Sample records for recalcitrant xenobiotic compound

  1. Fluorescence evolution of leachates during treatment processes from two contrasting landfills.

    PubMed

    Sun, W L; Liu, T T; Cui, F; Ni, J R

    2008-10-01

    Landfill leachates are composed of a complex mixture of organic matter, including a wide range of potentially fluorescent organic compounds. The fluorescence excitation-emission matrix (FEEM) of leachates during treatment processes is investigated. Particular attention is paid to the fluorescence evolution of leachates during treatment processes. Two typical types of landfill, landfill A (a direct municipal solid waste (MSW) landfill) and landfill B (disposal of bottom ashes from MSW incinerators), in a city in Southern China were selected. The results show that two characteristic and intense excitation-emission peaks located at Ex/Em = 310-330 nm/395-410 nm (peak alpha) and Ex/Em = 250-260 nm/450-460 nm (peak alpha') are observed. As the aromatic chemicals, capable of emitting fluorescence, are more recalcitrant to biodegradation than aliphatic chemicals, enhancement of the dissolved organic carbon normalized fluorescence intensities is demonstrated during treatment processes of leachate A and leachate B. This is confirmed by the variation of ultraviolet absorptivity of leachates at 254 nm. Peak alpha' and peak alpha are attributed to a mixture of xenobiotic organic compounds with low molecular weight and relatively stable aromatic fulvic-like matters with high molecular weight, respectively. Humic substances are more resistant to biodegradation than xenobiotic organic compounds, so a significant reduction in the Ialpha'/Ialpha values (fluorescence intensity ratios of peak alpha' and peak a) of leachate A was observed during treatment processes. However, no evident variation for the Ialpha/Ialpha values of leachate B was found during treatment processes owing to the low concentrations of xenobiotic organic compounds in leachate B after incineration.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wear, Jr., John Edmund

    The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturallymore » occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.« less

  3. Metabolism of carbamazepine in plant roots and endophytic rhizobacteria isolated from Phragmites australis.

    PubMed

    Sauvêtre, Andrés; May, Robert; Harpaintner, Rudolf; Poschenrieder, Charlotte; Schröder, Peter

    2018-01-15

    Carbamazepine (CBZ) is a pharmaceutical frequently categorized as a recalcitrant pollutant in the aquatic environment. Endophytic bacteria previously isolated from reed plants have shown the ability to promote growth of their host and to contribute to CBZ metabolism. In this work, a horseradish (Armoracia rusticana) hairy root (HR) culture has been used as a plant model to study the interactions between roots and endophytic bacteria in response to CBZ exposure. HRs could remove up to 5% of the initial CBZ concentration when they were grown in spiked Murashige and Skoog (MS) medium. Higher removal rates were observed when HRs were inoculated with the endophytic bacteria Rhizobium radiobacter (21%) and Diaphorobacter nitroreducens (10%). Transformation products resulting from CBZ degradation were identified using liquid chromatography-ultra high-resolution quadrupole time of flight mass spectrometry (LC-UHR-QTOF-MS). CBZ metabolism could be divided in four pathways. Metabolites involving GSH conjugation and 2,3-dihydroxylation, as well as acridine related compounds are described in plants for the first time. This study presents strong evidence that xenobiotic metabolism and degradation pathways in plants can be modulated by the interaction with their endophytic community. Hence it points to plausible applications for the elimination of recalcitrant compounds such as CBZ from wastewater in CWs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.

    PubMed

    Abhilash, P C; Jamil, Sarah; Singh, Nandita

    2009-01-01

    Phytoremediation--the use of plants to clean up polluted soil and water resources--has received much attention in the last few years. Although plants have the inherent ability to detoxify xenobiotics, they generally lack the catabolic pathway for the complete degradation of these compounds compared to microorganisms. There are also concerns over the potential for the introduction of contaminants into the food chain. The question of how to dispose of plants that accumulate xenobiotics is also a serious concern. Hence the feasibility of phytoremediation as an approach to remediate environmental contamination is still somewhat in question. For these reasons, researchers have endeavored to engineer plants with genes that can bestow superior degradation abilities. A direct method for enhancing the efficacy of phytoremediation is to overexpress in plants the genes involved in metabolism, uptake, or transport of specific pollutants. Furthermore, the expression of suitable genes in root system enhances the rhizodegradation of highly recalcitrant compounds like PAHs, PCBs etc. Hence, the idea to amplify plant biodegradation of xenobiotics by genetic manipulation was developed, following a strategy similar to that used to develop transgenic crops. Genes from human, microbes, plants, and animals are being used successfully for this venture. The introduction of these genes can be readily achieved for many plant species using Agrobacterium tumefaciens-mediated plant transformation or direct DNA methods of gene transfer. One of the promising developments in transgenic technology is the insertion of multiple genes (for phase 1 metabolism (cytochrome P450s) and phase 2 metabolism (GSH, GT etc.) for the complete degradation of the xenobiotics within the plant system. In addition to the use of transgenic plants overexpressed with P450 and GST genes, various transgenic plants expressing bacterial genes can be used for the enhanced degradation and remediation of herbicides, explosives, PCBs etc. Another approach to enhancing phytoremediation ability is the construction of plants that secrete chemical degrading enzymes into the rhizosphere. Recent studies revealed that accelerated ethylene production in response to stress induced by contaminants is known to inhibit root growth and is considered as major limitation in improving phytoremediation efficiency. However, this can be overcome by the selective expression of bacterial ACC deaminase (which regulates ethylene levels in plants) in plants together with multiple genes for the different phases of xenobiotic degradation. This review examines the recent developments in use of transgenic-plants for the enhanced metabolism, degradation and phytoremediation of organic xenobiotics and its future directions.

  5. Water mediated alterations in gravity signal transform phytofilertation capability in hydroponic plants

    NASA Astrophysics Data System (ADS)

    Singh, Yogranjan; Singh Marabi, Rakesh; Satpute, Gyanesh Kumar; Mishra, Stuti

    2012-07-01

    An exorbitant sum of different synthetic molecules of chemicals including dyes and pigments are discharged into the environment, mainly via industrial effluents every year worldwide. The physical-chemical treatments for remediation viz adsorption, precipitation, ion exchange or filtration have proved to be disadvantageous because of high cost, low efficiency and inapplicability to a wide variety of dyes, or the formation of by-products and thereby creating waste disposal problems. Similarly the limited ability of micro-organisms to degrade xenobiotic especially sulphonoaromatic compounds, limits the efficiency and, therefore, the use of conventional wastewater treatment plants. In this context, the development of alternative biological treatments to eliminate these pollutants from industrial effluents is an important requirement. Plant metabolism, is extremely diverse and can be exploited to treat recalcitrant pollutants, not degradable by bacteria or fungi and can act as an important global sink for environmental pollutants. The presence of putative metabolites, in leaves of hydrophytes has been observed, indicating the transformation of several xenobiotics. A diverse range of the enzymes involved in the early stages of the detoxification process are closely associated with the redox biochemistry of the cell. The activities of enzymes such as glutathione transferases, peroxidases and cytochrome P450 monooxygenases and its multigenic family have implications with respect to the maintenance of redox homeostasis. Besides activating xenobiotics, cytochromes P450 is involved vitally in cell signaling for counteracting buoyant balance. Signal transduction cascades, including the role of cytochrome P450 monooxygenases in responding to gravitational cues, appear to be affected by buoyancy as well. Gravitropism is the orientation of growth in response to gravity and involves the perception of the gravitational force in the columella cells of the root cap where the primary signal is generated by the sedimentation of the amyloplasts. This induces a signal transduction pathway that promotes an auxin gradient across the root. The proteinogenic amino acid proline functions as a radical scavenger, electron sink, stabilizer of macromolecules, cell wall component and a metal chelation compound. In order to have most competent option for phytofilteration, the natural biodiversity out of aquatic ecosystem should be better studied. Screening of plants that produce natural chemicals whose structures are similar to the xenobiotic compounds should be the first step of any phytoremediation process. An experimental hydroponic-phytofilteration system with real effluent must give pragmatic information on the real detoxification capacity of the plants and allow determining the appropriate design and size of the future constructed wetland system to clean up the contaminated wastewater to reduce negative impact of eutrophication.

  6. Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants.

    PubMed

    Panz, Katarzyna; Miksch, Korneliusz

    2012-12-30

    The large-scale production and processing of munitions has led to vast environmental pollution by the compounds TNT(2,4,6-trinitrotoluene), RDX(hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine). Explosives contain these toxic and mutagenic xenobiotics, which are stable in the environment and recalcitrant to remediation. Certain technologies used thus far (incineration, adsorption, advanced oxidations processes, chemical reduction etc.) have not only been very expensive but also caused additional environmental problems. During recent decades, the most popular technologies have been biotechnological methods, such as phytoremediation, which is relatively cheap, environmentally friendly, and a highly accepted solution by society. The most promising of these technologies is the usage of genetically modified plants, which combines the ability of bacterial genes to detoxify compounds with the phytoremediation benefits of plants. This paper is a review related to the latest and most important achievements in the field of phytoremediation of water and soil contaminated with TNT, RDX and HMX. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Biological Degradation of 2,4,6-Trinitrotoluene

    PubMed Central

    Esteve-Núñez, Abraham; Caballero, Antonio; Ramos, Juan L.

    2001-01-01

    Nitroaromatic compounds are xenobiotics that have found multiple applications in the synthesis of foams, pharmaceuticals, pesticides, and explosives. These compounds are toxic and recalcitrant and are degraded relatively slowly in the environment by microorganisms. 2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound. Certain strains of Pseudomonas and fungi can use TNT as a nitrogen source through the removal of nitrogen as nitrite from TNT under aerobic conditions and the further reduction of the released nitrite to ammonium, which is incorporated into carbon skeletons. Phanerochaete chrysosporium and other fungi mineralize TNT under ligninolytic conditions by converting it into reduced TNT intermediates, which are excreted to the external milieu, where they are substrates for ligninolytic enzymes. Most if not all aerobic microorganisms reduce TNT to the corresponding amino derivatives via the formation of nitroso and hydroxylamine intermediates. Condensation of the latter compounds yields highly recalcitrant azoxytetranitrotoluenes. Anaerobic microorganisms can also degrade TNT through different pathways. One pathway, found in Desulfovibrio and Clostridium, involves reduction of TNT to triaminotoluene; subsequent steps are still not known. Some Clostridium species may reduce TNT to hydroxylaminodinitrotoluenes, which are then further metabolized. Another pathway has been described in Pseudomonas sp. strain JLR11 and involves nitrite release and further reduction to ammonium, with almost 85% of the N-TNT incorporated as organic N in the cells. It was recently reported that in this strain TNT can serve as a final electron acceptor in respiratory chains and that the reduction of TNT is coupled to ATP synthesis. In this review we also discuss a number of biotechnological applications of bacteria and fungi, including slurry reactors, composting, and land farming, to remove TNT from polluted soils. These treatments have been designed to achieve mineralization or reduction of TNT and immobilization of its amino derivatives on humic material. These approaches are highly efficient in removing TNT, and increasing amounts of research into the potential usefulness of phytoremediation, rhizophytoremediation, and transgenic plants with bacterial genes for TNT removal are being done. PMID:11527999

  8. Temperature Responses of Soil Organic Matter Components With Varying Recalcitrance

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Feng, X.

    2007-12-01

    The response of soil organic matter (SOM) to global warming remains unclear partly due to the chemical heterogeneity of SOM composition. In this study, the decomposition of SOM from two grassland soils was investigated in a one-year laboratory incubation at six different temperatures. SOM was separated into solvent- extractable compounds, suberin- and cutin-derived compounds, and lignin monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components had distinct chemical structures and recalcitrance, and their decomposition was fitted by a two-pool exponential decay model. The stability of SOM components was assessed using geochemical parameters and kinetic parameters derived from model fitting. Lignin monomers exhibited much lower decay rates than solvent-extractable compounds and a relatively low percentage of lignin monomers partitioned into the labile SOM pool, which confirmed the generally accepted recalcitrance of lignin compounds. Suberin- and cutin-derived compounds had a poor fitting for the exponential decay model, and their recalcitrance was shown by the geochemical degradation parameter which stabilized during the incubation. The aliphatic components of suberin degraded faster than cutin-derived compounds, suggesting that cutin-derived compounds in the soil may be at a higher stage of degradation than suberin- derived compounds. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of the recalcitrant lignin monomers had much higher Q10 values than soil respiration or the solvent-extractable compounds decomposition. Our study shows that the decomposition of recalcitrant SOM is highly sensitive to temperature, more so than bulk soil mineralization. This observation suggests a potential acceleration in the degradation of the recalcitrant SOM pool with global warming.

  9. Bioremediation and phytoremediation: Chlorinated and recalcitrant compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    Bioremediation and phytoremediation have progressed, especially with regard to the treatment of hydrocarbon-contaminated sites. Sites contaminated with chlorinated and recalcitrant compounds have proven more resistant to these approaches, but exciting progress is being made both in the laboratory and in the field. This book brings together the latest breakthrough thinking and results in bioremediation, with chapters on cometabolic processes, aerobic and anaerobic mechanisms, biological reductive dechlorination processes, bioaugmentation, biomonitoring, and phytoremediation of recalcitrant organic compounds.

  10. In silico identification and construction of microbial gene clusters associated with biodegradation of xenobiotic compounds.

    PubMed

    Awasthi, Garima; Kumari, Anjani; Pant, Aditya Bhushan; Srivastava, Prachi

    2018-01-01

    Chemical substances not showing any importance in existence of biological systems and causing serious health hazards may be designated as Xenobiotic compound. Elimination or degradation of these unwanted substances is a major issue of concern for current time research. Process of biodegradation is a very important aspect of current research as discussed in current manuscript. Current study focuses on the detailed mining of data for the construction of microbial consortia for wide range of xenobiotics compounds. Intensive literature search was done for the construction of this library. Desired data was retrieved from NCBI in fasta format. Data was analysed through homology approaches by using BLAST. This homology based searched enriched with a great vision that not only bacterial population but many other cheap and potential sources are available for different xenobiotic degradation. Though it was focused that bacterial population covers a major part of biodegradation which is near about 90.6% but algae and fungi are also showing promising future in degradation of some important xenobiotic compounds. Analysis of data reveals that Pseudomonas putida has potential for degrading maximum compounds. Establishment of correlation through cluster analysis signifies that Pseudomonas putida, Aspergillus niger and Skeletonema costatum can have combined traits that can be used in finding out actual evolutionary relationship between these species. These findings may also givea new outcome in terms of much cheaper and eco-friendly source in the area of biodegradation of specified xenobiotic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Spatio-temporal Model of Xenobiotic Distribution and Metabolism in an in Silico Mouse Liver Lobule

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Sluka, James; Clendenon, Sherry; Glazier, James; Ryan, Jennifer; Dunn, Kenneth; Wang, Zemin; Klaunig, James

    Our study aims to construct a structurally plausible in silico model of a mouse liver lobule to simulate the transport of xenobiotics and the production of their metabolites. We use a physiologically-based model to calculate blood-flow rates in a network of mouse liver sinusoids and simulate transport, uptake and biotransformation of xenobiotics within the in silico lobule. Using our base model, we then explore the effects of variations of compound-specific (diffusion, transport and metabolism) and compound-independent (temporal alteration of blood flow pattern) parameters, and examine their influence on the distribution of xenobiotics and metabolites. Our simulations show that the transport mechanism (diffusive and transporter-mediated) of xenobiotics and blood flow both impact the regional distribution of xenobiotics in a mouse hepatic lobule. Furthermore, differential expression of metabolic enzymes along each sinusoid's portal to central axis, together with differential cellular availability of xenobiotics, induce non-uniform production of metabolites. Thus, the heterogeneity of the biochemical and biophysical properties of xenobiotics, along with the complexity of blood flow, result in different exposures to xenobiotics for hepatocytes at different lobular locations. We acknowledge support from National Institute of Health GM 077138 and GM 111243.

  12. A fungal metallo-beta-lactamase necessary for biotransformation of maize phytoprotectant compounds

    USDA-ARS?s Scientific Manuscript database

    Xenobiotic compounds such as phytochemicals, microbial metabolites, and agrochemicals can impact the diversity and frequency of fungal species occurring in agricultural environments. Resistance to xenobiotics may allow plant pathogenic fungi to dominate the overall fungal community, with potential ...

  13. Xenobiotic metabolizing enzyme (XME) expression in aging humans.

    EPA Science Inventory

    In the presence of foreign compounds, metabolic homeostasis of the organism is maintained by the liver’s ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression of XMEs, which metabolize xenobiotics and determine whether exposure will...

  14. Cytochrome P450 humanised mice

    PubMed Central

    2004-01-01

    Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s). These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach. PMID:15588489

  15. ADAPTATION OF AQUIFER MICROBIAL COMMUNITIES TO THE BIODEGRADATION OF XENOBIOTIC COMPOUNDS: INFLUENCE OF SUBSTRATE CONCENTRATION AND PREEXPOSURE

    EPA Science Inventory

    Studies were conducted to examine the adaptation response of aquifer microbial communities to xenobiotic compounds and the influence of chemical preexposure in the laboratory and in situ on adaptation. Adaptation and biodegradation were assessed as mineralization and cellular inc...

  16. Characteristics of a newly isolated fungus Geotrichum candidum Dec 1 with broad degradation spectrum of xenobiotic compounds.

    PubMed

    Shoda, M

    2003-01-01

    A newly isolated fungus, Geotrichum candidum Dec 1 (abbreviated as Dec 1), was found to have the ability to degrade many xenobiotic compounds such as synthetic dyes, food coloring agents, molasses, organic halogens, lignin and kraft pulp effluents. The broad spectrum of the degradation of these compounds are associated mainly with peroxidases produced by the fungus.

  17. Review and evaluation of the effects of xenobiotic chemicals on microorganisms in soil. [139 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, R.J.; Van Voris, P.

    1988-02-01

    The primary objective was to review and evaluate the relevance and quality of existing xenobiotic data bases and test methods for evaluating direct and indirect effects (both adverse and beneficial) of xenobiotics on the soil microbial community; direct and indirect effects of the soil microbial community on xenobiotics; and adequacy of test methods used to evaluate these effects and interactions. Xenobiotic chemicals are defined here as those compounds, both organic and inorganic, produced by man and introduced into the environment at concentrations that cause undesirable effects. Because soil serves as the main repository for many of these chemicals, it thereforemore » has a major role in determining their ultimate fate. Once released, the distribution of xenobiotics between environmental compartments depends on the chemodynamic properties of the compounds, the physicochemical properties of the soils, and the transfer between soil-water and soil-air interfaces and across biological membranes. Abiotic and biotic processes can transform the chemical compound, thus altering its chemical state and, subsequently, its toxicity and reactivity. Ideally, the conversion is to carbon dioxide, water, and mineral elements, or at least, to some harmless substance. However, intermediate transformation products, which can become toxic pollutants in their own right, can sometimes be formed. 139 refs., 6 figs., 11 tabs.« less

  18. Two horizontally transferred xenobiotic resistance gene clusters associated with detoxification of benzoxazolinones by Fusarium species

    USDA-ARS?s Scientific Manuscript database

    Microbes encounter a broad spectrum of chemical compounds in their diverse environments. These xenobiotics may negatively impact growth or cause death. To counter such adverse effects, many microbes possess metabolic strategies to detoxify and biotransform xenobiotics. Fusarium verticillioides is a ...

  19. Chemical Composition of Soil Horizons and Aggregate Size Fractions Under the Hawaiian Fern Dicranopteris and Angiosperm Cheirodendrom

    NASA Astrophysics Data System (ADS)

    Stewart, C. E.; Amatangelo, K.; Neff, J.

    2007-12-01

    Soil organic matter (SOM) inherits much of its chemical nature from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. However, relatively stable recalcitrant compounds may also be formed as a result of condensation and complexation reactions through decomposition and protected with association with mineral particles. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendrom due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical composition of the SOM under the O- (litter-dominated) and the A- (mineral) horizons formed under fern and angiosperm vegetation. To determine the effect of mineral-association, we fractioned the soil into four size classes; 850-590 μm, 590-180 μm, 180-53 μm and <53 μm and characterized the SOM via pyrolysis-gas chromatography-mass spectrometry (py-GC/MS). As the soils developed from the O- to the A-horizon, there was a decrease of lignin-derived phenolic compounds and an increase in more recalcitrant, aromatic and aliphatic C. Soils under ferns had greater relative concentrations of phenolic compounds, while the angiosperms had greater concentrations of fatty-acid methyl esters and furans (some polysaccharide-derived). Differences between size fractions were most evident in the O-horizon of both species. Recalcitrant fern-derived cutin and leaf waxes (alkene and alkanes structures) occurred in the 180-53 μm fraction, which has been shown to be the most stable of the aggregate-size fractions. Soils developed under fern versus angiosperm vegetation have distinct chemical signatures, which likely determine the recalcitrance of the SOM.

  20. High prevalence of IncP-1 plasmids and IS1071 insertion sequences in on-farm biopurification systems and other pesticide-polluted environments.

    PubMed

    Dunon, Vincent; Sniegowski, Kristel; Bers, Karolien; Lavigne, Rob; Smalla, Kornelia; Springael, Dirk

    2013-12-01

    Mobile genetic elements (MGEs) are considered as key players in the adaptation of bacteria to degrade organic xenobiotic recalcitrant compounds such as pesticides. We examined the prevalence and abundance of IncP-1 plasmids and IS1071, two MGEs that are frequently linked with organic xenobiotic degradation, in laboratory and field ecosystems with and without pesticide pollution history. The ecosystems included on-farm biopurification systems (BPS) processing pesticide-contaminated wastewater and soil. Comparison of IncP-1/IS1071 prevalence between pesticide-treated and nontreated soil and BPS microcosms suggested that both IncP-1 and IS1071 proliferated as a response to pesticide treatment. The increased prevalence of IncP-1 plasmids and IS1071-specific sequences in treated systems was accompanied by an increase in the capacity to mineralize the applied pesticides. Both elements were also encountered in high abundance in field BPS ecosystems that were in operation at farmyards and that showed the capacity to degrade/mineralize a wide range of chlorinated aromatics and pesticides. In contrast, IS1071 and especially IncP-1, MGE were less abundant in field ecosystems without pesticide history although some of them still showed a high IS1071 abundance. Our data suggest that MGE-containing organisms were enriched in pesticide-contaminated environments like BPS where they might contribute to spreading of catabolic genes and to pathway assembly. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. GENE EXPRESSION PROFILING OF XENOBIOTIC METABOLIZING ENZYMES (XMES) THROUGH THE LIFE STAGES OF THE MALE C57BL/6 MOUSE

    EPA Science Inventory

    In the presence of foreign compounds, metabolic homeostasis of the organism is maintained by the liver's ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression of XMEs, which metabolize xenobiotics and determine whether exposure will...

  2. Fungal Laccases and Their Applications in Bioremediation

    PubMed Central

    Viswanath, Buddolla; Rajesh, Bandi; Janardhan, Avilala; Kumar, Arthala Praveen; Narasimha, Golla

    2014-01-01

    Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection. PMID:24959348

  3. Transcriptional profiling of mouse and human livers at different life stages

    EPA Science Inventory

    In the presence offoreign compounds,metabolichomeostasis oftheorganismismaintained by the liver's ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression ofxenobiotic metabolizing enzymes (XMEs), which metabolize xenobiotics and det...

  4. Toxicity of marine pollutants on the ascidian oocyte physiology: an electrophysiological approach.

    PubMed

    Gallo, Alessandra

    2018-02-01

    In marine animals with external fertilization, gametes are released into seawater where fertilization and embryo development occur. Consequently, pollutants introduced into the marine environment by human activities may affect gametes and embryos. These xenobiotics can alter cell physiology with consequent reduction of fertilization success. Here the adverse effects on the reproductive processes of the marine invertebrate Ciona intestinalis (ascidian) of different xenobiotics: lead, zinc, an organic tin compound and a phenylurea herbicide were evaluated. By using the electrophysiological technique of whole-cell voltage clamping, the effects of these compounds on the mature oocyte plasma membrane electrical properties and the electrical events of fertilization were tested by calculating the concentration that induced 50% normal larval formation (EC50). The results demonstrated that sodium currents in mature oocytes were reduced in a concentration-dependent manner by all tested xenobiotics, with the lowest EC50 value for lead. In contrast, fertilization current frequencies were differently affected by zinc and organic tin compound. Toxicity tests on gametes demonstrated that sperm fertilizing capability and fertilization oocyte competence were not altered by xenobiotics, whereas fertilization was inhibited in zinc solution and underwent a reduction in organic tin compound solution (EC50 value of 1.7 µM). Furthermore, fertilized oocytes resulted in a low percentage of normal larvae with an EC50 value of 0.90 µM. This study shows that reproductive processes of ascidians are highly sensitive to xenobiotics suggesting that they may be considered a reliable biomarker and that ascidians are suitable model organisms to assess marine environmental quality.

  5. Contribution of species-specific chemical signatures to soil organic matter in Kohala, HI.

    NASA Astrophysics Data System (ADS)

    Stewart, C. E.; Amatangelo, K.; Neff, J. C.

    2008-12-01

    Soil organic matter (SOM) inherits much of its chemical structure from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendron due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical signature of fern and angiosperm vegetation types and trace the preservation or loss of those compounds into the soil. We collected live tissue, litter, roots, and soil (<53 μm) from five dominant vegetation types including two angiosperms Cheirodendron and Metrosideros, two basal ferns Dicranopteris and Cibotium and a polypod fern Diplazium in Kohala, HI. We characterized them via TMAH-pyrolysis-gas chromatography-mass spectrometry. We found distinct chemical differences between angiosperm and fern vegetation; angiosperm contained more G- and S-derived lignin structures and the fern species contained greater relative abundances of P-derived lignin and tannin-derivatives. There was a general decrease of lignin-derived phenolic compounds from live to litter to soils and an increase in more recalcitrant, aromatic and aliphatic C. Recalcitrant fern-derived cutin and leaf waxes (alkene and alkanes structures) were evident in the soils, but clear species differences were not observed. Although ferns contain distinct lipid and wax-derived compounds, soils developed under fern do not appear to accumulate these compounds in SOM.

  6. Biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelghani, A.; Pramar, Y.; Mandal, T.

    1996-05-02

    This project assesses the levels of xenobiotics in Devils Swamp and studies their biological fate, transport, ecotoxicity, and potential toxicity to man. This article reports on the following studies: assessment of the acute toxicity of individual xenobiotics and toxicity of organic compounds hexachlorobutadience (HCB) and hexachlorobenzene (HCBD) on juvenile crayfish; determination of the biotic influence of temperature, salinity, pH, oxidation-reduction potential, and sediment composition on the migration of xenobiotics; development of a pharmacokinetics model for xenobiotic absorption and storage, distribution and excretion by fish and crayfish.

  7. Analysis of the bacterial strains using Biolog plates in the contaminated soil from Riyadh community.

    PubMed

    Al-Dhabaan, Fahad Abdullah M; Bakhali, Ali Hassan

    2017-05-01

    Routine manufacture, detonation and disposal of explosives in land and groundwater have resulted in complete pollution. Explosives are xenobiotic compounds, being toxic to biological systems, and their recalcitrance leads to persistence in the environment. The methods currently used for the remediation of explosive contaminated sites are expensive and can result in the formation of toxic products. The present study aimed to investigate the bacterial strains using the Biolog plates in the soil from the Riyadh community. The microbial strains were isolated using the spread plate technique and were identified using the Biolog method. In this study we have analyzed from bacterial families of soil samples, obtained from the different sites in 5 regions at Explosive Institute. Our results conclude that Biolog MicroPlates were developed for the rapid identification of bacterial isolates by sole-carbon source utilization and can be used for the identification of bacteria. Out of five communities, only four families of bacteria indicate that the microbial community lacks significant diversity in region one from the Riyadh community in Saudi Arabia. More studies are needed to be carried out in different regions to validate our results.

  8. Nontargeted analysis of the urine nonpolar sulfateome: a pathway to the nonpolar xenobiotic exposome

    PubMed Central

    Yao, Yuanyuan; Wang, Poguang; Shao, Gang; Anzalota Del Toro, Liza V.; Codero, Jose; Giese, Roger W.

    2016-01-01

    RATIONALE Testing the urine nonpolar sulfateome can enable discovery of xenobiotics that are most likely to be bioactive. This is based on the fact that nonpolar xenobiotics are more likely to enter cells where they tend to undergo metabolism, in part, to sulfates that are then largely excreted into the urine. METHODS The following sequence of steps, with conditions that achieve high reproducibility, was applied to large human urine samples: (1) competitive nonpolar extraction with a porous extraction paddle; (2) weak anion exchange extraction with strong organic washing; and (3) UHPLC/negative ion-MALDI-TOF/TOF-MS with recording of ions with S/N ≥ 20 that yielded M-1-80 (loss of SO3) or m/z 97 (HSO4−) upon fragmentation. RESULTS From a collection of urine samples from six pregnant women, the masses of 1129 putative sulfates were measured. Three lists of candidate compounds (preliminary hits) from these masses were formed by searching METLIN, especially via MATLAB, yielding putative xenobiotic contaminants (35 compounds), steroids (122), and flavonoids (1582). CONCLUSION A new way to reveal some of the nonpolar xenobiotic exposome has been developed that applies to urine samples. The value of the method is to suggest xenobiotics for subsequent targeted analysis in the population of people under study, in order to relate the environment to health and disease. PMID:27557133

  9. Marine Invertebrate Xenobiotic-Activated Nuclear Receptors: Their Application as Sensor Elements in High-Throughput Bioassays for Marine Bioactive Compounds

    PubMed Central

    Richter, Ingrid; Fidler, Andrew E.

    2014-01-01

    Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds. PMID:25421319

  10. DEVELOPMENT OF MOLECULAR INDICATORS OF EXPOSURE TO ENDOCRINE DISRUPTING COMPOUNDS, PESTICIDES & OTHER XENOBIOTIC AGENTS

    EPA Science Inventory

    A great deal of uncertainty exists regarding the extent to which humans and wildlife are exposed to chemical stressors in aquatic resources. Scientific literature is replete with studies of xenobiotics in surface waters, including a recent national USGS survey of endocrine disrup...

  11. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers.

    PubMed

    Forkpah, Cordelia; Dixon, Luke R; Fahrbach, Susan E; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.

  12. Xenobiotic Effects on Intestinal Stem Cell Proliferation in Adult Honey Bee (Apis mellifera L) Workers

    PubMed Central

    Forkpah, Cordelia; Dixon, Luke R.; Fahrbach, Susan E.; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species. PMID:24608542

  13. Differential presence of anthropogenic compounds dissolved in the marine waters of Puget Sound, WA and Barkley Sound, BC.

    PubMed

    Keil, Richard; Salemme, Keri; Forrest, Brittany; Neibauer, Jaqui; Logsdon, Miles

    2011-11-01

    Organic compounds were evaluated in March 2010 at 22 stations in Barkley Sound, Vancouver Island Canada and at 66 locations in Puget Sound. Of 37 compounds, 15 were xenobiotics, 8 were determined to have an anthropogenic imprint over natural sources, and 13 were presumed to be of natural or mixed origin. The three most frequently detected compounds were salicyclic acid, vanillin and thymol. The three most abundant compounds were diethylhexyl phthalate (DEHP), ethyl vanillin and benzaldehyde (∼600 n g L(-1) on average). Concentrations of xenobiotics were 10-100 times higher in Puget Sound relative to Barkley Sound. Three compound couplets are used to illustrate the influence of human activity on marine waters; vanillin and ethyl vanillin, salicylic acid and acetylsalicylic acid, and cinnamaldehyde and cinnamic acid. Ratios indicate that anthropogenic activities are the predominant source of these chemicals in Puget Sound. Published by Elsevier Ltd.

  14. Potential of Penicillium Species in the Bioremediation Field

    PubMed Central

    Leitão, Ana Lúcia

    2009-01-01

    The effects on the environment of pollution, particularly that caused by various industrial activities, have been responsible for the accelerated fluxes of organic and inorganic matter in the ecosphere. Xenobiotics such as phenol, phenolic compounds, polycyclic aromatic hydrocarbons (PAHs), and heavy metals, even at low concentrations, can be toxic to humans and other forms of life. Many of the remediation technologies currently being used for contaminated soil and water involve not only physical and chemical treatment, but also biological processes, where microbial activity is the responsible for pollutant removal and/or recovery. Fungi are present in aquatic sediments, terrestrial habitats and water surfaces and play a significant part in natural remediation of metal and aromatic compounds. Fungi also have advantages over bacteria since fungal hyphae can penetrate contaminated soil, reaching not only heavy metals but also xenobiotic compounds. Despite of the abundance of such fungi in wastes, penicillia in particular have received little attention in bioremediation and biodegradation studies. Additionally, several studies conducted with different strains of imperfecti fungi, Penicillium spp. have demonstrated their ability to degrade different xenobiotic compounds with low co-substrate requirements, and could be potentially interesting for the development of economically feasible processes for pollutant transformation. PMID:19440525

  15. Detoxification function of the Arabidopsis sulphotransferase AtSOT12 by sulphonation of xenobiotics.

    PubMed

    Chen, Jinhua; Gao, Liqiong; Baek, Dongwon; Liu, Chunlin; Ruan, Ying; Shi, Huazhong

    2015-08-01

    Cytosolic sulphotransferases have been implicated in inactivation of endogenous steroid hormones and detoxification of xenobiotics in human and animals. Yet, the function of plant sulphotransferases in xenobiotic sulphonation and detoxification has not been reported. In this study, we show that the Arabidopsis sulphotransferase AtSOT12 could sulphonate the bacterial-produced toxin cycloheximide. Loss-of-function mutant sot12 exhibited hypersensitive phenotype to cycloheximide, and expression of AtSOT12 protein in yeast cells conferred resistance to this toxic compound. AtSOT12 exhibited broad specificity and could sulphonate a variety of xenobiotics including phenolic and polycyclic compounds. Enzyme kinetics analysis indicated that AtSOT12 has different selectivity for simple phenolics with different side chains, and the position of the side chain in the simple phenolic compounds affects substrate binding affinity and catalytic efficiency. We proposed that the broad specificity and induced production of AtSOT12 may have rendered this enzyme to not only modify endogenous molecules such as salicylic acid as we previously reported, but also sulphonate pathogen-produced toxic small molecules to protect them from infection. Sulphonation of small molecules in plants may constitute a rapid way to inactivate or change the physiochemical properties of biologically active molecules that could have profound effects on plant growth, development and defence. © 2015 John Wiley & Sons Ltd.

  16. [Application of cantharidin, podophyllotoxin, and salicylic acid in recalcitrant plantar warts. A preliminary study].

    PubMed

    López-López, Daniel; Agrasar-Cruz, Carlos; Bautista-Casasnovas, Adolfo; Álvarez-Castro, Carlos Javier

    2015-01-01

    Plantar warts often are refractory to any treatment and can last for decades in adults. Recalcitrant warts are defined as those that have persisted for more than two years, or after at least two treatment modalities. A total of 15 consecutive patients with recalcitrant plantar warts were included in this preliminary study. The treatment consisted of applying one to two sessions that comprised compounding 1% cantharidin, 5% of podophyllotoxin, and 30% salicylic acid (CPS), with an interval between applications of four weeks. With treatment and subsequent follow-up for six months, there was complete eradication of lesions in 15 patients, eight (53.3%) required a single application of the solution, and seven (46.7%) two applications, with no side effects. Patient satisfaction related to treatment was measured by a visual analog scale (VAS) of 10 cm in length, with an average score 9.73 ± 0.46, and all said they would proceed with the treatment again if necessary. Topical treatment by compounding is safe, effective, and a promising therapeutic modality when applied in recalcitrant plantar warts.

  17. Development of an invitro technique to use mouse embryonic stem cell in evaluating effects of xenobiotics

    EPA Science Inventory

    Our goal has been to develop a high-throughput, in vitro technique for evaluating the effects of xenobiotics using mouse embryonic stem cells (mESCs). We began with the Embryonic Stem Cell Test (EST), which is used to predict the embryotoxic potential of a test compound by combin...

  18. Structure-activity relationships for xenobiotic transport substrates and inhibitory ligands of P-glycoprotein.

    PubMed Central

    Bain, L J; McLachlan, J B; LeBlanc, G A

    1997-01-01

    The multixenobiotic resistance phenotype is characterized by the reduced accumulation of xenobiotics by cells or organisms due to increased efflux of the compounds by P-glycoprotein (P-gp) or related transporters. An extensive xenobiotic database, consisting primarily of pesticides, was utilized in this study to identify molecular characteristics that render a xenobiotic susceptible to transport by or inhibition of P-gp. Transport substrates were differentiated by several molecular size/shape parameters, lipophilicity, and hydrogen bonding potential. Electrostatic features differentiated inhibitory ligands from compounds not catagorized as transport substrates and that did no interact with P-gp. A two-tiered system was developed using the derived structure-activity relationships to identify P-gp transport substrates and inhibitory ligands. Prediction accuracy of the approach was 82%. We then validated the system using six additional pesticides of which tow were predicted to be P-gp inhibitors and four were predicted to be noninteractors, based upon the structure-activity analyses. Experimental determinations using cells transfected with the human MDR1 gene demonstrated that five of the six pesticides were properly catagorized by the structure-activity analyses (83% accuracy). Finally, structure-activity analyses revealed that among P-gp inhibitors, relative inhibitory potency can be predicted based upon the surface area or volume of the compound. These results demonstrate that P-gp transport substrates and inhibitory ligands can be distinguished using molecular characteristics. Molecular characteristics of transport substrates suggest that P-gp may function in the elimination of hydroxylated metabolites of xenobiotics. Images Figure 1. A Figure 1. B Figure 1. C Figure 1. D Figure 1. E Figure 1. F Figure 1. G Figure 1. H Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Figure 3. A Figure 3. B PMID:9347896

  19. The Chemically Inducible Plant Cytochrome P450 CYP76B1 Actively Metabolizes Phenylureas and Other Xenobiotics1

    PubMed Central

    Robineau, Tiburce; Batard, Yannick; Nedelkina, Svetlana; Cabello-Hurtado, Francisco; LeRet, Monique; Sorokine, Odile; Didierjean, Luc; Werck-Reichhart, Danièle

    1998-01-01

    Cytochrome P450s (P450s) constitute one of the major classes of enzymes that are responsible for detoxification of exogenous molecules both in animals and plants. On the basis of its inducibility by exogenous chemicals, we recently isolated a new plant P450, CYP76B1, from Jerusalem artichoke (Helianthus tuberosus) and showed that it was capable of dealkylating a model xenobiotic compound, 7-ethoxycoumarin. In the present paper we show that CYP76B1 is more strongly induced by foreign compounds than other P450s isolated from the same plant, and metabolizes with high efficiency a wide range of xenobiotics, including alkoxycoumarins, alkoxyresorufins, and several herbicides of the class of phenylureas. CYP76B1 catalyzes the double N-dealkylation of phenylureas with turnover rates comparable to those reported for physiological substrates and produces nonphytotoxic compounds. Potential uses for CYP76B1 thus include control of herbicide tolerance and selectivity, as well as soil and groundwater bioremediation. PMID:9808750

  20. Systems approaches evaluating the perturbation of xenobiotic metabolism in response to cigarette smoke exposure in nasal and bronchial tissues.

    PubMed

    Iskandar, Anita R; Martin, Florian; Talikka, Marja; Schlage, Walter K; Kostadinova, Radina; Mathis, Carole; Hoeng, Julia; Peitsch, Manuel C

    2013-01-01

    Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS) implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes an attractive tool for chemical risk assessment because of its responsiveness against toxic compounds, including those present in CS. This study describes an efficient integration from transcriptomic data to quantitative measures, which reflect the responses against xenobiotics that are captured in a biological network model. We show here that our novel systems approach can quantify the perturbation in the network model of xenobiotic metabolism. We further show that this approach efficiently compares the perturbation upon CS exposure in bronchial and nasal epithelial cells in vivo samples obtained from smokers. Our observation suggests the xenobiotic responses in the bronchial and nasal epithelial cells of smokers were similar to those observed in their respective organotypic models exposed to CS. Furthermore, the results suggest that nasal tissue is a reliable surrogate to measure xenobiotic responses in bronchial tissue.

  1. Systems Approaches Evaluating the Perturbation of Xenobiotic Metabolism in Response to Cigarette Smoke Exposure in Nasal and Bronchial Tissues

    PubMed Central

    Iskandar, Anita R.; Martin, Florian; Talikka, Marja; Schlage, Walter K.; Mathis, Carole; Hoeng, Julia; Peitsch, Manuel C.

    2013-01-01

    Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS) implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes an attractive tool for chemical risk assessment because of its responsiveness against toxic compounds, including those present in CS. This study describes an efficient integration from transcriptomic data to quantitative measures, which reflect the responses against xenobiotics that are captured in a biological network model. We show here that our novel systems approach can quantify the perturbation in the network model of xenobiotic metabolism. We further show that this approach efficiently compares the perturbation upon CS exposure in bronchial and nasal epithelial cells in vivo samples obtained from smokers. Our observation suggests the xenobiotic responses in the bronchial and nasal epithelial cells of smokers were similar to those observed in their respective organotypic models exposed to CS. Furthermore, the results suggest that nasal tissue is a reliable surrogate to measure xenobiotic responses in bronchial tissue. PMID:24224167

  2. F420H2-Dependent Degradation of Aflatoxin and other Furanocoumarins Is Widespread throughout the Actinomycetales

    PubMed Central

    Lapalikar, Gauri V.; Taylor, Matthew C.; Warden, Andrew C.; Scott, Colin; Russell, Robyn J.; Oakeshott, John G.

    2012-01-01

    Two classes of F420-dependent reductases (FDR-A and FDR-B) that can reduce aflatoxins and thereby degrade them have previously been isolated from Mycobacterium smegmatis. One class, the FDR-A enzymes, has up to 100 times more activity than the other. F420 is a cofactor with a low reduction potential that is largely confined to the Actinomycetales and some Archaea and Proteobacteria. We have heterologously expressed ten FDR-A enzymes from diverse Actinomycetales, finding that nine can also use F420H2 to reduce aflatoxin. Thus FDR-As may be responsible for the previously observed degradation of aflatoxin in other Actinomycetales. The one FDR-A enzyme that we found not to reduce aflatoxin belonged to a distinct clade (herein denoted FDR-AA), and our subsequent expression and analysis of seven other FDR-AAs from M. smegmatis found that none could reduce aflatoxin. Certain FDR-A and FDR-B enzymes that could reduce aflatoxin also showed activity with coumarin and three furanocoumarins (angelicin, 8-methoxysporalen and imperatorin), but none of the FDR-AAs tested showed any of these activities. The shared feature of the compounds that were substrates was an α,β-unsaturated lactone moiety. This moiety occurs in a wide variety of otherwise recalcitrant xenobiotics and antibiotics, so the FDR-As and FDR-Bs may have evolved to harness the reducing power of F420 to metabolise such compounds. Mass spectrometry on the products of the FDR-catalyzed reduction of coumarin and the other furanocoumarins shows their spontaneous hydrolysis to multiple products. PMID:22383957

  3. F420H2-dependent degradation of aflatoxin and other furanocoumarins is widespread throughout the actinomycetales.

    PubMed

    Lapalikar, Gauri V; Taylor, Matthew C; Warden, Andrew C; Scott, Colin; Russell, Robyn J; Oakeshott, John G

    2012-01-01

    Two classes of F(420)-dependent reductases (FDR-A and FDR-B) that can reduce aflatoxins and thereby degrade them have previously been isolated from Mycobacterium smegmatis. One class, the FDR-A enzymes, has up to 100 times more activity than the other. F(420) is a cofactor with a low reduction potential that is largely confined to the Actinomycetales and some Archaea and Proteobacteria. We have heterologously expressed ten FDR-A enzymes from diverse Actinomycetales, finding that nine can also use F(420)H(2) to reduce aflatoxin. Thus FDR-As may be responsible for the previously observed degradation of aflatoxin in other Actinomycetales. The one FDR-A enzyme that we found not to reduce aflatoxin belonged to a distinct clade (herein denoted FDR-AA), and our subsequent expression and analysis of seven other FDR-AAs from M. smegmatis found that none could reduce aflatoxin. Certain FDR-A and FDR-B enzymes that could reduce aflatoxin also showed activity with coumarin and three furanocoumarins (angelicin, 8-methoxysporalen and imperatorin), but none of the FDR-AAs tested showed any of these activities. The shared feature of the compounds that were substrates was an α,β-unsaturated lactone moiety. This moiety occurs in a wide variety of otherwise recalcitrant xenobiotics and antibiotics, so the FDR-As and FDR-Bs may have evolved to harness the reducing power of F(420) to metabolise such compounds. Mass spectrometry on the products of the FDR-catalyzed reduction of coumarin and the other furanocoumarins shows their spontaneous hydrolysis to multiple products.

  4. Effect of environmental pollutants on oxytocin synthesis and secretion from corpus luteum and on contractions of uterus from pregnant cows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlynarczuk, Jaroslaw; Wrobel, Michal H.; Kotwica, Jan, E-mail: j.kotwica@pan.olsztyn.p

    Chloro-organic compounds are persistent environmental pollutants and affect many reproductive processes. Oxytocin (OT) synthesized in luteal cells is a local regulator of ovarian activity and uterine contractions. Therefore the effect of xenobiotics on the OT prohormone synthesis, secretion of OT and progesterone (P4) from luteal cells and on myometrial contractions during early pregnancy in cows was investigated. Luteal cells and myometrial strips from a cow at early pregnancy were treated with polychlorinated biphenyl 77 (PCB 77), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE) and hexachlorocyclohexane (HCH) (1 or 10 ng/ml). The mRNA expression of neurophysin-I/oxytocin (NP-I/OT) and peptidyl-glycine-{alpha}-amidating mono-oxygenase (PGA) and concentration ofmore » OT and P4 were determined by RT-PCR and EIA, respectively. Moreover, the effect of xenobiotics given with P4 (12 ng/ml) on the basal and OT (10{sup -7} M) stimulated contractions of myometrial strips was studied. Xenobiotics increased (P < 0.05) OT secretion but DDE only stimulated P4 secretion. The ratio of P4 to OT in culture medium was decreased by all xenobiotics during 9-12 weeks of pregnancy. All xenobiotics, except HCH, increased (P < 0.05) mRNA expression of NP-I/OT during all stages of pregnancy and all treatments decreased (P < 0.05) expression of mRNA for PGA during 9-12 weeks of pregnancy. Myometrial strips were relaxed (P < 0.01) after pre-incubation with P4, while each of the xenobiotics jointly with P4 increased (P < 0.01) myometrial contractions. In conclusion, the xenobiotics used increased both expression of mRNA for genes involved in OT synthesis and secretion of OT from luteal cells. This decreases the ratio of P4 to OT and presumably, in this manner, the chloro-organic compounds can influence uterine contractions and enhance risk of abortions in pregnant females.« less

  5. Free Radical Mechanisms of Xenobiotic Mammalian Cytotoxicities

    DTIC Science & Technology

    1988-10-31

    cytochrome P450 is small compared to that of the liver (about 0.1%), cardiovascular tissues may be more susceptible to oxidative injury because of the... injury participates in the pathogenic mechanisms of many lipophilic xenobiotic compounds). The most dramatic finding is our demonstration that five...UPID PEROXIDATION BETTER THAN THE INITIAL RADICAL OR HYDROPEROXIDE. INDIRECT IRP EFFECTS ON FREE RADICAL MEMBRANE INJURY : 4) POISONING OF THE ELECTRON

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton-Manning, J.R.; Hotchkiss, J.A.; Ding, Xinxin

    The nasal mucosa, the first tissue of contact for inhaled xenobiotics, possesses substantial enobiotic-metabolizing capacti. Enzymes of the nasal cavity may metabolize xenobiotics to innocuous, more water-soluble compounds that are eliminated from the body, or they may bioactivate them to toxic metabolites. These toxic metabolites may find to cellular macromolecules in the nasal cavity or be transported to other parts of the body where they may react. Nasal carcinogenesis in rodents often results from bioactivation of xenobiotics. The increased incidences of nasal tumors associated with certain occupations suggest that xenobiotic bioactivation may be important in human nasal cancer etiology, asmore » well. The increasing popularity of the nose as a route of drug administration makes information concerning nasal drug metabolism and disposition vital to accomplish therapeutic goals. For these reasons, the study of xenobiotic-met abolizing capacity of the nasal cavity is an important area of health-related research. In the present study, we have confirmed the presence of CYP2A6 mRNA in human respiratory mucosa.« less

  7. Metagenomic analysis of an ecological wastewater treatment plant's microbial communities and their potential to metabolize pharmaceuticals.

    PubMed

    Balcom, Ian N; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm.

  8. Metagenomic analysis of an ecological wastewater treatment plant’s microbial communities and their potential to metabolize pharmaceuticals

    PubMed Central

    Balcom, Ian N.; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm. PMID:27610223

  9. Epigenetic Programming of Breast Cancer and Nutrition Prevention

    DTIC Science & Technology

    2011-05-01

    is to test the role of xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin -like and...tumor promoter 2,3,7,8 tetrachlorobenzo-p- dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XRE...phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonizes at physiologically relevant doses (1  mol /L) the TCDD-induced

  10. Draft Genome Sequence of Paenibacillus sp. Strain DMB20, Isolated from Alang Ship-Breaking Yard, Which Harbors Genes for Xenobiotic Degradation

    PubMed Central

    Shah, Binal; Jain, Kunal; Patel, Namrata; Pandit, Ramesh; Patel, Anand; Joshi, Chaitanya G.

    2015-01-01

    Paenibacillus sp. strain DMB20, in cometabolism with other Proteobacteria and Firmicutes, exhibits azoreduction of textile dyes. Here, we report the draft genome sequence of this bacterium, consisting of 6,647,181 bp with 7,668 coding sequences (CDSs). The data presented highlight multiple sets of functional genes associated with xenobiotic compound degradation. PMID:26067950

  11. Xenobiotic Compounds Degradation by Heterologous Expression of a Trametes sanguineus Laccase in Trichoderma atroviride

    PubMed Central

    Balcázar-López, Edgar; Méndez-Lorenzo, Luz Helena; Batista-García, Ramón Alberto; Esquivel-Naranjo, Ulises; Ayala, Marcela; Kumar, Vaidyanathan Vinoth; Savary, Olivier; Cabana, Hubert; Herrera-Estrella, Alfredo; Folch-Mallol, Jorge Luis

    2016-01-01

    Fungal laccases are enzymes that have been studied because of their ability to decolorize and detoxify effluents; they are also used in paper bleaching, synthesis of polymers, bioremediation, etc. In this work we were able to express a laccase from Trametes (Pycnoporus) sanguineus in the filamentous fungus Trichoderma atroviride. For this purpose, a transformation vector was designed to integrate the gene of interest in an intergenic locus near the blu17 terminator region. Although monosporic selection was still necessary, stable integration at the desired locus was achieved. The native signal peptide from T. sanguineus laccase was successful to secrete the recombinant protein into the culture medium. The purified, heterologously expressed laccase maintained similar properties to those observed in the native enzyme (Km and kcat and kcat/km values for ABTS, thermostability, substrate range, pH optimum, etc). To determine the bioremediation potential of this modified strain, the laccase-overexpressing Trichoderma strain was used to remove xenobiotic compounds. Phenolic compounds present in industrial wastewater and bisphenol A (an endocrine disruptor) from the culture medium were more efficiently removed by this modified strain than with the wild type. In addition, the heterologously expressed laccase was able to decolorize different dyes as well as remove benzo[α]pyrene and phenanthrene in vitro, showing its potential for xenobiotic compound degradation. PMID:26849129

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Hauwaert, Cynthia; Savary, Grégoire; Buob, David

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2more » immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies. - Highlights: • Renal proximal tubular (PT) cells are highly sensitive to xenobiotics. • Expression of genes involved in xenobiotic disposition was measured. • PT cells exhibited the highest similarities with renal tissue.« less

  13. Draft Genome Sequence of Paenibacillus sp. Strain DMB20, Isolated from Alang Ship-Breaking Yard, Which Harbors Genes for Xenobiotic Degradation.

    PubMed

    Shah, Binal; Jain, Kunal; Patel, Namrata; Pandit, Ramesh; Patel, Anand; Joshi, Chaitanya G; Madamwar, Datta

    2015-06-11

    Paenibacillus sp. strain DMB20, in cometabolism with other Proteobacteria and Firmicutes, exhibits azoreduction of textile dyes. Here, we report the draft genome sequence of this bacterium, consisting of 6,647,181 bp with 7,668 coding sequences (CDSs). The data presented highlight multiple sets of functional genes associated with xenobiotic compound degradation. Copyright © 2015 Shah et al.

  14. Biodegradation of Basic Violet 3 by Candida krusei isolated from textile wastewater.

    PubMed

    Deivasigamani, Charumathi; Das, Nilanjana

    2011-11-01

    Basic Violet 3 (BV) belongs to the most important group of synthetic colorants and is used extensively in textile industries. It is considered as xenobiotic compound which is recalcitrant to biodegradation. As Candida krusei could not use BV as sole carbon source, experiments were conducted to study the effect of cosubstrates on decolorization of BV in semi synthetic medium using glucose, sucrose, lactose, maltose, yeast extract, peptone, urea and ammonium sulphate. Maximum decolorization (74%) was observed in media supplemented with sucrose. Use of sugarcane bagasse extract as sole nutrient source showed 100% decolorization of BV within 24 h under optimized condition. UV-visible, FTIR spectral analysis and HPLC analysis confirmed the biodegradation of BV. Six degradation products were isolated and identified. We propose the biodegradation pathway for BV which occurs via stepwise reduction and demethylation process to yield mono-, di-, tri-, tetra-, penta- and hexa-demethylated BV species which was degraded completely. The study of the enzymes responsible for decolorization showed the activities of lignin peroxidase, lacasse, tyrosinase, NADH-DCIP reductase, MG reductase and azoreductase in cells before and after decolorization. A significant increase in activities of NADH-DCIP reductase and laccase was observed in the cells after decolorization. The yeast C. krusei could show the ability to decolorize the textile dye BV using inexpensive source like sugarcane bagasse extract for decolorization.

  15. Tracing the evolution of degraders in activated sludge during the sludge’s acclimation to a xenobiotic organic

    NASA Astrophysics Data System (ADS)

    Chong, N. M.; Fan, C. H.; Yang, Y. C.

    2017-01-01

    The molecular biology method of high-throughput pyrosequencing was employed to examine the change of activated sludge community structures during the process in which activated sludge was acclimated to and degraded a target xenobiotic. The sample xenobiotic organic compound used as the activated sludge acclimation target was the herbicide 2,4-dichlorphenoxyacetic acid (2,4-D). Indigenous activated sludge microorganisms were acclimated to 2,4-D as the sole carbon source in both the batch and the continuous-flow reaction modes. Sludge masses at multiple time points during the course of acclimation were subjected to pyrosequencing targeting the microorganisms’ 16S rRNA genes. With the bacterial 16S rRNA sequencing results the genera that increased in abundance were checked with degradative pathway databases or literature to confirm that they are commonly seen as potent degraders of 2,4-D. From this systematic examination of degrader changes at time points during activated sludge acclimation and degradation of the target xenobiotic, the trend of degrader evolution in activated sludge over the sludge’s acclimation process to a xenobiotic was traced.

  16. Xenobiotics and the Glucocorticoid Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Linda S M, E-mail: linda.gulliver@otago.

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmunemore » processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid Receptor. • Involvement of Glucocorticoid Receptor in multiple pathologies. • Novel xenobiotic ligands for Glucocorticoid Receptor. • Potential for multifaceted Glucocorticoid Receptor-targeted pharmacological interventions.« less

  17. Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation

    PubMed Central

    Demeter, Marc A.; Lemire, Joseph A.; Yue, Gordon; Ceri, Howard; Turner, Raymond J.

    2015-01-01

    Oil sands surface mining for bitumen results in the formation of oil sands process water (OSPW), containing acutely toxic naphthenic acids (NAs). Potential exists for OSPW toxicity to be mitigated by aerobic degradation of the NAs by microorganisms indigenous to the oil sands tailings ponds, the success of which is dependent on the methods used to exploit the metabolisms of the environmental microbial community. Having hypothesized that the xenobiotic tolerant biofilm mode-of-life may represent a feasible way to harness environmental microbes for ex situ treatment of OSPW NAs, we aerobically grew OSPW microbes as single and mixed species biofilm and planktonic cultures under various conditions for the purpose of assaying their ability to tolerate and degrade NAs. The NAs evaluated were a diverse mixture of eight commercially available model compounds. Confocal microscopy confirmed the ability of mixed and single species OSPW cultures to grow as biofilms in the presence of the NAs evaluated. qPCR enumeration demonstrated that the addition of supplemental nutrients at concentrations of 1 g L-1 resulted in a more numerous population than 0.001 g L-1 supplementation by approximately 1 order of magnitude. GC-FID analysis revealed that mixed species cultures (regardless of the mode of growth) are the most effective at degrading the NAs tested. All constituent NAs evaluated were degraded below detectable limits with the exception of 1-adamantane carboxylic acid (ACA); subsequent experimentation with ACA as the sole NA also failed to exhibit degradation of this compound. Single species cultures degraded select few NA compounds. The degradation trends highlighted many structure-persistence relationships among the eight NAs tested, demonstrating the effect of side chain configuration and alkyl branching on compound recalcitrance. Of all the isolates, the Rhodococcus spp. degraded the greatest number of NA compounds, although still less than the mixed species cultures. Overall, these observations lend support to the notion that harnessing a community of microorganisms as opposed to targeted isolates can enhance NA degradation ex situ. Moreover, the variable success caused by NA structure related persistence emphasized the difficulties associated with employing bioremediation to treat complex, undefined mixtures of toxicants such as OSPW NAs. PMID:26388865

  18. Classification and modelling of non-extractable residue (NER) formation from xenobiotics in soil - a synthesis

    NASA Astrophysics Data System (ADS)

    Kaestner, Matthias; Nowak, Karolina; Miltner, Anja; Trapp, Stefan; Schaeffer, Andreas

    2014-05-01

    This presentation provides a comprehensive overview about the formation of non-extractable residues (NER) from organic pesticides and contaminants in soil and tries classifying the different types. Anthropogenic organic chemicals are deliberately (e.g. pesticides) or unintentionally (e.g. polyaromatic hydrocarbons [PAH], chlorinated solvents, pharmaceuticals) released in major amounts to nearly all compartments of the environment. Soils and sediments as complex matrices provide a wide variety of binding sites and are the major sinks for these compounds. Many of the xenobiotics entering soil undergo turnover processes and can be volatilised, leached to the groundwater, degraded by microorganisms or taken up and enriched by living organisms. Xenobiotic NER may be derived from parent compounds and primary metabolites that are sequestered (sorbed or entrapped) within the soil organic matter (type I NER) or can be covalently bound (type II NER). Especially type I NER may pose a considerably environmental risk of potential release. However, NER resulting from productive biodegradation, which means the conversion of carbon (or nitrogen) from the compounds into microbial biomass molecules during microbial degradation (type III, bioNER), do not pose any risk. Experimental and analytical approaches to clearly distinguish between the types are provided and a model to prospectively estimate their fate in soil is proposed.

  19. Personal care compounds in a reed bed sludge treatment system.

    PubMed

    Chen, Xijuan; Pauly, Udo; Rehfus, Stefan; Bester, Kai

    2009-08-01

    Sewage sludge (also referred to as biosolids) has long been used as fertilizer on agricultural land. The usage of sludge as fertilizer is controversial because of possible high concentration of xenobiotic compounds, heavy metals as well as pathogens. In this study, the fate of the xenobiotic compounds triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol), OTNE (1-(2,3,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydro-naphthalen-2-yl)ethan-1-one), HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran), HHCB-lactone, AHTN (7-acetyl-1,1,3,4,4,6 hexamethyl-1,2,3,4 tetrahydronaphthalene), and DEHP (bis(2-ethylhexyl)phthalate) in advanced biological treatment of sludge was determined. During 13months of field-incubation of the sludge in reed beds, the xenobiotic compounds were analysed. The bactericide triclosan was reduced to 60%, 45%, and 32% of its original concentration in the top, middle, and bottom layer. The fragrance OTNE was decreased to 42% in the top layer, 53% in the middle layer, and 70% in the bottom layer, respectively. For DEHP a reduction of 70%, 71%, and 40% was observed in the top, middle, and bottom layer, respectively. The polycyclic musk compounds HHCB, AHTN, and the primary metabolite of HHCB, i.e., HHCB-lactone showed no degradation in 13months during the experimental period in this installation. Tentative half-lives of degradation of triclosan, OTNE and DEHP were estimated to be 315-770d, 237-630d, and 289-578d, respectively.

  20. Transcriptional regulation of xenobiotic detoxification in Drosophila

    PubMed Central

    Misra, Jyoti R.; Horner, Michael A.; Lam, Geanette; Thummel, Carl S.

    2011-01-01

    Living organisms, from bacteria to humans, display a coordinated transcriptional response to xenobiotic exposure, inducing enzymes and transporters that facilitate detoxification. Several transcription factors have been identified in vertebrates that contribute to this regulatory response. In contrast, little is known about this pathway in insects. Here we show that the Drosophila Nrf2 (NF-E2-related factor 2) ortholog CncC (cap ‘n’ collar isoform-C) is a central regulator of xenobiotic detoxification responses. A binding site for CncC and its heterodimer partner Maf (muscle aponeurosis fibromatosis) is sufficient and necessary for robust transcriptional responses to three xenobiotic compounds: phenobarbital (PB), chlorpromazine, and caffeine. Genetic manipulations that alter the levels of CncC or its negative regulator, Keap1 (Kelch-like ECH-associated protein 1), lead to predictable changes in xenobiotic-inducible gene expression. Transcriptional profiling studies reveal that more than half of the genes regulated by PB are also controlled by CncC. Consistent with these effects on detoxification gene expression, activation of the CncC/Keap1 pathway in Drosophila is sufficient to confer resistance to the lethal effects of the pesticide malathion. These studies establish a molecular mechanism for the regulation of xenobiotic detoxification in Drosophila and have implications for controlling insect populations and the spread of insect-borne human diseases. PMID:21896655

  1. Cytotoxic effects and aromatase inhibition by xenobiotic endocrine disrupters alone and in combination.

    PubMed

    Benachour, Nora; Moslemi, Safa; Sipahutar, Herbert; Seralini, Gilles-Eric

    2007-07-15

    Xenobiotics may cause long-term adverse effects in humans, especially at the embryonic level, raising questions about their levels of exposure, combined effects, and crucial endpoints. We are interested in the possible interactions between xenobiotic endocrine disrupters, cellular viability and androgen metabolism. Accordingly, we tested aroclor 1254 (A1254), atrazine (AZ), o,p'-DDT, vinclozolin (VZ), p,p'-DDE, bisphenol A (BPA), chlordecone (CD), nonylphenol (NP), tributylin oxide (TBTO), and diethylstilbestrol (DES) for cellular toxicity against human embryonic 293 cells, and activity against cellular aromatase, but also on placental microsomes and on the purified equine enzyme. Cellular viability was affected in 24 h by all the xenobiotics with a threshold at 50 microM (except for TBTO and DES, 10 microM threshold), and aromatase was inhibited at non-toxic doses. In combination synergism was observed reducing the threshold values of toxicity to 4-10 microM, and aromatase activity by 50% in some cases. In placental microsomes the most active xenobiotics rapidly inhibited microsomal aromatase in a manner independent of NADPH metabolism. Prolonged exposures to low doses in cells generally amplified by 50 times aromatase inhibition. These xenobiotics may act by inhibition of the active site or by allosteric effects on the enzyme. Bioaccumulation is a feature of some xenobiotics, especially chlordecone, DDT and DDE, and low level chronic exposures can also affect cell signaling mechanisms. This new information about the mechanism of action of these xenobiotics will assist in improved molecular design with a view to providing safer compounds for use in the (human) environment.

  2. Molecular cloning of a family of xenobiotic-inducible drosophilid cytochrome P450s: Evidence for involvement in host-plant allelochemical resistance

    PubMed Central

    Danielson, Phillip B.; MacIntyre, Ross J.; Fogleman, James C.

    1997-01-01

    Cytochrome P450s constitute a superfamily of genes encoding mostly microsomal hemoproteins that play a dominant role in the metabolism of a wide variety of both endogenous and foreign compounds. In insects, xenobiotic metabolism (i.e., metabolism of insecticides and toxic natural plant compounds) is known to involve members of the CYP6 family of cytochrome P450s. Use of a 3′ RACE (rapid amplification of cDNA ends) strategy with a degenerate primer based on the conserved cytochrome P450 heme-binding decapeptide loop resulted in the amplification of four cDNA sequences representing another family of cytochrome P450 genes (CYP28) from two species of isoquinoline alkaloid-resistant Drosophila and the cosmopolitan species Drosophila hydei. The CYP28 family forms a monophyletic clade with strong regional homologies to the vertebrate CYP3 family and the insect CYP6 family (both of which are involved in xenobiotic metabolism) and to the insect CYP9 family (of unknown function). Induction of mRNA levels for three of the CYP28 cytochrome P450s by toxic host-plant allelochemicals (up to 11.5-fold) and phenobarbital (up to 49-fold) corroborates previous in vitro metabolism studies and suggests a potentially important role for the CYP28 family in determining patterns of insect–host-plant relationships through xenobiotic detoxification. PMID:9380713

  3. Natural Marine and Synthetic Xenobiotics Get on Nematode's Nerves: Neuro-Stimulating and Neurotoxic Findings in Caenorhabditis elegans.

    PubMed

    Lieke, Thora; Steinberg, Christian E W; Ju, Jingjuan; Saul, Nadine

    2015-05-06

    Marine algae release a plethora of organic halogenated compounds, many of them with unknown ecological impact if environmentally realistic concentrations are applied. One major compound is dibromoacetic acid (DBAA) which was tested for neurotoxicity in the invertebrate model organism Caenorhabditis elegans (C. elegans). This natural compound was compared with the widespread synthetic xenobiotic tetrabromobisphenol-A (TBBP-A) found in marine sediments and mussels. We found a neuro-stimulating effect for DBAA; this is contradictory to existing toxicological reports of mammals that applied comparatively high dosages. For TBBP-A, we found a hormetic concentration-effect relationship. As chemicals rarely occur isolated in the environment, a combination of both organobromines was also examined. Surprisingly, the presence of DBAA increased the toxicity of TBBP-A. Our results demonstrated that organohalogens have the potential to affect single organisms especially by altering the neurological processes, even with promoting effects on exposed organisms.

  4. Natural Marine and Synthetic Xenobiotics Get on Nematode’s Nerves: Neuro-Stimulating and Neurotoxic Findings in Caenorhabditis elegans

    PubMed Central

    Lieke, Thora; Steinberg, Christian E. W.; Ju, Jingjuan; Saul, Nadine

    2015-01-01

    Marine algae release a plethora of organic halogenated compounds, many of them with unknown ecological impact if environmentally realistic concentrations are applied. One major compound is dibromoacetic acid (DBAA) which was tested for neurotoxicity in the invertebrate model organism Caenorhabditis elegans (C. elegans). This natural compound was compared with the widespread synthetic xenobiotic tetrabromobisphenol-A (TBBP-A) found in marine sediments and mussels. We found a neuro-stimulating effect for DBAA; this is contradictory to existing toxicological reports of mammals that applied comparatively high dosages. For TBBP-A, we found a hormetic concentration-effect relationship. As chemicals rarely occur isolated in the environment, a combination of both organobromines was also examined. Surprisingly, the presence of DBAA increased the toxicity of TBBP-A. Our results demonstrated that organohalogens have the potential to affect single organisms especially by altering the neurological processes, even with promoting effects on exposed organisms. PMID:25955755

  5. Non-targeted, high resolution mass spectrometry strategy for simultaneous monitoring of xenobiotics and endogenous compounds in green sea turtles on the Great Barrier Reef.

    PubMed

    Heffernan, Amy L; Gómez-Ramos, Maria M; Gaus, Caroline; Vijayasarathy, Soumini; Bell, Ian; Hof, Christine; Mueller, Jochen F; Gómez-Ramos, Maria J

    2017-12-01

    Chemical contamination poses a threat to ecosystem, biota and human health, and identifying these hazards is a complex challenge. Traditional hazard identification relies on a priori-defined targets of limited chemical scope, and is generally inappropriate for exploratory studies such as explaining toxicological effects in environmental systems. Here we present a non-target high resolution mass spectrometry environmental monitoring study with multivariate statistical analysis to simultaneously detect biomarkers of exposure (e.g. xenobiotics) and biomarkers of effect in whole turtle blood. Borrowing the concept from clinical chemistry, a case-control sampling approach was used to investigate the potential influence of xenobiotics of anthropogenic origin on free-ranging green sea turtles (Chelonia mydas) from a remote, offshore 'control' site; and two coastal 'case' sites influenced by urban/industrial and agricultural activities, respectively, on the Great Barrier Reef in North Queensland, Australia. Multiple biomarkers of exposure, including sulfonic acids (n=9), a carbamate insecticide metabolite, and other industrial chemicals; and five biomarkers of effect (lipid peroxidation products), were detected in case sites. Additionally, two endogenous biomarkers of neuroinflammation and oxidative stress were identified, and showed moderate-to-strong correlations with clinical measures of inflammation and liver dysfunction. Our data filtering strategy overcomes limitations of traditional a priori selection of target compounds, and adds to the limited environmental xenobiotic metabolomics literature. To our knowledge this is the first case-control study of xenobiotics in marine megafauna, and demonstrates the utility of green sea turtles to link internal and external exposure, to explain potential toxicological effects in environmental systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biotransformation of BTEX under anaerobic, denitrifying conditions: Field and laboratory observations

    NASA Astrophysics Data System (ADS)

    Barbaro, J. R.; Barker, J. F.; Lemon, L. A.; Mayfield, C. I.

    1992-11-01

    Three natural-gradient injection experiments in the Borden aquifer (Ontario, Canada) (˜ 100-300 days in duration) and a 452-day laboratory microcosm experiment were performed to evaluate the biotransformation of BTEX (benzene, toluene, ethylbenzene and o-, m-, p-xylenes) derived from gasoline under anaerobic, denitrifying conditions. Both NO 3-- amended and unamended control (i.e. no NO 3- added) experiments were performed. In the unamended control injection experiment, toluene biotransformed between 1 and 5 m from the injection well. All other aromatic compounds were recalcitrant in this field experiment and all aromatic compounds were recalcitrant in unamended control microcosms. After an acclimatization period, toluene biotransformed relatively rapidly in the presence of NO 3- in both the laboratory and field to a residual level of ˜ 100 μg L -1. In the presence of NO 3- the xylene isomers and ethylbenzene biotransformed to a lesser degree. Benzene was recalcitrant in all experiments. The acetylene blockage technique was used to demonstrate that denitrifying bacteria were active in the presence of NO 3-. In the NO 3--amended injection experiments, little BTEX mass loss occurred beyond the 1-m multilevel-piezometer fence. However, NO 3- continued to decline downgradient, suggesting that other sources of carbon were being utilized by denitrifying bacteria in preference to residual BTEX. In addition to observations on mass loss, these experiments provided evidence of inhibition of BTEX biotransformation in the presence of acetylene, and competitive utilization between toluene, ethylbenzene and the xylene isomers. Given the recalcitrance of benzene and high thresholds of the compounds that did biotransform, the addition of NO 3- as an alternate electron acceptor would not be successful in this aquifer as a remedial measure.

  7. Xenobiotics: Chapter 15

    USGS Publications Warehouse

    Bridges, Christine M.; Semlitsch, Raymond D.; Lannoo, Michael

    2005-01-01

    While a number of compounds have been reported as toxic to amphibians, until recently, there have been conspicuously few ecotoxicological studies concerning amphibians. Studies are now focusing on the effects of xenobiotics on amphibians, an interest likely stimulated by widespread reports of amphibian declines. It has been speculated that chemical contamination may be partially to blame for some documented amphibian declines, by disrupting growth, reproduction, and behavior. However, evidence that xenobiotics are directly to blame for population declines is sparse because environmental concentrations are typically not great enough to generate direct mortality. Although the effects of environmental contaminants on the amphibian immune system are currently unknown, it is possible that exposure to stressors such as organic pollutants (which enter ecosystems in the form of pesticides) may depress immune system function, thus allowing greater susceptibility to fungal infections. This chapter discusses toxicity testing for xenobiotics and presents the results of a study that has focused on the subtle effects of sublethal concentrations of the chemical carbaryl on tadpoles.

  8. Influence of xenobiotics on the microbiological and agrochemical parameters of soddy-podzolic soil

    NASA Astrophysics Data System (ADS)

    Vakkerov-Kouzova, N. D.

    2010-08-01

    We studied the influence of various chemical compounds, i.e., azobenzene (an insecticide and acaricide), nitrification inhibitors (DCD, dicyandiamide and DMPP, and 3,4-dimetylpyrazolphosphate), and inhibitors of urease activity (HQ-hydroquinone), on the agrochemical and microbiological parameters of a soddy-podzolic soil. It is proved that these xenobiotics are able to influence the agrochemical parameters (the pH and the content of NO{3/-} and NH{4/+}, the microbial activity (the basal respiration, the microbial mass carbon, and the microbial quotient), and the number of bacteria of different physiological groups in soddypodzolic soil. The influence of the xenobiotics was preserved for some time, which testified to their persistence in the soil. Upon cultivating the soil microorganisms in different media, the growth of the heterotrophic bacteria was inhibited, the radial growth velocity was slowed down, and the sporogenesis of the micromycetes was retarded. The toxic effect of the xenobiotics was higher with their increasing concentrations.

  9. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review

    PubMed Central

    Ghosal, Debajyoti; Ghosh, Shreya; Dutta, Tapan K.; Ahn, Youngho

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main purpose of this review is to provide an overview of current knowledge of bacteria, halophilic archaea, fungi and algae mediated degradation/transformation of PAHs. In addition, factors affecting PAHs degradation in the environment, recent advancement in genetic, genomic, proteomic and metabolomic techniques are also highlighted with an aim to facilitate the development of a new insight into the bioremediation of PAH in the environment. PMID:27630626

  10. In-situ molecular-level elucidation of organofluorine binding sites in a whole peat soil.

    PubMed

    Longstaffe, James G; Courtier-Murias, Denis; Soong, Ronald; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Hutchins, Howard; Krishnamurthy, Sridevi; Struppe, Jochem; Alaee, Mehran; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Simpson, André J

    2012-10-02

    The chemical nature of xenobiotic binding sites in soils is of vital importance to environmental biogeochemistry. Interactions between xenobiotics and the naturally occurring organic constituents of soils are strongly correlated to environmental persistence, bioaccessibility, and ecotoxicity. Nevertheless, because of the complex structural and chemical heterogeneity of soils, studies of these interactions are most commonly performed indirectly, using correlative methods, fractionation, or chemical modification. Here we identify the organic components of an unmodified peat soil where some organofluorine xenobiotic compounds interact using direct molecular-level methods. Using (19)F→(1)H cross-polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, the (19)F nuclei of organofluorine compounds are used to induce observable transverse magnetization in the (1)H nuclei of organic components of the soil with which they interact after sorption. The observed (19)F→(1)H CP-MAS spectra and dynamics are compared to those produced using model soil organic compounds, lignin and albumin. It is found that lignin-like components can account for the interactions observed in this soil for heptafluoronaphthol (HFNap) while protein structures can account for the interactions observed for perfluorooctanoic acid (PFOA). This study employs novel comprehensive multi-phase (CMP) NMR technology that permits the application of solution-, gel-, and solid-state NMR experiments on intact soil samples in their swollen state.

  11. Confirmation of high-throughput screening data and novel mechanistic insights into VDR-xenobiotic interactions by orthogonal assays.

    PubMed

    Mahapatra, Debabrata; Franzosa, Jill A; Roell, Kyle; Kuenemann, Melaine Agnes; Houck, Keith A; Reif, David M; Fourches, Denis; Kullman, Seth W

    2018-06-11

    High throughput screening (HTS) programs have demonstrated that the Vitamin D receptor (VDR) is activated and/or antagonized by a wide range of structurally diverse chemicals. In this study, we examined the Tox21 qHTS data set generated against VDR for reproducibility and concordance and elucidated functional insights into VDR-xenobiotic interactions. Twenty-one potential VDR agonists and 19 VDR antagonists were identified from a subset of >400 compounds with putative VDR activity and examined for VDR functionality utilizing select orthogonal assays. Transient transactivation assay (TT) using a human VDR plasmid and Cyp24 luciferase reporter construct revealed 20/21 active VDR agonists and 18/19 active VDR antagonists. Mammalian-2-hybrid assay (M2H) was then used to evaluate VDR interactions with co-activators and co-regulators. With the exception of a select few compounds, VDR agonists exhibited significant recruitment of co-regulators and co-activators whereas antagonists exhibited considerable attenuation of recruitment by VDR. A unique set of compounds exhibiting synergistic activity in antagonist mode and no activity in agonist mode was identified. Cheminformatics modeling of VDR-ligand interactions were conducted and revealed selective ligand VDR interaction. Overall, data emphasizes the molecular complexity of ligand-mediated interactions with VDR and suggest that VDR transactivation may be a target site of action for diverse xenobiotics.

  12. Mycoremediation of congo red dye by filamentous fungi.

    PubMed

    Bhattacharya, Sourav; Das, Arijit; G, Mangai; K, Vignesh; J, Sangeetha

    2011-10-01

    Azo, anthroquinone and triphenylmethane dyes are the major classes of synthetic colourants, which are difficult to degrade and have received considerable attention. Congo red, a diazo dye, is considered as a xenobiotic compound, and is recalcitrant to biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several fungi, under certain environmental conditions, are able to transfer azo dyes to non toxic products using laccases. The aim of this work was to study the factors influencing mycoremediation of Congo red. Several basidiomycetes and deuteromycetes species were tested for the decolourisation of Congo red (0.05 g/l) in a semi synthetic broth at static and shaking conditions. Poor decolourisation was observed when the dye acted as the sole source of nitrogen, whereas semi synthetic broth supplemented with fertilizer resulted in better decolourisation. Decolourisation of Congo red was checked in the presence of salts of heavy metals such as mercuric chloride, lead acetate and zinc sulphate. Decolourisation parameters such as temperature, pH, and rpm were optimized and the decolourisation obtained at optimized conditions varied between 29.25- 97.28% at static condition and 82.1- 100% at shaking condition. Sodium dodecyl sulphate polyacrylamide gel electrophoretic analysis revealed bands with molecular weights ranging between 66.5 to 71 kDa, a characteristic of the fungal laccases. High efficiency decolourisation of Congo red makes these fungal forms a promising choice in biological treatment of waste water containing Congo red.

  13. Nitroaromatic Compounds, from Synthesis to Biodegradation

    PubMed Central

    Ju, Kou-San; Parales, Rebecca E.

    2010-01-01

    Summary: Nitroaromatic compounds are relatively rare in nature and have been introduced into the environment mainly by human activities. This important class of industrial chemicals is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and explosives. Unfortunately, their extensive use has led to environmental contamination of soil and groundwater. The nitro group, which provides chemical and functional diversity in these molecules, also contributes to the recalcitrance of these compounds to biodegradation. The electron-withdrawing nature of the nitro group, in concert with the stability of the benzene ring, makes nitroaromatic compounds resistant to oxidative degradation. Recalcitrance is further compounded by their acute toxicity, mutagenicity, and easy reduction into carcinogenic aromatic amines. Nitroaromatic compounds are hazardous to human health and are registered on the U.S. Environmental Protection Agency's list of priority pollutants for environmental remediation. Although the majority of these compounds are synthetic in nature, microorganisms in contaminated environments have rapidly adapted to their presence by evolving new biodegradation pathways that take advantage of them as sources of carbon, nitrogen, and energy. This review provides an overview of the synthesis of both man-made and biogenic nitroaromatic compounds, the bacteria that have been identified to grow on and completely mineralize nitroaromatic compounds, and the pathways that are present in these strains. The possible evolutionary origins of the newly evolved pathways are also discussed. PMID:20508249

  14. Embryonic treatment with xenobiotics disrupts steroid hormone profiles in hatchling red-eared slider turtles (Trachemys scripta elegans).

    PubMed Central

    Willingham, E; Rhen, T; Sakata, J T; Crews, D

    2000-01-01

    Many compounds in the environment capable of acting as endocrine disruptors have been assayed for their developmental effects on morphogenesis; however, few studies have addressed how such xenobiotics affect physiology. In the current study we examine the effects of three endocrine-disrupting compounds, chlordane, trans-nonachlor, and the polychlorinated biphenyl (PCB) mixture Aroclor 1242, on the steroid hormone concentrations of red-eared slider turtle (Trachemys scripta elegans) hatchlings treated in ovo. Basal steroid concentrations and steroid concentrations in response to follicle-stimulating hormone were examined in both male and female turtles treated with each of the three compounds. Treated male turtles exposed to Aroclor 1242 or chlordane exhibited significantly lower testosterone concentrations than controls, whereas chlordane-treated females had significantly lower progesterone, testosterone, and 5[alpha]-dihydrotestosterone concentrations relative to controls. The effects of these endocrine disruptors extend beyond embryonic development, altering sex-steroid physiology in exposed animals. Images Figure 1 Figure 2 PMID:10753091

  15. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    PubMed

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Origins, fates, and ramifications of natural organic compounds of wetlands

    Treesearch

    Robert G. Wetzel

    2000-01-01

    Much of the organic carbon for heterotrophic metabolism in aquatic ecosystems is soluble and derived from structural compounds of higher plants of terrestrial and wetland-littoral sources of both lake and river ecosystems. The chemical recalcitrance of this organic matter and its oxidative utilization are fundamentally different from many sources within the aquatic...

  17. Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB

    PubMed Central

    McClay, Kevin; Hawari, Jalal; Paquet, Louise; Malone, Thomas E.; Fox, Brian G.; Steffan, Robert J.

    2017-01-01

    The transformation of explosives, including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), by xenobiotic reductases XenA and XenB (and the bacterial strains harboring these enzymes) under both aerobic and anaerobic conditions was assessed. Under anaerobic conditions, Pseudomonas fluorescens I-C (XenB) degraded RDX faster than Pseudomonas putida II-B (XenA), and transformation occurred when the cells were supplied with sources of both carbon (succinate) and nitrogen (NH4+), but not when only carbon was supplied. Transformation was always faster under anaerobic conditions compared to aerobic conditions, with both enzymes exhibiting a O2 concentration-dependent inhibition of RDX transformation. The primary degradation pathway for RDX was conversion to methylenedinitramine and then to formaldehyde, but a minor pathway that produced 4-nitro-2,4-diazabutanal (NDAB) also appeared to be active during transformation by whole cells of P. putida II-B and purified XenA. Both XenA and XenB also degraded the related nitramine explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Purified XenB was found to have a broader substrate range than XenA, degrading more of the explosive compounds examined in this study. The results show that these two xenobiotic reductases (and their respective bacterial strains) have the capacity to transform RDX as well as a wide variety of explosive compounds, especially under low oxygen concentrations. PMID:19455327

  18. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

    PubMed

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Cath, Tzahi Y; Nghiem, Long D

    2014-05-01

    The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. Revisiting the concept of recalcitrance and organic matter persistence in soils and aquatic systems: Does environment trump chemistry?

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.

    2014-12-01

    Most ecological models of decomposition rely on plant litter chemistry. However, growing evidence suggests that the chemical composition of organic matter (OM) is not a good predictor of its eventual fate in terrestrial or aquatic environments. New data on variable decomposition rates of select organic compounds challenge concepts of chemical recalcitrance, i.e. the inherent ability of certain molecular structures to resist biodegradation. The role of environmental or "ecosystem" properties on influencing decomposition dates back to some of the earliest research on soil OM. Despite early recognition that the physical and aqueous matrices are critical in determining the fate of organic compounds, the prevailing paradigm hinges on intrinsic chemical properties as principal predictors of decay rate. Here I build upon recent reviews and discuss new findings that contribute to three major transformations in our understanding of OM persistence: (1) a shift away from an emphasis on chemical recalcitrance as a primary predictor of turnover, (2) new interpretations of radiocarbon ages which challenge predictions of reactivity, and (3) the recognition that most detrital OM accumulating in soils and in water has been microbially processed. Predictions of OM persistence due to aromaticity are challenged by high variability in lignin and black C turnover observed in terrestrial and aquatic environments. Contradictions in the behavior of lignin are, in part, influenced by inconsistent methodologies among research communities. Even black C, long considered to be one of the most recalcitrant components of OM, is susceptible to biodegradation, challenging predictions of the stability of aromatic structures. At the same time, revised interpretations of radiocarbon data suggest that organic compounds can acquire long mean residence times by various mechanisms independent of their molecular structure. Understanding interactions between environmental conditions and biological reactivity can improve predictions of how disturbance events can further stabilize or destabilize organic C pools, with implications for terrestrial C storage, aquatic C cycling, and climate change.

  20. Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate.

    PubMed

    Cortes-Tolalpa, Larisa; Norder, Justin; van Elsas, Jan Dirk; Falcao Salles, Joana

    2018-03-01

    The microbial degradation of plant-derived compounds under salinity stress remains largely underexplored. The pretreatment of lignocellulose material, which is often needed to improve the production of lignocellulose monomers, leads to high salt levels, generating a saline environment that raises technical considerations that influence subsequent downstream processes. Here, we constructed halotolerant lignocellulose degrading microbial consortia by enriching a salt marsh soil microbiome on a recalcitrant carbon and energy source, i.e., wheat straw. The consortia were obtained after six cycles of growth on fresh substrate (adaptation phase), which was followed by four cycles on pre-digested (highly-recalcitrant) substrate (stabilization phase). The data indicated that typical salt-tolerant bacteria made up a large part of the selected consortia. These were "trained" to progressively perform better on fresh substrate, but a shift was observed when highly recalcitrant substrate was used. The most dominant bacteria in the consortia were Joostella marina, Flavobacterium beibuense, Algoriphagus ratkowskyi, Pseudomonas putida, and Halomonas meridiana. Interestingly, fungi were sparsely present and negatively affected by the change in the substrate composition. Sarocladium strictum was the single fungal strain recovered at the end of the adaptation phase, whereas it was deselected by the presence of recalcitrant substrate. Consortia selected in the latter substrate presented higher cellulose and lignin degradation than consortia selected on fresh substrate, indicating a specialization in transforming the recalcitrant regions of the substrate. Moreover, our results indicate that bacteria have a prime role in the degradation of recalcitrant lignocellulose under saline conditions, as compared to fungi. The final consortia constitute an interesting source of lignocellulolytic haloenzymes that can be used to increase the efficiency of the degradation process, while decreasing the associated costs.

  1. Exploring the microbial biodegradation and biotransformation gene pool.

    PubMed

    Galvão, Teca Calcagno; Mohn, William W; de Lorenzo, Víctor

    2005-10-01

    Similar to the New World explorers of the 16th and 17th century, microbiologists today find themselves at the edge of unknown territory. It is estimated that only 0.1-1% of microorganisms can be cultivated using current techniques; the vastness of microbial lifestyles remains to be explored. Because the microbial metagenome is the largest reservoir of genes that determine enzymatic reactions, new techniques are being developed to identify the genes that underlie many valuable chemical biotransformations carried out by microbes, particularly in pathways for biodegradation of recalcitrant and xenobiotic molecules. Our knowledge of catabolic routes built on research during the past 40 years is a solid basis from which to venture on to the little-explored pathways that might exist in nature. However, it is clear that the vastness of information to be obtained requires astute experimental strategies for finding novel reactions.

  2. The Therapeutic Role of Xenobiotic Nuclear Receptors against Metabolic Syndrome.

    PubMed

    Pu, Shuqi; Wu, Xiaojie; Yang, Xiaoying; Zhang, Yunzhan; Dai, Yunkai; Zhang, Yueling; Wu, Xiaoting; Liu, Yan; Cui, Xiaona; Jin, Haiyong; Cao, Jianhong; Li, Ruliu; Cai, Jiazhong; Cao, Qizhi; Hu, Ling; Gao, Yong

    2018-06-10

    Xenobiotic nuclear receptors (XNRs) are nuclear receptors that characterized by coordinately regulating the expression of genes encoding drug-metabolizing enzymes and transporters to essentially eliminate and detoxify xenobiotics and endobiotics from the body, including the peroxisome proliferator-activated receptor (PPAR), the farnesoid X receptor (FXR), the liver X receptor (LXR), the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Heretofore, increasing evidences have suggested that these five XNRs are not only involved in the regulation of xeno-/endo-biotics detoxication but also the development of human diseases, such as cancer, obesity and diabetes. PPAR, FXR, LXR, PXR and CAR, as the receptors for numerous natural or synthetic compounds may be the most effective therapeutic targets in the treatment of metabolic diseases. In this review, we will focus on these five XNRs and their recently discovered functions in diabetes and its complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers.

    PubMed

    Efferth, Thomas; Volm, Manfred

    2017-07-01

    The detoxification of toxic substances is of general relevance in all biological systems. The plethora of exogenous xenobiotic compounds and endogenous toxic metabolic products explains the evolutionary pressure of all organisms to develop molecular mechanisms to detoxify and excrete harmful substances from the body. P-glycoprotein and other members of the ATP-binding cassette (ABC) transporter family extrude innumerous chemical compounds out of cells. Their specific expression in diverse biological contexts cause different phenotypes: (1) multidrug resistance (MDR) and thus failure of cancer chemotherapy, (2) avoidance of accumulation of carcinogens and prevention of carcinogenesis in healthy tissues, (3) absorption, distribution, metabolization and excretion (ADME) of pharmacological drugs in human patients, (4) protection from environmental toxins in aquatic organisms (multi-xenobiotic resistance, MXR). Hence ABC-transporters may have opposing effects for organismic health reaching from harmful in MDR of tumors to beneficial for maintenance of health in MXR. While their inhibition by specific inhibitors may improve treatment success in oncology and avoid carcinogenesis, blocking of ABC-transporter-driven efflux by environmental pollutants leads to ecotoxicological consequences in marine biotopes. Poisoned seafood may enter the food-chain and cause intoxications in human beings. As exemplified with ABC-transporters, joining forces in interdisciplinary research may, therefore, be a wise strategy to fight problems in human medicine and environmental sciences.

  4. Meet EPA Chemist Mark Strynar, Ph.D.

    EPA Pesticide Factsheets

    Dr. Mark Strynar is a physical scientist in EPA's Office of Research and Development. His research interests include developing methods to measure and analyze the movement of PFCs and other xenobiotic compounds in biological and environmental media

  5. Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.

    PubMed

    Nguyen, Lan Huong; Chong, Nyuk-Min

    2015-09-01

    Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Advances in Phytoremediation and Rhizoremediation

    NASA Astrophysics Data System (ADS)

    Macek, Tomas; Uhlik, Ondrej; Jecna, Katerina; Novakova, Martina; Lovecka, Petra; Rezek, Jan; Dudkova, Vlasta; Stursa, Petr; Vrchotova, Blanka; Pavlikova, Daniela; Demnerova, Katerina; Mackova, Martina

    Phytoremediation, with the associated role of rhizospheric microorganisms, is an important tool in bioremediation processes. Plants have an inherent ability to detoxify some xenobiotics and remove compounds from soil by direct uptake of the contaminants followed by subsequent transformation, transport and product accumulation, using enzymes similar to detoxification enzymes in mammals. Being autotrophic organisms, plants do not utilize organic compounds for their energy and carbon metabolism. As a consequence, they usually lack the catabolic enzymes necessary to achieve full mineralization of organic molecules. Plants can be used for removal of both inorganic and organic xenobiotics present in the soil, water and air. The chapter summarizes the classical approaches and possibilities for increasing effectiveness of phyto-and rhizo-remediation using genetically modified organisms. Perspectives are presented related to the use of molecular methods, including metagenomics and stable isotope probing, for obtaining deeper knowledge with a view to influencing the composition of consortia of organisms living in the contaminated environment.

  7. An activated sludge modeling framework for xenobiotic trace chemicals (ASM-X): assessment of diclofenac and carbamazepine.

    PubMed

    Plósz, Benedek Gy; Langford, Katherine H; Thomas, Kevin V

    2012-11-01

    Conventional models for predicting the fate of xenobiotic organic trace chemicals, identified, and calibrated using data obtained in batch experiments spiked with reference substances, can be limited in predicting xenobiotic removal in wastewater treatment plants (WWTPs). At stake is the level of model complexity required to adequately describe a general theory of xenobiotic removal in WWTPs. In this article, we assess the factors that influence the removal of diclofenac and carbamazepine in activated sludge, and evaluate the complexity required for the model to effectively predict their removal. The results are generalized to previously published cases. Batch experimental results, obtained under anoxic and aerobic conditions, were used to identify extensions to, and to estimate parameter values of the activated sludge modeling framework for Xenobiotic trace chemicals (ASM-X). Measurement and simulation results obtained in the batch experiments, spiked with the diclofenac and carbamazepine content of preclarified municipal wastewater shows comparably high biotransformation rates in the presence of growth substrates. Forward dynamic simulations were performed using full-scale data obtained from Bekkelaget WWTP (Oslo, Norway) to evaluate the model and to estimate the level of re-transformable xenobiotics present in the influent. The results obtained in this study demonstrate that xenobiotic loading conditions can significantly influence the removal capacity of WWTPs. We show that the trace chemical retransformation in upstream sewer pipes can introduce considerable error in assessing the removal efficiency of a WWTP, based only on parent compound concentration measurements. The combination of our data with those from the literature shows that solids retention time (SRT) can enhance the biotransformation of diclofenac, which was not the case for carbamazepine. Model approximation of the xenobiotic concentration, detected in the solid phase, suggest that between approximately 1% and 16% of the total solid carbamazepine and diclofenac concentrations, respectively, is due to sorption-the remainder being non-bioavailable and sequestered. We demonstrate the effectiveness of the model's predictive power over conventional tools in a statistical analysis, performed at four levels of structural complexity. To assess WWTP retrofitting needs to remove xenobiotic trace chemicals, we suggest using mechanistic models, e.g., ASM-X, in regional risk assessments. For preliminary evaluations, we present operating charts that can be used to estimate average xenobiotic removal rates in WWTPs as a function of SRT and the xenobiotics mass loads normalised to design treatment capacity. Copyright © 2012 Wiley Periodicals, Inc.

  8. PCBs and other xenobiotics in raw and cooked carp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabik, M.E.; Merrill, C.; Zabik, M.J.

    The effect of cooking on PCBs and DDT compounds was determined in fillets from carp ranging from 3.0 to 4.9 Kg. Cooking methods included were: poaching, roasting, deep fat frying, charbroiling and cooking by microwave. (JMT)

  9. Monitoring Intracellular Redox Changes in Ozone-exposed airway epithelial cells

    EPA Science Inventory

    Background: The toxicity of many compounds involves oxidative injury to cells. Direct assessment of mechanistic events involved in xenobiotic-induced oxidative stress is not easily achievable. Development of genetically-encoded probes designed for monitoring intracellular redox s...

  10. ALLIGATORS AND ENDOCRINE DISRUPTING CONTAMINANTS: A CURRENT PERSPECTIVE.AMERICAN ZOOLOGIST

    EPA Science Inventory

    Many xenobiotic compounds introduced into the environment by human activity have been shown to adversely affect wildlife. Reproductive disorders in wildlife include altered fertility, reduced viability of offspring, impaired hormone secretion or activity and modified reproductive...

  11. Protocol for Enhanced in situ Bioremediation Using Emulsified Edible Oil

    DTIC Science & Technology

    2006-05-01

    of molecular hydrogen include natural organic matter, fuel hydrocarbons, landfill leachate , or added organic substrates. Hydrogen is generated by... Phytoremediation of Chlorinated and Recalcitrant Compounds, p. 47-53. APPENDIX A SUBSTRATE CALCULATIONS Excel spreadsheets are

  12. Phenol Is the Initial Product Formed during Growth and Degradation of Bromobenzene by Tropical Marine Yeast, Yarrowia lipolytica NCIM 3589 via an Early Dehalogenation Step.

    PubMed

    Vatsal, Aakanksha A; Zinjarde, Smita S; RaviKumar, Ameeta

    2017-01-01

    Bromobenzene (BrB), a hydrophobic, recalcitrant organic compound, is listed by the environmental protection agencies as an environmental and marine pollutant having hepatotoxic, mutagenic, teratogenic, and carcinogenic effects. The tropical marine yeast Yarrowia lipolytica 3589 was seen to grow aerobically on BrB and displayed a maximum growth rate (μ max ) of 0.04 h -1 . Furthermore, we also observed an increase in cell size and sedimentation velocity for the cells grown on BrB as compared to the glucose grown cells. The cells attached to the hydrophobic bromobenzene droplets through its hydrophobic and acid-base interactions. The BrB (0.5%, 47.6 mM) was utilized by the cells with the release of a corresponding amount of bromide (12.87 mM) and yielded a cell mass of 1.86 g/L after showing 34% degradation in 96 h. Maximum dehalogenase activity of 16.16 U/mL was seen in the cell free supernatant after 24 h of growth. Identification of metabolites formed as a result of BrB degradation, namely, phenol, catechol, cis, cis muconic acid, and carbon dioxide were determined by LC-MS and GC-MS. The initial attack on bromobenzene by Y. lipolytica cells lead to the transient accumulation of phenol as an early intermediate which is being reported for the first time. Degradation of phenol led to catechol which was degraded by the ortho- cleavage pathway forming cis, cis muconic acid and then to Krebs cycle intermediates eventually leading to CO 2 production. The study shows that dehalogenation via an extracellular dehalogenase occurs prior to ring cleavage with phenol as the preliminary degradative compound being produced. The yeast was also able to grow on the degradative products, i.e., phenol and catechol, to varying degrees which would be of potential relevance in the degradation and remediation of xenobiotic environmental bromoaromatic pollutants such as bromobenzene.

  13. Phenol Is the Initial Product Formed during Growth and Degradation of Bromobenzene by Tropical Marine Yeast, Yarrowia lipolytica NCIM 3589 via an Early Dehalogenation Step

    PubMed Central

    Vatsal, Aakanksha A.; Zinjarde, Smita S.; RaviKumar, Ameeta

    2017-01-01

    Bromobenzene (BrB), a hydrophobic, recalcitrant organic compound, is listed by the environmental protection agencies as an environmental and marine pollutant having hepatotoxic, mutagenic, teratogenic, and carcinogenic effects. The tropical marine yeast Yarrowia lipolytica 3589 was seen to grow aerobically on BrB and displayed a maximum growth rate (μmax) of 0.04 h-1. Furthermore, we also observed an increase in cell size and sedimentation velocity for the cells grown on BrB as compared to the glucose grown cells. The cells attached to the hydrophobic bromobenzene droplets through its hydrophobic and acid–base interactions. The BrB (0.5%, 47.6 mM) was utilized by the cells with the release of a corresponding amount of bromide (12.87 mM) and yielded a cell mass of 1.86 g/L after showing 34% degradation in 96 h. Maximum dehalogenase activity of 16.16 U/mL was seen in the cell free supernatant after 24 h of growth. Identification of metabolites formed as a result of BrB degradation, namely, phenol, catechol, cis, cis muconic acid, and carbon dioxide were determined by LC–MS and GC–MS. The initial attack on bromobenzene by Y. lipolytica cells lead to the transient accumulation of phenol as an early intermediate which is being reported for the first time. Degradation of phenol led to catechol which was degraded by the ortho- cleavage pathway forming cis, cis muconic acid and then to Krebs cycle intermediates eventually leading to CO2 production. The study shows that dehalogenation via an extracellular dehalogenase occurs prior to ring cleavage with phenol as the preliminary degradative compound being produced. The yeast was also able to grow on the degradative products, i.e., phenol and catechol, to varying degrees which would be of potential relevance in the degradation and remediation of xenobiotic environmental bromoaromatic pollutants such as bromobenzene. PMID:28690604

  14. Effects Of Leaky Sewers On Groundwater Quality

    NASA Astrophysics Data System (ADS)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Oswald, S. E.; Schirmer, M.

    2007-12-01

    The impact of urban areas on groundwater quality has become an emerging research field in hydrogeology. Urban subsurface infrastructures like sewer networks are often leaky, so untreated wastewater may enter the urban aquifer. The transport of wastewater into the groundwater is still not well understood under field conditions. In the research platform WASSER Leipzig (Water And Sewershed Study of Environmental Risk in Leipzig- Germany) the effects of leaky sewers on the groundwater quality are investigated. The research is focused on the occurrence and transport of so-called "xenobiotics" such as pharmaceuticals and personal care product additives. Xenobiotics may pose a threat on human health, but can also be considered a marker for an urban impact on water resources. A new test site was established in Leipzig to quantify mass fluxes of xenobiotics into the groundwater from a leaky sewer. Corresponding to the leaks which were detected by closed circuit television inspections, monitoring wells were installed up- and downstream of the sewer. Concentrations of eight xenobiotics (technical-nonylphenol, bisphenol-a, caffeine, galaxolide, tonalide, carbamazepine, phenazone, ethinylestradiol) obtained from first sampling programmes were found to be highly heterogeneous, but a relation between the position of the sampling points and the sewer could not be clearly identified. However, concentrations of sodium, chloride, potassium and nitrate increased significantly downstream of the sewer which may be due to wastewater exfiltration, since no other source is known on the water flowpath from the upstream to the downstream wells. Because of the highly heterogeneous spatial distribution of xenobiotics at the test site, a monitoring concept was developed comprising both high-resolution sampling and an integral approach to obtain representative average concentrations. Direct-push techniques were used to gain insight into the fine-scale spatial distribution of the target compounds. An integral pumping test was performed to determine the total xenobiotic mass fluxes along control planes down- and upstream of the leaky sewer. The new monitoring concept helped to obtain robust estimates of xenobiotic mass fluxes into the groundwater.

  15. Chemistry by Computer.

    ERIC Educational Resources Information Center

    Garmon, Linda

    1981-01-01

    Describes the features of various computer chemistry programs. Utilization of computer graphics, color, digital imaging, and other innovations are discussed in programs including those which aid in the identification of unknowns, predict whether chemical reactions are feasible, and predict the biological activity of xenobiotic compounds. (CS)

  16. Workshop Report: Juvenile toxicity testing protocols for chemicals

    EPA Science Inventory

    There is increased awareness of the specific position of children when it comes to hazards of xenobiotic exposures. Children are not small adults, since their exposure patterns, compound kinetics and metabolism, and sensitivity of their developing organs may differ extensively fr...

  17. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism

    PubMed Central

    Spanogiannopoulos, Peter; Bess, Elizabeth N.; Carmody, Rachel N.; Turnbaugh, Peter J.

    2016-01-01

    Although the significance of human genetic polymorphisms in therapeutic outcomes is well established, the importance of our “second genome” (the microbiome) has been largely overlooked. In this Review, we highlight recent studies that shed light on the mechanisms linking the human gut microbiome to the efficacy and toxicity of xenobiotics, including drugs, dietary compounds and environmental toxins. Continued progress in this area could enable more precise tools for predicting patient responses and the development of a next generation of therapeutics based on or targeted at the gut microbiome. Indeed, the admirable goal of precision medicine may require us to first understand the microbial pharmacists within. PMID:26972811

  18. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species

    PubMed Central

    Glenn, Anthony E.; Davis, C. Britton; Gao, Minglu; Gold, Scott E.; Mitchell, Trevor R.; Proctor, Robert H.; Stewart, Jane E.; Snook, Maurice E.

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  19. The in vitro effect of nonylphenol, propranolol, and diethylstilbestrol on quality parameters and oxidative stress in sterlet (Acipenser ruthenus) spermatozoa.

    PubMed

    Shaliutina, Olena; Shaliutina-Kolešová, Anna; Lebeda, Ievgen; Rodina, Marek; Gazo, Ievgeniia

    2017-09-01

    The sturgeon is a highly endangered fish mostly due to over-fishing, habitat destruction, and water pollution. Nonylphenol (NP), propranolol (PN), and diethylstilbestrol (DES) are multifunctional xenobiotic compounds used in a variety of commercial and industrial products. The mechanism by which these xenobiotic compounds interfere with fish reproduction is not fully elucidated. This study assessed the effect of NP, PN, and DES on motility parameters, membrane integrity, and oxidative/antioxidant status in sterlet Acispenser ruthenus spermatozoa. Spermatozoa were incubated with several concentrations of target substances for 1h. Motility rate and velocity of spermatozoa decreased in the presence of xenobiotics in a dose-dependent manner compared with controls. A significant decrease in membrane integrity was recorded with exposure to 5μM of NP, 25μM of PN, and 50μM of DES. After 1h exposure at higher tested concentrations NP (5-25μM), PN (25-100μM), and DES (50-200μM), oxidative stress was apparent, as reflected by significantly higher levels of protein and lipid oxidation and significantly greater superoxide dismutase activity. The results demonstrated that NP, PN, and DES can induce reactive oxygen species stress in fish spermatozoa, which could impair sperm quality and the antioxidant defence system and decrease the percentage of intact sperm cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. ENDOCRINE DISRUPTING CONTAMINANTS AND ALLIGATOR EMBRYOS: A LESSON FROM WILDLIFE?

    EPA Science Inventory

    Many xenobiotic compounds introduced into the environment by human activity adversely affect wildlife. A number of these contaminants have been hypothesized to induce non lethal, multigenerational effects by acting as endocrine disrupting agents. One case is that of the alligator...

  1. Fungal Lactamases, Their Occurrence and Function

    USDA-ARS?s Scientific Manuscript database

    Fungi are absorptive feeders and thus must colonize and ramify through their substrate to survive. In so doing they are in competition, particularly in the soil, with myriad microbes. Additionally, these microbes use xenobiotic compounds as offensive weapons to compete for nutrition, and fungi must ...

  2. Xenobiotics that affect oxidative phosphorylation alter differentiation of human adipose-derived stem cells at concentrations that are found in human blood

    PubMed Central

    Llobet, Laura; Toivonen, Janne M.; Montoya, Julio; Ruiz-Pesini, Eduardo; López-Gallardo, Ester

    2015-01-01

    ABSTRACT Adipogenesis is accompanied by differentiation of adipose tissue-derived stem cells to adipocytes. As part of this differentiation, biogenesis of the oxidative phosphorylation system occurs. Many chemical compounds used in medicine, agriculture or other human activities affect oxidative phosphorylation function. Therefore, these xenobiotics could alter adipogenesis. We have analyzed the effects on adipocyte differentiation of some xenobiotics that act on the oxidative phosphorylation system. The tested concentrations have been previously reported in human blood. Our results show that pharmaceutical drugs that decrease mitochondrial DNA replication, such as nucleoside reverse transcriptase inhibitors, or inhibitors of mitochondrial protein synthesis, such as ribosomal antibiotics, diminish adipocyte differentiation and leptin secretion. By contrast, the environmental chemical pollutant tributyltin chloride, which inhibits the ATP synthase of the oxidative phosphorylation system, can promote adipocyte differentiation and leptin secretion, leading to obesity and metabolic syndrome as postulated by the obesogen hypothesis. PMID:26398948

  3. Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation

    PubMed Central

    Cheng, Xin-Yue; Tian, Xue-Liang; Wang, Yun-Sheng; Lin, Ren-Miao; Mao, Zhen-Chuan; Chen, Nansheng; Xie, Bing-Yan

    2013-01-01

    Our recent research revealed that pinewood nematode (PWN) possesses few genes encoding enzymes for degrading α-pinene, which is the main compound in pine resin. In this study, we examined the role of PWN microbiome in xenobiotics detoxification by metagenomic and bacteria culture analyses. Functional annotation of metagenomes illustrated that benzoate degradation and its related metabolisms may provide the main metabolic pathways for xenobiotics detoxification in the microbiome, which is obviously different from that in PWN that uses cytochrome P450 metabolism as the main pathway for detoxification. The metabolic pathway of degrading α-pinene is complete in microbiome, but incomplete in PWN genome. Experimental analysis demonstrated that most of tested cultivable bacteria can not only survive the stress of 0.4% α-pinene, but also utilize α-pinene as carbon source for their growth. Our results indicate that PWN and its microbiome have established a potentially mutualistic symbiotic relationship with complementary pathways in detoxification metabolism. PMID:23694939

  4. In Silico Prediction of Cytochrome P450-Mediated Biotransformations of Xenobiotics: A Case Study of Epoxidation.

    PubMed

    Zhang, Jing; Ji, Li; Liu, Weiping

    2015-08-17

    Predicting the biotransformation of xenobiotics is important in toxicology; however, as more compounds are synthesized than can be investigated experimentally, powerful computational methods are urgently needed to prescreen potentially useful candidates. Cytochrome P450 enzymes (P450s) are the major enzymes involved in xenobiotic metabolism, and many substances are bioactivated by P450s to form active compounds. An example is the conversion of olefinic substrates to epoxides, which are intermediates in the metabolic activation of many known or suspected carcinogens. We have calculated the activation energies for epoxidation by the active species of P450 enzymes (an iron-oxo porphyrin cation radical oxidant, compound I) for a diverse set of 36 olefinic substrates with state-of-the-art density functional theory (DFT) methods. Activation energies can be estimated by the computationally less demanding method of calculating the ionization potentials of the substrates, which provides a useful and simple predictive model based on the reaction mechanism; however, the preclassification of these diverse substrates into weakly polar and strongly polar groups is a prerequisite for the construction of specific predictive models with good predictability for P450 epoxidation. This approach has been supported by both internal and external validations. Furthermore, the relation between the activation energies for the regioselective epoxidation and hydroxylation reactions of P450s and experimental data has been investigated. The results show that the computational method used in this work, single-point energy calculations with the B3LYP functional including zero-point energy and solvation and dispersion corrections based on B3LYP-optimized geometries, performs well in reproducing the experimental trends of the epoxidation and hydroxylation reactions.

  5. Chemical recalcitrance of biochar and wildfire charcoal: how similar are they?

    NASA Astrophysics Data System (ADS)

    Santin, Cristina; Doerr, Stefan H.; Merino, Agustin

    2016-04-01

    The enhanced chemical resistance to biological degradation of pyrogenic materials, either produced during wildfires (charcoal) or by man (biochar), makes them long-term carbon sinks once incorporated in soils. In spite of their fundamental similarities, studies comparing the chemical recalcitrance of biochar and wildfire charcoal are scarce because analogous materials for accurate comparison are not easily available. Using solid-state 13C cross polarization-magic angle spinning nuclear magnetic resonance spectroscopy we characterized the chemical recalcitrance of pyrogenic materials generated from the same unburnt feedstooks (litter and dead wood from Pinus banksiana): (a) charcoal from a high-intensity wildfire and (b) biochar obtained by slow pyrolysis [3 treatments: 2 h at 350, 500 and 650°C]. For quantification, the spectra were divided into four regions representing different chemical environments of the 13C nucleus: alkyl C (0-45 ppm), O-alkyl C (45-110 ppm), olefinic and aromatic C(110-160 ppm), and carbonyl C (160-210 ppm). As an indicator of chemical recalcitrance, the degree of aromaticity (%) was calculated as follow: aromatic-C ∗ 100 / (alkyl C+ O alkyl-C + aromatic-C). The pyrogenic materials derived from wood show higher degrees of aromaticity (68 to 88%) than pyrogenic material derived from litter (40 to 88%). When comparing biochar and wildfire charcoal, biochars produced at 500 and 650°C always have higher degrees of aromaticity than wildfire charcoals, irrespective of the original feedstock. Wildfire charcoals always show a more heterogeneous chemical composition, with alkyl and O-alkyl compounds present even in charcoal generated at very high temperatures (temperatures up to 950 °C were recorded on the litter surface during the wildfire). However, biochars produced at 500 and 650 °C are mostly aromatic, and only the biochars produced at 350 °C show partial contribution of alkyl-C compounds. Our results suggest that biochar-type pyrogenic materials have in general a higher chemical recalcitrance than wildfire charcoal and, thus, we advice caution when transfer knowledge between the biochar and the wildfire charcoal research communities.

  6. Enhancement of In Situ Bioremediation of Energetic Compounds by Coupled Abiotic/Biotic Processes

    DTIC Science & Technology

    2007-08-01

    reduced in the laboratory and successfully treat energetics (RDX, TNT, CL-20, NDMA ), chlorinated solvents (PCE, TCE, TCA, 1,1-DCE, cis-DCE), and...Fruchter, M Williams, V Vermeul, H Fredrickson, and K Thompson. 2006. In situ chemical reduction of sediments for TCE, energetics, and NDMA remediation...sediments for TCE, energetics, and NDMA remediation, Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California, May 2006. Szecsody J

  7. In Vitro Toxicity Screening Technique for Volatile Substances ...

    EPA Pesticide Factsheets

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the challenge is that many of these chemicals are volatile and not amenable to HTS robotic liquid handling applications. We assembled an in vitro cell culture apparatus capable of screening volatile chemicals for toxicity with potential for miniaturization for high throughput. BEAS-2B lung cells were grown in an enclosed culture apparatus under air-liquid interface (ALI) conditions, and exposed to an array of xenobiotics in 5% CO2. Use of ALI conditions allows direct contact of cells with a gas xenobiotic, as well as release of endogenous gaseous molecules without interference by medium on the apical surface. To identify potential xenobiotic-induced perturbations in cell homeostasis, we monitored for alterations of endogenously-produced gaseous molecules in air directly above the cells, termed “headspace”. Alterations in specific endogenously-produced gaseous molecules (e.g., signaling molecules nitric oxide (NO) and carbon monoxide (CO) in headspace is indicative of xenobiotic-induced perturbations of specific cellular processes. Additionally, endogenously produced volatile organic compounds (VOCs) may be monitored in a nonspecific, discovery manner to determine whether cell processes are

  8. Assessing the issue of instability due to Michael adduct formation in novel chemical entities possessing a carbon-carbon double bond during early drug development--applicability of common laboratory analytical protocols.

    PubMed

    Polepally, Akshanth Reddy; Kumar, Venkata V Pavan; Bhamidipati, Ravikanth; Kota, Jagannath; Naveed, Shaik Abdul; Reddy, Karnati Harinder; Mamidi, Rao N V S; Selvakumar, N; Mullangi, Ramesh; Srinivas, Nuggehally R

    2008-09-01

    The discovery of small-molecule novel chemical entities (NCEs) is often a complex play between appropriate structural requirements and optimization of the desired efficacy, safety and pharmacokinetic properties. One of the typical structural variants such as having an active carbon-carbon double bond (alpha, beta-unsaturated carbonyl group) in xenobiotics may lead to stability issues. Such functionalities are extremely reactive, paving way to nucleophilic attack by endogenously occurring and ubiquitous nucleophiles like thiols. While it is easy to make a unilateral decision to not pursue the development of xenobiotics with such functionalities, we question the wisdom of such a decision. In this report, we present in vitro methodologies with appropriate examples to illustrate the ease of assessing the reactivity of the xenobiotics containing double bonds with a known nucleophile. The protocols involve simple reaction procedures followed by measurements using standard laboratory equipments (UV spectrophotometer, HPLC and LC-MS). Our data suggests that not all xenobiotics with carbon-carbon double bonds readily form a Michael's adduct product with glutathione. Hence, the criterion for dropping discovery compounds because of alpha,beta-unsaturated double bonds needs to be reconsidered.

  9. TSK 6498 - DEVELOPMENT OF MOLECULAR INDICATORS OF EXPOSURE TO ENDOCRINE DISRUPTING COMPOUNDS, PESTICIDES & OTHER XENOBIOTIC AGENTS.

    EPA Science Inventory

    Accurate and precise characterization of exposure of aquatic ecological resources to chemical stressors is required for ecological risk assessment. Within this assessment, the study of the vulnerability of these resources requires comparative exposure assessments across watershe...

  10. SAGE Analysis of Transcriptome Responses in Arabidopsis Roots Exposed to 2,4,6-Trinitrotoluene1

    PubMed Central

    Ekman, Drew R.; Lorenz, W. Walter; Przybyla, Alan E.; Wolfe, N. Lee; Dean, Jeffrey F.D.

    2003-01-01

    Serial analysis of gene expression was used to profile transcript levels in Arabidopsis roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and each was sequenced to a depth of roughly 32,000 tags. More than 19,000 unique tags were identified overall. The second most highly induced tag (27-fold increase) represented a glutathione S-transferase. Cytochrome P450 enzymes, as well as an ABC transporter and a probable nitroreductase, were highly induced by TNT exposure. Analyses also revealed an oxidative stress response upon TNT exposure. Although some increases were anticipated in light of current models for xenobiotic metabolism in plants, evidence for unsuspected conjugation pathways was also noted. Identifying transcriptome-level responses to TNT exposure will better define the metabolic pathways plants use to detoxify this xenobiotic compound, which should help improve phytoremediation strategies directed at TNT and other nitroaromatic compounds. PMID:14551330

  11. Household hazardous waste in municipal landfills: contaminants in leachate.

    PubMed

    Slack, R J; Gronow, J R; Voulvoulis, N

    2005-01-20

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge.

  12. Regulation of Proteome Maintenance Gene Expression by Activators of Peroxisome Proliferator-Activated Receptor a (PPARa)

    EPA Science Inventory

    The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARa) is activated by a large number of xenobiotic and hypolipidemic compounds called peroxisome proliferator chemicals (PPC). One agonist of PPARa (WY-14,643) regulates responses in the mouse liver to chemic...

  13. Oxidation and adduct formation of xenobiotics in a microfluidic electrochemical cell with boron doped diamond electrodes and an integrated passive gradient rotation mixer.

    PubMed

    van den Brink, Floris T G; Wigger, Tina; Ma, Liwei; Odijk, Mathieu; Olthuis, Wouter; Karst, Uwe; van den Berg, Albert

    2016-10-05

    Reactive xenobiotic metabolites and their adduct formation with biomolecules such as proteins are important to study as they can be detrimental to human health. Here, we present a microfluidic electrochemical cell with integrated micromixer to study phase I and phase II metabolism as well as protein adduct formation of xenobiotics in a purely instrumental approach. The newly developed microfluidic device enables both the generation of reactive metabolites through electrochemical oxidation and subsequent adduct formation with biomolecules in a chemical microreactor. This allows us to study the detoxification of reactive species with glutathione and to predict potential toxicity of xenobiotics as a result of protein modification. Efficient mixing in microfluidic systems is a slow process due to the typically laminar flow conditions in shallow channels. Therefore, a passive gradient rotation micromixer has been designed that is capable of mixing liquids efficiently in a 790 pL volume within tens of milliseconds. The mixing principle relies on turning the concentration gradient that is initially established by bringing together two streams of liquid, to take advantage of the short diffusion distances in the shallow microchannels of thin-layer flow cells. The mixer is located immediately downstream of the working electrode of an electrochemical cell with integrated boron doped diamond electrodes. In conjunction with mass spectrometry, the two microreactors integrated in a single device provide a powerful tool to study the metabolism and toxicity of xenobiotics, which was demonstrated by the investigation of the model compound 1-hydroxypyrene.

  14. Characteristics and applications of biochar for environmental remediation: A review

    USDA-ARS?s Scientific Manuscript database

    Biochar is a stabilized, recalcitrant organic carbon compound, created when biomass is heated to temperatures usually between 300 and 1000 degrees celsius, under low (preferably zero) oxygen concentrations. It is produced from a variety of biomass feedstocks, such as agricultural residues, wood chip...

  15. Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-acetic-acid in Organomodified Montmorillonite

    PubMed Central

    Tian, Haoting; Gao, Juan; Li, Hui; Boyd, Stephen A.; Gu, Cheng

    2016-01-01

    Here we describe a unique process that achieves complete defluorination and decomposition of perfluorinated compounds (PFCs) which comprise one of the most recalcitrant and widely distributed classes of toxic pollutant chemicals found in natural environments. Photogenerated hydrated electrons derived from 3-indole-acetic-acid within an organomodified clay induce the reductive defluorination of co-sorbed PFCs. The process proceeds to completion within a few hours under mild reaction conditions. The organomontmorillonite clay promotes the formation of highly reactive hydrated electrons by stabilizing indole radical cations formed upon photolysis, and prevents their deactivation by reaction with protons or oxygen. In the constrained interlayer regions of the clay, hydrated electrons and co-sorbed PFCs are brought in close proximity thereby increasing the probability of reaction. This novel green chemistry provides the basis for in situ and ex situ technologies to treat one of the most troublesome, recalcitrant and ubiquitous classes of environmental contaminants, i.e., PFCs, utilizing innocuous reagents, naturally occurring materials and mild reaction conditions. PMID:27608658

  16. Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri.

    PubMed

    Hernández-López, E Lorena; Perezgasga, Lucia; Huerta-Saquero, Alejandro; Mouriño-Pérez, Rosa; Vazquez-Duhalt, Rafael

    2016-06-01

    Neosartorya fischeri, an Aspergillaceae fungus, was evaluated in its capacity to transform high molecular weight polycyclic aromatics hydrocarbons (HMW-PAHs) and the recalcitrant fraction of petroleum, the asphaltenes. N. fischeri was able to grow in these compounds as sole carbon source. Coronene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene, together with the asphaltenes, were assayed for fungal biotransformation. The transformation of the asphaltenes and HMW-PAHs was confirmed by reverse-phase high-performance liquid chromatography (HPLC), nano-LC mass spectrometry, and IR spectrometry. The formation of hydroxy and ketones groups on the PAH molecules suggest a biotransformation mediated by monooxygenases such as cytochrome P450 system (CYP). A comparative microarray with the complete genome from N. fischeri showed three CYP monooxygenases and one flavin monooxygenase genes upregulated. These findings, together with the internalization of aromatic substrates into fungal cells and the microsomal transformation of HMW-PAHs, strongly support the role of CYPs in the oxidation of these recalcitrant compounds.

  17. Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus.

    PubMed

    Zhang, Dong Qing; Gersberg, Richard M; Hua, Tao; Zhu, Junfei; Goyal, Manish Kumar; Ng, Wun Jern; Tan, Soon Keat

    2013-10-01

    A systematic approach to assess the fate of selected pharmaceuticals (carbamazepine, naproxen, diclofenac, clofibric acid and caffeine) in hydroponic mesocosms is described. The overall objective was to determine the kinetics of depletion (from solution) and plant uptake for these compounds in mesocosms planted with S. validus growing hydroponically. The potential for translocation of these pharmaceuticals from the roots to the shoots was also assessed. After 21 days of incubation, nearly all of the caffeine, naproxen and diclofenac were eliminated from solution, whereas carbamazepine and clofibric acid were recalcitrant to both photodegradation and biodegradation. The fact that the BAFs for roots for carbamazepine and clofibric acid were greater than 5, while the BAFs for naproxen, diclofenac and caffeine were less than 5, implied that the latter two compounds although recalcitrant to biodegradation, still had relatively high potential for plant uptake. Naproxen was sensitive to both photodegradation (30-42%) and biodegradation (>50%), while diclofenac was particularly sensitive (>70%) to photodegradation alone. No significant correlations (p > 0.05) were found between the rate constants of depletion or plant tissue levels of the pharmaceuticals and either log Kow or log Dow. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocchetti, Guillermo Nicolás

    The multidrug resistance-associated protein 2 (MRP2/ABCC2) is a transporter that belongs to the ATP-binding cassette (ABC) superfamily. In the intestine, it is localized to the apical membrane of the enterocyte and plays a key role in limiting the absorption of xenobiotics incorporated orally. MRP2 may also play a role in systemic clearance of xenobiotics available from the serosal side of the intestine. MRP2 transports a wide range of substrates, mainly organic anions conjugated with glucuronic acid, glutathione and sulfate and its expression can be modulated by xenobiotics at transcriptional- and post-transcriptional levels. Transcriptional regulation is usually mediated by a groupmore » of nuclear receptors. The pregnane X receptor (PXR) is a major member of this group. Relevant drugs described to up-regulate intestinal MRP2 via PXR are rifampicin, spironolactone and carbamazepine, among others. The constitutive androstane receptor (CAR, NR1I3) was also reported to modulate MRP2 expression, phenobarbital being a typical activator. Dietary compounds, including micronutrients and other natural products, are also capable of regulating intestinal MRP2 expression transcriptionally. We have given them particular attention since the composition of the food ingested daily is not necessarily supervised and may result in interactions with therapeutic drugs. Post-transcriptional regulation of MRP2 activity by xenobiotics, e.g. as a consequence of inhibitory actions, is also described in this review. Unfortunately, only few studies report on drug-drug or nutrient-drug interactions as a consequence of modulation of intestinal MRP2 activity by xenobiotics. Future clinical studies are expected to identify additional interactions resulting in changes in efficacy or safety of therapeutic drugs. - Highlights: • Intestinal MRP2 (ABCC2) expression and activity can be regulated by xenobiotics. • PXR and CAR are major MRP2 modulators through a transcriptional mechanism. • Rifampicin, spironolactone and carbamazepine among others up-regulate MRP2 via PXR. • MRP2 activity influences the availability and efficacy of drugs administered orally.« less

  19. Applications and Prospective of Peroxidase Biocatalysis in the Environmental Field

    NASA Astrophysics Data System (ADS)

    Torres-Duarte, Cristina; Vazquez-Duhalt, Rafael

    Environmental protection is, doubtless, one of the most important challenges for the human kind. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons, endocrine disruptive chemicals, pesticides, dioxins, polychlorinated biphenyls, industrial dyes, and other xenobiotics are among the most important pollutants. A large variety of these xenobiotics are substrates for peroxidases and thus susceptible to enzymatic transformation. The literature reports mainly the use of horseradish peroxidase, manganese peroxidase, lignin peroxidase, and chloroperoxidase on the transformation of these pollutants. Peroxidases are enzymes able to transform a variety of compounds following a free radical mechanism, giving oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to a biological activity loss, a reduction in the bioavailability or due to the removal from aqueous phase, especially when the pollutant is found in water. In addition, when the pollutants are present in soil, peroxidases catalyze a covalent binding to soil organic matter. In most of cases, oxidized products are less toxic and easily biodegradable than the parent compounds. In spite of their versatility and potential use in environmental processes, peroxidases are not applied at large scale yet. Diverse challenges, such as stability, redox potential, and the production of large amounts, should be solved in order to apply peroxidases in the pollutant transformation. In this chapter, we critically review the transformation of different xenobiotics by peroxidases, with special attention on the identified transformation products, the probable reaction mechanisms, and the toxicity reports. Finally, the design and development of an environmental biocatalyst is discussed. The design challenges are mainly focused on the enzyme stability in the presence of hydrogen peroxide and operational conditions, an enzyme with high redox potential to be able to oxidize a wide range of xenobiotics or pollutants, and the protein overexpression at large-scale in industrial microorganisms is discussed.

  20. The distribution of environmental contaminants and pharmaceuticals among skim milk, milk fat, curd, whey, and milk protein fractions through milk processing

    USDA-ARS?s Scientific Manuscript database

    Twenty-seven environmental contaminants and pharmaceuticals encompassing a wide range of physicochemical properties were utilized to determine the effects of milk processing on xenobiotic distribution among milk fractions. Target compounds included radiolabeled antibiotics [ciprofloxacin (CIPR), cl...

  1. Evidence for the Involvement of Xenobiotic-responsive Nuclear Receptors in Transcriptional Effects Upon Perfluoroalkyl Acid Exposure in Diverse Species.

    EPA Science Inventory

    Humans and other species have detectable body burdens of a number of perfluorinated alkyl acids (PFAA) including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). In mouse and rat liver these compounds elicit transcriptional and phenotypic effects similar to pe...

  2. Evidence for the Involvement of Xenobiotic-response Nuclear Receptors in Transcriptional Effects Upon Perfluroroalkyl Acid Exposure in Diverse Species

    EPA Science Inventory

    Humans and ecological species have been found to have detectable body burdens of a number of perfluorinated alkyl acids (PFAA) including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). In mouse and rat liver these compounds elicit transcriptional and phenotyp...

  3. Quantitative High-Throughput Screening and Confirmation Studies for Identification of Compounds that Activate the Aryl Hydrocarbon Receptor Pathway (SETAC)

    EPA Science Inventory

    The aryl hydrocarbon receptor (AhR) is a transcription factor that mediates adaptive responses to known environmental pollutants, such as aromatic hydrocarbons, through regulation of Phase I and II xenobiotic metabolizing enzymes as well as important growth and differentiation pa...

  4. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER FLASH OR PATTERN REVERSAL EVOKED POTENTIALS IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Visual disturbances are often reported following exposure to xenobiotics, and cholinesterase-inhibiting compounds have been reported to alter visual functi...

  5. HPLC-ICP/MS Analysis of Thyroid Hormone and Related Iodinated Compounds in Tissues and Media

    EPA Science Inventory

    Quantifying thyroid hormone (TH) and the synthetic precursors and metabolic products of TH is important for developing models of the hypothalamic-pituitary-thyroid (HPT) axis as well as for understanding the effects of xenobiotics on HPT axis function. In this study, the developm...

  6. Contrasting diets reveal the metabolic plasticity of the tree-killing beetle, Anoplophora glabripennis (Cerambycidae: Lamiinae)

    USDA-ARS?s Scientific Manuscript database

    Wood-feeding insects encounter challenging diets with low quantities of protein, recalcitrant sources of carbohydrates, and high levels of defensive compounds. These insects have multiple, complementary mechanisms to contend with these digestive challenges. The Asian longhorned beetle (Anoplophora g...

  7. The quantity and quality of dissolved organic matter as supplementary carbon source impacts the pesticide-degrading activity of a triple-species bacterial biofilm.

    PubMed

    Horemans, Benjamin; Vandermaesen, Johanna; Breugelmans, Philip; Hofkens, Johan; Smolders, Erik; Springael, Dirk

    2014-01-01

    Effects of environmental dissolved organic matter (eDOM) that consists of various low concentration carbonic compounds on pollutant biodegradation by bacteria are poorly understood, especially when it concerns synergistic xenobiotic-degrading consortia where degradation depends on interspecies metabolic interactions. This study examines the impact of the quality and quantity of eDOM, supplied as secondary C-source, on the structure, composition and pesticide-degrading activity of a triple-species bacterial consortium in which the members synergistically degrade the phenylurea herbicide linuron, when grown as biofilms. Biofilms developing on 10 mg L⁻¹ linuron showed a steady-state linuron degradation efficiency of approximately 85 %. The three bacterial strains co-localized in the biofilms indicating syntrophic interactions. Subsequent feeding with eDOM or citrate in addition to linuron resulted into changes in linuron-degrading activity. A decrease in linuron-degrading activity was especially recorded in case of co-feeding with citrate and eDOM of high quality and was always associated with accumulation of the primary metabolite 3,4-dichloroaniline. Improvement of linuron degradation was especially observed with more recalcitrant eDOM. Addition of eDOM/citrate formulations altered biofilm architecture and species composition but without loss of any of the strains and of co-localization. Compositional shifts correlated with linuron degradation efficiencies. When the feed was restored to only linuron, the linuron-degrading activity rapidly changed to the level before the mixed-substrate feed. Meanwhile only minor changes in biofilm composition and structure were recorded, indicating that observed eDOM/citrate effects had been primarily due to repression/stimulation of linuron catabolic activity rather than to biofilm characteristics.

  8. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment.

    PubMed

    Bártíková, Hana; Skálová, Lenka; Stuchlíková, Lucie; Vokřál, Ivan; Vaněk, Tomáš; Podlipná, Radka

    2015-08-01

    Many various xenobiotics permanently enter plants and represent potential danger for their organism. For that reason, plants have evolved extremely sophisticated detoxification systems including a battery of xenobiotic-metabolizing enzymes. Some of them are similar to those in humans and animals, but there are several plant-specific ones. This review briefly introduces xenobiotic-metabolizing enzymes in plants and summarizes present information about their action toward veterinary drugs. Veterinary drugs are used worldwide to treat diseases and protect animal health. However, veterinary drugs are also unwantedly introduced into environment mostly via animal excrements, they persist in the environment for a long time and may impact on the non-target organisms. Plants are able to uptake, transform the veterinary drugs to non- or less-toxic compounds and store them in the vacuoles and cell walls. This ability may protect not only plant themselves but also other organisms, predominantly invertebrates and wild herbivores. The aim of this review is to emphasize the importance of plants in detoxification of veterinary drugs in the environment. The results of studies, which dealt with transport and biotransformation of veterinary drugs in plants, are summarized and evaluated. In conclusion, the risks and consequences of veterinary drugs in the environment and the possibilities of phytoremediation technologies are considered and future perspectives are outlined.

  9. Visualization of the Drosophila dKeap1-CncC interaction on chromatin illumines cooperative, xenobiotic-specific gene activation

    PubMed Central

    Deng, Huai; Kerppola, Tom K.

    2014-01-01

    Interactions among transcription factors control their physiological functions by regulating their binding specificities and transcriptional activities. We implement a strategy to visualize directly the genomic loci that are bound by multi-protein complexes in single cells in Drosophila. This method is based on bimolecular fluorescence complementation (BiFC) analysis of protein interactions on polytene chromosomes. Drosophila Keap1 (dKeap1)-CncC complexes localized to the nucleus and bound chromatin loci that were not bound preferentially by dKeap1 or CncC when they were expressed separately. dKeap1 and CncC binding at these loci was enhanced by phenobarbital, but not by tert-butylhydroquinone (tBHQ) or paraquat. Endogenous dKeap1 and CncC activated transcription of the Jheh (Jheh1, Jheh2, Jheh3) and dKeap1 genes at these loci, whereas CncC alone activated other xenobiotic response genes. Ectopic dKeap1 expression increased CncC binding at the Jheh and dKeap1 gene loci and activated their transcription, whereas dKeap1 inhibited CncC binding at other xenobiotic response gene loci and suppressed their transcription. The combinatorial chromatin-binding specificities and transcriptional activities of dKeap1-CncC complexes mediated the selective activation of different sets of genes by different xenobiotic compounds, in part through feed-forward activation of dKeap1 transcription. PMID:25063457

  10. Transcriptome Analysis of the Carmine Spider Mite, Tetranychus cinnabarinus (Boisduval, 1867) (Acari: Tetranychidae), and Its Response to β-Sitosterol

    PubMed Central

    Bu, Chunya; Li, Jinling; Wang, Xiao-Qin; Shi, Guanglu; Peng, Bo; Han, Jingyu; Gao, Pin; Wang, Younian

    2015-01-01

    Tetranychus cinnabarinus (Acari: Tetranychidae) is a worldwide polyphagous agricultural pest that has the title of resistance champion among arthropods. We reported previously the identification of the acaricidal compound β-sitosterol from Mentha piperita and Inula japonica. However, the acaricidal mechanism of β-sitosterol is unclear. Due to the limited genetic research carried out, we de novo assembled the transcriptome of T. cinnabarinus using Illumina sequencing and conducted a differential expression analysis of control and β-sitosterol-treated mites. In total, we obtained >5.4 G high-quality bases for each sample with unprecedented sequencing depth and assembled them into 22,941 unigenes. We identified 617 xenobiotic metabolism-related genes involved in detoxification, binding, and transporting of xenobiotics. A highly expanded xenobiotic metabolic system was found in mites. T. cinnabarinus detoxification genes—including carboxyl/cholinesterase and ABC transporter class C—were upregulated after β-sitosterol treatment. Defense-related proteins, such as Toll-like receptor, legumain, and serine proteases, were also activated. Furthermore, other important genes—such as the chloride channel protein, cytochrome b, carboxypeptidase, peritrophic membrane chitin binding protein, and calphostin—may also play important roles in mites' response to β-sitosterol. Our results demonstrate that high-throughput-omics tool facilitates identification of xenobiotic metabolism-related genes and illustration of the acaricidal mechanisms of β-sitosterol. PMID:26078964

  11. Combination of microautoradiography and fluorescence in situ hybridization for identification of microorganisms degrading xenobiotic contaminants.

    PubMed

    Yang, Yanru; Zarda, Annatina; Zeyer, Josef

    2003-12-01

    One of the central topics in environmental bioremediation research is to identify microorganisms that are capable of degrading the contaminants of interest. Here we report application of combined microautoradiography (MAR) and fluorescence in situ hybridization (FISH). The method has previously been used in a number of systems; however, here we demonstrate its feasibility in studying the degradation of xenobiotic compounds. With a model system (coculture of Pseudomonas putida B2 and Sphingomonas stygia incubated with [14C] o-nitrophenol), combination of MAR and FISH was shown to be able to successfully identify the microorganisms degrading o-nitrophenol. Compared with the conventional techniques, MAR-FISH allows fast and accurate identification of the microorganisms involved in environmental contaminant degradation.

  12. Removal of Hexazinone from Water with Bioreactors. Remediation of Chlorinated and Recalcitrant Compounds.

    USDA-ARS?s Scientific Manuscript database

    Background/Objectives. Hexazinone is a broad-spectrum triazine herbicide that inhibits electron transport in photosynthetic organisms. The presence of hexazinone in surface and groundwater is a concern because it is toxic to primary producers that serve as the base of the food chain. Long term la...

  13. PROXIMAL: a method for Prediction of Xenobiotic Metabolism.

    PubMed

    Yousofshahi, Mona; Manteiga, Sara; Wu, Charmian; Lee, Kyongbum; Hassoun, Soha

    2015-12-22

    Contamination of the environment with bioactive chemicals has emerged as a potential public health risk. These substances that may cause distress or disease in humans can be found in air, water and food supplies. An open question is whether these chemicals transform into potentially more active or toxic derivatives via xenobiotic metabolizing enzymes expressed in the body. We present a new prediction tool, which we call PROXIMAL (Prediction of Xenobiotic Metabolism) for identifying possible transformation products of xenobiotic chemicals in the liver. Using reaction data from DrugBank and KEGG, PROXIMAL builds look-up tables that catalog the sites and types of structural modifications performed by Phase I and Phase II enzymes. Given a compound of interest, PROXIMAL searches for substructures that match the sites cataloged in the look-up tables, applies the corresponding modifications to generate a panel of possible transformation products, and ranks the products based on the activity and abundance of the enzymes involved. PROXIMAL generates transformations that are specific for the chemical of interest by analyzing the chemical's substructures. We evaluate the accuracy of PROXIMAL's predictions through case studies on two environmental chemicals with suspected endocrine disrupting activity, bisphenol A (BPA) and 4-chlorobiphenyl (PCB3). Comparisons with published reports confirm 5 out of 7 and 17 out of 26 of the predicted derivatives for BPA and PCB3, respectively. We also compare biotransformation predictions generated by PROXIMAL with those generated by METEOR and Metaprint2D-react, two other prediction tools. PROXIMAL can predict transformations of chemicals that contain substructures recognizable by human liver enzymes. It also has the ability to rank the predicted metabolites based on the activity and abundance of enzymes involved in xenobiotic transformation.

  14. The novel antibacterial compound walrycin A induces human PXR transcriptional activity

    PubMed Central

    Berthier, Alexandre; Oger, Frédérik; Gheeraert, Céline; Boulahtouf, Abdel; Le Guével, Rémy; Balaguer, Patrick; Staels, Bart; Salbert, Gilles; Lefebvre, Philippe

    2012-01-01

    The human pregnane X receptor (PXR) is a ligand-regulated transcription factor belonging to the nuclear receptor superfamily. PXR is activated by a large, structurally diverse, set of endogenous and xenobiotic compounds, and coordinates the expression of genes central to metabolism and excretion of potentially harmful chemicals and therapeutic drugs in humans. Walrycin A is a novel antibacterial compound targeting the WalK/WalR two-component signal transduction system of Gram (+) bacteria. Here we report that, in hepatoma cells, walrycin A potently activates a gene set known to be regulated by the xenobiotic sensor PXR. Walrycin A was as efficient as the reference PXR agonist rifampicin to activate PXR in a transactivation assay at non cytoxic concentrations. Using a limited proteolysis assay, we show that walrycin A induces conformational changes at a concentration which correlates with walrycin A ability to enhance the expression of prototypic target genes, suggesting that walrycin A interacts with PXR. The activation of the canonical human PXR target gene CYP3A4 by walrycin A is dose- and PXR-dependent. Finally, in silico docking experiments suggest that the walrycin A oxidation product Russig’s blue is the actual a ligand for PXR. Taken together, these results identify walrycin A as novel human PXR activator. PMID:22314385

  15. Application of Site-Specific Calibration Data Using the CALUX by XDS Bioassay for Dioxin-Like Chemicals in Soil and Sediment Samples

    EPA Science Inventory

    The Chemically-Activated LUciferase gene eXpression (CALUX®) by Xenobiotic Detection Systems (XDS) bioassay was evaluated for determining the presence of dioxin and dioxin-like compounds in soil and sediment in two studies conducted under the U.S. Environmental Protection Agency...

  16. Contrasting Influence of NADPH and a NADPH-Regenerating System on the Metabolism of Carbonyl-Containing Compounds in Hepatic Microsomes

    EPA Science Inventory

    Carbonyl containing xenobiotics may be susceptible to NADPH-dependent cytochrome P450 (P450) and carbonyl-reduction reactions. In vitro hepatic microsome assays are routinely supplied NADPH either by direct addition of NADPH or via an NADPH-regenerating system (NRS). In contrast ...

  17. Advances in phytoremediation.

    PubMed Central

    Dietz, A C; Schnoor, J L

    2001-01-01

    Phytoremediation is the use of plants to remedy contaminated soils, sediments, and/or groundwater. Sorption and uptake are governed by physicochemical properties of the compounds, and moderately hydrophobic chemicals (logarithm octanol--water coefficients = 1.0--3.5) are most likely to be bioavailable to rooted, vascular plants. Some hydrophilic compounds, such as methyl-tert-butylether and 1,4-dioxane, may also be taken up by plants via hydrogen bonding with transpiration water. Organic chemicals that pass through membranes and are translocated to stem and leaf tissues may be converted (e.g., oxidized by cytochrome P450s), conjugated by glutathione or amino acids, and compartmentalized in plant tissues as bound residue. The relationship between metabolism of organic xenobiotics and toxicity to plant tissues is not well understood. A series of chlorinated ethenes is more toxic to hybrid poplar trees (Populus deltoides x nigra, DN-34) than are the corresponding chlorinated ethanes. Toxicity correlates best with the number of chlorine atoms in each homologous series. Transgenic plants have been engineered to rapidly detoxify and transform such xenobiotic chemicals. These could be used in phytoremediation applications if issues of cost and public acceptability are overcome. PMID:11250813

  18. Advances in phytoremediation.

    PubMed

    Dietz, A C; Schnoor, J L

    2001-03-01

    Phytoremediation is the use of plants to remedy contaminated soils, sediments, and/or groundwater. Sorption and uptake are governed by physicochemical properties of the compounds, and moderately hydrophobic chemicals (logarithm octanol--water coefficients = 1.0--3.5) are most likely to be bioavailable to rooted, vascular plants. Some hydrophilic compounds, such as methyl-tert-butylether and 1,4-dioxane, may also be taken up by plants via hydrogen bonding with transpiration water. Organic chemicals that pass through membranes and are translocated to stem and leaf tissues may be converted (e.g., oxidized by cytochrome P450s), conjugated by glutathione or amino acids, and compartmentalized in plant tissues as bound residue. The relationship between metabolism of organic xenobiotics and toxicity to plant tissues is not well understood. A series of chlorinated ethenes is more toxic to hybrid poplar trees (Populus deltoides x nigra, DN-34) than are the corresponding chlorinated ethanes. Toxicity correlates best with the number of chlorine atoms in each homologous series. Transgenic plants have been engineered to rapidly detoxify and transform such xenobiotic chemicals. These could be used in phytoremediation applications if issues of cost and public acceptability are overcome.

  19. Environment, dysbiosis, immunity and sex-specific susceptibility: a translational hypothesis for regressive autism pathogenesis.

    PubMed

    Mezzelani, Alessandra; Landini, Martina; Facchiano, Francesco; Raggi, Maria Elisabetta; Villa, Laura; Molteni, Massimo; De Santis, Barbara; Brera, Carlo; Caroli, Anna Maria; Milanesi, Luciano; Marabotti, Anna

    2015-05-01

    Autism is an increasing neurodevelopmental disease that appears by 3 years of age, has genetic and/or environmental etiology, and often shows comorbid situations, such as gastrointestinal (GI) disorders. Autism has also a striking sex-bias, not fully genetically explainable. Our goal was to explain how and in which predisposing conditions some compounds can impair neurodevelopment, why this occurs in the first years of age, and, primarily, why more in males than females. We reviewed articles regarding the genetic and environmental etiology of autism and toxins effects on animal models selected from PubMed and databases about autism and toxicology. Our hypothesis proposes that in the first year of life, the decreasing of maternal immune protection and child immune-system immaturity create an immune vulnerability to infection diseases that, especially if treated with antibiotics, could facilitate dysbiosis and GI disorders. This condition triggers a vicious circle between immune system impairment and increasing dysbiosis that leads to leaky gut and neurochemical compounds and/or neurotoxic xenobiotics production and absorption. This alteration affects the 'gut-brain axis' communication that connects gut with central nervous system via immune system. Thus, metabolic pathways impaired in autistic children can be affected by genetic alterations or by environment-xenobiotics interference. In addition, in animal models many xenobiotics exert their neurotoxicity in a sex-dependent manner. We integrate fragmented and multi-disciplinary information in a unique hypothesis and first disclose a possible environmental origin for the imbalance of male:female distribution of autism, reinforcing the idea that exogenous factors are related to the recent rise of this disease.

  20. Interference with xenobiotic metabolic activity by the commonly used vehicle solvents dimethylsulfoxide and methanol in zebrafish (Danio rerio) larvae but not Daphnia magna

    PubMed Central

    David, Rhiannon M.; Jones, Huw S.; Panter, Grace H.; Winter, Matthew J.; Hutchinson, Thomas H.; Kevin Chipman, J.

    2012-01-01

    Organic solvents, such as dimethylsulfoxide (DMSO) and methanol are widely used as vehicles to solubilise lipophilic test compounds in toxicity testing. However, the effects of such solvents upon innate detoxification processes in aquatic organisms are poorly understood. This study assessed the effect of solvent exposure upon cytochrome P450 (CYP)-mediated xenobiotic metabolism in Daphnia magna and zebrafish larvae (4 d post fertilisation). Adult D. magna were demonstrated to have a low, but detectable, metabolism of ethoxyresorufin in vivo and this activity was not modulated by pre-exposure to DMSO or methanol (24 h, up to 0.1% and 0.05% v/v, respectively). In contrast, the metabolism of ethoxyresorufin in zebrafish larvae was significantly reduced by both solvents (0.1% and 0.05% v/v, respectively) after 24 h of exposure. In zebrafish, these observed decreases in activity towards ethoxyresorufin were accompanied by decreased expression of a variety of genes coding for drug metabolising enzymes (corresponding to CYP1, CYP2, CYP3 and UDP-glucuronyl transferase [UGT] family enzymes), measured by quantitative PCR. Reduction of gene expression and CYP1 enzyme activities by methanol (0.05% v/v) in zebrafish larvae was partially reversed by co-exposure with Aroclor 1254 (100 μg L−1). Overall this study suggests that relatively low concentrations of organic solvents can impact upon the biotransformation of certain xenobiotics in zebrafish larvae, and that this warrants consideration when assessing compounds for metabolism and toxicity in this species. PMID:22472102

  1. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Qiuming; Li, Zhou; Song, Yang

    Phosphorus (P) is a scarce nutrient in many tropical ecosystems, yet how soil microbial communities cope with growth-limiting P deficiency at the gene and protein levels remains unknown. Here we report a metagenomic and metaproteomic comparison of microbial communities in P-deficient and P-rich soils in a 17-year fertilization experiment in a tropical forest. The large-scale proteogenomics analyses provided extensive coverage of many microbial functions and taxa in the complex soil communities. A >4-fold increase in the gene abundance of 3-phytase was the strongest response of soil communities to P deficiency. Phytase catalyzes the release of phosphate from phytate, the mostmore » recalcitrant P-containing compound in soil organic matter. Genes and proteins for the degradation of P-containing nucleic acids and phospholipids as well as the decomposition of labile carbon and nitrogen were also enhanced in the P-deficient soils. In contrast, microbial communities in the P-rich soils showed increased gene abundances for the degradation of recalcitrant aromatic compounds, the transformation of nitrogenous compounds, and the assimilation of sulfur. Overall, these results demonstrate the adaptive allocation of genes and proteins in soil microbial communities in response to shifting nutrient constraints.« less

  2. Study of thermal pre-treatment on anaerobic digestion of slaughterhouse waste by TGA-MS and FTIR spectroscopy.

    PubMed

    Rodríguez-Abalde, Ángela; Gómez, Xiomar; Blanco, Daniel; Cuetos, María José; Fernández, Belén; Flotats, Xavier

    2013-12-01

    Thermogravimetric analysis coupled to mass spectrometry (TGA-MS) and Fourier-transform infrared spectroscopy (FTIR) were used to describe the effect of pasteurization as a hygienic pre-treatment of animal by-products over biogas production. Piggery and poultry meat wastes were used as substrates for assessing the anaerobic digestion under batch conditions at mesophilic range. Poultry waste was characterized by high protein and carbohydrate content, while piggery waste presented a major fraction of fat and lower carbohydrate content. Results from anaerobic digestion tests showed a lower methane yield for the pre-treated poultry sample. TGA-MS and FTIR spectroscopy allowed the qualitative identification of recalcitrant nitrogen-containing compounds in the pre-treated poultry sample, produced by Maillard reactions. In the case of piggery waste, the recalcitrant compounds were not detected and its biodegradability test reported higher methane yield and production rates. TGA-MS and FTIR spectroscopy were demonstrated to be useful tools for explaining results obtained by anaerobic biodegradability test and in describing the presence of inhibitory problems.

  3. SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter

    PubMed Central

    Landry, Zachary; Swan, Brandon K.; Herndl, Gerhard J.; Stepanauskas, Ramunas

    2017-01-01

    ABSTRACT Deep-ocean regions beyond the reach of sunlight contain an estimated 615 Pg of dissolved organic matter (DOM), much of which persists for thousands of years. It is thought that bacteria oxidize DOM until it is too dilute or refractory to support microbial activity. We analyzed five single-amplified genomes (SAGs) from the abundant SAR202 clade of dark-ocean bacterioplankton and found they encode multiple families of paralogous enzymes involved in carbon catabolism, including several families of oxidative enzymes that we hypothesize participate in the degradation of cyclic alkanes. The five partial genomes encoded 152 flavin mononucleotide/F420-dependent monooxygenases (FMNOs), many of which are predicted to be type II Baeyer-Villiger monooxygenases (BVMOs) that catalyze oxygen insertion into semilabile alicyclic alkanes. The large number of oxidative enzymes, as well as other families of enzymes that appear to play complementary roles in catabolic pathways, suggests that SAR202 might catalyze final steps in the biological oxidation of relatively recalcitrant organic compounds to refractory compounds that persist. PMID:28420738

  4. Significance of Xenobiotic Metabolism for Bioaccumulation Kinetics of Organic Chemicals in Gammarus pulex

    PubMed Central

    2012-01-01

    Bioaccumulation and biotransformation are key toxicokinetic processes that modify toxicity of chemicals and sensitivity of organisms. Bioaccumulation kinetics vary greatly among organisms and chemicals; thus, we investigated the influence of biotransformation kinetics on bioaccumulation in a model aquatic invertebrate using fifteen 14C-labeled organic xenobiotics from diverse chemical classes and physicochemical properties (1,2,3-trichlorobenzene, imidacloprid, 4,6-dinitro-o-cresol, ethylacrylate, malathion, chlorpyrifos, aldicarb, carbofuran, carbaryl, 2,4-dichlorophenol, 2,4,5-trichlorophenol, pentachlorophenol, 4-nitrobenzyl-chloride, 2,4-dichloroaniline, and sea-nine (4,5-dichloro-2-octyl-3-isothiazolone)). We detected and identified metabolites using HPLC with UV and radio-detection as well as high resolution mass spectrometry (LTQ-Orbitrap). Kinetics of uptake, biotransformation, and elimination of parent compounds and metabolites were modeled with a first-order one-compartment model. Bioaccumulation factors were calculated for parent compounds and metabolite enrichment factors for metabolites. Out of 19 detected metabolites, we identified seven by standards or accurate mass measurements and two via pathway analysis and analogies to other compounds. 1,2,3-Trichlorobenzene, imidacloprid, and 4,6-dinitro-o-cresol were not biotransformed. Dietary uptake contributed little to overall uptake. Differentiation between parent and metabolites increased accuracy of bioaccumulation parameters compared to total 14C measurements. Biotransformation dominated toxicokinetics and strongly affected internal concentrations of parent compounds and metabolites. Many metabolites reached higher internal concentrations than their parents, characterized by large metabolite enrichment factors. PMID:22321051

  5. Mitochondrial functions of THP-1 monocytes following the exposure to selected natural compounds.

    PubMed

    Schultze, Nadin; Wanka, Heike; Zwicker, Paula; Lindequist, Ulrike; Haertel, Beate

    2017-02-15

    The immune system is an important target of various xenobiotics, which may lead to severe adverse effects including immunosuppression or inappropriate immunostimulation. Mitochondrial toxicity is one possibility by which xenobiotics exert their toxic effects in cells or organs. In this study, we investigated the impact of three natural compounds, cyclosporine A (CsA), deoxynivalenol (DON) and cannabidiol (CBD) on mitochondrial functions in the THP-1 monocytic cell line. The cells were exposed for 24h to two different concentrations (IC 10 and IC 50 determined by MTT) of each compound. The cells showed concentration-dependent elevated intracellular reactive oxygen species (iROS) and induction of apoptosis (except DON) in response to the three test compounds. Mitochondrial functions were characterized by using bioenergetics profiling experiments. In THP-1 monocytes, the IC 50 of CsA decreased basal and maximal respiration as well as ATP production with an impact on spare capacity indicating a mitochondrial dysfunction. Similar reaction patterns were observed following CBD exposure. The basal respiration level and ATP-production decreased in the THP-1 cells exposed to the IC 50 of DON with no major impact on mitochondrial function. In conclusion, impaired mitochondrial function was accompanied by elevated iROS and apoptosis level in a monocytic cell line exposed to CsA and CBD. Mitochondrial dysfunction may be one explanation for the cytotoxicity of CBD and CsA also in other in immune cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. The Role of Xenobiotic-Metabolizing Enzymes in Anthelmintic Deactivation and Resistance in Helminths.

    PubMed

    Matoušková, Petra; Vokřál, Ivan; Lamka, Jiří; Skálová, Lenka

    2016-06-01

    Xenobiotic-metabolizing enzymes (XMEs) modulate the biological activity and behavior of many drugs, including anthelmintics. The effects of anthelmintics can often be abolished by XMEs when the drugs are metabolized to an inefficient compound. XMEs therefore play a significant role in anthelmintic efficacy. Moreover, differences in XMEs between helminths are reflected by differences in anthelmintic metabolism between target species. Taking advantage of the newly sequenced genomes of many helminth species, progress in this field has been remarkable. The present review collects up to date information regarding the most important XMEs (phase I and phase II biotransformation enzymes; efflux transporters) in helminths. The participation of these XMEs in anthelmintic metabolism and their possible roles in drug resistance are evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [THE SYSTEM OF XENOBIOTICS BIOTRANSFORMATION OF HELMINTHS. RESEMBLANCE AND DIFFERENSES FROM SIMILAR HOST SYSTEMS (REWEW)].

    PubMed

    Smirnov, L P; Borvinskaya, E V; Suhovskaya, I V

    2016-01-01

    The three phases system xenobiotic biotransformation in cells as prokaryotes as eukaryotes was formed during the process of evolution. Clear and managed function of all three links of this system guarantee the survival of living organisms at alteration of chemical component of environment. Oxidation, reduction or hydrolysis of xenobiotics realize in phase I by insertion or opening reactive and hydrophilic groups in structure of drug molecule. In phase II xenobiotics or their metabolites from phase I conjugate with endogenic compounds, main of there are glutathione, glucuronic acid, amino acids and sulphates. Active transport of substrata, metabolites and conjugates through cell lipid membranes special transport proteins carry out (phase III). The system of xenobiotics biotransformation of helminths has essential differences from the same of vertebrate hosts. In particular, parasites do not reveal the activity of prime oxidases of phase I, such as CYP or FMO, in spite of the genes of these enzymes in DNA. As this phenomenon displays mainly in adult helminths, living in guts of vertebrates, then the hypothesis was formulated that this effect is related with adaptation to conditions of strong deficiency of oxygen, arise in a process of evolution (Kotze et al., 2006). Literature data testify the existence in helminths of unique forms of enzymes of phase II, the investigation of which present doubtless interest in relation with possible role in adaptation to parasitic mode of life. Notwithstanding that many of helminths GST in greater or lesser degree similar with enzymes of M, P, S and О classes of other organisms, nevertheless they have essential structural differences as compared with enzymes of hosts that makes perspective the search of specific anthelminthics vaccines. Transport of xenobiotics is now considered phase III of biotransformation. It was shown that proteins of this phase (ATP binding cassette transporters (ABC ) of parasites) play a key role in efflux of lipophilic xenobiotics, hydrophilic metabolites and conjugates and take part in forming of anthelminthics resistance. Some of these transporters, such as P-glycoprotein (Pgp), are important for drug resistance of helminths. In particular, a correlation between the level of expression of Pgp and resistance of S. mansoni and F. hepatica to widely used anthelminthics as praziquantel and triclabendazol exist.

  8. Status of hormones and painkillers in wastewater effluents across several European states-considerations for the EU watch list concerning estradiols and diclofenac.

    PubMed

    Schröder, P; Helmreich, B; Škrbić, B; Carballa, M; Papa, M; Pastore, C; Emre, Z; Oehmen, A; Langenhoff, A; Molinos, M; Dvarioniene, J; Huber, C; Tsagarakis, K P; Martinez-Lopez, E; Pagano, S Meric; Vogelsang, C; Mascolo, G

    2016-07-01

    Present technologies for wastewater treatment do not sufficiently address the increasing pollution situation of receiving water bodies, especially with the growing use of personal care products and pharmaceuticals (PPCP) in the private household and health sector. The relevance of addressing this problem of organic pollutants was taken into account by the Directive 2013/39/EU that introduced (i) the quality evaluation of aquatic compartments, (ii) the polluter pays principle, (iii) the need for innovative and affordable wastewater treatment technologies, and (iv) the identification of pollution causes including a list of principal compounds to be monitored. In addition, a watch list of 10 other substances was recently defined by Decision 2015/495 on March 20, 2015. This list contains, among several recalcitrant chemicals, the painkiller diclofenac and the hormones 17β-estradiol and 17α-ethinylestradiol. Although some modern approaches for their removal exist, such as advanced oxidation processes (AOPs), retrofitting most wastewater treatment plants with AOPs will not be acceptable as consistent investment at reasonable operational cost. Additionally, by-product and transformation product formation has to be considered. The same is true for membrane-based technologies (nanofiltration, reversed osmosis) despite of the incredible progress that has been made during recent years, because these systems lead to higher operation costs (mainly due to higher energy consumption) so that the majority of communities will not easily accept them. Advanced technologies in wastewater treatment like membrane bioreactors (MBR) that integrate biological degradation of organic matter with membrane filtration have proven a more complete elimination of emerging pollutants in a rather cost- and labor-intensive technology. Still, most of the presently applied methods are incapable of removing critical compounds completely. In this opinion paper, the state of the art of European WWTPs is reflected, and capacities of single methods are described. Furthermore, the need for analytical standards, risk assessment, and economic planning is stressed. The survey results in the conclusion that combinations of different conventional and advanced technologies including biological and plant-based strategies seem to be most promising to solve the burning problem of polluting our environment with hazardous emerging xenobiotics.

  9. Circadian Clock Regulates Response to Pesticides in Drosophila via Conserved Pdp1 Pathway

    PubMed Central

    Beaver, Laura Michelle; Hooven, Louisa Ada; Butcher, Shawn Michael; Krishnan, Natraj; Sherman, Katherine Alice; Chow, Eileen Shin-Yeu; Giebultowicz, Jadwiga Maria

    2010-01-01

    Daily rhythms generated by the circadian clock regulate many life functions, including responses to xenobiotic compounds. In Drosophila melanogaster, the circadian clock consists of positive elements encoded by cycle (cyc) and Clock (Clk) and negative elements encoded by period (per) and timeless (tim) genes. The ϵ-isoform of the PAR-domain protein 1 (Pdp1ε) transcription factor is controlled by positive clock elements and regulates daily locomotor activity rhythms. Pdp1 target genes have not been identified, and its involvement in other clock output pathways is not known. Mammalian orthologs of Pdp1 have been implicated in the regulation of xenobiotic metabolism; therefore, we asked whether Pdp1 has a similar role in the fly. Using pesticides as model toxicants, we determined that disruption of Pdp1ε increased pesticide-induced mortality in flies. Flies deficient for cyc also showed increased mortality, while disruption of per and tim had no effect. Day/night and Pdp1-dependent differences in the expression of xenobiotic-metabolizing enzymes Cyp6a2, Cyp6g1, and α-Esterase-7 were observed and likely contribute to impaired detoxification. DHR96, a homolog of constitutive androstane receptor and pregnane X receptor, is involved in pesticide response, and DHR96 expression decreased when Pdp1 was suppressed. Taken together, our data uncover a pathway from the positive arm of the circadian clock through Pdp1 to detoxification effector genes, demonstrating a conserved role of the circadian system in modulating xenobiotic toxicity. PMID:20348229

  10. Maize root culture as a model system for studying azoxystrobin biotransformation in plants.

    PubMed

    Gautam, Maheswor; Elhiti, Mohamed; Fomsgaard, Inge S

    2018-03-01

    Hairy roots induced by Agrobacterium rhizogenes are well established models to study the metabolism of xenobiotics in plants for phytoremediation purposes. However, the model requires special skills and resources for growing and is a time-consuming process. The roots induction process alters the genetic construct of a plant and is known to express genes that are normally absent from the non-transgenic plants. In this study, we propose and establish a non-transgenic maize root model to study xenobiotic metabolism in plants for phytoremediation purpose using azoxystrobin as a xenobiotic compound. Maize roots were grown aseptically in Murashige and Skoog medium for two weeks and were incubated in 100 μM azoxystrobin solution. Azoxystrobin was taken up by the roots to the highest concentration within 15 min of treatment and its phase I metabolites were also detected at the same time. Conjugated metabolites of azoxystrobin were detected and their identities were confirmed by enzymatic and mass spectrometric methods. Further, azoxystrobin metabolites identified in maize root culture were compared against azoxystrobin metabolites in azoxystrobin sprayed lettuce grown in green house. A very close similarity between metabolites identified in maize root culture and lettuce plant was obtained. The results from this study establish that non-transgenic maize roots can be used for xenobiotic metabolism studies instead of genetically transformed hairy roots due to the ease of growing and handling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Chemical Selection Via In Vitro-In Vivo Correlation of ToxCast and ToxRefDB Data to Evaluate the Virtual Liver

    EPA Science Inventory

    The Virtual Liver Project (v-LiverTM) is a US EPA effort to simulate the function of the human liver with sufficient accuracy to predict how environmental exposure to xenobiotic compounds will perturb homeostasis. The better we understand the liver, the better we will understand...

  12. Lowbush wild blueberries have the potentail to modify gut microbiota and xenobiotic metabolism in the rat colon

    USDA-ARS?s Scientific Manuscript database

    Polyphenols present in lowbush blueberries cannot be absorbed by the intestinal epithelial tissue in their native form. These compounds are catabolized by the gut microbiota before being utilized. The objective of this research is to study the effect of a diet enriched with lowbush blueberries on th...

  13. LC/MSMS STUDY OF BENZO[A]PYRENE-7,8-QUINONE ADDUCTION TO GLOBIN TRYPTIC PEPTIDES AND N-ACETYLAMINO ACIDS

    EPA Science Inventory

    Benzo[a]pyrene-7,8-quinone (BPQ) is regarded as a reactive genotoxic compound enzymatically formed from a xenobiotic precursor benzo[a]pyrene-7,8-diol by aldo-keto-reductase family of enzymes. Because BPQ, a Michael electrophile, was previously shown to react with oligonucleotide...

  14. Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress

    PubMed Central

    Colville, Louise

    2012-01-01

    The volatile compounds released by orthodox (desiccation-tolerant) seeds during ageing can be analysed using gas chromatography–mass spectrometry (GC-MS). Comparison of three legume species (Pisum sativum, Lathyrus pratensis, and Cytisus scoparius) during artificial ageing at 60% relative humidity and 50 °C revealed variation in the seed volatile fingerprint between species, although in all species the overall volatile concentration increased with storage period, and changes could be detected prior to the onset of viability loss. The volatile compounds are proposed to derive from three main sources: alcoholic fermentation, lipid peroxidation, and Maillard reactions. Lipid peroxidation was confirmed in P. sativum seeds through analysis of malondialdehyde and 4-hydroxynonenal. Volatile production by ageing orthodox seeds was compared with that of recalcitrant (desiccation-sensitive) seeds of Quercus robur during desiccation. Many of the volatiles were common to both ageing orthodox seeds and desiccating recalcitrant seeds, with alcoholic fermentation forming the major source of volatiles. Finally, comparison was made between two methods of analysis; the first used a Tenax adsorbent to trap volatiles, whilst the second used solid phase microextraction to extract volatiles from the headspace of vials containing powdered seeds. Solid phase microextraction was found to be more sensitive, detecting a far greater number of compounds. Seed volatile analysis provides a non-invasive means of characterizing the processes involved in seed deterioration, and potentially identifying volatile marker compounds for the diagnosis of seed viability loss. PMID:23175670

  15. High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism.

    PubMed

    Bao, Yun-Juan; Xu, Zixiang; Li, Yang; Yao, Zhi; Sun, Jibin; Song, Hui

    2017-06-01

    The soil with petroleum contamination is one of the most studied soil ecosystems due to its rich microorganisms for hydrocarbon degradation and broad applications in bioremediation. However, our understanding of the genomic properties and functional traits of the soil microbiome is limited. In this study, we used high-throughput metagenomic sequencing to comprehensively study the microbial community from petroleum-contaminated soils near Tianjin Dagang oilfield in eastern China. The analysis reveals that the soil metagenome is characterized by high level of community diversity and metabolic versatility. The metageome community is predominated by γ-Proteobacteria and α-Proteobacteria, which are key players for petroleum hydrocarbon degradation. The functional study demonstrates over-represented enzyme groups and pathways involved in degradation of a broad set of xenobiotic aromatic compounds, including toluene, xylene, chlorobenzoate, aminobenzoate, DDT, methylnaphthalene, and bisphenol. A composite metabolic network is proposed for the identified pathways, thus consolidating our identification of the pathways. The overall data demonstrated the great potential of the studied soil microbiome in the xenobiotic aromatics degradation. The results not only establish a rich reservoir for novel enzyme discovery but also provide putative applications in bioremediation. Copyright © 2016. Published by Elsevier B.V.

  16. Vitreous humor analysis for the detection of xenobiotics in forensic toxicology: a review.

    PubMed

    Bévalot, Fabien; Cartiser, Nathalie; Bottinelli, Charline; Fanton, Laurent; Guitton, Jérôme

    2016-01-01

    Vitreous humor (VH) is a gelatinous substance contained in the posterior chamber of the eye, playing a mechanical role in the eyeball. It has been the subject of numerous studies in various forensic applications, primarily for the assessment of postmortem interval and for postmortem chemical analysis. Since most of the xenobiotics present in the bloodstream are detected in VH after crossing the selective blood-retinal barrier, VH is an alternative matrix useful for forensic toxicology. VH analysis offers particular advantages over other biological matrices: it is less prone to postmortem redistribution, is easy to collect, has relatively few interfering compounds for the analytical process, and shows sample stability over time after death. The present study is an overview of VH physiology, drug transport and elimination. Collection, storage, analytical techniques and interpretation of results from qualitative and quantitative points of view are dealt with. The distribution of xenobiotics in VH samples is thus discussed and illustrated by a table reporting the concentrations of 106 drugs from more than 300 case reports. For this purpose, a survey was conducted of publications found in the MEDLINE database from 1969 through April 30, 2015.

  17. Toxicity assessment of common xenobiotic compounds on municipal activated sludge: comparison between respirometry and Microtox.

    PubMed

    Ricco, Giuseppina; Tomei, M C M Concetta; Ramadori, Roberto; Laera, Giuseppe

    2004-04-01

    The toxicity of four xenobiotic compounds 3,5-dichlorophenol, formaldehyde, 4-nitrophenol and dichloromethane, representative of industrial wastewater contaminants was evaluated by a simple respirometric procedure set up on the basis of OECD Method 209 and by the Microtox bioassay. Very good reproducibility was observed for both methods, the variation coefficients being in the range of 2-10% for the respirometric procedure and 6-15% for Microtox, values that can be considered very good for a biological method. Comparison of EC(50) data obtained with the two methods shows that in both cases 3,5-dichlorophenol is more toxic than other compounds investigated and dichloromethane has a very low toxicity value. Intermediate EC(50) values were found for the two other chemicals, formaldehyde and 4-nitrophenol. Moreover, the Microtox EC(50) values are generally lower (except for dichloromethane) than the respirometric ones: these differences could be explained by the fact that the Microtox method uses a pure culture of marine species and, therefore, should not necessarily be expected to behave like a community of activated sludge bacteria. In conclusion, both methods can be usefully applied for toxicity detection in wastewater treatment plants but it is advisable to take into account that Microtox is more sensitive than respirometry in estimating the acute toxicity effect on the biomass operating in the plant.

  18. Genetic Linkage of Soil Carbon Pools and Microbial Functions in Subtropical Freshwater Wetlands in Response to Experimental Warming

    PubMed Central

    Wang, Hang; He, Zhili; Lu, Zhenmei; Zhou, Jizhong; Van Nostrand, Joy D.; Xu, Xinhua

    2012-01-01

    Rising climate temperatures in the future are predicted to accelerate the microbial decomposition of soil organic matter. A field microcosm experiment was carried out to examine the impact of soil warming in freshwater wetlands on different organic carbon (C) pools and associated microbial functional responses. GeoChip 4.0, a functional gene microarray, was used to determine microbial gene diversity and functional potential for C degradation. Experimental warming significantly increased soil pore water dissolved organic C and phosphorus (P) concentrations, leading to a higher potential for C emission and P export. Such losses of total organic C stored in soil could be traced back to the decomposition of recalcitrant organic C. Warming preferentially stimulated genes for degrading recalcitrant C over labile C. This was especially true for genes encoding cellobiase and mnp for cellulose and lignin degradation, respectively. We confirmed this with warming-enhanced polyphenol oxidase and peroxidase activities for recalcitrant C acquisition and greater increases in recalcitrant C use efficiency than in labile C use efficiency (average percentage increases of 48% versus 28%, respectively). The relative abundance of lignin-degrading genes increased by 15% under warming; meanwhile, soil fungi, as the primary decomposers of lignin, were greater in abundance by 27%. This work suggests that future warming may enhance the potential for accelerated fungal decomposition of lignin-like compounds, leading to greater microbially mediated C losses than previously estimated in freshwater wetlands. PMID:22923398

  19. Natural attenuation of xenobiotic organic compounds in a landfill leachate plume (Vejen, Denmark).

    PubMed

    Baun, Anders; Reitzel, Lotte A; Ledin, Anna; Christensen, Thomas H; Bjerg, Poul L

    2003-09-01

    Demonstration of natural attenuation of xenobiotic organic compounds (XOCs) in landfill leachate plumes is a difficult task and still an emerging discipline within groundwater remediation. One of the early studies was made at the Vejen Landfill in Denmark in the late 1980s, which suggested that natural attenuation of XOCs took place under strongly anaerobic conditions within the first 150 m of the leachate plume. This paper reports on a revisit to the same plume 10 years later. Within the strongly anaerobic part of the plume, 49 groundwater samples were characterized with respect to redox-sensitive species and XOCs. The analytical procedures have been developed further and more compounds and lower detection limits were observed this time. In addition, the samples were screened for degradation intermediates and for toxicity. The plume showed fairly stationary features over the 10-year period except that the XOC level as well as the level of chloride and nonvolatile organic carbon (NVOC) in the plume had decreased somewhat. Most of the compounds studied were subject to degradation in addition to dilution. Exceptions were benzene, the herbicide Mecoprop (MCPP), and NVOC. In the early study, NVOC seemed to degrade in the first part of the plume, but this was no longer the case. Benzyl succinic acid (BSA) was for the first time identified in a leachate plume as a direct indicator, and as the only intermediate of toluene degradation. Toxicity measurements on solid phase-extracted (SPE) samples revealed that toxic compounds not analytically identified were still present in the plume, suggesting that toxicity measurements could be helpful in assessing natural attenuation in leachate plumes.

  20. Metabolic response against sulfur-containing heterocyclic compounds by the lignin-degrading basidiomycete Coriolus versicolor.

    PubMed

    Ichinose, H; Nakamizo, M; Wariishi, H; Tanaka, H

    2002-03-01

    The fungal conversions of sulfur-containing heterocyclic compounds were investigated using the lignin-degrading basidiomycete Coriolus versicolor. The fungus metabolized a series of sulfur compounds--25 structurally related thiophene derivatives--via several different pathways. Under primary metabolic conditions, C. versicolor utilized thiophenes, such as 2-hydroxymethyl-, 2-formyl-, and 2-carboxyl-thiophenes, as a nutrient sulfur source for growth; thus, the fungus degraded these compounds more effectively in a non-sulfur-containing medium than in conventional medium. The product analysis revealed that several redox reactions, decarboxylation reactions, and C-S cleavage reactions were involved in the fungal conversion of non-aromatic thiophenes. On the other hand, benzothiophene (BT) and dibenzothiophene (DBT) skeletons were converted to water-soluble products. All the products and metabolic intermediates were more hydrophilic than the starting substrates. These metabolic actions seemed to be a chemical stress response against exogenously added xenobiotics. These metabolic reactions were optimized under ligninolytic conditions, also suggesting the occurrence of a fungal xenobiotic response. Furthermore, the fungus converted a series of BTs and DBTs via several different pathways, which seemed to be controlled by the chemical structure of the substrates. DBT, 4-methylDBT, 4, 6-dimethylDBT, 2-methylBT, and 7-methylBT were immediately oxidized to their S-oxides. BTs and DBTs with the hydroxymethyl substituent were converted to their xylosides without S-oxidation. Those with carboxyl and formyl substituents were reduced to form a hydroxymethyl group, then xylosidated. These observations strongly suggested the involvement of a fungal substrate-recognition and metabolic response mechanism in the metabolism of sulfur-containing heterocyclic compounds by C. versicolor.

  1. Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures.

    PubMed

    Pinto, A P; Serrano, C; Pires, T; Mestrinho, E; Dias, L; Teixeira, D Martins; Caldeira, A T

    2012-10-01

    Contamination of waters by xenobiotic compounds such as pesticides presents a serious environmental problem with substantial levels of pesticides now contaminating European water resources. The aim of this work was to evaluate the ability of the fungi Fusarium oxysporum, Aspergillus oryzae, Lentinula edodes, Penicillium brevicompactum and Lecanicillium saksenae, for the biodegradation of the pesticides terbuthylazine, difenoconazole and pendimethalin in batch liquid cultures. These pesticides are common soil and water contaminants and terbuthylazine is considered the most persistent triazine herbicide in surface environments. P. brevicompactum and L. saksenae were achieved by enrichment, isolation and screening of fungi capable to metabolize the pesticides studied. The isolates were obtained from two pesticide-primed materials (soil and biomixture). Despite the relatively high persistence of terbuthylazine, the results obtained in this work showed that the fungi species studied have a high capability of biotransformation of this xenobiotic, comparatively the results obtained in other similar studies. The highest removal percentage of terbuthylazine from liquid medium was achieved with A. oryzae (~80%), although the major biodegradation has been reached with P. brevicompactum. The higher ability of P. brevicompactum to metabolize terbuthylazine was presumably acquired through chronic exposure to contamination with the herbicide. L. saksenae could remove 99.5% of the available pendimethalin in batch liquid cultures. L. edodes proved to be a fungus with a high potential for biodegradation of pesticides, especially difenoconazole and pendimethalin. Furthermore, the metabolite desethyl-terbuthylazine was detected in L. edodes liquid culture medium, indicating terbuthylazine biodegradation by this fungus. The fungi strains investigated could prove to be valuable as active pesticide-degrading microorganisms, increasing the efficiency of biopurification systems containing wastewaters contaminated with the xenobiotics studied or compounds with similar intrinsic characteristics. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Environment, dysbiosis, immunity and sex-specific susceptibility: A translational hypothesis for regressive autism pathogenesis

    PubMed Central

    Mezzelani, Alessandra; Landini, Martina; Facchiano, Francesco; Raggi, Maria Elisabetta; Villa, Laura; Molteni, Massimo; De Santis, Barbara; Brera, Carlo; Caroli, Anna Maria; Milanesi, Luciano; Marabotti, Anna

    2015-01-01

    Background Autism is an increasing neurodevelopmental disease that appears by 3 years of age, has genetic and/or environmental etiology, and often shows comorbid situations, such as gastrointestinal (GI) disorders. Autism has also a striking sex-bias, not fully genetically explainable. Objective Our goal was to explain how and in which predisposing conditions some compounds can impair neurodevelopment, why this occurs in the first years of age, and, primarily, why more in males than females. Methods We reviewed articles regarding the genetic and environmental etiology of autism and toxins effects on animal models selected from PubMed and databases about autism and toxicology. Discussion Our hypothesis proposes that in the first year of life, the decreasing of maternal immune protection and child immune-system immaturity create an immune vulnerability to infection diseases that, especially if treated with antibiotics, could facilitate dysbiosis and GI disorders. This condition triggers a vicious circle between immune system impairment and increasing dysbiosis that leads to leaky gut and neurochemical compounds and/or neurotoxic xenobiotics production and absorption. This alteration affects the ‘gut-brain axis’ communication that connects gut with central nervous system via immune system. Thus, metabolic pathways impaired in autistic children can be affected by genetic alterations or by environment–xenobiotics interference. In addition, in animal models many xenobiotics exert their neurotoxicity in a sex-dependent manner. Conclusions We integrate fragmented and multi-disciplinary information in a unique hypothesis and first disclose a possible environmental origin for the imbalance of male:female distribution of autism, reinforcing the idea that exogenous factors are related to the recent rise of this disease. PMID:24621061

  3. Characterization and Comprehensive Proteome Profiling of Exosomes Secreted by Hepatocytes

    PubMed Central

    Conde-Vancells, Javier; Rodriguez-Suarez, Eva; Embade, Nieves; Gil, David; Matthiesen, Rune; Valle, Mikel; Elortza, Felix; Lu, Shelly C.; Mato, Jose M.; Falcon-Perez, Juan M.

    2009-01-01

    Synopsis Exosomes constitute a discrete population of nanometer-sized (30-150 nm) vesicles formed in endocytic compartments and released to the extracellular environment by different cell types. In this work we demonstrated by electron microscopic, western blotting and proteomic analyses that primary hepatocytes secrete exosome-like vesicles containing proteins involved in metabolizing lipoproteins, endogenous compounds as well as xenobiotics. These new findings contribute to improve our knowledge about biology's hepatocyte and may have important diagnostic, prognosis and therapeutic implications in liver diseases Exosomes represent a discrete population of vesicles that are secreted from various cell types to the extracellular media. Their protein and lipid composition are a consequence of sorting events at the level of the multivesicular body, a central organelle which integrates endocytic and secretory pathways. Characterization of exosomes from different biological samples has shown the presence of common as well as cell-type specific proteins. Remarkably, the protein content of the exosomes is modified upon pathological or stress conditions. Hepatocytes play a central role in the body response to stress metabolizing potentially harmful endogenous substances as well as xenobiotics. In the present study we described and characterized for first time exosome secretion in non-tumoral hepatocytes, and using a systematic proteomic approach, we establish the first extensive proteome of a hepatocyte-derived exosome population which should be useful in furthering our understanding of the hepatic function and in the identification of components that may serve as biomarkers for hepatic alterations. Our analysis identifies a significant number of proteins previously described among exosomes derived from others cell types as well as proteins involved in metabolizing lipoproteins, endogenous compounds and xenobiotics, not previously described in exosomes. Furthermore, we demonstrated that exosomal membrane proteins can constitute an interesting tool to express non-exosomal proteins into exosomes with therapeutic purposes. PMID:19367702

  4. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  5. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    PubMed

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-05

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment. Copyright © 2016, American Association for the Advancement of Science.

  6. Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi

    PubMed Central

    Fragoeiro, Silvia; Bastos, Catarina

    2010-01-01

    This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered. PMID:23956663

  7. Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater.

    PubMed

    Ferrando-Climent, Laura; Cruz-Morató, Carles; Marco-Urrea, Ernest; Vicent, Teresa; Sarrà, Montserrat; Rodriguez-Mozaz, Sara; Barceló, Damià

    2015-10-01

    This work presents a study about the elimination of anticancer drugs, a group of pollutants considered recalcitrant during conventional activated sludge wastewater treatment, using a biological treatment based on the fungus Trametes versicolor. A 10-L fluidized bed bioreactor inoculated with this fungus was set up in order to evaluate the removal of 10 selected anticancer drugs in real hospital wastewater. Almost all the tested anticancer drugs were completely removed from the wastewater at the end of the batch experiment (8 days) with the exception of Ifosfamide and Tamoxifen. These two recalcitrant compounds, together with Cyclophosphamide, were selected for further studies to test their degradability by T. versicolor under optimal growth conditions. Cyclophosphamide and Ifosfamide were inalterable during batch experiments both at high and low concentration, whereas Tamoxifen exhibited a decrease in its concentration along the treatment. Two positional isomers of a hydroxylated form of Tamoxifen were identified during this experiment using a high resolution mass spectrometry based on ultra-high performance chromatography coupled to an Orbitrap detector (LTQ-Velos Orbitrap). Finally the identified transformation products of Tamoxifen were monitored in the bioreactor run with real hospital wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Enantioselective degradation of amphetamine-like environmental micropollutants (amphetamine, methamphetamine, MDMA and MDA) in urban water.

    PubMed

    Evans, Sian E; Bagnall, John; Kasprzyk-Hordern, Barbara

    2016-08-01

    This paper aims to understand enantioselective transformation of amphetamine, methamphetamine, MDMA (3,4-methylenedioxy-methamphetamine) and MDA (3,4-methylenedioxyamphetamine) during wastewater treatment and in receiving waters. In order to undertake a comprehensive evaluation of the processes occurring, stereoselective transformation of amphetamine-like compounds was studied, for the first time, in controlled laboratory experiments: receiving water and activated sludge simulating microcosm systems. The results demonstrated that stereoselective degradation, via microbial metabolic processes favouring S-(+)-enantiomer, occurred in all studied amphetamine-based compounds in activated sludge simulating microcosms. R-(-)-enantiomers were not degraded (or their degradation was limited) which proves their more recalcitrant nature. Out of all four amphetamine-like compounds studied, amphetamine was the most susceptible to biodegradation. It was followed by MDMA and methamphetamine. Photochemical processes facilitated degradation of MDMA and methamphetamine but they were not, as expected, stereoselective. Preferential biodegradation of S-(+)-methamphetamine led to the formation of S-(+)-amphetamine. Racemic MDMA was stereoselectively biodegraded by activated sludge which led to its enrichment with R-(-)-enantiomer and formation of S-(+)-MDA. Interestingly, there was only mild stereoselectivity observed during MDMA degradation in rivers. This might be due to different microbial communities utilised during activated sludge treatment and those present in the environment. Kinetic studies confirmed the recalcitrant nature of MDMA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Moles of a Substance per Cell Is a Highly Informative Dosing Metric in Cell Culture

    PubMed Central

    Wagner, Brett A.; Buettner, Garry R.

    2015-01-01

    Background The biological consequences upon exposure of cells in culture to a dose of xenobiotic are not only dependent on biological variables, but also the physical aspects of experiments e.g. cell number and media volume. Dependence on physical aspects is often overlooked due to the unrecognized ambiguity in the dominant metric used to express exposure, i.e. initial concentration of xenobiotic delivered to the culture medium over the cells. We hypothesize that for many xenobiotics, specifying dose as moles per cell will reduce this ambiguity. Dose as moles per cell can also provide additional information not easily obtainable with traditional dosing metrics. Methods Here, 1,4-benzoquinone and oligomycin A are used as model compounds to investigate moles per cell as an informative dosing metric. Mechanistic insight into reactions with intracellular molecules, differences between sequential and bolus addition of xenobiotic and the influence of cell volume and protein content on toxicity are also investigated. Results When the dose of 1,4-benzoquinone or oligomycin A was specified as moles per cell, toxicity was independent of the physical conditions used (number of cells, volume of medium). When using moles per cell as a dose-metric, direct quantitative comparisons can be made between biochemical or biological endpoints and the dose of xenobiotic applied. For example, the toxicity of 1,4-benzoquinone correlated inversely with intracellular volume for all five cell lines exposed (C6, MDA-MB231, A549, MIA PaCa-2, and HepG2). Conclusions Moles per cell is a useful and informative dosing metric in cell culture. This dosing metric is a scalable parameter that: can reduce ambiguity between experiments having different physical conditions; provides additional mechanistic information; allows direct comparison between different cells; affords a more uniform platform for experimental design; addresses the important issue of repeatability of experimental results, and could increase the translatability of information gained from in vitro experiments. PMID:26172833

  10. Retinoid-xenobiotic interactions: the Ying and the Yang

    PubMed Central

    2015-01-01

    The literature provides compelling evidence pointing to tight metabolic interactions between retinoids and xenobiotics. These are extensive and important for understanding xenobiotic actions in the body. Within the body, retinoids affect xenobiotic metabolism and actions and conversely, xenobiotics affect retinoid metabolism and actions. This article summarizes data that establish the importance of retinoid-dependent metabolic pathways for sustaining the body’s responses to xenobiotic exposure, including the roles of all-trans- and 9-cis-retinoic acid for protecting mammals from harmful xenobiotic effects and for ensuring xenobiotic elimination from the body. This review will also consider molecular mechanisms underlying xenobiotic toxicity focusing on how this may contribute to retinoid deficiency and disruption of normal retinoid homeostasis. Special attention is paid to xenobiotic molecular targets (nuclear receptors, regulatory proteins, enzymes, and transporters) which affect retinoid metabolism and signaling. PMID:26311625

  11. Oxidative cleavage of non-phenolic β-O-4 lignin model dimers by an extracellular aromatic peroxygenase

    Treesearch

    Matthias Kinne; Marzena Poraj-Kobielska; Rene Ullrich; Paula Nousiainen; Jussi Sipilä; Katrin Scheibner; Kenneth E. Hammel; Martin Hofrichter

    2011-01-01

    The extracellular aromatic peroxygenase of the agaric fungus Agrocybe aegerita catalyzed the H2O2-dependent cleavage of non-phenolic arylgiycerol-ß-aryl ethers (ß-O-4 ethers). For instance 1-(3,4-dimethoxyphenyl)-2-(2-methoxy-phenoxy)propane-1,3-diol, a recalcitrant dimeric lignin model compound that represents the major...

  12. Induction of tolerance to desiccation and cryopreservation in silver maple (Acer saccharinum) embryonic axes.

    PubMed

    Beardmore, T; Whittle, C-A

    2005-08-01

    Twenty percent of of the world's flowering plants produce recalcitrant seeds (i.e., seeds that cannot withstand drying or freezing). We investigated whether the embryonic axis from the normally recalcitrant seeds of silver maple (Acer saccharinum L.) can be made tolerant to desiccation (10% water content) and low temperature (-196 degrees C, cryopreservation) by pretreatment with ABA or the compound tetcyclacis, which enhances endogenous ABA concentrations. Pretreatment of axes with both ABA and tetcyclacis increased germination after desiccation and freezing to 55% from a control value of zero. Pretreatment of axes with ABA and tetcyclacis increased the ABA content of the axes, as measured by enzyme-linked immunoassay, and stimulated the synthesis of storage and dehydrin-like proteins, believed to have a role in the desiccation tolerance of orthodox seeds.

  13. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    PubMed

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Proteomic analysis of B-aminobutyric acid priming and aba-induction of drought resistance in crabapple (Malus pumila): effect on general metabolism, the phenylpropanoid pathway and cell wall enzymes

    USDA-ARS?s Scientific Manuscript database

    In a variety of annual crops and model plants, the xenobiotic compound, DL-beta-aminobutyric acid (BABA), has been shown to enhance disease resistance and increase salt, drought, and thermotolerance. BABA does not activate stress genes directly but rather sensitizes plants to respond more quickly a...

  15. BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia

    PubMed Central

    Zabriskie, Matthew S.; Eide, Christopher A.; Tantravahi, Srinivas K.; Vellore, Nadeem A.; Estrada, Johanna; Nicolini, Franck E.; Khoury, Hanna J.; Larson, Richard A.; Konopleva, Marina; Cortes, Jorge E.; Kantarjian, Hagop; Jabbour, Elias J.; Kornblau, Steven M.; Lipton, Jeffrey H.; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J.; Press, Richard D.; Chuah, Charles; Goldberg, Stuart L.; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R.; Heaton, William L.; Eiring, Anna M.; Pomicter, Anthony D.; Khorashad, Jamshid S.; Kelley, Todd W.; Baron, Riccardo; Druker, Brian J.; Deininger, Michael W.; O'Hare, Thomas

    2014-01-01

    Summary Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph+) leukemia, including the recalcitrant BCR-ABL1T315I mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph+ leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome. PMID:25132497

  16. Decomposition of recalcitrant carbon under experimental warming in boreal forest

    PubMed Central

    Allison, Steven D.; Treseder, Kathleen K.

    2017-01-01

    Over the long term, soil carbon (C) storage is partly determined by decomposition rate of carbon that is slow to decompose (i.e., recalcitrant C). According to thermodynamic theory, decomposition rates of recalcitrant C might differ from those of non-recalcitrant C in their sensitivities to global warming. We decomposed leaf litter in a warming experiment in Alaskan boreal forest, and measured mass loss of recalcitrant C (lignin) vs. non-recalcitrant C (cellulose, hemicellulose, and sugars) throughout 16 months. We found that these C fractions responded differently to warming. Specifically, after one year of decomposition, the ratio of recalcitrant C to non-recalcitrant C remaining in litter declined in the warmed plots compared to control. Consistent with this pattern, potential activities of enzymes targeting recalcitrant C increased with warming, relative to those targeting non-recalcitrant C. Even so, mass loss of individual C fractions showed that non-recalcitrant C is preferentially decomposed under control conditions whereas recalcitrant C losses remain unchanged between control and warmed plots. Moreover, overall mass loss was greater under control conditions. Our results imply that direct warming effects, as well as indirect warming effects (e.g. drying), may serve to maintain decomposition rates of recalcitrant C compared to non-recalcitrant C despite negative effects on overall decomposition. PMID:28622366

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrencik, Jill E.; Orans, Jillian; Moore, Linda B.

    The human nuclear xenobiotic receptor, pregnane X receptor (PXR), detects a variety of structurally distinct endogenous and xenobiotic compounds and controls expression of genes central to drug and cholesterol metabolism. The macrolide antibiotic rifampicin, a front-line treatment for tuberculosis, is an established PXR agonist and, at 823 Da, is one of the largest known ligands for the receptor. We present the 2.8 {angstrom} crystal structure of the ligand-binding domain of human PXR in complex with rifampicin. We also use structural and mutagenesis data to examine the origins of the directed promiscuity exhibited by the PXRs across species. Three structurally flexiblemore » loops adjacent to the ligand-binding pocket of PXR are disordered in this crystal structure, including the 200-210 region that is part of a sequence insert novel to the promiscuous PXRs relative to other members of the nuclear receptor superfamily. The 4-methyl-1-piperazinyl ring of rifampicin, which would lie adjacent to the disordered protein regions, is also disordered and not observed in the structure. Taken together, our results indicate that one wall of the PXR ligand-binding cavity can remain flexible even when the receptor is in complex with an activating ligand. These observations highlight the key role that structural flexibility plays in PXR's promiscuous response to xenobiotics.« less

  18. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts.

    PubMed

    Ding, Xinxin; Kaminsky, Laurence S

    2003-01-01

    Cytochrome P450 (CYP) enzymes in extrahepatic tissues often play a dominant role in target tissue metabolic activation of xenobiotic compounds. They may also determine drug efficacy and influence the tissue burden of foreign chemicals or bioavailability of therapeutic agents. This review focuses on xenobiotic-metabolizing CYPs of the human respiratory and gastrointestinal tracts, including the lung, trachea, nasal respiratory and olfactory mucosa, esophagus, stomach, small intestine, and colon. Many CYPs are expressed in one or more of these organs, including CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP2J2, CYP2S1, CYP3A4, CYP3A5, and CYP4B1. Of particular interest are the preferential expression of certain CYPs in the respiratory tract and the regional differences in CYP expression profile in different parts of the gastrointestinal tract. Current research activities on the characterization of CYP expression, function, and regulation in these tissues, as well as future research needs, are discussed.

  19. Foreign compounds and intermediary metabolism: sulfoxidation bridges the divide.

    PubMed

    Mitchell, S C; Steventon, G B

    2009-03-01

    It is widely appreciated that as a xenobiotic travels through an organism and interacts with the biochemical machinery of a living system, it most probably will undergo a number of metabolic alterations usually leading to a cluster of differing chemical species. Indeed, the modern 'metabonomic' approach, where earlier studied drug metabolism profiles have been reassessed, has indicated that there are normally many more previously unrecognised minor metabolites, and when all such biotransformation products are considered, then their total number is legion. It is now being recognised also that the same metabolic alteration of a substrate, especially a xenobiotic substrate, may be catalysed by more than one enzyme and that the previously sacrosanct notion of an enzyme's 'substrate specificity' may well be inverted to read a substrate's 'enzyme preference'. The following brief article attempts to highlight another aspect where our general acceptance of the 'status quo' needs to be reconsidered. The conventionally acknowledged division between the collection of enzymes that undertake intermediary metabolism and the group of enzymes responsible for xenobiotic metabolism may be becoming blurred. It may well be a prudent time to reassess the current dichotomous view. Overcoming inertia, with a realignment of ideas or alteration of perception, may permit new concepts to emerge leading to a more profound understanding and hopefully eventual benefits for mankind.

  20. Review of the photo-induced toxicity of environmental contaminants.

    PubMed

    Roberts, Aaron P; Alloy, Matthew M; Oris, James T

    2017-01-01

    Solar radiation is a vital component of ecosystem function. However, sunlight can also interact with certain xenobiotic compounds in a phenomenon known as photo-induced, photo-enhanced, photo-activated, or photo-toxicity. This phenomenon broadly refers to an interaction between a chemical and sunlight resulting in increased toxicity. Because most aquatic ecosystems receive some amount of sunlight, co-exposure to xenobiotic chemicals and solar radiation is likely to occur in the environment, and photo-induced toxicity may be an important factor impacting aquatic ecosystems. However, photo-induced toxicity is not likely to be relevant in all aquatic systems or exposure scenarios due to variation in important ecological factors as well as physiological adaptations of the species that reside there. Here, we provide an updated review of the state of the science of photo-induced toxicity in aquatic ecosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Sample preparation and data interpretation procedures for the examination of xenobiotic compounds in skin by indirect imaging MALDI-MS

    NASA Astrophysics Data System (ADS)

    Prideaux, Brendan; Atkinson, Sally J.; Carolan, Vikki A.; Morton, Jacqueline; Clench, Malcolm R.

    2007-02-01

    Aspects of the indirect examination of xenobiotic distribution on the surface of and within skin sections by imaging matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) have been examined. A solvent assisted blotting technique previously developed for the examination of the absorption of agrochemicals into leaves has been examined for the analysis of the distribution of hydrocortisone on the surface of skin. It was found that by careful control of the extraction and blotting procedure an 80-fold sensitivity improvement could by obtained over dry blotting with only 10% lateral diffusion of the image. However, in contrast it was found that the use of a hydrophobic blotting membrane was more suitable for the examination of the transdermal absorption of the pesticide chlorpyrifos. The potential of incorporating a derivatisation step into the solvent assisted blotting procedure was investigated by blotting isocyanate treated skin onto a methanol soaked blotting membrane. This served the dual purpose of derivatising the isocyanate to a stable substituted urea derivative and extracting it from the skin. Preliminary data indicate that this approach may have some merit for field sampling for such compound and clearly derivatisation also offers the potential for sensitivity enhancements. Finally, the use of principal components analysis with an ion species specific normalisation procedure is proposed to identify regions of drug treated skin where the ion abundance of the compound of interest is low.

  2. Biodegradation of Mycotoxins: Tales from Known and Unexplored Worlds

    PubMed Central

    Vanhoutte, Ilse; Audenaert, Kris; De Gelder, Leen

    2016-01-01

    Exposure to mycotoxins, secondary metabolites produced by fungi, may infer serious risks for animal and human health and lead to economic losses. Several approaches to reduce these mycotoxins have been investigated such as chemical removal, physical binding, or microbial degradation. This review focuses on the microbial degradation or transformation of mycotoxins, with specific attention to the actual detoxification mechanisms of the mother compound. Furthermore, based on the similarities in chemical structure between groups of mycotoxins and environmentally recalcitrant compounds, known biodegradation pathways and degrading organisms which hold promise for the degradation of mycotoxins are presented. PMID:27199907

  3. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities

    Treesearch

    Lingli Liu; John S. King; Christian P. Giardina

    2005-01-01

    Human activities are increasing the concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]), potentially leading to changes in the quantity and chemical quality of leaf litter inputs to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) compounds influence forest...

  4. Metals and kidney autoimmunity.

    PubMed Central

    Bigazzi, P E

    1999-01-01

    The causes of autoimmune responses leading to human kidney pathology remain unknown. However, environmental agents such as microorganisms and/or xenobiotics are good candidates for that role. Metals, either present in the environment or administered for therapeutic reasons, are prototypical xenobiotics that cause decreases or enhancements of immune responses. In particular, exposure to gold and mercury may result in autoimmune responses to various self-antigens as well as autoimmune disease of the kidney and other tissues. Gold compounds, currently used in the treatment of patients with progressive polyarticular rheumatoid arthritis, can cause a nephrotic syndrome. Similarly, an immune-mediated membranous nephropathy frequently occurred when drugs containing mercury were commonly used. Recent epidemiologic studies have shown that occupational exposure to mercury does not usually result in autoimmunity. However, mercury induces antinuclear antibodies, sclerodermalike disease, lichen planus, or membranous nephropathy in some individuals. Laboratory investigations have confirmed that the administration of gold or mercury to experimental animals leads to autoimmune disease quite similar to that observed in human subjects exposed to these metals. In addition, studies of inbred mice and rats have revealed that a few strains are susceptible to the autoimmune effects of gold and mercury, whereas the majority of inbred strains are resistant. These findings have emphasized the importance of genetic (immunogenetic and pharmacogenetic) factors in the induction of metal-associated autoimmunity. (italic)In vitro(/italic) and (italic)in vivo(/italic) research of autoimmune disease caused by mercury and gold has already yielded valuable information and answered a number of important questions. At the same time it has raised new issues about possible immunostimulatory or immunosuppressive mechanisms of xenobiotic activity. Thus it is evident that investigations of metal-induced renal autoimmunity have the potential to produce new knowledge with relevance to autoimmune disease caused by xenobiotics in general as well as to idiopathic autoimmunity. PMID:10502542

  5. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE1[OPEN

    PubMed Central

    Van de Wouwer, Dorien; Decou, Raphaël; Audenaert, Dominique; Nguyen, Long

    2016-01-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  6. Methylobacterium populi VP2: Plant Growth-Promoting Bacterium Isolated from a Highly Polluted Environment for Polycyclic Aromatic Hydrocarbon (PAH) Biodegradation

    PubMed Central

    Piccolo, Alessandro; Carotenuto, Rita; Pepe, Olimpia

    2014-01-01

    The use of microorganisms to accelerate the natural detoxification processes of toxic substances in the soil represents an alternative ecofriendly and low-cost method of environmental remediation compared to harmful incineration and chemical treatments. Fourteen strains able to grow on minimal selective medium with a complex mixture of different classes of xenobiotic compounds as the sole carbon source were isolated from the soil of the ex-industrial site ACNA (Aziende Chimiche Nazionali Associate) in Cengio (Savona, Italy). The best putative degrading isolate, Methylobacterium populi VP2, was identified using a polyphasic approach on the basis of its phenotypic, biochemical, and molecular characterisation. Moreover, this strain also showed multiple plant growth promotion activities: it was able to produce indole-3-acetic acid (IAA) and siderophores, solubilise phosphate, and produce a biofilm in the presence of phenanthrene and alleviate phenanthrene stress in tomato seeds. This is the first report on the simultaneous occurrence of the PAH-degrading ability by Methylobacterium populi and its multiple plant growth-promoting activities. Therefore, the selected indigenous strain, which is naturally present in highly contaminated soils, is good candidate for plant growth promotion and is capable of biodegrading xenobiotic organic compounds to remediate contaminated soil alone and/or soil associated with plants. PMID:25152928

  7. Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle

    PubMed Central

    Vernetti, Lawrence; Gough, Albert; Baetz, Nicholas; Blutt, Sarah; Broughman, James R.; Brown, Jacquelyn A.; Foulke-Abel, Jennifer; Hasan, Nesrin; In, Julie; Kelly, Edward; Kovbasnjuk, Olga; Repper, Jonathan; Senutovitch, Nina; Stabb, Janet; Yeung, Catherine; Zachos, Nick C.; Donowitz, Mark; Estes, Mary; Himmelfarb, Jonathan; Truskey, George; Wikswo, John P.; Taylor, D. Lansing

    2017-01-01

    Organ interactions resulting from drug, metabolite or xenobiotic transport between organs are key components of human metabolism that impact therapeutic action and toxic side effects. Preclinical animal testing often fails to predict adverse outcomes arising from sequential, multi-organ metabolism of drugs and xenobiotics. Human microphysiological systems (MPS) can model these interactions and are predicted to dramatically improve the efficiency of the drug development process. In this study, five human MPS models were evaluated for functional coupling, defined as the determination of organ interactions via an in vivo-like sequential, organ-to-organ transfer of media. MPS models representing the major absorption, metabolism and clearance organs (the jejunum, liver and kidney) were evaluated, along with skeletal muscle and neurovascular models. Three compounds were evaluated for organ-specific processing: terfenadine for pharmacokinetics (PK) and toxicity; trimethylamine (TMA) as a potentially toxic microbiome metabolite; and vitamin D3. We show that the organ-specific processing of these compounds was consistent with clinical data, and discovered that trimethylamine-N-oxide (TMAO) crosses the blood-brain barrier. These studies demonstrate the potential of human MPS for multi-organ toxicity and absorption, distribution, metabolism and excretion (ADME), provide guidance for physically coupling MPS, and offer an approach to coupling MPS with distinct media and perfusion requirements. PMID:28176881

  8. Hplc-nmr identification of the human urinary metabolites of (-)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl] cytosine, a nucleoside analogue active against human immunodeficiency virus (HIV).

    PubMed

    Shockcor, J P; Wurm, R M; Frick, L W; Sanderson, P N; Farrant, R D; Sweatman, B C; Lindon, J C

    1996-02-01

    1. Human urine samples from a clinical trial of the anti-HIV compound (-)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-cyto sin e (BW524W91) have been analysed using 19F-nmr and 1H-hplc-nmr spectroscopy. 2. The identities and relative levels of the xenobiotic species in the urine have been determined by 470-MHz 19F-nmr spectroscopy and by directly coupled 600-MHz 1H-hplc-nmr in the stop-flow mode with confirmation of the metabolite identities being made by comparison with nmr spectra of synthetic standard compounds. 3. The principal urinary xenobiotic was the unchanged drug, but the glucuronide ether conjugate at the 5' position of BW524W91, one of the two diastereomeric sulphoxides and the deaminated metabolite were also characterized. 4. The detection limit of directly coupled hplc-600-MHz 1H-nmr spectroscopy was evaluated by measuring two-dimensional nmr spectra of the glucuronide conjugate of BW524W91 and shown to be approximately 1 microgram material for 1H-1H-TOCSY and 20 micrograms metabolite for 1H-13C-HMQC spectra for overnight (16 h) acquisition.

  9. Enhanced Biodegradability of Pharmaceuticals and Personal Care Products by Ionizing Radiation.

    PubMed

    Kim, Hyun Young; Lee, O-Mi; Kim, Tae-Hun; Yu, Seungho

    2015-04-01

    The radiolytic degradation of antibiotic compounds, including lincomycin (LMC), sulfamethoxazole (SMX), and tetracycline (TCN), and the change of biodegradability of the radiation-treated target compounds were evaluated. As a result, the degradation of target antibiotics by hydrolysis, biodegradation, and gamma irradiation showed a compound-dependent manner. However, the biodegradability of all target compounds was enhanced by the gamma irradiation. The enhanced biodegradability after gamma irradiation (2 kGy) followed the trend of LMC (18.89%)

  10. Rapid and Efficient Isolation of High-Quality Small RNAs from Recalcitrant Plant Species Rich in Polyphenols and Polysaccharides

    PubMed Central

    Pu, Jinji; Guo, Jianrong; Fan, Zaifeng

    2014-01-01

    Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are important regulators of plant development and gene expression. The acquisition of high-quality small RNAs is the first step in the study of its expression and function analysis, yet the extraction method of small RNAs in recalcitrant plant tissues with various secondary metabolites is not well established, especially for tropical and subtropical plant species rich in polysaccharides and polyphenols. Here, we developed a simple and efficient method for high quality small RNAs extraction from recalcitrant plant species. Prior to RNA isolation, a precursory step with a CTAB-PVPP buffer system could efficiently remove compounds and secondary metabolites interfering with RNAs from homogenized lysates. Then, total RNAs were extracted by Trizol reagents followed by a differential precipitation of high-molecular-weight (HMW) RNAs using polyethylene glycol (PEG) 8000. Finally, small RNAs could be easily recovered from supernatant by ethanol precipitation without extra elimination steps. The isolated small RNAs from papaya showed high quality through a clear background on gel and a distinct northern blotting signal with miR159a probe, compared with other published protocols. Additionally, the small RNAs extracted from papaya were successfully used for validation of both predicted miRNAs and the putative conserved tasiARFs. Furthermore, the extraction method described here was also tested with several other subtropical and tropical plant tissues. The purity of the isolated small RNAs was sufficient for such applications as end-point stem-loop RT-PCR and northern blotting analysis, respectively. The simple and feasible extraction method reported here is expected to have excellent potential for isolation of small RNAs from recalcitrant plant tissues rich in polyphenols and polysaccharides. PMID:24787387

  11. Mineralization of pyrrole, a recalcitrant heterocyclic compound, by electrochemical method: Multi-response optimization and degradation mechanism.

    PubMed

    Hiwarkar, Ajay Devidas; Singh, Seema; Srivastava, Vimal Chandra; Mall, Indra Deo

    2017-08-01

    In this study, the electrochemical (EC) oxidation of a recalcitrant heterocyclic compound namely pyrrole has been reported using platinum coated titanium (Pt/Ti) electrodes. Response surface methodology (RSM) comprising of full factorial central composite design (CCD) with four factors and five levels has been used to examine the effects of different operating parameters such as current density (j), aqueous solution pH, conductivity (k) and treatment time (t) in an EC batch reactor. Pyrrole mineralization in aqueous solution was examined with multiple responses such as chemical oxygen demand (COD) (response, Y 1 ) and specific energy consumption (SEC) in kWh/kg of COD removed (response, Y 2 ). During multiple response optimization, the desirability function approach was employed to concurrently maximize Y 1 and minimize Y 2 . At the optimum condition, 82.9% COD removal and 7.7 kWh/kg of COD removed were observed. Degradation mechanism of pyrrole in wastewater was elucidated at the optimum condition of treatment by using UV-visible spectroscopy, Fourier transformed infra-red spectroscopy (FTIR), cyclic voltammetry (CV), ion chromatography (IC), higher performance liquid chromatography (HPLC) and gas chromatography-mass spectroscopy (GC-MS). The degradation pathway of pyrrole was proposed on the basis of the various analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. UV/TiO₂ photocatalytic oxidation of recalcitrant organic matter: effect of salinity and pH.

    PubMed

    Muthukumaran, Shobha; Song, Lili; Zhu, Bo; Myat, Darli; Chen, Jin-Yuan; Gray, Stephen; Duke, Mikel

    2014-01-01

    Photocatalytic oxidation processes have interest for water treatment since these processes can remove recalcitrant organic compounds and operate at mild conditions of temperature and pressure. However, performance under saline conditions present in many water resources is not well known. This study aims to explore the basic effects of photocatalysis on the removal of organic matter in the presence of salt. A laboratory-scale photocatalytic reactor system, employing ultraviolet (UV)/titanium dioxide (TiO₂) photocatalysis was evaluated for its ability to remove the humic acid (HA) from saline water. The particle size and zeta potential of TiO₂ under different conditions including solution pH and sodium chloride (NaCl) concentrations were characterized. The overall degradation of organics over the NaCl concentration range of 500-2,000 mg/L was found to be 80% of the non-saline equivalent after 180 min of the treatment. The results demonstrated that the adsorption of HA onto the TiO₂ particles was dependent on both the pH and salinity due to electrostatic interaction and highly unstable agglomerated dispersion. This result supports UV/TiO₂ as a viable means to remove organic compounds, but the presence of salt in waters to be treated will influence the performance of the photocatalytic oxidation process.

  13. Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid.

    PubMed

    Xie, Xing-Guang; Huang, Chun-Yan; Fu, Wan-Qiu; Dai, Chuan-Chao

    2016-03-01

    The biodegradation potential of sinapic acid, one of the most representative methoxy phenolic pollutants presented in industrial wastewater, was first studied using an endophytic fungus called Phomopsis liquidambari. This strain can effectively degrade sinapic acid in flasks and in soil and the possible biodegradation pathway was first systematically proposed on the basis of the metabolite production patterns and the identification of the metabolites by GC-MS and HPLC-MS. Sinapic acid was first transformed to 2,6-dimethoxy-4-vinylphenol that was further degraded via 4-hydroxy-3,5-dimethoxybenzaldehyde, syringic acid, gallic acid, and citric acid which involved in the continuous catalysis by phenolic acid decarboxylase, laccase, and gallic acid dioxygenase. Moreover, their activities and gene expression levels exhibited a 'cascade induction' response with the changes in metabolic product concentrations and the generation of fungal laccase significantly improved the degradation process. This study is the first report of an endophytic fungus that has great potential to degrade xenobiotic sinapic acid, and also provide a basis for practical application of endophytic fungus in the bioremediation of sinapic acid-contaminated industrial wastewater and soils. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egloff, Caroline; Crump, Doug, E-mail: doug.crump@ec.gc.ca; Porter, Emily

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highestmore » doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy. • TEP elicited more adverse molecular and phenotypic effects than TBOEP.« less

  15. Cell-Based Genotoxicity Testing

    NASA Astrophysics Data System (ADS)

    Reifferscheid, Georg; Buchinger, Sebastian

    Genotoxicity test systems that are based on bacteria display an important role in the detection and assessment of DNA damaging chemicals. They belong to the basic line of test systems due to their easy realization, rapidness, broad applicability, high sensitivity and good reproducibility. Since the development of the Salmonella microsomal mutagenicity assay by Ames and coworkers in the early 1970s, significant development in bacterial genotoxicity assays was achieved and is still a subject matter of research. The basic principle of the mutagenicity assay is a reversion of a growth inhibited bacterial strain, e.g., due to auxotrophy, back to a fast growing phenotype (regain of prototrophy). Deeper knowledge of the ­mutation events allows a mechanistic understanding of the induced DNA-damage by the utilization of base specific tester strains. Collections of such specific tester strains were extended by genetic engineering. Beside the reversion assays, test systems utilizing the bacterial SOS-response were invented. These methods are based on the fusion of various SOS-responsive promoters with a broad variety of reporter genes facilitating numerous methods of signal detection. A very important aspect of genotoxicity testing is the bioactivation of ­xenobiotics to DNA-damaging compounds. Most widely used is the extracellular metabolic activation by making use of rodent liver homogenates. Again, genetic engineering allows the construction of highly sophisticated bacterial tester strains with significantly enhanced sensitivity due to overexpression of enzymes that are involved in the metabolism of xenobiotics. This provides mechanistic insights into the toxification and detoxification pathways of xenobiotics and helps explaining the chemical nature of hazardous substances in unknown mixtures. In summary, beginning with "natural" tester strains the rational design of bacteria led to highly specific and sensitive tools for a rapid, reliable and cost effective ­genotoxicity testing that is of outstanding importance in the risk assessment of compounds (REACH) and in ecotoxicology.

  16. Xenobiotic Metabolism and Gut Microbiomes

    PubMed Central

    Das, Anubhav; Srinivasan, Meenakshi; Ghosh, Tarini Shankar; Mande, Sharmila S.

    2016-01-01

    Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome) in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs) also indicate geographic as well as age specific trends. PMID:27695034

  17. Humus-reducing microorganisms and their valuable contribution in environmental processes.

    PubMed

    Martinez, Claudia M; Alvarez, Luis H; Celis, Lourdes B; Cervantes, Francisco J

    2013-12-01

    Humus constitutes a very abundant class of organic compounds that are chemically heterogeneous and widely distributed in terrestrial and aquatic environments. Evidence accumulated during the last decades indicating that humic substances play relevant roles on the transport, fate, and redox conversion of organic and inorganic compounds both in chemically and microbially driven reactions. The present review underlines the contribution of humus-reducing microorganisms in relevant environmental processes such as biodegradation of recalcitrant pollutants and mitigation of greenhouse gases emission in anoxic ecosystems, redox conversion of industrial contaminants in anaerobic wastewater treatment systems, and on the microbial production of nanocatalysts and alternative energy sources.

  18. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance.

    PubMed

    Joshi, Anand A; Vaidya, Soniya S; St-Pierre, Marie V; Mikheev, Andrei M; Desino, Kelly E; Nyandege, Abner N; Audus, Kenneth L; Unadkat, Jashvant D; Gerk, Phillip M

    2016-12-01

    The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.

  19. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance

    PubMed Central

    Joshi, Anand A.; Vaidya, Soniya S.; St-Pierre, Marie V.; Mikheev, Andrei M.; Desino, Kelly E.; Nyandege, Abner N.; Audus, Kenneth L.; Unadkat, Jashvant D.; Gerk, Phillip M.

    2017-01-01

    The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy. PMID:27644937

  20. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia.

    PubMed

    Zabriskie, Matthew S; Eide, Christopher A; Tantravahi, Srinivas K; Vellore, Nadeem A; Estrada, Johanna; Nicolini, Franck E; Khoury, Hanna J; Larson, Richard A; Konopleva, Marina; Cortes, Jorge E; Kantarjian, Hagop; Jabbour, Elias J; Kornblau, Steven M; Lipton, Jeffrey H; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J; Press, Richard D; Chuah, Charles; Goldberg, Stuart L; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R; Heaton, William L; Eiring, Anna M; Pomicter, Anthony D; Khorashad, Jamshid S; Kelley, Todd W; Baron, Riccardo; Druker, Brian J; Deininger, Michael W; O'Hare, Thomas

    2014-09-08

    Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph(+)) leukemia, including the recalcitrant BCR-ABL1(T315I) mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib, and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph(+) leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. How mycorrhizal plant-soil interactions affect formation and degradation of soil organic matter in boreal forest

    NASA Astrophysics Data System (ADS)

    Adamczyk, Bartosz; Sietiö, Outi-Maaria; Ahvenainen, Anu; Strakova, Petra; Heinonsalo, Jussi

    2017-04-01

    Forest soil organic matter (SOM) contains more carbon (C) than all the flora and atmosphere combined and that is why C release as CO2 from SOM may have drastic consequences for climate globally. SOM is enormous C sink which has the potential to become C source (IPCC 2013). To predict long-term soil C storage and climate feedbacks we need profound understanding of dynamics and drivers of SOM decomposition. Ecosystem processes associated with C cycle are constrained by C and N interactions. At the level of ecosystem boreal forest is N-limited, as most of soil N is stored in recalcitrant organic form bound or complexed with soil compounds such as polyphenols. To improve N uptake, also from less available pools, plant species form symbioses with mycorrhizal fungi able to degrade recalcitrant N and sharing it with plants. As a feedback, plants provide to fungal symbiont assimilated C. Climate change through elevated CO2 level led to increases in photosynthesis which enhance the C flow belowground accelerating N uptake by plants also from more recalcitrant N pools. Increased SOM decomposition would possibly result also in increase of CO2 production from soil. Our field experiment was conducted at Hyytiälä forestry field station (SMEAR II, University of Helsinki) located in southern Finland (61°84'N, 24°26'E). In this 3-year long experiment, we discriminated SOM decomposition with different mesh bags filled with humus. These mesh bags allowed for the entrance of mycorrhiza and fine roots (1mm mesh size), or only mycorrhiza (50µm), or both were excluded (1µm). We followed changes in SOM content, N pools and enzymatic activity. The results suggests that plant-mycorrhiza interactions increase recalcitrant pool of organic N in SOM due to root-derived tannins, but mycorrhizal plants have still access to this N. Although mycorrhizal plant-soil interaction seems to strongly affect the formation of recalcitrant SOM, the net decomposition is not hindered by these chemical changes. This study underline that plant-soil feedbacks and especially soil chemistry behind this interaction are decisive factors for estimating changes in SOM decomposition rate.

  2. Insights into lignin degradation and its potential industrial applications.

    PubMed

    Abdel-Hamid, Ahmed M; Solbiati, Jose O; Cann, Isaac K O

    2013-01-01

    Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non-phenolic lignin model compounds. In addition to the peroxidases and laccases, fungi produce other accessory oxidases such as aryl-alcohol oxidase and the glyoxal oxidase that generate the hydrogen peroxide required by the peroxidases. Lignin-degrading enzymes have attracted the attention for their valuable biotechnological applications especially in the pretreatment of recalcitrant lignocellulosic biomass for biofuel production. The use of lignin-degrading enzymes has been studied in various applications such as paper industry, textile industry, wastewater treatment and the degradation of herbicides. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Treatment of mezcal vinasses: a review.

    PubMed

    Robles-González, Vania; Galíndez-Mayer, Juvencio; Rinderknecht-Seijas, Noemí; Poggi-Varaldo, Héctor M

    2012-02-20

    Mexican distilleries produce near eight million liters of mezcal per year, and generate about 90 million liters of mezcal vinasses (MV). This acidic liquid waste is very aggressive to the environment because of its high content of toxic and recalcitrant organic matter. As a result, treatment is necessary before discharge to water bodies. It is interesting, yet disturbing; verify that there is a significant gap on the treatment of MV. However, there is an abundant body of research on treatment of other recalcitrant toxic effluents that bear some similarity to MV, for example, wine vinasse, vinasses from the sugar industry, olive oil, and industrial pulp and paper wastewaters. The objective of this review is to critically organize the treatment alternatives of MV, assess their relative advantages and disadvantages, and finally detect the trends for future research and development. Experience with treatment of this set of residuals, indicates the following trends: (i) anaerobic digestion, complemented by oxidative chemical treatments (e.g. ozonation) are usually placed as pretreatments, (ii) aerobic treatment alone and combined with ozone which have been directed to remove phenolic compounds and color have been successfully applied, (iii) physico-chemical treatments such as Fenton, electro-oxidation, oxidants and so on., which are now mostly at lab scale stage, have demonstrated a significant removal of recalcitrant organic compounds, (iv) fungal pretreatment with chemical treatment followed by oxidative (O(3)) or anaerobic digestion, this combination seems to give attractive results, (v) vinasses can be co-composted with solid organic wastes, particularly with those from agricultural activities and agro-industies; in addition to soil amenders with fertilizing value to improve soil quality in typical arid lands where agave is cultivated, it seems to be a low cost technology very well suited for rural regions in underdeveloped countries where more sophisticated technologies are difficult to adopt, due to high costs and requirements of skilled personnel. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Genomic analysis of the aging rodent and human liver: impact on xenobiotic metabolism

    EPA Science Inventory

    Metabolic homeostasis of the organism is maintained by the liver’s ability to detoxify and eliminate xenobiotics. This is accomplished, in part, by xenobiotic metabolizing enzymes (XMEs), which metabolize xenobiotics and determine whether exposure will result in toxicity. Some ev...

  5. Microbial Fuel Cell Transformation of Recalcitrant Organic Compounds in Support of Biosensor Research

    DTIC Science & Technology

    2014-03-27

    simulant similar in structure to sarin (Obee and Satyapal, 1998). Literature on the biodegradation of DMMP is limited. In 2005, the DMMP Consortium...undergoes fermentation to acetate and hydrogen. Other 9 substrates, such as such sugars, may ferment to ethanol first. Current production occurs from...the ARB utilization of the fermentation product acetate, but electrons are lost in the form of hydrogen to methanogenesis. Therefore, the current

  6. Layer of organic pine forest soil on top of chlorophenol-contaminated mineral soil enhances contaminant degradation.

    PubMed

    Sinkkonen, Aki; Kauppi, Sari; Simpanen, Suvi; Rantalainen, Anna-Lea; Strömmer, Rauni; Romantschuk, Martin

    2013-03-01

    Chlorophenols, like many other synthetic compounds, are persistent problem in industrial areas. These compounds are easily degraded in certain natural environments where the top soil is organic. Some studies suggest that mineral soil contaminated with organic compounds is rapidly remediated if it is mixed with organic soil. We hypothesized that organic soil with a high degradation capacity even on top of the contaminated mineral soil enhances degradation of recalcitrant chlorophenols in the mineral soil below. We first compared chlorophenol degradation in different soils by spiking pristine and pentachlorophenol-contaminated soils with 2,4,6-trichlorophenol in 10-L buckets. In other experiments, we covered contaminated mineral soil with organic pine forest soil. We also monitored in situ degradation on an old sawmill site where mineral soil was either left intact or covered with organic pine forest soil. 2,4,6-Trichlorophenol was rapidly degraded in organic pine forest soil, but the degradation was slower in other soils. If a thin layer of the pine forest humus was added on top of mineral sawmill soil, the original chlorophenol concentrations (high, ca. 70 μg g(-1), or moderate, ca. 20 μg g(-1)) in sawmill soil decreased by >40 % in 24 days. No degradation was noticed if the mineral soil was kept bare or if the covering humus soil layer was sterilized beforehand. Our results suggest that covering mineral soil with an organic soil layer is an efficient way to remediate recalcitrant chlorophenol contamination in mineral soils. The results of the field experiment are promising.

  7. Developmental Neurotoxicology: History and Outline of ...

    EPA Pesticide Factsheets

    The present work provides a brief review of basic concepts in developmental neurotoxicology, as well as current representative testing guidelines for evaluating developmental neurotoxicity (DNT) of xenobiotics. Historically, DNT was initially recognized as a “functional” teratogenicity: the main concern was that prenatal and/or early postnatal exposures to chemicals during critical periods of central nervous system (CNS) development would cause later functional abnormalities of the brain. Current internationally harmonized DNT study guidelines are thus intended to predict adverse effects of test compounds on the developing CNS by observing such postnatal parameters as motor activity, startle response, and learning and memory, as well as neropathological alterations. The reliability of current DNT study guidelines and sensitivity of testing methodologies recommended in these guidelines have been confirmed by retrospective evaluations of the many international and domestic collaborative validation studies in developed nations including Japan. Invited review with brief review of basic concepts in developmental neurotoxicology, as well as current representative testing guidelines for evaluating developmental neurotoxicity (DNT) of xenobiotics.

  8. Stabilization and prolonged reactivity of aqueous-phase ozone with cyclodextrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dettmer, Adam; Ball, Raymond; Boving, Thomas B.

    Recalcitrant organic groundwater contaminants, such as 1,4-dioxane, may require strong oxidants for complete mineralization. However, their efficacy for in-situ chemical oxidation (ISCO) is limited by oxidant decay and reactivity. Hydroxypropyl-β-cyclodextrin (HPβCD) was examined for its ability to stabilize aqueous-phase ozone (O3) and prolong oxidation potential through inclusion complex formation. Partial transformation of HPβCD by O3 was observed. However, HPβCD proved to be sufficiently recalcitrant, because it was only partially degraded in the presence of O3. The formation of a HPβCD:O3 clathrate complex was observed, which stabilized decay of O3. The presence of HPβCD increased the O3 half-life linearly with increasingmore » HPβCD:O3 molar ratio. The O3 half-life in solutions increased by as much as 40-fold relative to HPβCD-free O3 solutions. Observed O3 release from HPβCD and indigo oxidation confirmed that the formation of the inclusion complex is reversible. This proof-of-concept study demonstrates that HPβCD can complex O3 while preserving its reactivity. These results suggest that the use of clathrate stabilizers, such as HPβCD, can support the development of a facilitated-transport enabled ISCO for the O3treatment of groundwater contaminated with recalcitrant compounds.« less

  9. Electrochemical wastewater treatment: influence of the type of carbon and of nitrogen on the organic load removal.

    PubMed

    Fernandes, Annabel; Coelho, João; Ciríaco, Lurdes; Pacheco, Maria José; Lopes, Ana

    2016-12-01

    Boron-doped diamond (BDD) and Ti/Pt/PbO 2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH 4 + , which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.

  10. Porous extraction paddle: a solid phase extraction technique for studying the urine metabolome

    PubMed Central

    Shao, Gang; MacNeil, Michael; Yao, Yuanyuan; Giese, Roger W.

    2016-01-01

    RATIONALE A method was needed to accomplish solid phase extraction of a large urine volume in a convenient way where resources are limited, towards a goal of metabolome and xenobiotic exposome analysis at another, distant location. METHODS A porous extraction paddle (PEP) was set up, comprising a porous nylon bag containing extraction particles that is flattened and immobilized between two stainless steel meshes. Stirring the PEP after attachment to a shaft of a motor mounted on the lid of the jar containing the urine accomplishes extraction. The bag contained a mixture of nonpolar and partly nonpolar particles to extract a diversity of corresponding compounds. RESULTS Elution of a urine-exposed, water-washed PEP with aqueous methanol containing triethylammonium acetate (conditions intended to give a complete elution), followed by MALDI-TOF/TOF-MS, demonstrated that a diversity of compounds had been extracted ranging from uric acid to peptides. CONCLUSION The PEP allows the user to extract a large liquid sample in a jar simply by turning on a motor. The technique will be helpful in conducting metabolomics and xenobiotic exposome studies of urine, encouraging the extraction of large volumes to set up a convenient repository sample (e.g. 2 g of exposed adsorbent in a cryovial) for shipment and re-analysis in various ways in the future, including scaled-up isolation of unknown chemicals for identification. PMID:27624170

  11. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently

    PubMed Central

    Roger, Lille-Langøy; V, Goldstone Jared; Marte, Rusten; R, Milnes Matthew; Rune, Male; J, Stegeman John; Bruce, Blumberg; Anders, Goksøyr

    2015-01-01

    BACKGROUND Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. OBJECTIVES In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. RESULTS We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. CONCLUSIONS Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modelling studies suggests that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. PMID:25680588

  12. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently.

    PubMed

    Lille-Langøy, Roger; Goldstone, Jared V; Rusten, Marte; Milnes, Matthew R; Male, Rune; Stegeman, John J; Blumberg, Bruce; Goksøyr, Anders

    2015-04-01

    Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. Copyright © 2015. Published by Elsevier Inc.

  13. Identification and Characterization of CYP9A40 from the Tobacco Cutworm Moth (Spodoptera litura), a Cytochrome P450 Gene Induced by Plant Allelochemicals and Insecticides

    PubMed Central

    Wang, Rui-Long; Staehelin, Christian; Xia, Qing-Qing; Su, Yi-Juan; Zeng, Ren-Sen

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) of insects play crucial roles in the metabolism of endogenous and dietary compounds. Tobacco cutworm moth (Spodoptera litura), an important agricultural pest, causes severe yield losses in many crops. In this study, we identified CYP9A40, a novel P450 gene of S. litura, and investigated its expression profile and potential role in detoxification of plant allelochemicals and insecticides. The cDNA contains an open reading frame encoding 529 amino acid residues. CYP9A40 transcripts were found to be accumulated during various development stages of S. litura and were highest in fifth and sixth instar larvae. CYP9A40 was mainly expressed in the midgut and fat body. Larval consumption of xenobiotics, namely plant allelochemicals (quercetin and cinnamic acid) and insecticides (deltamethrin and methoxyfenozide) induced accumulation of CYP9A40 transcripts in the midgut and fat body. Injection of dsCYP9A40 (silencing of CYP9A40 by RNA interference) significantly increased the susceptibility of S. litura larvae to the tested plant allelochemicals and insecticides. These results indicate that CYP9A40 expression in S. litura is related to consumption of xenobiotics and suggest that CYP9A40 is involved in detoxification of these compounds. PMID:26393579

  14. The use of cultured hepatocytes to investigate the metabolism of drugs and mechanisms of drug hepatotoxicity.

    PubMed

    Gómez-Lechón, M J; Ponsoda, X; Bort, R; Castell, J V

    2001-01-01

    Hepatotoxins can be classified as intrinsic when they exert their effects on all individuals in a dose-dependent manner, and as idiosyncratic when their effects are the consequence of an abnormal metabolism of the drug by susceptible individuals (metabolic idiosyncrasy) or of an immune-mediated injury to hepatocytes (allergic hepatitis). Some xenobiotics are electrophilic, and others are biotransformed by the liver into highly reactive metabolites that are usually more toxic than the parent compound. This activation process is the key to many hepatotoxic phenomena. Mitochondria are a frequent target of hepatotoxic drugs, and the alteration of their function has immediate effects on the energy balance of cells (depletion of ATP). Lipid peroxidation, oxidative stress, alteration of Ca(2+) homeostasis, and covalent binding to cell macromolecules are the molecular mechanisms that are frequently involved in the toxicity of xenobiotics. Against these potential hazards, cells have their own defence mechanisms (for example, glutathione, DNA repair, suicide inactivation). Ultimately, toxicity is the balance between bioactivation and detoxification, which determines whether a reactive metabolite elicits a toxic effect. The ultimate goal of in vitro experiments is to generate the type of scientific information needed to identify compounds that are potentially toxic to man. For this purpose, both the design of the experiments and the interpretation of the results are critical.

  15. Porous extraction paddle: a solid phase extraction technique for studying the urine metabolome.

    PubMed

    Shao, Gang; MacNeil, Michael; Yao, Yuanyuan; Giese, Roger W

    2016-09-14

    A method was needed to accomplish solid phase extraction of a large urine volume in a convenient way where resources are limited, towards a goal of metabolome and xenobiotic exposome analysis at another, distant location. A porous extraction paddle (PEP) was set up, comprising a porous nylon bag containing extraction particles that is flattened and immobilized between two stainless steel meshes. Stirring the PEP after attachment to a shaft of a motor mounted on the lid of the jar containing the urine accomplishes extraction. The bag contained a mixture of nonpolar and partly nonpolar particles to extract a diversity of corresponding compounds. Elution of a urine-exposed, water-washed PEP with aqueous methanol containing triethylammonium acetate (conditions intended to give a complete elution), followed by MALDI-TOF/TOF-MS, demonstrated that a diversity of compounds had been extracted ranging from uric acid to peptides. The PEP allows the user to extract a large liquid sample in a jar simply by turning on a motor. The technique will be helpful in conducting metabolomics and xenobiotic exposome studies of urine, encouraging the extraction of large volumes to set up a convenient repository sample (e.g. 2 g of exposed adsorbent in a cryovial) for shipment and re-analysis in various ways in the future, including scaled-up isolation of unknown chemicals for identification. This article is protected by copyright. All rights reserved.

  16. Biotic and abiotic transformations of methyl tertiary butyl ether (MTBE).

    PubMed

    Fischer, Axel; Oehm, Claudia; Selle, Michael; Werner, Peter

    2005-11-01

    Methyl tertiary butyl ether (MTBE) is a fuel additive which is used all over the world. In recent years it has often been found in groundwater, mainly in the USA, but also in Europe. Although MTBE seems to be a minor toxic, it affects the taste and odour of water at concentrations of < 30 microg/L. Although MTBE is often a recalcitrant compound, it is known that many ethers can be degraded by abiotic means. The aim of this study was to examine biotic and abiotic transformations of MTBE with respect to the particular conditions of a contaminated site (former refinery) in Leuna, Germany. Groundwater samples from wells of a contaminated site were used for aerobic and anaerobic degradation experiments. The abiotic degradation experiment (hydrolysis) was conducted employing an ion-exchange resin and MTBE solutions in distilled water. MTBE, tertiary butyl formate (TBF) and tertiary butyl alcohol (TBA) were measured by a gas chromatograph with flame ionisation detector (FID). Aldehydes and organic acids were respectively analysed by a gas chromatograph with electron capture detector (ECD) and high-performance ion chromatography (HPIC). Under aerobic conditions, MTBE was degraded in laboratory experiments. Only 4 of a total of 30 anaerobic experiments exhibited degradation, and the process was very slow. In no cases were metabolites detected, but a few degradation products (TBF, TBA and formic acid) were found on the site, possibly due to the lower temperatures in groundwater. The abiotic degradation of MTBE with an ion-exchange resin as a catalyst at pH 3.5 was much faster than hydrolysis in diluted hydrochloric acid (pH 1.0). Although the aerobic degradation of MTBE in the environment seems to be possible, the specific conditions responsible are widely unknown. Successful aerobic degradation only seems to take place if there is a lack of other utilisable compounds. However, MTBE is often accompanied by other fuel compounds on contaminated sites and anaerobic conditions prevail. MTBE is often recalcitrant under anaerobic conditions, at least in the presence of other carbon sources. The abiotic hydrolysis of MTBE seems to be of secondary importance (on site), but it might be possible to enhance it with catalysts. MTBE only seems to be recalcitrant under particular conditions. In some cases, the degradation of MTBE on contaminated sites could be supported by oxygen. Enhanced hydrolysis could also be an alternative.

  17. Toxicological Profile of Chlorophenols and Their Derivatives in the Environment: The Public Health Perspective

    PubMed Central

    Igbinosa, Etinosa O.; Odjadjare, Emmanuel E.; Chigor, Vincent N.; Igbinosa, Isoken H.; Emoghene, Alexander O.; Ekhaise, Fredrick O.; Igiehon, Nicholas O.; Idemudia, Omoruyi G.

    2013-01-01

    Chlorophenol compounds and their derivatives are ubiquitous contaminants in the environment. These compounds are used as intermediates in manufacturing agricultural chemicals, pharmaceuticals, biocides, and dyes. Chlorophenols gets into the environment from a variety of sources such as industrial waste, pesticides, and insecticides, or by degradation of complex chlorinated hydrocarbons. Thermal and chemical degradation of chlorophenols leads to the formation of harmful substances which constitute public health problems. These compounds may cause histopathological alterations, genotoxicity, mutagenicity, and carcinogenicity amongst other abnormalities in humans and animals. Furthermore, the recalcitrant nature of chlorophenolic compounds to degradation constitutes an environmental nuisance, and a good understanding of the fate and transport of these compounds and their derivatives is needed for a clearer view of the associated risks and mechanisms of pathogenicity to humans and animals. This review looks at chlorophenols and their derivatives, explores current research on their effects on public health, and proffers measures for mitigation. PMID:23690744

  18. Degradation of textile dyes by cyanobacteria.

    PubMed

    Dellamatrice, Priscila Maria; Silva-Stenico, Maria Estela; Moraes, Luiz Alberto Beraldo de; Fiore, Marli Fátima; Monteiro, Regina Teresa Rosim

    Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Fate and behavior of dissolved organic matter in a submerged anoxic-aerobic membrane bioreactor (MBR).

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine Prandota; Luo, Jinxue; Stuckey, David C; Tan, Soon Keat

    2018-02-01

    In this study, the production, composition, and characteristics of dissolved organic matter (DOM) in an anoxic-aerobic submerged membrane bioreactor (MBR) were investigated. The average concentrations of proteins and carbohydrates in the MBR aerobic stage were 3.96 ± 0.28 and 8.36 ± 0.89 mg/L, respectively. After membrane filtration, these values decreased to 2.9 ± 0.2 and 2.8 ± 0.2 mg/L, respectively. High performance size exclusion chromatograph (HP-SEC) analysis indicated a bimodal molecular weight (MW) distribution of DOMs, and that the intensities of all the peaks were reduced in the MBR effluent compared to the influent. Three-dimensional fluorescence excitation emission matrix (FEEM) indicated that fulvic and humic acid-like substances were the predominant DOMs in biological treatment processes. Precise identification and characterization of low-MW DOMs was carried out using gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis indicated that the highest peak numbers (170) were found in the anoxic stage, and 54 (32%) compounds were identified with a similarity greater than 80%. Alkanes (28), esters (11), and aromatics (7) were the main compounds detected. DOMs exhibited both biodegradable and recalcitrant characteristics. There were noticeable differences in the low-MW DOMs present down the treatment process train in terms of numbers, concentrations, molecular weight, biodegradability, and recalcitrance.

  20. A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahan, Kristina M.; Le, Rosemary K.; Yuan, Joshua

    Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Some current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. Furthermore, R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. Our review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weightmore » lignin compounds and laccase supplementation.« less

  1. A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus

    DOE PAGES

    Mahan, Kristina M.; Le, Rosemary K.; Yuan, Joshua; ...

    2017-06-29

    Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Some current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. Furthermore, R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. Our review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weightmore » lignin compounds and laccase supplementation.« less

  2. Nuclear receptors and nonalcoholic fatty liver disease1

    PubMed Central

    Cave, Matthew C.; Clair, Heather B.; Hardesty, Josiah E.; Falkner, K. Cameron; Feng, Wenke; Clark, Barbara J.; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A.; McClain, Craig J.; Prough, Russell A.

    2016-01-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26962021

  3. Melatonin and pineal gland peptides are able to correct the impairment of reproductive cycles in rats.

    PubMed

    Arutjunyan, Alexander; Kozina, Ljudmila; Milyutina, Yulia; Korenevsky, Andrew; Stepanov, Michael; Arutyunov, Vladimir

    2012-12-01

    Catecholamines play an important role in the hypothalamic regulation of the synthesis and secretion of gonadotropin- releasing hormone, or gonadoliberin. We have shown that melatonin and the pineal gland peptides (epithalamine and epitalon) exert a correcting influence on the diurnal dynamics of norepinephrine (NE) in the medial preoptic area (MPA) and of dopamine (DA) in the median eminence with arcuate nuclei (ME-Arc) disturbed by single administration of the neurotoxic xenobiotic 1,2-dimethylhydrazine (DMH) in female rats. It has been found that experiments with DMH administration can be used as an animal model of female reproductive system premature aging. The investigation of epithalamine (a polypeptide preparation from the bovine pineal gland) effect on circadian rhythms disturbed by the neurotoxic compound DMH has shown a recovery of the diurnal dynamics of NE in MPA. In addition, NE was found to decrease from 9:30 till 11 o'clock, Circadian Time (CT), which was typical of control animals. Epitalon (Ala-Glu-Asp-Gly) proved to be more effective in ME-Arc. This peptide prevents the xenobiotic caused disturbance of DA diurnal rhythm, keeping this metabolite low at 5 o'clock (CT) with it having increased by 11 o'clock (CT). The data obtained suggest that the pineal gland is important for the circadian signal normalization needed for gonadoliberin surge on the day of proestrus. Melatonin and peptides of the pineal gland can be considered as effective protectors of female reproductive system from xenobiotics and premature aging.

  4. Correlation between Conjugated Bisphenol A Concentrations and Efflux Transporter Expression in Human Fetal Livers

    PubMed Central

    Moscovitz, Jamie E.; Nahar, Muna S.; Shalat, Stuart L.; Slitt, Angela L.; Dolinoy, Dana C.

    2016-01-01

    Because of its widespread use in the manufacturing of consumer products over several decades, human exposure to bisphenol A (BPA) has been pervasive. Fetuses are particularly sensitive to BPA exposure, with a number of negative developmental and reproductive outcomes observed in rodent perinatal models. Xenobiotic transporters are one mechanism to extrude conjugated and unconjugated BPA from the liver. In this study, the mRNA expression of xenobiotic transporters and relationships with total, conjugated, and free BPA levels were explored utilizing human fetal liver samples. The mRNA expression of breast cancer resistance protein (BCRP) and multidrug resistance-associated transporter (MRP)4, as well as BCRP and multidrug resistance transporter 1 exhibited the highest degree of correlation, with r2 values of 0.941 and 0.816 (P < 0.001 for both), respectively. Increasing concentrations of conjugated BPA significantly correlated with high expression of MRP1 (P < 0.001), MRP2 (P < 0.05), and MRP3 (P < 0.05) transporters, in addition to the NF-E2–related factor 2 transcription factor (P < 0.001) and its prototypical target gene, NAD(P)H quinone oxidoreductase 1 (P < 0.001). These data demonstrate that xenobiotic transporters may be coordinately expressed in the human fetal liver. This is also the first report of a relationship between environmentally relevant fetal BPA levels and differences in the expression of transporters that can excrete the parent compound and its metabolites. PMID:26851240

  5. The microsomal mixed function oxidase system of amphibians and reptiles: components, activities and induction.

    PubMed

    Ertl, R P; Winston, G W

    1998-11-01

    This article reviews current research in amphibian and reptilian cytochromes P450, important to the overall understanding of xenobiotic metabolism in the ecosystem and the evolution of P450s. Amphibians and reptilians contain the normal mixed function oxidase system (MFO). In general the MFO content and activities are less than those found in mammals, but only a few of the known activities have been examined in these vertebrate classes. Research to date has focused on two families of cytochromes P450, CYP1 and 2. The isoforms examined catalyze the classic activities but there have been notable absences. The total number of isoforms present and the breadth of substrates metabolized are yet unknown. Induction by foreign compounds (xenobiotics) is lengthier and yields lower levels of induced activity than is typically found in mammals. When these animals are pretreated with 3-methylcholanthrene (3MC) and beta-naphthaflavone (BNF), which are known to induce the same isoform in mammals, multiple isoforms are induced with different activities. Phenobarbital-pretreatment in turtles and alligators induces cytochromes P450 and suggestive data indicates induction in the lizard Agama lizard and the newt Pleurodeles waltl. In amphibians and reptiles a CYP2B protein does appear to be present along with constitutive activities associated with the 2 family of cytochromes P450. The markedly different response to classic inducers combined with lower or absent activities alters the view of how amphibians and reptilians respond to xenobiotic challenges.

  6. Potential for drug interactions mediated by polymorphic flavin-containing monooxygenase 3 in human livers.

    PubMed

    Shimizu, Makiko; Shiraishi, Arisa; Sato, Ayumi; Nagashima, Satomi; Yamazaki, Hiroshi

    2015-02-01

    Human flavin-containing monooxygenase 3 (FMO3) in the liver catalyzes a variety of oxygenations of nitrogen- and sulfur-containing medicines and xenobiotic substances. Because of growing interest in drug interactions mediated by polymorphic FMO3, benzydamine N-oxygenation by human FMO3 was investigated as a model reaction. Among the 41 compounds tested, trimethylamine, methimazole, itopride, and tozasertib (50 μM) suppressed benzydamine N-oxygenation at a substrate concentration of 50 μM by approximately 50% after co-incubation. Suppression of N-oxygenation of benzydamine, trimethylamine, itopride, and tozasertib and S-oxygenation of methimazole and sulindac sulfide after co-incubation with the other five of these six substrates was compared using FMO3 proteins recombinantly expressed in bacterial membranes. Apparent competitive inhibition by methimazole (0-50 μM) of sulindac sulfide S-oxygenation was observed with FMO3 proteins. Sulindac sulfide S-oxygenation activity of Arg205Cys variant FMO3 protein was likely to be suppressed more by methimazole than wild-type or Val257Met variant FMO3 protein was. These results suggest that genetic polymorphism in the human FMO3 gene may lead to changes of drug interactions for N- or S-oxygenations of xenobiotics and endogenous substances and that a probe battery system of benzydamine N-oxygenation and sulindac sulfide S-oxygenation activities is recommended to clarify the drug interactions mediated by FMO3. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  7. Assessment of toxic and endocrine potential of substances migrating from selected toys and baby products.

    PubMed

    Szczepańska, Natalia; Namieśnik, Jacek; Kudłak, Błażej

    2016-12-01

    Analysis of literature data shows that there is limited information about the harmful biological effects of mixture of compounds from the EDC group that are released from the surface of toys and objects intended for children and infants. One of the tools that can be used to obtain such information is appropriate bioanalytical tests. The aim of this research involved determining whether tests that use living organisms as an active element (Vibrio fischeri-Microtox®, Heterocypris incongruens-Ostrocodtoxkit F™ and the XenoScreen YES/YAS™ test of oestrogenic/androgenic activity) can be a tool for estimating the combined toxic effects induced by xenobiotics released from objects intended for children. To reproduce the conditions to which objects are exposed during their use, liquids with a composition corresponding to that of human bodily fluids (artificial sweat and saliva) were used. This research focused on the main parameters influencing the intensification of the migration process (temperature, contact time and composition of the extraction mixture). The studies aimed to estimate the endocrine potential of the extracts showed that compounds released from the surface of studied objects exhibit antagonistic androgenic activity. While on the basis of the results of Microtox® test, one can state that the largest quantity of toxic compounds are released in the first 2 h of using the object. The FTIR spectra analyses confirmed that no degradation of polymeric material took place. On the basis of the results obtained, it was unanimously concluded that contact of the object with bodily fluids may result in the release of a large number of xenobiotics, which has disadvantageous effects on the metabolic processes of the indicator organisms.

  8. Transport behaviour of xenobiotic micropollutants in surface waters - an experimental assessment

    NASA Astrophysics Data System (ADS)

    Schwientek, Marc; Kuch, Bertram; Rügner, Hermann; Dobramysl, Lorenz; Grathwohl, Peter

    2013-04-01

    Xenobiotics are substances that do not exist in natural systems but are increasingly produced by industrial processes and introduced into the environment. While many of these compounds are eliminated in waste water treatment plants, some are only barely degraded and are discharged into receiving water bodies. Often little is known about their acute or chronic toxicity and even less about their persistence or transport behaviour in aquatic systems. In the present study, the stability and turnover of selected micropollutants along a 7.5 km long segment of the River Ammer in Southwest Germany was investigated (catchment area 134 km²). This stream carries a proportion of treated wastewater which is clearly above the average in German rivers, mainly supplied by a major waste water treatment plant at the upstream end of the studied stream segment. An experimental mass balance approach was chosen where in- and outflow of water and target compounds into and out of the balanced stream segment was measured during base flow conditions. To cover a complete diurnal cycle of wastewater input, pooled samples were collected every 2 h over a sampling period of 24 h. A comparison of bulk mass fluxes showed that carbamazepine, a pharmaceutical, and phosphorous flame retardants, such as TCPP, behave conservative under the given conditions. Some retention was observed for the disinfectant product Triclosan and some polycyclic musk fragrances (e.g., HHCB). TAED, a bleaching activator used in detergents, was completely eliminated along the stream segment. The outcome of the experiment demonstrates the very different persistence of some widely-used micropollutants in aquatic systems. However, the mechanisms involved in their attenuation as well as the fate of the most persistent compounds still remain subject to further research.

  9. A PXR reporter gene assay in a stable cell culture system: CYP3A4 and CYP2B6 induction by pesticides.

    PubMed

    Lemaire, Géraldine; de Sousa, Georges; Rahmani, Roger

    2004-12-15

    A stable hepatoma cell line expressing the human pregnane X receptor (hPXR) and the cytochrome P4503A4 (CYP3A4) distal and proximal promoters plus the luciferase reporter gene was developed to assess the ability of several xenobiotic agents to induce CYP3A4 and CYP2B6. After selection for neomycin resistance, one clone, displaying high luciferase activity in response to rifampicin (RIF), was isolated and the stable expression of hPXR was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Dose-response curves were generated by treating these cells with increasing concentrations of RIF, phenobarbital (PB), clotrimazole (CLOT) or 5beta-pregnane-3,20-dione (5beta-PREGN). The effective concentrations for half maximal response (EC50) were determined for each of these compounds. RIF was the most effective compound, with maximal luciferase activity induced at 10 microM. The agonist activities of PXR-specific inducers measured using our stable model were consistent with those measured in transient transfectants. The abilities of organochlorine (OC), organophosphate (OP) and pyrethroid pesticides (PY) to activate hPXR were also assessed and found to be consistent with the abilities of these compounds to induce CYP3A4 and CYP2B6 in primary culture of human hepatocytes. These results suggest that CYP3A4 and CYP2B6 regulation through PXR activation by persistent pesticides may have an impact on the metabolism of xenobiotic agents and endogenous steroid hormones. Our model provides a useful tool for studying hPXR activation and for identifying agents capable of inducing CYP3A4 and CYP2B6.

  10. Analysis of Common and Specific Mechanisms of Liver Function Affected by Nitrotoluene Compounds

    PubMed Central

    Deng, Youping; Meyer, Sharon A.; Guan, Xin; Escalon, Barbara Lynn; Ai, Junmei; Wilbanks, Mitchell S.; Welti, Ruth; Garcia-Reyero, Natàlia; Perkins, Edward J.

    2011-01-01

    Background Nitrotoluenes are widely used chemical manufacturing and munitions applications. This group of chemicals has been shown to cause a range of effects from anemia and hypercholesterolemia to testicular atrophy. We have examined the molecular and functional effects of five different, but structurally related, nitrotoluenes on using an integrative systems biology approach to gain insight into common and disparate mechanisms underlying effects caused by these chemicals. Methodology/Principal Findings Sprague-Dawley female rats were exposed via gavage to one of five concentrations of one of five nitrotoluenes [2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2ADNT) 4-amino-2,6-dinitrotoulene (4ADNT), 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT)] with necropsy and tissue collection at 24 or 48 h. Gene expression profile results correlated well with clinical data and liver histopathology that lead to the concept that hematotoxicity was followed by hepatotoxicity. Overall, 2,4DNT, 2,6DNT and TNT had stronger effects than 2ADNT and 4ADNT. Common functional terms, gene expression patterns, pathways and networks were regulated across all nitrotoluenes. These pathways included NRF2-mediated oxidative stress response, aryl hydrocarbon receptor signaling, LPS/IL-1 mediated inhibition of RXR function, xenobiotic metabolism signaling and metabolism of xenobiotics by cytochrome P450. One biological process common to all compounds, lipid metabolism, was found to be impacted both at the transcriptional and lipid production level. Conclusions/Significance A systems biology strategy was used to identify biochemical pathways affected by five nitroaromatic compounds and to integrate data that tie biochemical alterations to pathological changes. An integrative graphical network model was constructed by combining genomic, gene pathway, lipidomic, and physiological endpoint results to better understand mechanisms of liver toxicity and physiological endpoints affected by these compounds. PMID:21346803

  11. Dechlorination of Aromatic Xenobiotic Compounds by Anaerobic Microorganisms

    DTIC Science & Technology

    1988-07-01

    DCB-l likely can also live as a scavenger because it was isolated on rumen fluid and responded with improved growth when rumen fluid or trypticase... rumen fluid markedly enhanced the dechlorinating activity. The activity was increased from ca 13 IM to 75 pM per day and the lag period was reduced from...4 weeks to 3 days in presence of either 0.1 percent yeast extract or 5 percent rumen fluid. The study also suggested that the dechlorinating activity

  12. Physiological attributes of microbial BTEX degradation in oxygen-limited environments.

    PubMed Central

    Olsen, R H; Mikesell, M D; Kukor, J J; Byrne, A M

    1995-01-01

    Our work has focused on the determination of physiological traits that may facilitate in situ degradation of xenobiotic compounds by indigenous microorganisms. For this our interests center on the following questions: What are the ambient conditions in a benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated aquifer? What is the behavior of indigenous bacteria under these conditions? What are the attributes of bacterial strains that are functional under hypoxic conditions? How do these strains compare with other BTEX-degrading strains? PMID:8565910

  13. Phosphorus Dynamics in High Latitude Soils

    NASA Astrophysics Data System (ADS)

    Vincent, A. G.; Vestergren, J.; Gröbner, G.; Wardle, D.; Schleucher, J.; Giesler, R.

    2016-12-01

    Phosphorus (P) is an important macronutrient in boreal forests and arctic and subarctic tundra, and elucidating the factors that control its bioavailability is essential to understand the function of these ecosystems, now and under global change. We tested several hypotheses about differences in soil P composition along natural gradients of temperature, ecosystem development, soil metal concentration, and fire frequency in Northern Sweden. To characterise P composition we used traditional soil P fractionation procedures as well as 1-dimensional 31P Nuclear Magnetic Resonance (NMR) and novel 2-dimensional 1H-31P NMR techniques. Here we synthesize the main patterns emerging from this work. Temperature seems to be an important driver of P bioavailability regardless of vegetation type in subarctic tundra, given a positive correlation between temperature and the concentration of bioavailable soil P along an elevational gradient. In boreal forest, stage of ecosystem development along a 7800 year old chronosequence created by glacial isostatic adjustment was associated with marked, yet not unidirectional, shifts in the composition of soil P, which suggests ongoing changes in unknown ecological processes. Naturally higher concentrations of iron and aluminium in soils due to groundwater recharge and discharge were related with higher concentrations of P compounds widely considered to be recalcitrant, such as inositol phosphates. Finally, retrogressive forest ecosystems with low productivity growing on old soils did not have a relatively higher proportion of recalcitrant organic P compounds, contrary to our expectations based on current biogeochemistry theory. Finally, one of our most enigmatic findings is the high relative abundance of labile P compounds such as RNA in soil. This would suggest that a great proportion of soil P is located within live microbial cells, and therefore that microbial dynamics are a crucial control on P bioavailability in these ecosystems.

  14. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristale, Joyce; Ramos, Dayana D.; Dantas, Renato F.

    2016-01-15

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L{sup −1} to 150 µg L{sup −1}. During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g{sup −1} dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatmentmore » and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H{sub 2}O{sub 2} and O{sub 3}) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3}. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. - Highlights: • OPFRs were detected in wastewater and sludge of all studied WWTPs. • Alkyl and chloroalkyl phosphates were present in secondary treatment effluents. • TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3} treatment. • TCEP, TCIPP and TDCPP were resistant to both secondary and tertiary treatment.« less

  15. Removal of xenobiotics from effluent discharge by adsorption on zeolite and expanded clay: an alternative to activated carbon?

    PubMed

    Tahar, A; Choubert, J M; Miège, C; Esperanza, M; Le Menach, K; Budzinski, H; Wisniewski, C; Coquery, M

    2014-04-01

    Xenobiotics such as pesticides and pharmaceuticals are an increasingly large problem in aquatic environments. A fixed-bed adsorption filter, used as tertiary stage of sewage treatment, could be a solution to decrease xenobiotics concentrations in wastewater treatment plants (WWTPs) effluent. The adsorption efficiency of two mineral adsorbent materials (expanded clay (EC) and zeolite (ZE)), both seen as a possible alternative to activated carbon (AC), was evaluated in batch tests. Experiments involving secondary treated domestic wastewater spiked with a cocktail of ten xenobiotics (eight pharmaceuticals and two pesticides) known to be poorly eliminated in conventional biological process were carried out. Removal efficiencies and partitions coefficients were calculated for two levels of initial xenobiotic concentration, i.e, concentrations lower to 10 μg/L and concentrations ranged from 100 to 1,000 μg/L. While AC was the most efficient adsorbent material, both alternative adsorbent materials showed good adsorption efficiencies for all ten xenobiotics (from 50 to 100 % depending on the xenobiotic/adsorbent material pair). For all the targeted xenobiotics, at lower concentrations, EC presented the best adsorption potential with higher partition coefficients, confirming the results in terms of removal efficiencies. Nevertheless, Zeolite presents virtually the same adsorption potential for both high and low xenobiotics concentrations to be treated. According to this first batch investigation, ZE and EC could be used as alternative absorbent materials to AC in WWTP.

  16. Azo Dye Biodecolorization Enhanced by Echinodontium taxodii Cultured with Lignin

    PubMed Central

    Meng, Jing; Yu, Hongbo; Zhang, Xiaoyu

    2014-01-01

    Lignocellulose facilitates the fungal oxidization of recalcitrant organic pollutants through the extracellular ligninolytic enzymes induced by lignin in wood or other plant tissues. However, available information on this phenomenon is insufficient. Free radical chain reactions during lignin metabolism are important in xenobiotic removal. Thus, the effect of lignin on azo dye decolorization in vivo by Echinodontium taxodii was evaluated. In the presence of lignin, optimum decolorization percentages for Remazol Brilliant Violet 5R, Direct Red 5B, Direct Black 38, and Direct Black 22 were 91.75% (control, 65.96%), 76.89% (control, 43.78%), 43.44% (control, 17.02%), and 44.75% (control, 12.16%), respectively, in the submerged cultures. Laccase was the most important enzyme during biodecolorization. Aside from the stimulating of laccase activity, lignin might be degraded by E. taxodii, and then these degraded low-molecular-weight metabolites could act as redox mediators promoting decolorization of azo dyes. The relationship between laccase and lignin degradation was investigated through decolorization tests in vitro with purified enzyme and dozens of aromatics, which can be derivatives of lignin and can function as laccase mediators or inducers. Dyes were decolorized at triple or even higher rates in certain laccase–aromatic systems at chemical concentrations as low as 10 µM. PMID:25285777

  17. Lignin Peroxidase from Streptomyces viridosporus T7A: Enzyme Concentration Using Ultrafiltration

    NASA Astrophysics Data System (ADS)

    Gottschalk, Leda M. F.; Bon, Elba P. S.; Nobrega, Ronaldo

    It is well known that lignin degradation is a key step in the natural process of biomass decay whereby oxidative enzymes such as laccases and high redox potential ligninolytic peroxidases and oxidases play a central role. More recently, the importance of these enzymes has increased because of their prospective industrial use for the degradation of the biomass lignin to increase the accessibility of the cellulose and hemicellulose moieties to be used as renewable material for the production of fuels and chemicals. These biocatalysts also present potential application on environmental biocatalysis for the degradation of xenobiotics and recalcitrant pollutants. However, the cost for these enzymes production, separation, and concentration must be low to permit its industrial use. This work studied the concentration of lignin peroxidase (LiP), produced by Streptomyces viridosporus T7A, by ultrafiltration, in a laboratory-stirred cell, loaded with polysulfone (PS) or cellulose acetate (CA) membranes with molecular weight cutoffs (MWCO) of 10, 20, and 50 KDa. Experiments were carried out at 25 °C and pH 7.0 in accordance to the enzyme stability profile. The best process conditions and enzyme yield were obtained using a PS membrane with 10 KDa MWCO, whereby it was observed a tenfold LiP activity increase, reaching 1,000 U/L and 90% enzyme activity upholding.

  18. Interactions among infections, nutrients and xenobiotics.

    PubMed

    Ilbäck, Nils-Gunnar; Friman, Göran

    2007-01-01

    During recent years there have been several incidents in which symptoms of disease have been linked to consumption of food contaminated by chemical substances (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD). Furthermore, outbreaks of infections in food-producing animals have attracted major attention regarding the safety of consumers, e.g., Bovine Spongiform Encephalitis (BSE) and influenza in chicken. As shown for several xenobiotics in an increasing number of experimental studies, even low-dose xenobiotic exposure may impair immune function over time, as well as microorganism virulence, resulting in more severe infectious diseases and associated complications. Moreover, during ongoing infection, xenobiotic uptake and distribution are often changed resulting in increased toxic insult to the host. The interactions among infectious agents, nutrients, and xenobiotics have thus become a developing concern and new avenue of research in food toxicology as well as in food-borne diseases. From a health perspective, in the risk assessment of xenobiotics in our food and environment, synergistic effects among microorganisms, nutrients, and xenobiotics will have to be considered. Otherwise, such effects may gradually change the disease panorama in society.

  19. Modeling antibiotic and cytotoxic effects of the dimeric isoquinoline IQ-143 on metabolism and its regulation in Staphylococcus aureus, Staphylococcus epidermidis and human cells

    PubMed Central

    2011-01-01

    Background Xenobiotics represent an environmental stress and as such are a source for antibiotics, including the isoquinoline (IQ) compound IQ-143. Here, we demonstrate the utility of complementary analysis of both host and pathogen datasets in assessing bacterial adaptation to IQ-143, a synthetic analog of the novel type N,C-coupled naphthyl-isoquinoline alkaloid ancisheynine. Results Metabolite measurements, gene expression data and functional assays were combined with metabolic modeling to assess the effects of IQ-143 on Staphylococcus aureus, Staphylococcus epidermidis and human cell lines, as a potential paradigm for novel antibiotics. Genome annotation and PCR validation identified novel enzymes in the primary metabolism of staphylococci. Gene expression response analysis and metabolic modeling demonstrated the adaptation of enzymes to IQ-143, including those not affected by significant gene expression changes. At lower concentrations, IQ-143 was bacteriostatic, and at higher concentrations bactericidal, while the analysis suggested that the mode of action was a direct interference in nucleotide and energy metabolism. Experiments in human cell lines supported the conclusions from pathway modeling and found that IQ-143 had low cytotoxicity. Conclusions The data suggest that IQ-143 is a promising lead compound for antibiotic therapy against staphylococci. The combination of gene expression and metabolite analyses with in silico modeling of metabolite pathways allowed us to study metabolic adaptations in detail and can be used for the evaluation of metabolic effects of other xenobiotics. PMID:21418624

  20. Glutathione S-conjugates as prodrugs to target drug-resistant tumors

    PubMed Central

    Ramsay, Emma E.; Dilda, Pierre J.

    2014-01-01

    Living organisms are continuously exposed to xenobiotics. The major phase of enzymatic detoxification in many species is the conjugation of activated xenobiotics to reduced glutathione (GSH) catalyzed by the glutathione-S-transferase (GST). It has been reported that some compounds, once transformed into glutathione S-conjugates, enter the mercapturic acid pathway whose end products are highly reactive and toxic for the cell responsible for their production. The cytotoxicity of these GSH conjugates depends essentially on GST and gamma-glutamyl transferases (γGT), the enzymes which initiate the mercapturic acid synthesis pathway. Numerous studies support the view that the expression of GST and γGT in cancer cells represents an important factor in the appearance of a more aggressive and resistant phenotype. High levels of tumor GST and γGT expression were employed to selectively target tumor with GST- or γGT-activated drugs. This strategy, explored over the last two decades, has recently been successful using GST-activated nitrogen mustard (TLK286) and γGT-activated arsenic-based (GSAO and Darinaparsin) prodrugs confirming the potential of GSH-conjugates as anticancer drugs. PMID:25157234

  1. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium.

    PubMed

    Syed, Khajamohiddin; Yadav, Jagjit S

    2012-11-01

    Phanerochaete chrysosporium, the model white rot fungus, has been the focus of research for the past about four decades for understanding the mechanisms and processes of biodegradation of the natural aromatic polymer lignin and a broad range of environmental toxic chemicals. The ability to degrade this vast array of xenobiotic compounds was originally attributed to its lignin-degrading enzyme system, mainly the extracellular peroxidases. However, subsequent physiological, biochemical, and/or genetic studies by us and others identified the involvement of a peroxidase-independent oxidoreductase system, the cytochrome P450 monooxygenase system. The whole genome sequence revealed an extraordinarily large P450 contingent (P450ome) with an estimated 149 P450s in this organism. This review focuses on the current status of understanding on the P450 monooxygenase system of P. chrysosproium in terms of pre-genomic and post-genomic identification, structural and evolutionary analysis, transcriptional regulation, redox partners, and functional characterization for its biodegradative potential. Future research on this catalytically diverse oxidoreductase enzyme system and its major role as a newly emerged player in xenobiotic metabolism/degradation is discussed.

  2. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    PubMed

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  3. Comparative liver accumulation of dioxin-like compounds in sheep and cattle: Possible role of AhR-mediated xenobiotic metabolizing enzymes.

    PubMed

    Girolami, F; Spalenza, V; Benedetto, A; Manzini, L; Badino, P; Abete, M C; Nebbia, C

    2016-11-15

    PCDDs, PCDFs, and PCBs are persistent organic pollutants (POPs) that accumulate in animal products and may pose serious health problems. Those able to bind the aryl hydrocarbon receptor (AhR), eliciting a plethora of toxic responses, are defined dioxin-like (DL) compounds, while the remainders are called non-DL (NDL). An EFSA opinion has highlighted the tendency of ovine liver to specifically accumulate DL-compounds to a greater extent than any other farmed ruminant species. To examine the possible role in such an accumulation of xenobiotic metabolizing enzymes (XME) involved in DL-compound biotransformation, liver samples were collected from ewes and cows reared in an area known for low dioxin contamination. A related paper reported that sheep livers had about 5-fold higher DL-compound concentrations than cattle livers, while the content of the six marker NDL-PCBs did not differ between species. Specimens from the same animals were subjected to gene expression analysis for AhR, AhR nuclear translocator (ARNT) and AhR-dependent oxidative and conjugative pathways; XME protein expression and activities were also investigated. Both AhR and ARNT mRNA levels were about 2-fold lower in ovine samples and the same occurred for CYP1A1 and CYP1A2, being approximately 3- and 9-fold less expressed in sheep compared to cattle, while CYP1B1 could be detectable in cattle only. The results of the immunoblotting and catalytic activity (most notably EROD) measurements of the CYP1A family enzymes were in line with the gene expression data. By contrast, phase II enzyme expression and activities in sheep were higher (UGT1A) or similar (GSTA1, NQO1) to those recorded in cattle. The overall low expression of CYP1 family enzymes in the sheep is in line with the observed liver accumulation of DL-compounds and is expected to affect the kinetics and the dynamics of other POPs such as many polycyclic aromatic hydrocarbons, as well as of toxins (e.g. aflatoxins) or drugs (e.g. benzimidazole anthelmintics) known to be metabolized by those enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Phenoloxidase-mediated interactions of phenols and anilines with humic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dec, J.; Bollag, J.M.

    Phenoloxidases present in terrestrial systems may contribute to the formation of humus through random coupling of a variety of aromatic compounds, including xenobiotic chemicals. Because of their structural similarity to natural substrates originating mainly from lignin decomposition, xenobiotic phenols and anilines can be readily incorporated into the soil organic matter, a phenomenon referred to as binding. The underlying mechanism of binding involves oxidation of the xenobiotic substrates to free radicals or quinone products that subsequently couple directly to humus or to naturally occurring phenols that also are subject to oxidation. The oxidation can be mediated by soil phenoloxidases as wellmore » as by abiotic catalysts. The ability of the enzymes to mediate the oxidation was demonstrated in a number of model studies, in which selected pollutants were incubated with humic monomers or natural humic acids in the presence of different phenoloxidases (laccase, peroxidase, tyrosinase). Analysis of the formed complexes by mass spectrometry and {sup 13}C nuclear magnetic resonance (NMR) spectroscopy left no doubt about the formation of covalent bonds between the pollutants and humic materials. Some bonds were formed at the chlorinated sites, leading to partial dehalogenation of the aromatic contaminants. Experimental data indicated that bound phenols and anilines were unlikely to adversely affect the environment; their release from humic complexes by soil microorganisms was very limited and once released, they were subjected to mineralization. For those reasons, phenoloxidases, which proved capable of mediating the underlying reaction, are currently considered as a tool for enhancing immobilization phenomena in soil.« less

  5. Robust Bayesian Algorithm for Targeted Compound Screening in Forensic Toxicology.

    PubMed

    Woldegebriel, Michael; Gonsalves, John; van Asten, Arian; Vivó-Truyols, Gabriel

    2016-02-16

    As part of forensic toxicological investigation of cases involving unexpected death of an individual, targeted or untargeted xenobiotic screening of post-mortem samples is normally conducted. To this end, liquid chromatography (LC) coupled to high-resolution mass spectrometry (MS) is typically employed. For data analysis, almost all commonly applied algorithms are threshold-based (frequentist). These algorithms examine the value of a certain measurement (e.g., peak height) to decide whether a certain xenobiotic of interest (XOI) is present/absent, yielding a binary output. Frequentist methods pose a problem when several sources of information [e.g., shape of the chromatographic peak, isotopic distribution, estimated mass-to-charge ratio (m/z), adduct, etc.] need to be combined, requiring the approach to make arbitrary decisions at substep levels of data analysis. We hereby introduce a novel Bayesian probabilistic algorithm for toxicological screening. The method tackles the problem with a different strategy. It is not aimed at reaching a final conclusion regarding the presence of the XOI, but it estimates its probability. The algorithm effectively and efficiently combines all possible pieces of evidence from the chromatogram and calculates the posterior probability of the presence/absence of XOI features. This way, the model can accommodate more information by updating the probability if extra evidence is acquired. The final probabilistic result assists the end user to make a final decision with respect to the presence/absence of the xenobiotic. The Bayesian method was validated and found to perform better (in terms of false positives and false negatives) than the vendor-supplied software package.

  6. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86

    PubMed Central

    Choudhary, Alpa; Modak, Arnab; Apte, Shree K.

    2017-01-01

    ABSTRACT The effective elimination of xenobiotic pollutants from the environment can be achieved by efficient degradation by microorganisms even in the presence of sugars or organic acids. Soil isolate Pseudomonas putida CSV86 displays a unique ability to utilize aromatic compounds prior to glucose. The draft genome and transcription analyses revealed that glucose uptake and benzoate transport and metabolism genes are clustered at the glc and ben loci, respectively, as two distinct operons. When grown on glucose plus benzoate, CSV86 displayed significantly higher expression of the ben locus in the first log phase and of the glc locus in the second log phase. Kinetics of substrate uptake and metabolism matched the transcription profiles. The inability of succinate to suppress benzoate transport and metabolism resulted in coutilization of succinate and benzoate. When challenged with succinate or benzoate, glucose-grown cells showed rapid reduction in glc locus transcription, glucose transport, and metabolic activity, with succinate being more effective at the functional level. Benzoate and succinate failed to interact with or inhibit the activities of glucose transport components or metabolic enzymes. The data suggest that succinate and benzoate suppress glucose transport and metabolism at the transcription level, enabling P. putida CSV86 to preferentially metabolize benzoate. This strain thus has the potential to be an ideal host to engineer diverse metabolic pathways for efficient bioremediation. IMPORTANCE Pseudomonas strains play an important role in carbon cycling in the environment and display a hierarchy in carbon utilization: organic acids first, followed by glucose, and aromatic substrates last. This limits their exploitation for bioremediation. This study demonstrates the substrate-dependent modulation of ben and glc operons in Pseudomonas putida CSV86, wherein benzoate suppresses glucose transport and metabolism at the transcription level, leading to preferential utilization of benzoate over glucose. Interestingly, succinate and benzoate are cometabolized. These properties are unique to this strain compared to other pseudomonads and open up avenues to unravel novel regulatory processes. Strain CSV86 can serve as an ideal host to engineer and facilitate efficient removal of recalcitrant pollutants even in the presence of simpler carbon sources. PMID:28733285

  7. Identification of three novel natural product compounds that activate PXR and CAR and inhibit inflammation

    PubMed Central

    Kittayaruksakul, Suticha; Zhao, Wenchen; Xu, Meishu; Ren, Songrong; Lu, Jing; Wang, Ju; Downes, Michael; Evans, Ronald M.; Venkataramanan, Raman; Chatsudthipong, Varanuj; Xie, Wen

    2013-01-01

    The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) have been known to play a role in xenobiotic metabolism by regulating the expression of drug-metabolizing enzymes and transporters. In addition, PXR agonists were found to exert therapeutic effects through multiple mechanisms, such as detoxification of bile acids and inhibition of inflammation. In this study, we first investigated the effects of three natural product compounds, carapin, santonin and isokobusone, on the activity of PXR and CAR. These compounds activated both PXR and CAR in transient transfection and luciferase reporter gene assays. Mutagenesis studies showed that two amino acid residues, Phe305 of the rodent PXR and Leu308 of the human PXR, are critical for the recognition of these compounds by PXR. Importantly, the activation of PXR and CAR by these compounds induced the expression of drug-metabolizing enzymes in primary human and mouse hepatocytes. Furthermore, activation of PXR by these compounds inhibited the expression of inflammatory mediators in response to lipopolysaccharide (LPS). The effects of these natural compounds on drug metabolism and inflammation were abolished in PXR−/− hepatocytes. These natural compounds can be explored for their potential in the treatment of diseases where the PXR activation has been shown to be beneficial, such as inflammatory bowel disease, cholestasis, and hyperbilirubinemia. PMID:23896737

  8. The fetal/neonatal mouse liver exhibits transcriptional features of the adult pancreas.

    EPA Science Inventory

    Metabolic homeostasis of the organism is maintained by the liver’s ability to detoxify and eliminate xenobiotics through the expression of xenobiotic metabolism enxymes (XME). The fetus and neonate have been hypothesized to exhibit increased sensitivity to xenobiotic toxicity. T...

  9. Reactive Metabolites in the Biotransformation of Molecules Containing a Furan Ring

    PubMed Central

    Peterson, Lisa A.

    2012-01-01

    Many xenobiotics containing a furan ring are toxic and/or carcinogenic. The harmful effects of these compounds require furan ring oxidation. This reaction generates an electrophilic intermediate. Depending on the furan ring substituents, the intermediate is either an epoxide or a cis-enedione with more ring substitution favoring epoxide formation. Either intermediate reacts with cellular nucleophiles such as protein or DNA to trigger toxicities. The reactivity of the metabolite determines which cellular nucleophiles are targeted. The toxicity of a particular furan is also influenced by the presence of competing metabolic pathways or efficient detoxification routes. GSH plays an important role in modulating the harmful effects of this class of compound by reacting with the reactive metabolite. However, this may not represent a detoxification step in all cases. PMID:23061605

  10. GENE EXPRESSION PROFILING IN AGING RATS AND MICE REVEALS CHANGES IN XENOBIOTIC METABOLISM GENES

    EPA Science Inventory

    Detoxification and elimination of xenobiotics are major functions of the liver and is important in maintaining the metabolic homeostasis of the organism. The degree to which aging affects hepatic metabolism is not known. The expression of xenobiotic metabolizing enzymes (XMEs), i...

  11. Coordinated Changes in Xenobiotic Metabolizing Enzyme Gene Expression in Aging Male Rats

    EPA Science Inventory

    In order to gain better insight on aging and susceptibility, we characterized the expression of xenobiotic metabolizing enzymes (XMEs) from the livers of rats to evaluate the change in capacity to respond to xenobiotics across the adult lifespan. Gene expression profiles for XMEs...

  12. Do Candida spp. "read" Nietzsche? Can xenobiotics modulate their aggressiveness? Proposition that chemicals may interfere in their virulence attributes.

    PubMed

    Rosa, Edvaldo Antonio Ribeiro

    2012-01-01

    As well as the host, opportunist Candida spp. enface all sorts of exogenous chemicals, so-called xenobiotics. It is plausible that xenobiotics exert some effects on such microorganisms; among them, the modulation of virulence attributes.

  13. Uses of Laccases in the Food Industry

    PubMed Central

    Osma, Johann F.; Toca-Herrera, José L.; Rodríguez-Couto, Susana

    2010-01-01

    Laccases are an interesting group of multi copper enzymes, which have received much attention of researchers in the last decades due to their ability to oxidise both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. This makes these biocatalysts very useful for their application in several biotechnological processes, including the food industry. Thus, laccases hold great potential as food additives in food and beverage processing. Being energy-saving and biodegradable, laccase-based biocatalysts fit well with the development of highly efficient, sustainable, and eco-friendly industries. PMID:21048873

  14. Tissue-specific distribution of hemicelluloses in six different sugarcane hybrids as related to cell wall recalcitrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Thales H. F.; Vega-Sánchez, Miguel E.; Milagres, Adriane M. F.

    Background: Grasses are lignocellulosic materials useful to supply the billion-tons annual requirement for renewable resources that aim to produce transportation fuels and a variety of chemicals. However, the polysaccharides contained in grass cell walls are built in a recalcitrant composite. Deconstruction of these cell walls is still a challenge for the energy-efficient and economically viable transformation of lignocellulosic materials. The varied tissue-specific distribution of cell wall components adds complexity to the origins of cell wall recalcitrance in grasses. This complexity usually led to empirically developed pretreatment processes to overcome recalcitrance. A further complication is that efficient pretreatment procedures generally treatmore » the less recalcitrant tissues more than necessary, which results in the generation of undesirable biomass degradation products. Results: Six different sugarcane hybrids were used as model grasses to evaluate the tissue-specific distribution of hemicelluloses and the role of these components in cell wall recalcitrance. Acetylated glucuronoarabinoxylan (GAX) occurs in all tissues. Mixed-linkage glucan (MLG) was relevant in the innermost regions of the sugarcane internodes (up to 15.4 % w/w), especially in the low-lignin content hybrids. Immunofluorescence microscopy showed that xylans predominated in vascular bundles, whereas MLG occurred mostly in the parenchyma cell walls from the pith region of the hybrids with low-lignin content. Evaluation of the digestibility of sugarcane polysaccharides by commercial enzymes indicated that the cell wall recalcitrance varied considerably along the internode regions and in the sugarcane hybrids. Pith regions of the hybrids with high MLG and low-lignin contents reached up to 85 % cellulose conversion after 72 h of hydrolysis, without any pretreatment. Conclusions: The collective characteristics of the internode regions were related to the varied recalcitrance found in the samples. Components such as lignin and GAX were critical for the increased recalcitrance, but low cellulose crystallinity index, high MLG contents, and highly substituted GAX contributed to the generation of a less recalcitrant material.« less

  15. Tissue-specific distribution of hemicelluloses in six different sugarcane hybrids as related to cell wall recalcitrance

    DOE PAGES

    Costa, Thales H. F.; Vega-Sánchez, Miguel E.; Milagres, Adriane M. F.; ...

    2016-05-04

    Background: Grasses are lignocellulosic materials useful to supply the billion-tons annual requirement for renewable resources that aim to produce transportation fuels and a variety of chemicals. However, the polysaccharides contained in grass cell walls are built in a recalcitrant composite. Deconstruction of these cell walls is still a challenge for the energy-efficient and economically viable transformation of lignocellulosic materials. The varied tissue-specific distribution of cell wall components adds complexity to the origins of cell wall recalcitrance in grasses. This complexity usually led to empirically developed pretreatment processes to overcome recalcitrance. A further complication is that efficient pretreatment procedures generally treatmore » the less recalcitrant tissues more than necessary, which results in the generation of undesirable biomass degradation products. Results: Six different sugarcane hybrids were used as model grasses to evaluate the tissue-specific distribution of hemicelluloses and the role of these components in cell wall recalcitrance. Acetylated glucuronoarabinoxylan (GAX) occurs in all tissues. Mixed-linkage glucan (MLG) was relevant in the innermost regions of the sugarcane internodes (up to 15.4 % w/w), especially in the low-lignin content hybrids. Immunofluorescence microscopy showed that xylans predominated in vascular bundles, whereas MLG occurred mostly in the parenchyma cell walls from the pith region of the hybrids with low-lignin content. Evaluation of the digestibility of sugarcane polysaccharides by commercial enzymes indicated that the cell wall recalcitrance varied considerably along the internode regions and in the sugarcane hybrids. Pith regions of the hybrids with high MLG and low-lignin contents reached up to 85 % cellulose conversion after 72 h of hydrolysis, without any pretreatment. Conclusions: The collective characteristics of the internode regions were related to the varied recalcitrance found in the samples. Components such as lignin and GAX were critical for the increased recalcitrance, but low cellulose crystallinity index, high MLG contents, and highly substituted GAX contributed to the generation of a less recalcitrant material.« less

  16. Current understanding of the correlation of lignin structure with biomass recalcitrance

    DOE PAGES

    Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J.

    2016-11-18

    Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresources to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement inmore » application of biorefinery to production of biofuels, chemicals, and bio-derived materials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability—pretreatment and enzymatic hydrolysis of biomass. Furthermore, lignin-enzyme interactions and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently.« less

  17. Current understanding of the correlation of lignin structure with biomass recalcitrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J.

    Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresources to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement inmore » application of biorefinery to production of biofuels, chemicals, and bio-derived materials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability—pretreatment and enzymatic hydrolysis of biomass. Furthermore, lignin-enzyme interactions and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently.« less

  18. Mini-review: Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance

    NASA Astrophysics Data System (ADS)

    Li, Mi; Pu, Yunqiao; Ragauskas, Arthur

    2016-11-01

    Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresource to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement in application of biorefinery to production of biofuels, chemicals, and biomaterials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability— pretreatment and enzymatic hydrolysis of biomass. Specifically, lignin-enzyme interaction and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently.

  19. Fluoroquinolone antibiotics in the environment.

    PubMed

    Sukul, Premasis; Spiteller, Michael

    2007-01-01

    Fluoroquinolones (FQs) are used in large amounts for human and animal medical care. They are excreted as parent compound, as conjugates, or as oxidation, hydroxylation, dealkylation, or decarboxylation products of the parent compound. A considerable amount of FQs and their metabolites may reach the soil as constituents of urine, feces, or manure. The residues of FQs in foods of animal origin may pose hazards to consumers through emergence of drug-resistant bacteria. FQs bind strongly to topsoil, reducing the threat of surface water and groundwater contamination. The strong binding of FQs to soil and sediments delays their biodegradation and explains the recalcitrance of FQs. Wastewater treatment is an efficient elimination step (79%-87% removal) for FQs before they enter rivers. FQs are susceptible to photodegradation in aqueous medium, involving oxidation, dealkylation, and cleavage of the piperazine ring.

  20. Metabolism of clofibric acid in zebrafish embryos (Danio rerio) as determined by liquid chromatography-high resolution-mass spectrometry.

    PubMed

    Brox, Stephan; Seiwert, Bettina; Haase, Nora; Küster, Eberhard; Reemtsma, Thorsten

    2016-01-01

    The zebrafish embryo (ZFE) is increasingly used in ecotoxicology research but detailed knowledge of its metabolic potential is still limited. This study focuses on the xenobiotic metabolism of ZFE at different life-stages using the pharmaceutical compound clofibric acid as study compound. Liquid chromatography with quadrupole-time-of-flight mass spectrometry (LC-QToF-MS) is used to detect and to identify the transformation products (TPs). In screening experiments, a total of 18 TPs was detected and structure proposals were elaborated for 17 TPs, formed by phase I and phase II metabolism. Biotransformation of clofibric acid by the ZFE involves conjugation with sulfate or glucuronic acid, and, reported here for the first time, with carnitine, taurine, and aminomethanesulfonic acid. Further yet unknown cyclization products were identified using non-target screening that may represent a new detoxification pathway. Sulfate containing TPs occurred already after 3h of exposure (7hpf), and from 48h of exposure (52hpf) onwards, all TPs were detected. The detection of these TPs indicates the activity of phase I and phase II enzymes already at early life-stages. Additionally, the excretion of one TP into the exposure medium was observed. The results of this study outline the high metabolic potential of the ZFE with respect to the transformation of xenobiotics. Similarities but also differences to other test systems were observed. Biotransformation of test chemicals in toxicity testing with ZFE may therefore need further consideration. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Research Resource: A Reference Transcriptome for Constitutive Androstane Receptor and Pregnane X Receptor Xenobiotic Signaling

    PubMed Central

    Ochsner, Scott A.; Tsimelzon, Anna; Dong, Jianrong; Coarfa, Cristian

    2016-01-01

    The pregnane X receptor (PXR) (PXR/NR1I3) and constitutive androstane receptor (CAR) (CAR/NR1I2) members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors are well-characterized mediators of xenobiotic and endocrine-disrupting chemical signaling. The Nuclear Receptor Signaling Atlas maintains a growing library of transcriptomic datasets involving perturbations of NR signaling pathways, many of which involve perturbations relevant to PXR and CAR xenobiotic signaling. Here, we generated a reference transcriptome based on the frequency of differential expression of genes across 159 experiments compiled from 22 datasets involving perturbations of CAR and PXR signaling pathways. In addition to the anticipated overrepresentation in the reference transcriptome of genes encoding components of the xenobiotic stress response, the ranking of genes involved in carbohydrate metabolism and gonadotropin action sheds mechanistic light on the suspected role of xenobiotics in metabolic syndrome and reproductive disorders. Gene Set Enrichment Analysis showed that although acetaminophen, chlorpromazine, and phenobarbital impacted many similar gene sets, differences in direction of regulation were evident in a variety of processes. Strikingly, gene sets representing genes linked to Parkinson's, Huntington's, and Alzheimer's diseases were enriched in all 3 transcriptomes. The reference xenobiotic transcriptome will be supplemented with additional future datasets to provide the community with a continually updated reference transcriptomic dataset for CAR- and PXR-mediated xenobiotic signaling. Our study demonstrates how aggregating and annotating transcriptomic datasets, and making them available for routine data mining, facilitates research into the mechanisms by which xenobiotics and endocrine-disrupting chemicals subvert conventional NR signaling modalities. PMID:27409825

  2. Research Resource: A Reference Transcriptome for Constitutive Androstane Receptor and Pregnane X Receptor Xenobiotic Signaling.

    PubMed

    Ochsner, Scott A; Tsimelzon, Anna; Dong, Jianrong; Coarfa, Cristian; McKenna, Neil J

    2016-08-01

    The pregnane X receptor (PXR) (PXR/NR1I3) and constitutive androstane receptor (CAR) (CAR/NR1I2) members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors are well-characterized mediators of xenobiotic and endocrine-disrupting chemical signaling. The Nuclear Receptor Signaling Atlas maintains a growing library of transcriptomic datasets involving perturbations of NR signaling pathways, many of which involve perturbations relevant to PXR and CAR xenobiotic signaling. Here, we generated a reference transcriptome based on the frequency of differential expression of genes across 159 experiments compiled from 22 datasets involving perturbations of CAR and PXR signaling pathways. In addition to the anticipated overrepresentation in the reference transcriptome of genes encoding components of the xenobiotic stress response, the ranking of genes involved in carbohydrate metabolism and gonadotropin action sheds mechanistic light on the suspected role of xenobiotics in metabolic syndrome and reproductive disorders. Gene Set Enrichment Analysis showed that although acetaminophen, chlorpromazine, and phenobarbital impacted many similar gene sets, differences in direction of regulation were evident in a variety of processes. Strikingly, gene sets representing genes linked to Parkinson's, Huntington's, and Alzheimer's diseases were enriched in all 3 transcriptomes. The reference xenobiotic transcriptome will be supplemented with additional future datasets to provide the community with a continually updated reference transcriptomic dataset for CAR- and PXR-mediated xenobiotic signaling. Our study demonstrates how aggregating and annotating transcriptomic datasets, and making them available for routine data mining, facilitates research into the mechanisms by which xenobiotics and endocrine-disrupting chemicals subvert conventional NR signaling modalities.

  3. Coordinated changes in xenobiotic metabolizing enzyme (XME) gene expression through the life stages of the male C57BL/6 mouse

    EPA Science Inventory

    Metabolic homeostasis of the organism is maintained by the liver's ability to detoxify and eliminate xenobiotics. This is accomplished, in part, by the expression of XMEs, which metabolize xenobiotics and determine whether exposure will result in toxicity. Some evidence indicates...

  4. Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy's sugar process (CLE Sugar).

    PubMed

    Gao, Johnway; Anderson, Dwight; Levie, Benjamin

    2013-01-28

    Woody biomass is one of the most abundant biomass feedstocks, besides agriculture residuals in the United States. The sustainable harvest residuals and thinnings alone are estimated at about 75 million tons/year. These forest residuals and thinnings could produce the equivalent of 5 billion gallons of lignocellulosic ethanol annually. Softwood biomass is the most recalcitrant biomass in pretreatment before an enzymatic hydrolysis. To utilize the most recalcitrant lignocellulosic materials, an efficient, industrially scalable and cost effective pretreatment method is needed. Obtaining a high yield of sugar from recalcitrant biomass generally requires a high severity of pretreatment with aggressive chemistry, followed by extensive conditioning, and large doses of enzymes. Catchlight Energy's Sugar process, CLE Sugar, uses a low intensity, high throughput variation of bisulfite pulping to pretreat recalcitrant biomass, such as softwood forest residuals. By leveraging well-proven bisulfite technology and the rapid progress of enzyme suppliers, CLE Sugar can achieve a high yield of total biomass carbohydrate conversion to monomeric lignocellulosic sugars. For example, 85.8% of biomass carbohydrates are saccharified for un-debarked Loblolly pine chips (softwood), and 94.0% for debarked maple chips (hardwood). Furan compound formation was 1.29% of biomass feedstock for Loblolly pine and 1.10% for maple. At 17% solids hydrolysis of pretreated softwood, an enzyme dose of 0.075 g Sigma enzyme mixture/g dry pretreated (unwashed) biomass was needed to achieve 8.1% total sugar titer in the hydrolysate and an overall prehydrolysate liquor plus enzymatic hydrolysis conversion yield of 76.6%. At a much lower enzyme dosage of 0.044 g CTec2 enzyme product/g dry (unwashed) pretreated softwood, hydrolysis at 17% solids achieved 9.2% total sugar titer in the hydrolysate with an overall sugar yield of 85.0% in the combined prehydrolysate liquor and enzymatic hydrolysate. CLE Sugar has been demonstrated to be effective on hardwood and herbaceous biomass, making it truly feedstock flexible. Different options exist for integrating lignocellulosic sugar into sugar-using operations. A sugar conversion plant may be adjacent to a CLE Sugar plant, and the CLE Sugar can be concentrated from the initial 10% sugar as needed. Concentrated sugars, however, can be shipped to remote sites such as ethanol plants or other sugar users. In such cases, options for shipping a dense form of sugars include (1) pretreated biomass with enzyme addition, (2) lignocellulosic sugar syrup, and (3) lignocellulosic sugar solid. These could provide the advantage of maximizing the use of existing assets.

  5. Contrasting influence of NADPH and a NADPH-regenerating system on the metabolism of carbonyl-containing compounds in hepatic microsomes.

    PubMed

    Mazur, Christopher S; Kenneke, John F; Goldsmith, Michael-Rock; Brown, Cather

    2009-09-01

    Carbonyl containing xenobiotics may be susceptible to NADPH-dependent cytochrome P450 (P450) and carbonyl-reduction reactions. In vitro hepatic microsome assays are routinely supplied NADPH either by direct addition of NADPH or via an NADPH-regenerating system (NRS). In contrast to oxidative P450 transformations, which occur on the periphery of a microsome vesicle, intraluminal carbonyl reduction depends on transport of cofactors across the endoplasmic reticulum (ER) membrane into the lumen. Glucose 6-phosphate, a natural cofactor and component of the NRS matrix, is readily transported across the ER membrane and facilitates intraluminal NADPH production, whereas direct addition of NADPH has limited access to the lumen. In this study, we compared the effects of direct addition of NADPH and use of an NRS on the P450-mediated transformation of propiconazole and 11 beta-hydroxysteroid dehydrogenase type 1 (HSD1) carbonyl reduction of cortisone and the xenobiotic triadimefon in hepatic microsomes. Our results demonstrate that the use of NADPH rather than NRS can underestimate the kinetic rates of intraluminal carbonyl reduction, whereas P450-mediated transformations were unaffected. Therefore, in vitro depletion rates measured for a carbonyl-containing xenobiotic susceptible to both intraluminal carbonyl reduction and P450 processes may not be properly assessed with direct addition of NADPH. In addition, we used in silico predictions as follows: 1) to show that 11 beta-HSD1 carbonyl reduction was energetically more favorable than oxidative P450 transformation; and 2) to calculate chemical binding score and the distance between the carbonyl group and the hydride to be transferred by NADPH to identify other 11 beta-HSD1 substrates for which reaction kinetics may be underestimated by direct addition of NADPH.

  6. Aquatic models for the study of renal transport function and pollutant toxicity.

    PubMed Central

    Miller, D S

    1987-01-01

    Studies of renal cell transport mechanisms and their impairment by xenobiotics are often limited by technical difficulties related to renal tubule complexity. Problems include the juxtaposition of multiple tubule segments with different transport functions and severely limited access to the tubular lumen. Some limitations can be overcome by the careful selection of an appropriate aquatic experimental system. Two aquatic models for the vertebrate proximal segment are discussed here. The first is the kidney from certain marine flounder, which offers the following advantages: long-term viability, little tissue of nonproximal origin, and easy tubule isolation. Data are presented to demonstrate how studies with flounder kidney can be used to elucidate cellular mechanisms whereby different classes of toxic pollutants may interact. Results from these experiments indicate that the excretion of certain anionic xenobiotics can be delayed by other anionic xenobiotics that compete for secretory transport sites and by compounds that disrupt cellular ion gradients and energy metabolism needed to drive transport. The second system is the crustacean urinary bladder, a simple, flatsheet epithelium. Bladder morphology and transport physiology closely resemble those of vertebrate proximal segment. Electron micrographs show a brush border membrane at the luminal surface, numerous mitochondria, and an infolded serosal membrane, while in vivo and in vitro transport studies show reabsorption of NaCl, nutrients and water and secretion of organic cations; organic anions are secreted in bladders from some species and reabsorbed in others. Moreover, since bladders can be mounted as flat sheets in flux chambers, studies with this tissue avoid the problems of complex renal tubule geometry and tissue heterogeneity that limit transport studies in proximal tubule. Images FIGURE 3. FIGURE 6. PMID:3297665

  7. Disposition of xenobiotic chemicals and metabolites in marine organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varanasi, U.; Stein, J.E.

    1991-01-01

    Studies with several bottom fish species from urban waterways show that of the identified xenobiotic chemicals in bottom sediments, polycyclic aromatic hydrocarbons (PAHs) are the most strongly associated with the prevalence of liver lesions, including neoplasms. Accordingly, there is concern about the transfer of contaminants, such as PAHs, from aquatic species to humans. Because PAHs exert their toxicity only after being biotransformed, increasing attention has been focused on the ability of aquatic organisms to metabolize these chemicals. Overall, the results of both laboratory and field studies show that generally low levels of a few low molecular weight PAHs may bemore » present in edible tissue of fish from contaminated areas and that high molecular weight PAHs, such as the carcinogen benzo(a)pyrene, will rarely be detected because of extensive metabolism. Additionally, the results from a few studies suggest that even though interactions between xenobiotics can affect both biochemical and physiological systems to alter the disposition of PAHs in fish, these interactions do not markedly change the relative proportions of metabolites to parent PAH in tissues. Thus, these studies clearly demonstrate that to obtain some insight into the questions of whether there is any risk to human health from consuming fish and crustaceans from urban areas, techniques must be developed that measure metabolites of carcinogens, such as PAHs, in edible tissue. Initial attempts may focus on semiquantitative methods that permit rapid assessment of the level of metabolites in edible tissues of fish and crustaceans from many urban areas. Based on information from such screening studies, further refinement in methodology leading to identification of specific compounds may be needed because certain metabolites may not be as toxic or carcinogenic as others.« less

  8. Non-target screening of extractable and non-extractable organic xenobiotics in riverine sediments of Ems and Mulde Rivers, Germany.

    PubMed

    Kronimus, Alexander; Schwarzbauer, Jan

    2007-05-01

    Subaquatic sediment samples derived form Elbe and Mulde Rivers, Germany, were analyzed for extractable and non-extractable anthropogenic organic compounds by a non-target screening approach. Applied methodologies were gas chromatography-mass spectrometry, dispersion extraction and degradation procedures, particularly alkaline and acidic hydrolysis, boron tribromide treatment, ruthenium tetroxide oxidation as well as pyrolysis and TMAH (tetramethylammonium hydroxide)-thermochemolysis. Numerous compounds were identified, including halogenated benzenes, anisoles, styrenes, alkanes, diphenylmethane derivates, anilines, phenols and diphenyl ethers. The results were interpreted with respect to compound specific modes of incorporation as well as to potential sources (e.g. municipal, agricultural, industrial). Extractable and non-extractable fractions differed significantly with respect to their qualitative and quantitative composition. For example, quantities in the extractable and non-extractable fractions of chlorinated benzenes differed up to factor 50. Among other significant results, the investigation revealed hints for a dependence of the mode of incorporation of chlorinated benzenes on their substitution pattern.

  9. Application of counterpropagation artificial neural network for modelling properties of fish antibiotics.

    PubMed

    Maran, E; Novic, M; Barbieri, P; Zupan, J

    2004-01-01

    The present study focuses on fish antibiotics which are an important group of pharmaceuticals used in fish farming to treat infections and, until recently, most of them have been exposed to the environment with very little attention. Information about the environmental behaviour and the description of the environmental fate of medical substances are difficult or expensive to obtain. The experimental information in terms of properties is reported when available, in other cases, it is estimated by standard tools as those provided by the United States Environmental Protection Agency EPISuite software and by custom quantitative structure-activity relationship (QSAR) applications. In this study, a QSAR screening of 15 fish antibiotics and 132 xenobiotic molecules was performed with two aims: (i) to develop a model for the estimation of octanol--water partition coefficient (logP) and (ii) to estimate the relative binding affinity to oestrogen receptor (log RBA) using a model constructed on the activities of 132 xenobiotic compounds. The custom models are based on constitutional, topological, electrostatic and quantum chemical descriptors computed by the CODESSA software. Kohonen neural networks (self organising maps) were used to study similarity between the considered chemicals while counter-propagation artificial neural networks were used to estimate the properties.

  10. Successful treatment of recalcitrant folliculitis barbae and pseudofolliculitis barbae with photodynamic therapy.

    PubMed

    Diernaes, Jon Erik Fraes; Bygum, Anette

    2013-12-01

    Folliculitis and pseudofolliculitis barbae typically affects men with curly hair who shave too close. Treatment modalities vary in effectiveness and include improved hair removal methods, topical corticosteroids, topical and oral antibiotics, and retinoids as well as laser surgery. We report a novel treatment of recalcitrant pseudofolliculitis barbae and confirm effectiveness in recalcitrant folliculitis in a 58-year old man who responded completely following photodynamic therapy with methyl aminolevulinate. Photodynamic therapy should be considered in recalcitrant folliculitis and pseudofolliculitis barbae. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Biodegradation and detoxification of naphthenic acids in oil sands process affected waters.

    PubMed

    Yue, Siqing; Ramsay, Bruce A; Wang, Jiaxi; Ramsay, Juliana A

    2016-12-01

    After oil sands process affected water (OSPW) was treated in a continuous flow biofilm reactor, about 40% of the organic compounds in the acid extractable fraction (AEF) including naphthenic acids (NAs) were degraded resulting in a reduction of 73% in the Microtox acute toxicity and of 22% in the yeast estrogenic assay. Using effect directed analysis, treated and untreated OSPW were fractionated by solid phase extraction and the fractions with the largest decrease in toxicity and estrogenicity were selected for analysis by electrospray ionization combined with linear ion trap and a high-resolution Orbitrap mass spectrometer (negative ion mode). The aim of this study was to determine whether compositional changes between the untreated and treated fractions provide insight related to biodegradation and detoxification of NAs. The O2S, O3S and O4S compounds were either not major contributors of toxicity or estrogenicity or the more toxic or estrogenic ones were biodegraded. The O3- and O4-NAs seem to be more readily metabolized than O2NAs and their degradation would contribute to detoxification. The decrease in acute toxicity may be associated with the degradation of C12 and C13 bicyclic and C12-C14 tricyclic NAs while the decrease in estrogenicity may be linked to the degradation of C16 O2-NAs with double bond equivalents (DBE)=5 and 6, C16 and 17 O2-NAs with DBE=7, and C19-O2-NAs with DBE=8. The residual acute toxicity may be caused by recalcitrant components and/or degradation products such as the O2 bicyclic and tricyclic NAs, particularly the C14 and C15 bicyclic and C14-C16 tricyclic NAs as well as the polycyclic aromatic NAs (DBE≥5 compounds). The decrease in estrogenicity may be linked to the degradation of the O3 and O4 oxidized NAs while much of the residual estrogenicity may be due to the recalcitrant polycyclic aromatic O2-NAs. Hence, treatment to further detoxify OSPW should target these compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Organic matter composition at intact biopore and crack surfaces of Luvisol B-horizons analyzed by FTIR spectroscopy and Pyrolysis-Field Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Leue, Martin; Eckhardt, Kai-Uwe; Ellerbrock, Ruth H.; Gerke, Horst H.; Leinweber, Peter

    2015-04-01

    In the B-horizons of Luvisols, surfaces of biopores and aggregates can be enriched in clay and organic matter (OM), relative to the bulk of the soil matrix. The OM composition of these coatings determines their bio-physico-chemical properties and is relevant for transport and transformation processes but is largely unknown at the molecular scale. The objective of this study was an extended characterization of the OM composition at intact biopore and aggregate surfaces. Specifically, we aimed to improve the interpretation of data obtained with Fourier transform infrared spectroscopy in diffuse reflectance mode (DRIFT) by combining the signals from DRIFT spectra with data from pyrolysis-field ionization mass spectrometry (Py-FIMS) as a more detailed molecular-scale analysis. Samples were manually separated from the outermost surfaces of earthworm burrows, coated and uncoated cracks, root channels, and pinhole fillings of the B-horizons of Luvisols developed from loess and glacial till. The OM at earthworm burrow walls was characterized by a mix of chemically labile aliphatic C-rich and more stable lignin and alkylaromatic compounds whereas the OM of coated cracks and pinholes was dominated by relatively stable heterocylic N and nitriles, and high-molecular aromatic compounds (benzonitrile and naphthalene). This more recalcitrant OM likely originated from the combustion of biomass and, in case of the till-derived Luvisol, from diesel exhausts. The OM composition of pore walls reflected the differences between biopores (i.e., topsoil and plant residual, worm activity) and cracks (i.e., solutes and colloids, rapid percolation). The information of Py-FI mass spectra enabled the assignment of OM functional groups also from spectral regions of overlapping DRIFT signal intensities to specific OM compound classes. In particular, bands from C=O and C=C bonds in the infrared range of wave number 1688 … 1565 cm-1 were related to highly stable, chemically recalcitrant OM components such as heterocyclic N-compounds, benzonitrile and naphthalene. Based on such relations, the OM composition at intact soil structural surfaces relevant for sorption and wettability could be characterized in more detail even by using DRIFT spectroscopy.

  13. Spectroscopic characterization of digestates obtained from sludge mixed to increasing amounts of fruit and vegetable wastes

    NASA Astrophysics Data System (ADS)

    Provenzano, Maria Rosaria; Cavallo, Ornella; Malerba, Anna Daniela; Di Maria, Francesco; Ricci, Anna; Gigliotti, Giovanni

    2015-04-01

    Anaerobic digestion (AD) represents an efficient waste-treatment technology during which microorganisms break down biodegradable material in absence of oxygen yielding a biogas containing methane. The aim of this work was to investigate the transformations occurring in the organic matter during the co-digestion of waste mixed sludge (WMS) with an increasing amount of fruit and vegetable wastes (FVW) in a pilot scale apparatus reproducing a full-scale digester in an existing wastewater treatment plant. Samples comprised: sludge, FVW, sludge mixed with 10-20-30-40% FVW. Ingestates and digestates were analyzed by means of emission fluorescence spectroscopy and FTIR associated to Fourier self deconvolution (FSD) of spectra. With increasing the amount of FVW from 10% to 20% at which percentage biogas production reached the maximum value, FTIR spectra and FSD traces of digestates exhibited a decrease of intensity of peaks assigned to polysaccharides and aliphatics and an increase of peak assigned to aromatics as a result of the biodegradation of rapidly degradable materials and concentration of aromatic recalcitrant compounds. Digestates with 30 and 40% FVW exhibited a relative increase of intensity of peaks assigned to aliphatics likely as a result of the increasing amount of rapidly degradable materials and the consequent reduction of the hydraulic retention time. This may cause inhibition of methanogenesis and accumulation of volatile fatty acids. The highest emission fluorescence intensity was observed for the digestate with 20% FVW confirming the concentration of aromatic recalcitrant compounds in the substrate obtained at the highest biogas production.

  14. Kinetics and oxidative mechanism for H2O2-enhanced iron-mediated aeration (IMA) treatment of recalcitrant organic compounds in mature landfill leachate.

    PubMed

    Deng, Yang; Englehardt, James D

    2009-09-30

    A hydrogen peroxide (H(2)O(2))-enhanced iron (Fe(0))-mediated aeration (IMA) process has been recently demonstrated to effectively remove organic wastes from mature landfill leachate. In this paper, the kinetics and oxidative mechanisms of the enhanced IMA treatment were studied. Bench-scale full factorial tests were conducted in an orbital shaker reactor for treatment of a mature leachate with an initial chemical oxygen demand (COD) of 900-1200 mg/L. At the maximum aeration rate (8.3 mL air/min mL sample), process variables significantly influencing the rates of H(2)O(2) decay and COD removal were pH (3.0-8.0), initial H(2)O(2) doses (0.21-0.84 M), and Fe(0) surface area concentrations (0.06-0.30 m(2)/L). Empirical kinetic models were developed and verified for the degradation of H(2)O(2) and COD. High DO maintained by a high aeration rate slowed the H(2)O(2) self-decomposition, accelerated Fe(0) consumption, and enhanced the COD removal. In hydroxyl radical (OH*) scavenging tests, the rate of removal of glyoxylic acid (target compound) was not inhibited by the addition of para-chlorobenzoic acid (OH* scavenger) at pH 7.0-7.5, ruling out hydroxyl radical as the principal oxidant in neutral-weakly basic solution. These experimental results show that this enhanced IMA technology is a potential alternative for the treatment of high strength recalcitrant organic wastewaters.

  15. New insights into HIV-1-primary skin disorders

    PubMed Central

    2011-01-01

    Since the first reports of AIDS, skin involvement has become a burdensome stigma for seropositive patients and a challenging task for dermatologist and infectious disease specialists due to the severe and recalcitrant nature of the conditions. Dermatologic manifestations in AIDS patients act as markers of disease progression, a fact that enhances the importance of understanding their pathogenesis. Broadly, cutaneous disorders associated with HIV type-1 infection can be classified as primary and secondary. While the pathogenesis of secondary complications, such as opportunistic infections and skin tumours, is directly correlated with a decline in the CD4+ T cell count, the origin of the certain manifestations primarily associated with the retroviral infection itself still remains under investigation. The focus of this review is to highlight the immunological phenomena that occur in the skin of HIV-1-seropositive patients, which ultimately lead to skin disorders, such as seborrhoeic dermatitis, atopic dermatitis, psoriasis and eosinophilic folliculitis. Furthermore, we compile the latest data on how shifts in the cytokines milieu, impairments of the innate immune compartment, reactions to xenobiotics and autoimmunity are causative agents in HIV-1-driven skin diseases. Additionally, we provide a thorough analysis of the small animal models currently used to study HIV-1-associated skin complications, centering on transgenic rodent models, which unfortunately, have not been able to fully unveil the role of HIV-1 genes in the pathogenesis of their primarily associated dermatological manifestations. PMID:21261982

  16. Targeting efflux pumps to overcome antifungal drug resistance

    PubMed Central

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-01-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps. PMID:27463566

  17. Cytochrome P450 systems--biological variations of electron transport chains.

    PubMed

    Hannemann, Frank; Bichet, Andreas; Ewen, Kerstin M; Bernhardt, Rita

    2007-03-01

    Cytochromes P450 (P450) are hemoproteins encoded by a superfamily of genes nearly ubiquitously distributed in different organisms from all biological kingdoms. The reactions carried out by P450s are extremely diverse and contribute to the biotransformation of drugs, the bioconversion of xenobiotics, the bioactivation of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins and bile acids, the conversion of alkanes, terpenes and aromatic compounds as well as the degradation of herbicides and insecticides. Cytochromes P450 belong to the group of external monooxygenases and thus receive the necessary electrons for oxygen cleavage and substrate hydroxylation from different redox partners. The classical as well as the recently discovered P450 redox systems are compiled in this paper and classified according to their composition.

  18. Xenobiotic Transporter Expression along the Male Genital Tract1

    PubMed Central

    Klein, David M.; Wright, Stephen H.; Cherrington, Nathan J.

    2015-01-01

    The male genital tract plays an important role in protecting sperm by forming a distinct compartment separate from the body which limits exposure to potentially toxic substrates. Transporters along this tract can influence the distribution of xenobiotics into the male genital tract through efflux back into the blood or facilitating the accumulation of toxicants. The aim of this study was to quantitatively determine the constitutive mRNA expression of 30 xenobiotic transporters in caput and cauda regions of the epididymis, vas deferens, prostate, and seminal vesicles from adult Sprague-Dawley rats. The epididymis was found to express at least moderate levels of 18 transporters, vas deferens 15, seminal vesicles 23, and prostate 18. Constitutive expression of these xenobiotic transporters in the male genital tract may provide insight into the xenobiotics that can potentially be transported into these tissues and may provide the molecular mechanism for site specific toxicity of select agents. PMID:24814985

  19. Identification and biotransformation of aliphatic hydrocarbons during co-composting of sewage sludge-Date Palm waste using Pyrolysis-GC/MS technique.

    PubMed

    El Fels, Loubna; Lemee, Laurent; Ambles, André; Hafidi, Mohamed

    2016-08-01

    The behavior of aliphatic hydrocarbons during co-composting of sewage sludge activated with palm tree waste was studied for 6 months using Py-GC/MS. The main aliphatic compounds represented as doublet alkenes/alkanes can be classified into three groups. The first group consists of 11 alkenes (undecene, tridecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uncosene, docosene, tricosene) and 15 alkanes (heptane, octane, nonane, decane, undecane, dodecane, tetradecane, pentadecane, heptadecane, octadecane, nonadecane, eicosane, uncosane, docosane, and tricosane), which remain stable during the co-composting process. The stability of these compounds is related to their recalcitrance behavior. The second group consists of five alkenes (heptene, octene, nonene, decene, dodecene) and tridecane as a single alkane that decreases during co-composting. The decrease in these compounds is the combined result of their metabolism and their conversion into other compounds. The third group is constituted with tetradecene and hexadecane that increase during composting, which could be explained by accumulation of these compounds, which are released by the partial breakdown of the substrate. As a result, these molecules are incorporated or adsorbed in the structure of humic substances.

  20. Environmental phototoxicity: Solar ultraviolet radiation affects the toxicity of natural and man-made chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, R.A.; Berenbaum, M.R.

    1988-04-01

    Ultraviolet radiation appears to be toxic to all forms of unpigmented living cells, including bacteria, protozoa, nematodes, arthropods, fish, birds, and mammals. In addition to the direct absorption of solar energy by cellular constituents, toxicity may occur because of the absorption of sunlight by xenobiotics (or by naturally occurring compounds outside the target cell); these may be converted by light or by subsequent light-promoted reactions that induce cellular damage. This article describes the phototoxicity of photodynamic dyes, light-activated synthetic herbicides, petroleum and its constituents, and naturally occurring chemicals from plants. Detoxification mechanisms are also discussed.

  1. Concepts in ecological risk assessment. Professional paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, R.K.; Seligman, P.F.

    1991-05-01

    Assessing the risk of impact to natural ecosystems from xenobiotic compounds requires an accurate characterization of the threatened ecosystem, direct measures or estimates of environmental exposure, and a comprehensive evaluation of the biological effects from actual and potential contamination. Field and laboratory methods have been developed to obtain direct measures of environmental health. These methods have been implemented in monitoring programs to assess and verify the ecological risks of contamination from past events, such as hazardous waste disposal sites, as well as future scenarios, such as the environmental consequences from the use of biocides in antifouling bottom paints for ships.

  2. Mutagenic activation reduces carcinogenic activity of ortho-aminoazotoluene for mouse liver.

    PubMed

    Ovchinnikova, L P; Bogdanova, L A; Kaledin, V I

    2013-03-01

    Pentachlorophenol (aromatic amine and azo stain metabolic stimulation inhibitor) reduced the hepatocarcinogenic activity of 4-aminoazobenzene and reduced that of ortho-aminoazotoluene in suckling mice. Both 4-aminoazobenzene and ortho-aminoazotoluene exhibited mutagenic activity in Ames' test in vitro on S. typhimurium TA 98 strain with activation with liver enzymes; this mutagenic activity was similarly suppressed by adding pentachlorophenol into activation medium. Induction of xenobiotic metabolism enzymes, stimulating the mutagenic activity of ortho-aminoazotoluene, suppressed its carcinogenic effect on mouse liver. Hence, ortho-aminotoluene (the initial compound), but not its mutagenic metabolites, was the direct active hepatocarcinogen for mice.

  3. Type of litter determines the formation and properties of charred material during wildfires

    NASA Astrophysics Data System (ADS)

    Chavez, Bruno; Fonturbel, M. Teresa; Salgado, Josefa; García-Oliva, Felipe; Vega, Jose A.; Merino, Agustin

    2014-05-01

    Wildfire is one of the most important disturbances all over the World, affecting both the amount and composition of forest floor and mineral soils. In comparison with unburnt areas, wildfire-affected forest floor usually shows lower contents of labile C compounds and higher concentrations of recalcitrant aromatic forms. These changes in composition can have important impact on biogeochemical cycles and therefore ecosystem functions. Although burning of different types of litter can lead to different amount and types of pyrogenic compounds, this aspect has not been evaluated yet. The effect of wildfire on SOM composition and stability were evaluated in five major types of non-wood litter in Mediterranean ecosystems: Pinus nigra, E. arborea, P. pinaster, U. europaeus and Eucalyptus globulus. In each of these ecosystems, forest floor samples from different soil burn severities were sampled. Soil burnt severities were based on visual signs of changes in forest floor and deposition of ash. Pyrogenic carbon quality were analysed using elementary analysis, solid-state 13 C nuclear magnetic resonance spectroscopy, Reflectance Infrared Fourier Transform (FTIR) and thermal analysis (simultaneous DSC-TG). The study showed that the different types of litter influenced the formation and characteristics of charred material. They differed in the temperature at which they start to be formed, the amounts of charred compounds and in their chemical composition. The resulting charred materials from the different litter, showed an important variability in the degree of carbonitation/aromatization. Unlike the biochar obtained through pyrolysis of woody sources, which contains exclusively aromatic structures, in the charred material produced in some litter, lignin, cellulose and even cellulose persist even in the high soil burnt severity. Coinciding with increases in aromatic contents, important decreases in atomic H/C and O/C ratios were recorded. However, the values found in some litters, were higher than 0.5, suggesting that low degree of carbonization/aromatization. Although burning also led to compounds of higher thermal recalcitrance (increases in T50 values), values recorded in some litters were lower than those measured in highly polycondensed aromatic compounds. The differences found among the different forest floor cannot be only attributable to the initial SOM composition of the litter. Other aspects, such as the different thermal sensitivity, flammability and different conditions during wildfire (temperatures, combustion duration, oxygen concentrations) could also have contributed.

  4. New Findings on Aromatic Compounds' Degradation and Their Metabolic Pathways, the Biosurfactant Production and Motility of the Halophilic Bacterium Halomonas sp. KHS3.

    PubMed

    Corti Monzón, Georgina; Nisenbaum, Melina; Herrera Seitz, M Karina; Murialdo, Silvia E

    2018-04-24

    The study of the aromatic compounds' degrading ability by halophilic bacteria became an interesting research topic, because of the increasing use of halophiles in bioremediation of saline habitats and effluents. In this work, we focused on the study of aromatic compounds' degradation potential of Halomonas sp. KHS3, a moderately halophilic bacterium isolated from hydrocarbon-contaminated seawater of the Mar del Plata harbour. We demonstrated that H. sp. KHS3 is able to grow using different monoaromatic (salicylic acid, benzoic acid, 4-hydroxybenzoic acid, phthalate) and polyaromatic (naphthalene, fluorene, and phenanthrene) substrates. The ability to degrade benzoic acid and 4-hydroxybenzoic acid was analytically corroborated, and Monod kinetic parameters and yield coefficients for degradation were estimated. Strategies that may enhance substrate bioavailability such as surfactant production and chemotactic responses toward aromatic compounds were confirmed. Genomic sequence analysis of this strain allowed us to identify several genes putatively related to the metabolism of aromatic compounds, being the catechol and protocatechuate branches of β-ketoadipate pathway completely represented. These features suggest that the broad-spectrum xenobiotic degrader H. sp. KHS3 could be employed as a useful biotechnological tool for the cleanup of aromatic compounds-polluted saline habitats or effluents.

  5. Photocatalytic Oxidation of Oil Contaminated Water Using TiO2/UV

    NASA Astrophysics Data System (ADS)

    Vargas Solla, Monica; Romero Rojas, Jairo

    2017-04-01

    Currently, oil is one of the most used energy sources all around the world, for example to make motor engines work. That prevailing usage of oil is the reason why water sources are under serious pollution risks with compounds that are hard to remove, such as hydrocarbons. There are a few water treatment processes known as Advanced Oxidation Processes, which search for a way to treat polluted water with toxic refractory compounds, to make its reuse more feasible and to avoid or at least appease the injurious effects of pollution over ecosystems. A heterogeneous photocatalysis water treatment technology, sorted as an Advanced Oxidation Process, which is intended to treat refractory compound polluted water by the use of TiO2 and UV light, is presented in this investigation. The evidence about its efficiency in hydrocarbon removal from used motor oil polluted water, since it is an extremely important pollutant due to its complexity, toxicity and recalcitrant characteristics, is also presented through COD, Oil and Grease and Hydrocarbons analysis.

  6. Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments

    PubMed Central

    2013-01-01

    The production of cellulosic ethanol from biomass is considered a promising alternative to reliance on diminishing supplies of fossil fuels, providing a sustainable option for fuels production in an environmentally compatible manner. The conversion of lignocellulosic biomass to biofuels through a biological route usually suffers from the intrinsic recalcitrance of biomass owing to the complicated structure of plant cell walls. Currently, a pretreatment step that can effectively reduce biomass recalcitrance is generally required to make the polysaccharide fractions locked in the intricacy of plant cell walls to become more accessible and amenable to enzymatic hydrolysis. Dilute acid and hydrothermal pretreatments are attractive and among the most promising pretreatment technologies that enhance sugar release performance. This review highlights our recent understanding on molecular structure basis for recalcitrance, with emphasis on structural transformation of major biomass biopolymers (i.e., cellulose, hemicellulose, and lignin) related to the reduction of recalcitrance during dilute acid and hydrothermal pretreatments. The effects of these two pretreatments on biomass porosity as well as its contribution on reduced recalcitrance are also discussed. PMID:23356640

  7. Cellulose-Hemicellulose Interactions at Elevated Temperatures Increase Cellulose Recalcitrance to Biological Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Ashutosh; Himmel, Michael E; Kumar, Rajeev

    It has been previously shown that cellulose-lignin droplets' strong interactions, resulting from lignin coalescence and redisposition on cellulose surface during thermochemical pretreatments, increase cellulose recalcitrance to biological conversion, especially at commercially viable low enzyme loadings. However, information on the impact of cellulose-hemicellulose interactions on cellulose recalcitrance following relevant pretreatment conditions are scarce. Here, to investigate the effects of plausible hemicellulose precipitation and re-association with cellulose on cellulose conversion, different pretreatments were applied to pure Avicel(R) PH101 cellulose alone and Avicel mixed with model hemicellulose compounds followed by enzymatic hydrolysis of resulting solids at both low and high enzyme loadings. Solidsmore » produced by pretreatment of Avicel mixed with hemicelluloses (AMH) were found to contain about 2 to 14.6% of exogenous, precipitated hemicelluloses and showed a remarkably much lower digestibility (up to 60%) than their respective controls. However, the exogenous hemicellulosic residues that associated with Avicel following high temperature pretreatments resulted in greater losses in cellulose conversion than those formed at low temperatures, suggesting that temperature plays a strong role in the strength of cellulose-hemicellulose association. Molecular dynamics simulations of hemicellulosic xylan and cellulose were found to further support this temperature effect as the xylan-cellulose interactions were found to substantially increase at elevated temperatures. Furthermore, exogenous, precipitated hemicelluloses in pretreated AMH solids resulted in a larger drop in cellulose conversion than the delignified lignocellulosic biomass containing comparably much higher natural hemicellulose amounts. Increased cellulase loadings or supplementation of cellulase with xylanases enhanced cellulose conversion for most pretreated AMH solids; however, this approach was less effective for solids containing mannan polysaccharides, suggesting stronger association of cellulose with (hetero) mannans or lack of enzymes in the mixture required to hydrolyze such polysaccharides.« less

  8. Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment

    PubMed Central

    Cheung, Connie; Gonzalez, Frank J

    2008-01-01

    Cytochrome P450s (P450s) are important enzymes involved in the metabolism of xenobiotics, particularly clinically used drugs, and are also responsible for metabolic activation of chemical carcinogens and toxins. Many xenobiotics can activate nuclear receptors that in turn induce the expression of genes encoding xenobiotic metabolizing enzymes and drug transporters. Marked species differences in the expression and regulation of cytochromes P450 and xenobiotic nuclear receptors exist. Thus obtaining reliable rodent models to accurately reflect human drug and carcinogen metabolism is severely limited. Humanized transgenic mice were developed in an effort to create more reliable in vivo systems to study and predict human responses to xenobiotics. Human P450s or human xenobiotic-activated nuclear receptors were introduced directly or replaced the corresponding mouse gene, thus creating “humanized” transgenic mice. Mice expressing human CYP1A1/CYP1A2, CYP2E1, CYP2D6, CYP3A4, CY3A7, PXR, PPARα were generated and characterized. These humanized mouse models offers a broad utility in the evaluation and prediction of toxicological risk that may aid in the development of safer drugs. PMID:18682571

  9. Establishment of a rapid, inexpensive protocol for extraction of high quality RNA from small amounts of strawberry plant tissues and other recalcitrant fruit crops.

    PubMed

    Christou, Anastasis; Georgiadou, Egli C; Filippou, Panagiota; Manganaris, George A; Fotopoulos, Vasileios

    2014-03-01

    Strawberry plant tissues and particularly fruit material are rich in polysaccharides and polyphenolic compounds, thus rendering the isolation of nucleic acids a difficult task. This work describes the successful modification of a total RNA extraction protocol, which enables the isolation of high quantity and quality of total RNA from small amounts of strawberry leaf, root and fruit tissues. Reverse-transcription polymerase chain reaction (RT-PCR) amplification of GAPDH housekeeping gene from isolated RNA further supports the proposed protocol efficiency and its use for downstream molecular applications. This novel procedure was also successfully followed using other fruit tissues, such as olive and kiwifruit. In addition, optional treatment with RNase A following initial nucleic acid extraction can provide sufficient quality and quality of genomic DNA for subsequent PCR analyses, as evidenced from PCR amplification of housekeeping genes using extracted genomic DNA as template. Overall, this optimized protocol allows easy, rapid and economic isolation of high quality RNA from small amounts of an important fruit crop, such as strawberry, with extended applicability to other recalcitrant fruit crops. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Using ozone to reduce recalcitrant compounds and to enhance biodegradability of pulp and paper effluents.

    PubMed

    Bijan, L; Mohseni, M

    2004-01-01

    The effect of ozone based oxidation on removing recalcitrant organic matter (ROM) and enhancing the biodegradability of alkaline bleach plant effluent was investigated. A bubble column ozonation tower was used in the study. The experiments were carried out at different temperatures (20 degrees C and 60 degrees C) and pH (9 and 11), with a number of biological and chemical parameters being monitored including BOD5, COD, TC, pH, color, and molecular weight distribution of organics (nominal cut off of 1,000 Da). Biodegradability of the effluent was determined based on BOD5/COD of the wastewater throughout the process. For all the experiments, ozonation enhanced the biodegradability of the effluent by 30-40%, which was associated with noticeable removal of ROM including high molecular weight (HMW) and color-causing organics by about 30% and 60%, respectively. While the biodegradability of HMW fraction increased by about 50%, there was no biodegradability improvement for low molecular weight (LMW) portion, which was originally readily biodegradable (with BOD5/COD of about 0.5). Statistical analysis of variance (ANOVA) revealed neither pH nor temperature played significant role on the ozonation process at 95% confidence level.

  11. Physiology and toxicology of hormone-disrupting chemicals in higher plants.

    PubMed

    Couée, Ivan; Serra, Anne-Antonella; Ramel, Fanny; Gouesbet, Gwenola; Sulmon, Cécile

    2013-06-01

    Higher plants are exposed to natural environmental organic chemicals, associated with plant-environment interactions, and xenobiotic environmental organic chemicals, associated with anthropogenic activities. The effects of these chemicals result not only from interaction with metabolic targets, but also from interaction with the complex regulatory networks of hormone signaling. Purpose-designed plant hormone analogues thus show extensive signaling effects on gene regulation and are as such important for understanding plant hormone mechanisms and for manipulating plant growth and development. Some natural environmental chemicals also act on plants through interference with the perception and transduction of endogenous hormone signals. In a number of cases, bioactive xenobiotics, including herbicides that have been designed to affect specific metabolic targets, show extensive gene regulation effects, which are more in accordance with signaling effects than with consequences of metabolic effects. Some of these effects could be due to structural analogies with plant hormones or to interference with hormone metabolism, thus resulting in situations of hormone disruption similar to animal cell endocrine disruption by xenobiotics. These hormone-disrupting effects can be superimposed on parallel metabolic effects, thus indicating that toxicological characterisation of xenobiotics must take into consideration the whole range of signaling and metabolic effects. Hormone-disruptive signaling effects probably predominate when xenobiotic concentrations are low, as occurs in situations of residual low-level pollutions. These hormone-disruptive effects in plants may thus be of importance for understanding cryptic effects of low-dosage xenobiotics, as well as the interactive effects of mixtures of xenobiotic pollutants.

  12. The effect of liquid hot water pretreatment on the chemical–structural alteration and the reduced recalcitrance in poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mi; Cao, Shilin; Meng, Xianzhi

    Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood.

  13. The effect of liquid hot water pretreatment on the chemical–structural alteration and the reduced recalcitrance in poplar

    DOE PAGES

    Li, Mi; Cao, Shilin; Meng, Xianzhi; ...

    2017-11-30

    Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood.

  14. Membrane chemical reactor (MCR) combining photocatalysis and microfiltration for grey water treatment.

    PubMed

    Rivero, M J; Parsons, S A; Jeffrey, P; Pidou, M; Jefferson, B

    2006-01-01

    Urban water recycling is now becoming an important issue where water resources are becoming scarce. This paper looks at reusing grey water; the preference is treatment processes based on biological systems to remove the dissolved organic content. Here, an alternative process, photocatalysis is discussed as it is an attractive technology that could be well-suited for treating the recalcitrant organic compounds found in grey water. The photocatalytic process oxidises organic reactants at a catalyst surface in the presence of ultraviolet light. Given enough exposure time, organic compounds will be oxidized into CO2 and water. The best contact is achieved in a slurry reactor but a second step to separate and recover the catalyst is need. This paper discusses a new membrane chemical reactor (MCR) combining photocatalysis and microfiltration for grey water treatment.

  15. A comparative study of pulsed dye laser versus long pulsed Nd:YAG laser treatment in recalcitrant viral warts.

    PubMed

    Shin, Yo Sup; Cho, Eun Byul; Park, Eun Joo; Kim, Kwang Ho; Kim, Kwang Joong

    2017-08-01

    Viral warts are common infectious skin disease induced by human papillomavirus (HPV). But the treatment of recalcitrant warts is still challenging. In this study, we compared the effectiveness of pulsed dye laser (PDL) and long pulsed Nd:YAG (LPNY) laser in the treatment of recalcitrant viral warts. We retrospectively analyzed the medical records of patients with recalcitrant warts treated with laser therapy between January 2013 and February 2016. Seventy-two patients with recalcitrant warts were evaluated. Thirty-nine patients were treated with pulsed dye laser and thirty-three patients were treated with LPNY laser. The following parameters were used: PDL (spot size, 7 mm; pulse duration, 1.5 ms; and fluence, 10-14 J/cm 2 ) and LPNY (spot size, 5 mm; pulse duration, 20 ms; and fluence, 240-300 J/cm 2 ). Complete clearance of two patients (5.1%) in PDL group, and three patients (9.1%) in LPNY group were observed without significant side effects. The patients who achieved at least 50% improvement from baseline were 20 (51.3%) in PDL and 22 (66.7%) in LPNY, respectively. This research is meaningful because we compared the effectiveness of the PDL and LPNY in the recalcitrant warts. Both PDL and LPNY laser could be used as a safe and alternative treatment for recalcitrant warts.

  16. Sensitivity to high temperature and water stress in recalcitrant Baccaurea ramiflora seeds.

    PubMed

    Wen, Bin; Liu, Minghang; Tan, Yunhong; Liu, Qiang

    2016-07-01

    Southeast Asia experiences one of the highest rates of deforestation in the tropics due to agricultural expansion, logging, habitat fragmentation and urbanization. As tropical rainforests harbour abundant recalcitrant-seeded species, it is important to understand how recalcitrant seeds respond to deforestation and fragmentation. Baccaurea ramiflora is a recalcitrant-seeded species, widely distributed in Southeast Asian tropical rainforest. In this study, B. ramiflora seeds were sown in three plots, one in a nature reserve and two in disturbed holy hill forests, to investigate seed germination and seedling establishment in the field, while laboratory experiments were conducted to investigate the effects of high temperature and water stress on germination. It was found that seed germination and seedling establishment in B. ramiflora were clearly reduced in holy hills compared to the nature reserve, although the seeds were only moderately to minimally recalcitrant. This was potentially caused by increased temperature and decreased moisture in holy hills, for laboratory experiments showed that seed germination was greatly inhibited by temperatures ≥35 °C or water potentials ≤-0.5 MPa, and depressed by heat treatment at 40 °C when the continuous heating period lasted for 240 h or daily periodic heating exceeded 10 h. Unlike orthodox seeds, which can endure much higher temperatures in the air-dried state than in the imbibed state, both blotted and immersed B. ramiflora seeds lost viability within a narrow temperature range between 50 and 60 °C. As recalcitrant seeds can be neither air-dried nor heated, species producing recalcitrant seeds will suffer more than those producing orthodox seeds in germination and seedling establishment from increased temperature and decreased moisture in fragmented rainforests, which results in sensitivity of recalcitrant-seeded species to rainforest fragmentation.

  17. Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View

    PubMed Central

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo

    2009-01-01

    Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534

  18. Studying Interactions of Drugs with Cell Membrane Nutrient Transporters: New Frontiers of Proteoliposome Nanotechnology.

    PubMed

    Scalise, Mariafrancesca; Galluccio, Michele; Pochini, Lorena; Console, Lara; Barile, Maria; Giangregorio, Nicola; Tonazzi, Annamaria; Indiveri, Cesare

    2017-01-01

    Transport systems are hydrophobic proteins localized in cell membranes where they mediate transmembrane flow of nutrients, ions and any other compounds essential for cell metabolism. More than 400 transporters of the SoLuteCarrier (SLC) group are present in human cells. Transporters take contacts also with xenobiotics, thus mediating absorption and/or interaction with these exogenous compounds. Since drugs belong to xenobiotics, transporters gained interest also in drug discovery. Transporters differentially expressed in pathological conditions are exploited as drug targets. Among the methodologies for defining drug interactions, in silico ligand screening and intact cell transport assay were the most diffused, so far. The first is a predictive methodology based on docking chemicals to transporters. It presents limitations due to the small number of human transporter 3D structures that have to be constructed by homology modeling. Intact cells are used for testing effects of drugs and for validating predictions. The challenges of handling this very complex experimental system, are the interferences caused by other transporters and/or intracellular enzymes. Thus, methodologies with lower complexity are welcome. One of the most updated is the proteoliposome nanotechnology consisting in a cell mimicking phospholipid membrane in which a purified transporter is inserted. In this system, drug-transporter interaction can be studied defining kinetics and mechanisms. Several data have been obtained by proteoliposome nanotechnology. An overview of data obtained on the organic cation transporters OCTN1, OCTN2 and on the amino acid transporters ASCT2 and B0AT1 will be presented. Standardized procedures, expected to be pointed out, will enlarge the assay to High Throughput Screenings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lille-Langøy, Roger, E-mail: Roger.lille-langoy@bio.uib.no; Goldstone, Jared V.; Rusten, Marte

    Background: Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. Objectives: In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. Results: We found that polar bear PXR is activated by amore » wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. Conclusions: Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. - Highlights: • Comparative study of ligand activation of human and polar bear PXRs. • Polar bear PXR is a promiscuous ligand-activated nuclear receptor but less so than human PXR. • Environmental contaminants activate human and polar bear PXRs differently. • Expression and ligand promiscuity indicate that PXR is a xenosensor in polar bears.« less

  20. A potential endogenous ligand for the aryl hydrocarbon receptor has potent agonist activity in vitro and in vivo.

    PubMed

    Henry, E C; Bemis, J C; Henry, O; Kende, A S; Gasiewicz, T A

    2006-06-01

    The aryl hydrocarbon receptor (AhR) is best known as a mediator of toxicity of a diverse family of xenobiotic chemicals such as dioxins and PCBs. However, many naturally occurring compounds also activate AhR. One such compound, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), was isolated from tissue and found to be potent in preliminary tests [J. Song, M. Clagett-Dame, R.E. Peterson, M.E. Hahn, W.M. Westler, R.R. Sicinski, H.F. DeLuca, Proc. Natl. Acad. Sci. USA 99 (2002) 14694-14699]. We have synthesized ITE and [(3)H]ITE and further evaluated its AhR activity in several in vitro and in vivo assays in comparison with the toxic ligand, TCDD. AhR in Hepa1c1c7 cell cytosol bound [(3)H]ITE with high affinity and the AhR.ITE complex formed in vitro bound dioxin response element (DRE) oligonucleotide as potently as TCDD.AhR. In cells treated with ITE, nuclear translocation of AhR, and induction of CYP1A1 protein and of a DRE-dependent luciferase reporter gene were observed. ITE administered to pregnant DRE-LacZ transgenic mice activated fetal AhR, observed as X-gal staining in the same sites as in TCDD-treated mice. However, unlike TCDD, ITE did not induce cleft palate or hydronephrosis. TCDD but not ITE induced thymic atrophy in young adult mice, but both ITE and TCDD caused similar loss of cells and alterations of cell profiles in cultured fetal thymi. These data demonstrate that ITE is a potent AhR agonist in cell extracts, cultured cells, and intact animals, but does not cause the toxicity associated with the more stable xenobiotic ligand, TCDD.

  1. Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov.

    PubMed

    Nohynek, L J; Nurmiaho-Lassila, E L; Suhonen, E L; Busse, H J; Mohammadi, M; Hantula, J; Rainey, F; Salkinoja-Salonen, M S

    1996-10-01

    Gram-negative polychlorophenol-degrading bacterial strains KF1T (T = type strain), KF3, and NKF1, which were described previously as Pseudomonas saccharophila strains, were studied by chemotaxonomic, genetic, and physiological methods and by electron microscopy and compared with selected xenobiotic compound-degrading bacteria. These strains contained sphingolipids with d-18:0, d-20:1, and d-21:1 as the main dihydrosphingosines, ubiquinone 10 as the main respiratory quinone, and spermidine as the major polyamine, and the DNA G + C content was 66 mol%. The cellular fatty acids included about 60% octadecenoic acid, 9% 2-hydroxymyristic acid, 14% cis-9-hexadecenoic acid, and 10% hexadecanoic acid. These strains exhibited less than 97% 16S ribosomal DNA sequence similarity to all of the other taxa studied. In the DNA-DNA reassociation studies the highest levels of reassociation between these strains and previously described species were less than 40%. Thin sections of cells of strains KF1T, KF3, and NKF1 were examined by electron microscopy, and the results showed that the cells had peculiar concentrically arranged layered membranous blebs that extruded from the outer membrane, especially at the cell division points. On the basis of the results of this study, polychlorophenol-degrading strains KF1T, KF3, and NKF1 are considered members of a new species of the genus Sphingomonas, Sphingomonas subarctica. The polycyclic aromatic hydrocarbon-degrading organism Sphingomonas paucimobilis EPA 505 was closely related to Sphingomonas chlorophenolica as determined by chemotaxonomic, phylogenetic, and physiological criteria. The xenobiotic compound degraders Alcaligenes sp. strain A175 and Pseudomonas sp. strain BN6 were identified as members of species of the genus Sphingomonas.

  2. Interactions of 2-phenyl-benzotriazole xenobiotic compounds with human Cytochrome P450-CYP1A1 by means of docking, molecular dynamics simulations and MM-GBSA calculations.

    PubMed

    Mena-Ulecia, Karel; MacLeod-Carey, Desmond

    2018-06-01

    2-phenyl-benzotriazole xenobiotic compounds (PBTA-4, PBTA-6, PBTA-7 and PBTA-8) that were previously isolated and identified in waters of the Yodo river, in Japan (Nukaya et al., 2001; Ohe et al., 2004; Watanabe et al., 2001) were characterized as powerful pro-mutagens. In order to predict the activation mechanism of these pro-mutagens, we designed a computational biochemistry protocol, which includes, docking experiments, molecular dynamics simulations and free energy decomposition calculations to obtain information about the interaction of 2-phenyl-benzotriazole molecules into the active center of cytochrome P450-CYP1A1 (CYP1A1). Molecular docking calculations using AutoDock Vina software shows that PBTAs are proportionally oriented in the pocket of CYP1A1, establishing π-π stacking attractive interactions between the triazole group and the Phe224, as well as, the hydrogen bonds of the terminal NH 2 over the benzotriazole units with the Asn255 and Ser116 amino acids. Molecular dynamics simulations using NAMD package showed that these interactions are stable along 100.0 ns of trajectories. Into this context, free binding energy calculations employing the MM-GBSA approach, shows that some differences exists among the interaction of PBTAs with CYP1A1, regarding the solvation, electrostatic and van der Waals interaction energy components. These results suggest that PBTA molecules might be activated by CYP1A1. Thus, enhancing their mutagenicity when compared with the pro-mutagen parent species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Nuclear receptors HR96 and ultraspiracle from the fall armyworm (Spodoptera frugiperda), developmental expression and induction by xenobiotics.

    PubMed

    Giraudo, Maeva; Audant, Pascaline; Feyereisen, René; Le Goff, Gaëlle

    2013-05-01

    The fall armyworm Spodoptera frugiperda is a major polyphagous pest in agriculture and little is known on how this insect can adapt to the diverse and potentially toxic plant allelochemicals that they ingest or to insecticides. To investigate the involvement of nuclear receptors in the response of S. frugiperda to its chemical environment, we cloned SfHR96, a nuclear receptor orthologous to the mammalian xenobiotic receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR). We also cloned ultraspiracle (USP), the ortholog of retinoid X receptor (RXR) that serves as partner of dimerization of PXR and CAR. Cloning of SfUSP revealed the presence of two isoforms, SfUSP-1 and SfUSP-2 in this species, that differ in their N-terminal region. The expression of these receptors as well as the ecdysone receptor was studied during specific steps of development in different tissues. SfHR96 was constitutively expressed in larval midgut, fat body and Malpighian tubules throughout the last two instars and pupal stage, as well as in Sf9 cells. EcR and SfUSP-2 showed peaks of expression before larval moults and during metamorphosis, whereas SfUSP-1 was mainly expressed in the pre-pupal stage. Receptor induction was followed after exposure of larvae or cells to 11 chemical compounds. SfHR96 was not inducible by the tested compounds. EcR was significantly induced by the 20-hydroxyecdysone agonist, methoxyfenozide, and SfUSP showed an increase expression when exposed to the juvenile hormone analog, methoprene. The cloning of these nuclear receptors is a first step in understanding the important capacities of adaptation of this insect pest. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The role of humic and fulvic acids in the phototransformation of phenolic compounds in seawater.

    PubMed

    Calza, P; Vione, D; Minero, C

    2014-09-15

    Humic substances (HS) are known to act as photosensitizers toward the transformation of pollutants in the surface layer of natural waters. This study focused on the role played by HS toward the transformation of xenobiotics in seawater, with the purpose of assessing the prevailing degradation routes. Phenol was chosen as model xenobiotic and its transformation was investigated under simulated sunlight in the presence of terrestrial or marine humic and fulvic acids, in pure water at pH8, artificial seawater (ASW) or natural seawater (NSW). The following parameters were determined: (1) the phenol degradation rate; (2) the variation in HS concentration with irradiation time; (3) the production of transformation products; (4) the influence of iron species on the transformation process. Faster transformation of phenol was observed with humic acids (HA) compared to fulvic acids (SRFA), and transformation induced by both HA and SRFA was faster in ASW than that in pure water. These observations can be explained by assuming an interplay between different competing and sometimes opposite processes, including the competition between chloride, bromide and dissolved oxygen for reaction with HS triplet states. The analysis of intermediates formed in the different matrices under study showed the formation of several hydroxylated (hydroquinone, 1,4-benzoquinone, resorcinol) and condensed compounds (2,2'-bisphenol, 4,4'-bisphenol, 4-phenoxyphenol). Although 1,4-benzoquinone was the main transformation product, formation of condensed molecules was significant with both HA and SRFA. Experiments on natural seawater spiked with HS confirmed the favored formation of condensed products, suggesting a key role of humic matter in dimerization reactions occurring in saline water. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Paternal nicotine exposure alters hepatic xenobiotic metabolism in offspring

    PubMed Central

    Vallaster, Markus P; Kukreja, Shweta; Bing, Xin Y; Ngolab, Jennifer; Zhao-Shea, Rubing; Gardner, Paul D; Tapper, Andrew R; Rando, Oliver J

    2017-01-01

    Paternal environmental conditions can influence phenotypes in future generations, but it is unclear whether offspring phenotypes represent specific responses to particular aspects of the paternal exposure history, or a generic response to paternal ‘quality of life’. Here, we establish a paternal effect model based on nicotine exposure in mice, enabling pharmacological interrogation of the specificity of the offspring response. Paternal exposure to nicotine prior to reproduction induced a broad protective response to multiple xenobiotics in male offspring. This effect manifested as increased survival following injection of toxic levels of either nicotine or cocaine, accompanied by hepatic upregulation of xenobiotic processing genes, and enhanced drug clearance. Surprisingly, this protective effect could also be induced by a nicotinic receptor antagonist, suggesting that xenobiotic exposure, rather than nicotinic receptor signaling, is responsible for programming offspring drug resistance. Thus, paternal drug exposure induces a protective phenotype in offspring by enhancing metabolic tolerance to xenobiotics. DOI: http://dx.doi.org/10.7554/eLife.24771.001 PMID:28196335

  6. Back to the future: transgenerational transmission of xenobiotic-induced epigenetic remodeling

    PubMed Central

    Jiménez-Chillarón, Josep C; Nijland, Mark J; Ascensão, António A; Sardão, Vilma A; Magalhães, José; Hitchler, Michael J; Domann, Frederick E; Oliveira, Paulo J

    2015-01-01

    Epigenetics, or regulation of gene expression independent of DNA sequence, is the missing link between genotype and phenotype. Epigenetic memory, mediated by histone and DNA modifications, is controlled by a set of specialized enzymes, metabolite availability, and signaling pathways. A mostly unstudied subject is how sub-toxic exposure to several xenobiotics during specific developmental stages can alter the epigenome and contribute to the development of disease phenotypes later in life. Furthermore, it has been shown that exposure to low-dose xenobiotics can also result in further epigenetic remodeling in the germ line and contribute to increase disease risk in the next generation (multigenerational and transgenerational effects). We here offer a perspective on current but still incomplete knowledge of xenobiotic-induced epigenetic alterations, and their possible transgenerational transmission. We also propose several molecular mechanisms by which the epigenetic landscape may be altered by environmental xenobiotics and hypothesize how diet and physical activity may counteract epigenetic alterations. PMID:25774863

  7. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a "Central Dogma" for Toxic Mechanisms?

    PubMed

    Park, Yeong-Chul; Lee, Sundong; Cho, Myung-Haing

    2014-09-01

    Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems.

  8. Physiological aspects of seed recalcitrance: a case study on the tree Aesculus hippocastanum.

    PubMed

    Obroucheva, Natalie; Sinkevich, Irina; Lityagina, Snejana

    2016-09-01

    Recalcitrant seeds are typical of some tropical and subtropical trees. Their post-shedding life activity proceeds in humid air and wet litter. They are desiccation sensitive and, for this reason, have a short life span and need some special procedures for cryopreservation. This review is devoted to the post-shedding life strategy of recalcitrant seeds, which includes the maintenance of high hydration status, metabolic readiness and ability to rapidly germinate before desiccation-induced damage exerts a lethal effect. The main physiological aspects of recalcitrant seeds are considered starting from mature seeds, followed during dormancy if occurs and resulting in germination. The collected data embrace the metabolic processes in embryonic axes and whole seeds. The up-to-date results are integrated covering the main metabolic processes, namely water status and transport, protein and carbohydrate metabolism, antioxidant defense, axis-cotyledon relations, hormonal control and germination. Among the representatives of various taxa, the seeds of which exhibit recalcitrance, attention was given to horse chestnut seeds as one of most studied recalcitrants. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics.

    PubMed

    Korkina, Liudmila

    2016-01-01

    Growing exposure of human skin to environmental and occupational hazards, to numerous skin care/beauty products, and to topical drugs led to a biomedical concern regarding sustainability of cutaneous chemical defence that is essential for protection against intoxication. Since skin is the largest extra-hepatic drug/xenobiotic metabolising organ where redox-dependent metabolic pathways prevail, in this review, publications on metabolic processes leading to redox imbalance (oxidative stress) and its autocrine/endocrine impact to cutaneous drug/xenobiotic metabolism were scrutinised. Chemical and photo-chemical skin barriers contain metabolic and redox compartments: their protective and homeostatic functions. The review will examine the striking similarity of adaptive responses to exogenous chemical/photo-chemical stressors and endogenous toxins in cutaneous metabolic and redox system; the role(s) of xenobiotics/drugs and phase II enzymes in the endogenous antioxidant defence and maintenance of redox balance; redox regulation of interactions between metabolic and inflammatory responses in skin cells; skin diseases sharing metabolic and redox problems (contact dermatitis, lupus erythematosus, and vitiligo) Due to exceptional the redox dependence of cutaneous metabolic pathways and interaction of redox active metabolites/exogenous antioxidants with drug/xenobiotic metabolism, metabolic tests of topical xenobiotics/drugs should be combined with appropriate redox analyses and performed on 3D human skin models.

  10. Biomass-water interactions correlate to recalcitrance and are intensified by pretreatment: An investigation of water constraint and retention in pretreated spruce using low field NMR and water retention value techniques.

    PubMed

    Weiss, Noah D; Thygesen, Lisbeth Garbrecht; Felby, Claus; Roslander, Christian; Gourlay, Keith

    2017-01-01

    The underlying mechanisms of the recalcitrance of biomass to enzymatic deconstruction are still not fully understood, and this hampers the development of biomass based fuels and chemicals. With water being necessary for most biological processes, it is suggested that interactions between water and biomass may be key to understanding and controlling biomass recalcitrance. This study investigates the correlation between biomass recalcitrance and the constraint and retention of water by the biomass, using SO 2 pretreated spruce, a common feedstock for lignocellulosic biofuel production, as a substrate to evaluate this relationship. The water retention value (WRV) of the pretreated materials was measured, and water constraint was assessed using time domain Low Field Nuclear Magnetic Resonance (LFNMR) relaxometry. WRV increased with pretreatment severity, correlating to reduced recalcitrance, as measured by hydrolysis of cellulose using commercial enzyme preparations. Water constraint increased with pretreatment severity, suggesting that a higher level of biomass-water interaction is indicative of reduced recalcitrance in pretreated materials. Both WRV and water constraint increased significantly with reductions in particle size when pretreated materials were further milled, suggesting that particle size plays an important role in biomass water interactions. It is suggested that WRV may be a simple and effective method for measuring and comparing biomass recalcitrance. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:146-153, 2017. © 2016 American Institute of Chemical Engineers.

  11. Indoor air quality of everyday use spaces dedicated to specific purposes-a review.

    PubMed

    Marć, Mariusz; Śmiełowska, Monika; Namieśnik, Jacek; Zabiegała, Bożena

    2018-01-01

    According to literature data, some of the main factors which significantly affect the quality of the indoor environment in residential households or apartments are human activities such as cooking, smoking, cleaning, and indoor exercising. The paper presents a literature overview related to air quality in everyday use spaces dedicated to specific purposes which are integral parts of residential buildings, such as kitchens, basements, and individual garages. Some aspects of air quality in large-scale car parks, as a specific type of indoor environment, are also discussed. All those areas are characterized by relatively short time use. On the other hand, high and very high concentration levels of xenobiotics can be observed, resulting in higher exposure risk. The main compounds or group of chemical compounds are presented and discussed. The main factors influencing the type and amount of chemical pollutants present in the air of such areas are indicated.

  12. Metabolon, Inc.

    PubMed

    Ryals, John; Lawton, Kay; Stevens, Daniel; Milburn, Michael

    2007-07-01

    Metabolon is an emerging technology company developing proprietary analytical methods and software for biomarker discovery using metabolomics. The company's aim is to measure all small molecules (<1500 Da) in a biological sample. These small-molecule compounds include biochemicals of cellular metabolism and xenobiotics from diet and environment. Our proprietary mLIMStrade mark system contains advanced metabolomic software and automated data-processing tools that use a variety of data-analysis and quality-control algorithms to convert raw mass-spectrometry data to identified, quantitated compounds. Metabolon's primary focus is a fee-for-service business that exploits this technology for pharmaceutical and biotechnology companies, with additional clients in the consumer goods, cosmetics and agricultural industries. Fee-for-service studies are often collaborations with groups that employ a variety of technologies for biomarker discovery. Metabolon's goal is to develop technology that will automatically analyze any sample for the small-molecule components present and become a standard technology for applications in health and related sciences.

  13. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics.

    PubMed

    Vaniya, Arpana; Fiehn, Oliver

    2015-06-01

    Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving interpretation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, making structure identification arduous and time consuming. Currently, comprehensive analysis of mass spectra in metabolomics is limited to library matching, but tandem mass spectral libraries are small compared to the large number of compounds found in the biosphere, including xenobiotics. Resolving this bottleneck requires richer data acquisition and better computational tools. Multi-stage mass spectrometry (MSn) trees show promise to aid in this regard. Fragmentation trees explore the fragmentation process, generate fragmentation rules and aid in sub-structure identification, while mass spectral trees delineate the dependencies in multi-stage MS of collision-induced dissociations. This review covers advancements over the past 10 years as a tool for metabolite identification, including algorithms, software and databases used to build and to implement fragmentation trees and mass spectral annotations.

  14. Urine mutagenicity and biochemical effects of the drinking water mutagen, 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX), following repeated oral administration to mice and rats.

    PubMed

    Meier, J R; Monarca, S; Patterson, K S; Villarini, M; Daniel, F B; Moretti, M; Pasquini, R

    1996-06-17

    Mutagenicity analysis of urine from rats treated by oral gavage with MX at a dose of 64 mg/kg for 14 days revealed that only 0.3% of the administered compound was excreted in a genotoxically active form. At lower doses, mutagenicity was not detectable. No evidence of micronucleus induction in peripheral blood erythrocytes was observed in mice treated similarly. These findings indicate that MX is extensively detoxified in vivo and is unlikely to cause genetic damage in systemic tissues except at relatively high doses where detoxification pathways become saturated. In a separate experiment, significant depressions were observed in D-glucaric acid and thioether excretion and in levels of several liver enzymes involved in xenobiotic metabolism. The mechanism for these metabolic alterations and their relevance to the in vivo metabolism of the compound require further investigation.

  15. Antigenotoxic potential of certain dietary constituents.

    PubMed

    Shukla, Yogeshwer; Arora, Annu; Taneja, Pankaj

    2003-01-01

    The human diet contains a variety of compounds that exhibit chemopreventive effects towards an array of xenobiotics. In the present study, the antigenotoxic potential of selected dietary constituents including Diallyl sulfide (DAS), Indole-3-carbinol (I3C), Curcumin (CUR), and Black tea polyphenols (BTP) has been evaluated in the Salmonella typhimurium reverse mutation and mammalian in vivo cytogenetic assays. In addition, the anticlastogenic effect of the above dietary constituents was identified towards Benzo(a)pyrene (BaP) and cyclophosphamide- (CP) induced cytogenetic damage in mouse bone marrow cells. The induction of BaP and CP induced chromosomal aberrations, micronuclei formation, and sister chromatid exchanges (SCEs) were found to be inhibited in a dose-dependent manner by DAS, I3C, CUR, and BTP. Thus the study reveals the antimutagenic potential of these dietary compounds towards BaP- and CP-induced genotoxicity in microbial and mammalian test systems. Copyright 2003 Wiley-Liss, Inc.

  16. Semi-volatile organic compounds at the leaf/atmosphere interface: numerical simulation of dispersal and foliar uptake.

    PubMed

    Riederer, Markus; Daiss, Andreas; Gilbert, Norbert; Köhle, Harald

    2002-08-01

    The behaviour of (semi-)volatile organic compounds at the interface between the leaf surface and the atmosphere was investigated by finite-element numerical simulation. Three model systems with increasing complexity and closeness to the real situation were studied. The three-dimensional model systems were translated into appropriate grid structures and diffusive and convective transport in the leaf/atmosphere interface was simulated. Fenpropimorph (cis-4-[3-(4-tert-butylphenyl)-2-methylpropyl]-2,6-dimethylmorpholine) and Kresoxim-methyl ((E)-methyl-2-methoxyimino-2-[2-(o-tolyloxy-methyl)phenyl] acetate) were used as model compounds. The simulation showed that under still and convective conditions the vapours emitted by a point source rapidly form stationary envelopes around the leaves. Vapour concentrations within these unstirred layers depend on the vapour pressure of the compound in question and on its affinity to the lipoid surface layers of the leaf (cuticular waxes, cutin). The rules deduced from the numerical simulation of organic vapour behaviour in the leaf/atmosphere interface are expected to help in assessing how (semi-)volatile plant products (e.g. hormones, pheromones, secondary metabolites) and xenobiotics (e.g. pesticides, pollutants) perform on plant surfaces.

  17. Changes in desiccating seeds of temperate and tropical forest tree species

    Treesearch

    K.F. Connor; F.T. Bonner; J.A. Vozzo; I. Kossman-Ferraz

    2000-01-01

    The physiological basis of seed recalcitrance is as yet unknown. Hypotheses suggesting possible causes have been proposed but the end result is that intact recalcitrant seeds cannot be stored for long periods of time. Thus, if the seed crop of a recalcitrant species fails, nurseries will be unable to draw upon a storage reserve of seeds in order to meet the demands of...

  18. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.

    Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production frommore » cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the inhibitory effects of oligosaccharides on commercial enzymes. In conclusion, the carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.« less

  19. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    DOE PAGES

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.; ...

    2015-11-26

    Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production frommore » cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the inhibitory effects of oligosaccharides on commercial enzymes. In conclusion, the carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.« less

  20. SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter.

    PubMed

    Landry, Zachary; Swan, Brandon K; Herndl, Gerhard J; Stepanauskas, Ramunas; Giovannoni, Stephen J

    2017-04-18

    Deep-ocean regions beyond the reach of sunlight contain an estimated 615 Pg of dissolved organic matter (DOM), much of which persists for thousands of years. It is thought that bacteria oxidize DOM until it is too dilute or refractory to support microbial activity. We analyzed five single-amplified genomes (SAGs) from the abundant SAR202 clade of dark-ocean bacterioplankton and found they encode multiple families of paralogous enzymes involved in carbon catabolism, including several families of oxidative enzymes that we hypothesize participate in the degradation of cyclic alkanes. The five partial genomes encoded 152 flavin mononucleotide/F420-dependent monooxygenases (FMNOs), many of which are predicted to be type II Baeyer-Villiger monooxygenases (BVMOs) that catalyze oxygen insertion into semilabile alicyclic alkanes. The large number of oxidative enzymes, as well as other families of enzymes that appear to play complementary roles in catabolic pathways, suggests that SAR202 might catalyze final steps in the biological oxidation of relatively recalcitrant organic compounds to refractory compounds that persist. IMPORTANCE Carbon in the ocean is massively sequestered in a complex mixture of biologically refractory molecules that accumulate as the chemical end member of biological oxidation and diagenetic change. However, few details are known about the biochemical machinery of carbon sequestration in the deep ocean. Reconstruction of the metabolism of a deep-ocean microbial clade, SAR202, led to postulation of new biochemical pathways that may be the penultimate stages of DOM oxidation to refractory forms that persist. These pathways are tied to a proliferation of oxidative enzymes. This research illuminates dark-ocean biochemistry that is broadly consequential for reconstructing the global carbon cycle. Copyright © 2017 Landry et al.

  1. Depth treatment of coal-chemical engineering wastewater by a cost-effective sequential heterogeneous Fenton and biodegradation process.

    PubMed

    Fang, Yili; Yin, Weizhao; Jiang, Yanbin; Ge, Hengjun; Li, Ping; Wu, Jinhua

    2018-05-01

    In this study, a sequential Fe 0 /H 2 O 2 reaction and biological process was employed as a low-cost depth treatment method to remove recalcitrant compounds from coal-chemical engineering wastewater after regular biological treatment. First of all, a chemical oxygen demand (COD) and color removal efficiency of 66 and 63% was achieved at initial pH of 6.8, 25 mmol L -1 of H 2 O 2 , and 2 g L -1 of Fe 0 in the Fe 0 /H 2 O 2 reaction. According to the gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID) analysis, the recalcitrant compounds were effectively decomposed into short-chain organic acids such as acetic, propionic, and butyric acids. Although these acids were resistant to the Fe 0 /H 2 O 2 reaction, they were effectively eliminated in the sequential air lift reactor (ALR) at a hydraulic retention time (HRT) of 2 h, resulting in a further decrease of COD and color from 120 to 51 mg L -1 and from 70 to 38 times, respectively. A low operational cost of 0.35 $ m -3 was achieved because pH adjustment and iron-containing sludge disposal could be avoided since a total COD and color removal efficiency of 85 and 79% could be achieved at an original pH of 6.8 by the above sequential process with a ferric ion concentration below 0.8 mg L -1 after the Fe 0 /H 2 O 2 reaction. It indicated that the above sequential process is a promising and cost-effective method for the depth treatment of coal-chemical engineering wastewaters to satisfy discharge requirements.

  2. Next-generation pyrosequencing analysis of microbial biofilm communities on granular activated carbon in treatment of oil sands process-affected water.

    PubMed

    Islam, M Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-06-15

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>10(9) gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting.

    PubMed

    Torres-Climent, A; Gomis, P; Martín-Mata, J; Bustamante, M A; Marhuenda-Egea, F C; Pérez-Murcia, M D; Pérez-Espinosa, A; Paredes, C; Moral, R

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.

  4. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting

    PubMed Central

    Torres-Climent, A.; Gomis, P.; Martín-Mata, J.; Bustamante, M. A.; Marhuenda-Egea, F. C.; Pérez-Murcia, M. D.; Pérez-Espinosa, A.; Paredes, C.; Moral, R.

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio. PMID:26418458

  5. Next-Generation Pyrosequencing Analysis of Microbial Biofilm Communities on Granular Activated Carbon in Treatment of Oil Sands Process-Affected Water

    PubMed Central

    Islam, M. Shahinoor; Zhang, Yanyan; McPhedran, Kerry N.

    2015-01-01

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>109 gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. PMID:25841014

  6. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    PubMed Central

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  7. Progress in understanding and overcoming biomass recalcitrance: a BioEnergy Science Center (BESC) perspective

    DOE PAGES

    Gilna, Paul; Lynd, Lee R.; Mohnen, Debra; ...

    2017-11-30

    The DOE BioEnergy Science Center has operated as a virtual center with multiple partners for a decade targeting overcoming biomass recalcitrance. BESC has redefined biomass recalcitrance from an observable phenotype to a better understood and manipulatable fundamental and operational property. These manipulations are then the result of deeper biological understanding and can be combined with other advanced biotechnology improvements in biomass conversion to improve bioenergy processes and markets. This article provides an overview of key accomplishments in overcoming recalcitrance via better plants, better microbes, and better tools and combinations. Finally, we present a perspective on the aspects of successful centermore » operation.« less

  8. Progress in understanding and overcoming biomass recalcitrance: a BioEnergy Science Center (BESC) perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilna, Paul; Lynd, Lee R.; Mohnen, Debra

    The DOE BioEnergy Science Center has operated as a virtual center with multiple partners for a decade targeting overcoming biomass recalcitrance. BESC has redefined biomass recalcitrance from an observable phenotype to a better understood and manipulatable fundamental and operational property. These manipulations are then the result of deeper biological understanding and can be combined with other advanced biotechnology improvements in biomass conversion to improve bioenergy processes and markets. This article provides an overview of key accomplishments in overcoming recalcitrance via better plants, better microbes, and better tools and combinations. Finally, we present a perspective on the aspects of successful centermore » operation.« less

  9. Lignin‐Derived Thioacidolysis Dimers: Reevaluation, New Products, Authentication, and Quantification

    PubMed Central

    Yue, Fengxia; Regner, Matt; Sun, Runcang

    2017-01-01

    Abstract Lignin structural studies play an essential role both in understanding the development of plant cell walls and for valorizing lignocellulosics as renewable biomaterials. Dimeric products released by selectively cleaving β–aryl ether linkages between lignin units reflect the distribution of recalcitrant lignin units, but have been neither absolutely defined nor quantitatively determined. Here, 12 guaiacyl‐type thioacidolysis dimers were identified and quantified using newly synthesized standards. One product previously attributed to deriving from β–1‐coupled units was established as resulting from β–5 units, correcting an analytical quandary. Another longstanding dilemma, that no β–β dimers were recognized in thioacidolysis products from gymnosperms, was resolved with the discovery of two such authenticated compounds. Individual GC response factors for each standard compound allowed rigorous quantification of dimeric products released from softwood lignins, affording insight into the various interunit‐linkage distributions in lignins and thereby guiding the valorization of lignocellulosics. PMID:28125766

  10. Biotechnology of Anoxygenic Phototrophic Bacteria.

    PubMed

    Frigaard, Niels-Ulrik

    Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO 2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO 2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H 2 and other valuable compounds.

  11. Membrane Bioprocesses for Pharmaceutical Micropollutant Removal from Waters

    PubMed Central

    de Cazes, Matthias; Abejón, Ricardo; Belleville, Marie-Pierre; Sanchez-Marcano, José

    2014-01-01

    The purpose of this review work is to give an overview of the research reported on bioprocesses for the treatment of domestic or industrial wastewaters (WW) containing pharmaceuticals. Conventional WW treatment technologies are not efficient enough to completely remove all pharmaceuticals from water. Indeed, these compounds are becoming an actual public health problem, because they are more and more present in underground and even in potable waters. Different types of bioprocesses are described in this work: from classical activated sludge systems, which allow the depletion of pharmaceuticals by bio-degradation and adsorption, to enzymatic reactions, which are more focused on the treatment of WW containing a relatively high content of pharmaceuticals and less organic carbon pollution than classical WW. Different aspects concerning the advantages of membrane bioreactors for pharmaceuticals removal are discussed, as well as the more recent studies on enzymatic membrane reactors to the depletion of these recalcitrant compounds. PMID:25295629

  12. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    PubMed

    Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R

    2015-11-09

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.

  13. Cytochrome P450 in the central nervous system as a therapeutic target in neurodegenerative diseases.

    PubMed

    Navarro-Mabarak, Cynthia; Camacho-Carranza, Rafael; Espinosa-Aguirre, Jesús Javier

    2018-05-01

    Cytochromes P450 (CYPs) constitute a family of enzymes that can be found in the endoplasmic reticulum (ER), mitochondria or the cell surface of the cells. CYPs are characterized by carrying out the oxidation of organic compounds and they are mainly recognized as mediators of the biotransformation of xenobiotics to polar hydrophilic metabolites that can be eliminated from the organism. However, these enzymes play a key role in many other physiological processes, being involved in diverse indispensable metabolic pathways since they metabolize many endogenous substrates. Various CYP isoforms are expressed in the brain, and it is believed that this could be in part due to the particular function of brain CYPs. In the brain, CYPs are involved in the cholesterol turnover, the biosynthesis of dopamine, serotonin, morphine, hormones, and protective lipid mediators (epoxyeicosatrienoic acids), in addition to their already recognized role in xenobiotics detoxification and psychotropic drug metabolism. Increasing evidence suggests that this group of enzymes is fundamental for the normal functioning and maintenance of brain homeostasis. This review is focused on highlighting the importance of CYP-mediated endogenous metabolism in the central nervous system (CNS) and its relationship with recent findings regarding CYP involvement in neurodegenerative diseases. Some therapeutic approaches focused on CYP regulation are also discussed.

  14. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing

    PubMed Central

    Vannette, Rachel L.; Mohamed, Abbas; Johnson, Brian R.

    2015-01-01

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging. PMID:26549293

  15. Hepatic cytochrome P450 activity, abundance, and expression throughout human development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo M.

    Cytochrome P450s are Phase I metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes can vary considerably throughout human development, especially when comparing fetal development to neonates, children, and adults. In an effort to develop a more comprehensive understanding of the ontogeny of P450 expression and activity we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. To quantify the functional activity of individual P450s we employ activity-based protein profiling, which uses modified mechanism-based inhibitors of P450s as chemical probes, in tandem with proteomicmore » analyses to quantify activity. Our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. The results were used to distribute P450s into three general classes based upon developmental stage of expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that our ontogeny results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics.« less

  16. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    PubMed

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-ting

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) includingmore » 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.« less

  18. Utility of Boron in Dermatology.

    PubMed

    Jackson, David G; Cardwell, Leah A; Oussedik, Elias; Feldman, Steven R

    2017-08-09

    Boron compounds are being investigated as therapies for dermatologic conditions. Several features of boron chemistry make this element an ideal component in dermatologic treatments. We review the published dermatologically-relevant clinical trials and case studies pertaining to boron compounds. PubMed was utilized to query terms boron, chemistry, drug, development, dermatology, atopic dermatitis, psoriasis, onychomycosis, tavaborole, AN 2690, crisaborole, and AN 2728. Clinical trials, case studies, animal studies and in vitro studies. pertaining to atopic dermatitis, psoriasis and onychomycosis were included. Crisaborole 2% topical solution reduced atopic dermatitis lesions by approximately 60% when compared to pre-treatment baseline. Crisaborole maintains its dose-dependent effect in treatment of psoriasis and significantly reduces psoriatic plaques when compared to controls. Adverse effects were mild, frequency of events varied between studies. Crisaborole was well tolerated when applied to sensitive skin. Topical tavaborole significantly reduced or eliminated onychomycosis with minimal side effects compared to placebo. Tavaborole was effective in treating recalcitrant onychomycosis. Boron-based compounds form stable interactions with enzyme targets and are safe medications for the treatment of atopic dermatitis, psoriasis, and onychomycosis. The mild and rare side effects of topical boron-based compounds may make them ideal treatments for individuals with sensitive skin and pediatric populations.

  19. Anaerobic biodegradability of alkylphenols and fuel oxygenates in the presence of alternative electron acceptors.

    PubMed

    Puig-Grajales, L; Tan, N G; van der Zee, F; Razo-Flores, E; Field, J A

    2000-11-01

    Alkylphenols and fuel oxygenates are important environmental pollutants produced by the petrochemical industry. A batch biodegradability test was conducted with selected ortho-substituted alkylphenols (2-cresol, 2,6-dimethylphenol and 2-ethylphenol), fuel oxygenates (methyl tert-butyl ether, ethyl tert-butyl ether and tert-amylmethyl ether) and tert-butyl alcohol (TBA) as model compounds. The ortho-substituted alkylphenols were not biodegraded after 100 days of incubation under methanogenic, sulfate-, or nitrate-reducing conditions. However, biodegradation of 2-cresol and 2-ethylphenol (150 mg l(-1)) was observed in the presence of Mn (IV) as electron acceptor. The biodegradation of these two compounds took place in less than 15 days and more than 90% removal was observed for both compounds. Mineralization was indicated since no UV-absorbing metabolites accumulated after 23 days of incubation. These alkylphenols were also slowly chemically oxidized by Mn (IV). No biodegradation of fuel oxygenates or TBA (1 g l(-1)) was observed after 80 or more days of incubation under methanogenic, Fe (III)-, or Mn (IV)-reducing conditions, suggesting that these compounds are recalcitrant under anaerobic conditions. The fuel oxygenates caused no toxicity towards acetoclastic methanogens activity in anaerobic granular sludge.

  20. Testing a chemical series inspired by plant stress oxylipin signalling agents for herbicide safening activity

    PubMed Central

    Brazier‐Hicks, Melissa; Knight, Kathryn M; Sellars, Jonathan D

    2018-01-01

    Abstract BACKGROUND Herbicide safening in cereals is linked to a rapid xenobiotic response (XR), involving the induction of glutathione transferases (GSTs). The XR is also invoked by oxidized fatty acids (oxylipins) released during plant stress, suggesting a link between these signalling agents and safening. To examine this relationship, a series of compounds modelled on the oxylipins 12‐oxophytodienoic acid and phytoprostane 1, varying in lipophilicity and electrophilicity, were synthesized. Compounds were then tested for their ability to invoke the XR in Arabidopsis and protect rice seedlings exposed to the herbicide pretilachlor, as compared with the safener fenclorim. RESULTS Of the 21 compounds tested, three invoked the rapid GST induction associated with fenclorim. All compounds possessed two electrophilic carbon centres and a lipophilic group characteristic of both oxylipins and fenclorim. Minor effects observed in protecting rice seedlings from herbicide damage positively correlated with the XR, but did not provide functional safening. CONCLUSION The design of safeners based on the characteristics of oxylipins proved successful in deriving compounds that invoke a rapid XR in Arabidopsis but not in providing classical safening in a cereal. The results further support a link between safener and oxylipin signalling, but also highlight species‐dependent differences in the responses to these compounds. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29330904

  1. Warming Rather Than Increased Precipitation Increases Soil Recalcitrant Organic Carbon in a Semiarid Grassland after 6 Years of Treatments

    PubMed Central

    Zhou, Xiaoqi; Chen, Chengrong; Wang, Yanfen; Smaill, Simeon; Clinton, Peter

    2013-01-01

    Improved understanding of changes in soil recalcitrant organic carbon (C) in response to global warming is critical for predicting changes in soil organic C (SOC) storage. Here, we took advantage of a long-term field experiment with increased temperature and precipitation to investigate the effects of warming, increased precipitation and their interactions on SOC fraction in a semiarid Inner Mongolian grassland of northern China since April 2005. We quantified labile SOC, recalcitrant SOC and stable SOC at 0–10 and 10–20 cm depths. Results showed that neither warming nor increased precipitation affected total SOC and stable SOC at either depth. Increased precipitation significantly increased labile SOC at the 0–10 cm depth. Warming decreased labile SOC (P = 0.038) and marginally but significantly increased recalcitrant SOC at the 10–20 cm depth (P = 0.082). In addition, there were significant interactive effects of warming and increased precipitation on labile SOC and recalcitrant SOC at the 0–10 cm depth (both P<0.05), indicating that that results from single factor experiments should be treated with caution because of multi-factor interactions. Given that the absolute increase of SOC in the recalcitrant SOC pool was much greater than the decrease in labile SOC, and that the mean residence time of recalcitrant SOC is much greater, our results suggest that soil C storage at 10–20 cm depth may increase with increasing temperature in this semiarid grassland. PMID:23341995

  2. Application of Mass Spectrometry for the Analysis of Vitellogenin, a Unique Biomarker for Xenobiotic Compounds

    NASA Astrophysics Data System (ADS)

    Cohen, Alejandro M.; Banoub, Joseph H.

    Vitellogenin is a complex phosphoglycolipoprotein that is secreted into the bloodstream of sexually mature, female, oviparous animals in response to circulating estrogens. It is then incorporated into the ovaries by receptor mediated endocytosis, where it is further cleaved to form the major constituents of the egg yolk proteins. It is generally accepted that these protein and peptide products serve as the main nutritional reserve for the developing embryo. Quantification of vitellogenin in blood is useful for different purposes. The reproductive status and degree of sexual maturation of oviparous animals can be assessed according to the levels of vitellogenin in plasma. The expression of this protein can also be induced in males under the effect of estrogenic compounds. Relying on this observation, vitellogenin has been used as a unique biomarker of environmental endocrine disruption in many species. In this respect, vitellogenin levels could potentially be used to assess the use of chemical warefare compounds with estrogenic activity. In this paper we review a technique developed for measuring vitellogenin plasma levels of different fish species using high performance liquid chromatography coupled to tandem mass spectrometry.

  3. Bacterial bio-resources for remediation of hexachlorocyclohexane.

    PubMed

    Alvarez, Analía; Benimeli, Claudia S; Saez, Juliana M; Fuentes, María S; Cuozzo, Sergio A; Polti, Marta A; Amoroso, María J

    2012-11-15

    In the last few decades, highly toxic organic compounds like the organochlorine pesticide (OP) hexachlorocyclohexane (HCH) have been released into the environment. All HCH isomers are acutely toxic to mammals. Although nowadays its use is restricted or completely banned in most countries, it continues posing serious environmental and health concerns. Since HCH toxicity is well known, it is imperative to develop methods to remove it from the environment. Bioremediation technologies, which use microorganisms and/or plants to degrade toxic contaminants, have become the focus of interest. Microorganisms play a significant role in the transformation and degradation of xenobiotic compounds. Many Gram-negative bacteria have been reported to have metabolic abilities to attack HCH. For instance, several Sphingomonas strains have been reported to degrade the pesticide. On the other hand, among Gram-positive microorganisms, actinobacteria have a great potential for biodegradation of organic and inorganic toxic compounds. This review compiles and updates the information available on bacterial removal of HCH, particularly by Streptomyces strains, a prolific genus of actinobacteria. A brief account on the persistence and deleterious effects of these pollutant chemical is also given.

  4. 6-shogaol, a major compound in ginger, induces aryl hydrocarbon receptor-mediated transcriptional activity and gene expression.

    PubMed

    Yoshida, Kazutaka; Satsu, Hideo; Mikubo, Ayano; Ogiwara, Haru; Yakabe, Takafumi; Inakuma, Takahiro; Shimizu, Makoto

    2014-06-18

    Xenobiotics are usually detoxified by drug-metabolizing enzymes and excreted from the body. The expression of many of drug-metabolizing enzymes is regulated by the aryl hydrocarbon receptor (AHR). Some substances in vegetables have the potential to be AHR ligands. To search for vegetable components that exhibit AHR-mediated transcriptional activity, we assessed the activity of vegetable extracts and identified the active compounds using the previously established stable AHR-responsive HepG2 cell line. Among the hot water extracts of vegetables, the highest activity was found in ginger. The ethyl acetate fraction of the ginger hot water extract remarkably induced AHR-mediated transcriptional activity, and the major active compound was found to be 6-shogaol. Subsequently, the mRNA levels of AHR-targeting drug-metabolizing enzymes (CYP1A1, UGT1A1, and ABCG 2) and the protein level of CYP1A1 in HepG2 cells were shown to be increased by 6-shogaol. This is the first report that 6-shogaol can regulate the expression of detoxification enzymes by AHR activation.

  5. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Tomofumi; Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135; Ichinose, Hirofumi

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conservedmore » domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.« less

  6. Bacterial Bio-Resources for Remediation of Hexachlorocyclohexane

    PubMed Central

    Alvarez, Analía; Benimeli, Claudia S.; Saez, Juliana M.; Fuentes, María S.; Cuozzo, Sergio A.; Polti, Marta A.; Amoroso, María J.

    2012-01-01

    In the last few decades, highly toxic organic compounds like the organochlorine pesticide (OP) hexachlorocyclohexane (HCH) have been released into the environment. All HCH isomers are acutely toxic to mammals. Although nowadays its use is restricted or completely banned in most countries, it continues posing serious environmental and health concerns. Since HCH toxicity is well known, it is imperative to develop methods to remove it from the environment. Bioremediation technologies, which use microorganisms and/or plants to degrade toxic contaminants, have become the focus of interest. Microorganisms play a significant role in the transformation and degradation of xenobiotic compounds. Many Gram-negative bacteria have been reported to have metabolic abilities to attack HCH. For instance, several Sphingomonas strains have been reported to degrade the pesticide. On the other hand, among Gram-positive microorganisms, actinobacteria have a great potential for biodegradation of organic and inorganic toxic compounds. This review compiles and updates the information available on bacterial removal of HCH, particularly by Streptomyces strains, a prolific genus of actinobacteria. A brief account on the persistence and deleterious effects of these pollutant chemical is also given. PMID:23203113

  7. Interaction of xenobiotics on the glucose-transport system and the Na+/K(+)-ATPase of human skin fibroblasts.

    PubMed

    Cascorbi, I; Forêt, M

    1991-02-01

    The effects of individual and combined xenobiotics on functional properties of the plasma membrane of human skin fibroblasts were investigated. Good correlations between toxic effects on the D-glucose transport system or the Na+/K(+)-ATPase and the lipophilicity of the substances could be observed. The linear regression coefficients plotting log EC20 values (doses, leading to 20% inhibition) versus log Pow (octanol/water partition coefficient) were r = 0.95 (P less than 0.05). The combination of lipophilic with less lipophilic xenobiotics, such as pentachlorophenol with 4-chloroaniline, leads to additional effects. However, when the detergent sodium dodecyl benzenesulfonate was combined with the herbicide 2,4-dichlorophenoxyacetate (2,4-D), the toxic effect of 2,4-D on the Na+/K(+)-ATPase decreased considerably. The results support in general the assumption that the inhibition of integral functional proteins is based on an accumulation of xenobiotics in the plasma membrane, probably due to the enhanced membrane fluidity. Thus, the basic toxicity of xenobiotics can be predicted by their physicochemical properties.

  8. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a “Central Dogma” for Toxic Mechanisms?

    PubMed Central

    Lee, Sundong; Cho, Myung-Haing

    2014-01-01

    Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems. PMID:25343011

  9. [Edge effects of forest gap in Pinus massoniana plantations on the decomposition of leaf litter recalcitrant components of Cinnamomum camphora and Toona ciliata.

    PubMed

    Zhang, Yan; Zhang, Dan Ju; Li, Xun; Liu, Hua; Zhang, Ming Jin; Yang, Wan Qin; Zhang, Jian

    2016-04-22

    The objective of the study was to evaluate the dynamics of recalcitrant components during foliar litter decomposition under edge effects of forest gap in Pinus massoniana plantations in the low hilly land, Sichuan basin. A field litterbag experiment was conducted in seven forest gaps with different sizes (100, 225, 400, 625, 900, 1225, 1600 m 2 ) which were generated by thinning P. massoniana plantations. The degradation rate of four recalcitrant components, i.e., condensed tannins, total phenol, lignin and cellulose in foliar litter of two native species (Cinnamomum camphora and Toona ciliata) at the gap edge and under the closed canopy were measured. The results showed that the degradation rate of recalcitrant components in T. ciliata litter except for cellulose at the gap edge were significantly higher than that under the closed canopy. For C. camphora litter, only the degradation of lignin at the gap edge was higher than that under the closed canopy. After one-year decomposition, four recalcitrant components in two types of foliar litter exhibited an increment of degradation rate, and the degradation rate of condensed tannin was the fastest, followed by total phenol and cellulose, but the lignin degradation rate was the slowest. With the increase of gap size, except for cellulose, the degradation rate ofthe other three recalcitrant components of the T. ciliata at the edge of medium sized gaps (400 and 625 m 2 ) were significantly higher than at the edge of other gaps. However, lignin in the C. camphora litter at the 625 m 2 gap edge showed the greatest degradation rate. Both temperature and litter initial content were significantly correlated with litter recalcitrant component degradation. Our results suggested that medium sized gaps (400-625 m 2 ) had a more significant edge effect on the degradation of litter recalcitrant components in the two native species in P. massoniana plantations, however, the effect also depended on species.

  10. Use of bacteria for improving the lignocellulose biorefinery process: importance of pre-erosion.

    PubMed

    Zhuo, Shengnan; Yan, Xu; Liu, Dan; Si, Mengying; Zhang, Kejing; Liu, Mingren; Peng, Bing; Shi, Yan

    2018-01-01

    Biological pretreatment is an important alternative strategy for biorefining lignocellulose and has attracted increasing attention in recent years. However, current designs for this pretreatment mainly focus on using various white rot fungi, overlooking the bacteria. To the best of our knowledge, for the first time, we evaluated the potential contribution of bacteria to lignocellulose pretreatment, with and without a physicochemical process, based on the bacterial strain Pandoraea sp. B-6 (hereafter B-6) that was isolated from erosive bamboo slips. Moreover, the mechanism of the improvement of reducing sugar yield by bacteria was elucidated via analyses of the physicochemical changes of corn stover (CS) before and after pretreatment. The digestibility of CS pretreated with B-6 was equivalent to that of untreated CS. The recalcitrant CS surface provided fewer mediators for contact with the extracellular enzymes of B-6. A pre-erosion strategy using a tetrahydrofuran-water co-solvent system was shown to destroy the recalcitrant CS surface. The optimal condition for pre-erosion showed a 6.5-fold increase in enzymatic digestibility compared with untreated CS. The pre-erosion of CS can expose more phenolic compounds that were chelated to oxidized Mn 3+ and also provided mediators for combination with laccase, which was attributable to B-6 pretreatment. B-6 pretreatment following pre-erosion exhibited a sugar yield that was 91.2 mg/g greater than that of pre-erosion alone and 7.5-fold higher than that of untreated CS. This pre-erosion application was able to destroy the recalcitrant CS surface, thus leading to a rough and porous architecture that better facilitated the diffusion and transport of lignin derivatives. This enhanced the ability of laccase and manganese peroxidase secreted by B-6 to improve the efficiency of this biological pretreatment. Bacteria were not found useful alone as a biological pretreatment, but they significantly improved enzymatic digestion after lignocellulose breakdown via other physicochemical methods. Nonetheless, phenyl or phenoxy radicals were used by laccase and manganese peroxidase in B-6 for lignin attack or lignin depolymerization. These particular mediators released from the recalcitrance network of lignocellulose openings are important for the efficacy of this bacterial pretreatment. Our findings thus offer a novel perspective on the effective design of biological pretreatment methods for lignocellulose.

  11. The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms.

    PubMed

    Kawai, Fusako

    2010-01-01

    Research on microbial degradation of xenobiotic polymers has been underway for more than 40 years. It has exploited a new field not only in applied microbiology but also in environmental microbiology, and has greatly contributed to polymer science by initiating the design of biodegradable polymers. Owing to the development of analytical tools and technology, molecular biological and biochemical advances have made it possible to prospect for degrading microorganisms in the environment and to determine the mechanisms involved in biodegradation when xenobiotic polymers are introduced into the environment and are exposed to microbial attack. In this review, the molecular biological and biochemical aspects of the microbial degradation of xenobiotic polymers are summarized, and possible applications of potent microorganisms, enzymes, and genes in environmental biotechnology are suggested.

  12. Characterizing fluorotelomer and polyfluoroalkyl substances in new and aged fluorotelomer-based polymers for degradation studies with GC/MS and LC/MS/MS.

    PubMed

    Washington, John W; Naile, Jonathan E; Jenkins, Thomas M; Lynch, David G

    2014-05-20

    Fluorotelomer-based polymers (FTPs), the dominant product of the fluorotelomer industry, are antistaining and antiwetting agents that permeate the products and surfaces of modern society. However, the degree to which these materials expose humans and the environment to fluorotelomer and perfluorinated compounds, including recalcitrant and toxic compounds such as perfluorooctanoic acid (PFOA), is ill-defined. The design intent of FTPs, to minimize interaction with other substances, including solvents, heretofore has stymied efforts to develop robust methods to characterize the content of monomers and associated compounds of new commercial FTPs, as well as commercial FTPs that have been aged in environmental media for degradation testing. Here we show that FTPs can be exhausted of these compounds and quantitated by (i) drying the FTP on a suitable substrate at elevated temperature to achieve low, constant monomer concentrations; (ii) serial extraction with MTBE for fluorotelomer-monomer analysis by GC/MS in PCI mode; followed by (iii) serial extraction with 90/10 ACN/H2O for polyfluorocompound analysis by LC/MS/MS in negative ESI mode. This approach yields exhaustive, internally consistent accounting of monomers and associated compounds for FTPs, either alone or in a soil matrix (representing an environmental medium), for both new and simulated-aged FTPs to allow degradation testing, and for fluorinated compounds at least as long as C12.

  13. Isolation and amplification of genomic DNA from recalcitrant dried berries of black pepper (Piper nigrum L.)--a medicinal spice.

    PubMed

    Dhanya, K; Kizhakkayil, Jaleel; Syamkumar, S; Sasikumar, B

    2007-10-01

    Black pepper is an important medicinal spice traded internationally. The extraction of high quality genomic DNA for PCR amplification from dried black pepper is challenging because of the presence of the exceptionally large amount of oxidized polyphenolic compounds, polysaccharides and other secondary metabolites. Here we report a modified hexadecyl trimethyl ammonium bromide (CTAB) protocol by incorporating potassium acetate and a final PEG precipitation step to isolate PCR amplifiable genomic DNA from dried and powdered berries of black pepper. The protocol has trade implication as it will help in the PCR characterization of traded black peppers from different countries.

  14. Soil organic matter in podzol horizons of the Amazon region: Humification, recalcitrance, and dating.

    PubMed

    Tadini, Amanda M; Nicolodelli, Gustavo; Senesi, Giorgio S; Ishida, Débora A; Montes, Célia R; Lucas, Yves; Mounier, Stéphane; Guimarães, Francisco E G; Milori, Débora M B P

    2018-02-01

    Characteristics of soil organic matter (SOM) are important, especially in the Amazon region, which represents one of the world's most relevant carbon reservoirs. In this work, the concentrations of carbon and differences in its composition (humification indexes) were evaluated and compared for several horizons (0 to 390cm) of three typical Amazonian podzol profiles. Fluorescence spectroscopy was used to investigate the humic acid (HA) fractions of SOM isolated from the different samples. Simple and labile carbon structures appeared to be accumulated in surface horizons, while more complex humified compounds were leached and accumulated in intermediate and deeper Bh horizons. The results suggested that the humic acids originated from lignin and its derivatives, and that lignin could accumulate in some Bh horizons. The HA present in deeper Bh horizons appeared to originate from different formation pathways, since these horizons showed different compositions. There were significant compositional changes of HA with depth, with four types of organic matter: recalcitrant, humified, and old dating; labile and young dating; humified and young dating; and little humified and old dating. Therefore, the humification process had no direct relation with the age of the organic matter in the Amazonian podzols. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Performance of sulphate- and selenium-reducing biochemical reactors using different ratios of labile to recalcitrant organic materials.

    PubMed

    Mirjafari, Parissa; Baldwin, Susan A

    2015-01-01

    Successful operation of sulphate-reducing bioreactors using complex organic materials depends on providing a balance between more easily degrading material that achieves reasonable kinetics and low hydraulic retention times, and more slowly decomposing material that sustains performance in the long term. In this study, two organic mixtures containing the same ingredients typical of bioreactors used at mine sites (woodchips, hay and cow manure) but with different ratios of wood (recalcitrant) to hay (labile) were tested in six continuous flow bioreactors treating synthetic mine-affected water containing 600 mg/L of sulphate and 15 μg/L of selenium. The reactors were operated for short (5-6 months) and long (435-450 days) periods of time at the same hydraulic retention time of 15 days. There were no differences in the performance of the bioreactors in terms of sulphate-reduction over the short term, but the wood-rich bioreactors experienced variable and sometimes unreliable sulphate-reduction over the long term. Presence of more hay in the organic mixture was able to better sustain reliable performance. Production of dissolved organic compounds due to biodegradation within the bioreactors was detected for the first 175-230 days, after which their depletion coincided with a crash phase observed in the wood-rich bioreactors only.

  16. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean.

    PubMed

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants' pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to degrade AHLs to metabolites such as the hydroxy- or keto-form of the original compound.

  17. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean

    PubMed Central

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants’ pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to degrade AHLs to metabolites such as the hydroxy- or keto-form of the original compound. PMID:25914699

  18. Determination of o,oEDDHA - a xenobiotic chelating agent used in Fe fertilizers - in plant tissues by liquid chromatography/electrospray mass spectrometry: overcoming matrix effects.

    PubMed

    Orera, Irene; Abadía, Anunciación; Abadía, Javier; Alvarez-Fernández, Ana

    2009-06-01

    The Fe(III)-chelate of ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid (o,oEDDHA) is generally considered as the most efficient and widespread Fe fertilizer for fruit crops and intensive horticulture. The determination of the xenobiotic chelating agent o,oEDDHA inside the plant is a key issue in the study of this fertilizer. Both the low concentrations of o,oEDDHA expected and the complexity of plant matrices have been important drawbacks in the development of analytical methods for the determination of o,oEDDHA in plant tissues. The determination of o,oEDDHA in plant materials has been tackled in this study by liquid chromatography coupled to mass spectrometry using several plant species and tissues. Two types of internal standards have been tested: Iron stable isotope labeled compounds and a structural analogue compound, the Fe(III) chelate of ethylenediamine-N,N'-bis(2-hydroxy-4-methylphenylacetic) acid (o,oEDDHMA). Iron stable isotope labeled internal standards did not appear to be suitable because of the occurrence of isobaric endogenous compounds and/or isotope exchange reactions between plant native Fe pools and the Fe stable isotope of the internal standard. However, the structural analogue Fe(III)-o,oEDDHMA is an adequate internal standard for the determination of both isomers of o,oEDDHA (racemic and meso) in plant tissues. The method was highly sensitive, with limits of detection and quantification in the range of 3-49 and 11-162 pmol g(-1) fresh weight, respectively, and analyte recoveries were in the range of 74-116%. Using this methodology, both o,oEDDHA isomers were found in all tissues of sugar beet and tomato plants treated with 90 microM Fe(III)-o,oEDDHA for 24 h, including leaves, roots and xylem sap. This methodology constitutes a useful tool for studies on o,oEDDHA plant uptake, transport and allocation. Copyright (c) 2009 John Wiley & Sons, Ltd.

  19. Solar energy for wastewater treatment: review of international technologies and their applicability in Brazil.

    PubMed

    Marcelino, R B P; Queiroz, M T A; Amorim, C C; Leão, M M D; Brites-Nóbrega, F F

    2015-01-01

    Several studies have reported the adverse effects of recalcitrant compounds and emerging contaminants present in industrial effluents, which are not degradable by ordinary biological treatment. Many of these compounds are likely to accumulate in living organisms through the lipid layer. At concentrations above the limits of biological tolerance, these compounds can be harmful to the ecosystem and may even reach humans through food chain biomagnification. In this regard, advanced oxidation processes (AOPs) represent an effective alternative for the removal of the pollutants. This study focused on the AOP involving the use of ultraviolet radiation in homogeneous and heterogeneous systems. Based on the literature review, comparisons between natural and artificial light were established, approaching photoreactors constructive and operational characteristics. We concluded that the high availability of solar power in Brazil would make the implementation of the AOP using natural solar radiation for the decontamination of effluents feasible, thereby contributing to clean production and biodiversity conservation. This will serve as an important tool for the enforcement of environmental responsibility among public and private institutions.

  20. Laboratory tests on the impact of superabsorbent polymers on transformation and sorption of xenobiotics in soil taking 14C-imazalil as an example.

    PubMed

    Achtenhagen, J; Kreuzig, R

    2011-11-15

    Due to water scarcity, the agricultural production in arid areas is dependent on a sustainable irrigation management. In order to optimize irrigation systems, the application of superabsorbent polymers (SAP) as soil amendments, frequently studied within the last years, may be an appropriate measure to enhance the water holding capacity and the plant-available water in poor arable soils. These persistent polymers are also able to reduce heavy metal and salt stress to crops by accumulating those inorganic compounds. However, the impact of SAP on fate and behavior of organic xenobiotics in soil is unknown. Therefore, transformation and sorption of the model substance 14C-imazalil were monitored without and with SAP amendment in silty sand and sand soil under laboratory conditions. Within the 100-d incubation period, the transformation of 14C-imazalil was not substantially affected by the SAP amendment even though the microbial activity increased considerably. In the silty sand soil, extractable residues dropped from 90% to 45% without and from 96% to 46% with SAP amendment. Non-extractable residues continuously increased up to 49% and 35% while mineralization reached 6% and 5%, respectively. In the sand soil, characterized by its lower microbial activity and lower organic carbon content, extractable residues merely dropped from 99% to 81% and from 100% to 85% while non-extractable residues increased from 2% to 14% and 1% to 10%, respectively. Mineralization was lower than 2%. The increased microbial activity, usually promoting transformation processes of xenobiotics, was compensated by the enhanced sorption in the amended soils revealed by the increase of soil/water distribution coefficients (Kd) of 26 to 42 L kg(-1) for the silty sand and 6 to 25 L kg(-1) for the sand, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Novel Insights Linking Ecological Health to Biogeochemical Hotspots across the Groundwater-Surface Water Interface in Mixed Land Use Stream Systems

    NASA Astrophysics Data System (ADS)

    McKnight, U. S.; Sonne, A. T.; Rasmussen, J. J.; Rønde, V.; Traunspurger, W.; Höss, S.; Bjerg, P. L.

    2017-12-01

    Increasing modifications in land use and water management have resulted in multiple stressors impacting freshwater ecosystems globally. Chemicals with the potential to impact aquatic habitats are still often evaluated individually for their adverse effects on ecosystem health. This may lead to critical underestimations of the combined impact caused by interactions occurring between stressors not typically evaluated together, e.g. xenobiotic groundwater pollutants and trace metals. To address this issue, we identified sources and levels of chemical stressors along a 16-km groundwater-fed stream corridor (Grindsted, Denmark), representative for a mixed land use stream system. Potential pollution sources included two contaminated sites (factory, landfill), aquaculture, wastewater/industrial discharges, and diffuse sources from agriculture and urban areas. Ecological status was determined by monitoring meiobenthic and macrobenthic invertebrate communities.The stream was substantially impaired by both geogenic and anthropogenic sources of metals throughout the investigated corridor, with concentrations close to or above threshold values for barium, copper, lead, nickel and zinc in the stream water, hyporheic zone and streambed sediment. The groundwater plume from the factory site caused elevated concentrations of chlorinated ethenes, benzene and pharmaceuticals in both the hyporheic zone and stream, persisting for several km downstream. Impaired ecological conditions, represented by a lower abundance of meiobenthic individuals, were found in zones where the groundwater plume discharges to the stream. The effect was only pronounced in areas characterized by high xenobiotic organic concentrations and elevated dissolved iron and arsenic levels - linked to the dissolution of iron hydroxides caused by the degradation of xenobiotic compounds in the plume. The results thus provide ecological evidence for the interaction of organic and inorganic chemical stressors, which may provide a missing link enabling the reconnection of chemical and ecological findings. This study highlights the importance of stream-aquifer interfaces for ecosystem functioning in terms of biological habitat, and that multiple stressor systems need to be tackled from a holistic perspective.

  2. Interactive effects of hypoxia and PCB co-exposure on expression of CYP1A and its potential regulators in Atlantic croaker liver.

    PubMed

    Rahman, Md Saydur; Thomas, Peter

    2018-04-01

    Although marine and coastal environments which are contaminated with xenobiotic organic compounds often become hypoxic during the summer, the interactive effects of hypoxia and xenobiotic exposure on marine species such as teleost fishes remain poorly understood. The expression and activity of monooxygenase enzyme cytochrome P450-1A (CYP1A) in fishes are upregulated by exposure to polychlorinated biphenyls (PCBs), whereas they are down-regulated during hypoxia exposure. We investigated the interactive effects of hypoxia and PCB co-exposure on hepatic CYP1A expression in Atlantic croaker and on potential regulators of CYP1A. Croaker were exposed to hypoxia (1.7 mg/L dissolved oxygen), 3,3',4,4'-tetrachlorobiphenyl (PCB 77, dose: 2 and 8 µg/g body weight), and Aroclor 1254 (a common PCB mixture, dose: 0.5 and 1 µg/g body weight), alone and in combination for 4 weeks. PCB 77 exposure markedly increased hepatic CYP1A mRNA and protein expression, and ethoxyresorufin-O-deethylase (EROD, an indicator of CYP1A enzyme) activity and increased endothelial nitric oxide synthase (eNOS) protein expression. PCB 77 treatment also increased interleukin-1β (IL-1β, a cytokine) mRNA levels and protein carbonyl (PC, an indicator of reactive oxygen species, ROS) contents. These marked PCB 77- and Aroclor 1254-induced increases in CYP1A mRNA levels and EROD activity were significantly attenuated by co-exposure to hypoxia, whereas the increases in hepatic eNOS protein and IL-1β mRNA expression, and PC contents were augmented by hypoxia co-exposure. The results suggest that biotransformation of organic xenobiotics by CYP1A is reduced in fish during co-exposure to hypoxia and is accompanied by alterations in eNOS, ROS, and IL-1β levels. © 2018 Wiley Periodicals, Inc.

  3. Associations Between Selected Xenobiotics and Antinuclear Antibodies in the National Health and Nutrition Examination Survey, 1999-2004.

    PubMed

    Dinse, Gregg E; Jusko, Todd A; Whitt, Irene Z; Co, Caroll A; Parks, Christine G; Satoh, Minoru; Chan, Edward K L; Rose, Kathryn M; Walker, Nigel J; Birnbaum, Linda S; Zeldin, Darryl C; Weinberg, Clarice R; Miller, Frederick W

    2016-04-01

    Potential associations between background environmental chemical exposures and autoimmunity are understudied. Our exploratory study investigated exposure to individual environmental chemicals and selected mixtures in relation to the presence of antinuclear antibodies (ANA), a widely used biomarker of autoimmunity, in a representative sample of the U.S. This cross-sectional analysis used data on 4,340 participants from the National Health and Nutrition Examination Survey (1999-2004), of whom 14% were ANA positive, to explore associations between ANA and concentrations of dioxins, dibenzofurans, polychlorinated biphenyls, organochlorines, organophosphates, phenols, metals, and other environmental exposures and metabolites measured in participants' serum, whole blood, or urine. For dioxin-like compounds with toxic equivalency factors, we developed and applied a new statistical approach to study selected mixtures. Lognormal models and censored-data methods produced estimates of chemical associations with ANA in males, nulliparous females, and parous females; these estimates were adjusted for confounders and accommodated concentrations below detectable levels. Several associations between chemical concentration and ANA positivity were observed, but only the association in males exposed to triclosan remained statistically significant after correcting for multiple comparisons (mean concentration ratio = 2.8; 95% CI: 1.8, 4.5; p < 0.00001). These data suggest that background levels of most xenobiotic exposures typical in the U.S. population are not strongly associated with ANA. Future studies should ideally reduce exposure misclassification by including prospective measurement of the chemicals of concern and should track changes in ANA and other autoantibodies over time. Dinse GE, Jusko TA, Whitt IZ, Co CA, Parks CG, Satoh M, Chan EKL, Rose KM, Walker NJ, Birnbaum LS, Zeldin DC, Weinberg CR, Miller FW. 2016. Associations between selected xenobiotics and antinuclear antibodies in the National Health and Nutrition Examination Survey, 1999-2004. Environ Health Perspect 124:426-436; http://dx.doi.org/10.1289/ehp.1409345.

  4. Inhalation exposure of rats to asphalt fumes generated at paving temperatures alters pulmonary xenobiotic metabolism pathways without lung injury.

    PubMed Central

    Ma, Jane Y C; Rengasamy, Apavoo; Frazer, Dave; Barger, Mark W; Hubbs, Ann F; Battelli, Lori; Tomblyn, Seith; Stone, Samuel; Castranova, Vince

    2003-01-01

    Asphalt fumes are complex mixtures of various organic compounds, including polycyclic aromatic hydrocarbons (PAHs). PAHs require bioactivation by the cytochrome P-450 monooxygenase system to exert toxic/carcinogenic effects. The present study was carried out to characterize the acute pulmonary inflammatory responses and the alterations of pulmonary xenobiotic pathways in rats exposed to asphalt fumes by inhalation. Rats were exposed at various doses and time periods to air or to asphalt fumes generated at paving temperatures. To assess the acute damage and inflammatory responses, differential cell counts, acellular lactate dehydrogenase (LDH) activity, and protein content of bronchoalveolar lavage fluid were determined. Alveolar macrophage (AM) function was assessed by monitoring generation of chemiluminescence and production of tumor necrosis factor-alpha and interleukin-1. Alteration of pulmonary xenobiotic pathways was determined by monitoring the protein levels and activities of P-450 isozymes (CYP1A1 and CYP2B1), glutathioneS-transferase (GST), and NADPH:quinone oxidoreductase (QR). The results show that acute asphalt fume exposure did not cause neutrophil infiltration, alter LDH activity or protein content, or affect AM function, suggesting that short-term asphalt fume exposure did not induce acute lung damage or inflammation. However, acute asphalt fume exposure significantly increased the activity and protein level of CYP1A1 whereas it markedly reduced the activity and protein level of CYP2B1 in the lung. The induction of CYP1A1 was localized in nonciliated bronchiolar epithelial (Clara) cells, alveolar septa, and endothelial cells by immunofluorescence microscopy. Cytosolic QR activity was significantly elevated after asphalt fume exposure, whereas GST activity was not affected by the exposure. This induction of CYP1A1 and QR with the concomitant down-regulation of CYP2B1 after asphalt fume exposure could alter PAH metabolism and may lead to potential toxic effects in the lung. PMID:12842776

  5. Recalcitrant Carbonaceous Material: A Source of Electron Donors for Anaerobic Microbial Metabolisms in the Subsurface?

    NASA Astrophysics Data System (ADS)

    Nixon, S. L.; Montgomery, W.; Sephton, M. A.; Cockell, C. S.

    2014-12-01

    More than 90% of organic material on Earth resides in sedimentary rocks in the form of kerogens; fossilized organic matter formed through selective preservation of high molecular weight biopolymers under anoxic conditions. Despite its prevalence in the subsurface, the extent to which this material supports microbial metabolisms is unknown. Whilst aerobic microorganisms are known to derive energy from kerogens within shales, utilization in anaerobic microbial metabolisms that proliferate in the terrestrial subsurface, such as microbial iron reduction, has yet to be demonstrated. Data are presented from microbial growth experiments in which kerogens and shales were supplied as the sole electron donor source for microbial iron reduction by an enrichment culture. Four well-characterized kerogens samples (representative of Types I-IV, classified by starting material), and two shale samples, were assessed. Organic analysis was carried out to investigate major compound classes present in each starting material. Parallel experiments were conducted to test inhibition of microbial iron reduction in the presence of each material when the culture was supplied with a full redox couple. The results demonstrate that iron-reducing microorganisms in this culture were unable to use kerogens and shales as a source of electron donors for energy acquisition, despite the presence of compound classes known to support this metabolism. Furthermore, the presence of these materials was found to inhibit microbial iron reduction to varying degrees, with some samples leading to complete inhibition. These results suggest that recalcitrant carbonaceous material in the terrestrial subsurface is not available for microbial iron reduction and similar metabolisms, such as sulphate-reduction. Further research is needed to investigate the inhibition exerted by these materials, and to assess whether these findings apply to other microbial consortia. These results may have significant implications for the role of anaerobic microbial metabolisms in the subsurface terrestrial carbon cycle. Kerogens are chemically similar to organic material in carbonaceous chondrites. As such, further study may provide insight into the potential availability of organic compounds for microbial metabolisms operating in the subsurface of Mars.

  6. Investigating Aspergillus nidulans secretome during colonisation of cork cell walls.

    PubMed

    Martins, Isabel; Garcia, Helga; Varela, Adélia; Núñez, Oscar; Planchon, Sébastien; Galceran, Maria Teresa; Renaut, Jenny; Rebelo, Luís P N; Silva Pereira, Cristina

    2014-02-26

    Cork, the outer bark of Quercus suber, shows a unique compositional structure, a set of remarkable properties, including high recalcitrance. Cork colonisation by Ascomycota remains largely overlooked. Herein, Aspergillus nidulans secretome on cork was analysed (2DE). Proteomic data were further complemented by microscopic (SEM) and spectroscopic (ATR-FTIR) evaluation of the colonised substrate and by targeted analysis of lignin degradation compounds (UPLC-HRMS). Data showed that the fungus formed an intricate network of hyphae around the cork cell walls, which enabled polysaccharides and lignin superficial degradation, but probably not of suberin. The degradation of polysaccharides was suggested by the identification of few polysaccharide degrading enzymes (β-glucosidases and endo-1,5-α-l-arabinosidase). Lignin degradation, which likely evolved throughout a Fenton-like mechanism relying on the activity of alcohol oxidases, was supported by the identification of small aromatic compounds (e.g. cinnamic acid and veratrylaldehyde) and of several putative high molecular weight lignin degradation products. In addition, cork recalcitrance was corroborated by the identification of several protein species which are associated with autolysis. Finally, stringent comparative proteomics revealed that A. nidulans colonisation of cork and wood share a common set of enzymatic mechanisms. However the higher polysaccharide accessibility in cork might explain the increase of β-glucosidase in cork secretome. Cork degradation by fungi remains largely overlook. Herein we aimed at understanding how A. nidulans colonise cork cell walls and how this relates to wood colonisation. To address this, the protein species consistently present in the secretome were analysed, as well as major alterations occurring in the substrate, including lignin degradation compounds being released. The obtained data demonstrate that this fungus has superficially attacked the cork cell walls apparently by using both enzymatic and Fenton-like reactions. Only a few polysaccharide degrading enzymes could be detected in the secretome which was dominated by protein species associated with autolysis. Lignin degradation was corroborated by the identification of some degradation products, but the suberin barrier in the cell wall remained virtually intact. Comparative proteomics revealed that cork and wood colonisation share a common set of enzymatic mechanisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Xenobiotics: How the Environment Changes Your Body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Erin

    Erin Baker studies how substances foreign to your body affect your health. To do so, her team at PNNL developed a rapid way to separate and study both xenobiotics and endogenous molecules using ion mobility.

  8. Developmental Immunotoxicity

    EPA Science Inventory

    Animal models suggest that the immature immune system is more susceptible to xenobiotics than the fully mature system, and sequelae of developmental immunotoxicant exposure may be persistent well into adulthood. Immune maturation may be delayed by xenobiotic exposure and recover...

  9. From Avicennia to Zizania: Seed Recalcitrance in Perspective

    PubMed Central

    Berjak, Patricia; Pammenter, N. W.

    2008-01-01

    Background Considered only in terms of tolerance of, or sensitivity to, desiccation (which is an oversimplification), orthodox seeds are those which tolerate dehydration and are storable in this condition, while highly recalcitrant seeds are damaged by loss of only a small proportion of water and are unstorable for practical purposes. Between these extremes, however, there may be a gradation of the responses to dehydration – and also to other factors – suggesting perhaps that seed behaviour might be best considered as constituting a continuum subtended by extreme orthodoxy and the highest degree of recalcitrance. As the characteristics of seeds of an increasing number of species are elucidated, non-orthodox seed behaviour is emerging as considerably more commonplace – and its basis far more complex – than previously suspected. Scope Whatever the post-harvest responses of seeds of individual species may be, they are the outcome of the properties of pre-shedding development, and a full understanding of the subtleties of various degrees of non-orthodox behaviour must await the identification of, and interaction among, all the factors conferring extreme orthodoxy. Appreciation of the phenomenon of recalcitrance is confounded by intra- and interseasonal variability across species, as well as within individual species. However, recent evidence suggests that provenance is a pivotal factor in determining the degree of recalcitrant behaviour exhibited by seeds of individual species. Non-orthodox – and, in particular, recalcitrant – seed behaviour is not merely a matter of desiccation sensitivity: the primary basis is that the seeds are actively metabolic when they are shed, in contrast to orthodox types which are quiescent. This affects all aspects of the handling and storage of recalcitrant seeds. In the short to medium term, recalcitrant seeds should be stored in as hydrated a condition as when they are shed, and at the lowest temperature not diminishing vigour or viability. Such hydrated storage has attendant problems of fungal proliferation which, unless minimized, will inevitably and significantly affect seed quality. The life span of seeds in hydrated storage even under the best conditions is variable among species, but is curtailed (days to months), and various approaches attempting to extend non-orthodox seed longevity are discussed. Conservation of the genetic resources by means other than seed storage is then briefly considered, with detail on the potential for, and difficulties with, cryostorage highlighted. Conclusions There appears to be little taxonomic relationship among species exhibiting the phenomenon of seed recalcitrance, suggesting that it is a derived trait, with tolerance having been lost a number of times. Although recalcitrant seededness is best represented in the mesic tropics, particularly among rainforest climax species, it does occur in cooler, drier and markedly seasonal habitats. The selective advantages of the trait are considered. PMID:17704237

  10. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    PubMed

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. © 2012 Nestec S. A.. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  11. Laboratory procedure for estimating residue dynamics of xenobiotic contaminants in a freshwater food chain

    USGS Publications Warehouse

    Johnson, B. Thomas

    1980-01-01

    A laboratory method of measuring the accumulation, transfer, elimination, and degradation of xenobiotic contaminants is described for organisms in a freshwater food chain (microorganisms, filter-feeder, and fish). A flow-through diluter-system, 14C-labeled contaminants, gas and thin-layer chromatography, autoradiography, and liquid scintillation spectrometry are used in making residue determinations. Accumulation factors and various index values are developed for measuring and estimating potential accumulation of xenobiotic contaminants by aquatic organisms. The laboratory procedure is economical, simple, reproducible, and ecologically relevant.

  12. Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB.

    PubMed

    Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena

    2009-01-01

    Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively.

  13. Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB

    PubMed Central

    Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena

    2009-01-01

    Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively. PMID:24031313

  14. Fate of lignin, cutin and suberin in soil organic matter fractions - an incubation experiment

    NASA Astrophysics Data System (ADS)

    Mueller, Carsten W.; Mueller, Kevin E.; Freeman, Katherine H.; Ingrid, Kögel-Knabner

    2010-05-01

    The turnover of soil organic matter (SOM) is controlled by its chemical composition, its spatial accessibility and the association with the mineral phase. Separation of bulk soils by physical fractionation and subsequent chemical analysis of these fractions should give insights to how compositional differences in SOM drive turnover rates of different size-defined carbon pools. The main objective of this study was to elucidate the relative abundance and recalcitrance of lignin, cutin and suberin in aggregated bulk soils and SOM fractions in the course of SOM decomposition. Bulk soils and physically-separated size fractions (sand, silt and clay) of the Ah horizon of a forest soil (under Picea abies L.Karst) were parallel incubated over a period of one year. In order to differentiate between particulate OM (POM) and mineral-associated SOM the particle size fractions were additionally separated by density after the incubation experiment. We used solid-state 13C-CPMAS NMR spectroscopy and GC-MS (after copper oxide oxidation and solvent extraction) to analyze the composition of the incubated samples. The abundance and isotopic composition (including 13C and 14C) of the respired CO2 further enabled us to monitor the dynamics of SOM mineralization. This approach allowed for differentiating between C stabilization of soil fractions due to accessibility/aggregation and to biochemical recalcitrance at different scales of resolution (GC-MS, NMR). We found a relative enrichment of alkyl C and decreasing lignin contents in the order of sand < silt < clay by 13C-NMR spectroscopy and GC-MS within soils and fractions before the incubation, resulting in increased lipid to lignin ratios with decreasing particle size. An accumulation of aliphatic C compounds was especially found for the small silt and clay sized particulate OM (POM). For the fresh particulate OM (POM) of the sand fraction a clear decay of lignin was observed in the course of the incubation experiment, indicated by decreasing C/V and increasing ac/alV ratios. A relative decrease of aliphatic C in the incubated fractions compared to the incubated bulk soils showed the preferential mineralization of less recalcitrant C compounds that were spatially inaccessible in aggregates of the bulk soil. Differences in the abundance of lignin monomers, hydroxyl acids, n-alkanols and n-fatty acid methyl esters measured by GC MS before and after the incubation indicated selective degradation and preservation patterns at the molecular scale.

  15. Mechanistic Insights into the Specificity of Human Cytosolic Sulfotransferase 2A1 (hSULT2A1) for Hydroxylated Polychlorinated Biphenyls Through the Use of Fluoro-tagged Probes

    PubMed Central

    Ekuase, E.J.; van ’t Erve, T.J.; Rahaman, A.; Robertson, L.W.; Duffel, M.W.; Luthe, G.

    2015-01-01

    Determining the relationships between the structures of substrates and inhibitors and their interactions with drug-metabolizing enzymes is of prime importance in predicting the toxic potential of new and legacy xenobiotics. Traditionally, quantitative structure activity relationship (QSAR) studies are performed with many distinct compounds. Based on the chemical properties of the tested compounds, complex relationships can be established so that models can be developed to predict toxicity of novel compounds. In this study, the use of fluorinated analogues as supplemental QSAR compounds was investigated. Substituting fluorine induces changes in electronic and steric properties of the substrate without substantially changing the chemical backbone of the substrate. In vitro assays were performed using purified human cytosolic sulfotransferase hSULT2A1 as a model enzyme. A mono-hydroxylated polychlorinated biphenyl (4-OH PCB 14) and its four possible mono-fluoro analogues were used as test compounds. Remarkable similarities were found between this approach and previously published QSAR studies for hSULT2A1. Both studies implicate the importance of dipole moment and dihedral angle as being important to PCB structure in respect to being substrates for hSULT2A1. We conclude that mono-fluorinated analogues of a target substrate can be a useful tool to study the structure activity relationships for enzyme specificity. PMID:26165989

  16. Comparison of experimental methods for determination of toxicity and biodegradability of xenobiotic compounds.

    PubMed

    Polo, A M; Tobajas, M; Sanchis, S; Mohedano, A F; Rodríguez, J J

    2011-07-01

    Different methods for determining the toxicity and biodegradability of hazardous compounds evaluating their susceptibility to biological treatment were studied. Several compounds including chlorophenols and herbicides have been evaluated. Toxicity was analyzed in terms of EC50 and by a simple respirometric procedure based on the OECD Method 209 and by the Microtox® bioassay. The values of EC50 obtained from respirometry were in all the cases higher than those from the Microtox® test. The respirometric inhibition values of chlorophenols were related well with the number of chlorine atoms and their position in the aromatic ring. In general, herbicides showed lower inhibition, being alachlor the less toxic from this criterion. For determination of biodegradability an easier and faster alternative to the OECD Method 301, with a higher biomass to substrate ratio is proposed. When this test was negative, the Zahn-Wellens one was performed in order to evaluate the inherent biodegradability. In the fast test of biodegradability, 4-chlorocatechol and 4-chlorophenol showed a complete biodegradation by an unacclimated sludge upon 48 h. These results together with their low respirometric inhibition, allow concluding that these compounds could be conveniently removed in a WWTP. Alachlor, 2,4-dichlorophenol, 2,4,6-trichlorophenol and MCPA showed a partial biodegradation upon 28 days by the Zahn-Wellens inherent biodegradability test.

  17. Utility of an appropriate reporter assay: Heliotrine interferes with GAL4/upstream activation sequence-driven reporter gene systems.

    PubMed

    Luckert, Claudia; Hessel, Stefanie; Lampen, Alfonso; Braeuning, Albert

    2015-10-15

    Reporter gene assays are widely used for the assessment of transcription factor activation following xenobiotic exposure of cells. A critical issue with such assays is the possibility of interference of test compounds with the test system, for example, by direct inhibition of the reporter enzyme. Here we show that the pyrrolizidine alkaloid heliotrine interferes with reporter signals derived from GAL4-based nuclear receptor transactivation assays by a mechanism independent of luciferase enzyme inhibition. These data highlight the necessity to conduct proper control experiments in order to avoid perturbation of reporter assays by test chemicals. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?

    PubMed

    Schröder, Peter; Lyubenova, Lyudmila; Huber, Christian

    2009-11-01

    Mixed pollution with trace elements and organic industrial compounds is characteristic for many spill areas and dumping sites. The danger for the environment and human health from such sites is large, and sustainable remediation strategies are urgently needed. Phytoremediation seems to be a cheap and environmentally sound option for the removal of unwanted compounds, and the hyperaccumulation of trace elements and toxic metals is seemingly independent from the metabolism of organic xenobiotics. However, stress reactions, ROS formation and depletion of antioxidants will also cause alterations in xenobiotic detoxification. Here, we investigate the capability of plants to detoxify chlorophenols via glutathione conjugation in a mixed pollution situation. Typha latifolia and Phragmites australis plants for the present study were grown under greenhouse conditions in experimental ponds. A Picea abies L. suspension culture was grown in a growth chamber. Cadmium sulphate, sodium arsenate and lead chloride in concentrations from 10 to 500 microM were administered to plants. Enzymes of interest for the present study were: glutathione transferase (GST), glutathione reductase, ascorbate peroxidase and peroxidase. Measurements were performed according to published methods. GST spectrophotometric assays included the model substrates CDNB, DCNB, NBC, NBoC and the herbicide Fluorodifen. Heavy metals lead to visible stress symptoms in higher plants. Besides one long-term experiment of 72 days duration, the present study shows time and concentration-dependent plant alterations already after 24 and 72 h Cd incubation. P. abies spruce cell cultures react to CdSO(4) and Na(2)HAsO(4) with an oxidative burst, similar to that observed after pathogen attack or elicitor treatment. Cd application resulted in a reduction in GSH and GSSG contents. When a heavy metal mixture containing Na(2)HAsO(4), CdSO(4) and PbCl(2) was applied to cultures, both GSH and GSSG levels declined. Incubation with 80 microM arsenic alone doubled GSSG values. Based on these results, further experiments were performed in whole plants of cattail and reed, using cadmium in Phragmites and cadmium and arsenic in Typha as inducers of stress. In Phragmites australis, GST activities for CDNB and DCNB were significantly reduced after short-term Cd exposure (24 h). In the same samples, all antioxidant enzymes increased with rising heavy metal concentrations. Typha latifolia rhizome incubation with Cd and As leads to an increase in glutathione reductase and total peroxidase activity and to a decrease in ascorbate peroxidase activity. Measurements of the same enzymes in leaves of the same plants show increased GR activities, but no change in peroxidases. GST conjugation for CDNB was depressed in both cattail rhizomes and leaves treated with Cd. After As application increased, DCNB enzyme activities were detected. T. latifolia and P. australis are powerful species for phytoremediation because they penetrate a large volume of soil with their extensive root and rhizome systems. However, an effective remediation process will depend on active detoxifying enzymes, and also on the availability of conjugation partners, e.g. glutathione and its analogues. Species-specific differences seem to exist between the regulations of primary defence enzymes like SOD, catalase, peroxidases, whereas others prefer to induce the glutathione-dependent enzymes. As long as the pollutant mix encountered is simple and dominated by heavy metals, plant defence might be sufficient. When pollution plumes contain heavy metals and organic xenobiotics at the same time, this means that part of the detoxification capacity, at least of glutathione-conjugating reactions, is withdrawn from the heavy metal front to serve other purposes. In fact, glutathione S-transferases show strong reactions in stressed plants or in the presence of heavy metals. The spruce cell culture was a perfect model system to study short-term responses on heavy metal impact. Overall, and on the canopy level, this inhibitory effect might result in a lower detoxification capacity for organic pollutants and thus interfere with phytoremediation. We present evidence that pollution with heavy metals will interfere with both the oxidative stress defence in plants, and with their ability to conjugate organic xenobiotics. Despite plant-species-dependent differences, the general reactions seem to include oxidative stress and an induction of antioxidative enzymes. Several processes seem to depend on direct binding of heavy metals to enzyme proteins, but effects on transcription are also observed. Induction of xenobiotic metabolism will be obtained at high heavy metal concentrations, when plant stress is elevated. Plants for phytoremediation of complex pollution mixtures have to be selected according to three major issues: uptake/accumulation capacity, antioxidative stress management, and detoxification/binding properties for both the trace elements and the organic xenobiotics. By way of this, it might be possible to speed up the desired remediation process and/or to obtain the desired end products. And, amongst the end products, emphasis should be laid on industrial building materials, biomass for insulation or biogas production, but not for feed and fodder. Each of these attempts would increase the chances for publicly accepted use of phytoremediation and help to cure the environment.

  19. Analysis of a Modern Hybrid and an Ancient Sugarcane Implicates a Complex Interplay of Factors in Affecting Recalcitrance to Cellulosic Ethanol Production

    PubMed Central

    Ricci-Silva, Maria Esther; Rhys Williams, Thomas Christopher; Alves Peçanha, Diego; Contin Ventrella, Marília; Rencoret, Jorge; Ralph, John; Pereira Barbosa, Márcio Henrique; Loureiro, Marcelo

    2015-01-01

    Abundant evidence exists to support a role for lignin as an important element in biomass recalcitrance. However, several independent studies have also shown that factors apart from lignin are also relevant and overall, the relative importance of different recalcitrance traits remains in dispute. In this study we used two genetically distant sugarcane genotypes, and performed a correlational study with the variation in anatomical parameters, cell wall composition, and recalcitrance factors between these genotypes. In addition we also tracked alterations in these characteristics in internodes at different stages of development. Significant differences in the development of the culm between the genotypes were associated with clear differential distributions of lignin content and composition that were not correlated with saccharification and fermentation yield. Given the strong influence of the environment on lignin content and composition, we hypothesized that sampling within a single plant could allow us to more easily interpret recalcitrance and changes in lignin biosynthesis than analysing variations between different genotypes with extensive changes in plant morphology and culm anatomy. The syringyl/guaiacyl (S/G) ratio was higher in the oldest internode of the modern genotype, but S/G ratio was not correlated with enzymatic hydrolysis yield nor fermentation efficiency. Curiously we observed a strong positive correlation between ferulate ester level and cellulose conversion efficiency. Together, these data support the hypothesis that biomass enzymatic hydrolysis recalcitrance is governed by a quantitative heritage rather than a single trait. PMID:26252208

  20. Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater.

    PubMed

    Sekaran, G; Karthikeyan, S; Gupta, V K; Boopathy, R; Maharaja, P

    2013-03-01

    Xenobiotic compounds are used in considerable quantities in leather industries besides natural organic and inorganic compounds. These compounds resist biological degradation and thus they remain in the treated wastewater in the unaltered molecular configurations. Immobilization of organisms in carrier matrices protects them from shock load application and from the toxicity of chemicals in bulk liquid phase. Mesoporous activated carbon (MAC) has been considered in the present study as the carrier matrix for the immobilization of Bacillus sp. isolated from Effluent Treatment Plant (ETP) employed for the treatment of wastewater containing sulphonated phenolic (SP) compounds. Temperature, pH, concentration, particle size and mass of MAC were observed to influence the immobilization behavior of Bacillus sp. The percentage immobilization of Bacillus sp. was the maximum at pH 7.0, temperature 20 °C and at particle size 300 μm. Enthalpy, free energy and entropy of immobilization were -46.9 kJ mol(-1), -1.19 kJ mol(-1) and -161.36 JK(-1)mol(-1) respectively at pH 7.0, temperature 20 °C and particle size 300 μm. Higher values of ΔH(0) indicate the firm bonding of the Bacillus sp. in MAC. Degradation of aqueous sulphonated phenolic compound by Bacillus sp. immobilized in MAC followed pseudo first order rate kinetics with rate constant 1.12 × 10(-2) min(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The effect of DDT and its metabolite (DDE) on prostaglandin secretion from epithelial cells and on contractions of the smooth muscle of the bovine oviduct in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wrobel, Michal H.; Mlynarczuk, Jaroslaw; Kotwica, Jan, E-mail: janko@pan.olsztyn.pl

    2012-03-01

    The insecticide DDT and its metabolite (DDE), due to their lipolytic nature and resistance to biodegradation, are accumulated in the living tissues. In cows, DDT and DDE were found to affect prostaglandin (PG) secretion from the endometrium and contractions of the myometrium. In this study, the impact of both xenobiotics (0.1, 1, 10 or 100 ng/ml) on the function of epithelial cells and muscle strips of bovine oviducts from 1 to 5 day of the oestrous cycle was examined. Therefore the concentration of PGE2 and PGFM (a metabolite of PGF2α) in culture media, mRNA expression of genes involved in PGsmore » synthesis in epithelial cells and the force and amplitude of strips contractions were measured after 2 and 24 or 48 h of incubation. Neither DDT nor DDE affected the viability of cells after 48 h (P > 0.05). Both DDT and DDE increased the concentrations of PGFM in culture medium and secretion of PGE2 after only 2 h of cell culture (P < 0.05). Similar effects were seen for the influence of DDE on amount of PGFM after 48 h, while DDT decreased secretion of PGE2 (P < 0.05). DDT after 2 h increased (P < 0.05) mRNA expression of PGF2α synthase (PGFS), while both xenobiotics decreased (P < 0.05) mRNA expression of cyclooxygenase-2 (COX-2) after 24 h. DTT also increased the force of isthmus contractions after 2 h, as did both xenobiotics after 48 h (P < 0.05). Moreover, after 2 and 48 h, DDE stimulated the amplitude of contractions of the isthmus as well as the ampulla, (P < 0.05). The effect of both compounds on oviduct contractions was diminished by indomethacin, which blocks PG synthesis. We conclude that oviductal secretion of prostaglandins is affected, by DDT and DDE. The influence of these xenobiotics on PGF2α and PGE2 secretion and ratio may be part of the mechanism by which both DDT and its metabolite disturb the contractions of oviductal muscle. -- Highlights: ► DDT and its metabolite – DDE are accumulated in the living tissues. ► The insecticides affected PGF2α and PGE2 release from epithelial cells of oviduct. ► They also stimulated markedly the contractions of oviductal strips. ► Prostaglandins were involved in the effect of insecticides on oviduct function.« less

  2. Application of surrogates, indicators, and high-resolution mass spectrometry to evaluate the efficacy of UV processes for attenuation of emerging contaminants in water.

    PubMed

    Merel, Sylvain; Anumol, Tarun; Park, Minkyu; Snyder, Shane A

    2015-01-23

    In response to water scarcity, strategies relying on multiple processes to turn wastewater effluent into potable water are being increasingly considered by many cities. In such context, the occurrence of contaminants as well as their fate during treatment processes is a major concern. Three analytical approaches where used to characterize the efficacy of UV and UV/H2O2 processes on a secondary wastewater effluent. The first analytical approach assessed bulk organic parameters or surrogates before and after treatment, while the second analytical approach measured the removal of specific indicator compounds. Sixteen trace organic contaminants were selected due to their relative high concentration and detection frequency over eight monitoring campaigns. While their removal rate ranges from approximately 10 to >90%, some of these compounds can be used to gauge process efficacy (or failure). The third analytical approach assessed the fate of unknown contaminants through high-resolution time-of-flight (TOF) mass spectrometry with advanced data processing and demonstrated the occurrence of several thousand organic compounds in the water. A heat map clearly evidenced compounds as recalcitrant or transformed by the UV processes applied. In addition, those chemicals with similar fate were grouped together into clusters to identify new indicator compounds. In this manuscript, each approach is evaluated with advantages and disadvantages compared. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Application of surrogates, indicators, and high-resolution mass spectrometry to evaluate the efficacy of UV processes for attenuation of emerging contaminants in water

    PubMed Central

    Merel, Sylvain; Anumol, Tarun; Park, Minkyu; Snyder, Shane A.

    2016-01-01

    In response to water scarcity, strategies relying on multiple processes to turn wastewater effluent into potable water are being increasingly considered by many cities. In such context, the occurrence of contaminants as well as their fate during treatment processes is a major concern. Three analytical approaches where used to characterize the efficacy of UV and UV/H2O2 processes on a secondary wastewater effluent. The first analytical approach assessed bulk organic parameters or surrogates before and after treatment, while the second analytical approach measured the removal of specific indicator compounds. Sixteen trace organic contaminants were selected due to their relative high concentration and detection frequency over eight monitoring campaigns. While their removal rate ranges from approximately 10 to >90%, some of these compounds can be used to gauge process efficacy (or failure). The third analytical approach assessed the fate of unknown contaminants through high-resolution time-of-flight (TOF) mass spectrometry with advanced data processing and demonstrated the occurrence of several thousand organic compounds in the water. A heat map clearly evidenced compounds as recalcitrant or transformed by the UV processes applied. In addition, those chemicals with similar fate were able to be grouped together into clusters to identify new indicator compounds. In this manuscript, each approach is evaluated with advantages and disadvantages compared. PMID:25262385

  4. Temperature responses of individual soil organic matter components

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojuan; Simpson, Myrna J.

    2008-09-01

    Temperature responses of soil organic matter (SOM) remain unclear partly due to its chemical and compositional heterogeneity. In this study, the decomposition of SOM from two grassland soils was investigated in a 1-year laboratory incubation at six different temperatures. SOM was separated into solvent extractable compounds, suberin- and cutin-derived compounds, and lignin-derived monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components have distinct chemical structures and stabilities and their decomposition patterns over the course of the experiment were fitted with a two-pool exponential decay model. The stability of SOM components was also assessed using geochemical parameters and kinetic parameters derived from model fitting. Compared with the solvent extractable compounds, a low percentage of lignin monomers partitioned into the labile SOM pool. Suberin- and cutin-derived compounds were poorly fitted by the decay model, and their recalcitrance was shown by the geochemical degradation parameter (ω - C16/∑C16), which was observed to stabilize during the incubation. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of lignin monomers exhibited higher Q10 values than the decomposition of solvent extractable compounds. Our study shows that Q10 values derived from soil respiration measurements may not be reliable indicators of temperature responses of individual SOM components.

  5. Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment.

    PubMed

    Broséus, R; Vincent, S; Aboulfadl, K; Daneshvar, A; Sauvé, S; Barbeau, B; Prévost, M

    2009-10-01

    This study investigates the oxidation of pharmaceuticals, endocrine disrupting compounds and pesticides during ozonation applied in drinking water treatment. In the first step, second-order rate constants for the reactions of selected compounds with molecular ozone (k(O3)) were determined in bench-scale experiments at pH 8.10: caffeine (650+/-22M(-1)s(-1)), progesterone (601+/-9M(-1)s(-1)), medroxyprogesterone (558+/-9M(-1)s(-1)), norethindrone (2215+/-76M(-1)s(-1)) and levonorgestrel (1427+/-62M(-1)s(-1)). Compared to phenolic estrogens (estrone, 17beta-estradiol, estriol and 17alpha-ethinylestradiol), the selected progestogen endocrine disruptors reacted far slower with ozone. In the second part of the study, bench-scale experiments were conducted with surface waters spiked with 16 target compounds to assess their oxidative removal using ozone and determine if bench-scale results would accurately predict full-scale removal data. Overall, the data provided evidence that ozone is effective for removing trace organic contaminants from water with ozone doses typically applied in drinking water treatment. Ozonation removed over 80% of caffeine, pharmaceuticals and endocrine disruptors within the CT value of about 2 mg min L(-1). As expected, pesticides were found to be the most recalcitrant compounds to oxidize. Caffeine can be used as an indicator compound to gauge the efficacy of ozone treatment.

  6. Chemical physiological and morphological studies of feral baltic salmon (Salmo salar) suffering from abnormal fry mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norrgren, L.; Andersson, T.; Bergqvist, P.A.

    In 1974, abnormally high mortality was recorded among yolk-sac fry of Baltic salmon (Salmo salar) originating from feral females manually stripped and fertilized with milt from feral males. The cause of this mortality, designated M74, is unknown. The hypothesis is that xenobiotic compounds responsible for reproduction failure in higher vertebrates in the Baltic Sea also interfere with reproduction in Baltic salmon. The significance of M74 should not be underestimated, because the syndrome has caused up to 75% yearly mortality of developing Baltic salmon yolk-sac larvae in a fish hatchery dedicated to production of smolt during the last two decades. Themore » author cannot exclude the possibility that only a relatively low number of naturally spawned eggs develop normally because of M74. No individual pollutant has been shown to be responsible for the development of M74 syndrome. However, a higher total body burden of organochlorine substances may be responsible for the M74 syndrome. The presence of induced hepatic cytochrome P450 enzymes in both yolk-sac fry suffering from M74 and adult feral females producing offspring affected by M74 supports this hypothesis. In addition, the P450 enzyme activity in offspring from feral fish is higher than the activity in yolk-sac fry from hatchery-raised fish, suggesting that feral Baltic salmon are influenced by organic xenobiotics.« less

  7. Polymorphisms in xenobiotic metabolizing genes, intakes of heterocyclic amines and red meat, and postmenopausal breast cancer

    PubMed Central

    Lee, Hae-Jeung; Wu, Kana; Cox, David G.; Hunter, David; Hankinson, Susan E.; Willett, Walter C.; Sinha, Rashmi; Cho, Eunyoung

    2013-01-01

    Heterocyclic amines (HCAs) are mutagenic compounds generated when meats are cooked at high temperature and for long duration. The findings from previous studies on the relation between HCAs and breast cancer are inconsistent, possibly due to genetic variations in the enzymes metabolizing HCAs. To evaluate whether the associations of intakes of estimated HCAs, meat-derived mutagenicity (MDM), and red meat with risk of postmenopausal breast cancer were modified by N-acetyltransferase 2 (NAT2) acetylator genotype or cytochrome P450 1A2 -164 A/C (CYP1A2) polymorphism, we conducted a nested case-control study with 579 cases and 981 controls within a prospective cohort, the Nurses’ Health Study (NHS). HCAs and MDM intakes were derived using a cooking method questionnaire administered in 1996. NAT2 acetylator genotype, the CYP1A2 polymorphism, and intakes of HCAs, MDM, and red meat were not associated with risk of postmenopausal breast cancer. There was also no interaction between NAT2 acetylator genotype or CYP1A2 polymorphism and HCAs and MDM and red meat intake in relation to breast cancer. These results do not support the hypothesis that genetic polymorphisms of xenobiotic enzymes involved in the metabolism of HCAs may modify the associations between intakes of red meat or meat-related mutagens and breast cancer risk. PMID:24099317

  8. In vitro study of DNA Adduct 8-OHdG Formation by using Bisphenol A in Calf Thymus DNA and 2’-Deoxyguanosine

    NASA Astrophysics Data System (ADS)

    Budiawan; Cahaya Dani, Intan; Bakri, Ridla; Handayani, Sri; Ratna Dewi, Evi

    2018-01-01

    The in vitro study of DNA Adduct 8-OHdG Formation due to BisphenolA (BPA) as xenobiotics has been conducted by using calf thymus DNA and 2’deoxyguanosine. The method of study was conducted by incubating calf thymus DNA and 2’dG with compounds trigger to radicals in the variation of pH (7.4 and 8.4), temperature (37°C and 60°C), and BPA concentrations (2 ppm and 10 ppm). To represent the work of CYP 450 enzyme in metabolic process of xenobiotics in the body and the effect of metal presence to the formation of radicals that can lead to 8-OHdG formation, we used iron(II) solution and also fenton reagent (Fe(II) and H2O2). The DNA used has 1.8 purity ratio (checked at λ260/λ280 by using Spectrophotometry UV-Vis). The results by using HPLC method showed that BPA could interact with DNA and DNA base (represent as calf thymus and 2’dG) and potentially induced 8-OHdG formation. The presence of iron(II) metal and Fenton reagent also induced the higher 8-OHdG formation. The higher of pH, temperature and concentrations also lead to 8-OHdG formation (ranger between 4 - 70 ppb).

  9. 2,4,8-trihydroxybicyclo [3.2.1]octan-3-one scavenges free radicals and protects against xenobiotic-induced cytotoxicity.

    PubMed

    Srivastava, Anup; Jagan Mohan Rao, L; Shivanandappa, T

    2012-03-01

    Currently, there is a great deal of interest in the study of natural compounds with free-radical-scavenging activity because of their potential role in maintaining human health and preventing diseases. In this paper, we report the antioxidant and cytoprotective properties of 2,4,8-trihydroxybicyclo [3.2.1]octan-3-one (TBO) isolated from the aqueous extract of Decalepis hamiltonii roots. Our results show that TBO is a potent scavenger of superoxide (O(2)·-), hydroxyl (·OH), nitric oxide (·NO) and lipid peroxide (LOO·) - physiologically relevant free radicals with IC(50) values in nmolar (42-281) range. TBO also exhibited concentration-dependent secondary antioxidant activities such as reducing power, metal-chelating activity and inhibition of protein carbonylation. Further, TBO at nmolar concentration prevented CuSO(4)-induced human LDL oxidation. Apart from the in vitro free-radical-scavenging activity, TBO demonstrated cytoprotective activity in primary hepatocytes and Ehrlich ascites tumour (EAT) cells against oxidative-stress-inducing xenobiotics. The mechanism of cytoprotective action involved maintaining the intracellular glutathione (GSH), scavenging of reactive oxygen species (ROS) and inhibiting lipid peroxidation (LPO). Based on the results, it is suggested that TBO is a novel bioactive molecule with implications in both prevention and amelioration of diseases involving oxidative stress as well as in the general well-being.

  10. Evodia alkaloids suppress gluconeogenesis and lipogenesis by activating the constitutive androstane receptor.

    PubMed

    Yu, Lushan; Wang, Zhangting; Huang, Minmin; Li, Yingying; Zeng, Kui; Lei, Jinxiu; Hu, Haihong; Chen, Baian; Lu, Jing; Xie, Wen; Zeng, Su

    2016-09-01

    The constitutive androstane receptor (CAR) is a key sensor in xenobiotic detoxification and endobiotic metabolism. Increasing evidence suggests that CAR also plays a role in energy metabolism by suppressing the hepatic gluconeogenesis and lipogenesis. In this study, we investigated the effects of two evodia alkaloids, rutaecarpine (Rut) and evodiamine (Evo), on gluconeogenesis and lipogenesis through their activation of the human CAR (hCAR). We found that both Rut and Evo exhibited anti-lipogenic and anti-gluconeogenic effects in the hyperlipidemic HepG2 cells. Both compounds can potently activate hCAR, and treatment of cells with hCAR antagonists reversed the anti-lipogenic and anti-gluconeogenic effects of Rut and Evo. The anti-gluconeogenic effect of Rut and Evo was due to the CAR-mediated inhibition of the recruitment of forkhead box O1 (FoxO1) and hepatocyte nuclear factor 4α (HNF4α) onto the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene promoters. In vivo, we showed that treatment of mice with Rut improved glucose tolerance in a CAR-dependent manner. Our results suggest that the evodia alkaloids Rut and Evo may have a therapeutic potential for the treatment of hyperglycemia and type 2 diabetes. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Genomewide Analysis of Aryl Hydrocarbon Receptor Binding Targets Reveals an Extensive Array of Gene Clusters that Control Morphogenetic and Developmental Programs

    PubMed Central

    Sartor, Maureen A.; Schnekenburger, Michael; Marlowe, Jennifer L.; Reichard, John F.; Wang, Ying; Fan, Yunxia; Ma, Ci; Karyala, Saikumar; Halbleib, Danielle; Liu, Xiangdong; Medvedovic, Mario; Puga, Alvaro

    2009-01-01

    Background The vertebrate aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates cellular responses to environmental polycyclic and halogenated compounds. The naive receptor is believed to reside in an inactive cytosolic complex that translocates to the nucleus and induces transcription of xenobiotic detoxification genes after activation by ligand. Objectives We conducted an integrative genomewide analysis of AHR gene targets in mouse hepatoma cells and determined whether AHR regulatory functions may take place in the absence of an exogenous ligand. Methods The network of AHR-binding targets in the mouse genome was mapped through a multipronged approach involving chromatin immunoprecipitation/chip and global gene expression signatures. The findings were integrated into a prior functional knowledge base from Gene Ontology, interaction networks, Kyoto Encyclopedia of Genes and Genomes pathways, sequence motif analysis, and literature molecular concepts. Results We found the naive receptor in unstimulated cells bound to an extensive array of gene clusters with functions in regulation of gene expression, differentiation, and pattern specification, connecting multiple morphogenetic and developmental programs. Activation by the ligand displaced the receptor from some of these targets toward sites in the promoters of xenobiotic metabolism genes. Conclusions The vertebrate AHR appears to possess unsuspected regulatory functions that may be potential targets of environmental injury. PMID:19654925

  12. Risk assessment for selected xenobiotics by bioassay methods with higher plants

    NASA Astrophysics Data System (ADS)

    Günther, Petra; Pestemer, Wilfried

    1990-05-01

    Different bioassays with higher plants were approved for use in a bioassay procedure for testing of xenobiotics according to the German Chemicals Act. Selected environmental pollutants (atrazine, cadmium chloride, 2,6-dichlorobenzonitrile, pentachlorophenol, potassium dichromate, thiourea), all from a list of reference chemicals, were tested with these methods. Dose-response curves for growth of oats and turnips were evaluated in soil and vermiculite (nonsorptive substrate), and availability to plants was calculated by comparing the EC50 values for one chemical in both substrates. The most active chemical was atrazine, followed by 2,6-dichlorobenzonitrile, pentachlorophenol, potassium dichromate, cadmium chloride, and thiourea. The least available compound to plants was pentachlorophenol, tested with turnips ( Brassica rapa var. rapa). The strongest inhibition of germination, demonstrated in an in vitro assay with garden cress ( Lepidium sativum), was found with 2,6-dichlorobenzonitrile, the lowest with atrazine. The effect of an extended exposure of the plants to the chemicals was evaluated in a long-term bioassay with oats ( Avena sativa) in hydroponic culture. Several dose-response curves during the growing period were derived. It was found that the EC50 values for atrazine and thiourea decreased markedly during the first four weeks; thereafter the changes were much smaller. As an overall conclusion, a bioassay procedure is proposed that can be included in the graduated plan recommended by the German Chemicals Act.

  13. SULT1A1 copy number variation: ethnic distribution analysis in an Indian population.

    PubMed

    Almal, Suhani; Padh, Harish

    2017-11-01

    Cytosolic sulfotransferases (SULTs) are phase II detoxification enzymes involved in metabolism of numerous xenobiotics, drugs and endogenous compounds. Interindividual variation in sulfonation capacity is important for determining an individual's response to xenobiotics. SNPs in SULTs, mainly SULT1A1 have been associated with cancer risk and also with response to therapeutic agents. Copy number variation (CNVs) in SULT1A1 is found to be correlated with altered enzyme activity. This short report primarily focuses on CNV in SULT1A1 and its distribution among different ethnic populations around the globe. Frequency distribution of SULT1A1 copy number (CN) in 157 healthy Indian individuals was assessed using florescent-based quantitative PCR assay. A range of 1 to >4 copies, with a frequency of SULT1A1 CN =2 (64.9%) the highest, was observed in our (Indian) population. Upon comparative analysis of frequency distribution of SULT1A1 CN among diverse population groups, a statistically significant difference was observed between Indians (our data) and African-American (AA) (p = 0.0001) and South African (Tswana) (p < 0.0001) populations. Distribution of CNV in the Indian population was found to be similar to that in European-derived populations of American and Japanese. CNV of SULT1A1 varies significantly among world populations and may be one of the determinants of health and diseases.

  14. Analysis of Lethality and Malformations During Zebrafish (Danio rerio) Development.

    PubMed

    Raghunath, Azhwar; Perumal, Ekambaram

    2018-01-01

    The versatility offered by zebrafish (Danio rerio) makes it a powerful and an attractive vertebrate model in developmental toxicity and teratogenicity assays. Apart from the newly introduced chemicals as drugs, xenobiotics also induce abnormal developmental abnormalities and congenital malformations in living organisms. Over the recent decades, zebrafish embryo/larva has emerged as a potential tool to test teratogenicity potential of these chemicals. Zebrafish responds to compounds as mammals do as they share similarities in their development, metabolism, physiology, and signaling pathways with that of mammals. The methodology used by the different scientists varies enormously in the zebrafish embryotoxicity test. In this chapter, we present methods to assess lethality and malformations during zebrafish development. We propose two major malformations scoring systems: binomial and relative morphological scoring systems to assess the malformations in zebrafish embryos/larvae. Based on the scoring of the malformations, the test compound can be classified as a teratogen or a nonteratogen and its teratogenic potential is evaluated.

  15. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants

    PubMed Central

    Remy, Estelle; Duque, Paula

    2014-01-01

    Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin. PMID:24910617

  16. Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1

    PubMed Central

    Chun, Young-Jin; Kim, Donghak

    2016-01-01

    Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health. PMID:27123158

  17. Fungistatic activity of Zanthoxylum rhoifolium Lam. bark extracts against fungal plant pathogens and investigation on mechanism of action in Botrytis cinerea.

    PubMed

    Carotenuto, Gennaro; Carrieri, Raffaele; Tarantino, Paola; Alfieri, Mariaevelina; Leone, Antonella; De Tommasi, Nunziatina; Lahoz, Ernesto

    2015-01-01

    Plant-derived compounds are emerging as an alternative choice to synthetic fungicides. Chloroform-methanol extract, obtained from the bark of Zanthoxylum rhoifolium, a member of Rutaceae, showed a fungistatic effect on Botrytis cinerea, Sclerotinia sclerotiorum, Alternaria alternata, Colletotrichum gloeosporioides and Clonostachys rosea, when added to the growth medium at different concentrations. A fraction obtained by gel separation and containing the alkaloid O-Methylcapaurine showed significant fungistatic effect against B. cinerea and S. sclerotiorum, two of the most destructive phytopathogenic fungi. The underlying mechanism of such an inhibition was further investigated in B. cinerea, a fungus highly prone to develop fungicide resistance, by analysing the expression levels of a set of genes (BcatrB, P450, CYP51 and TOR). O-Methylcapaurine inhibited the expression of all the analysed genes. In particular, the expression of BcatrB gene, encoding a membrane drug transporter involved in the resistance to a wide range of xenobiotic compounds, was strongly inhibited (91%).

  18. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology.

    PubMed

    dos Santos, André B; Cervantes, Francisco J; van Lier, Jules B

    2007-09-01

    Dyes are natural and xenobiotic compounds that make the world more beautiful through coloured substances. However, the release of coloured wastewaters represents a serious environmental problem and a public health concern. Colour removal, especially from textile wastewaters, has been a big challenge over the last decades, and up to now there is no single and economically attractive treatment that can effectively decolourise dyes. In the passed years, notable achievements were made in the use of biotechnological applications to textile wastewaters not only for colour removal but also for the complete mineralization of dyes. Different microorganisms such as aerobic and anaerobic bacteria, fungi and actinomycetes have been found to catalyse dye decolourisation. Moreover, promising results were obtained in accelerating dye decolourisation by adding mediating compounds and/or changing process conditions to high temperatures. This paper provides a critical review on the current technologies available for decolourisation of textile wastewaters and it suggests effective and economically attractive alternatives.

  19. Chemical modification of L-glutamine to alpha-amino glutarimide on autoclaving facilitates Agrobacterium infection of host and non-host plants: A new use of a known compound

    PubMed Central

    2011-01-01

    Background Accidental autoclaving of L-glutamine was found to facilitate the Agrobacterium infection of a non host plant like tea in an earlier study. In the present communication, we elucidate the structural changes in L-glutamine due to autoclaving and also confirm the role of heat transformed L-glutamine in Agrobacterium mediated genetic transformation of host/non host plants. Results When autoclaved at 121°C and 15 psi for 20 or 40 min, L-glutamine was structurally modified into 5-oxo proline and 3-amino glutarimide (α-amino glutarimide), respectively. Of the two autoclaved products, only α-amino glutarimide facilitated Agrobacterium infection of a number of resistant to susceptible plants. However, the compound did not have any vir gene inducing property. Conclusions We report a one pot autoclave process for the synthesis of 5-oxo proline and α-amino glutarimide from L-glutamine. Xenobiotic detoxifying property of α-amino glutarimide is also proposed. PMID:21624145

  20. Application of a multivariate analysis method for non-target screening detection of persistent transformation products during the cork boiling wastewater treatment.

    PubMed

    Ponce-Robles, L; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S; Perez-Estrada, L A

    2018-08-15

    Cork boiling wastewater is a very complex mixture of naturally occurring compounds leached and partially oxidized during the boiling cycles. The effluent generated is recalcitrant and could cause a significant environmental impact. Moreover, if this untreated industrial wastewater enters a municipal wastewater treatment plant it could hamper or reduce the efficiency of most activated sludge degradation processes. Despite the efforts to treat the cork boiling wastewater for reusing purposes, is still not well-known how safe these compounds (original compounds and oxidation by-products) will be. The purpose of this work was to apply an HPLC-high resolution mass spectrometry method and subsequent non-target screening using a multivariate analysis method (PCA), to explore relationships between samples (treatments) and spectral features (masses or compounds) that could indicate changes in formation, degradation or polarity, during coagulation/flocculation (C/F) and photo-Fenton (PhF). Although, most of the signal intensities were reduced after the treatment line, 16 and 4 new peaks were detected to be formed after C/F and PhF processes respectively. The use of this non-target approach showed to be an effective strategy to explore, classify and detect transformation products during the treatment of an unknown complex mixture. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis.

    PubMed

    Alemanno, L; Ramos, T; Gargadenec, A; Andary, C; Ferriere, N

    2003-10-01

    Cocoa breeders and growers continue to face the problem of high heterogeneity between individuals derived from one progeny. Vegetative propagation by somatic embryogenesis could be a way to increase genetic gains in the field. Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. This study was conducted to investigate the phenolic composition of cocoa flowers (the explants used to achieve somatic embryogenesis) and how it changes during the process, by means of histochemistry and conventional chemical techniques. In flowers, all parts contained polyphenolics but their locations were specific to the organ considered. After placing floral explants in vitro, the polyphenolic content was qualitatively modified and maintained in the calli throughout the culture process. Among the new polyphenolics, the three most abundant were isolated and characterized by 1H- and 13C-NMR. They were hydroxycinnamic acid amides: N-trans-caffeoyl-l-DOPA or clovamide, N-trans-p-coumaroyl-l-tyrosine or deoxiclovamide, and N-trans-caffeoyl-l-tyrosine. The same compounds were found also in fresh, unfermented cocoa beans. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. Given the antioxidant nature of these compounds, they could reflect the stress status of the tissues.

  2. Localization and Identification of Phenolic Compounds in Theobroma cacao L. Somatic Embryogenesis

    PubMed Central

    ALEMANNO, L.; RAMOS, T.; GARGADENEC, A.; ANDARY, C.; FERRIERE, N.

    2003-01-01

    Cocoa breeders and growers continue to face the problem of high heterogeneity between individuals derived from one progeny. Vegetative propagation by somatic embryogenesis could be a way to increase genetic gains in the field. Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. This study was conducted to investigate the phenolic composition of cocoa flowers (the explants used to achieve somatic embryogenesis) and how it changes during the process, by means of histochemistry and conventional chemical techniques. In flowers, all parts contained polyphenolics but their locations were specific to the organ considered. After placing floral explants in vitro, the polyphenolic content was qualitatively modified and maintained in the calli throughout the culture process. Among the new polyphenolics, the three most abundant were isolated and characterized by 1H‐ and 13C‐NMR. They were hydroxycinnamic acid amides: N‐trans‐caffeoyl‐l‐DOPA or clovamide, N‐trans‐p‐coumaroyl‐l‐tyrosine or deoxiclovamide, and N‐trans‐caffeoyl‐l‐tyrosine. The same compounds were found also in fresh, unfermented cocoa beans. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non‐embryogenic conditions. Given the antioxidant nature of these compounds, they could reflect the stress status of the tissues. PMID:12933367

  3. Integrated ozone and biotreatment of pulp mill effluent and changes in biodegradability and molecular weight distribution of organic compounds.

    PubMed

    Bijan, Leila; Mohseni, Madjid

    2005-10-01

    The overall effectiveness of integrating ozonation with biological treatment on the biodegradability enhancement and recalcitrant organic matter (ROM) removal from pulp mill alkaline bleach plant effluent was investigated. Ozonation was performed in a semi-batch bubble column reactor at pH of 11 and 4.5. Batch biological treatment was conducted in shake flasks. Samples obtained during the treatments were monitored for BOD5, COD, TOC, and molecular weight distribution. At an ozone dosage of 0.7-0.8 mg O3/mL wastewater, integrated treatment showed about 30% higher TOC mineralization compared to individual ozonation or biotreatment. Ozone treatment enhanced the biodegradability of the effluent (monitored as 21% COD reduction and 13% BOD5 enhancement), allowing for a higher removal of pollutants. The conversion of high molecular weight (HMW) to low molecular weight (LMW) compounds was an important factor in the overall biodegradability enhancement of the alkaline effluent. The overall biodegradability of the LMW compounds did not change over the course of ozonation, but it increased from 5% to 50% (measured as COD removal) for the HMW portion. Ozonation at pH of 11 was more effective than that at pH of 4.5 in terms of generating more biodegradable compounds.

  4. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass.

    PubMed

    Mäkelä, Miia R; Marinović, Mila; Nousiainen, Paula; Liwanag, April J M; Benoit, Isabelle; Sipilä, Jussi; Hatakka, Annele; de Vries, Ronald P; Hildén, Kristiina S

    2015-01-01

    The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Mode of action from dose-response microarray data: case study using 10 environmental chemicals

    EPA Science Inventory

    Ligand-activated nuclear receptors regulate many biological processes through complex interactions with biological macromolecules. Certain xenobiotics alter nuclear receptor signaling through direct or indirect interactions. Defining the mode of action of such xenobiotics is di...

  6. Xenobiotic metabolism in the fourth dimension: PARtners in time.

    PubMed

    Green, Carla B; Takahashi, Joseph S

    2006-07-01

    A significant portion of the transcriptome in mammals, including the PAR bZIP transcription factors DBP, HLF, and TEF, is under circadian clock control. In this issue of Cell Metabolism, Gachon and colleagues (Gachon et al., 2006) show that disruption of these three genes in mice alters gene expression patterns of many proteins involved in drug metabolism and in liver and kidney responses to xenobiotic agents. Triple mutant mice have severe physiological deficits, including increased hypersensitivity to xenobiotic agents and premature aging, highlighting the profound effect the circadian clock has on this important response system.

  7. Computer-aided prediction of xenobiotic metabolism in the human body

    NASA Astrophysics Data System (ADS)

    Bezhentsev, V. M.; Tarasova, O. A.; Dmitriev, A. V.; Rudik, A. V.; Lagunin, A. A.; Filimonov, D. A.; Poroikov, V. V.

    2016-08-01

    The review describes the major databases containing information about the metabolism of xenobiotics, including data on drug metabolism, metabolic enzymes, schemes of biotransformation and the structures of some substrates and metabolites. Computational approaches used to predict the interaction of xenobiotics with metabolic enzymes, prediction of metabolic sites in the molecule, generation of structures of potential metabolites for subsequent evaluation of their properties are considered. The advantages and limitations of various computational methods for metabolism prediction and the prospects for their applications to improve the safety and efficacy of new drugs are discussed. Bibliography — 165 references.

  8. Xenobiotics removal by adsorption in the context of tertiary treatment: a mini review.

    PubMed

    Tahar, Alexandre; Choubert, Jean-Marc; Coquery, Marina

    2013-08-01

    Many xenobiotics, including several pharmaceuticals and pesticides, are poorly treated in domestic wastewater treatment plants. Adsorption processes, such as with activated carbons, could be a solution to curb their discharge into the aquatic environment. As adsorbent-like activated carbon is known to be expensive, identifying promising alternative adsorbent materials is a key challenge for efficient yet affordable xenobiotic removal from wastewaters. As part of the effort to address this challenge, we surveyed the literature on pharmaceutical and pesticide xenobiotics and built a database compiling data from 38 scientific publications covering 65 xenobiotics and 58 materials. Special focus was given to the relevance and comparability of the data to the characteristics of the adsorbent materials used and to the operating conditions of the batch tests inventoried. This paper gives an in-depth overview of the adsorption capacities of various adsorbents. The little data on alternative adsorbent materials, especially for the adsorption of pharmaceuticals, makes it difficult to single out any one activated carbon alternative capable of adsorbing pesticides and pharmaceuticals at the tertiary stage of treatment. There is a pressing need for further lab-scale experiments to investigate the tertiary treatment of discharged effluents. We conclude with recommendations on how future data should best be used and interpreted.

  9. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides.

    PubMed

    Poupardin, Rodolphe; Reynaud, Stéphane; Strode, Clare; Ranson, Hilary; Vontas, John; David, Jean-Philippe

    2008-05-01

    The effect of exposure of Aedes aegypti larvae to sub-lethal doses of the pyrethroid insecticide permethrin, the organophosphate temephos, the herbicide atrazine, the polycyclic aromatic hydrocarbon fluoranthene and the heavy metal copper on their subsequent tolerance to insecticides, detoxification enzyme activities and expression of detoxification genes was investigated. Bioassays revealed a moderate increase in larval tolerance to permethrin following exposure to fluoranthene and copper while larval tolerance to temephos increased moderately after exposure to atrazine, copper and permethrin. Cytochrome P450 monooxygenases activities were induced in larvae exposed to permethrin, fluoranthene and copper while glutathione S-transferase activities were induced after exposure to fluoranthene and repressed after exposure to copper. Microarray screening of the expression patterns of all detoxification genes following exposure to each xenobiotic with the Aedes Detox Chip identified multiple genes induced by xenobiotics and insecticides. Further expression studies using real-time quantitative PCR confirmed the induction of multiple CYP genes and one carboxylesterase gene by insecticides and xenobiotics. Overall, this study reveals the potential of xenobiotics found in polluted mosquito breeding sites to affect their tolerance to insecticides, possibly through the cross-induction of particular detoxification genes. Molecular mechanisms involved and impact on mosquito control strategies are discussed.

  10. Natural genetic variability reduces recalcitrance in poplar

    DOE PAGES

    Bhagia, Samarthya; Muchero, Wellington; Kumar, Rajeev; ...

    2016-05-20

    Here, lignin content and structure are known to affect recalcitrance of lignocellulosic biomass to chemical/biochemical conversion. Previously, we identified rare Populus trichocarpa natural variants with significantly reduced lignin content. Because reduced lignin content may lower recalcitrance, 18 rare variants along with 4 comparators, and BESC standard Populus was analyzed for composition of structural carbohydrates and lignin. Sugar yields from these plants were measured at 5 process conditions: one for just enzymatic hydrolysis without pretreatment and four via our combined high-throughput hot water pretreatment and co-hydrolysis (HTPH) technique.

  11. Application of Horizontal Flow Treatment Wells for In Situ Treatment of MTBE-Contaminated GroundWater

    DTIC Science & Technology

    2004-03-01

    R eg ul at or y R e q ui re m en ts In...SatOxCOxCperCperkdispperfOxCOxsK OxCXDfcd αε2 1 (41) perper per per Ckdt dC r ⋅−== (42) ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ +− ⋅ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − +− ⋅⋅⋅−== OxCOxsK...Chlorinated and Recalcitrant Compounds, Battelle Press, Columbus, OH, 2002. Baker, R . J., E. W. Best, and A. L. Baehr, Used Motor Oil as a Source of

  12. Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia.

    PubMed

    Bousselmi, L; Geissen, S U; Schroeder, H

    2004-01-01

    Based on results from bench-scale flow-film-reactors (FFR) and aerated cascade photoreactors, a solar catalytic pilot plant has been built at the site of a textile factory. This plant has an illuminated surface area of 50 m2 and is designed for the treatment of 1 m3 h(-1) of wastewater. The preliminary results are presented and compared with a bench-scale FFR using textile wastewater and dichloroacetic acid. Equivalent degradation kinetics were obtained and it was demonstrated that the solar catalytic technology is able to remove recalcitrant compounds and color. However, on-site optimization is still necessary for wastewater reuse and for an economic application.

  13. Vacuolar status and water relations in embryonic axes of recalcitrant Aesculus hippocastanum seeds during stratification and early germination.

    PubMed

    Obroucheva, Natalie V; Lityagina, Snezhana V; Novikova, Galina V; Sin'kevich, Irina A

    2012-01-01

    In tropical recalcitrant seeds, their rapid transition from shedding to germination at high hydration level is of physiological interest but difficult to study because of the time constraint. In recalcitrant horse chestnut seeds produced in central Russia, this transition is much longer and extends through dormancy and dormancy release. This extended time period permits studies of the water relations in embryonic axes during the long recalcitrant period in terms of vacuolar status and water transport. Horse chestnut (Aesculus hippocastanum) seeds sampled in Moscow were stratified in cold wet sand for 4 months. Vacuole presence and development in embryonic axes were examined by vital staining, light and electron microscopy. Aquaporins and vacuolar H(+)-ATPase were identified immunochemically. Water channel operation was tested by water inflow rate. Vacuolar acid invertase was estimated in terms of activity and electrophoretic properties. Throughout the long recalcitrant period after seed shedding, cells of embryonic axes maintained active vacuoles and a high water content. Preservation of enzyme machinery in vacuoles was evident from retention of invertase activity, substrate specificity, molecular mass and subunit composition. Plasmalemma and tonoplast aquaporins and the E subunit of vacuolar H(+)-ATPase were also present. In non-dormant seeds prior to growth initiation, vacuoles enlarged at first in hypocotyls, and then in radicles, with their biogenesis being similar. Vacuolation was accompanied by increasing invertase activity, leading to sugar accumulation and active osmotic functioning. After growth initiation, vacuole enlargement was favoured by enhanced water inflow through water channels formed by aquaporins. Maintenance of high water content and desiccation sensitivity, as well as preservation of active vacuoles in embryonic axes after shedding, can be considered a specific feature of recalcitrant seeds, overlooked when studying tropical recalcitrants due to the short duration. The retained physiological activity of vacuoles allows them to function rapidly as dormancy is lost and when external conditions permit. Cell vacuolation precedes cell elongation in both hypocotyl and radicle, and provides impetus for rapid germination.

  14. Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass

    DOE PAGES

    Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; ...

    2017-01-03

    The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. In this study, we determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand themore » fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years.« less

  15. The yeast Hsp70 Ssa1 is a sensor for activation of the heat shock response by thiol-reactive compounds

    PubMed Central

    Wang, Yanyu; Gibney, Patrick A.; West, James D.; Morano, Kevin A.

    2012-01-01

    The heat shock transcription factor HSF1 governs the response to heat shock, oxidative stresses, and xenobiotics through unknown mechanisms. We demonstrate that diverse thiol-reactive molecules potently activate budding yeast Hsf1. Hsf1 activation by thiol-reactive compounds is not consistent with the stresses of misfolding of cytoplasmic proteins or cytotoxicity. Instead, we demonstrate that the Hsp70 chaperone Ssa1, which represses Hsf1 in the absence of stress, is hypersensitive to modification by a thiol-reactive probe. Strikingly, mutation of two conserved cysteine residues to serine in Ssa1 rendered cells insensitive to Hsf1 activation and subsequently induced thermotolerance by thiol-reactive compounds, but not by heat shock. Conversely, substitution with the sulfinic acid mimic aspartic acid resulted in constitutive Hsf1 activation. Cysteine 303, located within the nucleotide-binding domain, was found to be modified in vivo by a model organic electrophile, demonstrating that Ssa1 is a direct target for thiol-reactive molecules through adduct formation. These findings demonstrate that Hsp70 is a proximal sensor for Hsf1-mediated cytoprotection and can discriminate between two distinct environmental stressors. PMID:22809627

  16. Biodegradation of pentafluorosulfanyl-substituted aminophenol in Pseudomonas spp.

    PubMed

    Saccomanno, Marta; Hussain, Sabir; O'Connor, Neil K; Beier, Petr; Somlyay, Mate; Konrat, Robert; Murphy, Cormac D

    2018-06-01

    The pentafluorosulfanyl (SF 5 -) substituent conveys properties that are beneficial to drugs and agrochemicals. As synthetic methodologies improve the number of compounds containing this group will expand and these chemicals may be viewed as emerging pollutants. As many microorganisms can degrade aromatic xenobiotics, we investigated the catabolism of SF 5 -substituted aminophenols by bacteria and found that some Pseudomonas spp. can utilise these compounds as sole carbon and energy sources. GC-MS analysis of the culture supernatants from cultures grown in 5-(pentafluorosulfanyl) 2-aminophenol demonstrated the presence of the N-acetylated derivative of the starting substrate and 4-(pentafluorosulfanyl)catechol. Biotransformation experiments with re-suspended cells were also conducted and fluorine-19 NMR analyses of the organic extract and aqueous fraction from suspended cell experiments revealed new resonances of SF 5 -substituted intermediates. Supplementation of suspended cell cultures with yeast extract dramatically improved the degradation of the substrate as well as the release of fluoride ion. 4-(Pentafluorosulfanyl)catechol was shown to be a shunt metabolite and toxic to some of the bacteria. This is the first study to demonstrate that microorganisms can biodegrade SF 5 -substituted aromatic compounds releasing fluoride ion, and biotransform them generating a toxic metabolite.

  17. Fungal Unspecific Peroxygenases Oxidize the Majority of Organic EPA Priority Pollutants

    PubMed Central

    Karich, Alexander; Ullrich, René; Scheibner, Katrin; Hofrichter, Martin

    2017-01-01

    Unspecific peroxygenases (UPOs) are secreted fungal enzymes with promiscuity for oxygen transfer and oxidation reactions. Functionally, they represent hybrids of P450 monooxygenases and heme peroxidases; phylogenetically they belong to the family of heme-thiolate peroxidases. Two UPOs from the basidiomycetous fungi Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) converted 35 out of 40 compounds listed as EPA priority pollutants, including chlorinated benzenes and their derivatives, halogenated biphenyl ethers, nitroaromatic compounds, polycyclic aromatic hydrocarbons (PAHs) and phthalic acid derivatives. These oxygenations and oxidations resulted in diverse products and—if at all—were limited for three reasons: (i) steric hindrance caused by multiple substitutions or bulkiness of the compound as such (e.g., hexachlorobenzene or large PAHs), (ii) strong inactivation of aromatic rings (e.g., nitrobenzene), and (iii) low water solubility (e.g., complex arenes). The general outcome of our study is that UPOs can be considered as extracellular counterparts of intracellular monooxygenases, both with respect to catalyzed reactions and catalytic versatility. Therefore, they should be taken into consideration as a relevant biocatalytic detoxification and biodegradation tool used by fungi when confronted with toxins, xenobiotics and pollutants in their natural environments. PMID:28848501

  18. Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes characterized in several bacteria and eukaryotic organisms. We report a comprehensive phylogenetic analysis employing an exhaustive dataset of NAT-homologous sequences recovered through inspection of 2445 genomes. We describe ...

  19. ESTROGEN INDUCED VITELLOGENIN MRNA AND PROTEIN IN SHEEPSHEAD MINNOW (CYPRINODON VARIEGATUS)

    EPA Science Inventory

    Many environmentally persistent xenobiotic chemicals appear to disrupt normal endocrine function by acting as ligands for endogenous steroid receptors, including the estrogen receptor. Xenobiotics that bind to the estrogen receptor may elicit several effects, one of which is acti...

  20. Time-course comparison of xenobiotic activators of CAR and PPAR{alpha} in mouse liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Pamela K.; Woods, Courtney G.; ExxonMobil Biomedical Sciences, Annandale, NJ

    Constitutive androstane receptor (CAR) and peroxisome proliferator activated receptor (PPAR){alpha} are transcription factors known to be primary mediators of liver effects, including carcinogenesis, by phenobarbital-like compounds and peroxisome proliferators, respectively, in rodents. Many similarities exist in the phenotypes elicited by these two classes of agents in rodent liver, and we hypothesized that the initial transcriptional responses to the xenobiotic activators of CAR and PPAR{alpha} will exhibit distinct patterns, but at later time-points these biological pathways will converge. In order to capture the global transcriptional changes that result from activation of these nuclear receptors over a time-course in the mouse liver,more » microarray technology was used. First, differences in basal expression of liver genes between C57Bl/6J wild-type and Car-null mice were examined and 14 significantly differentially expressed genes were identified. Next, mice were treated with phenobarbital (100 mg/kg by gavage for 24 h, or 0.085% w/w diet for 7 or 28 days), and liver gene expression changes with regards to both time and treatment were identified. While several pathways related to cellular proliferation and metabolism were affected by phenobarbital in wild-type mice, no significant changes in gene expression were found over time in the Car-nulls. Next, we determined commonalities and differences in the temporal response to phenobarbital and WY-14,643, a prototypical activator of PPAR {alpha}. Gene expression signatures from livers of wild-type mice C57Bl6/J mice treated with PB or WY-14,643 were compared. Similar pathways were affected by both compounds; however, considerable time-related differences were present. This study establishes common gene expression fingerprints of exposure to activators of CAR and PPAR{alpha} in rodent liver and demonstrates that despite similar phenotypic changes, molecular pathways differ between classes of chemical carcinogens.« less

  1. Genetic enhancement of microsomal epoxide hydrolase improves metabolic detoxification but impairs cerebral blood flow regulation.

    PubMed

    Marowsky, Anne; Haenel, Karen; Bockamp, Ernesto; Heck, Rosario; Rutishauser, Sibylle; Mule, Nandkishor; Kindler, Diana; Rudin, Markus; Arand, Michael

    2016-12-01

    Microsomal epoxide hydrolase (mEH) is a detoxifying enzyme for xenobiotic compounds. Enzymatic activity of mEH can be greatly increased by a point mutation, leading to an E404D amino acid exchange in its catalytic triad. Surprisingly, this variant is not found in any vertebrate species, despite the obvious advantage of accelerated detoxification. We hypothesized that this evolutionary avoidance is due to the fact that the mEH plays a dualistic role in detoxification and control of endogenous vascular signaling molecules. To test this, we generated mEH E404D mice and assessed them for detoxification capacity and vascular dynamics. In liver microsomes from these mice, turnover of the xenobiotic compound phenanthrene-9,10-oxide was four times faster compared to WT liver microsomes, confirming accelerated detoxification. mEH E404D animals also showed faster metabolization of a specific class of endogenous eicosanoids, arachidonic acid-derived epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs). Significantly higher DHETs/EETs ratios were found in mEH E404D liver, urine, plasma, brain and cerebral endothelial cells compared to WT controls, suggesting a broad impact of the mEH mutant on endogenous EETs metabolism. Because EETs are strong vasodilators in cerebral vasculature, hemodynamics were assessed in mEH E404D and WT cerebral cortex and hippocampus using cerebral blood volume (CBV)-based functional magnetic resonance imaging (fMRI). Basal CBV 0 levels were similar between mEH E404D and control mice in both brain areas. But vascular reactivity and vasodilation in response to the vasodilatory drug acetazolamide were reduced in mEH E404D forebrain compared to WT controls by factor 3 and 2.6, respectively. These results demonstrate a critical role for mEH E404D in vasodynamics and suggest that deregulation of endogenous signaling pathways is the undesirable gain of function associated with the E404D variant.

  2. Interaction of xenobiotics with estrogen receptors α and β and a putative plasma sex hormone-binding globulin from channel catfish (Ictalurus punctatus)

    USGS Publications Warehouse

    Gale, William L.; Patino, Reynaldo; Maule, Alec G.

    2004-01-01

    Estrogens are important regulators of physiological functions. Although environmental contaminants (xenoestrogens) which interfere with estrogen signaling are of increasing concern, there is only limited information about their ability to interact with estrogen-binding proteins (SHBG) or receptors (ER). Recombinant ER?? and ?? were obtained after transient transfection of COS-7 cells with channel catfish ER cDNA. Plasma from adult female channel catfish was the source of SHBG. Tritiated estradiol ( 3H-E2) was used in standard radioligand-binding assays to characterize the binding properties of channel catfish SHBG (ccfSHBG) and to estimate the inhibition constants for various estrogenic compounds. Binding of 3H-E2 to ccfSHBG was saturable and of high affinity with a Kd (??SE) of 1.9??0.14nM and a Bmax of 14.3??2.4pmol/mg protein (n=3 assays). Additionally, ccfSHBG displayed binding specificity for androgens and estrogens. Endosulfan, 4-nonylphenol, and 4-octylphenol displaced 3H-E2 binding to ccfSHBG albeit only at very high concentrations, whereas dieldrin and atrazine showed little displacement activity even at the highest concentrations used. The synthetic estrogen ethynylestradiol had higher affinity than E2 for ccfSHBG. This finding differs from results with human and rainbow trout SHBG. The alkylphenolic compounds (4-octylphenol and 4-nonylphenol) displayed some ability to displace 3H-E2 binding from ER?? and ?? at high concentrations, but dieldrin and atrazine had little binding activity for both ER subtypes and endosulfan for ER??. The xenobiotics tested generally showed equivalent or greater affinity for ER?? than ER??, whereas natural estrogens had much greater affinity for ER?? than ER??. These observations suggest that results of studies using fish tissue ER extracts must be interpreted with caution, since both ER subtypes may be present, and that the binding of xenoestrogens to SHBG must be taken into account for proper assessment of endocrine disruption caused by environmental contaminants.

  3. A Novel, Ecologically Relevant, Highly Preferred, and Non-invasive Means of Oral Substance Administration for Rodents

    PubMed Central

    Sobolewski, Marissa; Allen, Joshua L.; Morris-Schaffer, Keith; Klocke, Carolyn; Conrad, Katherine; Cory-Slechta, Deborah A.

    2017-01-01

    Prenatal stress and nutrition are well-known to alter a broad range of physiological systems, notably metabolic, endocrine and neurobehavioral function. Commonly used methods for oral administration of xenobiotics can, by acting as a stressor or altering normal nutrition intake, alter these physiological systems as well. Taken together, oral administration methods may unintentionally introduce confounding physiological effects that can mask or enhance toxicity of xenobiotics, particularly if they share biological targets. Consequently, it should be preferable to develop alternative methods without these potential confounds. The aim of this study was to determine the suitability of mealworms as an alternative treat-based method to deliver xenobiotics via the orogastric route. Accurate oral administration is contingent on motivation and preference; mice reliably preferred mealworms over wafer cookie treats. Further, ingestion of wafer cookies significantly increased mouse blood glucose levels, whereas unaltered mealworms produced no such change. Mealworms functioned effectively to orally administer glucose, as glucose-spiked mealworms produced a rise in blood glucose equivalent to the ingestion of the wafer cookie. Mealworms did not interfere with the physiological function of orally administered d-amphetamine, as both mealworm and oral gavage administered d-amphetamine showed similar alterations in locomotor behavior (mice did not fully consume d-amphetamine-dosed cookies and thus could not be compared). Collectively, the findings indicate that mealworms are a preferred and readily consumed treat, which importantly mimics environmental-relevant nutritional intake, and mealworms per se do not alter glucose metabolic pathways. Additionally, mealworms accurately delivered xenobiotics into blood circulation and did not interfere with the physiological function of administered xenobiotics. Thus mealworm-based oral administration may be a preferable and accurate route of xenobiotic administration that eliminates physiological alterations associated with other methods of delivery. PMID:27094606

  4. A novel, ecologically relevant, highly preferred, and non-invasive means of oral substance administration for rodents.

    PubMed

    Sobolewski, Marissa; Allen, Joshua L; Morris-Schaffer, Keith; Klocke, Carolyn; Conrad, Katherine; Cory-Slechta, Deborah A

    2016-01-01

    Prenatal stress and nutrition are well-known to alter a broad range of physiological systems, notably metabolic, endocrine and neurobehavioral function. Commonly used methods for oral administration of xenobiotics can, by acting as a stressor or altering normal nutrition intake, alter these physiological systems as well. Taken together, oral administration methods may unintentionally introduce confounding physiological effects that can mask or enhance toxicity of xenobiotics, particularly if they share biological targets. Consequently, it should be preferable to develop alternative methods without these potential confounds. The aim of this study was to determine the suitability of mealworms as an alternative treat-based method to deliver xenobiotics via the orogastric route. Accurate oral administration is contingent on motivation and preference; mice reliably preferred mealworms over wafer cookie treats. Further, ingestion of wafer cookies significantly increased mouse blood glucose levels, whereas unaltered mealworms produced no such change. Mealworms functioned effectively to orally administer glucose, as glucose-spiked mealworms produced a rise in blood glucose equivalent to the ingestion of the wafer cookie. Mealworms did not interfere with the physiological function of orally administered d-amphetamine, as both mealworm and oral gavage administered d-amphetamine showed similar alterations in locomotor behavior (mice did not fully consume d-amphetamine-dosed cookies and thus could not be compared). Collectively, the findings indicate that mealworms are a preferred and readily consumed treat, which importantly mimics environmental-relevant nutritional intake, and mealworms per se do not alter glucose metabolic pathways. Additionally, mealworms accurately delivered xenobiotics into blood circulation and did not interfere with the physiological function of administered xenobiotics. Thus mealworm-based oral administration may be a preferable and accurate route of xenobiotic administration that eliminates physiological alterations associated with other methods of delivery. Copyright © 2016. Published by Elsevier Inc.

  5. Application of TAM III to study sensitivity of soil organic matter degradation to temperature

    NASA Astrophysics Data System (ADS)

    Vikegard, Peter; Barros, Nieves; Piñeiro, Verónica

    2014-05-01

    Traditionally, studies of soil biodegradation are based on CO2 dissipation rates. CO2 is a product of aerobic degradation of labile organic substrates like carbohydrates. That limits the biodegradation concept to just one of the soil organic matter fractions. This feature is responsible for some problems to settle the concept of soil organic matter (SOM) recalcitrance and for controversial results defining sensitivity of SOM to temperature. SOM consists of highly complex macromolecules constituted by fractions with different chemical nature and redox state affecting the chemical nature of biodegradation processes. Biodegradation of fractions more reduced than carbohydrates take place through metabolic pathways that dissipate less CO2 than carbohydrate respiration, that may not dissipate CO2, or that even may uptake CO2. These compounds can be considered more recalcitrant and with lower turnover times than labile SOM just because they are degraded at lower CO2 rates that may be just a consequence of the metabolic path. Nevertheless, decomposition of every kind of organic substrate always releases heat. For this reason, the measurement of the heat rate by calorimetry yields a more realistic measurement of the biodegradation of the SOM continuum. TAM III is one of the most recent calorimeters designed for directly measuring in real time the heat rate associated with any degradation process. It is designed as a multichannel system allowing the concomitant measurement of to up 24 samples at isothermal conditions or through a temperature scanning mode from 18 to 100ºC, allowing the continous measure of any sample at controlled non-isothermal conditions. The temperature scanning mode was tested in several soil samples collected at different depths to study their sensitivity to temperature changes from 18 to 35 ºC calculating the Q10 and the activation energy (EA) by the Arrhenius equation. It was attempted to associate the obtained EA values with the soil thermal properties determined by differential scanning calorimetry and thermogravimetric analysis. The EA values obtained ranged from -30 to -48 kJ/mol increasing with soil depth and with higher heat of combustion values of the samples obtained by DSC, suggesting that increased SOM recalcitrance involves higher investment of energy by the microbial population to degrade SOM. The calorimetrically determined Q10 values were observed to decrease with soil depth and higher heat of combustión, supporting the hypothesis, as given by different authors, that higher SOM recalcitrance can be associated with a decreased sensitivity to temperature as in agreement with the increasing trend of the activation energy

  6. Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities.

    PubMed

    Girardi, Cristobal; Greve, Josephine; Lamshöft, Marc; Fetzer, Ingo; Miltner, Anja; Schäffer, Andreas; Kästner, Matthias

    2011-12-30

    While antibiotics are frequently found in the environment, their biodegradability and ecotoxicological effects are not well understood. Ciprofloxacin inhibits active and growing microorganisms and therefore can represent an important risk for the environment, especially for soil microbial ecology and microbial ecosystem services. We investigated the biodegradation of (14)C-ciprofloxacin in water and soil following OECD tests (301B, 307) to compare its fate in both systems. Ciprofloxacin is recalcitrant to biodegradation and transformation in the aqueous system. However, some mineralisation was observed in soil. The lower bioavailability of ciprofloxacin seems to reduce the compound's toxicity against microorganisms and allows its biodegradation. Moreover, ciprofloxacin strongly inhibits the microbial activities in both systems. Higher inhibition was observed in water than in soil and although its antimicrobial potency is reduced by sorption and aging in soil, ciprofloxacin remains biologically active over time. Therefore sorption does not completely eliminate the effects of this compound. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Lignin-Derived Thioacidolysis Dimers: Reevaluation, New Products, Authentication, and Quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Fengxia; Lu, Fachuang; Regner, Matt

    2017-01-26

    Lignin structural studies play an essential role both in understanding the development of plant cell walls and for valorizing lignocellulosics as renewable biomaterials. Dimeric products released by selectively cleaving β–aryl ether linkages between lignin units reflect the distribution of recalcitrant lignin units, but have been neither absolutely defined nor quantitatively determined. Here in this work, 12 guaiacyl-type thioacidolysis dimers were identified and quantified using newly synthesized standards. One product previously attributed to deriving from β–1-coupled units was established as resulting from β–5 units, correcting an analytical quandary. Another longstanding dilemma, that no β–β dimers were recognized in thioacidolysis products frommore » gymnosperms, was resolved with the discovery of two such authenticated compounds. Finally, individual GC response factors for each standard compound allowed rigorous quantification of dimeric products released from softwood lignins, affording insight into the various interunit-linkage distributions in lignins and thereby guiding the valorization of lignocellulosics.« less

  8. Lignin-Derived Thioacidolysis Dimers: Reevaluation, New Products, Authentication, and Quantification.

    PubMed

    Yue, Fengxia; Lu, Fachuang; Regner, Matt; Sun, Runcang; Ralph, John

    2017-03-09

    Lignin structural studies play an essential role both in understanding the development of plant cell walls and for valorizing lignocellulosics as renewable biomaterials. Dimeric products released by selectively cleaving β-aryl ether linkages between lignin units reflect the distribution of recalcitrant lignin units, but have been neither absolutely defined nor quantitatively determined. Here, 12 guaiacyl-type thioacidolysis dimers were identified and quantified using newly synthesized standards. One product previously attributed to deriving from β-1-coupled units was established as resulting from β-5 units, correcting an analytical quandary. Another longstanding dilemma, that no β-β dimers were recognized in thioacidolysis products from gymnosperms, was resolved with the discovery of two such authenticated compounds. Individual GC response factors for each standard compound allowed rigorous quantification of dimeric products released from softwood lignins, affording insight into the various interunit-linkage distributions in lignins and thereby guiding the valorization of lignocellulosics. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Membrane bioreactor treatment of a simulated metalworking fluid wastewater containing ethylenediaminetetraacetic acid and dicyclohexylamine.

    PubMed

    Anderson, James E; Lofton, Tiffany V; Kim, Byung R; Mueller, Sherry A

    2009-04-01

    Membrane bioreactors (MBRs) have been installed at automotive plants to treat metalworking fluid (MWF) wastewaters, which are known to contain toxic and/or recalcitrant organic compounds. A laboratory study was conducted to evaluate treatment of a simulated wastewater prepared from a semisynthetic MWF, which contains two such compounds, dicyclohexylamine (DCHA) and ethylenediaminetetraacetic acid (EDTA). Primary findings were as follows: During stable operating periods, almost all chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and EDTA were removed (by > 96%). During somewhat unstable periods, COD removal was still extremely robust, but removal of EDTA and TKN were sensitive to prolonged episodes of low dissolved oxygen. Nitrogen mass balance suggested 30 to 40% TKN removal by assimilation and 60 to 70% by nitrification (including up to 34% TKN removal via subsequent denitrification). Dicyclohexylamine appeared to be readily biodegraded. Maximum DCHA and EDTA degradation rates between pH 7 and 8 were found. An Arthrobacter sp. capable of growth on DCHA as the sole source of carbon and energy was isolated.

  10. Cometabolic bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, Terry C.

    2009-02-15

    Cometabolic bioremediation is probably the most under appreciated bioremediation strategy currently available. Cometabolism strategies stimulate only indigenous microbes with the ability to degrade the contaminant and cosubstrate e.g. methane, propane, toluene and others. This highly targeted stimulation insures that only those microbes that can degrade the contaminant are targeted, thus reducing amendment costs, well and formation plugging, etc. Cometabolic bioremediation has been used on some of the most recalcitrant contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine, etc. Methanotrophs have been demonstrated to produce methane monooxygense, an oxidase that can degrade over 300 compounds. Cometabolic bioremediation also has the advantagemore » of being able to degrade contaminants to trace concentrations, since the biodegrader is not dependent on the contaminant for carbon or energy. Increasingly we are finding that in order to protect human health and the environment that we must remediate to lower and lower concentrations, especially for compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only possibility that we have to bioremediate some contaminants.« less

  11. Light without substrate amendment: the bacterial luciferase gene cassette as a mammalian bioreporter

    NASA Astrophysics Data System (ADS)

    Close, Dan M.; Xu, Tingting; Smartt, Abby E.; Jegier, Pat; Ripp, Steven A.; Sayler, Gary S.

    2011-06-01

    Bioluminescent production represents a facile method for bioreporter detection in mammalian tissues. The lack of endogenous bioluminescent reactions in these tissues allows for high signal to noise ratios even at low signal strength compared to fluorescent signal detection. While the luciferase enzymes commonly employed for bioluminescent detection are those from class Insecta (firefly and click beetle luciferases), these are handicapped in that they require concurrent administration of a luciferin compound to elicit a bioluminescent signal. The bacterial luciferase (lux) gene cassette offers the advantages common to other bioluminescent proteins, but is simultaneously capable of synthesizing its own luciferin substrates using endogenously available cellular compounds. The longstanding shortcoming of the lux cassette has been its recalcitrance to function in the mammalian cellular environment. This paper will present an overview of the work completed to date to overcome this limitation and provide examples of mammalian lux-based bioreporter technologies that could provide the framework for advanced, biomedically relevant real-time sensor development.

  12. Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant.

    PubMed

    Kurumbang, Nagendra Prasad; Dvorak, Pavel; Bendl, Jaroslav; Brezovsky, Jan; Prokop, Zbynek; Damborsky, Jiri

    2014-03-21

    Anthropogenic halogenated compounds were unknown to nature until the industrial revolution, and microorganisms have not had sufficient time to evolve enzymes for their degradation. The lack of efficient enzymes and natural pathways can be addressed through a combination of protein and metabolic engineering. We have assembled a synthetic route for conversion of the highly toxic and recalcitrant 1,2,3-trichloropropane to glycerol in Escherichia coli, and used it for a systematic study of pathway bottlenecks. Optimal ratios of enzymes for the maximal production of glycerol, and minimal toxicity of metabolites were predicted using a mathematical model. The strains containing the expected optimal ratios of enzymes were constructed and characterized for their viability and degradation efficiency. Excellent agreement between predicted and experimental data was observed. The validated model was used to quantitatively describe the kinetic limitations of currently available enzyme variants and predict improvements required for further pathway optimization. This highlights the potential of forward engineering of microorganisms for the degradation of toxic anthropogenic compounds.

  13. Characterisation of biodegradation capacities of environmental microflorae for diesel oil by comprehensive two-dimensional gas chromatography.

    PubMed

    Penet, Sophie; Vendeuvre, Colombe; Bertoncini, Fabrice; Marchal, Rémy; Monot, Frédéric

    2006-12-01

    In contaminated soils, efficiency of natural attenuation or engineered bioremediation largely depends on biodegradation capacities of the local microflorae. In the present study, the biodegradation capacities of various microflorae towards diesel oil were determined in laboratory conditions. Microflorae were collected from 9 contaminated and 10 uncontaminated soil samples and were compared to urban wastewater activated sludge. The recalcitrance of hydrocarbons in tests was characterised using both gas chromatography (GC) and comprehensive two-dimensional gas chromatography (GCxGC). The microflorae from contaminated soils were found to exhibit higher degradation capacities than those from uncontaminated soil and activated sludge. In cultures inoculated by contaminated-soil microflorae, 80% of diesel oil on an average was consumed over 4-week incubation compared to only 64% in uncontaminated soil and 60% in activated sludge cultures. As shown by GC, n-alkanes of diesel oil were totally utilised by each microflora but differentiated degradation extents were observed for cyclic and branched hydrocarbons. The enhanced degradation capacities of impacted-soil microflorae resulted probably from an adaptation to the hydrocarbon contaminants but a similar adaptation was noted in uncontaminated soils when conifer trees might have released natural hydrocarbons. GCxGC showed that a contaminated-soil microflora removed all aromatics and all branched alkanes containing less than C(15). The most recalcitrant compounds were the branched and cyclic alkanes with 15-23 atoms of carbon.

  14. RNA isolation from loquat and other recalcitrant woody plants with high quality and yield.

    PubMed

    Morante-Carriel, Jaime; Sellés-Marchart, Susana; Martínez-Márquez, Ascensión; Martínez-Esteso, María José; Luque, Ignacio; Bru-Martínez, Roque

    2014-05-01

    RNA isolation is difficult in plants that contain large amounts of polysaccharides and polyphenol compounds. To date, no commercial kit has been developed for the isolation of high-quality RNA from tissues with these characteristics, especially for fruit. The common protocols for RNA isolation are tedious and usually result in poor yields when applied to recalcitrant plant tissues. Here an efficient RNA isolation protocol based on cetyltrimethylammonium bromide (CTAB) and two successive precipitations with 10 M lithium chloride (LiCl) was developed specifically for loquat fruits, but it was proved to work efficiently in other tissues of loquat and woody plants. The RNA isolated by this improved protocol was not only of high purity and integrity (A260/A280 ratios ranged from 1.90 to 2.04 and A260/A230 ratios were>2.0) but also of high yield (up to 720 μg on average [coefficient of variation=21%] total RNA per gram fresh tissue). The protocol was tested on loquat fruit (different stages of development, postharvest, ripening, and bruising), leaf, root, flower, stem, and bud; quince fruit and root; grapevine cells in liquid culture; and rose petals. The RNA obtained with this method is amenable to enzymatic treatments and can be efficiently applied for research on gene characterization, expression, and function. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. In Silico Identification of Bioremediation Potential: Carbamazepine and Other Recalcitrant Personal Care Products.

    PubMed

    Aukema, Kelly G; Escalante, Diego E; Maltby, Meghan M; Bera, Asim K; Aksan, Alptekin; Wackett, Lawrence P

    2017-01-17

    Emerging contaminants are principally personal care products not readily removed by conventional wastewater treatment and, with an increasing reliance on water recycling, become disseminated in drinking water supplies. Carbamazepine, a widely used neuroactive pharmaceutical, increasingly escapes wastewater treatment and is found in potable water. In this study, a mechanism is proposed by which carbamazepine resists biodegradation, and a previously unknown microbial biodegradation was predicted computationally. The prediction identified biphenyl dioxygenase from Paraburkholderia xenovorans LB400 as the best candidate enzyme for metabolizing carbamazepine. The rate of degradation described here is 40 times greater than the best reported rates. The metabolites cis-10,11-dihydroxy-10,11-dihydrocarbamazepine and cis-2,3-dihydroxy-2,3-dihydrocarbamazepine were demonstrated with the native organism and a recombinant host. The metabolites are considered nonharmful and mitigate the generation of carcinogenic acridine products known to form when advanced oxidation methods are used in water treatment. Other recalcitrant personal care products were subjected to prediction by the Pathway Prediction System and tested experimentally with P. xenovorans LB400. It was shown to biodegrade structurally diverse compounds. Predictions indicated hydrolase or oxygenase enzymes catalyzed the initial reactions. This study highlights the potential for using the growing body of enzyme-structural and genomic information with computational methods to rapidly identify enzymes and microorganisms that biodegrade emerging contaminants.

  16. Electrochemistry Combined with LC-HRMS: Elucidating Transformation Products of the Recalcitrant Pharmaceutical Compound Carbamazepine Generated by the White-Rot Fungus Pleurotus ostreatus.

    PubMed

    Seiwert, Bettina; Golan-Rozen, Naama; Weidauer, Cindy; Riemenschneider, Christina; Chefetz, Benny; Hadar, Yitzhak; Reemtsma, Thorsten

    2015-10-20

    Transformation products (TPs) of environmental pollutants must be identified to understand biodegradation processes and reaction mechanisms and to assess the efficiency of treatment processes. The combination of oxidation by an electrochemical cell (EC) with analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is a rapid approach for the determination and identification of TPs generated by natural microbial processes. Electrochemically generated TPs of the recalcitrant pharmaceutical carbamazepine (CBZ) were used for a target screening for TPs formed by the white-rot fungus Pleurotus ostreatus. EC with LC-HRMS facilitates detection and identification of TPs because the product spectrum is not superimposed with biogenic metabolites and elevated substrate concentrations can be used. A group of 10 TPs formed in the microbial process were detected by target screening for molecular ions, and another 4 were detected by screening on the basis of characteristic fragment ions. Three of these TPs have never been reported before. For CBZ, EC with LC-HRMS was found to be more effective than software tools in defining targets for the screening and faster than nontarget screening alone in TP identification. EC with LC-HRMS may be used to feed MS databases with spectra of possible TPs of larger numbers of environmental contaminants for an efficient target screening.

  17. Microbial transformation of the Deepwater Horizon oil spill—past, present, and future perspectives

    PubMed Central

    Kimes, Nikole E.; Callaghan, Amy V.; Suflita, Joseph M.; Morris, Pamela J.

    2014-01-01

    The Deepwater Horizon blowout, which occurred on April 20, 2010, resulted in an unprecedented oil spill. Despite a complex effort to cap the well, oil and gas spewed from the site until July 15, 2010. Although a large proportion of the hydrocarbons was depleted via natural processes and human intervention, a substantial portion of the oil remained unaccounted for and impacted multiple ecosystems throughout the Gulf of Mexico. The depth, duration and magnitude of this spill were unique, raising many questions and concerns regarding the fate of the hydrocarbons released. One major question was whether or not microbial communities would be capable of metabolizing the hydrocarbons, and if so, by what mechanisms and to what extent? In this review, we summarize the microbial response to the oil spill as described by studies performed during the past four years, providing an overview of the different responses associated with the water column, surface waters, deep-sea sediments, and coastal sands/sediments. Collectively, these studies provide evidence that the microbial response to the Deepwater Horizon oil spill was rapid and robust, displaying common attenuation mechanisms optimized for low molecular weight aliphatic and aromatic hydrocarbons. In contrast, the lack of evidence for the attenuation of more recalcitrant hydrocarbon components suggests that future work should focus on both the environmental impact and metabolic fate of recalcitrant compounds, such as oxygenated oil components. PMID:25477866

  18. Management of recalcitrant Trichomonas vaginalis in pregnancy: a case report.

    PubMed

    Tayal, Sarup

    2016-02-01

    A case report of a pregnant woman with recalcitrant Trichomonas vaginalis is described. This case was managed with suppressive treatment with metronidazole during pregnancy and cleared with paromomycin vaginal treatment after delivery. © The Author(s) 2015.

  19. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods

    Treesearch

    G. S. Wang; X. J. Pan; Junyong Zhu; Roland Gleisner; D. Rockwood

    2009-01-01

    This study demonstrates sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust bioconversion of hardwoods. With only about 4% sodium bisulfite charge on aspen and 30-min pretreatment at temperature 180[...

  20. Live-cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress

    EPA Science Inventory

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular t...

  1. Priority organic pollutants in the urban water cycle (Toulouse, France).

    PubMed

    Sablayrolles, C; Breton, A; Vialle, C; Vignoles, C; Montréjaud-Vignoles, M

    2011-01-01

    Application of the European Water Framework Directive requires Member States to have better understanding of the quality of surface waters in order to improve knowledge of priority pollutants. Xenobiotics in urban receiving waters are an emerging concern. This study proposes a screening campaign of nine molecular species of xenobiotics in a separated sewer system. Five sites were investigated over one year in Toulouse (France) using quantitative monitoring. For each sample, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, nonylphenols, diethelhexylphthalate, linear alkylbenzene sulphonates, methyl tert-butylether, total hydrocarbons, estradiol and ethinylestradiol were analysed. Ground, rain and roof collected water concentrations are similar to treated wastewater levels. Run-off water was the most polluted of the five types investigated, discharged into the aquatic environment. The wastewater treatment plant reduced xenobiotic concentrations by 66% before discharge into the environment. Regarding environmental quality standards, observed concentrations in waters were in compliance with standards. The results show that xenobiotic concentrations are variable over time and space in all urban water compartments.

  2. Differential Regulation of CYP3A4 and CYP3A5 and Its Implication in Drug Discovery

    PubMed Central

    Lolodi, Ogheneochukome; Wang, Yue-Ming; Wright, William C.; Chen, Taosheng

    2017-01-01

    Cancer cells use several mechanisms to resist the cytotoxic effects of drugs, resulting in tumor progression and invasion. One such mechanism capitalizes on the body’s natural defense against xenobiotics by increasing the rate of xenobiotic efflux and metabolic inactivation. Xenobiotic metabolism typically involves conversion of parent molecules to more soluble and easily excreted derivatives in reactions catalyzed by Phase I and Phase II drug metabolizing enzymes. Recent reports indicate that components of the xenobiotic response system are upregulated in some diseases, including many cancers. Such components include the pregnane X receptor (PXR) and the cytochrome P450 (CYP) 3A4 and 3A5 enzymes. The CYP3A enzymes are a subset of the numerous enzymes that are transcriptionally activated following the interaction of PXR and many ligands. Intense research is ongoing to understand the functional ramifications of aberrant expression of these components in diseased states with the goal of designing novel drugs that can selectively target them. PMID:28558634

  3. Identification of genotoxic compounds using isogenic DNA repair deficient DT40 cell lines on a quantitative high throughput screening platform

    PubMed Central

    Nishihara, Kana; Huang, Ruili; Zhao, Jinghua; Shahane, Sampada A.; Witt, Kristine L.; Smith-Roe, Stephanie L.; Tice, Raymond R.; Takeda, Shunichi; Xia, Menghang

    2016-01-01

    DNA repair pathways play a critical role in maintaining cellular homeostasis by repairing DNA damage induced by endogenous processes and xenobiotics, including environmental chemicals. Induction of DNA damage may lead to genomic instability, disruption of cellular homeostasis and potentially tumours. Isogenic chicken DT40 B-lymphocyte cell lines deficient in DNA repair pathways can be used to identify genotoxic compounds and aid in characterising the nature of the induced DNA damage. As part of the US Tox21 program, we previously optimised several different DT40 isogenic clones on a high-throughput screening platform and confirmed the utility of this approach for detecting genotoxicants by measuring differential cytotoxicity in wild-type and DNA repair-deficient clones following chemical exposure. In the study reported here, we screened the Tox21 10K compound library against two isogenic DNA repair-deficient DT40 cell lines (KU70 −/−/RAD54 −/− and REV3 −/−) and the wild-type cell line using a cell viability assay that measures intracellular adenosine triphosphate levels. KU70 and RAD54 are genes associated with DNA double-strand break repair processes, and REV3 is associated with translesion DNA synthesis pathways. Active compounds identified in the primary screening included many well-known genotoxicants (e.g. adriamycin, melphalan) and several compounds previously untested for genotoxicity. A subset of compounds was further evaluated by assessing their ability to induce micronuclei and phosphorylated H2AX. Using this comprehensive approach, three compounds with previously undefined genotoxicity—2-oxiranemethanamine, AD-67 and tetraphenylolethane glycidyl ether—were identified as genotoxic. These results demonstrate the utility of this approach for identifying and prioritising compounds that may damage DNA. PMID:26243743

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-ting

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer as well as its complex side chain structures, it has been a challenge to effectively depolymerize lignin and produce high value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolicmore » compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) inclduing 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPCs yields obtained were 18% and 22% based on the initial weight of the lignin in SESPL and DACSL respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47%. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.« less

  5. Bombyx mori silk: From mechanical properties to functionalities

    NASA Astrophysics Data System (ADS)

    Koh, Leng Duei

    Bombyx mori silkworms are the main producer of silk worldwide. It has been used as high-end textile fibers and as surgical sutures, and is being further developed for various emerging biomedical applications including drug delivery, tissue engineering, sensing, and imaging. The silk fibroin features a hierarchical architecture consisting of beta-sheet crystallites embedded in a less ordered amorphous matrix, which accounts for its unique combination of lustre appearance, soft-to-touch texture, and impressive mechanical properties. Notably, many applications of silk take advantage of its impressive mechanical properties, which by nature surpass many natural and synthetic materials. Interestingly, both the silkworm silk and spider dragline silk share similar hierarchical architecture but possess great disparity in mechanical properties. Inspired by spider dragline silk with much superior strength and toughness, there is an ever growing interest to enhance the mechanical properties of Bombyx mori silk. Here, we design a green and facile feeding method to modulate the structures of silk fibroin at the nanoscale using citric acid (CA), and achieved greatly enhanced mechanical properties. The silk obtained (i.e., CA silk) emerges to be the intrinsically toughest silkworm silk, with mechanical properties that exceed those of the previously reported natural and enhanced silkworm silk, and compare well with those of naturally produced spider silk (including those from spiders Araneus diadematus, Nephila clavipes, etc.).The underlying interactions of CA with fibroin structures are revealed by both advanced characterizations and simulations. It is found that CA interacts with fibroin, resulted in remarkably shorter crystallites, and thus giving the outstanding strength and toughness of the CA silk. The greatly enhanced mechanical properties are expected to lead to better functionalities and wider applications of the Bombyx mori silkworm silk. Silkworms usually produce white silk with normal feed containing no xenobiotics. Here, through introducing fluorescent xenobiotics into silkworm's diet and monitoring the resulting color and fluorescence in the silkworm's body, we established an understanding on the in vivo uptake of xenobiotics in silkworms that leads to direct production of intrinsically colored and/or luminescent silk by the silkworms. The molecular properties-directed absorption, distribution and excretion of xenobiotics were investigated using a series of fluorescent molecules as model compounds in a silkworm model. The efficient uptake of xenobiotics into silk is further studied through quantitative analysis of the intrinsically colored and highly luminescent silk secreted by silkworm. Criteria for effective uptake have been established based on the relationship between the structure-dependent hydrophobicity of various dyes vs. the amount selectively absorbed into the silk. The biological incorporation of dyes into silk, in particular its fibroin is a greener method of producing the functional silk because it eliminates the need of an external dyeing process, along with the resources (water, energy and additional chemicals) associated with conventional dyeing of silk. Beyond the absorption of dyes to produce color and luminescence in the silk, this feeding concept can also be expanded to incorporate other functional molecules (e.g., drugs, antibacterial agents, perfumes and nutrients) into silk with therapeutic or nutritional value.

  6. Generation Z: Adolescent Xenobiotic Abuse in the 21st Century.

    PubMed

    Eggleston, William; Stork, Christine

    2015-12-01

    NMDA receptor antagonists include the prescription medication ketamine, the illicit xenobiotics PCP, MXE, and other novel PCP analogs, and the OTC medication DXM. The NMDA receptor antagonist most commonly abused by adolescents in the United States is DXM. These xenobiotics cause dissociative effects by non-competitively inhibiting the action of glutamate at the NMDA receptor. Additionally, these agents modulate the actions of monoamine neurotransmitters, agonize opioid receptors, and inhibit nitric oxide synthase. Patients typically present with sympathomimetic and neuropsychiatric clinical manifestations after abuse of NMDA receptor antagonists. Treatment is generally symptomatic and supportive. Interventions include benzodiazepines, propofol, fluids, antiemetics, aggressive cooling, and respiratory support.

  7. Lignin structural alterations in thermochemical pretreatments with limited delignification

    DOE PAGES

    Pu, Yunqiao; Hu, Fan; Huang, Fang; ...

    2015-08-02

    Lignocellulosic biomass has a complex and rigid cell wall structure that makes biomass recalcitrant to biological and chemical degradation. Among the three major structural biopolymers (i.e., cellulose, hemicellulose and lignin) in plant cell walls, lignin is considered the most recalcitrant component and generally plays a negative role in the biochemical conversion of biomass to biofuels. The conversion of biomass to biofuels through a biochemical platform usually requires a pretreatment stage to reduce the recalcitrance. Pretreatment renders compositional and structural changes of biomass with these changes ultimately govern the efficiency of the subsequent enzymatic hydrolysis. Dilute acid, hot water, steam explosion,more » and ammonia fiber expansion pretreatments are among the leading thermochemical pretreatments with a limited delignification that can reduce biomass recalcitrance. Practical applications of these pretreatment are rapidly developing as illustrated by recent commercial scale cellulosic ethanol plants. While these thermochemical pretreatments generally lead to only a limited delignification and no significant change of lignin content in the pretreated biomass, the lignin transformations that occur during these pretreatments and the roles they play in recalcitrance reduction is an important research aspect. This review highlights recent advances in our understanding of lignin alterations during these limited delignification thermochemical pretreatments, with emphasis on lignin chemical structures, molecular weights, and redistributions in the pretreated biomass.« less

  8. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property.

    PubMed

    McCann, Maureen C; Carpita, Nicholas C

    2015-07-01

    Recalcitrance of plant biomass to enzymatic hydrolysis for biofuel production is thought to be a property conferred by lignin or lignin-carbohydrate complexes. However, chemical catalytic and thermochemical conversion pathways, either alone or in combination with biochemical and fermentative pathways, now provide avenues to utilize lignin and to expand the product range beyond ethanol or butanol. To capture all of the carbon in renewable biomass, both lignin-derived aromatics and polysaccharide-derived sugars need to be transformed by catalysts to liquid hydrocarbons and high-value co-products. We offer a new definition of recalcitrance as those features of biomass which disproportionately increase energy requirements in conversion processes, increase the cost and complexity of operations in the biorefinery, and/or reduce the recovery of biomass carbon into desired products. The application of novel processing technologies applied to biomass reveal new determinants of recalcitrance that comprise a broad range of molecular, nanoscale, and macroscale factors. Sampling natural genetic diversity within a species, transgenic approaches, and synthetic biology approaches are all strategies that can be used to select biomass for reduced recalcitrance in various pretreatments and conversion pathways. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. The Role of Oxophytodienoate Reductases in the Detoxification of the Explosive 2,4,6-Trinitrotoluene by Arabidopsis1[W][OA

    PubMed Central

    Beynon, Emily R.; Symons, Zoe C.; Jackson, Rosamond G.; Lorenz, Astrid; Rylott, Elizabeth L.; Bruce, Neil C.

    2009-01-01

    The explosive 2,4,6-trinitrotoluene (TNT) is a significant environmental pollutant that is both toxic and recalcitrant to degradation. Phytoremediation is being increasingly proposed as a viable alternative to conventional remediation technologies to clean up explosives-contaminated sites. Despite the potential of this technology, relatively little is known about the innate enzymology of TNT detoxification in plants. To further elucidate this, we used microarray analysis to identify Arabidopsis (Arabidopsis thaliana) genes up-regulated by exposure to TNT and found that the expression of oxophytodienoate reductases (OPRs) increased in response to TNT. The OPRs share similarity with the Old Yellow Enzyme family, bacterial members of which have been shown to transform explosives. The three predominantly expressed forms, OPR1, OPR2, and OPR3, were recombinantly expressed and affinity purified. Subsequent biochemical characterization revealed that all three OPRs are able to transform TNT to yield nitro-reduced TNT derivatives, with OPR1 additionally producing the aromatic ring-reduced products hydride and dihydride Meisenheimer complexes. Arabidopsis plants overexpressing OPR1 removed TNT more quickly from liquid culture, produced increased levels of transformation products, and maintained higher fresh weight biomasses than wild-type plants. In contrast, OPR1,2 RNA interference lines removed less TNT, produced fewer transformation products, and had lower biomasses. When grown on solid medium, two of the three OPR1 lines and all of the OPR2-overexpressing lines exhibited significantly enhanced tolerance to TNT. These data suggest that, in concert with other detoxification mechanisms, OPRs play a physiological role in xenobiotic detoxification. PMID:19605548

  10. Biotransformation of β-hexachlorocyclohexane by the saprotrophic soil fungus Penicillium griseofulvum.

    PubMed

    Ceci, Andrea; Pierro, Lucia; Riccardi, Carmela; Pinzari, Flavia; Maggi, Oriana; Persiani, Anna Maria; Gadd, Geoffrey Michael; Petrangeli Papini, Marco

    2015-10-01

    β-Hexachlorocyclohexane (β-HCH) is a persistent organic pollutant (POP) of global concern with potentially toxic effects on humans and ecosystems. Fungal tolerance and biotransformation of toxic substances hold considerable promise in environmental remediation technologies as many fungi can tolerate extreme environmental conditions and possess efficient extracellular degradative enzymes with relatively non-specific activities. In this research, we have investigated the potential of a saprotrophic soil fungus, Penicillium griseofulvum Dierckx, isolated from soils with high concentrations of isomers of hexachlorocyclohexane, to biotransform β-HCH, the most recalcitrant isomer to microbial activity. The growth kinetics of the fungus were characterized after growth in stirred liquid Czapek-Dox medium. It was found that P. griseofulvum was able to grow in the presence of 1 mg L(-1) β-HCH and in stressful nutritional conditions at different concentrations of sucrose in the medium (0 and 5 g L(-1)). The effects of β-HCH and the toluene, used as a solvent for β-HCH addition, on P. griseofulvum were investigated by means of a Phenotype MicroArray™ technique, which suggested the activation of certain metabolic pathways as a response to oxidative stress due to the presence of the xenobiotics. Gas chromatographic analysis of β-HCH concentration confirmed biodegradation of the isomer with a minimum value of β-HCH residual concentration of 18.6%. The formation of benzoic acid derivatives as dead-end products of β-HCH biotransformation was observed and this could arise from a possible biodegradation pathway for β-HCH with important connections to fungal secondary metabolism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Induction, Purification and Characterization of a Novel Manganese Peroxidase from Irpex lacteus CD2 and Its Application in the Decolorization of Different Types of Dye

    PubMed Central

    Qin, Xing; Zhang, Jie; Zhang, Xiaoyu; Yang, Yang

    2014-01-01

    Manganese peroxidase (MnP) is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B), anthraquinone dye (Remazol Brilliant Blue R), indigo dye (Indigo Carmine) and triphenylmethane dye (Methyl Green) as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology. PMID:25412169

  12. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression Through the Life Stages of the Mouse

    EPA Science Inventory

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been ca...

  13. Retrofit Strategies for Incorporating Xenobiotic Metabolism into High Throughput Screening Assays (EMGS)

    EPA Science Inventory

    The US EPA’s ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to a mischaracterization...

  14. Cytochromes P450

    PubMed Central

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  15. [Human drug metabolizing enzymes. II. Conjugation enzymes].

    PubMed

    Vereczkey, L; Jemnitz, K; Gregus, Z

    1998-09-01

    In this review we focus on human conjugation enzymes (UDP-glucuronyltransferases, methyl-trasferases, N-acetyl-transferases, O-acetyl-transferases, Amidases/carboxyesterases, sulfotransferases, Glutation-S-transferases and the enzymes involved in the conjugation with amino acids) that participate in the metabolism of xenobiotics. Although conjugation reactions in most of the cases result in detoxication, more and more publications prove that the reactions catalysed by these enzymes very often lead to activated molecules that may attack macromolecules (proteins, RNAs, DNAs), resulting in toxicity (liver, neuro-, embryotoxicity, allergy, carcinogenecity). We have summarised the data available on these enzymes concerning their catalytic profile and specificity, inhibition, induction properties, their possible role in the generation of toxic compounds, their importance in clinical practice and drug development.

  16. Determination of endocrine-disrupting chemicals in human milk by dispersive liquid-liquid microextraction.

    PubMed

    Vela-Soria, Fernando; Jiménez-Díaz, Inmaculada; Díaz, Caridad; Pérez, José; Iribarne-Durán, Luz María; Serrano-López, Laura; Arrebola, Juan Pedro; Fernández, Mariana Fátima; Olea, Nicolás

    2016-09-01

    Human populations are widely exposed to numerous so-called endocrine-disrupting chemicals, exogenous compounds able to interfere with the endocrine system. This exposure has been associated with several health disorders. New analytical procedures are needed for biomonitoring these xenobiotics in human matrices. A quick and inexpensive methodological procedure, based on sample treatment by dispersive liquid-liquid microextraction, is proposed for the determination of bisphenols, parabens and benzophenones in samples. LOQs ranged from 0.4 to 0.7 ng ml(-1) and RSDs from 4.3 to 14.8%. This methodology was satisfactorily applied in the simultaneous determination of a wide range of endocrine-disrupting chemicals in human milk samples and is suitable for application in biomonitoring studies.

  17. [Flame retardants--use and hazards for human].

    PubMed

    Góralczyk, Katarzyna; Struciński, Paweł; Czaja, Katarzyna; Hernik, Agnieszka; Ludwicki, Jan K

    2002-01-01

    Flame retardants (FRs) are chemicals which added to materials during or after manufacture, inhibit or even suppress the combustion process due to their thermal stability. Large quantities of FRs are added to the plastic material (resins) in variety of electrical and electronic appliances including television and computer casing. The other uses of these compounds include production of building materials, upholstered furniture, textiles, wall covering, carpets, hydraulic fluids as well as vehicles and aircraft. Taking into account the chemical structure, there are five main groups of FRs: brominated, chlorinated, phosphorous-containing, nitrogen-containing (i.e. melamines) and inorganic compounds. Halogenated compounds, especially polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardants, due to their lipophilic characteristics and persistence have become ubiquitous environmental contaminants. There are indications that PBDEs may affect hormone function acting as endocrine disruption and may be toxic for developing brain. These compounds have been associated with non-Hodgkin's lymphoma in humans, a variety of cancers in rodents and disruption of thyroid hormones balance. Similarly to other persistent halogenated compounds they are also able to affect the xenobiotic metabolizing enzymes activity. PBDEs are now found as residues in sediments, wildlife and human (milk, serum adipose tissue) samples. The predominant congeners in environmental samples, including human specimens are two congeners: 47 and 99. Currently, the estimated daily intake of PBDEs by adult humans is equal 51 ng x day-1 while by breast-fed infants equals 110 ng x day-1.

  18. Comparative investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and higher eukaryotes. The role of NATs in fungal biology has only recently been investigated. The NAT1 gene of Gibberella moniliformis was the first NAT cloned and characterized from fun...

  19. Phylogenetic and biological investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and eukaryotic organisms. The role of NATs in fungal biology has only recently been investigated. The NAT1 (FDB2) gene of Fusarium verticillioides was the first NAT cloned and character...

  20. COMPARISON OF MICROBIAL TRANSFORMATION RATE COEFFICIENTS OF XENOBIOTIC CHEMICALS BETWEEN FIELD-COLLECTED AND LABORATORY MICROCOSM MICROBIOTA

    EPA Science Inventory

    Two second-order transformation rate coefficients--kb, based on total plate counts, and kA, based on periphyton-colonized surface areas--were used to compare xenobiotic chemical transformation by laboratory-developed (microcosm) and by field-collected microbiota. Similarity of tr...

  1. Introduction of 2,4-Dichlorophenoxyacetic acid into soil with solvents and resulting implications for bioavailability to microorganisms

    USDA-ARS?s Scientific Manuscript database

    Slow equilibration of introduced chemicals through tortuous pore space limits uniform substrate distribution in soil biodegradation studies. The necessity of introducing poorly soluble xenobiotics via organic solvents, the volume of which is minimized to limit toxicity, likely also affects xenobiot...

  2. A Global Genomic and Genetic Strategy to Predict Pathway Activation of Xenobiotic Responsive Transcription Factors in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobiotic-responsive transcription factors(TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  3. GENE EXPRESSION PROFILING OF XENOBIOTIC METABOLIZING ENZYMES (XMES) IN THE AGING MALE FISHER RAT

    EPA Science Inventory

    Detoxification and elimination of xenobiotics is a major function of the liver and is important in maintaining the metabolic homeostasis of the organism. The degree to which aging affects hepatic metabolism is not known. The expression of XMEs, in part, determines the fate of the...

  4. It’s War Out There: Fighting for life with xenobiotic degrading enzymes

    USDA-ARS?s Scientific Manuscript database

    It’s War Out There: Fighting for life with xenobiotic degrading enzymes Beta-lactamase enzymes are well studied because of their tremendous impact on medicine. Their prominent role is in resistance to beta-lactam (four membered lactam ring) antibiotics including the first and most famous fungally d...

  5. Implications of the lack of desiccation tolerance in recalcitrant seeds.

    PubMed

    Berjak, Patricia; Pammenter, Norman W

    2013-11-22

    A suite of interacting processes and mechanisms enables tolerance of desiccation and storage (conservation) of orthodox seeds in the dry state. While this is a long-term option under optimized conditions, dry orthodox seeds are not immortal, with life spans having been characterized as short, intermediate and long. Factors facilitating desiccation tolerance are metabolic "switch-off" and intracellular dedifferentiation. Recalcitrant seeds lack these mechanisms, contributing significantly to their desiccation sensitivity. Consequently, recalcitrant seeds, which are shed at high water contents, can be stored only in the short-term, under conditions not allowing dehydration. The periods of such hydrated storage are constrained by germination that occurs without the need for extraneous water, and the proliferation of seed-associated fungi. Cryopreservation is viewed as the only option for long-term conservation of the germplasm of recalcitrant-seeded species. This is not easily achieved, as each of the necessary procedures imposes oxidative damage. Intact recalcitrant seeds cannot be cryopreserved, the common practice being to use excised embryos or embryonic axes as explants. Dehydration is a necessary procedure prior to exposure to cryogenic temperatures, but this is associated with metabolism-linked injury mediated by uncontrolled reactive oxygen species generation and failing anti-oxidant systems. While the extent to which this occurs can be curtailed by maximizing drying rate (flash drying) it cannot be completely obviated. Explant cooling for, and rewarming after, cryostorage must necessarily be rapid, to avoid ice crystallization. The ramifications of desiccation sensitivity are discussed, as are problems involved in cryostorage, particularly those accompanying dehydration and damage consequent upon ice crystallization. While desiccation sensitivity is a "fact" of seed recalcitrance, resolutions of the difficulties involved germplasm conservation are possible as discussed.

  6. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ≤ 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of inflammation including acetaminophen, concanavalin A, lipopolysaccharide, and 300 nm silica particles. In conclusion, we have shown that a CAR biomarker signature coupled with a rank-based similarity method accurately predicts CAR activation. This analytical approach, when applied to a gene expression compendium, increased the universe of known chemicals that directly or indirectly activate CAR, highlighting the promiscuous nature of CAR activation and signaling through activation of other xenobiotic-activated receptors. PMID:25949234

  7. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system.

    PubMed

    Silva, Cynthia C; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; Kruger, Ricardo H; Rodrigues, Marili Vn; Costa, Gustavo Gl; Vidal, Ramon O; Sousa, Maíra P; Torres, Ana Paula R; Santiago, Vânia Mj; Oliveira, Valéria M

    2012-03-27

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.

  8. Identification of Novel Activators of Constitutive Androstane Receptor from FDA-approved Drugs by Integrated Computational and Biological Approaches

    PubMed Central

    Lynch, Caitlin; Pan, Yongmei; Li, Linhao; Ferguson, Stephen S.; Xia, Menghang; Swaan, Peter W.; Wang, Hongbing

    2012-01-01

    Purpose The constitutive androstane receptor (CAR, NR1I3) is a xenobiotic sensor governing the transcription of numerous hepatic genes associated with drug metabolism and clearance. Recent evidence suggests that CAR also modulates energy homeostasis and cancer development. Thus, identification of novel human (h) CAR activators is of both clinical importance and scientific interest. Methods Docking and ligand-based structure-activity models were used for virtual screening of a database containing over 2000 FDA-approved drugs. Identified lead compounds were evaluated in cell-based reporter assays to determine hCAR activation. Potential activators were further tested in human primary hepatocytes (HPHs) for the expression of the prototypical hCAR target gene CYP2B6. Results Nineteen lead compounds with optimal modeling parameters were selected for biological evaluation. Seven of the 19 leads exhibited moderate to potent activation of hCAR. Five out of the seven compounds translocated hCAR from the cytoplasm to the nucleus of HPHs in a concentration-dependent manner. These compounds also induce the expression of CYP2B6 in HPHs with rank-order of efficacies closely resembling that of hCAR activation. Conclusion These results indicate that our strategically integrated approaches are effective in the identification of novel hCAR modulators, which may function as valuable research tools or potential therapeutic molecules. PMID:23090669

  9. Visualising recalcitrance by colocalisation of cellulase, lignin and cellulose in pretreated pine biomass using fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Donaldson, Lloyd; Vaidya, Alankar

    2017-03-01

    Mapping the location of bound cellulase enzymes provides information on the micro-scale distribution of amenable and recalcitrant sites in pretreated woody biomass for biofuel applications. The interaction of a fluorescently labelled cellulase enzyme cocktail with steam-exploded pine (SEW) was quantified using confocal microscopy. The spatial distribution of Dylight labelled cellulase was quantified relative to lignin (autofluorescence) and cellulose (Congo red staining) by measuring their colocalisation using Pearson correlations. Correlations were greater in cellulose-rich secondary cell walls compared to lignin-rich middle lamella but with significant variations among individual biomass particles. The distribution of cellulose in the pretreated biomass accounted for 30% of the variation in the distribution of enzyme after correcting for the correlation between lignin and cellulose. For the first time, colocalisation analysis was able to quantify the spatial distribution of amenable and recalcitrant sites in relation to the histochemistry of cellulose and lignin. This study will contribute to understanding the role of pretreatment in enzymatic hydrolysis of recalcitrant softwood biomass.

  10. Significance of Lignin S/G Ratio in Biomass Recalcitrance of Populus trichocarpa Variants for Bioethanol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Chang Geun; Dumitrache, Alexandru; Muchero, Wellington

    Lignin S/G ratio has been investigated as an important factor in biomass recalcitrance to bioethanol production. Because of the complexity and variety of biomass, recalcitrance was also reportedly influenced by several other factors, such as total lignin content, degree of cellulose polymerization, etc. In addition, the effect of S/G ratio on biomass conversion is not uniform across plant species. Herein, 11 Populus trichocarpa natural variants grown under the same conditions with similar total lignin content were selected to minimize the effects of other factors. The lignin S/G ratio of the selected P. trichocarpa natural variants showed negative correlations with p-hydroxybenzoatemore » (PB) and ..beta..-5 linkage contents, while it had positive ones with ..beta..-O-4 linkage, lignin molecular weight, and ethanol production. This study showed the importance of lignin S/G ratio as an independent recalcitrance factor that may aid future energy crop engineering and biomass conversion strategies.« less

  11. Significance of Lignin S/G Ratio in Biomass Recalcitrance of Populus trichocarpa Variants for Bioethanol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Chang Geun; Dumitrache, Alexandru; Muchero, Wellington

    Lignin S/G ratio has been investigated as an important factor in biomass recalcitrance to bioethanol production. Because of the complexity and variety of biomass, recalcitrance was also reportedly influenced by several other factors, such as total lignin content, degree of cellulose polymerization, etc. In addition, the effect of S/G ratio on biomass conversion is not uniform across plant species. Herein, 11 Populus trichocarpa natural variants grown under the same conditions with similar total lignin content were selected to minimize the effects of other factors. The lignin S/G ratio of the selected P. trichocarpa natural variants showed negative correlations with p-hydroxybenzoatemore » (PB) and β–5 linkage contents, while it had positive ones with β-O-4 linkage, lignin molecular weight, and ethanol production. In conclusion, this study showed the importance of lignin S/G ratio as an independent recalcitrance factor that may aid future energy crop engineering and biomass conversion strategies.« less

  12. Vacuolar status and water relations in embryonic axes of recalcitrant Aesculus hippocastanum seeds during stratification and early germination

    PubMed Central

    Obroucheva, Natalie V.; Lityagina, Snezhana V.; Novikova, Galina V.; Sin'kevich, Irina A.

    2012-01-01

    Backgrounds and aims In tropical recalcitrant seeds, their rapid transition from shedding to germination at high hydration level is of physiological interest but difficult to study because of the time constraint. In recalcitrant horse chestnut seeds produced in central Russia, this transition is much longer and extends through dormancy and dormancy release. This extended time period permits studies of the water relations in embryonic axes during the long recalcitrant period in terms of vacuolar status and water transport. Methodology Horse chestnut (Aesculus hippocastanum) seeds sampled in Moscow were stratified in cold wet sand for 4 months. Vacuole presence and development in embryonic axes were examined by vital staining, light and electron microscopy. Aquaporins and vacuolar H+-ATPase were identified immunochemically. Water channel operation was tested by water inflow rate. Vacuolar acid invertase was estimated in terms of activity and electrophoretic properties. Principal results Throughout the long recalcitrant period after seed shedding, cells of embryonic axes maintained active vacuoles and a high water content. Preservation of enzyme machinery in vacuoles was evident from retention of invertase activity, substrate specificity, molecular mass and subunit composition. Plasmalemma and tonoplast aquaporins and the E subunit of vacuolar H+-ATPase were also present. In non-dormant seeds prior to growth initiation, vacuoles enlarged at first in hypocotyls, and then in radicles, with their biogenesis being similar. Vacuolation was accompanied by increasing invertase activity, leading to sugar accumulation and active osmotic functioning. After growth initiation, vacuole enlargement was favoured by enhanced water inflow through water channels formed by aquaporins. Conclusions Maintenance of high water content and desiccation sensitivity, as well as preservation of active vacuoles in embryonic axes after shedding, can be considered a specific feature of recalcitrant seeds, overlooked when studying tropical recalcitrants due to the short duration. The retained physiological activity of vacuoles allows them to function rapidly as dormancy is lost and when external conditions permit. Cell vacuolation precedes cell elongation in both hypocotyl and radicle, and provides impetus for rapid germination. PMID:22593822

  13. Deconstructing the traditional Japanese medicine "Kampo": compounds, metabolites and pharmacological profile of maoto, a remedy for flu-like symptoms.

    PubMed

    Nishi, Akinori; Ohbuchi, Katsuya; Kushida, Hirotaka; Matsumoto, Takashi; Lee, Keiko; Kuroki, Haruo; Nabeshima, Shigeki; Shimobori, Chika; Komokata, Nagisa; Kanno, Hitomi; Tsuchiya, Naoko; Zushi, Makoto; Hattori, Tomohisa; Yamamoto, Masahiro; Kase, Yoshio; Matsuoka, Yukiko; Kitano, Hiroaki

    2017-01-01

    Pharmacological activities of the traditional Japanese herbal medicine (Kampo) are putatively mediated by complex interactions between multiple herbal compounds and host factors, which are difficult to characterize via the reductive approach of purifying major bioactive compounds and elucidating their mechanisms by conventional pharmacology. Here, we performed comprehensive compound, pharmacological and metabolomic analyses of maoto, a pharmaceutical-grade Kampo prescribed for flu-like symptoms, in normal and polyI:C-injected rats, the latter suffering from acute inflammation via Toll-like receptor 3 activation. In total, 352 chemical composition-determined compounds (CCDs) were detected in maoto extract by mass spectrometric analysis. After maoto treatment, 113 CCDs were newly detected in rat plasma. Of these CCDs, 19 were present in maoto extract, while 94 were presumed to be metabolites generated from maoto compounds or endogenous substances such as phospholipids. At the phenotypic level, maoto ameliorated the polyI:C-induced decrease in locomotor activity and body weight; however, body weight was not affected by individual maoto components in isolation. In accordance with symptom relief, maoto suppressed TNF-α and IL-1β, increased IL-10, and altered endogenous metabolites related to sympathetic activation and energy expenditure. Furthermore, maoto decreased inflammatory prostaglandins and leukotrienes, and increased anti-inflammatory eicosapentaenoic acid and hydroxyl-eicosapentaenoic acids, suggesting that it has differential effects on eicosanoid metabolic pathways involving cyclooxygenases, lipoxygenases and cytochrome P450s. Collectively, these data indicate that extensive profiling of compounds, metabolites and pharmacological phenotypes is essential for elucidating the mechanisms of herbal medicines, whose vast array of constituents induce a wide range of changes in xenobiotic and endogenous metabolism.

  14. A comparison between ultraviolet disinfection and copper alginate beads within a vortex bioreactor for the deactivation of bacteria in simulated waste streams with high levels of colour, humic acid and suspended solids.

    PubMed

    Thomas, Simon F; Rooks, Paul; Rudin, Fabian; Atkinson, Sov; Goddard, Paul; Bransgrove, Rachel M; Mason, Paul T; Allen, Michael J

    2014-01-01

    We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries.

  15. Enzymatic membrane reactors for biodegradation of recalcitrant compounds. Application to dye decolourisation.

    PubMed

    López, C; Mielgo, I; Moreira, M T; Feijoo, G; Lema, J M

    2002-11-13

    Membrane bioreactors are being increasingly used in enzymatic catalysed transformations. However, the application of enzymatic-based treatment systems in the environmental field is rather unusual. The aim of this paper is to overview the application of enzymatic membrane reactors to wastewater treatment, more specifically to dye decolourisation. Firstly, the basic aspects such as different configurations of enzymatic reactors, advantages and disadvantages associated to their utilisation are revised as well as the application of this technology to wastewater treatment. Secondly, dye decolourisation by white-rot fungi and their oxidative enzymes are discussed, presenting an overall view from for in vivo and in vitro systems. Finally, dye decolourisation by manganese peroxidase in an enzymatic membrane reactor in continuous operation is presented.

  16. Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2014-02-01

    Pharmaceutically active compounds (PhACs) are considered as emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Among them, carbamazepine (CBZ) has been detected at the highest frequency, which ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of CBZ in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the toxicity of treated effluent discharged into the environment. Furthermore, WWS has been subjected for re-use either in agricultural application or for the production of value-added products through the route of bioconversion. However, this field application is disputable due to the presence of these organic compounds and in order to protect the ecosystem or end users, data concerning the concentration, fate, behavior as well as the perspective of simultaneous degradation of these compounds is urgently necessary. Many treatment technologies, including advanced oxidation processes (AOPs) have been developed in order to degrade CBZ in WW and WWS. AOPs are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end products. The purpose of this review is to provide information on persistent pharmaceutical compound, carbamazepine, its ecological effects and removal during various AOPs of WW and WWS. This review also reports the different analytical methods available for quantification of CBZ in different contaminated media including WW and WWS. © 2013 Elsevier B.V. All rights reserved.

  17. Microbial Communities and Organic Matter Composition in Surface and Subsurface Sediments of the Helgoland Mud Area, North Sea

    PubMed Central

    Oni, Oluwatobi E.; Schmidt, Frauke; Miyatake, Tetsuro; Kasten, Sabine; Witt, Matthias; Hinrichs, Kai-Uwe; Friedrich, Michael W.

    2015-01-01

    The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30–530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments. PMID:26635758

  18. Comparative genomic, phylogenetic, and functional investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and higher eukaryotes. The role of NATs in fungal biology has only recently been investigated (Glenn and Bacon, 2009; Glenn et al., 2010). The NAT1 gene of Gibberella moniliformis was the...

  19. APPLICATION OF ORGANIC IODINE SPECIES ANALYTICS: DETERMINING THYROID HORMONE STATUS IN ADULT DANIO RERIO AND DEVELOPING XENOPUS LAEVIS USING LC/ICP-MS

    EPA Science Inventory

    Disruption of normal thyroid function by xenobiotic chemicals is an important ecological issue. Theoretically, normal thyroid hormone (TH) homeostasis and action can be disrupted at several sites in the synthetic and elimination pathways. Indeed, xenobiotic chemicals, which are k...

  20. Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family

    USDA-ARS?s Scientific Manuscript database

    Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified...

  1. Intermolecular Forces as a Key to Understanding the Environmental Fate of Organic Xenobiotics

    ERIC Educational Resources Information Center

    Casey, Ryan E.; Pittman, Faith A.

    2005-01-01

    A module that can be incorporated into chemistry or environmental science classes at the high school or undergraduate level is described. The module is divided into a series of segments, each of which incorporates several concepts and results in students making significant predictions about the behavior of organic xenobiotics.

  2. Characterization of the Impact of Life Stage on Xenobiotic Metabolizing Enzyme Expression and Gene -Chemical Interactions in the Liver

    EPA Science Inventory

    Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). We have carried out a comprehensive analysis of the mRNA expression of XMETs thro...

  3. INTERINDIVIDUAL VARIANCE OF CYTOCHROME P450 FORMS IN HUMAN HEPATIC MICROSOMES: CORRELATION OF INDIVIDUAL FORMS WITH XENOBIOTIC METABOLISM AND IMPLICATIONS IN RISK ASSESSMENT

    EPA Science Inventory

    Differences in biotransformation activities may alter the bioavailability or efficacy of drugs, provide protection from certain xenobiotic and environmental agents, or increase toxicity of others. Cytochrome P450 (CYP450) enzymes are responsible for the majority of oxidation reac...

  4. Proteomic analysis of drought resistance in crabapple seedlings primed by the xenobiotic Beta-aminobutyric acid

    USDA-ARS?s Scientific Manuscript database

    In a variety of annual crops and model plants, the xenobiotic DL-Beta-aminobutyric acid (BABA) has been shown to enhance disease resistance and increase salt, drought and thermotolerance. BABA does not activate stress genes directly, but sensitizes plants to respond more quickly and strongly to biot...

  5. An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Omar R.; Kuo, Li-Jung; Zimmerman, Andrew R.

    2012-01-10

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R{sub 50}, for assessing biochar quality for carbon sequestration is proposed. The R{sub 50} is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R{sub 50}, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiablemore » relationship between R{sub 50} and biochar recalcitrance. As presented here, the R{sub 50} is immediately applicable to pre-land application screening of biochars into Class A (R{sub 50} {>=} 0.70), Class B (0.50 {<=} R{sub 50} < 0.70) or Class C (R{sub 50} < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, while Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R{sub 50}, to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.« less

  6. Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semi-arid lands.

    PubMed

    Li, Hongjia; Pattathil, Sivakumar; Foston, Marcus B; Ding, Shi-You; Kumar, Rajeev; Gao, Xiadi; Mittal, Ashutosh; Yarbrough, John M; Himmel, Michael E; Ragauskas, Arthur J; Hahn, Michael G; Wyman, Charles E

    2014-01-01

    Agave, which is well known for tequila and other liquor production in Mexico, has recently gained attention because of its attractive potential to launch sustainable bioenergy feedstock solutions for semi-arid and arid lands. It was previously found that agave cell walls contain low lignin and relatively diverse non-cellulosic polysaccharides, suggesting unique recalcitrant features when compared to conventional C4 and C3 plants. Here, we report sugar release data from fungal enzymatic hydrolysis of non-pretreated and hydrothermally pretreated biomass that shows agave to be much less recalcitrant to deconstruction than poplar or switchgrass. In fact, non-pretreated agave has a sugar release five to eight times greater than that of poplar wood and switchgrass . Meanwhile, state of the art techniques including glycome profiling, nuclear magnetic resonance (NMR), Simon's Stain, confocal laser scanning microscopy and so forth, were applied to measure interactions of non-cellulosic wall components, cell wall hydrophilicity, and enzyme accessibility to identify key structural features that make agave cell walls less resistant to biological deconstruction when compared to poplar and switchgrass. This study systematically evaluated the recalcitrant features of agave plants towards biofuels applications. The results show that not only does agave present great promise for feeding biorefineries on semi-arid and arid lands, but also show the value of studying agave's low recalcitrance for developments in improving cellulosic energy crops.

  7. Hepatotoxicity of Herbal Supplements Mediated by Modulation of Cytochrome P450

    PubMed Central

    Chen, Taosheng

    2017-01-01

    Herbal supplements are a significant source of drug-drug interactions (DDIs), herb-drug interactions, and hepatotoxicity. Cytochrome P450 (CYP450) enzymes metabolize a large number of FDA-approved pharmaceuticals and herbal supplements. This metabolism of pharmaceuticals and supplements can be augmented by concomitant use of either pharmaceuticals or supplements. The xenobiotic receptors constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) can respond to xenobiotics by increasing the expression of a large number of genes that are involved in the metabolism of xenobiotics, including CYP450s. Conversely, but not exclusively, many xenobiotics can inhibit the activity of CYP450s. Induction of the expression or inhibition of the activity of CYP450s can result in DDIs and toxicity. Currently, the United States (US) Food and Drug Administration does not require the investigation of the interactions of herbal supplements and CYP450s. This review provides a summary of herbal supplements that inhibit CYP450s, induce the expression of CYP450s, and/or whose toxicity is mediated by CYP450s. PMID:29117101

  8. Correlation of the lipophilicity of xenobiotics with their synergistic effects on DNA synthesis in human fibroblasts.

    PubMed

    Jacobi, H; Leier, G; Witte, I

    1996-04-01

    The binary combination effects of DNA synthesis of human fibroblasts were investigated using 2,4-D with 15 xenobiotics of different chemical substance classes. Results were compared with previous investigations on cell growth. Each of the 15 chemicals tested at their no effect concentrations (NOEC's) increased the effects of 2,4-D on DNA synthesis. Thereby, the EC20 value of 2,4-D was reduced by approximately 40% in the combinations. The NOEC's of the xenobiotics used in the combinations varied by a factor of 1,600 and depended strongly on the lipophilicity of the agents combined with 2,4-D. A significant statistical correlation of r = 0.90 was found between the NOEC's of the 15 combined xenobiotics and their lipophilicity. The combination effects on DNA synthesis were similar to those on cell growth. The regression lines of the relationship between the NOEC's and lipophilicity in both assays showed only slight differences in the slopes. This is an additional confirmation of our hypothesis on a facilitated uptake of 2,4-D in the binary combinations.

  9. Pregnane xenobiotic receptor in cancer pathogenesis and therapeutic response

    PubMed Central

    Pondugula, Satyanarayana R.; Mani, Sridhar

    2012-01-01

    Pregnane xenobiotic receptor (PXR) is an orphan nuclear receptor that regulates the metabolism of endobiotics and xenobiotics. PXR is promiscuous and unique in that it is activated by a diverse group of xenochemicals, including therapeutic anticancer drugs and naturally-occurring endocrine disruptors. PXR has been predominantly studied to understand its regulatory role in xenobiotic clearance in liver and intestine via induction of drug metabolizing enzymes and drug transporters. PXR, however, is widely expressed and has functional implications in other normal and malignant tissues, including breast, prostate, ovary, endometrium and bone. The differential expression of PXR and its target genes in cancer tissues has been suggested to determine the prognosis of chemotherapeutic outcome. In addition, the emerging evidence points to the implications of PXR in regulating apoptotic and antiapoptotic as well as growth factor signaling that promote tumor proliferation and metastasis. In this review, we highlight the recent progress made in understanding the role of PXR in cancer, discuss the future directions to further understand the mechanistic role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators. PMID:22939994

  10. Cytochrome P450s--Their expression, regulation, and role in insecticide resistance.

    PubMed

    Liu, Nannan; Li, Ming; Gong, Youhui; Liu, Feng; Li, Ting

    2015-05-01

    P450s are known to be critical for the detoxification and/or activation of xenobiotics such as drugs and pesticides and overexpression of P450 genes can significantly affect the disposition of xenobiotics in the tissues of organisms, altering their pharmacological/toxicological effects. In insects, P450s play an important role in detoxifying exogenous compounds such as insecticides and plant toxins and their overexpression can result in increased levels of P450 proteins and P450 activities. This has been associated with enhanced metabolic detoxification of insecticides and has been implicated in the development of insecticide resistance in insects. Multiple P450 genes have been found to be co-overexpressed in individual insect species via several constitutive overexpression and induction mechanisms, which in turn are co-responsible for high levels of insecticide resistance. Many studies have also demonstrated that the transcriptional overexpression of P450 genes in resistant insects is regulated by trans and/or cis regulatory genes/factors. Taken together, these earlier findings suggest not only that insecticide resistance is conferred via multi-resistance P450 genes, but also that it is mediated through the interaction of regulatory genes/factors and resistance genes. This chapter reviews our current understanding of how the molecular mechanisms of P450 interaction/gene regulation govern the development of insecticide resistance in insects and our progress along the road to a comprehensive characterization of P450 detoxification-mediated insecticide resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae

    PubMed Central

    Nunes, Maria Andreia; Zhurov, Vladimir; Dermauw, Wannes; Osakabe, Masahiro; Van Leeuwen, Thomas; Grbic, Miodrag

    2017-01-01

    The two-spotted spider mite, Tetranychus urticae, is a chelicerate herbivore with an extremely wide host range and an extraordinary ability to develop pesticide resistance. Due to its responsiveness to natural and synthetic xenobiotics, the spider mite is becoming a prime pest herbivore model for studies of the evolution of host range, plant-herbivore interactions and mechanisms of xenobiotic resistance. The spider mite genome has been sequenced and its transcriptional responses to developmental and various biotic and abiotic cues have been documented. However, to identify biological and evolutionary roles of T. urticae genes and proteins, it is necessary to develop methods for the efficient manipulation of mite gene function or protein activity. Here, we describe protocols developed for the delivery of small molecules into spider mites. Starting with mite maintenance and the preparation of the experimental mite populations of developmentally synchronized larvae and adults, we describe 3 methods for delivery of small molecules including artificial diet, leaf coating, and soaking. The presented results define critical steps in these methods and demonstrate that they can successfully deliver tracer dyes into mites. Described protocols provide guidelines for high-throughput setups for delivery of experimental compounds that could be used in reverse genetics platforms to modulate gene expression or protein activity, or for screens focused on discovery of new molecules for mite control. In addition, described protocols could be adapted for other Tetranychidae and related species of economic importance such as Varroa, dust and poultry mites. PMID:28686745

  12. Biotechnological procedures to select white rot fungi for the degradation of PAHs.

    PubMed

    Lee, Hwanhwi; Jang, Yeongseon; Choi, Yong-Seok; Kim, Min-Ji; Lee, Jaejung; Lee, Hanbyul; Hong, Joo-Hyun; Lee, Young Min; Kim, Gyu-Hyeok; Kim, Jae-Jin

    2014-02-01

    White rot fungi are essential in forest ecology and are deeply involved in wood decomposition and the biodegradation of various xenobiotics. The fungal ligninolytic enzymes involved in these processes have recently become the focus of much attention for their possible biotechnological applications. Successful bioremediation requires the selection of species with desirable characteristics. In this study, 150 taxonomically and physiologically diverse white rot fungi, including 55 species, were investigated for their performance in a variety of biotechnological procedures, such as dye decolorization, gallic acid reaction, ligninolytic enzymes, and tolerance to four PAHs, phenanthrene, anthracene, fluoranthene, and pyrene. Among these fungi, six isolates showed the highest (>90%) tolerance to both individual PAH and mixed PAHs. And six isolates oxidized gallic acid with dark brown color and they rapidly decolorized RBBR within ten days. These fungi revealed various profiles when evaluated for their biotechnological performance to compare the capability of degradation of PAHs between two groups selected. As the results demonstrated the six best species selected from gallic acid more greatly degraded four PAHs than the other isolates selected via tolerance test. It provided that gallic acid reaction test can be performed to rank the fungi by their ability to degrade the PAHs. Most of all, Peniophora incarnata KUC8836 and Phlebia brevispora KUC9033 significantly degraded the four PAHs and can be considered prime candidates for the degradation of xenobiotic compounds in environmental settings. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The in vitro comparative study of the effect of BPA, BPS, BPF and BPAF on human erythrocyte membrane; perturbations in membrane fluidity, alterations in conformational state and damage to proteins, changes in ATP level and Na+/K+ ATPase and AChE activities.

    PubMed

    Maćczak, Aneta; Duchnowicz, Piotr; Sicińska, Paulina; Koter-Michalak, Maria; Bukowska, Bożena; Michałowicz, Jaromir

    2017-12-01

    Bisphenols are massively used in the industry, and thus the exposure of biota including humans to these substances has been noted. In this study we have assessed the effect of BPA and its selected analogs, i.e. BPS, BPF and BPAF on membrane of human red blood cells, which is the first barrier that must be overcome by xenobiotics penetrating the cell, and is commonly utilized as a model in the investigation of the effect of different xenobiotics on various cell types. Red blood cells were incubated with BPA and its analogs in the concentrations ranging from 0.1 to 250 μg/ml for 4 h and 24 h. We have noted that the compounds studied altered membrane fluidity at its hydrophobic region, increased internal viscosity and osmotic fragility of the erythrocytes and altered conformational state of membrane proteins. Moreover, bisphenols examined increased thiol groups level, caused oxidative damage to membrane proteins, decreased ATP level, depleted the activity of Na+/K + ATPase and changed the activity of AChE in human red blood cells. It has been shown that the strongest changes were noted in cells treated with BPAF, while BPS caused the weakest (or none) alterations in the parameters studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Xenobiotic interaction with and alteration of channel catfish estrogen receptor.

    PubMed

    Nimrod, A C; Benson, W H

    1997-12-01

    In teleostean in vivo studies, the vitellogenin response to environmental estrogens is not completely predicted by mammalian literature. One possible explanation for differences is heterogeneity of the estrogen receptor (ER) structure between species. Therefore, ER from channel catfish (Ictalurus punctatus) hepatic tissue was characterized by binding affinity for several compounds. Affinity was indirectly measured as potency of the chemical for inhibiting binding of radiolabeled estradiol (E2) to specific binding sites. The order of potency among therapeutic chemicals was ethinylestradiol > unlabeled E2 = diethylstilbestrol > mestranol > tamoxifen > testosterone. Unlabeled E2 had an IC50 of 2.2 nM. Several environmentally relevant chemicals were evaluated in a similar manner and the order of potency established was the o-demethylated metabolite of methoxychlor (MXC) > nonylphenol (NP) > chlordecone > MXC > o,p'-DDT > o,p'-DDE > beta-hexachlorocyclohexane. Demethylated MXC had an IC50 1000-fold greater than that of E2. Of the most potent inhibitors, NP appeared to be a competitive inhibitor for the same binding site as E2, while o-demethylated MXC had a more complex interaction with the receptor protein. ER from nonvitellogenic females was determined to have a Kd value of 1.0 to 1.3 nM. Because E2 has been reported to up-regulate teleostean ER, the hepatic ER population following in vivo xenobiotic exposure was assessed. NP significantly increased ER per milligram hepatic protein almost to the same extent as E2, but did not increase Kd to the same extent as E2.

  15. A single amino acid controls the functional switch of human constitutive androstane receptor (CAR) 1 to the xenobiotic-sensitive splicing variant CAR3.

    PubMed

    Chen, Tao; Tompkins, Leslie M; Li, Linhao; Li, Haishan; Kim, Gregory; Zheng, Yuxin; Wang, Hongbing

    2010-01-01

    The constitutive androstane receptor (CAR) is constitutively activated in immortalized cell lines independent of xenobiotic stimuli. This feature of CAR has limited its use as a sensor for xenobiotic-induced expression of drug-metabolizing enzymes. Recent reports, however, reveal that a splicing variant of human CAR (hCAR3), which contains an insertion of five amino acids (APYLT), exhibits low basal but xenobiotic-inducible activities in cell-based reporter assays. Nonetheless, the underlying mechanisms of this functional shift are not well understood. We have now generated chimeric constructs containing various residues of the five amino acids of hCAR3 and examined their response to typical hCAR activators. Our results showed that the retention of alanine (hCAR1+A) alone is sufficient to confer the constitutively activated hCAR1 to the xenobiotic-sensitive hCAR3. It is noteworthy that hCAR1+A was significantly activated by a series of known hCAR activators, and displayed activation superior to that of hCAR3. Moreover, intracellular localization assays revealed that hCAR1+A exhibits nuclear accumulation upon 6-(4-chlorophenyl) imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl) oxime (CITCO) treatment in COS1 cells, which differs from the spontaneous nuclear distribution of hCAR1 and the nontranslocatable hCAR3. Mammalian two-hybrid and glutathione S-transferase pull-down assays further demonstrated that hCAR1+A interacts with the coactivator SRC-1 and GRIP-1 at low level before activation, while at significantly enhanced level in the presence of CITCO. Thus, the alanine residue in the insertion of hCAR3 seems in charge of the xenobiotic response of hCAR3 through direct and indirect mechanisms. Activation of hCAR1+A may represent a sensitive avenue for the identification of hCAR activators.

  16. A Single Amino Acid Controls the Functional Switch of Human Constitutive Androstane Receptor (CAR) 1 to the Xenobiotic-Sensitive Splicing Variant CAR3

    PubMed Central

    Chen, Tao; Tompkins, Leslie M.; Li, Linhao; Li, Haishan; Kim, Gregory; Zheng, Yuxin

    2010-01-01

    The constitutive androstane receptor (CAR) is constitutively activated in immortalized cell lines independent of xenobiotic stimuli. This feature of CAR has limited its use as a sensor for xenobiotic-induced expression of drug-metabolizing enzymes. Recent reports, however, reveal that a splicing variant of human CAR (hCAR3), which contains an insertion of five amino acids (APYLT), exhibits low basal but xenobiotic-inducible activities in cell-based reporter assays. Nonetheless, the underlying mechanisms of this functional shift are not well understood. We have now generated chimeric constructs containing various residues of the five amino acids of hCAR3 and examined their response to typical hCAR activators. Our results showed that the retention of alanine (hCAR1+A) alone is sufficient to confer the constitutively activated hCAR1 to the xenobiotic-sensitive hCAR3. It is noteworthy that hCAR1+A was significantly activated by a series of known hCAR activators, and displayed activation superior to that of hCAR3. Moreover, intracellular localization assays revealed that hCAR1+A exhibits nuclear accumulation upon 6-(4-chlorophenyl) imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl) oxime (CITCO) treatment in COS1 cells, which differs from the spontaneous nuclear distribution of hCAR1 and the nontranslocatable hCAR3. Mammalian two-hybrid and glutathione S-transferase pull-down assays further demonstrated that hCAR1+A interacts with the coactivator SRC-1 and GRIP-1 at low level before activation, while at significantly enhanced level in the presence of CITCO. Thus, the alanine residue in the insertion of hCAR3 seems in charge of the xenobiotic response of hCAR3 through direct and indirect mechanisms. Activation of hCAR1+A may represent a sensitive avenue for the identification of hCAR activators. PMID:19820207

  17. Passive rGE or developmental gene-environment cascade? An investigation of the role of xenobiotic metabolism genes in the association between smoke exposure during pregnancy and child birth weight

    PubMed Central

    Marceau, Kristine; Palmer, Rohan H.C.; Neiderhiser, Jenae M.; Smith, Taylor F.; McGeary, John E.; Knopik, Valerie S.

    2016-01-01

    There is considerable evidence that smoke exposure during pregnancy (SDP) environmentally influences birth weight after controlling for genetic influences and maternal characteristics. However, maternal smoking during pregnancy – the behavior that leads to smoke exposure during pregnancy – is also genetically-influenced, indicating the potential role of passive gene-environment correlation. An alternative to passive gene-SDP correlation is a cascading effect whereby maternal and child genetic influences are causally linked to prenatal exposures, which then have an ‘environmental’ effect on the development of the child’s biology and behavior. We describe and demonstrate a conceptual framework for disentangling passive rGE from this cascading GE effect using a systems-based polygenic scoring approach comprised of genes shown to be important in the xenobiotic (substances foreign to the body) metabolism pathway. Data were drawn from 5,044 families from the Avon Longitudinal Study of Parents and Children with information on maternal SDP, birth weight, and genetic polymorphisms in the xenobiotic pathway. Within a k-fold cross-validation approach (k=5), we created weighted maternal and child polygenic scores using 18 polymorphisms from 10 genes that have been implicated in the xenobiotic metabolism pathway. Mothers and children shared variation in xenobiotic metabolism genes. Amongst mothers who smoked during pregnancy, neither maternal nor child xenobiotic metabolism polygenic scores were associated with a higher likelihood of smoke exposure during pregnancy, or the severity of smoke exposure during pregnancy (and therefore, neither proposed mechanism was supported), or with child birth weight. SDP was consistently associated with lower child birth weight controlling for the polygenic scores, maternal educational attainment, social class, psychiatric problems, and age. Limitations of the study design and the potential of the framework using other designs are discussed. PMID:26803317

  18. Limits of desiccation tolerance in developing embryos of Pritchardia remota (Arecaceae): the orthodox-recalcitrant seed paradigm

    USDA-ARS?s Scientific Manuscript database

    Orthodox and recalcitrant seeds are distinguished by the ability of embryos to survive desiccation. Seeds of many palm species do not conform to the dichotomous classification and storage physiology is considered intermediate or ambiguous. We studied the acquisition of desiccation tolerance in embr...

  19. Evaluation of Enhanced Comprehensive 2-D Gas Chromatography-Time-Of-Flight Mass Spectrometry for the Separation of Recalcitrant Polychlorinated Biphenyl Isomers

    EPA Science Inventory

    The separation of some recalcitrant polychlorinated biphenyl (PCB) isomers in extracts from environmental compartments has been a daunting task for environmental chemists. Summed quantitation values for coeluting PCB isomers are often reported. This composite data obscures the ac...

  20. Investigating the role of extensin proteins in poplar biomass recalcitrance

    USDA-ARS?s Scientific Manuscript database

    The biological conversion of cellulosic biomass to biofuel is hindered by cell wall recalcitrance, which can limit the ability of cellulases to access and break down cellulose. The purpose of this study was to investigate whether hydroxyproline-rich cell wall proteins (extensins) are present in popl...

Top