a cap structure, suggesting that only non-capped transcripts serve as genomic RNA for encapsidation. We also found that the 5' diphosphates of the positive but not the negative strand within the dsRNA genome are crucial for transcription in vitro. Furthermore, the presence of a cap structure in the dsRNA abrogated its template activity. Given that the 5' diphosphates of the transcripts are also essential for cap acquisition and that host cytosolic RNAs (mRNA, rRNA, and tRNA) are uniformly devoid of 5' pp-structures, the L-A virus takes advantage of its 5' terminal diphosphates, using them as a self-identity tag to propagate in the host cytoplasm.

  17. Solution structure of the single-stranded DNA binding protein of the filamentous Pseudomonas phage Pf3: similarity to other proteins binding to single-stranded nucleic acids.

    PubMed Central

    Folmer, R H; Nilges, M; Konings, R N; Hilbers, C W

    1995-01-01

    The three-dimensional structure of the homodimeric single-stranded DNA binding protein encoded by the filamentous Pseudomonas bacteriophage Pf3 has been determined using heteronuclear multidimensional NMR techniques and restrained molecular dynamics. NMR experiments and structure calculations have been performed on a mutant protein (Phe36 --> His) that was successfully designed to reduce the tendency of the protein to aggregate. The protein monomer is composed of a five-stranded antiparallel beta-sheet from which two beta-hairpins and a large loop protrude. The structure is compared with the single-stranded DNA binding protein encoded by the filamentous Escherichia coli phage Ff, a protein with a similar biological function and DNA binding properties, yet quite different amino acid sequence, and with the major cold shock protein of Escherichia coli, a single-stranded DNA binding protein with an entirely different sequence, biological function and binding characteristics. The amino acid sequence of the latter is highly homologous to the nucleic acid binding domain (i.e. the cold shock domain) of proteins belonging to the Y-box family. Despite their differences in amino acid sequence and function, the folds of the three proteins are remarkably similar, suggesting that this is a preferred folding pattern shared by many single-stranded DNA binding proteins. Images PMID:7556054

  18. The Body Image Dissatisfaction and Psychological Symptoms among Invasive and Minimally Invasive Aesthetic Surgery Patients

    PubMed Central

    Y. Yazdandoost, Rokhsareh; Hayatbini, Niki; Asgharnejad Farid, Ali Asghar; Gharaee, Banafsheh; Latifi, Noor Ahmad

    2016-01-01

    BACKGROUND Elective aesthetic surgeries are increasing in the Iranian population with reasons linked to body image dissatisfaction and psychological symptoms. This study compared the body image dissatisfaction and psychological symptoms among invasive and minimally invasive aesthetic surgery patients and a control group. METHODS Data from 90 participants (invasive aesthetic surgery=30 Ss, minimally invasive aesthetic surgery=30 Ss, and control group=30 Ss) were included. Subjects were assessed on body image dissatisfaction and psychological symptoms to provide an evidence for a continuum of body image dissatisfaction, anxiety, depression and interpersonal sensitivity in invasive and minimally invasive aesthetic surgery clients. RESULTS Between the three groups of invasive, minimally invasive aesthetic surgeries and control on body image dissatisfaction and psychological symptoms (anxiety, depression and interpersonal sensitivity), there was a significant difference. CONCLUSION These findings have implications for pre-surgical assessment as well as psychological interventions rather than invasive medical interventions at first step. PMID:27579270

  19. Factors affecting harp seal (Pagophilus groenlandicus) strandings in the Northwest Atlantic.

    PubMed

    Soulen, Brianne K; Cammen, Kristina; Schultz, Thomas F; Johnston, David W

    2013-01-01

    The effects of climate change on high latitude regions are becoming increasingly evident, particularly in the rapid decline of sea ice cover in the Arctic. Many high latitude species dependent on sea ice are being forced to adapt to changing habitats. Harp seals (Pagophilus groenlandicus) are an indicator species for changing high-latitude ecosystems. This study analyzed multiple factors including ice cover, demographics, and genetic diversity, which could affect harp seal stranding rates along the eastern coast of the United States. Ice cover assessments were conducted for the month of February in the Gulf of St. Lawrence whelping region from 1991-2010 using remote sensing data, and harp seal stranding data were collected over the same time period. Genetic diversity, which may affect how quickly species can adapt to changing climates, was assessed using ten microsatellite markers to determine mean d (2) in a subset of stranded and by-caught (presumably healthy) seals sampled along the northeast U.S. coast. Our study found a strong negative correlation (R (2) = 0.49) between ice cover in the Gulf of St. Lawrence and yearling harp seal strandings, but found no relationship between sea ice conditions and adult strandings. Our analysis revealed that male seals stranded more frequently than females during the study period and that this relationship was strongest during light ice years. In contrast, we found no significant difference in mean d (2) between stranded and by-caught harp seals. The results demonstrate that sea ice cover and demographic factors have a greater influence on harp seal stranding rates than genetic diversity, with only a little of the variance in mean d (2) among stranded seals explained by ice cover. Any changes in these factors could have major implications for harp seals, and these findings should be considered in the development of future management plans for the Arctic that incorporate climate variability. PMID:23874759

  20. Factors Affecting Harp Seal (Pagophilus groenlandicus) Strandings in the Northwest Atlantic

    PubMed Central

    Schultz, Thomas F.; Johnston, David W.

    2013-01-01

    The effects of climate change on high latitude regions are becoming increasingly evident, particularly in the rapid decline of sea ice cover in the Arctic. Many high latitude species dependent on sea ice are being forced to adapt to changing habitats. Harp seals (Pagophilus groenlandicus) are an indicator species for changing high-latitude ecosystems. This study analyzed multiple factors including ice cover, demographics, and genetic diversity, which could affect harp seal stranding rates along the eastern coast of the United States. Ice cover assessments were conducted for the month of February in the Gulf of St. Lawrence whelping region from 1991–2010 using remote sensing data, and harp seal stranding data were collected over the same time period. Genetic diversity, which may affect how quickly species can adapt to changing climates, was assessed using ten microsatellite markers to determine mean d2 in a subset of stranded and by-caught (presumably healthy) seals sampled along the northeast U.S. coast. Our study found a strong negative correlation (R2 = 0.49) between ice cover in the Gulf of St. Lawrence and yearling harp seal strandings, but found no relationship between sea ice conditions and adult strandings. Our analysis revealed that male seals stranded more frequently than females during the study period and that this relationship was strongest during light ice years. In contrast, we found no significant difference in mean d2 between stranded and by-caught harp seals. The results demonstrate that sea ice cover and demographic factors have a greater influence on harp seal stranding rates than genetic diversity, with only a little of the variance in mean d2 among stranded seals explained by ice cover. Any changes in these factors could have major implications for harp seals, and these findings should be considered in the development of future management plans for the Arctic that incorporate climate variability. PMID:23874759

  1. The role of cytosine methylation on charge transport through a DNA strand

    SciTech Connect

    Qi, Jianqing Anantram, M. P.; Govind, Niranjan

    2015-09-07

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.

  2. The role of cytosine methylation on charge transport through a DNA strand.

    PubMed

    Qi, Jianqing; Govind, Niranjan; Anantram, M P

    2015-09-01

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit. PMID:26342369

  3. Structural features in the HIV-1 repeat region facilitate strand transfer during reverse transcription.

    PubMed Central

    Berkhout, B; Vastenhouw, N L; Klasens, B I; Huthoff, H

    2001-01-01

    Two obligatory DNA strand transfers take place during reverse transcription of a retroviral RNA genome. The first strand transfer is facilitated by terminal repeat (R) elements in the viral genome. This strand-transfer reaction depends on base pairing between the cDNA of the 5'R and the 3'R. There is accumulating evidence that retroviral R regions contain features other than sequence complementarity that stimulate this critical nucleic acid hybridization step. The R region of the human immunodeficiency virus type 1 (HIV-1) is relatively extended (97 nt) and encodes two well-conserved stem-loop structures, the TAR and poly(A) hairpins. The role of these motifs was studied in an in vitro strand-transfer assay with two separate templates, the 5'R donor and the 3'R acceptor, and mutants thereof. The results indicate that the upper part of the TAR hairpin structure in the 5'R donor is critical for efficient strand transfer. This seems to pose a paradox, as the 5'R template is degraded by RNase H before strand transfer occurs. We propose that it is not the RNA hairpin motif in the 5'R donor, but rather the antisense motif in the ssDNA copy, which can also fold a hairpin structure, that is critical for strand transfer. Mutation of the loop sequence in the TAR hairpin of the donor RNA, which is copied in the loop of the cDNA hairpin, reduces the transfer efficiency more than fivefold. It is proposed that the natural strand-transfer reaction is enhanced by interaction of the anti-TAR ssDNA hairpin with the TAR hairpin in the 3'R acceptor. Base pairing can occur between the complementary loops ("loop-loop kissing"), and strand transfer is completed by the subsequent formation of an extended RNA-cDNA duplex. PMID:11497429

  4. Factors affecting harp seal (Pagophilus groenlandicus) strandings in the Northwest Atlantic.

    PubMed

    Soulen, Brianne K; Cammen, Kristina; Schultz, Thomas F; Johnston, David W

    2013-01-01

    The effects of climate change on high latitude regions are becoming increasingly evident, particularly in the rapid decline of sea ice cover in the Arctic. Many high latitude species dependent on sea ice are being forced to adapt to changing habitats. Harp seals (Pagophilus groenlandicus) are an indicator species for changing high-latitude ecosystems. This study analyzed multiple factors including ice cover, demographics, and genetic diversity, which could affect harp seal stranding rates along the eastern coast of the United States. Ice cover assessments were conducted for the month of February in the Gulf of St. Lawrence whelping region from 1991-2010 using remote sensing data, and harp seal stranding data were collected over the same time period. Genetic diversity, which may affect how quickly species can adapt to changing climates, was assessed using ten microsatellite markers to determine mean d (2) in a subset of stranded and by-caught (presumably healthy) seals sampled along the northeast U.S. coast. Our study found a strong negative correlation (R (2) = 0.49) between ice cover in the Gulf of St. Lawrence and yearling harp seal strandings, but found no relationship between sea ice conditions and adult strandings. Our analysis revealed that male seals stranded more frequently than females during the study period and that this relationship was strongest during light ice years. In contrast, we found no significant difference in mean d (2) between stranded and by-caught harp seals. The results demonstrate that sea ice cover and demographic factors have a greater influence on harp seal stranding rates than genetic diversity, with only a little of the variance in mean d (2) among stranded seals explained by ice cover. Any changes in these factors could have major implications for harp seals, and these findings should be considered in the development of future management plans for the Arctic that incorporate climate variability.

  5. The role of cytosine methylation on charge transport through a DNA strand

    NASA Astrophysics Data System (ADS)

    Qi, Jianqing; Govind, Niranjan; Anantram, M. P.

    2015-09-01

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.

  6. The Stranding Anomaly as Population Indicator: The Case of Harbour Porpoise Phocoena phocoena in North-Western Europe

    PubMed Central

    Peltier, Helene; Baagøe, Hans J.; Camphuysen, Kees C. J.; Czeck, Richard; Dabin, Willy; Daniel, Pierre; Deaville, Rob; Haelters, Jan; Jauniaux, Thierry; Jensen, Lasse F.; Jepson, Paul D.; Keijl, Guido O.; Siebert, Ursula; Van Canneyt, Olivier; Ridoux, Vincent

    2013-01-01

    Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistical credibility are disputed. Our present goal is to improve the value of stranding data as population indicator as part of monitoring strategies by constructing the spatial and temporal null hypothesis for strandings. The null hypothesis is defined as: small cetacean distribution and mortality are uniform in space and constant in time. We used a drift model to map stranding probabilities and predict stranding patterns of cetacean carcasses under H0 across the North Sea, the Channel and the Bay of Biscay, for the period 1990–2009. As the most common cetacean occurring in this area, we chose the harbour porpoise Phocoena phocoena for our modelling. The difference between these strandings expected under H0 and observed strandings is defined as the stranding anomaly. It constituted the stranding data series corrected for drift conditions. Seasonal decomposition of stranding anomaly suggested that drift conditions did not explain observed seasonal variations of porpoise strandings. Long-term stranding anomalies increased first in the southern North Sea, the Channel and Bay of Biscay coasts, and finally the eastern North Sea. The hypothesis of changes in porpoise distribution was consistent with local visual surveys, mostly SCANS surveys (1994 and 2005). This new indicator could be applied to cetacean populations across the world and more widely to marine megafauna. PMID:23614031

  7. Possible age-related hearing loss (presbycusis) and corresponding change in echolocation parameters in a stranded Indo-Pacific humpback dolphin.

    PubMed

    Li, Songhai; Wang, Ding; Wang, Kexiong; Hoffmann-Kuhnt, Matthias; Fernando, Nimal; Taylor, Elizabeth A; Lin, Wenzhi; Chen, Jialin; Ng, Timothy

    2013-11-15

    The hearing and echolocation clicks of a stranded Indo-Pacific humpback dolphin (Sousa chinensis) in Zhuhai, China, were studied. This animal had been repeatedly observed in the wild before it was stranded and its age was estimated to be ~40 years. The animal's hearing was measured using a non-invasive auditory evoked potential (AEP) method. Echolocation clicks produced by the dolphin were recorded when the animal was freely swimming in a 7.5 m (width)×22 m (length)×4.8 m (structural depth) pool with a water depth of ~2.5 m. The hearing and echolocation clicks of the studied dolphin were compared with those of a conspecific younger individual, ~13 years of age. The results suggested that the cut-off frequency of the high-frequency hearing of the studied dolphin was ~30-40 kHz lower than that of the younger individual. The peak and centre frequencies of the clicks produced by the older dolphin were ~16 kHz lower than those of the clicks produced by the younger animal. Considering that the older dolphin was ~40 years old, its lower high-frequency hearing range with lower click peak and centre frequencies could probably be explained by age-related hearing loss (presbycusis).

  8. The population biology of fungal invasions.

    PubMed

    Gladieux, P; Feurtey, A; Hood, M E; Snirc, A; Clavel, J; Dutech, C; Roy, M; Giraud, T

    2015-05-01

    Fungal invasions are increasingly recognized as a significant component of global changes, threatening ecosystem health and damaging food production. Invasive fungi also provide excellent models to evaluate the generality of results based on other eukaryotes. We first consider here the reasons why fungal invasions have long been overlooked: they tend to be inconspicuous, and inappropriate methods have been used for species recognition. We then review the information available on the patterns and mechanisms of fungal invasions. We examine the biological features underlying invasion success of certain fungal species. We review population structure analyses, revealing native source populations and strengths of bottlenecks. We highlight the documented ecological and evolutionary changes in invaded regions, including adaptation to temperature, increased virulence, hybridization, shifts to clonality and association with novel hosts. We discuss how the huge census size of most fungi allows adaptation even in bottlenecked, clonal invaders. We also present new analyses of the invasion of the anther-smut pathogen on white campion in North America, as a case study illustrating how an accurate knowledge of species limits and phylogeography of fungal populations can be used to decipher the origin of invasions. This case study shows that successful invasions can occur even when life history traits are particularly unfavourable to long-distance dispersal and even with a strong bottleneck. We conclude that fungal invasions are valuable models to contribute to our view of biological invasions, in particular by providing insights into the traits as well as ecological and evolutionary processes allowing successful introductions.

  9. A kinetic analysis of strand breaks on large DNA induced by cigarette smoke extract

    NASA Astrophysics Data System (ADS)

    Kurita, Hirofumi; Takata, Tatsuya; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2010-06-01

    We report a kinetic analysis of strand breakages on large DNA molecules induced by cigarette smoke extract (CSE), an extract of soluble cigarette smoke components. Previously, this DNA damage was analyzed by agarose gel electrophoresis, whereas we used fluorescence to kinetically analyze damage to individual DNA molecules. CSE caused a marked change in length of DNA molecules. The rate of CSE-induced double-strand breakage on large random-coiled DNA molecules was determined using a simple theoretical model, allowing the facile estimation of the rate of double-strand breaks on large DNA molecules.

  10. Long-Term Seasonal and Interannual Patterns of Marine Mammal Strandings in Subtropical Western South Atlantic

    PubMed Central

    Prado, Jonatas H. F.; Mattos, Paulo H.; Silva, Kleber G.; Secchi, Eduardo R.

    2016-01-01

    Understanding temporal patterns of marine mammal occurrence is useful for establishing conservation strategies. We used a 38 yr-long dataset spanning 1976 to 2013 to describe temporal patterns and trends in marine mammal strandings along a subtropical stretch of the east coast of South America. This region is influenced by a transitional zone between tropical and temperate waters and is considered an important fishing ground off Brazil. Generalized Additive Models were used to evaluate the temporal stranding patterns of the most frequently stranded species. Forty species were documented in 12,540 stranding events. Franciscana (n = 4,574), South American fur seal, (n = 3,419), South American sea lion (n = 2,049), bottlenose dolphins (n = 293) and subantarctic fur seal (n = 219) were the most frequently stranded marine mammals. The seasonality of strandings of franciscana and bottlenose dolphin coincided with periods of higher fishing effort and strandings of South American and subantarctic fur seals with post-reproductive dispersal. For South American sea lion the seasonality of strandings is associated with both fishing effort and post-reproductive dispersal. Some clear seasonal patterns were associated with occurrence of cold- (e.g. subantarctic fur seal) and warm-water (e.g. rough-toothed dolphin) species in winter and summer, respectively. Inter-annual increases in stranding rate were observed for franciscana and South American fur seal and these are likely related to increased fishing effort and population growth, respectively. For subantarctic fur seal the stranding rate showed a slight decline while for bottlenose dolphin it remained steady. No significant year to year variation in stranding rate was observed for South American sea lion. The slight decrease in frequency of temperate/polar marine mammals and the increased occurrence of subtropical/tropical species since the late 1990s might be associated with environmental changes linked to climate change

  11. Asymmetric Quantum Transport in a Double-Stranded Kronig-Penney Model

    NASA Astrophysics Data System (ADS)

    Cheon, Taksu; Poghosyan, Sergey S.

    2015-06-01

    We introduce a double-stranded Kronig-Penney model and analyze its transport properties. Asymmetric fluxes between two strands with suddenly alternating localization patterns are found as the energy is varied. The zero-size limit of the internal lines connecting two strands is examined using quantum graph vertices with four edges. We also consider a two-dimensional Kronig-Penney lattice with two types of alternating layer with δ and δ' connections, and show the existence of energy bands in which the quantum flux can flow only in selected directions.

  12. Isolation and sequencing of active origins of DNA replication by nascent strand capture and release (NSCR)

    PubMed Central

    Kunnev, Dimiter; Freeland, Amy; Qin, Maochun; Wang, Jianmin; Pruitt, Steven C.

    2015-01-01

    Nascent strand capture and release (NSCR) is a method for isolation of short nascent strands to identify origins of DNA replication. The protocol provided involves isolation of total DNA, denaturation, size fractionation on a sucrose gradient, 5′-biotinylation of the appropriate size nucleic acids, binding to a streptavidin coated magnetic beads, intensive washing, and specific release of only the RNA-containing chimeric nascent strand DNA using ribonuclease I (RNase I). The method has been applied to mammalian cells derived from proliferative tissues and cell culture but could be used for any system where DNA replication is primed by a small RNA resulting in chimeric RNA-DNA molecules. PMID:26949711

  13. Long-Term Seasonal and Interannual Patterns of Marine Mammal Strandings in Subtropical Western South Atlantic.

    PubMed

    Prado, Jonatas H F; Mattos, Paulo H; Silva, Kleber G; Secchi, Eduardo R

    2016-01-01

    Understanding temporal patterns of marine mammal occurrence is useful for establishing conservation strategies. We used a 38 yr-long dataset spanning 1976 to 2013 to describe temporal patterns and trends in marine mammal strandings along a subtropical stretch of the east coast of South America. This region is influenced by a transitional zone between tropical and temperate waters and is considered an important fishing ground off Brazil. Generalized Additive Models were used to evaluate the temporal stranding patterns of the most frequently stranded species. Forty species were documented in 12,540 stranding events. Franciscana (n = 4,574), South American fur seal, (n = 3,419), South American sea lion (n = 2,049), bottlenose dolphins (n = 293) and subantarctic fur seal (n = 219) were the most frequently stranded marine mammals. The seasonality of strandings of franciscana and bottlenose dolphin coincided with periods of higher fishing effort and strandings of South American and subantarctic fur seals with post-reproductive dispersal. For South American sea lion the seasonality of strandings is associated with both fishing effort and post-reproductive dispersal. Some clear seasonal patterns were associated with occurrence of cold- (e.g. subantarctic fur seal) and warm-water (e.g. rough-toothed dolphin) species in winter and summer, respectively. Inter-annual increases in stranding rate were observed for franciscana and South American fur seal and these are likely related to increased fishing effort and population growth, respectively. For subantarctic fur seal the stranding rate showed a slight decline while for bottlenose dolphin it remained steady. No significant year to year variation in stranding rate was observed for South American sea lion. The slight decrease in frequency of temperate/polar marine mammals and the increased occurrence of subtropical/tropical species since the late 1990s might be associated with environmental changes linked to climate change

  14. Review of the Effects of Offshore Seismic Surveys in Cetaceans: Are Mass Strandings a Possibility?

    PubMed

    Castellote, Manuel; Llorens, Carlos

    2016-01-01

    Displacement of cetaceans is commonly reported during offshore seismic surveys. Speculation concerning possible links between seismic survey noise and cetacean strandings is available for a dozen events but without convincing causal evidence. This lack of evidence should not be considered conclusive but rather as reflecting the absence of a comprehensive analysis of the circumstances. Current mitigation guidelines are inadequate for long-range effects such as displacements and the potential for strandings. This review presents the available information for ten documented strandings that were possibly linked to seismic surveys and recommends initial measures and actions to further evaluate this potential link.

  15. Long-Term Seasonal and Interannual Patterns of Marine Mammal Strandings in Subtropical Western South Atlantic.

    PubMed

    Prado, Jonatas H F; Mattos, Paulo H; Silva, Kleber G; Secchi, Eduardo R

    2016-01-01

    Understanding temporal patterns of marine mammal occurrence is useful for establishing conservation strategies. We used a 38 yr-long dataset spanning 1976 to 2013 to describe temporal patterns and trends in marine mammal strandings along a subtropical stretch of the east coast of South America. This region is influenced by a transitional zone between tropical and temperate waters and is considered an important fishing ground off Brazil. Generalized Additive Models were used to evaluate the temporal stranding patterns of the most frequently stranded species. Forty species were documented in 12,540 stranding events. Franciscana (n = 4,574), South American fur seal, (n = 3,419), South American sea lion (n = 2,049), bottlenose dolphins (n = 293) and subantarctic fur seal (n = 219) were the most frequently stranded marine mammals. The seasonality of strandings of franciscana and bottlenose dolphin coincided with periods of higher fishing effort and strandings of South American and subantarctic fur seals with post-reproductive dispersal. For South American sea lion the seasonality of strandings is associated with both fishing effort and post-reproductive dispersal. Some clear seasonal patterns were associated with occurrence of cold- (e.g. subantarctic fur seal) and warm-water (e.g. rough-toothed dolphin) species in winter and summer, respectively. Inter-annual increases in stranding rate were observed for franciscana and South American fur seal and these are likely related to increased fishing effort and population growth, respectively. For subantarctic fur seal the stranding rate showed a slight decline while for bottlenose dolphin it remained steady. No significant year to year variation in stranding rate was observed for South American sea lion. The slight decrease in frequency of temperate/polar marine mammals and the increased occurrence of subtropical/tropical species since the late 1990s might be associated with environmental changes linked to climate change

  16. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    PubMed

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability.

  17. The Invasive Species Forecasting System

    NASA Technical Reports Server (NTRS)

    Schnase, John; Most, Neal; Gill, Roger; Ma, Peter

    2011-01-01

    The Invasive Species Forecasting System (ISFS) provides computational support for the generic work processes found in many regional-scale ecosystem modeling applications. Decision support tools built using ISFS allow a user to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of management concern, such as a national park, monument, forest, or refuge. This type of decision product helps resource managers plan invasive species protection, monitoring, and control strategies for the lands they manage. Until now, scientists and resource managers have lacked the data-assembly and computing capabilities to produce these maps quickly and cost efficiently. ISFS focuses on regional-scale habitat suitability modeling for invasive terrestrial plants. ISFS s component architecture emphasizes simplicity and adaptability. Its core services can be easily adapted to produce model-based decision support tools tailored to particular parks, monuments, forests, refuges, and related management units. ISFS can be used to build standalone run-time tools that require no connection to the Internet, as well as fully Internet-based decision support applications. ISFS provides the core data structures, operating system interfaces, network interfaces, and inter-component constraints comprising the canonical workflow for habitat suitability modeling. The predictors, analysis methods, and geographic extents involved in any particular model run are elements of the user space and arbitrarily configurable by the user. ISFS provides small, lightweight, readily hardened core components of general utility. These components can be adapted to unanticipated uses, are tailorable, and require at most a loosely coupled, nonproprietary connection to the Web. Users can invoke capabilities from a command line; programmers can integrate ISFS's core components into more complex systems and services. Taken together, these

  18. Antarctic crabs: invasion or endurance?

    PubMed

    Griffiths, Huw J; Whittle, Rowan J; Roberts, Stephen J; Belchier, Mark; Linse, Katrin

    2013-01-01

    Recent scientific interest following the "discovery" of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This "invasion hypothesis" suggests that decapod crabs were driven out of Antarctica 40-15 million years ago and are only now returning as "warm" enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura), and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60 °S. All are restricted to waters warmer than 0 °C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW). Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day "crab invasion". We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the "invasion hypothesis

  19. Antarctic crabs: invasion or endurance?

    PubMed

    Griffiths, Huw J; Whittle, Rowan J; Roberts, Stephen J; Belchier, Mark; Linse, Katrin

    2013-01-01

    Recent scientific interest following the "discovery" of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This "invasion hypothesis" suggests that decapod crabs were driven out of Antarctica 40-15 million years ago and are only now returning as "warm" enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura), and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60 °S. All are restricted to waters warmer than 0 °C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW). Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day "crab invasion". We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the "invasion hypothesis".

  20. [Minimally invasive iridocorneal angle surgery].

    PubMed

    Jordan, J F

    2012-07-01

    The classical filtration surgery with trabeculectomy or drainage of chamber fluid with episcleral implants is the most effective method for permanent reduction of intraocular pressure to lower and normal levels. Even though both operative procedures are well-established the high efficiency of the method causes potentially dangerous intraoperative as well as interoperative complications with a frequency which cannot be ignored. In the past this led to a search for low complication alternatives with non-penetrating glaucoma surgery (NPGS) and the search is still continuing. Trabecular meshwork surgery in particular with continuous development of new operation techniques steered the focus to a complication-poor and minimally invasive, gonioscopic glaucoma surgery.

  1. Apexum: A Minimum Invasive Procedure

    PubMed Central

    2011-01-01

    The new Apexum procedure (Apexum Ltd, Or-Yehuda, Israel) is based on a minimally invasive removal of periapical chronically inflamed tissues through a root canal access. Apexum procedure (a novel method that allows for the removal or debulking of periapical tissues without using scalpels, periosteal elevators, or sutures) results in significant less postoperative discomfort or pain than conventional root canal treatment or than reported for conventional apical surgery. The removal or debulking of the periapical inflamed tissues, using the Apexum procedure, seems to enhance healing kinetics with no adverse events.

  2. Microrobots for minimally invasive medicine.

    PubMed

    Nelson, Bradley J; Kaliakatsos, Ioannis K; Abbott, Jake J

    2010-08-15

    Microrobots have the potential to revolutionize many aspects of medicine. These untethered, wirelessly controlled and powered devices will make existing therapeutic and diagnostic procedures less invasive and will enable new procedures never before possible. The aim of this review is threefold: first, to provide a comprehensive survey of the technological state of the art in medical microrobots; second, to explore the potential impact of medical microrobots and inspire future research in this field; and third, to provide a collection of valuable information and engineering tools for the design of medical microrobots.

  3. Global Organization of a Positive-strand RNA Virus Genome

    PubMed Central

    Wu, Baodong; Grigull, Jörg; Ore, Moriam O.; Morin, Sylvie; White, K. Andrew

    2013-01-01

    The genomes of plus-strand RNA viruses contain many regulatory sequences and structures that direct different viral processes. The traditional view of these RNA elements are as local structures present in non-coding regions. However, this view is changing due to the discovery of regulatory elements in coding regions and functional long-range intra-genomic base pairing interactions. The ∼4.8 kb long RNA genome of the tombusvirus tomato bushy stunt virus (TBSV) contains these types of structural features, including six different functional long-distance interactions. We hypothesized that to achieve these multiple interactions this viral genome must utilize a large-scale organizational strategy and, accordingly, we sought to assess the global conformation of the entire TBSV genome. Atomic force micrographs of the genome indicated a mostly condensed structure composed of interconnected protrusions extending from a central hub. This configuration was consistent with the genomic secondary structure model generated using high-throughput selective 2′-hydroxyl acylation analysed by primer extension (i.e. SHAPE), which predicted different sized RNA domains originating from a central region. Known RNA elements were identified in both domain and inter-domain regions, and novel structural features were predicted and functionally confirmed. Interestingly, only two of the six long-range interactions known to form were present in the structural model. However, for those interactions that did not form, complementary partner sequences were positioned relatively close to each other in the structure, suggesting that the secondary structure level of viral genome structure could provide a basic scaffold for the formation of different long-range interactions. The higher-order structural model for the TBSV RNA genome provides a snapshot of the complex framework that allows multiple functional components to operate in concert within a confined context. PMID:23717202

  4. DNA Double-Strand Break Rejoining in Complex Normal Tissues

    SciTech Connect

    Ruebe, Claudia E.; Kuehne, Martin; Fricke, Andreas

    2008-11-15

    Purpose: The clinical radiation responses of different organs vary widely and likely depend on the intrinsic radiosensitivities of their different cell populations. Double-strand breaks (DSBs) are the most deleterious form of DNA damage induced by ionizing radiation, and the cells' capacity to rejoin radiation-induced DSBs is known to affect their intrinsic radiosensitivity. To date, only little is known about the induction and processing of radiation-induced DSBs in complex normal tissues. Using an in vivo model with repair-proficient mice, the highly sensitive {gamma}H2AX immunofluorescence was established to investigate whether differences in DSB rejoining could account for the substantial differences in clinical radiosensitivity observed among normal tissues. Methods and Materials: After whole body irradiation of C57BL/6 mice (0.1, 0.5, 1.0, and 2.0 Gy), the formation and rejoining of DSBs was analyzed by enumerating {gamma}H2AX foci in various organs representative of both early-responding (small intestine) and late-responding (lung, brain, heart, kidney) tissues. Results: The linear dose correlation observed in all analyzed tissues indicated that {gamma}H2AX immunofluorescence allows for the accurate quantification of DSBs in complex organs. Strikingly, the various normal tissues exhibited identical kinetics for {gamma}H2AX foci loss, despite their clearly different clinical radiation responses. Conclusion: The identical kinetics of DSB rejoining measured in different organs suggest that tissue-specific differences in radiation responses are independent of DSB rejoining. This finding emphasizes the fundamental role of DSB repair in maintaining genomic integrity, thereby contributing to cellular viability and functionality and, thus, tissue homeostasis.

  5. Evidence that single-stranded DNA breaks are a normal feature of koala sperm chromatin, while double-stranded DNA breaks are indicative of DNA damage.

    PubMed

    Zee, Yeng Peng; López-Fernández, Carmen; Arroyo, F; Johnston, Stephen D; Holt, William V; Gosalvez, Jaime

    2009-08-01

    In this study, we have used single and double comet assays to differentiate between single- and double-stranded DNA damage in an effort to refine the interpretation of DNA damage in mature koala spermatozoa. We have also investigated the likelihood that single-stranded DNA breakage is part of the natural spermiogenic process in koalas, where its function would be the generation of structural bends in the DNA molecule so that appropriate packaging and compaction can occur. Koala spermatozoa were examined using the sperm chromatin dispersion test (SCDt) and comet assays to investigate non-orthodox double-stranded DNA. Comet assays were conducted under 1) neutral conditions; and 2) neutral followed by alkaline conditions (double comet assay); the latter technique enabled simultaneous visualisation of both single-stranded and double-stranded DNA breaks. Following the SCDt, there was a continuum of nuclear morphotypes, ranging from no apparent DNA fragmentation to those with highly dispersed and degraded chromatin. Dispersion morphotypes were mirrored by a similar diversity of comet morphologies that could be further differentiated using the double comet assay. The majority of koala spermatozoa had nuclei with DNA abasic-like residues that produced single-tailed comets following the double comet assay. The ubiquity of these residues suggests that constitutive alkali-labile sites are part of the structural configuration of the koala sperm nucleus. Spermatozoa with 'true' DNA fragmentation exhibited a continuum of comet morphologies, ranging from a more severe form of alkaline-susceptible DNA with a diffuse single tail to nuclei that exhibited both single- and double-stranded breaks with two comet tails. PMID:19494045

  6. Biological invasions and the conservation of biodiversity.

    PubMed

    Pascal, M; Le Guyader, H; Simberloff, D

    2010-08-01

    Consideration of definitions of 'biological invasion' and 'biodiversity' shows why invasions have recently generated great interest among conservationists. Many studies show that invasion numbers have increased drastically over the last five centuries, that this exponential increase is not levelling off, and that human activities are the only reason for the phenomenon. Many mechanisms are portrayed in an evolutionary framework and their consequences for biodiversity are described at three levels of life--gene, species and ecosystem. Examples from islands show that insular ecosystems are especially prone to damage from invasions; they also serve as 'laboratories' to elucidate the nature of invasion impacts. An important management approach--eradication--is discussed. Eradicating invaders not only aids understanding of their impacts on native species but also in understanding how ecosystems function. In fact, biological invasions can be seen as 'experiments', providing a rare opportunity to help answer certain fundamental scientific questions.

  7. Biological Invasions: A Challenge In Ecological Forecasting

    NASA Technical Reports Server (NTRS)

    Schnase, J. L.; Smith, J. A.; Stohlgren, T. J.; Graves, S.; Trees, C.; Rood, Richard (Technical Monitor)

    2002-01-01

    The spread of invasive species is one of the most daunting environmental, economic, and human-health problems facing the United States and the World today. It is one of several grand challenge environmental problems being considered by NASA's Earth Science Vision for 2025. The invasive species problem is complex and presents many challenges. Developing an invasive species predictive capability could significantly advance the science and technology of ecological forecasting.

  8. Physical properties of single- and double-stranded coliphage ribonucleic acid

    PubMed Central

    Bishop, D. H. L.

    1966-01-01

    1. The physical characteristics of single- and double-stranded coliphage RNA with regard to their sedimentation behaviour in gradients of sucrose in high or low ionic conditions were examined. The effect of heat on their sedimentation characteristics was also determined. 2. Single-stranded coliphage RNA was found to exist in three different forms having sedimentation coefficients 28s, 20s and 12s. The latter two were interchangeable, depending on ionic strength. All three were almost equally infectious to spheroplasts. 3. Double-stranded coliphage RNA was found to be non-infectious to spheroplasts and had sedimentation coefficients 15s and 12s. Thermal denaturation gave rise to infectious single-stranded 12s RNA. 4. Four possible hypotheses on the mechanism of replication of coliphage RNA are discussed. PMID:4165511

  9. Dependence of the Contact Resistance on the Design of Stranded Conductors

    PubMed Central

    Zeroukhi, Youcef; Napieralska-Juszczak, Ewa; Vega, Guillaume; Komeza, Krzysztof; Morganti, Fabrice; Wiak, Slawomir

    2014-01-01

    During the manufacturing process multi-strand conductors are subject to compressive force and rotation moments. The current distribution in the multi-strand conductors is not uniform and is controlled by the transverse resistivity. This is mainly determined by the contact resistance at the strand crossovers and inter-strand contact resistance. The surface layer properties, and in particular the crystalline structure and degree of oxidation, are key parameters in determining the transverse resistivity. The experimental set-ups made it possible to find the dependence of contact resistivity as a function of continuous working stresses and cable design. A study based on measurements and numerical simulation is made to identify the contact resistivity functions. PMID:25196112

  10. Nonenzymatic Role for WRN in Preserving Nascent DNA Strands after Replication Stress

    SciTech Connect

    Su, Fengtao; Mukherjee, Shibani; Yang, Yanyong; Mori, Eiichiro; Bhattacharya, Souparno; Kobayashi, Junya; Yannone, Steven  M.; Chen, David  J.; Asaithamby, Aroumougame

    2014-11-20

    WRN, the protein defective in Werner syndrome (WS), is a multifunctional nuclease involved in DNA damage repair, replication, and genome stability maintenance. It was assumed that the nuclease activities of WRN were critical for these functions. Here, we report a nonenzymatic role for WRN in preserving nascent DNA strands following replication stress. We found that lack of WRN led to shortening of nascent DNA strands after replication stress. Furthermore, we discovered that the exonuclease activity of MRE11 was responsible for the shortening of newly replicated DNA in the absence of WRN. Mechanistically, the N-terminal FHA domain of NBS1 recruits WRN to replication-associated DNA double-stranded breaks to stabilize Rad51 and to limit the nuclease activity of its C-terminal binding partner MRE11. Thus, this previously unrecognized nonenzymatic function of WRN in the stabilization of nascent DNA strands sheds light on the molecular reason for the origin of genome instability in WS individuals.

  11. Molecular Design Principles Underlying beta-strand Swapping in the Adhesive Dimerization of Cadherins

    SciTech Connect

    J Vendome; S Posy; X Jin; F Bahna; G Ahlsen; L Shapiro; B Honig

    2011-12-31

    Cell adhesion by classical cadherins is mediated by dimerization of their EC1 domains through the 'swapping' of N-terminal {beta}-strands. We use molecular simulations, measurements of binding affinities and X-ray crystallography to provide a detailed picture of the structural and energetic factors that control the adhesive dimerization of cadherins. We show that strand swapping in EC1 is driven by conformational strain in cadherin monomers that arises from the anchoring of their short N-terminal strand at one end by the conserved Trp2 and at the other by ligation to Ca{sup 2+} ions. We also demonstrate that a conserved proline-proline motif functions to avoid the formation of an overly tight interface where affinity differences between different cadherins, crucial at the cellular level, are lost. We use these findings to design site-directed mutations that transform a monomeric EC2-EC3 domain cadherin construct into a strand-swapped dimer.

  12. Controlled Folding, Motional, and Constitutional Dynamic Processes of Polyheterocyclic Molecular Strands.

    PubMed

    Barboiu, Mihail; Stadler, Adrian-Mihail; Lehn, Jean-Marie

    2016-03-18

    General design principles have been developed for the control of the structural features of polyheterocyclic strands and their effector-modulated shape changes. Induced defined molecular motions permit designed enforcement of helical as well as linear molecular shapes. The ability of such molecular strands to bind metal cations allows the generation of coiling/uncoiling processes between helically folded and extended linear states. Large molecular motions are produced on coordination of metal ions, which may be made reversible by competition with an ancillary complexing agent and fueled by sequential acid/base neutralization energy. The introduction of hydrazone units into the strands confers upon them constitutional dynamics, whereby interconversion between different strand compositions is achieved through component exchange. These features have relevance for nanomechanical devices. We present a morphological and functional analysis of such systems developed in our laboratories.

  13. Effect of Subelement Size, Strand Size and RRR on Stability of RRP Nb3Sn Wires

    NASA Astrophysics Data System (ADS)

    Barzi, Emanuela; Moio, Simone; Zlobin, Alexander; Superconductor R&D Team

    2013-03-01

    Using ample statistics gathered from state-of-the-art Nb3Sn strands of different designs and sizes developed by Oxford Superconductor Technology (OST), the effects on the strand current density of subelement size, Residual Resistivity Ratio (RRR) of the copper matrix, and strand size were measured, analyzed and compared with the predictions of a stability model. The data confirmed a strong dependence of the instability current density on the subelement size, but also hinted at effects of non-uniform current distribution in the wire. The data also show that the instability current relates so weakly to RRR that it is possible to cleanly identify a common instability behavior as a function of subelement size and of strand size despite an ample range of RRR. This analysis was performed both at 4.2 K and 1.9 K.

  14. Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties.

    PubMed

    Vilaseca, Fabiola; Valadez-Gonzalez, Alex; Herrera-Franco, Pedro J; Pèlach, M Angels; López, Joan Pere; Mutjé, Pere

    2010-01-01

    In this paper, abaca strands were used as reinforcement of polypropylene matrix and their tensile mechanical properties were studied. It was found relevant increments on the tensile properties of the abaca strand-PP composites despite the lack of good adhesion at fiber-matrix interface. Afterwards, it was stated the influence of using maleated polypropylene (MAPP) as compatibilizer to promote the interaction between abaca strands and polypropylene. The intrinsic mechanical properties of the reinforcement were evaluated and used for modeling both the tensile strength and elastic modulus of the composites. For these cases, the compatibility factor for the ultimate tensile strength was deduced from the modified rule of mixtures. Additionally, the experimental fiber orientation coefficient was measured, allowing determining the interfacial shear strengths of the composites and the critical fiber length of the abaca strand reinforcement. The mechanical improvement was compared to that obtained for fiberglass-reinforced PP composites and evaluated under an economical and technical point of view. PMID:19700312

  15. Study of Nb3Sn strands and cables for Fermilab's common coil dipole models

    NASA Astrophysics Data System (ADS)

    Barzi, E.; Ambrosio, G.; Fratini, M.; Bauer, P.; Scanlan, R. M.; Yamada, R.; Zlobin, A. V.

    2002-05-01

    Fermilab is developing 10-12 T superconducting dipole magnets for future accelerators based on Nb3Sn conductor. Within the High Field Magnet Project, a common coil design was chosen for magnet R&D using the react & wind approach. Based on cable studies in which a variety of designs were tried and tested using inexpensive ITER strands, a 41-strand cable was used for a racetrack coil, whereas a 60-strand cable was preferred for the common coil model. Multifilamentary Nb3Sn strands 0.7 mm in diameter to be respectively used in the racetrack coil and the common coil model were purchased from OST (Modified Jelly Roll technology) and IGC (Internal Tin technology). They are herein characterized by Ic, n-value, residual resistivity ratio, and magnetization. Results of cabling and bending degradation are also presented.

  16. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA.

    PubMed

    Li, J J; Geyer, R; Tan, W

    2000-06-01

    Traditional methods to assay enzymatic cleavage of DNA are discontinuous and time consuming. In contrast, recently developed fluorescence methods are continuous and convenient. However, no fluorescence method has been developed for single-stranded DNA digestion. Here we introduce a novel method, based on molecular beacons, to assay single-stranded DNA cleavage by single strand-specific nucleases. A molecular beacon, a hairpin-shaped DNA probe labeled with a fluorophore and a quencher, is used as the substrate and enzymatic cleavage leads to fluorescence enhancement in the molecular beacon. This method permits real time detection of DNA cleavage and makes it easy to characterize the activity of DNA nucleases and to study the steady-state cleavage reaction kinetics. The excellent sensitivity, reproducibility and convenience will enable molecular beacons to be widely useful for the study of single-stranded DNA cleaving reactions.

  17. Invasive Cervical Resorption: A Review

    PubMed Central

    Kandalgaonkar, Shilpa D; Gharat, Leena A; Tupsakhare, Suyog D; Gabhane, Mahesh H

    2013-01-01

    Invasive cervical resorption is a relatively uncommon form of external root resorption exhibiting no external signs. The resorptive condition is often detected by routine radiographic examination. The clinical features vary from a small defect at the gingival margin to a pink coronal discoloration of the tooth crown resulting in ultimate cavitation of the overlying enamel which is painless unless pulpal or periodontal infection supervenes. Radiographic features of lesions vary from well-delineated to irregularly bordered mottled radiolucencies, and these can be confused with dental caries. A characteristic radiopaque line generally separates the image of the lesion from that of the root canal, because the pulp remains protected by a thin layer of predentin until late in the process. Histopathologically, the lesions contain fibrovascular tissue with resorbing clastic cells adjacent to the dentin surface. More advanced lesions display fibro-osseous characteristics with deposition of ectopic bonelike calcifications both within the resorbing tissue and directly on the dentin surface. How to cite this article: Kandalgaonkar SD, Gharat LA, Tupsakhare SD, Gabhane MH. Invasive Cervical Resorption: A Review. J Int Oral Health 2013;5(6):124-30 . PMID:24453457

  18. [Combination therapy for invasive aspergillosis].

    PubMed

    Ruiz-Camps, Isabel

    2011-03-01

    The frequency of invasive fungal infections, and specifically invasive aspergillosis, has increased in the last few decades. Despite the development of new antifungal agents, these infections are associated with high mortality, ranging from 40% to 80%, depending on the patient and the localization of the infection. To reduce these figures, several therapeutic strategies have been proposed, including combination therapy. Most of the available data on the efficacy of these combinations are from experimental models, in vitro data and retrospective observational studies or studies with a small number of patients that have included both patients in first-line treatment and those receiving rescue therapy; in addition there are many patients with possible forms of aspergillosis and few with demonstrated or probable forms. To date, there is no evidence that combination therapy has significantly higher efficacy than monotherapy; however, combination therapy could be indicated in severe forms of aspergillosis, or forms with central nervous involvement or extensive pulmonary involvement with respiratory insufficiency, etc. Among the combinations, the association of an echinocandin--the group that includes micafungin--with voriconazole or liposomal amphotericin B seems to show synergy. These combinations are those most extensively studied in clinical trials and therefore, although the grade of evidence is low, are recommended by the various scientific societies. PMID:21420576

  19. A New Quaternary Strand of the Karakoram Fault System, Ladakh Himalayas

    NASA Astrophysics Data System (ADS)

    Bohon, W.; Hodges, K.; Arrowsmith, R.; Tripathy, A.

    2009-12-01

    The NW-SE striking, dextral Karakoram fault system stretches for more than 1200 km from the Pamirs of Central Asia at least as far southeast as the Kailas area of Tibet. Estimates for the total lateral displacement along the fault system range from 150-1000 km, and estimated Quaternary rates of slip range from 1 to 30 mm/yr. In the Ladakh region of NW India (~ 33°28’N, 78°45’E), the fault system expresses as northern and southern strands bounding the Pangong Range. Studies of ductile deformation fabrics along these strands suggest that slip began in the Miocene, and Brown et al. (2002) documented Quaternary right-lateral slip along the northern strand at ~4 mm/yr on the basis of offset geomorphic features. The lack of documented Quaternary offset along the southern strand has led most researchers to assume that Quaternary slip on the Karakoram fault system in this region was partitioned exclusively to the northern strand. Our summer 2009 field work in the Pangong Range and adjacent Nubra Valley provides the first documentation of significant Quaternary activity along the southern strand. In the valley between the villages of Tangste (34°01’ N, 78°10’ E) and Durbuk (34°06’ N, 78°07’), the fault is visible high on the northeastern mountain side as a break in slope with offset Quaternary paleosurfaces and beheaded and offset stream channels, the largest of which have been displaced by as much as 250 m. Field mapping north of Durbuk, near the town of Tangyar (34°15’N, 77°52’E), shows that the southern strand continues northwest and cuts across the landscape as a sinuous, continuous trace with shutter ridges, offset alluvial fan surfaces, and sag ponds developed along its length. In this region, the northern and southern strands are linked by a Quaternary, E-directed thrust fault that places high-grade metamorphic rocks over poorly consolidated Quaternary alluvium. The partitioning of dextral slip between two strands of the Karakoram system

  20. Survey of stranded gas and delivered costs to Europe of selected gas resources

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2011-01-01

    Two important trends affecting the expected growth of global gas markets are (1) the shift by many industrialized countries from coal-fired electricity generation to the use of natural gas to generate electricity and (2) the industrialization of the heavily populated Asian countries of India and China. This paper surveys discovered gas in stranded conventional gas accumulations and presents estimates of the cost of developing and producing stranded gas in selected countries. Stranded gas is natural gas in discovered or identified fields that is not currently commercially producible for either physical or economic reasons. Published reserves of gas at the global level do not distinguish between volumes of gas in producing fields and volumes in nonproducing fields. Data on stranded gas reported here-that is the volumes, geographical distribution, and size distributions of stranded gas fields at the country and regional level-are based on the examination of individual-field data and represent a significant improvement in information available to industry and government decision makers. Globally, stranded gas is pervasive, but large volumes in large accumulations are concentrated in only a few areas. The cost component of the paper focuses on stranded conventional gas accumulations in Africa and South America that have the potential to augment supplies to Europe. The methods described for the computation of extraction and transport costs are innovative in that they use information on the sizes and geographical distribution of the identified stranded gas fields. The costs are based on industry data specific to the country and geologic basin where the stranded gas is located. Gas supplies to Europe can be increased significantly at competitive costs by the development of stranded gas. Net extraction costs of producing the identified gas depend critically on the natural-gas-liquids (NGLs) content, the prevailing prices of liquids, the size of the gas accumulation, and the

  1. Biology of invasive termites: a worldwide review.

    PubMed

    Evans, Theodore A; Forschler, Brian T; Grace, J Kenneth

    2013-01-01

    The number of recognized invasive termite species has increased from 17 in 1969 to 28 today. Fourteen species have been added to the list in the past 44 years; 10 have larger distributions and 4 have no reported change in distribution, and 3 species are no longer considered invasive. Although most research has focused on invasive termites in urban areas, molecular identification methods have answered questions about certain species and found that at least six species have invaded natural forest habitats. All invasive species share three characteristics that together increase the probability of creating viable propagules: they eat wood, nest in food, and easily generate secondary reproductives. These characteristics are most common in two families, the Kalotermitidae and Rhinotermitidae (which make up 21 species on the invasive termite list), particularly in three genera, Cryptotermes, Heterotermes, and Coptotermes (which together make up 16 species). Although it is the largest termite family, the Termitidae (comprising 70% of all termite species) have only two invasive species, because relatively few species have these characteristics. Islands have double the number of invasive species that continents do, with islands in the South Pacific the most invaded geographical region. Most invasive species originate from Southeast Asia. The standard control methods normally used against native pest termites are also employed against invasive termites; only two eradication attempts, in South Africa and New Zealand, appear to have been successful, both against Coptotermes species. PMID:23020620

  2. Minimally Invasive Cardiovascular Surgery: Incisions and Approaches

    PubMed Central

    Langer, Nathaniel B.; Argenziano, Michael

    2016-01-01

    Throughout the modern era of cardiac surgery, most operations have been performed via median sternotomy with cardiopulmonary bypass. This paradigm is changing, however, as cardiovascular surgery is increasingly adopting minimally invasive techniques. Advances in patient evaluation, instrumentation, and operative technique have allowed surgeons to perform a wide variety of complex operations through smaller incisions and, in some cases, without cardiopulmonary bypass. With patients desiring less invasive operations and the literature supporting decreased blood loss, shorter hospital length of stay, improved postoperative pain, and better cosmesis, minimally invasive cardiac surgery should be widely practiced. Here, we review the incisions and approaches currently used in minimally invasive cardiovascular surgery. PMID:27127555

  3. [Invasive yeast infections in neutropenic patients].

    PubMed

    Ruiz Camps, Isabel; Jarque, Isidro

    2016-01-01

    Invasive fungal diseases caused by yeasts still play an important role in the morbidity and mortality in neutropenic patients with haematological malignancies. Although the overall incidence of invasive candidiasis has decreased due to widespread use of antifungal prophylaxis, the incidence of non-Candida albicans Candida species is increasing compared with that of C.albicans, and mortality of invasive candidiasis continues to be high. In addition, there has been an increase in invasive infections caused by an array of uncommon yeasts, including species of the genus Malassezia, Rhodotorula, Trichosporon and Saprochaete, characterised by their resistance to echinocandins and poor prognosis.

  4. National Institute of Invasive Species Science (NIISS)

    USGS Publications Warehouse

    Stohlgren, Tom

    2006-01-01

    The National Institute of Invasive Species Science (www.NIISS.org) is a consortium of governmental and nongovernmental partners, led by the U.S. Geological Survey (USGS), whose aim is to provide reliable information and advanced decision support tools for documenting, understanding, predicting, assessing, and addressing the threat of invasive species in the United States. The Institute coordinates the National Aeronautical and Space Administrationa??s (NASAa??s) Invasive Species National Application activities for the Department of the Interior and has al lead role in developing NASA-derived remote sensing and landscape-scale predictive modeling capabilities for the invasive species community.

  5. Invasive plants have broader physiological niches.

    PubMed

    Higgins, Steven I; Richardson, David M

    2014-07-22

    Invasive species cost the global economy billions of dollars each year, but ecologists have struggled to predict the risk of an introduced species naturalizing and invading. Although carefully designed experiments are needed to fully elucidate what makes some species invasive, much can be learned from unintentional experiments involving the introduction of species beyond their native ranges. Here, we assess invasion risk by linking a physiologically based species distribution model with data on the invasive success of 749 Australian acacia and eucalypt tree species that have, over more than a century, been introduced around the world. The model correctly predicts 92% of occurrences observed outside of Australia from an independent dataset. We found that invasiveness is positively associated with the projection of physiological niche volume in geographic space, thereby illustrating that species tolerant of a broader range of environmental conditions are more likely to be invasive. Species achieve this broader tolerance in different ways, meaning that the traits that define invasive success are context-specific. Hence, our study reconciles studies that have failed to identify the traits that define invasive success with the urgent and pragmatic need to predict invasive success.

  6. The Drosophila HP1 homologue Rhino is required for transposon silencing and piRNA production by dual strand clusters

    PubMed Central

    Klattenhoff, Carla; Xi, Hualin; Li, Chengjian; Lee, Soohyun; Xu, Jia; Khurana, Jaspreet S.; Zhang, Fan; Schultz, Nadine; Koppetsch, Birgit S.; Nowosielska, Anetta; Seitz, Herve; Zamore, Phillip D.; Weng, Zhiping; Theurkauf, William E.

    2009-01-01

    Summary piRNAs silence transposons and maintain genome integrity during germ-line development. In Drosophila, transposon-rich heterochromatic clusters encode piRNAs either on both genomic strands (dual-strand clusters) or predominantly one genomic strand (uni-strand clusters). Primary piRNAs derived from these clusters are proposed to drive a ping-pong amplification cycle catalyzed by proteins that localize to the perinuclear nuage. We show that the HP1 homologue Rhino is required for nuage organization, transposon silencing, and ping-pong amplification of piRNAs. rhi mutations virtually eliminate piRNAs from the dual-strand clusters and block production of putative precursor RNAs from both strands of the major 42AB dual-strand cluster, but do not block production of transcripts or piRNAs from the uni-strand clusters. Furthermore, Rhino protein associates with the 42AB dual-strand cluster, but does not bind to uni-strand cluster 2 or flamenco. Rhino thus appears to promote transcription of dual-strand clusters, leading to production of piRNAs that drive the ping-pong amplification cycle. PMID:19732946

  7. Single-stranded DNA as a recombination substrate in plants as assessed by stable and transient recombination assays.

    PubMed Central

    Bilang, R; Peterhans, A; Bogucki, A; Paszkowski, J

    1992-01-01

    Two separate assays, one that requires stable integration of recombination products and one that does not, were employed to elucidate the role of single-stranded DNA in extrachromosomal homologous recombination in Nicotiana tabacum. Both assays revealed that single-stranded DNA in linear and in circular forms was an efficient substrate for recombination, provided that the cotransformed recombination substrates were of complementary sequence, so that direct annealing was possible. Recombination was inefficient when both single-stranded recombination partners contained homologous regions of identical sequence and generation of a double-stranded DNA was required prior to heteroduplex formation. These results indicate that direct annealing of single strands is an important initial step for intermolecular recombination in tobacco cells. Annealed cotransformed single-stranded molecules yielded intermediates that could be further processed by either continuous or discontinuous second-strand synthesis. The type of intermediate had no influence on the recombination efficiency. Double-stranded circles were unable to recombine efficiently either with each other or with single-stranded DNA. Our results suggest that a helicase activity is involved in the initial steps of double-stranded DNA recombination which unwinds duplex molecules at the site of double-strand breaks. Images PMID:1729608

  8. BRCA1-CtIP interaction in the repair of DNA double-strand breaks.

    PubMed

    Aparicio, Tomas; Gautier, Jean

    2016-07-01

    DNA termini at double-strand breaks are often chemically heterogeneous and require processing before initiation of repair. In a recent report, we demonstrated that CtIP and the MRE11-RAD50-NBS1 (MRN) nuclease complex cooperate with BRCA1 to specifically repair topoisomerase II-DNA adducted breaks. In contrast, BRCA1 is dispensable for repair of restriction endonuclease-generated double-strand breaks. PMID:27652321

  9. Purification and characterization of a DNA-pairing and strand transfer activity from mitotic Saccharomyces cerevisiae.

    PubMed

    Halbrook, J; McEntee, K

    1989-12-15

    An enzyme catalyzing homologous pairing of DNA chains has been extensively purified from mitotic yeast. The most highly purified fractions are enriched for a polypeptide with a molecular mass of approximately 120 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Protein-dependent pairing of single-stranded DNAs requires a divalent cation (Mg2+ or Ca2+) but proceeds rapidly in the absence of any nucleoside triphosphates. The kinetics of reassociation are extremely rapid, with more than 60% of the single-stranded DNA becoming resistant to S1 nuclease within 1 min at a ratio of 1 protein monomer/50 nucleotides. The results of enzyme titration and DNA challenge experiments suggest that this protein does not act catalytically during renaturation but is required stoichiometrically. The protein promotes formation of joint molecules between linear M13 replicative form DNA (form III) containing short single-stranded tails and homologous single-stranded M13 viral DNA. Removal of approximately 50 nucleotides from the ends of the linear duplex using either exonuclease III (5' ends) or T7 gene 6 exonuclease (3' ends) activates the duplex for extensive strand exchange. Electron microscopic analysis of product molecules suggests that the homologous circular DNA initially associates with the single-stranded tails of the duplexes, and the heteroduplex region is extended with displacement of the noncomplementary strand. The ability of this protein to pair and to promote strand transfer using either exonuclease III or T7 gene 6 exonuclease-treated duplex substrates suggests that this activity promotes heteroduplex extension in a nonpolar fashion. The biochemical properties of the transferase are consistent with a role for this protein in heteroduplex joint formation during mitotic recombination in Saccharomyces cerevisiae.

  10. Full-length single-stranded PCR product mediated chromosomal integration in intact Bacillus subtilis.

    PubMed

    Wen, Sai; Yang, Jianguo; Tan, Tianwei

    2013-03-01

    The research introduced a novel method for gene replacement in intact Bacillus subtilis by employing full-length single-stranded (ss) DNA constructs and electro-transformation. 5' phosphorothioated lagging-strand targeting ssDNA construct was demonstrated to be highly recombinogenic, and the utility of the system was illustrated by introducing a heterologous lipase YlLip2 into amyE locus of B. subtilis through our method.

  11. Mortality trends of stranded marine mammals on Cape Cod and southeastern Massachusetts, USA, 2000 to 2006.

    PubMed

    Bogomolni, Andrea L; Pugliares, Katie R; Sharp, Sarah M; Patchett, Kristen; Harry, Charles T; LaRocque, Jane M; Touhey, Kathleen M; Moore, Michael

    2010-01-25

    To understand the cause of death of 405 marine mammals stranded on Cape Cod and southeastern Massachusetts between 2000 and 2006, a system for coding final diagnosis was developed and categorized as (1) disease, (2) human interaction, (3) mass-stranded with no significant findings, (4) single-stranded with no significant findings, (5) rock and/or sand ingestion, (6) predatory attack, (7) failure to thrive or dependent calf or pup, or (8) other. The cause of death for 91 animals could not be determined. For the 314 animals that could be assigned a cause of death, gross and histological pathology results and ancillary testing indicated that disease was the leading cause of mortality in the region, affecting 116/314 (37%) of cases. Human interaction, including harassment, entanglement, and vessel collision, fatally affected 31/314 (10%) of all animals. Human interaction accounted for 13/29 (45%) of all determined gray seal Halichoerus grypus mortalities. Mass strandings were most likely to occur in northeastern Cape Cod Bay; 97/106 (92%) of mass stranded animals necropsied presented with no significant pathological findings. Mass strandings were the leading cause of death in 3 of the 4 small cetacean species: 46/67 (69%) of Atlantic white-sided dolphin Lagenorhynchus acutus, 15/21 (71%) of long-finned pilot whale Globicephala melas, and 33/54 (61%) of short-beaked common dolphin Delphinus delphis. These baseline data are critical for understanding marine mammal population health and mortality trends, which in turn have significant conservation and management implications. They not only afford a better retrospective analysis of strandings, but ultimately have application for improving current and future response to live animal stranding. PMID:20225675

  12. X-ray photoelectron spectroscopy of γ-ray-irradiated single-stranded DNA

    NASA Astrophysics Data System (ADS)

    Lee, Eunmo; Hong, W.; Han, J. H.; Choi, D. M.; Lee, Cheol Eui; Kim, H. D.; Kim, J.

    2015-07-01

    The effects of γ-ray irradiation on herring sperm single-stranded DNA have been studied by using X-ray photoelectron spectroscopy (XPS) in the view of the bonding configurations and the structural modifications. The significant changes in the hydrogen, carbon, nitrogen, and phosphorous bonding energies, as revealed by the XPS analysis, indicate that electron transfers result in the creation of radicals and in DNA strand breaks.

  13. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity

    SciTech Connect

    Qin Xujun; Hudson, Laurie G.; Liu Wenlan; Timmins, Graham S.; Liu Kejian

    2008-10-01

    Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/or UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite ({<=} 2 {mu}M) alone did not induce significant DNA strand breaks, but greatly enhanced the DNA strand breaks induced by UVR. Further studies showed that 2 {mu}M arsenite effectively inhibited PARP-1 activity. Zinc supplementation of arsenite-treated cells restored PARP-1 activity and significantly diminished the exacerbating effect of arsenite on UVR-induced DNA strand breaks. Importantly, neither arsenite treatment, nor zinc supplementation changed UVR-triggered reactive oxygen species (ROS) formation, suggesting that their effects upon UVR-induced DNA strand breaks are not through a direct free radical mechanism. Combination treatments of arsenite with PARP-1 inhibitor 3-aminobenzamide or PARP-1 siRNA demonstrate that PARP-1 is the target of arsenite. Together, these findings show that arsenite at low concentration exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity, which may represent an important mechanism underlying the co-carcinogenicity of arsenic.

  14. Herpesvirus infection with severe lymphoid necrosis affecting a beaked whale stranded in the Canary Islands.

    PubMed

    Arbelo, Manuel; Sierra, Eva; Esperón, Fernando; Watanabe, Tatiane T N; Bellière, Edwige N; Espinosa de los Monteros, Antonio; Fernández, Antonio

    2010-04-01

    This report describes the pathologic findings in a single, adult female Cuvier's beaked whale Ziphius cavirostris stranded in the Canary Islands. The study indicated that this whale died with a severe, systemic, herpesviral infection and clearly exhibited lesions different from those of the fat and gas embolic syndrome described in beaked whale mass strandings associated with sonar exposure. This is the first report of a cetacean alphaherpesvirus infection of the lymphoid system in a beaked whale.

  15. BRCA1-CtIP interaction in the repair of DNA double-strand breaks.

    PubMed

    Aparicio, Tomas; Gautier, Jean

    2016-07-01

    DNA termini at double-strand breaks are often chemically heterogeneous and require processing before initiation of repair. In a recent report, we demonstrated that CtIP and the MRE11-RAD50-NBS1 (MRN) nuclease complex cooperate with BRCA1 to specifically repair topoisomerase II-DNA adducted breaks. In contrast, BRCA1 is dispensable for repair of restriction endonuclease-generated double-strand breaks.

  16. DNA strand exchange stimulated by spontaneous complex formation with cationic comb-type copolymer.

    PubMed

    Kim, Won Jong; Akaike, Toshihiro; Maruyama, Atsushi

    2002-10-30

    Cationic comb-type copolymers (CCCs) composed of a polycation backbone and water-soluble side chains accelerate by 4-5 orders the DNA strand exchange reaction (SER) between double helical DNA and its homologous single-strand DNA. The accelerating effect is considered due to alleviation of counterion association during transitional intermediate formation in sequential displacement pathway. CCCs stabilize not only matured hybrids but also the nucleation complex to accelerate hybridization. PMID:12392411

  17. Crude oil as a stranding cause among loggerhead sea turtles (Caretta caretta) in the Canary Islands, Spain (1998-2011).

    PubMed

    Camacho, María; Calabuig, Pascual; Luzardo, Octavio P; Boada, Luis D; Zumbado, Manuel; Orós, Jorge

    2013-07-01

    We report the number of strandings caused by crude oil among loggerhead turtles (Caretta caretta) in the Canary Islands between 1998 and 2011 and analyze the impact of the designation of the Canary Islands as a Particularly Sensitive Sea Area (PSSA) in 2005. Among 1,679 stranded loggerhead turtles, 52 turtles stranded due to crude oil (3.1%). The survival rate of the turtles stranded by crude oil was 88%. All turtles that died because of crude oil stranding had signs of ingestion of crude oil and lesions, included esophageal impaction, necrotizing gastroenteritis, necrotizing hepatitis, and tubulonephrosis. The number of strandings caused by crude oil after 2005 was significantly lower than it was before 2006. We show that the designation of the Canary Islands as a PSSA in 2005 by the International Maritime Organization was associated with a reduction of sea turtle strandings caused by crude oil.

  18. Using DNA origami nanostructures to determine absolute cross sections for UV photon-induced DNA strand breakage.

    PubMed

    Vogel, Stefanie; Rackwitz, Jenny; Schürman, Robin; Prinz, Julia; Milosavljević, Aleksandar R; Réfrégiers, Matthieu; Giuliani, Alexandre; Bald, Ilko

    2015-11-19

    We have characterized ultraviolet (UV) photon-induced DNA strand break processes by determination of absolute cross sections for photoabsorption and for sequence-specific DNA single strand breakage induced by photons in an energy range from 6.50 to 8.94 eV. These represent the lowest-energy photons able to induce DNA strand breaks. Oligonucleotide targets are immobilized on a UV transparent substrate in controlled quantities through attachment to DNA origami templates. Photon-induced dissociation of single DNA strands is visualized and quantified using atomic force microscopy. The obtained quantum yields for strand breakage vary between 0.06 and 0.5, indicating highly efficient DNA strand breakage by UV photons, which is clearly dependent on the photon energy. Above the ionization threshold strand breakage becomes clearly the dominant form of DNA radiation damage, which is then also dependent on the nucleotide sequence.

  19. Prediction of B-strand packing interactions using the signature product.

    SciTech Connect

    Brown, W. Michael; Martin, Shawn Bryan; Faulon, Jean-Loup Michel; Strauss, Charlie

    2005-03-01

    The prediction of {beta}-sheet topology requires the consideration of long-range interactions between {beta}-strands that are not necessarily consecutive in sequence. Since these interactions are difficult to simulate using ab initio methods, we propose a supplementary method able to assign {beta}-sheet topology using only sequence information. We envision using the results of our method to reduce the three-dimensional search space of ab initio methods. Our method is based on the signature molecular descriptor, which has been used previously to predict protein-protein interactions successfully, and to develop quantitative structure-activity relationships for small organic drugs and peptide inhibitors. Here, we show how the signature descriptor can be used in a Support Vector Machine to predict whether or not two {beta}-strands will pack adjacently within a protein. We then show how these predictions can be used to order {beta}-strands within {beta}-sheets. Using the entire PDB database with ten-fold cross-validation, we have achieved 74.0% accuracy in packing prediction and 75.6% accuracy in the prediction of edge strands. For the case of {beta}-strand ordering, we are able to predict the correct ordering accurately for 51.3% of the {beta}-sheets. Furthermore, using a simple confidence metric, we can determine those sheets for which accurate predictions can be obtained. For the top 25% highest confidence predictions, we are able to achieve 95.7% accuracy in {beta}-strand ordering.

  20. Increase Jc by Improving the Array of Nb3Sn strands for Fusion Application

    SciTech Connect

    Peng, Xuan

    2012-12-17

    During Phase I, our efforts were focusing on improving the array of subelement in the tube type strands by hardening the Sn core and the subelement matrix to effectively increase the Jc of the strands. Below is a summary of the results. 1) We were unsuccessful in improving the array using a Cu-Sn matrix approach. 2) We slightly improved the array using Sn with 1.5at%Ti doped core, and a 217-subelement restacked strand was made and drawn down without any breakage. 3) We greatly improved the array using the Glidcop Al-15 to replace the pure Cu sheath in the subelement, and a 217-subelement restacked strand was made and drawn down. Both strands have very good drawability and the array showed good improvement. 4) We also improved the array using improved wire drawing techniques using Hyper Tech's new caterpillar wire drawing machines to enable straight wire drawing for the entire wire drawing process. 5) The 919-subelement restack strand shows its non-Cu Jc over 2100 A/mm2 at 12 T/4.2 K and AC loss of 508 mJ/cm3.

  1. Sequential strand displacement beacon for detection of DNA coverage on functionalized gold nanoparticles.

    PubMed

    Paliwoda, Rebecca E; Li, Feng; Reid, Michael S; Lin, Yanwen; Le, X Chris

    2014-06-17

    Functionalizing nanomaterials for diverse analytical, biomedical, and therapeutic applications requires determination of surface coverage (or density) of DNA on nanomaterials. We describe a sequential strand displacement beacon assay that is able to quantify specific DNA sequences conjugated or coconjugated onto gold nanoparticles (AuNPs). Unlike the conventional fluorescence assay that requires the target DNA to be fluorescently labeled, the sequential strand displacement beacon method is able to quantify multiple unlabeled DNA oligonucleotides using a single (universal) strand displacement beacon. This unique feature is achieved by introducing two short unlabeled DNA probes for each specific DNA sequence and by performing sequential DNA strand displacement reactions. Varying the relative amounts of the specific DNA sequences and spacing DNA sequences during their coconjugation onto AuNPs results in different densities of the specific DNA on AuNP, ranging from 90 to 230 DNA molecules per AuNP. Results obtained from our sequential strand displacement beacon assay are consistent with those obtained from the conventional fluorescence assays. However, labeling of DNA with some fluorescent dyes, e.g., tetramethylrhodamine, alters DNA density on AuNP. The strand displacement strategy overcomes this problem by obviating direct labeling of the target DNA. This method has broad potential to facilitate more efficient design and characterization of novel multifunctional materials for diverse applications. PMID:24848126

  2. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    PubMed Central

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  3. Breaking DNA strands by extreme-ultraviolet laser pulses in vacuum.

    PubMed

    Nováková, Eva; Vyšín, Luděk; Burian, Tomáš; Juha, Libor; Davídková, Marie; Múčka, Viliam; Čuba, Václav; Grisham, Michael E; Heinbuch, Scott; Rocca, Jorge J

    2015-04-01

    Ionizing radiation induces a variety of DNA damages including single-strand breaks (SSBs), double-strand breaks (DSBs), abasic sites, modified sugars, and bases. Most theoretical and experimental studies have been focused on DNA strand scissions, in particular production of DNA double-strand breaks. DSBs have been proven to be a key damage at a molecular level responsible for the formation of chromosomal aberrations, leading often to cell death. We have studied the nature of DNA damage induced directly by the pulsed 46.9-nm (26.5 eV) radiation provided by an extreme ultraviolet (XUV) capillary-discharge Ne-like Ar laser (CDL). Doses up to 45 kGy were delivered with a repetition rate of 3 Hz. We studied the dependence of the yield of SSBs and DSBs of a simple model of DNA molecule (pBR322) on the CDL pulse fluence. Agarose gel electrophoresis method was used for determination of both SSB and DSB yields. The action cross sections of the single- and double-strand breaks of pBR322 plasmid DNA in solid state were determined. We observed an increase in the efficiency of strand-break induction in the supercoiled DNA as a function of laser pulse fluence. Results are compared to those acquired at synchrotron radiation facilities and other sources of extreme-ultraviolet and soft x-ray radiation.

  4. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis

    PubMed Central

    Hamdan, Samir M.; Loparo, Joseph J.; Takahashi, Masateru; Richardson, Charles C.; van Oijen, Antoine M.

    2009-01-01

    In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to synthesize in the opposite direction. By extending RNA primers, the lagging-strand polymerase restarts at short intervals and produces Okazaki fragments1,2. At least in prokaryotic systems, this directionality problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki-fragment synthesis3. Here, we employ single-molecule techniques to visualize, in real time, the formation and release of replication loops by individual replisomes of bacteriophage T7 supporting coordinated DNA replication. Analysis of the distributions of loop sizes and lag times between loops reveals that initiation of primer synthesis and the completion of an Okazaki fragment each serve as a trigger for loop release. The presence of two triggers may represent a fail-safe mechanism ensuring the timely reset of the replisome after the synthesis of every Okazaki fragment. PMID:19029884

  5. On the biophysics and kinetics of toehold-mediated DNA strand displacement

    PubMed Central

    Srinivas, Niranjan; Ouldridge, Thomas E.; Šulc, Petr; Schaeffer, Joseph M.; Yurke, Bernard; Louis, Ard A.; Doye, Jonathan P. K.; Winfree, Erik

    2013-01-01

    Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems. PMID:24019238

  6. Effect of Subelement Spacing in Rrp Nb3Sn Deformed Strands

    NASA Astrophysics Data System (ADS)

    Barzi, E.; Turrioni, D.; Alsharo'a, M.; Field, M.; Hong, S.; Parrell, J.; Yamada, R.; Zhang, Y.; Zlobin, A. V.

    2008-03-01

    The Restacked Rod Process (RRP) is the Nb3Sn strand technology presently producing the largest critical current densities at 4.2 K and 12 T. However, when subject to transverse plastic deformation, RRP subelements (SE) merge into each other, creating larger filaments with a somewhat continuous barrier. In this case, the strand sees a larger effective filament size and its instability can dramatically increase locally leading to a cable quench. To reduce and possibly eliminate this effect, Oxford Instruments Superconducting Technology (OST) developed for FNAL a modified RRP strand design with larger Cu spacing between SE's arranged in a 60/61 array. Strand samples of this design with sizes from 0.7 to 1 mm were first evaluated for transport current properties. A comparison study was then performed between the regular 54/61 and the modified 60/61 design using 0.7 mm round and deformed strands. Finite element modeling of the deformed strands was also performed with ANSYS.

  7. Sequential strand displacement beacon for detection of DNA coverage on functionalized gold nanoparticles.

    PubMed

    Paliwoda, Rebecca E; Li, Feng; Reid, Michael S; Lin, Yanwen; Le, X Chris

    2014-06-17

    Functionalizing nanomaterials for diverse analytical, biomedical, and therapeutic applications requires determination of surface coverage (or density) of DNA on nanomaterials. We describe a sequential strand displacement beacon assay that is able to quantify specific DNA sequences conjugated or coconjugated onto gold nanoparticles (AuNPs). Unlike the conventional fluorescence assay that requires the target DNA to be fluorescently labeled, the sequential strand displacement beacon method is able to quantify multiple unlabeled DNA oligonucleotides using a single (universal) strand displacement beacon. This unique feature is achieved by introducing two short unlabeled DNA probes for each specific DNA sequence and by performing sequential DNA strand displacement reactions. Varying the relative amounts of the specific DNA sequences and spacing DNA sequences during their coconjugation onto AuNPs results in different densities of the specific DNA on AuNP, ranging from 90 to 230 DNA molecules per AuNP. Results obtained from our sequential strand displacement beacon assay are consistent with those obtained from the conventional fluorescence assays. However, labeling of DNA with some fluorescent dyes, e.g., tetramethylrhodamine, alters DNA density on AuNP. The strand displacement strategy overcomes this problem by obviating direct labeling of the target DNA. This method has broad potential to facilitate more efficient design and characterization of novel multifunctional materials for diverse applications.

  8. Magnetization anomaly of Nb3Al strands and instability of Nb3Al Rutherford cables

    SciTech Connect

    Yamada, Ryuji; Kikuchi, Akihiro; Wake, Masayoshi; /KEK, Tsukuba

    2006-08-01

    Using a Cu stabilized Nb{sub 3}Al strand with Nb matrix, a 30 meter long Nb{sub 3}Al Rutherford cable was made by a collaboration of Fermilab and NIMS. Recently the strand and cable were tested. In both cases instability was observed at around 1.5 Tesla. The magnetization of this Nb{sub 3}Al strand was measured first using a balanced coil magnetometer at 4.2 K. Strands showed an anomalously large magnetization behavior around at 1.6 T, which is much higher than the usual B{sub c2} {approx} 0.5 Tesla (4.2 K) of Nb matrix. This result is compared with the magnetization data of short strand samples using a SQUID magnetometer, in which a flux-jump signal was observed at 0.5 Tesla, but not at higher field. As a possible explanation for this magnetization anomaly, the interfilament coupling through the thin Nb films in the strands is suggested. The instability problem observed in low field tests of the Nb{sub 3}Al Rutherford cables is attributed to this effect.

  9. Findings in pinnipeds stranded along the central and northern California coast, 1984-1990.

    PubMed

    Gerber, J A; Roletto, J; Morgan, L E; Smith, D M; Gage, L J

    1993-07-01

    Personnel at The Marine Mammal Center (The Center) treated 1,446 stranded marine mammals recovered from the central and northern California (USA) coast from 1984 through 1990, including California sea lions (Zalophus californianus), northern elephant seals (Mirounga angustirostris), Pacific harbor seals (Phoca vitulina richardsi), northern fur seals (Callorhinus ursinus), Steller sea lions (Eumetopias jubatus), and Guadalupe fur seals (Arctocephalus townsendi). The primary disease findings in stranded California sea lions were renal disease, renal disease complicated by severe verminous pneumonia, verminous pneumonia, seizures of unknown etiology, and renal disease complicated by severe pneumonia of unknown etiology. Stranded elephant seals included pups, yearlings with dermatological problems, and neonates. Most harbor seals admitted to The Center were underweight and premature pups. Stranded northern fur seals included animals with seizures of unknown etiology and emaciated pups. Stranded Steller sea lions included underweight pups and aged adult females with pneumonia. Two Guadalupe fur seals had hemorrhagic gastroenteritis. Incidental findings at the time of stranding among the six species included verminous pneumonia and pneumonia of unknown etiology, renal disease, internal parasitism, ophthalmologic problems, gastrointestinal disorders, otitis externa, and external wounds. PMID:8355344

  10. Breaking DNA strands by extreme-ultraviolet laser pulses in vacuum

    NASA Astrophysics Data System (ADS)

    Nováková, Eva; Vyšín, Luděk; Burian, Tomáš; Juha, Libor; Davídková, Marie; Múčka, Viliam; Čuba, Václav; Grisham, Michael E.; Heinbuch, Scott; Rocca, Jorge J.

    2015-04-01

    Ionizing radiation induces a variety of DNA damages including single-strand breaks (SSBs), double-strand breaks (DSBs), abasic sites, modified sugars, and bases. Most theoretical and experimental studies have been focused on DNA strand scissions, in particular production of DNA double-strand breaks. DSBs have been proven to be a key damage at a molecular level responsible for the formation of chromosomal aberrations, leading often to cell death. We have studied the nature of DNA damage induced directly by the pulsed 46.9-nm (26.5 eV) radiation provided by an extreme ultraviolet (XUV) capillary-discharge Ne-like Ar laser (CDL). Doses up to 45 kGy were delivered with a repetition rate of 3 Hz. We studied the dependence of the yield of SSBs and DSBs of a simple model of DNA molecule (pBR322) on the CDL pulse fluence. Agarose gel electrophoresis method was used for determination of both SSB and DSB yields. The action cross sections of the single- and double-strand breaks of pBR322 plasmid DNA in solid state were determined. We observed an increase in the efficiency of strand-break induction in the supercoiled DNA as a function of laser pulse fluence. Results are compared to those acquired at synchrotron radiation facilities and other sources of extreme-ultraviolet and soft x-ray radiation.

  11. Multiple pathways of DNA double-strand break processing in a mutant Indian muntjac cell line

    SciTech Connect

    Bouffler, S.D.; Jha, B.; Johnson, R.T. )

    1990-09-01

    DNA break processing is compared in the Indian muntjac cell lines, SVM and DM. The initial frequencies and resealing of X-ray generated single- and double-strand breaks are similar in the two cell lines. Inhibiting the repair of UV damage leads to greater double-strand breakage in SVM than in DM, and some of these breaks are not repaired; however, repair-associated single-strand breakage and resealing are normal. Dimethylsulfate also induces excess double-strand breakage in SVM, and these breaks are irreparable. Restricted plasmids are reconstituted correctly in SVM at approximately 30% of the frequency observed in DM. Thus SVM has a reduced capacity to repair certain types of double-strand break. This defect is not due to a DNA ligase deficiency. We conclude that DNA double-strand breaks are repaired by a variety of pathways within mammalian cells and that the structure of the break or its mode of formation determines its subsequent fate.

  12. On the biophysics and kinetics of toehold-mediated DNA strand displacement.

    PubMed

    Srinivas, Niranjan; Ouldridge, Thomas E; Sulc, Petr; Schaeffer, Joseph M; Yurke, Bernard; Louis, Ard A; Doye, Jonathan P K; Winfree, Erik

    2013-12-01

    Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.

  13. Measures of Compositional Strand Bias Related to Replication Machinery and its Applications

    PubMed Central

    Arakawa, Kazuharu; Tomita, Masaru

    2012-01-01

    The compositional asymmetry of complementary bases in nucleotide sequences implies the existence of a mutational or selectional bias in the two strands of the DNA duplex, which is commonly shaped by strand-specific mechanisms in transcription or replication. Such strand bias in genomes, frequently visualized by GC skew graphs, is used for the computational prediction of transcription start sites and replication origins, as well as for comparative evolutionary genomics studies. The use of measures of compositional strand bias in order to quantify the degree of strand asymmetry is crucial, as it is the basis for determining the applicability of compositional analysis and comparing the strength of the mutational bias in different biological machineries in various species. Here, we review the measures of strand bias that have been proposed to date, including the ∆GC skew, the B1 index, the predictability score of linear discriminant analysis for gene orientation, the signal-to-noise ratio of the oligonucleotide bias, and the GC skew index. These measures have been predominantly designed for and applied to the analysis of replication-related mutational processes in prokaryotes, but we also give research examples in eukaryotes. PMID:22942671

  14. Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands.

    PubMed

    Chaki, S; Bourse, G

    2009-02-01

    The safety of prestressed civil structures such as bridges, dams, nuclear power plants, etc. directly involves the security of both environment and users. Health monitoring of the tensioning components, such as strands, tendons, bars, anchorage bolts, etc. is an important research topic and a challenging task bringing together the non-destructive evaluation (NDE) and civil engineering communities. This paper deals with a guided ultrasonic wave procedure for monitoring the stress levels in seven-wire steel strands (15.7 mm in diameter). The mechanical and geometrical characteristics of the prestressed strands were taken into account for optimizing the measurement configuration and then the choice of the guided ultrasonic mode at a suitable frequency. Simplified acoustoelastic formulations were derived from the acoustoelasticity theory according to either calibration test or in situ measurement. The results from acoustoelastic measurements on the seven-wire steel strands are presented and discussed in the case of calibration tests and industrially prestressed strands. They show the potential and the suitability of the proposed guided wave method for evaluating the stress levels in the tested seven-wire steel strands. PMID:18804832

  15. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay.

    PubMed

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-03-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents.

  16. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms

    SciTech Connect

    Orita, Masato; Iwahana, Hiroyuki; Kanazawa, Hiroshi; Hayashi, Kenshi; Sekiya, Takao )

    1989-04-01

    The authors developed mobility shift analysis of single-stranded DNAs on neutral polyacrylamide gel electrophoresis to detect DNA polymorphisms. This method follows digestion of genomic DNA with restriction endonucleases, denaturation in alkaline solution, and electrophoresis on a neutral polyacrylamide gel. After transfer to a nylon membrane, the mobility shift due to a nucleotide substitution of a single-stranded DNA fragment could be detected by hybridization with a nick-translated DNA fragment or more clearly with RNA copies synthesized on each strand of the DNA fragment as probes. As the mobility shift caused by nucleotide substitutions might be due to a conformational change of single-stranded DNAs, we designate the features of single-stranded DNAs as single-strand conformation polymorphisms (SSCPs). Like restriction fragment length polymorphisms (RFLPs), SSCPs were found to be allelic variants of true Mendelian traits, and therefore they should be useful genetic markers. Moreover, SSCP analysis has the advantage over RFLP analysis that it can detect DNA polymorphisms and point mutations at a variety of positions in DNA fragments. Since DNA polymorphisms have been estimated to occur every few hundred nucleotides in the human genome, SSCPs may provide many genetic markers.

  17. Purification and characterization of a mitochondrial, single-stranded-DNA-binding protein from Paracentrotus lividus eggs.

    PubMed

    Roberti, M; Musicco, C; Loguercio Polosa, P; Gadaleta, M N; Quagliariello, E; Cantatore, P

    1997-07-01

    A binding protein for single-stranded DNA was purified from Paracentrotus lividus egg mitochondria to near homogeneity by chromatography on DEAE-Sephacel and single-stranded-DNA-cellulose. The protein consists of a single polypeptide of about 15 kDa. Glycerol gradient sedimentation analysis suggested that P. lividus mitochondrial single-stranded-DNA-binding protein exists as a homo-oligomer, possibly a tetramer, in solution. The protein shows a stronger preference for poly(dT) with respect to single-stranded M13, poly(dI) and poly(dC). Binding to poly(dA) takes place with much lower affinity. The binding-site size, determined by gel mobility-shift experiments with oligonucleotides of different length, is approximately 45 nucleotides. The binding to single-stranded DNA occurs with low or no cooperativity and is not influenced by ionic strength. The protein has a very high affinity for the DNA: its apparent macroscopic association constant is 2x10(9) M(-1), a value which is the highest among the mitochondrial single-stranded-DNA-binding proteins characterized to date. The lack of cooperativity and the high association constant represent distinctive features of this protein and might be related to the peculiar mechanism of sea urchin mitochondrial DNA replication.

  18. Accessory proteins for DNA polymerase alpha activity with single-strand DNA templates.

    PubMed Central

    Lamothe, P; Baril, B; Chi, A; Lee, L; Baril, E

    1981-01-01

    Three forms of DNA polymerase alpha [DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7] were partially purified from the combined nuclear extract and postmicrosomal supernatant solution of synchronized HeLa cells. These enzymes, designated DNA polymerases alpha 1, alpha 2, and alpha 3, on the basis of their order of elution from DEAE-Bio-Gel, differ in their abilities to utilize single-strand DNA templates. DNA polymerase alpha 2 has equal catalytic activities with activated and single-strand DNAs as template-primers. DNA polymerase alpha 1 has only partial catalytic activity with single-strand DNA templates, and DNA polymerase alpha 3 is essentially inactive with this template. Successive steps of hydrophobic affinity chromatography and phosphocellulose chromatography of DNA polymerase alpha 2 resolved the polymerase alpha activity and two protein factors (C1 and C2) that are required for its catalytic activity with a DNA template-primer that contains extended single-strand regions. In the absence of the factors, DNA polymerase alpha activity is measurable with activated but not single-strand DNA templates. In the presence of the C1 and C2 factors DNA polymerase alpha activity with single-strand DNA templates is restored to about 75% of the catalytic activity of DNA polymerase alpha 2 with this template. Images PMID:6946421

  19. Simultaneous characterization of sense and antisense genomic processes by the double-stranded hidden Markov model.

    PubMed

    Glas, Julia; Dümcke, Sebastian; Zacher, Benedikt; Poron, Don; Gagneur, Julien; Tresch, Achim

    2016-03-18

    Hidden Markov models (HMMs) have been extensively used to dissect the genome into functionally distinct regions using data such as RNA expression or DNA binding measurements. It is a challenge to disentangle processes occurring on complementary strands of the same genomic region. We present the double-stranded HMM (dsHMM), a model for the strand-specific analysis of genomic processes. We applied dsHMM to yeast using strand specific transcription data, nucleosome data, and protein binding data for a set of 11 factors associated with the regulation of transcription.The resulting annotation recovers the mRNA transcription cycle (initiation, elongation, termination) while correctly predicting strand-specificity and directionality of the transcription process. We find that pre-initiation complex formation is an essentially undirected process, giving rise to a large number of bidirectional promoters and to pervasive antisense transcription. Notably, 12% of all transcriptionally active positions showed simultaneous activity on both strands. Furthermore, dsHMM reveals that antisense transcription is specifically suppressed by Nrd1, a yeast termination factor. PMID:26578558

  20. Metallization of double-stranded DNA triggered by bound galactose-modified naphthalene diimide.

    PubMed

    Komizo, Kohei; Ikedo, Hideyuki; Sato, Shinobu; Takenaka, Shigeori

    2014-08-20

    Naphthalene diimide (NDI) derivatives bearing galactose moieties through different spacers, NDI-DS1 and NDI-DS2, were synthesized by the click reaction of the acetylene derivatives of NDI with galactose azide. They bound to double-stranded DNA with threading intercalation, as confirmed by the topoisomerase I assay and circular dichroism spectroscopy. The binding affinities of these ligands were on the order of 10(5) M(-1) with several-fold higher affinity for double-stranded DNA than for single-stranded DNA. The silver mirror reaction on the double-stranded DNA bound to these ligands afforded silver nanowires that were converted to gold nanowires. In the atomic force microscopy measurements, the increased height of DNA areas on a mica plate was observed in the case of double-stranded DNA after NDI-DS2 treatment and subsequently silver mirror reaction, whereas the increased height of DNA areas was not observed in the case of single-stranded DNA after the same treatment. PMID:25011665

  1. Corrosion of post-tensioning strands in ungrouted ducts - unstressed condition

    NASA Astrophysics Data System (ADS)

    Hutchison, Michael

    Recent failures and severe corrosion distress of post-tensioned (PT) bridges in Florida have revealed corrosion of the 7-wire strands in tendons. Post-tensioned duct assemblies are fitted with multiple 7-wire steel strands and ducts are subsequently filled with grout. During construction, the length of time from the moment in which the strands have been inserted into the ducts, until the ducts are grouted, is referred to as the `ungrouted' period. During this phase, the steel strands are vulnerable to corrosion and consequently the length of this period is restricted (typically to 7 days) by construction guidelines. This investigation focuses on determining the extent of corrosion that may take place during that period, but limited to strands that were in the unstressed condition. Visual inspections and tensile testing were used to identify trends in corrosion development. Corrosion induced cracking mechanisms were also investigated via wire bending and metallographic cross section evaluation. Corrosion damage on unstressed strands during ungrouted periods of durations in the order of those otherwise currently prescribed did not appear to seriously degrade mechanical performance as measured by standardized tests. However the presence of stress in the ungrouted period, as is normally the case, may activate other mechanisms (e.g., EAC) that require further investigation. As expected in the unstressed condition, no evidence of transverse cracking was observed.

  2. Reduce Nb3Sn Strand Deformation when Fabricating High Jc Rutherford Cables

    SciTech Connect

    Peng, Xuan

    2012-12-17

    During Phase I, our efforts were to reduce subelements deformation when fabricating Nb3Sn Rutherford cables. Our first focus is on 217-sublement tube type strand. We successfully made a few billets in OD tube with different Cu spacing between subelements, and supplied the strands to Fermi Lab for cabling. Through the rolling test characterization, these types of strands did not have enough bonding between subelements to withstand the deformation. We saw copper cracking between subelements in the deformed strands. We scaled up the billet from OD to 1.5 OD, and made two billets. This greatly improves the bonding. There is no copper cracking in the deformed strands when we scaled up the diameter of the billets. Fermi Lab successfully made cables using one of this improved strands. In their cables, no Cu cracking and no filament bridging occurred. We also successfully made a couple of billets with hex OD and round ID subelements for 61-subelement restack. Due to the lack of bonding, we could not judge its cabling property properly. But we know through this experiment, we could keep the Nb round, once we select the proper Cu spacing.

  3. Magnetization, Low Field Instability and Quench of RHQT Nb(3)Al Strands

    SciTech Connect

    Yamada, R.; Wake, M.; Kikuchi, A.; Velev, V.; /Fermilab

    2009-01-01

    Since 2005, we made and tested three RHQT Nb{sub 3}Al strands, one with Nb matrix and two with Ta matrix, which are fully stabilized with Cu electroplating. We observed anomalously large magnetization curves extending beyond 1 to 1.5 Tesla with the F1 Nb matrix strand at 4.2 K, when we measured its magnetization with a balanced coil magnetometer. This problem was eliminated with the Ta matrix strands operating at 4.2 K. But with these strands a similar but smaller anomalous magnetization was observed at 1.9 K. We studied these phenomena with FEM. With the F1 Nb matrix strand, it is explained that at low external field, inter-filamentary coupling currents in the outer layers of sub-elements create a shielding effect. It reduces the inside field, keeps the inside Nb matrix superconductive, and stands against a higher outside field beyond the Hc of Nb. At an even higher external field, the superconductivity of the whole Nb matrix collapses and releases a large amount of energy, which may cause a big quench. Depending on the size of the energy in the strand or the cable, a magnet could quench, causing the low field instability. Some attempt to analyze the anomaly with FEM is presented.

  4. A synthetic strand of cardiac muscle: its passive electrical properties

    PubMed Central

    Lieberman, M; Sawanobori, T; Kootsey, JM; Johnson, EA

    1975-01-01

    The passive electrical properties of synthetic strands of cardiac muscle, grown in tissue culture, were studied using two intracellular microelectrodes: one to inject a rectangular pulse of current and the other to record the resultant displacement of membrane potential at various distances from the current source. In all preparations, the potential displacement, instead of approaching a steady value as would be expected for a cell with constant electrical properties, increased slowly with time throughout the current step. In such circumstances, the specific electrical constants for the membrane and cytoplasm must not be obtained by applying the usual methods, which are based on the analytical solution of the partial differential equation describing a one-dimensional cell with constant electrical properties. A satisfactory fit of the potential waveforms was, however, obtained with numerical solutions of a modified form of this equation in which the membrane resistance increased linearly with time. Best fits of the waveforms from 12 preparations gave the following values for the membrane resistance times unit length, membrane capacitance per unit length, and for the myoplasmic resistance: 1.22 plus or minus 0.13 x 10-5 omegacm, 0.224 plus or minus 0.023 uF with cm-minus 1, and 1.37 plus or minus 0.13 x 10-7 omegacm-minus 1, respectively. The value of membrane capacitance per unit length was close to that obtained from the time constant of the foot of the action potential and was in keeping with the generally satisfactory fit of the recorded waveforms with solutions of the cable equation in which the membrane impedance is that of a single capacitor and resistor in parallel. The area of membrane per unit length and the cross-sectional area of myoplasm at any given length of the preparation were determined from light and composite electron micrographs, and these were used to calculate the following values for the specific electrical membrane resistance, membrane

  5. Development length of 0.6-inch prestressing strand in standard I-shaped pretensioned concrete beams

    NASA Astrophysics Data System (ADS)

    Barnes, Robert Wesley

    The use of 0.6 in prestressing strand at a center-to-center spacing of 2 in allows for the optimal implementation of High Strength Concrete (HSC) in precast, prestressed concrete bridge superstructures. For this strand configuration, partial debonding of strands is a desirable alternative to the more traditional method of draping strands to alleviate extreme concrete stresses after prestress release. Recent experimental evidence suggests that existing code provisions addressing the anchorage of pretensioned strands do not adequately describe the behavior of these strands. In addition, the anchorage behavior of partially debonded strands is not fully understood. These uncertainties have combined to hinder the full exploitation of HSC in pretensioned concrete construction. A research study was conducted to determine the anchorage behavior of 0.6 in strands at 2 in spacing in full-size bridge members. The experimental program consisted of assessing transfer and development lengths in plant-cast AASHTO Type I I-beams. The influence of concrete compressive strengths ranging from 5700 to 14,700 psi was examined. In order to consider the full range of strand surface conditions found in practice, the prestressing strand featured either a bright mill finish or a rusted surface condition. The anchorage behavior of partially debonded strands was investigated by using a variety of strand debonding configurations---including debonded strand percentages as high as 75 percent. A limited investigation of the effect of horizontal web reinforcement on anchorage behavior was performed. Pull-out tests were performed in an attempt to correlate results with the bond quality of the strands used in the study. The correlation between strand draw-in and the anchorage behavior of prestressing strands was also examined. A review of the evolution and shortcomings of existing code provisions for the anchorage of prestressing strands is presented. Results of the experimental program are reported

  6. Invasive plants and their ecological strategies: Prediction and explanation of woody plant invasion in New England

    USGS Publications Warehouse

    Herron, P.M.; Martine, C.T.; Latimer, A.M.; Leicht-Young, S. A.

    2007-01-01

    Effective management of introduced species requires the early identification of species that pose a significant threat of becoming invasive. To better understand the invasive ecology of species in New England, USA, we compiled a character data set with which to compare non-native species that are known invaders to non-native species that are not currently known to be invasive. In contrast to previous biological trait-based models, we employed a Bayesian hierarchical analysis to identify sets of plant traits associated with invasiveness for each of three growth forms (vines, shrubs, and trees). The resulting models identify a suite of 'invasive traits' highlighting the ecology associated with invasiveness for each of three growth forms. The most effective predictors of invasiveness that emerged from our model were 'invasive elsewhere', 'fast growth rate', 'native latitudinal range', and 'growth form'. The contrast among growth forms was pronounced. For example, 'wind dispersal' was positively correlated with invasiveness in trees, but negatively correlated in shrubs and vines. The predictive model was able to correctly classify invasive plants 67% of the time (22/33), and non-invasive plants 95% of the time (204/215). A number of potential future invasive species in New England that deserve management consideration were identified. ?? 2007 The Authors.

  7. Coevolution between Native and Invasive Plant Competitors: Implications for Invasive Species Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive species may establish in communities because they are better competitors than natives, but in order to remain community dominants, the competitive advantage of invasive species must be persistent. Native species that are not extirpated when highly invasive species are introduced are likely...

  8. A functional trait perspective on plant invasion

    PubMed Central

    Drenovsky, Rebecca E.; Grewell, Brenda J.; D'Antonio, Carla M.; Funk, Jennifer L.; James, Jeremy J.; Molinari, Nicole; Parker, Ingrid M.; Richards, Christina L.

    2012-01-01

    Background and Aims Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management. Scope We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change. Conclusions To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels. PMID:22589328

  9. E-commerce trade in invasive plants.

    PubMed

    Humair, Franziska; Humair, Luc; Kuhn, Fabian; Kueffer, Christoph

    2015-12-01

    Biological invasions are a major concern in conservation, especially because global transport of species is still increasing rapidly. Conservationists hope to anticipate and thus prevent future invasions by identifying and regulating potentially invasive species through species risk assessments and international trade regulations. Among many introduction pathways of non-native species, horticulture is a particularly important driver of plant invasions. In recent decades, the horticultural industry expanded globally and changed structurally through the emergence of new distribution channels, including internet trade (e-commerce). Using an automated search algorithm, we surveyed, on a daily basis, e-commerce trade on 10 major online auction sites (including eBay) of approximately three-fifths of the world's spermatophyte flora. Many recognized invasive plant species (>500 species) (i.e., species associated with ecological or socio-economic problems) were traded daily worldwide on the internet. A markedly higher proportion of invasive than non-invasive species were available online. Typically, for a particular plant family, 30-80% of recognized invasive species were detected on an auction site, but only a few percentages of all species in the plant family were detected on a site. Families that were more traded had a higher proportion of invasive species than families that were less traded. For woody species, there was a significant positive relationship between the number of regions where a species was sold and the number of regions where it was invasive. Our results indicate that biosecurity is not effectively regulating online plant trade. In the future, automated monitoring of e-commerce may help prevent the spread of invasive species, provide information on emerging trade connectivity across national borders, and be used in horizon scanning exercises for early detection of new species and their geographic source areas in international trade.

  10. E-commerce trade in invasive plants.

    PubMed

    Humair, Franziska; Humair, Luc; Kuhn, Fabian; Kueffer, Christoph

    2015-12-01

    Biological invasions are a major concern in conservation, especially because global transport of species is still increasing rapidly. Conservationists hope to anticipate and thus prevent future invasions by identifying and regulating potentially invasive species through species risk assessments and international trade regulations. Among many introduction pathways of non-native species, horticulture is a particularly important driver of plant invasions. In recent decades, the horticultural industry expanded globally and changed structurally through the emergence of new distribution channels, including internet trade (e-commerce). Using an automated search algorithm, we surveyed, on a daily basis, e-commerce trade on 10 major online auction sites (including eBay) of approximately three-fifths of the world's spermatophyte flora. Many recognized invasive plant species (>500 species) (i.e., species associated with ecological or socio-economic problems) were traded daily worldwide on the internet. A markedly higher proportion of invasive than non-invasive species were available online. Typically, for a particular plant family, 30-80% of recognized invasive species were detected on an auction site, but only a few percentages of all species in the plant family were detected on a site. Families that were more traded had a higher proportion of invasive species than families that were less traded. For woody species, there was a significant positive relationship between the number of regions where a species was sold and the number of regions where it was invasive. Our results indicate that biosecurity is not effectively regulating online plant trade. In the future, automated monitoring of e-commerce may help prevent the spread of invasive species, provide information on emerging trade connectivity across national borders, and be used in horizon scanning exercises for early detection of new species and their geographic source areas in international trade. PMID:26249172

  11. Bacterial tubulin TubZ-Bt transitions between a two-stranded intermediate and a four-stranded filament upon GTP hydrolysis

    PubMed Central

    Montabana, Elizabeth A.; Agard, David A.

    2014-01-01

    Cytoskeletal filaments form diverse superstructures that are highly adapted for specific functions. The recently discovered TubZ subfamily of tubulins is involved in type III plasmid partitioning systems, facilitating faithful segregation of low copy-number plasmids during bacterial cell division. One such protein, TubZ-Bt, is found on the large pBtoxis plasmid in Bacillus thuringiensis, and interacts via its extended C terminus with a DNA adaptor protein TubR. Here, we use cryo-electron microscopy to determine the structure of TubZ-Bt filaments and light scattering to explore their mechanism of polymerization. Surprisingly, we find that the helical filament architecture is remarkably sensitive to nucleotide state, changing from two-stranded to four-stranded depending on the ability of TubZ-Bt to hydrolyze GTP. We present pseudoatomic models of both the two- and four-protofilament forms based on cryo-electron microscopy reconstructions (10.8 Å and 6.9 Å, respectively) of filaments formed under different nucleotide states. These data lead to a model in which the two-stranded filament is a necessary intermediate along the pathway to formation of the four-stranded filament. Such nucleotide-directed structural polymorphism is to our knowledge an unprecedented mechanism for the formation of polar filaments. PMID:24550513

  12. Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors.

    PubMed Central

    Kulpa, D; Topping, R; Telesnitsky, A

    1997-01-01

    Reverse transcriptase must perform two specialized template switches during retroviral DNA synthesis. Here, we used Moloney murine leukemia virus-based vectors to examine the site of one of these switches during intracellular reverse transcription. Consistent with original models for reverse transcription, but in contrast to previous experimental data, we observed that this first strand transfer nearly always occurred precisely at the 5' end of genomic RNA. This finding allowed us to use first strand transfer to study the classes of errors that reverse transcriptase can and/or does make when it switches templates at a defined position during viral DNA synthesis. We found that errors occurred at the site of first strand transfer approximately 1000-fold more frequently than reported average reverse transcriptase error rates for template-internal positions. We then analyzed replication products of specialized vectors that were designed to test possible origins for the switch-associated errors. Our results suggest that at least some errors arose via non-templated nucleotide addition followed by mismatch extension at the point of strand transfer. We discuss the significance of our findings as they relate to the possible contribution that template switch-associated errors may make to retroviral mutation rates. PMID:9049314

  13. Chapter 8: Invasive fungal rhinosinusitis.

    PubMed

    Duggal, Praveen; Wise, Sarah K

    2013-01-01

    Invasive fungal rhinosinusitis (IFRS) is a disease of the paranasal sinuses and nasal cavity that typically affects immunocompromised patients in the acute fulminant form. Early symptoms can often mimic rhinosinusitis, while late symptoms can cause significant morbidity and mortality. Swelling and mucosal thickening can quickly progress to pale or necrotic tissue in the nasal cavity and sinuses, and the disease can rapidly spread and invade the palate, orbit, cavernous sinus, cranial nerves, skull base, carotid artery, and brain. IFRS can be life threatening if left undiagnosed or untreated. While the acute fulminant form of IFRS is the most rapidly progressive and destructive, granulomatous and chronic forms also exist. Diagnosis of IFRS often mandates imaging studies in conjunction with clinical, endoscopic, and histopathological examination. Treatment of IFRS consists of reversing the underlying immunosuppression, antifungal therapy, and aggressive surgical debridement. With early diagnosis and treatment, IFRS can be treated and increase patient survival.

  14. [MINIMALLY INVASIVE AORTIC VALVE REPLACEMENT].

    PubMed

    Tabata, Minoru

    2016-03-01

    Minimally invasive aortic valve replacement (MIAVR) is defined as aortic valve replacement avoiding full sternotomy. Common approaches include a partial sternotomy right thoracotomy, and a parasternal approach. MIAVR has been shown to have advantages over conventional AVR such as shorter length of stay and smaller amount of blood transfusion and better cosmesis. However, it is also known to have disadvantages such as longer cardiopulmonary bypass and aortic cross-clamp times and potential complications related to peripheral cannulation. Appropriate patient selection is very important. Since the procedure is more complex than conventional AVR, more intensive teamwork in the operating room is essential. Additionally, a team approach during postoperative management is critical to maximize the benefits of MIAVR.

  15. A minimally invasive smile enhancement.

    PubMed

    Peck, Fred H

    2014-01-01

    Minimally invasive dentistry refers to a wide variety of dental treatments. On the restorative aspect of dental procedures, direct resin bonding can be a very conservative treatment option for the patient. When tooth structure does not need to be removed, the patient benefits. Proper treatment planning is essential to determine how conservative the restorative treatment will be. This article describes the diagnosis, treatment options, and procedural techniques in the restoration of 4 maxillary anterior teeth with direct composite resin. The procedural steps are reviewed with regard to placing the composite and the variety of colors needed to ensure a natural result. Finishing and polishing of the composite are critical to ending with a natural looking dentition that the patient will be pleased with for many years.

  16. Non-invasive glucose monitor

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2001-01-01

    A non-invasive method for determining blood level of an analyte of interest, such as glucose, comprises: generating an excitation laser beam (e.g., at a wavelength of 700 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor in the anterior chamber is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated aqueous humor; and then determining the blood glucose level (or the level of another analyte of interest) for the subject from the Raman spectrum. Preferably, the detecting step is followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing method is also disclosed.

  17. Anaesthesia for minimally invasive surgery

    PubMed Central

    Dec, Marta

    2015-01-01

    Minimally invasive surgery (MIS) is rising in popularity. It offers well-known benefits to the patient. However, restricted access to the surgical site and gas insufflation into the body cavities may result in severe complications. From the anaesthetic point of view MIS poses unique challenges associated with creation of pneumoperitoneum, carbon dioxide absorption, specific positioning and monitoring a patient to whom the anaesthetist has often restricted access, in a poorly lit environment. Moreover, with refinement of surgical procedures and growing experience the anaesthetist is presented with patients from high-risk groups (obese, elderly, with advanced cardiac and respiratory disease) who once were deemed unsuitable for the laparoscopic technique. Anaesthetic management is aimed at getting the patient safely through the procedure, minimizing the specific risks arising from laparoscopy and the patient's coexisting medical problems, ensuring quick recovery and a relatively pain-free postoperative course with early return to normal function. PMID:26865885

  18. Invasive cancer cells and metastasis

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  19. Antarctic Crabs: Invasion or Endurance?

    PubMed Central

    Griffiths, Huw J.; Whittle, Rowan J.; Roberts, Stephen J.; Belchier, Mark; Linse, Katrin

    2013-01-01

    Recent scientific interest following the “discovery” of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This “invasion hypothesis” suggests that decapod crabs were driven out of Antarctica 40–15 million years ago and are only now returning as “warm” enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura), and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60°S. All are restricted to waters warmer than 0°C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW). Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day “crab invasion”. We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the “invasion

  20. Quinine sulfate and bacterial invasion

    PubMed Central

    Wolf, Ronni; Baroni, Adone; Greco, Rita; Donnarumma, Giovanna; Ruocco, Eleonora; Tufano, Maria Antonietta; Ruocco, Vincenzo

    2002-01-01

    Background As many patients who receive antimalarial drugs for treatment of noninfectious, inflammatory diseases are also immunosuppressed and might have a concomitant bacterial infection, we studied the effectiveness of these drugs against bacterial infections, to find out whether they could protect against (and even treat) such conditions and obviate the need for an additional antibiotic drug. Methods Effect of QS on bacterial growth: Escherichia coli (E. coli) HB101 pRI203 were cultured overnight at 37°C in TSB and inoculated (approx 1 × 107 cells /ml) in MEM in the presence of QS at various concentrations (0, 50 and 100 μM). The effect of QS at concentration of 50 and 100 μM on the entry process of E. coli HB101 pRI203 into HeLa cells was studied under different experimental conditions: 1. QS was incubated with 3 × 105 HeLa cells for 60 min at 37°C prior to infection. 2. QS was added to HeLa cell monolayers during the infection period. Results QS showed no antibacterial activity after 24 h of incubation. The invasive efficiency of the bacteria was significantly inhibited at a dose-dependent manner, when QS was added to HeLa cells for 60 min at 37°C prior to infection (condition 1), and to a lesser extent when added during the period of infection (condition 2). Conclusions Although the antimalarials are generally regarded as being inactive against most extracellular bacterial species, our results indicate that QS significantly inhibited the internalization/invasion efficacy of E. coli in the host cells. PMID:12437776

  1. Evolutionary speed of species invasions.

    PubMed

    García-Ramos, Gisela; Rodríguez, Diego

    2002-04-01

    Successful invasion may depend of the capacity of a species to adjust genetically to a spatially varying environment. This research modeled a species invasion by examining the interaction between a quantitative genetic trait and population density. It assumed: (I) a quantitative genetic trait describes the adaptation of an individual to its local ecological conditions; (2) populations far from the local optimum grow more slowly than those near the optimum; and (3) the evolution of a trait depends on local population density, because differences in local population densities cause asymmetrical gene flow. This genetics-density interaction determined the propagation speed of populations. Numerical simulations showed that populations spread by advancing as two synchronic traveling waves, one for population density and one for trait adaptation. The form of the density wave was a step front that advances homogenizing populations at their carrying capacity; the adaptation wave was a curve with finite slope that homogenizes populations at full adaptation. The largest speed of population expansion, for a dimensionless analysis, corresponded to an almost homogeneous spatial environment when this model approached an ecological description such as the Fisher-Skellam's model. A large genetic response also favored faster speeds. Evolutionary speeds, in a natural scale, showed a wide range of rates that were also slower compared to models that only consider demographics. This evolutionary speed increased with high heritability, strong stabilizing selection, and high intrinsic growth rate. It decreased for steeper environmental gradients. Also indicated was an optimal dispersal rate over which evolutionary speed declined. This is expected because dispersal moves individuals further, but homogenizes populations genetically, making them maladapted. The evolutionary speed was compared to observed data. Furthermore, a moderate increase in the speed of expansion was predicted for

  2. Ecological Principles for Invasive Plant Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive annual grasses continue to advance at an alarming rate despite efforts of control by land managers. Ecologically-based invasive plant management (EBIPM) is a holistic framework that integrates ecosystem health assessment, knowledge of ecological processes and adaptive management into a succ...

  3. Mapping invasive weeds using airborne hyperspectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive plant species present a serious problem to the natural environment and have adverse ecological and economic impacts on both terrestrial and aquatic ecosystems they invade. This article provides a brief overview on the use of remote sensing for mapping invasive plant species in both terrestr...

  4. Principles for ecologically based invasive plant management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land managers long have identified a critical need for a practical and effective framework to guide the implementation of successful restoration, especially where invasive plants dominate the ecosystem. A holistic, ecologically-based invasive plant management (EBIPM) framework that integrates ecosy...

  5. The Invasive Plant Species Education Guide

    ERIC Educational Resources Information Center

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  6. Indirect effects of parasites in invasions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduced species disrupt native communities and biodiversity worldwide. Parasitic infections (and at times, their absence) are thought to be a key component in the success and impact of biological invasions by plants and animals. They can facilitate or limit invasions, and positively or negatively...

  7. Minimally Invasive Mitral Valve Surgery I

    PubMed Central

    Ailawadi, Gorav; Agnihotri, Arvind K.; Mehall, John R.; Wolfe, J. Alan; Hummel, Brian W.; Fayers, Trevor M.; Farivar, R. Saeid; Grossi, Eugene A.; Guy, T. Sloane; Hargrove, W. Clark; Khan, Junaid H.; Lehr, Eric J.; Malaisrie, S. Chris; Murphy, Douglas A.; Rodriguez, Evelio; Ryan, William H.; Salemi, Arash; Segurola, Romualdo J.; Shemin, Richard J.; Smith, J. Michael; Smith, Robert L.; Weldner, Paul W.; Goldman, Scott M.; Lewis, Clifton T. P.; Barnhart, Glenn R.

    2016-01-01

    Abstract Widespread adoption of minimally invasive mitral valve repair and replacement may be fostered by practice consensus and standardization. This expert opinion, first of a 3-part series, outlines current best practices in patient evaluation and selection for minimally invasive mitral valve procedures, and discusses preoperative planning for cannulation and myocardial protection. PMID:27654407

  8. Ecological and evolutionary insights from species invasions.

    PubMed

    Sax, Dov F; Stachowicz, John J; Brown, James H; Bruno, John F; Dawson, Michael N; Gaines, Steven D; Grosberg, Richard K; Hastings, Alan; Holt, Robert D; Mayfield, Margaret M; O'Connor, Mary I; Rice, William R

    2007-09-01

    Species invasions provide numerous unplanned and frequently, but imperfectly, replicated experiments that can be used to better understand the natural world. Classic studies by Darwin, Grinnell, Elton and others on these species-invasion experiments provided invaluable insights for ecology and evolutionary biology. Recent studies of invasions have resulted in additional insights, six of which we discuss here; these insights highlight the utility of using exotic species as 'model organisms'. We also discuss a nascent hypothesis that might provide a more general, predictive understanding of invasions and community assembly. Finally, we emphasize how the study of invasions can help to inform our understanding of applied problems, such as extinction, ecosystem function and the response of species to climate change.

  9. Predator control promotes invasive dominated ecological states.

    PubMed

    Wallach, Arian D; Johnson, Christopher N; Ritchie, Euan G; O'Neill, Adam J

    2010-08-01

    Invasive species are regarded as one of the top five drivers of the global extinction crisis. In response, extreme measures have been applied in an attempt to control or eradicate invasives, with little success overall. We tested the idea that state shifts to invasive dominance are symptomatic of losses in ecosystem resilience, due to the suppression of apex predators. This concept was investigated in Australia where the high rate of mammalian extinctions is largely attributed to the destructive influence of invasive species. Intensive pest control is widely applied across the continent, simultaneously eliminating Australia's apex predator, the dingo (Canis lupus dingo). We show that predator management accounts for shifts between two main ecosystem states. Lethal control fractures dingo social structure and leads to bottom-up driven increases in invasive mesopredators and herbivores. Where control is relaxed, dingoes re-establish top-down regulation of ecosystems, allowing for the recovery of biodiversity and productivity. PMID:20545732

  10. Analysis of minimal promoter sequences for plus-strand synthesis by the Cucumber necrosis virus RNA-dependent RNA polymerase.

    PubMed

    Panavas, T; Pogany, J; Nagy, P D

    2002-05-10

    Tombusviruses are small, plus-sense, single-stranded RNA viruses of plants. A partially purified RNA-dependent RNA polymerase (RdRp) preparation of Cucumber necrosis virus (CNV), which is capable of de novo initiation of complementary RNA synthesis from either plus-strand or minus-strand templates, was used to dissect minimal promoter sequences for tombusviruses and their defective interfering (DI) RNAs. In vitro RdRp assay revealed that the core plus-strand initiation promoter included only the 3'-terminal 11 nucleotides. A hypothetical promoter-like sequence, which has been termed consensus sequence by Wu and White (1998, J. Virol. 72, 9897-9905), is recognized less efficiently by the CNV RdRp than the core plus-strand initiation promoter. The CNV RdRp can efficiently recognize the core plus-strand initiation promoter for a satellite RNA associated with the distantly related Turnip crinkle virus, while artificial AU- or GC-rich 3'-terminal sequences make poor templates in the in vitro assays. Comparison of the "strength" of minimal plus-strand and minus-strand initiation promoters reveals that the latter is almost twice as efficient in promoting complementary RNA synthesis. Template competition experiments, however, suggest that the minimal plus-strand initiation promoter makes an RNA template more competitive than the minimal minus-strand initiation promoter. Taken together, these results demonstrate that promoter recognition by the tombusvirus RdRp requires only short sequences present at the 3' end of templates.

  11. Marine mammal strandings and environmental changes: a 15-year study in the St. Lawrence ecosystem.

    PubMed

    Truchon, Marie-Hélène; Measures, Lena; L'Hérault, Vincent; Brêthes, Jean-Claude; Galbraith, Peter S; Harvey, Michel; Lessard, Sylvie; Starr, Michel; Lecomte, Nicolas

    2013-01-01

    Understanding the effects of climatic variability on marine mammals is challenging due to the complexity of ecological interactions. We used general linear models to analyze a 15-year database documenting marine mammal strandings (1994-2008; n = 1,193) and nine environmental parameters known to affect marine mammal survival, from regional (sea ice) to continental scales (North Atlantic Oscillation, NAO). Stranding events were more frequent during summer and fall than other seasons, and have increased since 1994. Poor ice conditions observed during the same period may have affected marine mammals either directly, by modulating the availability of habitat for feeding and breeding activities, or indirectly, through changes in water conditions and marine productivity (krill abundance). For most species (75%, n = 6 species), a low volume of ice was correlated with increasing frequency of stranding events (e.g. R(2)adj = 0.59, hooded seal, Cystophora cristata). This likely led to an increase in seal mortality during the breeding period, but also to increase habitat availability for seasonal migratory cetaceans using ice-free areas during winter. We also detected a high frequency of stranding events for mysticete species (minke whale, Balaenoptera acutorostrata) and resident species (beluga, Delphinapterus leucas), correlated with low krill abundance since 1994. Positive NAO indices were positively correlated with high frequencies of stranding events for resident and seasonal migratory cetaceans, as well as rare species (R(2)adj = 0.53, 0.81 and 0.34, respectively). This contrasts with seal mass stranding numbers, which were negatively correlated with a positive NAO index. In addition, an unusual multiple species mortality event (n = 114, 62% of total annual mortality) in 2008 was caused by a harmful algal bloom. Our findings provide an empirical baseline in understanding marine mammal survival when faced with climatic variability. This is a promising

  12. The hydrogen-bonding structure in parallel-stranded duplex DNA is reverse Watson-Crick

    SciTech Connect

    Otto, C., Thomas, G.A.; Peticolas, W.L. ); Rippe, K.; Jovin, T.M. )

    1991-03-26

    Raman spectra of the parallel-stranded duplex formed from the deoxyoligonucleotides 5{prime}-d-((A){sub 10}TAATTTTAAATATTT)-3{prime} (D1) and 5{prime}-d((T){sub 10}ATTAAAATTTATAAA)-3{prime} (D2) in H{sub 2}O and D{sub 2}O have been acquired. The spectra of the parallel-stranded DNA are then compared to the spectra of the antiparallel double helix formed from the deoxyoligonucleotides D1 and 5{prime}-d(AAATATTTAAAATTA-(T){sub 10})-3{prime} (D3). The Raman spectra of the antiparallel-stranded (aps) duplex are reminiscent of the spectra of poly(d(A)){center dot}poly(d(T)) and a B-form structure similar to that adopted by the homopolymer duplex is assigned to the antiparallel double helix. The spectra of the parallel-stranded (ps) and antiparallel-stranded duplexes differ significantly due to changes in helical organization, i.e., base pairing, base stacking, and backbone conformation. Large changes observed in the carbonyl stretching region implicate the involvement of the C(2) carbonyl of thymine in base pairing. The interaction of adenine with the C(2) carbonyl of thymine is consistent with formation of reverse Watson-Crick base pairing in parallel-stranded DNA. Phosphate-furanose vibrations similar to those observed for B-form DNA of heterogeneous sequence and high A,T content are observed at 843 and 1,092 cm{sup {minus}1} in the spectra of the parallel-stranded duplex.

  13. Donor strand exchange and conformational changes during E. coli fimbrial formation.

    PubMed

    Le Trong, Isolde; Aprikian, Pavel; Kidd, Brian A; Thomas, Wendy E; Sokurenko, Evgeni V; Stenkamp, Ronald E

    2010-12-01

    Fimbriae and pili are macromolecular structures on the surface of Gram negative bacteria that are important for cellular adhesion. A 2.7Å resolution crystal structure of a complex of Escherichia coli fimbrial proteins containing FimH, FimG, FimF, and FimC provides the most complete model to date for the arrangement of subunits assembled in the native structure. The first three proteins form the tip of the fimbriae while FimC is the chaperone protein involved in the usher/chaperone assembly process. The subunits interact through donor strand complementation where a β-strand from a subunit completes the β-sandwich structure of the neighboring subunit or domain closer to the tip of the fimbria. The function of FimC is to provide a surrogate donor strand before delivery of each subunit to the FimD usher and the growing fimbria. Comparison of the subunits in this structure and their chaperone-bound complexes show that the two FimH domains change their relative orientation and position in forming the tip structure. Also, the non-chaperone subunits undergo a conformational change in their first β-strand when the chaperone is replaced by the native donor strand. Some residues move as much as 14Å in the process. This structural shift has not been noted in structural studies of other bacterial adhesion sub-structures assembled via donor strand complementation. The domains undergo a significant structural change in the donor strand binding groove during fimbrial assembly, and this likely plays a role in determining the specificity of subunit-subunit interactions among the fimbrial proteins.

  14. Development of multifilamentary niobium titanium and niobium tin strands for the International Thermonuclear Experimental Reactor project

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Zhang, P. X.; Tang, X. D.; Liu, X. H.; Lu, Y. F.; Weng, P. D.; Grunblatt, G.; Hoang, Gia K.; Verwaerde, C.

    2007-05-01

    The International Thermonuclear Experimental Reactor(ITER) device should demonstrate the scientific and technological possibility of commercial fusion energy production in large scale in order to solve the worldwide energy problem in the future. The superconducting magnet system is the key part of the ITER device to supply high magnetic fields for confining the deuterium-tritium plasma. The multifilament NbTi and Nb3Sn strands with high quality have been studied to meet the specifications of superconducting strands for fabricating poloidal field coils (PF) and toroidal field coils (TF). For NbTi strands with 8306 filaments, Jc of 2910 A mm-2 (4.2 K, 5 T, 0.1 μV cm-1) has been obtained by a conventional process. The proposed process could be used for fabrication of long strands with a unit length more than 5000 m. By an internal tin process the multifilamentary Nb3Sn strands with a diameter of 0.79 mm and a unit length longer than 5000 m have been successfully fabricated. The highest non-Cu Jcn (12 T, 4.2 K, 0.1 μV cm-1) value of 1249 A mm-2 has been obtained. The n-value of Nb3Sn strands is larger than 20 and the residual resistance ratio (RRR) value lies between 150 and 220. The formation of the Nb3Sn superconducting phase together with the evolution of microstructure has been investigated by neutron diffraction and scanning electron microscopy. The results indicate that the properties of NbTi and Nb3Sn strands have already met basically the specifications proposed by the ITER program.

  15. Slow conduction in mixed cultured strands of primary ventricular cells and stem cell-derived cardiomyocytes.

    PubMed

    Kucera, Jan P; Prudat, Yann; Marcu, Irene C; Azzarito, Michela; Ullrich, Nina D

    2015-01-01

    Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs). However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs) and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV) was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands. CV was significantly lower in strands composed purely of SCMs (5.5 ± 1.5 cm/s, n = 11) as compared to PCMs (34.9 ± 2.9 cm/s, n = 21) at similar refractoriness (100% SCMs: 122 ± 25 ms, n = 9; 100% PCMs: 139 ± 67 ms, n = 14). In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV. These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias.

  16. Evolutionary dynamics of adult stem cells: Comparison of random and immortal-strand segregation mechanisms

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) “immortal DNA strand” co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  17. The Role of Cytosine Methylation on Charge Transport through a DNA Strand

    SciTech Connect

    Qi, Jianqing; Govind, Niranjan; Anantram, M. P.

    2015-09-04

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modifi-cation remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Buttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. Specifically, we compare the results generated with the widely used B3LYP exchange-correlation (XC) functional and CAM-B3LYP based tuned range-separated hybrid density functional. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that with both functionals, the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and interstrand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital (HOMO) level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with both functionals. We also study the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit. Our results suggest that the effect of the two different functionals is to alter the on-site energies of the DNA bases at the HOMO level, while the transport properties don't depend much on the two functionals.

  18. Possible Causes of a Harbour Porpoise Mass Stranding in Danish Waters in 2005

    PubMed Central

    Wright, Andrew J.; Maar, Marie; Mohn, Christian; Nabe-Nielsen, Jacob; Siebert, Ursula; Jensen, Lasse Fast; Baagøe, Hans J.; Teilmann, Jonas

    2013-01-01

    An unprecedented 85 harbour porpoises stranded freshly dead along approximately 100 km of Danish coastline from 7–15 April, 2005. This total is considerably above the mean weekly stranding rate for the whole of Denmark, both for any time of year, 1.23 animals/week (ranging from 0 to 20 during 2003–2008, excluding April 2005), and specifically in April, 0.65 animals/week (0 to 4, same period). Bycatch was established as the cause of death for most of the individuals through typical indications of fisheries interactions, including net markings in the skin and around the flippers, and loss of tail flukes. Local fishermen confirmed unusually large porpoise bycatch in nets set for lumpfish (Cyclopterus lumpus) and the strandings were attributed to an early lumpfish season. However, lumpfish catches for 2005 were not unusual in terms of season onset, peak or total catch, when compared to 2003–2008. Consequently, human activity was combined with environmental factors and the variation in Danish fisheries landings (determined through a principal component analysis) in a two-part statistical model to assess the correlation of these factors with both the presence of fresh strandings and the numbers of strandings on the Danish west coast. The final statistical model (which was forward selected using Akaike information criterion; AIC) indicated that naval presence is correlated with higher rates of porpoise strandings, particularly in combination with certain fisheries, although it is not correlated with the actual presence of strandings. Military vessels from various countries were confirmed in the area from the 7th April, en route to the largest naval exercise in Danish waters to date (Loyal Mariner 2005, 11–28 April). Although sonar usage cannot be confirmed, it is likely that ships were testing various equipment prior to the main exercise. Thus naval activity cannot be ruled out as a possible contributing factor. PMID:23460787

  19. Stranded cost recovery: Reregulating the electricity markets in the United States

    NASA Astrophysics Data System (ADS)

    Wagle, Pushkar Ghanashyam

    2000-10-01

    For the past few years, Stranded Cost recovery has been one of the most contentious issues regarding the restructuring of electricity markets among the regulators, researchers, and the other interested parties. Among the states that have moved towards retail competition, some have already made decisions regarding the levels of the stranded cost recovery. So the question is: how have these states handled the "stranded cost problem"? Following the introduction and the historical perspective of the industry in the first chapter, the second chapter takes a broad view for understanding the overall process of deregulation. It attempts to analyze why some states have made a rapid transition to competition in the electric utility industry, while other states are just beginning to consider the issue. White (1996) and Ando & Palmer (1998) have conducted a similar exercise. We present a more comprehensive and theoretically informed econometric analysis that sheds light over some of the crucial issues involved in restructuring, such as, stranded cost recovery, regulation of transmission and distribution sectors, and establishment of Independent System Operator, etc. This chapter offers the rationale for alternative econometric techniques, and extends the political economy analysis to incorporate actual timings of retail competition. Once we have identified the role of stranded cost in restructuring and the theoretical foundations, we study empirically the political economy of states' decisions to grant stranded cost recovery. This constitutes the third chapter. Here, we concentrate on California and Pennsylvania, two states that are at the frontiers of deregulation, and compare their respective treatments of the stranded cost. We probe the reasons behind Pennsylvania's lead over California on the path towards deregulation.

  20. Slow conduction in mixed cultured strands of primary ventricular cells and stem cell-derived cardiomyocytes

    PubMed Central

    Kucera, Jan P.; Prudat, Yann; Marcu, Irene C.; Azzarito, Michela; Ullrich, Nina D.

    2015-01-01

    Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs). However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs) and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV) was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands. CV was significantly lower in strands composed purely of SCMs (5.5 ± 1.5 cm/s, n = 11) as compared to PCMs (34.9 ± 2.9 cm/s, n = 21) at similar refractoriness (100% SCMs: 122 ± 25 ms, n = 9; 100% PCMs: 139 ± 67 ms, n = 14). In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV. These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias. PMID:26442264