NASA Astrophysics Data System (ADS)
Jemberie, A.; Dugda, M. T.; Reusch, D.; Nyblade, A.
2006-12-01
Neural networks are decision making mathematical/engineering tools, which if trained properly, can do jobs automatically (and objectively) that normally require particular expertise and/or tedious repetition. Here we explore two techniques from the field of artificial neural networks (ANNs) that seek to reduce the time requirements and increase the objectivity of quality control (QC) and Event Identification (EI) on seismic datasets. We explore to apply the multiplayer Feed Forward (FF) Artificial Neural Networks (ANN) and Self- Organizing Maps (SOM) in combination with Hk stacking of receiver functions in an attempt to test the extent of the usefulness of automatic classification of receiver functions for crustal parameter determination. Feed- forward ANNs (FFNNs) are a supervised classification tool while self-organizing maps (SOMs) are able to provide unsupervised classification of large, complex geophysical data sets into a fixed number of distinct generalized patterns or modes. Hk stacking is a methodology that is used to stack receiver functions based on the relative arrival times of P-to-S converted phase and next two reverberations to determine crustal thickness H and Vp-to-Vs ratio (k). We use receiver functions from teleseismic events recorded by the 2000- 2002 Ethiopia Broadband Seismic Experiment. Preliminary results of applying FFNN neural network and Hk stacking of receiver functions for automatic receiver functions classification as a step towards an effort of automatic crustal parameter determination look encouraging. After training a FFNN neural network, the network could classify the best receiver functions from bad ones with a success rate of about 75 to 95%. Applying H? stacking on the receiver functions classified by this FFNN as the best receiver functions, we could obtain crustal thickness and Vp/Vs ratio of 31±4 km and 1.75±0.05, respectively, for the crust beneath station ARBA in the Main Ethiopian Rift. To make comparison, we applied Hk stacking on the receiver functions which we ourselves classified as the best set and found that the crustal thickness and Vp/Vs ratio are 31±2 km and 1.75±0.02, respectively.
Dispatching function calls across accelerator devices
Jacob, Arpith C.; Sallenave, Olivier H.
2017-01-10
In one embodiment, a computer-implemented method for dispatching a function call includes receiving, at a supervisor processing element (PE) and from an origin PE, an identifier of a target device, a stack frame of the origin PE, and an address of a function called from the origin PE. The supervisor PE allocates a target PE of the target device. The supervisor PE copies the stack frame of the origin PE to a new stack frame on a call stack of the target PE. The supervisor PE instructs the target PE to execute the function. The supervisor PE receives a notification that execution of the function is complete. The supervisor PE copies the stack frame of the target PE to the stack frame of the origin PE. The supervisor PE releases the target PE of the target device. The supervisor PE instructs the origin PE to resume execution of the program.
Dispatching function calls across accelerator devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, Arpith C.; Sallenave, Olivier H.
In one embodiment, a computer-implemented method for dispatching a function call includes receiving, at a supervisor processing element (PE) and from an origin PE, an identifier of a target device, a stack frame of the origin PE, and an address of a function called from the origin PE. The supervisor PE allocates a target PE of the target device. The supervisor PE copies the stack frame of the origin PE to a new stack frame on a call stack of the target PE. The supervisor PE instructs the target PE to execute the function. The supervisor PE receives a notificationmore » that execution of the function is complete. The supervisor PE copies the stack frame of the target PE to the stack frame of the origin PE. The supervisor PE releases the target PE of the target device. The supervisor PE instructs the origin PE to resume execution of the program.« less
Ocean acoustic interferometry.
Brooks, Laura A; Gerstoft, Peter
2007-06-01
Ocean acoustic interferometry refers to an approach whereby signals recorded from a line of sources are used to infer the Green's function between two receivers. An approximation of the time domain Green's function is obtained by summing, over all source positions (stacking), the cross-correlations between the receivers. Within this paper a stationary phase argument is used to describe the relationship between the stacked cross-correlations from a line of vertical sources, located in the same vertical plane as two receivers, and the Green's function between the receivers. Theory and simulations demonstrate the approach and are in agreement with those of a modal based approach presented by others. Results indicate that the stacked cross-correlations can be directly related to the shaded Green's function, so long as the modal continuum of any sediment layers is negligible.
NASA Astrophysics Data System (ADS)
Li, J.; Song, X.; Wang, P.; Zhu, L.
2017-12-01
The H-κ method (Zhu and Kanamori, 2000) has been widely used to estimate the crustal thickness and Vp/Vs ratio with receiver functions. However, in regions where the crustal structure is complicated, the method may produce uncertain or even unrealistic results, arising particularly from dipping Moho and/or crustal anisotropy. Here, we propose an improved H-κ method, which corrects for these effects first before stacking. The effect of dipping Moho and crustal anisotropy on Ps receiver function has been well studied, but not as much on crustal multiples (PpPs and PpSs+PsPs). Synthetic tests show that the effect of crustal anisotropy on the multiples are similar to Ps, while the effect of dipping Moho on the multiples is 5 times that on Ps (same cosine trend but 5 times in time shift). A Harmonic Analysis (HA) method for dipping/anisotropy was developed by Wang et al. (2017) for crustal Ps receiver functions to extract parameters of dipping Moho and crustal azimuthal anisotropy. In real data, the crustal multiples are much more complicated than the Ps. Therefore, we use the HA method (Wang et al., 2017), but apply separately to Ps and the multiples. It shows that although complicated, the trend of multiples can still be reasonably well represented by the HA. We then perform separate azimuthal corrections for Ps and the multiples and stack to obtain a combined receiver function. Lastly, the traditional H-κ procedure is applied to the stacked receiver function. We apply the improved H-κ method on 40 CNDSN (Chinese National Digital Seismic Network) stations distributed in a variety of geological setting across the Chinese continent. The results show apparent improvement compared to the traditional H-κ method, with clearer traces of multiples and stronger stacking energy in the grid search, as well as more reliable H-κ values.
Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack
NASA Technical Reports Server (NTRS)
Keys, Andrew S. (Inventor); Fork, Richard L. (Inventor)
2005-01-01
An optical phase modulator includes a bandpass multilayer stack, formed by a plurality of dielectric layers, preferably of GaAs and AlAs, and having a transmission function related to the refractive index of the layers of the stack, for receiving an optical input signal to be phase modulated. A phase modulator device produces a nonmechanical change in the refractive index of each layer of the stack by, e.g., the injection of free carrier, to provide shifting of the transmission function so as to produce phase modulation of the optical input signal and to thereby produce a phase modulated output signal.
Crustal and Upper Mantle Structure Beneath the Canary Islands From Teleseismic Receiver Functions.
NASA Astrophysics Data System (ADS)
Lodge, A.; Nippress, S. E.; Rietbrock, A.
2007-12-01
The Canary Islands are situated in the North Atlantic Ocean, <200km west of Morocco, Africa. The islands are volcanic ocean islands, associated with the classic hot spot characteristic combination of bathymetric, gravity and geoid anomalies. However, unlike the classic hot spot location of Hawaii, the archipelago is located on a slow moving plate, showing more similarities to the Cape Verde Islands, but unlike both Hawaii and Cape Verde, the Canary Islands are close to the continental shelf. The aims of this work are to provide seismic constraints on the structure beneath the Canary Islands to determine whether this structure indicates a clear age progression across the archipelago as observed at Cape Verde and to determine whether deeper structure may illuminate the source of the hot spot features. To take a transect through the Canary Islands using receiver function analysis, we re-analysed broadband data from the MIDSEA project station (available through IRIS), CDLV on Lanzarote (1999-2001), but apply the multiple- taper spectral correlation estimate for receiver function calculation. We also analysed broadband data from the IRIS Network station of TBT from La Palma (1993-1996). Additionally we also use data from a short period seismic network consisting of 150 short period stations installed for 2 weeks as part of the TOM-TEIDEVS project on the island of Tenerife. Only 1 teleseismic event suitable for receiver function analysis was recorded during this period. Initially an average of all events was to be used for modelling, but significant differences in receiver function shape between different areas of the island, suggested separate stacks for different regions was more appropriate. Initial forward modelling for the average azimuthal stack for CDLV, supports earlier receiver function work that indicates a crust thickened up to ~20km depth, but no evidence of a continental like structure. The average azimuthal stack for TBT shows few details, but when events are grouped by back azimuth and stacked, significant differences in shape are observed. Comparison of the tangential components for different back azimuths, suggests the existence of dipping and/or anisotropic layers. Forward modelling for a stack of data from the caldera in Tenerife, indicates no crustal thickening. This suggests a relationship between crustal thickening and age across the archipelago. Further analysis and application of grid search methods will reveal the structure beneath each of the islands in more detail and indicate whether a thermal or a compositional origin is more appropriate for the islands.
NASA Astrophysics Data System (ADS)
Shi, Lei; Guo, Lianghui; Ma, Yawei; Li, Yonghua; Wang, Weilai
2018-05-01
The technique of teleseismic receiver function H-κ stacking is popular for estimating the crustal thickness and Vp/Vs ratio. However, it has large uncertainty or ambiguity when the Moho multiples in receiver function are not easy to be identified. We present an improved technique to estimate the crustal thickness and Vp/Vs ratio by joint constraints of receiver function and gravity data. The complete Bouguer gravity anomalies, composed of the anomalies due to the relief of the Moho interface and the heterogeneous density distribution within the crust, are associated with the crustal thickness, density and Vp/Vs ratio. According to their relationship formulae presented by Lowry and Pérez-Gussinyé, we invert the complete Bouguer gravity anomalies by using a common algorithm of likelihood estimation to obtain the crustal thickness and Vp/Vs ratio, and then utilize them to constrain the receiver function H-κ stacking result. We verified the improved technique on three synthetic crustal models and evaluated the influence of selected parameters, the results of which demonstrated that the novel technique could reduce the ambiguity and enhance the accuracy of estimation. Real data test at two given stations in the NE margin of Tibetan Plateau illustrated that the improved technique provided reliable estimations of crustal thickness and Vp/Vs ratio.
NASA Astrophysics Data System (ADS)
Kim, Y.; Shen, X.; Song, T. R. A.; Lim, H.
2016-12-01
Plate tectonic processes operating over much of the Earth's history induce long-term mantle mixing of chemical heterogeneities, recycling of volatiles into the mantle and regulate basalt geochemistry. Fundamental questions relevant to the mantle transition zone concern the nature of phase transition, the distribution of chemical heterogeneities (e.g., harzburgite, basalt), the temperature gradient, as well as the degree and extent of hydration and melting. One particularly important question is how the slab stagnation may be influenced by hydration or/and basalt enrichment in the mantle transition zone. To help answer these questions, we aim to detail upper mantle seismic discontinuity properties, including the shear velocity contrast, the density contrast, the transition sharpness and the gradient using high quality receiver functions using broadband data in South Korea, which is located in the immediate vicinity of the imaged stagnant slab near northeast China. Our approach involves broadband observation and amplitude analysis of direct converted waves (Pds) and multiples (PpPds) from the 410 and 660 seismic discontinuities, following our previous effort in a similar analysis in China. We processed waveforms from 52 broadband seismic stations of the Korea seismic array using an automatic scheme to remove noisy waveforms and retained close to 12,000 high quality receiver functions. After gathering receiver functions as a function of epicentral distance, we perform slowness stacking of direct converted waves and the multiples, respectively, at several discrete frequency bands between 1 sec and 15 sec. To avoid interferences from other mantle waves (PP, PPP, PcP, PP410s, PP660s), we stack receive functions across epicentral distances of 74-90 (62-76) degrees for the 410 (660) seismic discontinuity and obtain amplitude estimates and uncertainties through the bootstrap method. To properly calibrate the amplitudes of receiver functions, we take into account the effect of incoherent stacking due to discontinuity topography and frequency-dependent attenuation. Preliminary result will be presented and contrasted against our previous work in east China.
Slowness based CCP stacking technique in suppressing crustal multiples
NASA Astrophysics Data System (ADS)
Guan, Z.; Niu, F.
2016-12-01
Common-conversion-point (CCP) stacking of receiver function is a widely used technique to image velocity discontinuities in the mantle, such as the lithosphere-asthenosphere boundary (LAB) in the upper mantle, the 410-km and the 660-km discontinuities in the mantle transition zone. In a layered medium, a teleseismic record can be considered as the summation of the direct arrival and a series of conversions and reflections at boundaries below the station. Receiver functions are an attempt to approximate a Green's function associated with structure beneath the receiver by deconvolving one component of a teleseismic signal from another to remove source signals from seismograms. The CCP technique assumes that receiver functions composed solely of P to S conversions at velocity boundaries, whose depths can be mapped out through their arrival times. The multiple reflections at shallow boundaries with large velocity contrasts, such as the base of unconsolidated sediments and the Moho, can pose significant challenges to the accuracy of CCP imaging. In principle, the P to S conversions and multiples originated from deep and shallow boundaries arrive at a seismic station with incident angles that are, respectively, smaller and larger than that of the direct P wave. Therefore the corresponding slowness can be used to isolate the conversions from multiples, allowing for minimizing multiple-induced artifacts. We developed a refined CCP stacking method that uses relative slowness as a weighting factor to suppress the multiples. We performed extensive numerical tests with synthetic data to seek the best weighting scheme and to verify the robustness of the images. We applied the refined technique to the NECESSArray data, and found that the complicated low velocity structures in the depth range of 200-400 km shown in the CCP images of previous studies are mostly artifacts resulted from crustal multiples.
NASA Astrophysics Data System (ADS)
Agrawal, M.; Pulliam, J.; Sen, M. K.
2013-12-01
The seismic structure beneath Texas Gulf Coast Plain (GCP) is determined via velocity analysis of stacked common conversion point (CCP) Ps and Sp receiver functions and surface wave dispersion. The GCP is a portion of a ocean-continental transition zone, or 'passive margin', where seismic imaging of lithospheric Earth structure via passive seismic techniques has been rare. Seismic data from a temporary array of 22 broadband stations, spaced 16-20 km apart, on a ~380-km-long profile from Matagorda Island, a barrier island in the Gulf of Mexico, to Johnson City, Texas were employed to construct a coherent image of the crust and uppermost mantle. CCP stacking was applied to data from teleseismic earthquakes to enhance the signal-to-noise ratios of converted phases, such as Ps phases. An inaccurate velocity model, used for time-to-depth conversion in CCP stacking, may produce higher errors, especially in a region of substantial lateral velocity variations. An accurate velocity model is therefore essential to constructing high quality depth-domain images. To find accurate velocity P- and S-wave models, we applied a joint modeling approach that searches for best-fitting models via simulated annealing. This joint inversion approach, which we call 'multi objective optimization in seismology' (MOOS), simultaneously models Ps receiver functions, Sp receiver functions and group velocity surface wave dispersion curves after assigning relative weights for each objective function. Weights are computed from the standard deviations of the data. Statistical tools such as the posterior parameter correlation matrix and posterior probability density (PPD) function are used to evaluate the constraints that each data type places on model parameters. They allow us to identify portions of the model that are well or poorly constrained.
Modular fuel-cell stack assembly
Patel, Pinakin [Danbury, CT; Urko, Willam [West Granby, CT
2008-01-29
A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.
Examining the interior of Llaima Volcano with receiver functions
NASA Astrophysics Data System (ADS)
Bishop, J. W.; Lees, J. M.; Biryol, C. B.; Mikesell, T. D.; Franco, L.
2018-02-01
Llaima Volcano in Chile is one of the largest and most active volcanoes in the southern Andes, with over 50 eruptions since the 1600s. After years of persistent degassing, Llaima most recently erupted in a series of violent Strombolian eruptions in 2007-2009. This period had few precursory signals, which highlights the need to obtain accurate magma storage information. While petrologic advancements have been made in understanding magma degassing and crystallization trends, a comprehensive seismic study has yet to be completed. Here, we present results of a receiver function survey utilizing a dense seismic array surrounding Llaima volcano. Application of H-κ stacking and common conversion point stacking techniques reveals a new Moho estimate and two structural anomalies beneath Llaima Volcano. We interpret a low velocity zone between 8 and 13 km depth as a newly imaged magma body.
Modular fuel-cell stack assembly
Patel, Pinakin
2010-07-13
A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.
NASA Astrophysics Data System (ADS)
Audet, P.; Schaeffer, A. J.
2017-12-01
Studies of the forearc structure in the Cascadia subduction zone using teleseismic P-wave receiver function have resolved structures associated with deep fluid cycling, such as the basalt-to-eclogite reaction and fluid overpressure within the subducting oceanic crust, as well as the serpentinization of the forearc mantle wedge. Unfortunately, the updip extent of the over-pressured zone, and therefore the possible control on the transition from episodic slow slip to seismic slip, occurs offshore and is not resolved in those studies. The Cascadia Initiative (CI) has provided an opportunity to extend this work to the locked zone using teleseismic receiver functions from the deployment of a dense line of ocean-bottom seismograph stations offshore of Washington State, from the trench to the coastline. Here we calculate P-wave receiver functions using data from offshore (CI) and onshore (CAFE) broadband seismic stations. These data clearly show the various scattered phases associated with a dipping low-velocity layer that was identified in previous studies as the downgoing oceanic crust. These signals are difficult to untangle offshore because they arrive at similar times. We process receiver functions using a modified common-conversion point (CCP) stacking technique that uses a coherency filter to optimally stack images obtained from the three main scattered phases. The resulting image shows along-dip variations in the character of the seismic discontinuities associated with the top and bottom of the low-velocity layer. Combined with focal depth information of regular and low-frequency earthquakes, these variations may reflect changes in the material properties of the megathrust across the seismogenic zone in Cascadia.
Sp and Ps Receiver Function Imaging of the Cenozoic and Precambrian US
NASA Astrophysics Data System (ADS)
Keenan, James; Thurner, Sally; Levander, Alan
2013-04-01
Using teleseismic USArray data we have made Ps and Sp receiver function common conversion point stacked image volumes that extend from the Pacific coast to approximately the Mississippi River. We have used iterative time-domain deconvolution, water-level frequency-domain deconvolution, and least squares inverse filtering to form receiver functions in various frequency bands (Ps: 1.0 and, 0.5 Hz, Sp: 0.2 and 0.1 Hz). The receiver functions were stacked to give an image volume for each frequency band using a hybrid velocity model made by combining Crust2.0 (Bassin et al., 2000) and finite-frequency P and S wave tomography models (Schmandt and Humphreys, 2010; and Schmandt, unpublished). We contrast the lithospheric and asthenospheric structure of the western U.S., modified by Cenozoic tectonism, with that of the Precambrian central U.S. Here we describe 2 notable features: (1) In the Sp image volumes the upper mantle beneath the western U.S. differs dramatically from that to the east of the Rocky Mountain front. In the western U.S. the lithosphere is either thin, or highly variable in thickness (40-140 km) with neither the lithosphere nor asthenosphere having much internal structure (e.g., Levander and Miller, 2012). In contrast, east of the Rocky Mountain front the lithosphere steadily deepens to > 150 km and shows relatively strong internal layering. Individual positive and negative conversions are coherent over 100's of kilometers, suggesting the thrust stacking model of cratonic formation. (2) Beneath parts of the Archean Wyoming Province (Henstock et al, 1998; Snelson et al., 1998; Gorman et al., 2002; Mahan et al, 2012), much of the Great Plains and part of the Midwest lies a vast variable thickness (up to ~25 km) high velocity crustal layer. This layer lies roughly north of the Grenville Front, underlying much of the Yavapai-Mazatzal Province east of the Rockies, parts of the Superior Province, and possibly parts of the Trans-Hudson province.
NASA Astrophysics Data System (ADS)
Ainiwaer, A.; Gurrola, H.
2018-03-01
Common conversion point stacking or migration of receiver functions (RFs) and H-k (H is depth and k is Vp/Vs) stacking of RFs has become a common method to study the crust and upper mantle beneath broad-band three-component seismic stations. However, it can be difficult to interpret Pds RFs due to interference between the Pds, PPds and PSds phases, especially in the mantle portion of the lithosphere. We propose a phase separation method to isolate the prominent phases of the RFs and produce separate Pds, PPds and PSds `phase specific' receiver functions (referred to as PdsRFs, PPdsRFs and PSdsRFs, respectively) by deconvolution of the wavefield rather than single seismograms. One of the most important products of this deconvolution method is to produce Ps receiver functions (PdsRFs) that are free of crustal multiples. This is accomplished by using H-k analysis to identify specific phases in the wavefield from all seismograms recorded at a station which enables development of an iterative deconvolution procedure to produce the above-mentioned phase specific RFs. We refer to this method as wavefield iterative deconvolution (WID). The WID method differentiates and isolates different RF phases by exploiting their differences in moveout curves across the entire wave front. We tested the WID by applying it to synthetic seismograms produced using a modified version of the PREM velocity model. The WID effectively separates phases from each stacked RF in synthetic data. We also applied this technique to produce RFs from seismograms recorded at ARU (a broad-band station in Arti, Russia). The phase specific RFs produced using WID are easier to interpret than traditional RFs. The PdsRFs computed using WID are the most improved, owing to the distinct shape of its moveout curves as compared to the moveout curves for the PPds and PSds phases. The importance of this WID method is most significant in reducing interference between phases for depths of less than 300 km. Phases from deeper layers (i.e. P660s as compared to PP220s) are less likely to be misinterpreted because the large amount of moveout causes the appropriate phases to stack coherently if there is sufficient distribution in ray parameter. WID is most effective in producing clean PdsRFs that are relatively free of reverberations whereas PPdsRFs and PSdsRFs retain contamination from reverberations.
Transition zone structure beneath Ethiopia from 3-D fast marching pseudo-migration stacking
NASA Astrophysics Data System (ADS)
Benoit, M. H.; Lopez, A.; Levin, V.
2008-12-01
Several models for the origin of the Afar hotspot have been put forth over the last decade, but much ambiguity remains as to whether the hotspot tectonism found there is due to a shallow or deeply seated feature. Additionally, there has been much debate as to whether the hotspot owes its existence to a 'classic' mantle plume feature or if it is part of the African Superplume complex. To further understand the origin of the hotspot, we employ a new receiver function stacking method that incorporates a fast-marching three- dimensional ray tracing algorithm to improve upon existing studies of the mantle transition zone structure. Using teleseismic data from the Ethiopia Broadband Seismic Experiment and the EAGLE (Ethiopia Afar Grand Lithospheric Experiment) experiment, we stack receiver functions using a three-dimensional pseudo- migration technique to examine topography on the 410 and 660 km discontinuities. Previous methods of receiver function pseudo-migration incorporated ray tracing methods that were not able to ray trace through highly complicated 3-D structure, or the ray tracing techniques only produced 3-D time perturbations associated 1-D rays in a 3-D velocity medium. These previous techniques yielded confusing and incomplete results for when applied to the exceedingly complicated mantle structure beneath Ethiopia. Indeed, comparisons of the 1-D versus 3-D ray tracing techniques show that the 1-D technique mislocated structure laterally in the mantle by over 100 km. Preliminary results using our new technique show a shallower then average 410 km discontinuity and a deeper than average 660 km discontinuity over much of the region, suggested that the hotspot has a deep seated origin.
Updates to FuncLab, a Matlab based GUI for handling receiver functions
NASA Astrophysics Data System (ADS)
Porritt, Robert W.; Miller, Meghan S.
2018-02-01
Receiver functions are a versatile tool commonly used in seismic imaging. Depending on how they are processed, they can be used to image discontinuity structure within the crust or mantle or they can be inverted for seismic velocity either directly or jointly with complementary datasets. However, modern studies generally require large datasets which can be challenging to handle; therefore, FuncLab was originally written as an interactive Matlab GUI to assist in handling these large datasets. This software uses a project database to allow interactive trace editing, data visualization, H-κ stacking for crustal thickness and Vp/Vs ratio, and common conversion point stacking while minimizing computational costs. Since its initial release, significant advances have been made in the implementation of web services and changes in the underlying Matlab platform have necessitated a significant revision to the software. Here, we present revisions to the software, including new features such as data downloading via irisFetch.m, receiver function calculations via processRFmatlab, on-the-fly cross-section tools, interface picking, and more. In the descriptions of the tools, we present its application to a test dataset in Michigan, Wisconsin, and neighboring areas following the passage of USArray Transportable Array. The software is made available online at https://robporritt.wordpress.com/software.
Receiver functions from west Antarctica; crust and mantle properties from POLENET
NASA Astrophysics Data System (ADS)
Aster, R. C.; Chaput, J. A.; Hansen, S. E.; Nyblade, A.; Wiens, D. A.; Huerta, A. D.; Wilson, T. J.; Anandakrishnan, S.
2011-12-01
We use receiver functions to extract crustal thickness and mantle transition zone depths across a wide extent of West Antarctica and the Transantarctic mountains using POLENET data, including recently recovered data from a 14-station West Antarctic Rift Zone transect. An adaptive approach for generating and analyzing P-receiver functions over ice sheets and sedimentary basins (similar to Winberry and Anandakrishnan, 2004) is applied using an extended time multitaper deconvolution algorithm and forward modeling synthetic seismogram fitting. We model P-S receiver functions via a layer stripping methodology (beginning with the ice sheet, if present), and fit increasingly longer sections of synthetic receiver functions to model the multiples observed in the data derived receiver functions. We additionally calculate S-P receiver functions, which provide complementary structural constraints, to generate consistent common conversion point stacks to image crustal and upper mantle discontinuities under West Antarctica. Crust throughout West Antarctica is generally thin (23-29 km; comparable to the U.S. Basin and Range) with relative thickening under the Marie Byrd Land volcanic province (to 32 km) and the Transantarctic Mountains. All constrained west Antarctic crust is substantially thicker than that in the vicinity of Ross Island, where crust as thin as 17 km is inferred in the Terror Rift region.
Pixa, Nils H.; Steinberg, Fabian; Doppelmayr, Michael
2017-01-01
Many daily activities, such as tying one’s shoe laces, opening a jar of jam or performing a free throw in basketball, require the skillful coordinated use of both hands. Even though the non-invasive method of transcranial direct current stimulation (tDCS) has been repeatedly shown to improve unimanual motor performance, little is known about its effects on bimanual motor performance. More knowledge about how tDCS may improve bimanual behavior would be relevant to motor recovery, e.g., in persons with bilateral impairment of hand function. We therefore examined the impact of high-definition anodal tDCS (HD-atDCS) on the performance of a bimanual sequential sensorimotor task. Thirty-two volunteers (age M = 24.25; SD = 2.75; 14 females) participated in this double-blind study and performed sport stacking in six experimental sessions. In sport stacking, 12 specially designed cups must be stacked (stacked up) and dismantled (stacked down) in predefined patterns as fast as possible. During a pretest, posttest and follow-up test, two sport stacking formations (3-6-3 stack and 1-10-1 stack) were performed. Between the pretest and posttest, all participants were trained in sport stacking with concurrent brain stimulation for three consecutive days. The experimental group (STIM-M1) received HD-atDCS over both primary motor cortices (M1), while the control group received a sham stimulation (SHAM). Three-way analysis of variance (ANOVA) revealed a significant main effect of TIME and a significant interaction of TIME × GROUP. No significant effects were found for GROUP, nor for the three-way interaction of TIME × GROUP × FORMATION. Further two-way ANOVAs showed a significant main effect of TIME and a non-significant main effect for GROUP in both sport stacking formations. A significant interaction between TIME × GROUP was found only for the 3-6-3 formation, indicating superior performance gains for the experimental group (STIM-M1). To account and control for baseline influences on the outcome measurements, ANCOVAs treating pretest scores as covariates revealed a significant effect of the stimulation. From this, we conclude that bilateral HD-atDCS over both M1 improves motor performance in a bimanual sequential sensorimotor task. These results may indicate a beneficial use of tDCS for learning and recovery of bimanual motor skills. PMID:28747875
Retrieving Coherent Receiver Function Images with Dense Arrays
NASA Astrophysics Data System (ADS)
Zhong, M.; Zhan, Z.
2016-12-01
Receiver functions highlight converted phases (e.g., Ps, PpPs, sP) and have been widely used to study seismic interfaces. With a dense array, receiver functions (RFs) at multiple stations form a RF image that can provide more robust/detailed constraints. However, due to noise in data, non-uniqueness of deconvolution, and local structures that cannot be detected across neighboring stations, traditional RF images are often noisy and hard to interpret. Previous attempts to enhance coherence by stacking RFs from multiple events or post-filtering the RF images have not produced satisfactory improvements. Here, we propose a new method to retrieve coherent RF images with dense arrays. We take advantage of the waveform coherency at neighboring stations and invert for a small number of coherent arrivals for their RFs. The new RF images contain only the coherent arrivals required to fit data well. Synthetic tests and preliminary applications on real data demonstrate that the new RF images are easier to interpret and improve our ability to infer Earth structures using receiver functions.
Imaging the crustal and lithospheric structures beneath the Alboran Domain and its surrounding area
NASA Astrophysics Data System (ADS)
Dündar, Süleyman; Kind, Rainer; Yuan, Xiaohui
2010-05-01
The knowledge of the crustal and lithospheric structures plays an important role in understanding the geodynamic evolution of the Earth's interiors within the framework of plate tectonics. The receiver function method is used to resolve the seismic discontinuity structure of the crust and upper mantle beneath a recording station and to infer possible geodynamic processes within the Earth. The methodology is developed based on the conversion of elastic body waves (P and S) at an interface which represents a boundary between different elastic properties. In this study, we analyze the P- and S-wave receiver functions in order to investigate seismic deep structures beneath the Alboran Domain which is still in debate despite a large amount of research effort conducted along the region of interest. The Alboran Domain is located at the western end of the Mediterranean and Betic-Rif orogenic system. The study area is on the edge of a prominent plate boundary, which is dominated by the tectonic interaction between the Africa and Iberian plates. Thus, it represents a complex tectonic process consisting of composite compressional and extensional regimes. The teleseismic recordings are extracted from the database of IRIS and GEOFON data centers according to the earthquake catalog obtained from U.S. Geological Survey. We analyzed totally 4976 P- and 12673 S- receiver functions.To achieve the sufficient energy in waveforms, we analyze events greater than M5.7, located at epicentral distance ranging from 35° to 90°, from 60° to 85° and from 85° to 120° for P-, S- and SKS phases, respectively. The data quality is manually checked to restrict the event database to the clear P-, S and SKS- onsets. The seismograms are rotated into P-, SH- and SV components of local ray coordinate system in order to get the highest energy of converted phases. We perform a time-domain deconvolution approach to derive the receiver functions in order to eliminate the source and path effects. Move-out correction is applied prior to stacking the individual traces in order to compare and then to better identify the coherent phases. We alternatively use piercing-point approach for stacking process subdividing the region into the grids with a size of 1°x1° and stack the individual traces based on their corresponding grids (piercing-points). The S-receiver function is used to avoid complications due to the crustal-reverberations and thus to better resolve the variation of lithosphere-asthenosphere boundary (LAB). The variation of crustal thickness derived from P-wave receiver functions is well-correlated with the pattern obtained from S-wave receiver functions.The results suggest that the thickness of the crust as well as the depth of LAB systematically decreases towards the east. The greatest crustal thickness is observed along the Betic and Rift mountains. The relatively shallow Moho as well as the shallow LAB beneath the Alboran Sea are consistent with the extensional nature of the boundary between Iberian and African plates.
Rumpfhuber, E.-M.; Keller, Gordon R.; Sandvol, E.; Velasco, A.A.; Wilson, D.C.
2009-01-01
In this study, we have determined the crustal structure using three different receiver function methods using data collected from the northern transect of the Continental Dynamics of the Rocky Mountains (CD-ROM) experiment. The resulting migrated image and crustal thickness determinations confirm and refine prior crustal thickness measurements based on the CD-ROM and Deep Probe experiment data sets. The new results show a very distinct and thick lower crustal layer beneath the Archean Wyoming province. In addition, we are able to show its termination at 42??N latitude, which provides a seismic tie between the CD-ROM and Deep Probe seismic experiments and thus completes a continuous north-south transect extending from New Mexico into Alberta, Canada. This new tie is particularly important because it occurs close to a major tectonic boundary, the Cheyenne belt, between an Archean craton and a Proterozoic terrane. We used two different stacking techniques, based on a similar concept but using two different ways to estimate uncertainties. Furthermore, we used receiver function migration and common conversion point (CCP) stacking techniques. The combined interpretation of all our results shows (1) crustal thinning in southern Wyoming, (2) strong northward crustal thickening beginning in central Wyoming, (3) the presence of an unusually thick and high-velocity lower crust beneath the Wyoming province, and (4) the abrupt termination of this lower crustal layer north of the Cheyenne belt at 42??N latitude. Copyright 2009 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo-Decanini, Juan M.
2017-08-29
A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes themore » particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.« less
The Crustal Structure of the Central Anatolia (Turkey) Using Receiver Functions
NASA Astrophysics Data System (ADS)
Yelkenci, S.; Benoit, M.; Kuleli, H.; Gurbuz, C.
2005-12-01
Central Anatolia lies in a transitional region between the extensional tectonics of western Anatolia and the complex transpressional tectonics of Eastern Anatolia, and has a complicated thermal and structural history. Few studies of the crustal structure of Anatolia have been performed, however, studies of the crustal structure of Eastern Anatolia showed that crustal thicknesses were thinner than previously thought. To further investigate the crustal structure in Central Anatolia, we present results from receiver function analysis using new data from broad-band instruments. The stations were equipped with 7 broadband three-component STS-2 and 13 short period three-component S-13 sensors. These stations operated for period of one and half months between the October and November, 2002, and yielded data for ~ 40 high quality receiver functions. Additionally, receiver functions were also computed using data from permanent stations MALT, ISP, and ANTO. We applied the hk-stacking technique of Zhu and Kanamori (2000) to receiver functions to obtain the crustal thickness and Vp/Vs ratios. Furthermore, we applied a waveform modeling technique to investigate mid-crustal discontinuties previously imaged in the region. Our results compare well with refraction-based crustal thicknesses in overlapped areas.
Moho map of South America from receiver functions and surface waves
NASA Astrophysics Data System (ADS)
Lloyd, Simon; van der Lee, Suzan; FrançA, George Sand; AssumpçãO, Marcelo; Feng, Mei
2010-11-01
We estimate crustal structure and thickness of South America north of roughly 40°S. To this end, we analyzed receiver functions from 20 relatively new temporary broadband seismic stations deployed across eastern Brazil. In the analysis we include teleseismic and some regional events, particularly for stations that recorded few suitable earthquakes. We first estimate crustal thickness and average Poisson's ratio using two different stacking methods. We then combine the new crustal constraints with results from previous receiver function studies. To interpolate the crustal thickness between the station locations, we jointly invert these Moho point constraints, Rayleigh wave group velocities, and regional S and Rayleigh waveforms for a continuous map of Moho depth. The new tomographic Moho map suggests that Moho depth and Moho relief vary slightly with age within the Precambrian crust. Whether or not a positive correlation between crustal thickness and geologic age is derived from the pre-interpolation point constraints depends strongly on the selected subset of receiver functions. This implies that using only pre-interpolation point constraints (receiver functions) inadequately samples the spatial variation in geologic age. The new Moho map also reveals an anomalously deep Moho beneath the oldest core of the Amazonian Craton.
The Precambrian crustal structure of East Africa
NASA Astrophysics Data System (ADS)
Young, A. J.; Tugume, F.; Nyblade, A.; Julia, J.; Mulibo, G.
2011-12-01
We present new results on crustal structure from East Africa from analyzing P wave receiver functions. The data for this study come from temporary AfricaArray broadband seismic stations deployed between 2007 and 2011 in Uganda, Tanzania and Zambia. Receiver functions have been computed using an iterative deconvolution method. Crustal structure has been imaged using the H-k stacking method and by jointly inverting the receiver functions and surface wave phase and group velocities. The results show remarkably uniform crust throughout the Archean and Proterozoic terrains that comprise the Precambrian tectonic framework of the region. Crustal thickness for most terrains is between 37 and 40 km, and Poisson's ratio is between 0.25 and 0.27. Results from the joint inversion yield average crustal Vs values of 3.6 to 3.7 km/s. For most terrains, a thin (1-5 km) thick high velocity (Vs>4.0 km/s) is found at the base of the crust.
NASA Astrophysics Data System (ADS)
Šumanovac, Franjo; Hegedűs, Endre; Orešković, Jasna; Kolar, Saša; Kovács, Attila C.; Dudjak, Darko; Kovács, István J.
2016-06-01
Passive seismic experiment was carried out at the SW contact of the Dinarides and Pannonian basin to determine the crustal structure and velocity discontinuities. The aim of the experiment was to define the relationship between the Adriatic microplate and the Pannonian segment as a part of the European plate. Most of the temporary seismic stations were deployed in Croatia along the Alp07 profile-a part of the active-source ALP 2002 project. About 300-km-long profile stretches from Istra peninsula to the Drava river, in a WSW-ESE direction. Teleseismic events recorded on 13 temporary seismic stations along the profile were analysed by P-receiver function method. Two types of characteristic receiver functions (RF) have been identified, belonging to Dinaridic and Pannonian crusts as defined on the Alp07 profile, while in transitional zone there are both types. Three major crustal discontinuities can be identified for the Dinaridic type: sedimentary basement, intracrustal discontinuity and Mohorovičić discontinuity, whereas the Pannonian type revealed only two discontinuities. The intracrustal discontinuity was not observed in the Pannonian type, thus pointing to a single-layered crust in the Pannonian basin. Two interpretation methods were applied: forward modelling of the receiver functions and H-κ stacking method, and the results were compared with the active-source seismic data at deep refraction profile Alp07. The receiver function modelling has given reliable results of the Moho depths that are in accordance with the seismic refraction results at the end of the Alp07 profile, that is in the area of Pannonian crust characterized by simple crustal structure and low seismic velocities (Vp between 5.9 and 6.2 km s-1). In the Dinarides and its peripheral parts, receiver function modelling regularly gives greater Moho depths, up to +15 per cent, due to more complex crustal structure. The depths of the Moho calculated by the H-κ stacking method vary within wide limits (±13 km), due to band limited data of short-period stations. The results at five stations have to be rejected because of huge deviations in comparison with all previous results, while at the other seven stations the Moho depths vary within ±15 per cent around the Moho discontinuity of the Alp07 profile.
Modelling the Crust beneath the Kashmir valley in Northwestern Himalaya
NASA Astrophysics Data System (ADS)
Mir, R. R.; Parvez, I. A.; Gaur, V. K.; A.; Chandra, R.; Romshoo, S. A.
2015-12-01
We investigate the crustal structure beneath five broadband seismic stations in the NW-SE trendingoval shaped Kashmir valley sandwiched between the Zanskar and the Pir Panjal ranges of thenorthwestern Himalaya. Three of these sites were located along the southwestern edge of the valley andthe other two adjoined the southeastern. Receiver Functions (RFs) at these sites were calculated usingthe iterative time domain deconvolution method and jointly inverted with surface wave dispersiondata to estimate the shear wave velocity structure beneath each station. To further test the results ofinversion, we applied forward modelling by dividing the crust beneath each station into 4-6homogeneous, isotropic layers. Moho depths were separately calculated at different piercing pointsfrom the inversion of only a few stacked receiver functions of high quality around each piercing point.These uncertainties were further reduced to ±2 km by trial forward modelling as Moho depths werevaried over a range of ±6 km in steps of 2 km and the synthetic receiver functions matched with theinverted ones. The final values were also found to be close to those independently estimated using theH-K stacks. The Moho depths on the eastern edge of the valley and at piercing points in itssouthwestern half are close to 55 km, but increase to about 58 km on the eastern edge, suggesting thathere, as in the central and Nepal Himalaya, the Indian plate dips northeastwards beneath the Himalaya.We also calculated the Vp/Vs ratio beneath these 5 stations which were found to lie between 1.7 and1.76, yielding a Poisson's ratio of ~0.25 which is characteristic of a felsic composition.
NASA Astrophysics Data System (ADS)
Molina-Aguilera, A.; Mancilla, F. D. L.; Julià, J.; Morales, J.
2017-12-01
Joint inversion techniques of P-receiver functions and wave dispersion data implicitly assume an isotropic radial stratified earth. The conventional approach invert stacked radial component receiver functions from different back-azimuths to obtain a laterally homogeneous single-velocity model. However, in the presence of strong lateral heterogeneities as anisotropic layers and/or dipping interfaces, receiver functions are considerably perturbed and both the radial and transverse components exhibit back azimuthal dependences. Harmonic analysis methods exploit these azimuthal periodicities to separate the effects due to the isotropic flat-layered structure from those effects caused by lateral heterogeneities. We implement a harmonic analysis method based on radial and transverse receiver functions components and carry out a synthetic study to illuminate the capabilities of the method in isolating the isotropic flat-layered part of receiver functions and constrain the geometry and strength of lateral heterogeneities. The independent of the baz P receiver function are jointly inverted with phase and group dispersion curves using a linearized inversion procedure. We apply this approach to high dense seismic profiles ( 2 km inter-station distance, see figure) located in the central Betics (western Mediterranean region), a region which has experienced complex geodynamic processes and exhibit strong variations in Moho topography. The technique presented here is robust and can be applied systematically to construct a 3-D model of the crust and uppermost mantle across large networks.
NASA Astrophysics Data System (ADS)
Wei, Z.; Chu, R.
2017-12-01
Teleseismic receiver function methods are widely used to study the deep structural information beneath the seismic station. However, teleseismic waveforms are difficult to extract the high-frequency receiver function, which are insufficient to constrain the shallow structure because of the inelastic attenuation effect of the earth. In this study, using the local earthquake waveforms collected from 3 broadband stations deployed on the Xishan village landslide in Li County in Sichuan Province, we used the high-frequency receiver function method to study the shallow structure beneath the landslide. We developed the Vp-k (Vp/Vs) staking method of receiver functions, and combined with the H-k stacking and waveform inversion methods of receiver functions to invert the landslide's thickness, S-wave velocity and average Vp/Vs ratio beneath these stations, and compared the thickness with the borehole results. Our results show small-scale lateral variety of velocity structure, a 78-143m/s lower S-wave velocity in the bottom layer and 2.4-3.1 Vp/Vs ratio in the landslide. The observed high Vp/Vs ratio and low S-wave velocity in the bottom layer of the landslide are consistent with low electrical resistivity and water-rich in the bottom layer, suggesting a weak shear strength and potential danger zone in landslide h1. Our study suggest that the local earthquake receiver function can obtain the shallow velocity structural information and supply some seismic constrains for the landslide catastrophe mitigation.
π-π stacking tackled with density functional theory
Swart, Marcel; van der Wijst, Tushar; Fonseca Guerra, Célia
2007-01-01
Through comparison with ab initio reference data, we have evaluated the performance of various density functionals for describing π-π interactions as a function of the geometry between two stacked benzenes or benzene analogs, between two stacked DNA bases, and between two stacked Watson–Crick pairs. Our main purpose is to find a robust and computationally efficient density functional to be used specifically and only for describing π-π stacking interactions in DNA and other biological molecules in the framework of our recently developed QM/QM approach "QUILD". In line with previous studies, most standard density functionals recover, at best, only part of the favorable stacking interactions. An exception is the new KT1 functional, which correctly yields bound π-stacked structures. Surprisingly, a similarly good performance is achieved with the computationally very robust and efficient local density approximation (LDA). Furthermore, we show that classical electrostatic interactions determine the shape and depth of the π-π stacking potential energy surface. Figure Additivity approximation for the π-π interaction between two stacked Watson–Crick base pairs in terms of pairwise interactions between individual bases Electronic supplementary material The online version of this article (doi:10.1007/s00894-007-0239-y) contains supplementary material, which is available to authorized users. PMID:17874150
NASA Astrophysics Data System (ADS)
Zhu, L.; Aziz Zanjani, A.; Hu, S.; Liu, Y.; Herrmann, R. B.; Conder, J. A.
2015-12-01
As part of a on-going EarthScope FlexArray project, we deployed 45 broadband seismographs in a 300-km-long linear profile across the Wabash Valley Seismic Zone (WVSZ). Here we present preliminary results of crustal structure beneath WVSZ based on teleseismic receiver functions and ambient noise tomography. We combined waveform data of the temporary stations in 2014 with those of permanent seismic stations and the transportable array stations in our study area since 2011. We found 656 teleseismic events with clear P-wave signals and obtained 2657 good-quality receiver functions of 84 stations using a time-domain iterative deconvolution method. We estimated crustal thickness and Vp/Vs ratio beneath each station using the H-κ stacking method. A high-resolution crustal structural image along the linear profile was obtained using the Common-Conversion-Point (CCP) stacking method. We also measured Rayleigh-wave phase and group velocities from 5 to 50 s by cross-correlating ambient noises between stations and did joint-inversion of receiver functions and surface wave dispersions for S-velocity structures beneath selected stations. The results show that the average crustal thickness in the region is 47 km with a gentle increase of crustal thickness from southeast to northwest. A mid-crustal interface is identified in the CCP image that also deepens from 15 km in the southeastern end to >20 km in the northwest. The CCP image shows that the low-velocity sedimentary layer along the profile is broad and is thickest (~10 km) near the center of the Wabash Valley. Beneath the center of the Valley there is a 40-km-wide positive velocity discontinuity at a depth of 40 km in the lower crust that might be the top of a rift pillow in this failed continental rift. Further results using 3D joint inversion and CCP migration will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Skryzalin, P. A.; Ramirez, C.; Durrheim, R. J.; Raveloson, A.; Nyblade, A.; Feineman, M. D.
2016-12-01
The Bushveld Igneous Complex contains one of the most studied and economically important layered mafic intrusions in the world. The Rustenburg Layered Suite outcrops in northern South Africa over an area of 65,000 km2, and has a volume of up to 1,000,000 km3. Both the Bushveld Igneous Complex and the Molopo Farms Complex in Botswana intruded the crust at 2.05 Ga. Despite being extensively exploited by the mining industry, many questions still exist regarding the structure of the Bushveld Igneous Complex, specifically the total size and connectivity of the different outcrops. In this study, we used receiver function analysis, a technique for determining the seismic velocity structure of the crust and upper mantle, to search for evidence of the Bushveld at station LBTB, which lies in Botswana, between the Far Western Limb of the Bushveld and the Molopo Farms Complex. The goal of our study was to determine whether a fast, high-density mafic body can be seen in the crust beneath this region using receiver functions. Observation of a high density layer would argue in favor of connectivity of the Bushveld between The Far Western Limb and the Molopo Farms Complex. We forward modeled stacks of receiver functions as well as sub-stacks that were split into azimuthal groups which share similar characteristics. We found that there was no evidence for a high velocity zone in the crust, and that the Moho in this region is located at a depth of 38 ± 3 km, about 8-9 km shallower than Moho depths determined beneath the Bushveld Complex. These two lines of evidence give no reason to assume connectivity between the Bushveld Igneous Complex and the Molopo Farms Complex, and rather suggest two separate intrusive suites.
NASA Astrophysics Data System (ADS)
Bai, Y.; Ai, Y.; Jiang, M.; He, Y.; Chen, Q.
2017-12-01
The deep structure of the southeastern Tibetan plateau is of great scientific importance to a better understanding of the India-Eurasia collision as well as the evolution of the magnificent Tibetan plateau. In this study, we collected 566 permanent and temporary seismic stations deployed in SE Tibet, with a total of 77853 high quality P-wave receiver functions been extracted by maximum entropy deconvolution method. On the basis of the Common Conversion Point (CCP) stacking technique, we mapped the topography of the 410km and 660km discontinuities (hereinafter called the `410' and the `660'), and further investigated the lateral variation of the mantle transition zone (MTZ) thickness beneath this region. The background velocity model deduced from H-κ stacking results and a previous body-wave tomographic research was applied for the correction of the crustal and upper mantle heterogeneities beneath SE Tibet for CCP stacking. Our results reveal two significantly thickened MTZ anomalies aligned nearly in the south-north direction. The magnitude of both anomalies are 30km above the global average of 250km. The southern anomaly located beneath the Dianzhong sub-block and the Indo-China block is characterized by a slightly deeper `410' and a greater-than-normal `660', while the northern anomaly beneath western Sichuan has an uplifted `410' and a depressed `660'. Combining with previous studies in the adjacent region, we suggest that slab break-off may occurred during the eastward subduction of the Burma plate, with the lower part of the cold slab penetrated into the MTZ and stagnated at the bottom of the `660' which may cause the southern anomaly in our receiver function images. The origin of the Tengchong volcano is probably connected to the upwelling of the asthenospheric material caused by the slab break-off or to the ascending of the hot and wet material triggered by the dehydration of stagnant slab in the MTZ. The anomaly in the north, on the other hand, might be the consequence of the delamination of the overlying lithosphere sinking into the MTZ. This work is supported by the National Natural Science Foundation of China (grants 41474040, 41125015 and 41274002).
NASA Astrophysics Data System (ADS)
Ainiwaer, A.; Gurrola, H.
2017-12-01
In traditional Ps receiver functions (RFs) imaging, PPs and PSs phases from the shallow layers (near surface and crust) can be miss stacked as Ps phases or interfere with deeper Ps phases. To overcome interference between phases, we developed a method to produce phase specific Ps, PPs and PSs receiver functions (wavefield iterative deconvolution or WID). Rather than preforming a separate deconvolution of each seismogram recorded at a station, WID processes all the seismograms from a seismic station in a single run. Each iteration of WID identifies the most prominent phase remaining in the data set, based on the shape of its wavefield (or moveout curve), and then places this phase on the appropriate phase specific RF. As a result, we produce PsRFs that are free of PPs and PSs phase; and reverberations thereof. We also produce phase specific PPsRFs and PSsRFs but moveout curves for these phases and their higher order reverberations are not as distinct from one another. So the PPsRFs and the PSsRFs are not as clean as the PsRFs. These phase specific RFs can be stacked to image 2-D or 3-D Earth structure using common conversion point (CCP) stacking or migration. We applied WID to 524 Southern California seismic stations to construct 3-D PsRF image of lithosphere beneath southern California. These CCP images exhibit a Ps phases from the Moho and the lithosphere asthenosphere boundary (LAB) that are free of interference from the crustal reverberations. The Moho and LAB were found to be deepest beneath the Sierra Nevada, Tansverse Range and Peninsular Range. Shallow Moho and Lab is apparent beneath the Inner Borderland and Salton Trough. The LAB depth that we estimate is in close agreement to recent published results that used Sp imaging (Lekic et al., 2011). We also found complicated structure beneath Mojave Block where mid crustal features are apparent and anomalous Ps phases at 60 km depth are observed beneath Western Mojave dessert.
Multi-board kernel communication using socket programming for embedded applications
NASA Astrophysics Data System (ADS)
Mishra, Ashish; Girdhar, Neha; Krishnia, Nikita
2016-03-01
It is often seen in large application projects, there is a need to communicate between two different processors or two different kernels. The aim of this paper is to communicate between two different kernels and use efficient method to do so. The TCP/IP protocol is implemented to communicate between two boards via the Ethernet port and use lwIP (lightweight IP) stack, which is a smaller independent implementation of the TCP/IP stack suitable for use in embedded systems. While retaining TCP/IP functionality, lwIP stack reduces the use of memory and even size of the code. In this process of communication we made Raspberry pi as an active client and Field programmable gate array(FPGA) board as a passive server and they are allowed to communicate via Ethernet. Three applications based on TCP/IP client-server network communication have been implemented. The Echo server application is used to communicate between two different kernels of two different boards. Socket programming is used as it is independent of platform and programming language used. TCP transmit and receive throughput test applications are used to measure maximum throughput of the transmission of data. These applications are based on communication to an open source tool called iperf. It is used to measure the throughput transmission rate by sending or receiving some constant piece of data to the client or server according to the test application.
Identifying the Transition Zone Between East and West Dharwar Craton by Seismic Imaging
NASA Astrophysics Data System (ADS)
Ashish; Parvez, Imtiyaz A.
2018-01-01
The data from 12 temporary broadband seismic stations operated across east-west corridor in Dharwar region of Indian Peninsula along with ten other seismic stations operated by CSIR National Geophysical Research Institute (NGRI) in the region have been analysed that provide high-resolution image of southern Dharwar crust. Crust along the corridor is imaged by receiver function H-k stacking, common conversion point stacking using data from 22 sites in combination with joint inversion modeling of receiver functions and Rayleigh wave group velocity dispersion curves. The velocity image reveals thinner crust (36-38 km) except one site (coinciding with Cuddapah basin on the surface) in East Dharwar Craton (EDC), while crust beneath the West Dharwar Craton (WDC) is thicker (46-50 km). This study also observed a transition zone between EDC and WDC starting west of Closepet granite to the east of Chitradurga Schist Belt (CSB), which shows diffused Moho with a thickness of 40-44 km. Chitradurga Schist Belt is identified as the contact between Mesoarchean (WDC) and Neoarchean (EDC) crustal blocks. The lowermost part of the crust (V_s > 4.0) is thin (2-6 km) beneath EDC, intermediate (6-8 km) beneath transition zone and thicker (14-30 km) beneath WDC across the profile.
Developing a Hypercard-UNIX Interface for Electronic Mail Transfer
1992-06-01
My thanks to Greqg for his support. Many of the comments for -- the MacTCP version are his. His code is set ,%ppart by borders. on openStacK put the...HUES-ModemVersion......- *-*-*-* STACK SCRIPTi "-*-*-* on openStack put the seconds into card fid theTime of card interface hide menubar global...34Loqin" hide fid receiving put empty into cd tia msqname of card theoessaqe end openStack on closeStack global logoutme put eqFpty into card fld text of
Lithospheric Layering beneath Southern Africa Constrained by S-to-P Receiver Functions
NASA Astrophysics Data System (ADS)
Liu, L.; Liu, K. H.; Gao, S. S.
2016-12-01
To investigate the existence of intra-lithospheric interfaces in an area of active rifting of ancient lithosphere, we stack S-to-P receiver functions (SRFs) recorded by broadband seismic stations in the vicinity of the non-volcanic sections of the East African Rift System and the stable Kaapvaal and Zimbabwe cratons. The data set was recorded by about 200 permanent and portable seismic stations installed over the past 30 years. The SRFs are computed using frequency-domain deconvolution, and are stacked in consecutive circles with a radius of 2 degrees. They are converted to depth series after moveout corrections using the IASP91 Earth model. In the upper mantle , a robust negative arrival is found in virtually all the stacked traces in the depth range of 50-100 km. Comparison with results from seismic tomography and mantle xenolith studies suggests that this discontinuity represents a mid-lithospheric discontinuity (MLD), similar to what was observed beneath the North American continent. The absence of observable negative arrivals in the anticipated depth of 250 km or greater beneath the study area suggests a gradual instead of sharp transition from the lithosphere to the asthenosphere. No significant shallowing of the MLD is observed beneath the young rift segments, suggesting that rifting is limited in the crust, an observation that is consistent with recent results from the SAFARI (Seismic Arrays for African Rift Initiation) project. The shallowest MLD of about 65 km in the study area is found in a NW-SE trending zone across central Zimbabwe and western Zambia. The MLD may reflect a low velocity zone caused by metasomatism, a process commonly found beneath ancient cratons.
Spoke permanent magnet machine with reduced torque ripple and method of manufacturing thereof
Reddy, Patel Bhageerath; EL-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang; Alexander, James Pellegrino
2016-03-15
An internal permanent magnet machine includes a rotor assembly having a shaft comprising a plurality of protrusions extending radially outward from a main shaft body and being formed circumferentially about the main shaft body and along an axial length of the main shaft body. A plurality of stacks of laminations are arranged circumferentially about the shaft to receive the plurality of protrusions therein, with each stack of laminations including a plurality of lamination groups arranged axially along a length of the shaft and with permanent magnets being disposed between the stacks of laminations. Each of the laminations includes a shaft protrusion cut formed therein to receive a respective shaft protrusion and, for each of the stacks of laminations, the shaft protrusion cuts formed in the laminations of a respective lamination group are angularly offset from the shaft protrusion cuts formed in the laminations in an adjacent lamination group.
Horizontal high speed stacking for batteries with prismatic cans
Bartos, Andrew L.; Lin, Yhu-Tin; Turner, III, Raymond D.
2016-06-14
A system and method for stacking battery cells or related assembled components. Generally planar, rectangular (prismatic-shaped) battery cells are moved from an as-received generally vertical stacking orientation to a generally horizontal stacking orientation without the need for robotic pick-and-place equipment. The system includes numerous conveyor belts that work in cooperation with one another to deliver, rotate and stack the cells or their affiliated assemblies. The belts are outfitted with components to facilitate the cell transport and rotation. The coordinated movement between the belts and the components promote the orderly transport and rotation of the cells from a substantially vertical stacking orientation into a substantially horizontal stacking orientation. The approach of the present invention helps keep the stacked assemblies stable so that subsequent assembly steps--such as compressing the cells or attaching electrical leads or thermal management components--may proceed with a reduced chance of error.
Design on an Enhanced Interactive Satellite Communications System Analysis Program
1991-09-01
openStack message is sent from the stack up the hierarchy to HyperCard. When the stack opens, the first card in the stack is displayed and an openCard... openStack global orbitPage,groundPage.commPage,beginmuRe,c.dBker2d.d2r,we global earth-e.NoiseTIV.Losses put false into orbitPage put false into groundPage...menultem 2 of menu "Options" to D end openStack function FreqToWave freq global c put c)(freq* 109) into wave return wave end FreqToWave function log
NASA Astrophysics Data System (ADS)
Zhang, P.; Yao, H.; Chen, L.; WANG, X.; Fang, L.
2017-12-01
The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of this region. In this study, we calculate P-wave receiver functions (RFs) with two-year teleseismic records from the North China Seismic Array ( 200 stations) deployed in the northeastern NCC. We observe both diffused and concentered PpPs signals from the Moho in RF waveforms, which indicates heterogeneous Moho sharpness variations in the study region. Synthetic Ps phases generated from broad positive velocity gradients at the depth of the Moho (referred as Pms) show a clear frequency dependence nature, which in turn is required to constrain the sharpness of the velocity gradient. Practically, characterizing such a frequency dependence feature in real data is challenging, because of low signal-to-noise ratio, contaminations by multiples generated from shallow structure, distorted signal stacking especially in double-peak Pms signals, etc. We attempt to address these issues by, firstly, utilizing a high-resolution Moho depth model of this region to predict theoretical delay times of Pms that facilitate more accurate Pms identifications. The Moho depth model is derived by wave-equation based poststack depth migration on both Ps phase and surface-reflected multiples in RFs in our previous study (Zhang et al., submitted to JGR). Second, we select data from a major back azimuth range of 100° - 220° that includes 70% teleseismic events due to the uneven data coverage and to avoid azimuthal influence as well. Finally, we apply an adaptive cross-correlation stacking of Pms signals in RFs for each station within different frequency bands. High-quality Pms signals at different frequencies will be selected after careful visual inspection and adaptive cross-correlation stacking. At last, we will model the stacked Pms signals within different frequency bands to obtain the final sharpness of crust-mantle boundary, which may shed new lights on understanding the mechanism of cratonic reactivation and destruction in the NCC.
An application of LOTEM around salt dome near Houston, Texas
NASA Astrophysics Data System (ADS)
Paembonan, Andri Yadi; Arjwech, Rungroj; Davydycheva, Sofia; Smirnov, Maxim; Strack, Kurt M.
2017-07-01
A salt dome is an important large geologic structure for hydrocarbon exploration. It may seal a porous reservoir of rocks that form petroleum reservoirs. Several techniques such as seismic, gravity, and electromagnetic including magnetotelluric have successfully yielded salt dome interpretation. Seismic has difficulties seeing through the salt because the seismic energy gets trapped by the salt due to its high velocity. Gravity and electromagnetics are more ideal methods. Long Offset Transient Electromagnetic (LOTEM) and Focused Source Electromagnetic (FSEM) were tested over a salt dome near Houston, Texas. LOTEM data were recorded at several stations with varying offset, and the FSEM tests were also made at some receiver locations near a suspected salt overhang. The data were processed using KMS's processing software: First, for assurance, including calibration and header checking; then transmitter and receiver data are merged and microseismic data is separated; Finally, data analysis and processing follows. LOTEM processing leads to inversion or in the FSEM case 3D modeling. Various 3D models verify the sensitivity under the salt dome. In addition, the processing was conducted pre-stack, stack, and post-stack. After pre-stacking, the noise was reduced, but showed the ringing effect due to a low-pass filter. Stacking and post-stacking with applying recursive average could reduce the Gibbs effect and produce smooth data.
Lithospheric Structure Beneath the Hangay Dome, Central Mongolia
NASA Astrophysics Data System (ADS)
Stachnik, J. C.; Meltzer, A.; Souza, S.; Munkhuu, U.; Tsaagan, B.; Russo, R. M.
2014-12-01
The Mongolian Plateau is a broad regional uplift positioned between the Siberian Craton to the north and the far northern edge of the India-Asia collision to the south. Within this intracontinental setting of high topography, the Hangay Dome in central Mongolia reaches elevations of 4 km and contains intermittent basaltic magmatism over the last 30 Ma. The relationship between high topography, magmatism, and geodynamic processes remains largely unsolved although processes ranging from lithospheric delamination to mantle plume effects have been proposed. A temporary array of seismic stations was deployed around the Hangay Dome to determine lithospheric structure. Preliminary results are shown from receiver function analysis, ambient noise tomography, and teleseismic P-wave tomography. Crustal thickness measurements from H-k stacking of receiver functions range from 42 km to 57 km across the array, with thicker crust beneath the highest topography. The bulk crustal Vp/Vs ratio ranges from 1.71 to 1.9 with a median value for the array of 1.77, perhaps indicating a variable crustal composition with some regions having a more mafic crust. The stacked receiver functions are also combined with ambient noise phase velocity dispersion measurements in a joint inversion for shear velocity profiles at each station which reveals crustal thickness estimates consistent with the H-k stacks while also determining the shear velocity step at the Moho. Teleseismic P-wave travel time residuals ranging between +/-1 second are inverted for a 3D P-wave velocity model using finite-frequency kernels. Notable features include 1) a low velocity anomaly (-3%) in the upper 200 km beneath the eastern part of the Hangay Dome near the Orkhon River Valley, , 2) a steeply dipping low velocity anomaly to the north of the Hangay Dome, perhaps related to the nearby Baikal Rift, and 3) generally higher velocities in the upper 200 km surrounding the high topography. To first order, the high topography of the Hangay Dome appears to be largely supported by thickened crust. However, lower P-wave velocities in the upper mantle beneath the dome are observed. The relative contributions of crustal thickness and upper mantle structure for support of topography and their relationship to magmatism will be determined with further refinement of the models.
Integrating shear velocity observations of the Hudson Bay
NASA Astrophysics Data System (ADS)
Porritt, R. W.; Miller, M. S.; Darbyshire, F. A.
2013-12-01
Hudson Bay is the core of the Laurentia craton of North America. This region contains some of the thickest lithosphere globally, reaching 250-300 km depth. Previous studies have shown that much of this region is composed of amalgamated proto-continents including the Western Churchill and Superior provinces and that much of the structure of these constituents has been retained since the Trans-Hudson Orogen at 1.8 Ga. Using the Hudson Bay Lithospheric Experiment (HuBLE) and other permanent and POLARIS broadband seismic data, we image the region with S to P receiver functions, joint inversion of P to S receiver functions with surface waves, and teleseismic S and P wave travel-times. The receiver function imaging reveals a persistent mid-lithospheric layer at ~80 km depth under all stations, but a variable lithospheric thickness. The teleseismic S delay times show a pattern of early arrivals around the center of the network, beneath Hudson Bay where the lithosphere is thickest, while the P delay times are early in the Superior province relative to the Western Churchill province. This suggests higher Vp/Vs ratios in the Superior province, which is evidence that stacked oceanic plates formed this province. The relatively flat Moho imaged by earlier receiver function studies and the lower mantle Vp/Vs of the Western Churchill province provides evidence of formation by plume head extraction. The joint inversion shows an LAB that is typically a broad discontinuity spanning ~20-30 km at ~220 km depth suggesting a primarily thermal boundary zone. The mid-lithospheric layer is composed of increasing velocity from the ~40 km depth Moho defined by H-k stacking of PRFs to a broad, constant velocity lithospheric lid spanning 80-200 km depth. We suggest this mid-lithospheric layer represents the mantle lithosphere of the proto-continents prior to collision and the lid formed due to post-collisional cooling. The integration of these seismic datasets furthers our understanding of plate tectonic and non-tectonic processes during the Archean formation of Laurentia craton.
Computer Center: 2 HyperCard Stacks for Biology.
ERIC Educational Resources Information Center
Duhrkopf, Richard, Ed.
1989-01-01
Two Hypercard stacks are reviewed including "Amino Acids," created to help students associate amino acid names with their structures, and "DNA Teacher," a tutorial on the structure and function of DNA. Availability, functions, hardware requirements, and general comments on these stacks are provided. (CW)
Seismic constraints of thinning and fragmenting continental lithosphere beneath the Korean Peninsula
NASA Astrophysics Data System (ADS)
Kim, S.; Tauzin, B.; Tkalcic, H.; Rhie, J.
2017-12-01
Modification of the continental lithosphere is still an enigmatic process. The Korean Peninsula (KP) is one of ideal place to depict the process by interactions with subducting oceanic slabs. We detect a significant thickness change (>50 km) of the continental lithosphere beneath the KP that is confirmed by two independent approaches: (1) 3D imaging using ambient noise analysis and (2) receiver function CCP stacking. A series of transdimensional and hierarchical Bayesian joint inversions is performed to obtain a high-resolution 3D model from different types of surface wave dispersion data. For the stacking of receiver function waveforms, the coda waveforms of crustal multi-modes (PpPs and PpSs) are combined together to better image the lithosphere-asthenosphere boundary. We estimate the relatively deeper rooted lithosphere (>100 km) in the southwestern part of the KP compared to shallower surrounding regions. The lithospheric structure is underlain by lower velocity anomalies (Vs<4.1 km/s), which extends from back-arc regions near subducting slabs horizontally and connects to low velocity anomalies in the deeper upper mantle vertically. The imaged features clearly show that the effect of the oceanic slab subduction is a key factor controlling the modification process. We further examine the implication for the occurrence of intraplate volcanoes and the relationship to the mantle transition zone heterogeneities due to stagnant slabs in the northeast Asia.
NASA Astrophysics Data System (ADS)
Guo, Zhi; Gao, Xing; Li, Tong; Wang, Wei
2018-05-01
We use P-wave receiver function H-k stacking and joint inversion of receiver functions and Rayleigh wave dispersions to investigate crustal and uppermost mantle structure beneath the South China. The obtained results reveal prominent crustal structure variations in the study area, Moho depth increases from ∼30 km in the Cathaysia Block to more than ∼60 km in the eastern Tibetan Plateau. A Moho undulation and Vp/Vs ratio variations can be observed from the Cathaysia Block to Yangtze Craton. These observations consistent with the crustal structures predict by the flat slab subduction model. We interpret these lateral crustal structure variations reflect the tectonic evolution of the Yangtze Craton and Cathaysia Block prior the Mesozoic and the post-orogenic magmatism due to the breaking up of the subducted flat slab and subsequent slab rollback in the South China. The observed variations of the crustal structures not only reveal the lateral crustal inhomogeneity, but also provide constraints on the geodynamic evolution of the South China.
Depth to the Moho in Southern New England and Eastern New York State from Seismic Receiver Functions
NASA Astrophysics Data System (ADS)
Cipar, J. J.; Ebel, J.
2016-12-01
The thickness of the Earth's crust is a fundamental parameter of geophysics and geology. The eastern New York/southern New England area encompasses the suture between the Paleozoic Appalachian orogen and the Proterozoic Laurentian craton. The recent installation of the IRIS Traveling Array (TA) in 2013-2014 coupled with stations operated by Boston College, Lamont-Doherty, and the US National Seismic Network provide an unprecedented source of data for seismic studies of crustal structure. We use the receiver functions complied by the EarthScope Automated Receiver Survey (EARS) to measure crustal thickness. Our procedure is to stack receiver functions (RFs) at each station using the correct moveout for the P-to-S conversion at the Moho (Ps phase). The time difference between the Ps and direct P arrivals (Ps-P time) is dependent on crustal thickness (H) and crustal S-wave velocity (Vs). To get an estimate of H, we assume that the mean P-wave velocity (Vp) in the crust is 6.5 km/s, and determine the range of Vs for a range of Poisson's ratio (0.23-0.27). We then solve for H using the P-Ps times measured from the RF stacks (at Δ=60°) and our estimates for Vp and Vs. The uncertainty in S-wave velocity translates to approximately ±2 km uncertainty in crustal thickness. Our crustal thickness map shows the well-known general progression from shallow crust near the Atlantic coast line ( 30 km) to deeper crust (45+ km) in the Laurentian craton. However, some detailed features become evident on our map. Most notably, thin crust ( 30 km) extends inland from the coast to the Connecticut River valley in eastern-central Massachusetts and southeastern New Hampshire. The Berkshire Hills of western Massachusetts have thick crust (43 km), reaching as deep as 46 km in extreme northwestern Massachusetts. Thus, there is a 13-15 km increase in crustal thickness over a distance of about 60 km. Currently, no stations are located in that zone. We find that the eastern Adirondacks have very thick crust, generally in excess of 45 km. Overall, our crustal thickness measurements are in excellent agreement with those from the 1988 Ontario-New York-New England refraction experiment (USGS) and from a local receiver function study conducted using closely-spaced stations (John Schuh, Boston College).
Cooler and particulate separator for an off-gas stack
Wright, George T.
1992-01-01
An off-gas stack for a melter comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes pervents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.
Cell module and fuel conditioner
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1980-01-01
The computer code for the detailed analytical model of the MK-2 stacks is described. An ERC proprietary matrix is incorporated in the stacks. The mechanical behavior of the stack during thermal cycles under compression was determined. A 5 cell stack of the MK-2 design was fabricated and tested. Designs for the next three stacks were selected and component fabrication initiated. A 3 cell stack which verified the use of wet assembly and a new acid fill procedure were fabricated and tested. Components for the 2 kW test facility were received or fabricated and construction of the facility is underway. The definition of fuel and water is used in a study of the fuel conditioning subsystem. Kinetic data on several catalysts, both crushed and pellets, was obtained in the differential reactor. A preliminary definition of the equipment requirements for treating tap and recovered water was developed.
Imaging Subsurface Structure of Central Zagros Zone/Iran Using Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Vahidravesh, Shaghayegh; Pakzad, Mehrdad, ,, Dr.; Hatami, Mohammad Reza, ,, Dr.
2017-04-01
The Central Zagros zone, of west Iran & east Iraq, is surrounded by many active faults (including Main Zagros Reversed Fault, Main Recent Fault, High Zagros Fault, Zagros Fold, & Thrust Belt). Recent studies show that cross-correlation of a long-term ambient seismic noise data recorded in station-pair, includes important information regarding empirical Green's functions (EGFs) between stations. Hence, ambient seismic noise carries valuable information of the wave propagation path (which can be extracted). The 2D model of surface waves (Rayleigh & Love) velocities for the studied area is obtained by seismic ambient noise tomography (ANT) method. Throughout this research, we use continuous records of all three vertical, radial, and tangential components (obtained by rotation) recorded by IRSC (Iranian Seismological Center) and IIEES (International Institute of Earthquake Engineering) networks for this area of interest. The IRSC & IIEES networks are equipped by SS-1 kinematics and Guralp CMG-3T sensors respectively. Data of 20 stations were used for 12 months from 2014/Nov. to 2015/Nov. The performed data processing is similar to the one, put into words in detail by Bensen et al. (2007) including the processed daily base data. Mean, trend, and instrument response were removed and the data were decimated to 5 sps (sample per second) to reduce the amount of storage space and computational time required. We then applied merge to handle data gaps. One-bit time-domain normalization was also applied to suppress the influence of instrument irregularities and earthquake signals followed by spectral (frequency-domain) normalization between 0.05-0.2 Hz (period 5-20 sec). After cross-correlation (processing step), we perform rms stacking (new approach of stacking) to stack many cross-correlation functions based on the highest energy in a time interval which we accordingly anticipate to receive Rayleigh & Love waves fundamental modes. To evaluate quality of the stacking process stability quantitatively, we calculate signal-to-noise ratio (SNR), defined as a ratio of the peak amplitude within a time window to the root-mean-square of noise trailing the signal arrival window (Bensen et al., 2007), for each cross-correlation. The cross-correlated time-series is equivalent to the Green's functions between pairs of receivers. We then apply multiple phase-matched filter method of Herrmann (2005) to measure the correct group velocity dispersion of the interferometric surface waves. Eventually, we apply fast marching surface wave tomography (FMST), the iterative nonlinear inversion package developed by Rawlinson, 2005, to extract the velocity model of shallow structure in Central Zagros zone /Iran.
Cooler and particulate separator for an off-gas stack
Wright, G.T.
1991-04-08
This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.
Receiver function imaging of the mantle discontinuties beneath Fennoscandia and northern Europe
NASA Astrophysics Data System (ADS)
Frassetto, Andrew; Thybo, Hans
2010-05-01
Receiver functions from the Mantle Investigations of Norwegian Uplift Structure experiment (MAGNUS) are depth-converted using interval wavespeeds from AK-135 for the 410-km and 660-km discontinuities and combined using common-conversion-point stacking. This preliminary work shows a potentially complex mantle-transition-zone beneath southern Norway, with reduction in the amplitude of the 410-arrival and 20-30 km of shallowing of the 660-arrival beneath the axis of the Oslo Rift. To refine these measurements and place them in a regional context, we incorporate the MAGNUS dataset with permanent stations and previous temporary seismic deployments across Fennoscandia and northern Europe. New constraints on the depth to the lithosphere-asthenosphere boundary and character of the mantle-transition-zone will aid in understanding the causes for potentially recent uplift in the southern Scandes and the region of unusually slow upper mantle resolved beneath the region (Weidle and Maupin, 2008).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasyanos, M; Gok, R; Zor, E
We investigate the crustal and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet and form a complex tectonic structure. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provided a unique opportunity for studying the high resolution velocity structure. Zor et al. found an average 46 km thick crust in Anatolian plateau using six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel timemore » of converted and reverberated waves between those interfaces. The interpretation of receiver function alone with many-layered parameterization may result in an apparent depth-velocity tradeoff. In order to improve previous velocity model, we employed the joint inversion method with many layered parameterization of Julia et al. (2000) to the ETSE receiver functions. In this technique, the receiver function and surface-wave observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. We consider azimuthal changes of receiver functions and have stacked them into different groups. We calculated the receiver functions using iterative time-domain deconvolution technique and surface wave group velocity dispersion curves between 10-100 sec. We are making surface wave dispersion measurements at the ETSE stations and have incorporated them into a regional group velocity model. Preliminary results indicate a strong trend in the long period group velocity in the northeast. This indicates slow upper mantle velocities in the region consistent with Pn, Sn and receiver function results. We started with both the 1-D model that is obtained with the 12 tones dam explosion shot data recorded by ETSE network and the existing receiver function inversion results. In fact, we observe that the inversion results are independent at the starting model and converges well to the same final model. We don't observe a significant change at the first order discontinuities of model (e.g. Moho depth), but we obtain better defined depths to low velocity layers.« less
Moho geometry along a north-south passive seismic transect through Central Australia
NASA Astrophysics Data System (ADS)
Sippl, Christian
2016-04-01
Receiver functions from a temporary deployment of 25 broadband stations along a north-south transect through Central Australia are used to retrieve crustal and uppermost mantle structural constraints from a combination of different methods. Using H-K stacking as well as receiver function inversion, overall thick crust with significant thickness variation along the profile (40 to ≥ 55 km) is found. Bulk crustal vp/vs values are largely in the felsic to intermediate range, with the southernmost stations on the Gawler Craton exhibiting higher values in excess of 1.8. A common conversion point (CCP) stacking profile shows three major discontinuities of the crust-mantle boundary: (1) a two-sided Moho downwarp beneath the Musgrave Province, which has previously been associated with the Neoproterozoic to early Cambrian Petermann Orogeny, (2) a Moho offset along the Redbank Shear Zone further north attributed to the Middle to Late Paleozoic Alice Springs Orogeny, and (3) another Moho offset further north, located at the boundary between the Davenport and Warramunga Provinces, which has not been imaged before. In all cases, the difference in crustal thickness between the two sides of the offset is > 8-10 km. Unlike the two southern Moho offsets, the northernmost one does not coincide with a prominent gravity anomaly. Its location and the absence of known reactivation events in the region make it likely that it belongs to a Proterozoic suture zone that marks a previously unknown block boundary within the North Australian Craton.
Cerný, Jirí; Hobza, Pavel
2005-04-21
The performance of the recently introduced X3LYP density functional which was claimed to significantly improve the accuracy for H-bonded and van der Waals complexes was tested for extended H-bonded and stacked complexes (nucleic acid base pairs and amino acid pairs). In the case of planar H-bonded complexes (guanine...cytosine, adenine...thymine) the DFT results nicely agree with accurate correlated ab initio results. For the stacked pairs (uracil dimer, cytosine dimer, adenine...thymine and guanine...cytosine) the DFT fails completely and it was even not able to localize any minimum at the stacked subspace of the potential energy surface. The geometry optimization of all these stacked clusters leads systematically to the planar H-bonded pairs. The amino acid pairs were investigated in the crystal geometry. DFT again strongly underestimates the accurate correlated ab initio stabilization energies and usually it was not able to describe the stabilization of a pair. The X3LYP functional thus behaves similarly to other current functionals. Stacking of nucleic acid bases as well as interaction of amino acids was described satisfactorily by using the tight-binding DFT method, which explicitly covers the London dispersion energy.
Density Functional Study of Stacking Structures and Electronic Behaviors of AnE-PV Copolymer.
Dong, Chuan-Ding; Beenken, Wichard J D
2016-10-10
In this work, we report an in-depth investigation on the π-stacking and interdigitating structures of poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene) copolymer with octyl and ethyl-hexyl side chains and the resulting electronic band structures using density functional theory calculations. We found that in the π-stacking direction, the preferred stacking structure, determined by the steric effect of the branched ethyl-hexyl side chains, is featured by the anthracene-ethynylene units stacking on the phenylene-vinylene units of the neighboring chains and vice versa. This stacking structure, combined with the interdigitating structure where the branched side chains of the laterally neighboring chains are isolated, defines the energetically favorable structure of the ordered copolymer phase, which provides a good compromise between light absorption and charge-carrier transport.
CCP Receiver-Function Imaging of the Moho beneath Volcanic Fields in Western Saudi Arabia
NASA Astrophysics Data System (ADS)
Blanchette, A. R.; Mooney, W. D.; Klemperer, S. L.; Zahran, H. M.; El-Hadidy, S. Y.
2015-12-01
We are searching for structural complexity in the crust and upper mantle beneath the Neogene volcanic fields ('harrats') of western Saudi Arabia. We determined P-wave seismic receiver functions for 50 broadband seismographic stations located within or adjacent to three volcanic fields: Harrats Lunayyir, Rahat, and Khaybar. There are 18 seismographic stations within Lunayyir, 11 in Khaybar, and 15 in Rahat with average interstation spacing of 10 km, 30km, and 50 km. For each station we calculated 300 to 600 receiver functions with an iterative time-domain deconvolution; noisy receiver functions (outliers) were rejected by cross correlating each receiver function with a station stack; we only accepted those with a cross correlation coefficient ≥ 0.6. We used these receiver functions to create a common-conversion point (CCP) image of the crust and upper mantle. The Moho and lithosphere-asthenosphere boundary (LAB) are clearly imaged, particularly beneath Lunayyir, and have average depths of about 38 km and 60 km. We do not find any evidence for structural disruption of the Moho within our ~70 km x 70 km image of the Moho beneath Lunayyir. We image a clear crust-mantle boundary beneath Rahat and Khaybar also at ~38 km, 2-3 km deeper than anticipated from prior receiver function results outside of the harrats. Mid-crustal low velocity zones seen locally beneath all three harrats, most commonly at 10-15 km or 15-20 km in depth, may more likely represent silicic Precambrian basement than accumulations of magma. Estimates of up to ~0.5 km3 of magma erupted during each eruptive episode are consistent with the lack of a disrupted Moho. However, the total erupted volume of magma, e.g. > 1000 km3 at Rahat, together with associated intrusions from the mantle, is consistent with crustal thickening of ~2 km beneath the harrats.
Multistage Force Amplification of Piezoelectric Stacks
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)
2015-01-01
Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.
Correlative weighted stacking for seismic data in the wavelet domain
Zhang, S.; Xu, Y.; Xia, J.; ,
2004-01-01
Horizontal stacking plays a crucial role for modern seismic data processing, for it not only compresses random noise and multiple reflections, but also provides a foundational data for subsequent migration and inversion. However, a number of examples showed that random noise in adjacent traces exhibits correlation and coherence. The average stacking and weighted stacking based on the conventional correlative function all result in false events, which are caused by noise. Wavelet transform and high order statistics are very useful methods for modern signal processing. The multiresolution analysis in wavelet theory can decompose signal on difference scales, and high order correlative function can inhibit correlative noise, for which the conventional correlative function is of no use. Based on the theory of wavelet transform and high order statistics, high order correlative weighted stacking (HOCWS) technique is presented in this paper. Its essence is to stack common midpoint gathers after the normal moveout correction by weight that is calculated through high order correlative statistics in the wavelet domain. Synthetic examples demonstrate its advantages in improving the signal to noise (S/N) ration and compressing the correlative random noise.
Sport stacking in auditory and visual attention of grade 3 learners.
Mortimer, J; Krysztofiak, J; Custard, S; McKune, A J
2011-08-01
The effect of sport stacking on auditory and visual attention in 32 Grade 3 children was examined using a randomised, cross-over design. Children were randomly assigned to a sport stacking (n=16) or arts/crafts group (n=16) with these activities performed over 3 wk. (12 30-min. sessions, 4 per week). This was followed by a 3-wk. wash-out period after which there was a cross-over and the 3-wk. intervention repeated, with the sports stacking group performing arts/crafts and the arts/crafts group performing sports stacking. Performance on the Integrated Visual and Auditory Continuous Performance Test, a measure of auditory and visual attention, was assessed before and after each of the 3-wk. interventions for each group. Comparisons indicated that sport stacking resulted in significant improvement in high demand function and fine motor regulation, while it caused a significant reduction in low demand function. Auditory and visual attention adaptations to sport stacking may be specific to the high demand nature of the task.
Intermediate connector for stacked organic light emitting devices
D& #x27; Andrade, Brian
2013-02-12
A device is provided, having an anode, a cathode, and an intermediate connector disposed between the anode and the cathode. A first organic layer including an emissive sublayer is disposed between the anode and the intermediate connector, and a second including an emissive sublayer is disposed between the intermediate connector and the cathode. The intermediate connector includes a first metal having a work function lower than 4.0 eV and a second metal having a work function lower than 5.0 eV. The work function of the first metal is at least 0.5 eV less than the work function of the second metal. The first metal is in contact with a sublayer of the second organic layer that includes a material well adapted to receive holes from a low work function metal.
Low-power DRAM-compatible Replacement Gate High-k/Metal Gate Stacks
NASA Astrophysics Data System (ADS)
Ritzenthaler, R.; Schram, T.; Bury, E.; Spessot, A.; Caillat, C.; Srividya, V.; Sebaai, F.; Mitard, J.; Ragnarsson, L.-Å.; Groeseneken, G.; Horiguchi, N.; Fazan, P.; Thean, A.
2013-06-01
In this work, the possibility of integration of High-k/Metal Gate (HKMG), Replacement Metal Gate (RMG) gate stacks for low power DRAM compatible transistors is studied. First, it is shown that RMG gate stacks used for Logic applications need to be seriously reconsidered, because of the additional anneal(s) needed in a DRAM process. New solutions are therefore developed. A PMOS stack HfO2/TiN with TiN deposited in three times combined with Work Function metal oxidations is demonstrated, featuring a very good Work Function of 4.95 eV. On the other hand, the NMOS side is shown to be a thornier problem to solve: a new solution based on the use of oxidized Ta as a diffusion barrier is proposed, and a HfO2/TiN/TaOX/TiAl/TiN/TiN gate stack featuring an aggressive Work Function of 4.35 eV (allowing a Work Function separation of 600 mV between NMOS and PMOS) is demonstrated. This work paves the way toward the integration of gate-last options for DRAM periphery transistors.
AIC-based diffraction stacking for local earthquake locations at the Sumatran Fault (Indonesia)
NASA Astrophysics Data System (ADS)
Hendriyana, Andri; Bauer, Klaus; Muksin, Umar; Weber, Michael
2018-05-01
We present a new workflow for the localization of seismic events which is based on a diffraction stacking approach. In order to address the effects from complex source radiation patterns, we suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original waveform data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. We demonstrate that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P and S waves due to inaccurate velocity models, we separate the P and S waves from the mAIC function by making use of polarization attributes. Then, the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P- and S-image functions. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results. The workflow of the diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for nine months around the Tarutung pull-apart basin were analysed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung basin. Two lineaments striking N-S were found in the centre of the Tarutung basin which support independent results from structural geology.
Chou, Chi-Ta; Lin, Chien-Hung; Tai, Yian; Liu, Chin-Hsin J; Chen, Li-Chyong; Chen, Kuei-Hsien
2012-05-03
In this Letter, we investigated the effect of the molecular stacking orientation on the open circuit voltage (VOC) of pentacene-based organic solar cells. Two functionalized pentacenes, namely, 6,13-diphenyl-pentacene (DP-penta) and 6,13-dibiphenyl-4-yl-pentacene (DB-penta), were utilized. Different molecular stacking orientations of the pentacene derivatives from the pristine pentacene were identified by angle-dependent near-edge X-ray absorption fine structure measurements. It is concluded that pentacene molecules stand up on the substrate surface, while both functionalized pentacenes lie down. A significant increase of the VOC from 0.28 to 0.83 V can be achieved upon the utilization of functionalized pentacene, owing to the modulation of molecular stacking orientation, which induced a vacuum-level shift.
Imaging the Lower Crust and Moho Beneath Long Beach, CA Using Autocorrelations
NASA Astrophysics Data System (ADS)
Clayton, R. W.
2017-12-01
Three-dimensional images of the lower crust and Moho in a 10x10 km region beneath Long Beach, CA are constructed from autocorrelations of ambient noise. The results show the Moho at a depth of 15 km at the coast and dipping at 45 degrees inland to a depth of 25 km. The shape of the Moho interface is irregular in both the coast perpendicular and parallel directions. The lower crust appears as a zone of enhanced reflectivity with numerous small-scale structures. The autocorrelations are constructed from virtual source gathers that were computed from the dense Long Beach array that were used in the Lin et al (2013) study. All near zero-offset traces within a 200 m disk are stacked to produce a single autocorrelation at that point. The stack typically is over 50-60 traces. To convert the auto correlation to reflectivity as in Claerbout (1968), the noise source autocorrelation, which is estimated as the average of all autocorrelations is subtracted from each trace. The subsurface image is then constructed with a 0.1-2 Hz filter and AGC scaling. The main features of the image are confirmed with broadband receiver functions from the LASSIE survey (Ma et al, 2016). The use of stacked autocorrelations extends ambient noise into the lower crust.
Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.
1994-01-01
A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.
Hopkins, R.J.; Land, J.T.; Misvel, M.C.
1994-06-07
A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.
Thermal resilient multiple jaw braze fixture
Ney, Robert; Perrone, Alex J.
1995-07-11
A braze fixture has side walls forming a cavity with an opening to receive a stack of parts to be brazed. Sidewalls of the housing have a plurality of bearing receiving openings into which bearing rods or jaws are inserted to align the stacked elements of the workpiece. The housing can also have view ports to allow a visual check of the alignment. Straps or wires around the fixture are selected to have thermal characteristics similar to the thermal characteristics of the workpiece undergoing brazing. The straps or wires make physical contact with the bearing rods thereby causing bearing rods to maintain the workpiece in proper alignment throughout the entire brazing cycle.
NASA Astrophysics Data System (ADS)
Bianchi, M.; Heit, B.; Yuan, X.; Assumpcao, M.; Kind, R.
2009-04-01
While the Andean cordillera grab most of the seismological attention due to it's active tectonics, the stable platform is of mainly importance in understanding what could be considered the normal, out of anomaly earth and, may help to understand what are the final and long term results from such a dynamic process like subduction and other types of convergent and divergent plate boundaries interaction. During the last 15 year the Brazilian Lithospheric Seismological Project (BLSP) has been operating more than 60 temporary three-component broadband seismological stations, collecting seismological data mainly in the Brazilian part of the platform. The stations are mainly distributed from 35°W to 60°W and from 10°S to 25°S, covering most of the Parana basin, Tocantins fold beld, Ribeira fold belt and the San Francisco craton. Beyond this central region, there are still some stations distributed over the northern Brazilian margin, covering parts of the Amazon craton and the Parnaiba basin. To complement our dataset we use data from the GT/CPUP station (Vila Florinda/PY FDSN/IRIS). The processing steps included event selection, rotation to LQT coordinate system using an automatic algorithm based on diagonalization of the coherence matrix (for P-wave receiver function only) and deconvolution of the Q by L component for P-wave receiver function and L by Q for S-wave receiver function. The profile images were made by stacking the resulted receiver functions by piercing points locations following pre-defined lines crossing the main tectonic units. At each profile we highlighted the desired Ps and Sp conversion phase for each of the discontinuities and its time readings and errors were estimated by bootstrapping the traces during the stacking procedure. For drawing the conclusions we compared the times each other and with theoretical times computed from the IASPEI91 model and models that presented a ± 5% change in the P- and S-wave mantle velocities. The most important results observed are: 1) A clear cratonic signature, consisting of higher wave velocities for the mantle under the cratons and normal (410km and 660km) depths for the discontinuities 2) Strong presence of the Nazca subducted plate near 410 and 660 km discontinuities under the Southern part of the Parana basin 3) Lack of variation in the Transition Zone thickness and in the mantle velocities due to the presence of the possible plume proposed in 1995 by Vandecar at the Northern Parana basin region and 4) A possible transition zone thinning near the Matiqueira complex, at the Ribeira fold beld, near the Atlantic passive margin.
NASA Astrophysics Data System (ADS)
Mulibo, G.; Tugume, F.; Julia, J.
2012-12-01
In this study, teleseismic earthquakes recorded on over 60 temporary AfricaArray seismic stations deployed in Uganda, Kenya, Tanzania and Zambia between 2007 and 2011 are used to invert P and S travel time residuals, together with travel time residuals from previous deployments, for a 3D image of mantle wave speeds and for examining relief on transition zone discontinuities using receiver function stacks. Tomographic images reveal a low wave speed anomaly (LWA) that dips to the SW beneath northern Zambia, extending to a depth of at least 900 km. The anomaly appears to be continuous across the transition zone, extending into the lower mantle. Receiver function stacks reveal an average transition zone thickness (TZT) across a wide region extending from central Zambia to the NE through Tanzania and into Kenya, which is ~30-40 km thinner than the global average. These results are not easily explained by models for the origin of the Cenozoic tectonism in eastern Africa that invoke a plume head or small scale convection either by edge flow or passive stretching of the lithosphere. However, the depth extent of the LWA coincident with a thin transition zone is consistent with a model invoking a through-going mantle anomaly beneath eastern Africa that links anomalous upper mantle to the African Superplume anomaly in the lower mantle beneath southern Africa. This finding indicates that geodynamic processes deep in the lower mantle are influencing surface dynamics across the Afro-Arabian rift system.
Receiver function stacks: initial steps for seismic imaging of Cotopaxi volcano, Ecuador
NASA Astrophysics Data System (ADS)
Bishop, J. W.; Lees, J. M.; Ruiz, M. C.
2017-12-01
Cotopaxi volcano is a large, andesitic stratovolcano located within 50 km of the the Ecuadorean capital of Quito. Cotopaxi most recently erupted for the first time in 73 years during August 2015. This eruptive cycle (VEI = 1) featured phreatic explosions and ejection of an ash column 9 km above the volcano edifice. Following this event, ash covered approximately 500 km2 of the surrounding area. Analysis of Multi-GAS data suggests that this eruption was fed from a shallow source. However, stratigraphic evidence surveying the last 800 years of Cotopaxi's activity suggests that there may be a deep magmatic source. To establish a geophysical framework for Cotopaxi's activity, receiver functions were calculated from well recorded earthquakes detected from April 2015 to December 2015 at 9 permanent broadband seismic stations around the volcano. These events were located, and phase arrivals were manually picked. Radial teleseismic receiver functions were then calculated using an iterative deconvolution technique with a Gaussian width of 2.5. A maximum of 200 iterations was allowed in each deconvolution. Iterations were stopped when either the maximum iteration number was reached or the percent change fell beneath a pre-determined tolerance. Receiver functions were then visually inspected for anomalous pulses before the initial P arrival or later peaks larger than the initial P-wave correlated pulse, which were also discarded. Using this data, initial crustal thickness and slab depth estimates beneath the volcano were obtained. Estimates of crustal Vp/Vs ratio for the region were also calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syuhada, E-mail: hadda9@gmail.com; Research Centre for Physics - Indonesian Institute of Sciences; Hananto, Nugroho D.
2015-04-24
We analyzed receiver functions to estimate the crustal thickness and velocity structure beneath two stations of Geofon (GE) network in the Sunda-Banda arc transition zone. The stations are located in two different tectonic regimes: Sumbawa Island (station PLAI) and Timor Island (station SOEI) representing the oceanic and continental characters, respectively. We analyzed teleseismic events of 80 earthquakes to calculate the receiver functions using the time-domain iterative deconvolution technique. We employed 2D grid search (H-κ) algorithm based on the Moho interaction phases to estimate crustal thickness and Vp/Vs ratio. We also derived the S-wave velocity variation with depth beneath both stationsmore » by inverting the receiver functions. We obtained that beneath station PLAI the crustal thickness is about 27.8 km with Vp/Vs ratio 2.01. As station SOEI is covered by very thick low-velocity sediment causing unstable solution for the inversion, we modified the initial velocity model by adding the sediment thickness estimated using high frequency content of receiver functions in H-κ stacking process. We obtained the crustal thickness is about 37 km with VP/Vs ratio 2.2 beneath station SOEI. We suggest that the high Vp/Vs in station PLAI may indicate the presence of fluid ascending from the subducted plate to the volcanic arc, whereas the high Vp/Vs in station SOEI could be due to the presence of sediment and rich mafic composition in the upper crust and possibly related to the serpentinization process in the lower crust. We also suggest that the difference in velocity models and crustal thicknesses between stations PLAI and SOEI are consistent with their contrasting tectonic environments.« less
NASA Astrophysics Data System (ADS)
Fisichella, M.; Shotter, A. C.; Di Pietro, A.; Figuera, P.; Lattuada, M.; Marchetta, C.; Privitera, V.; Romano, L.; Ruiz, C.; Zadro, M.
2015-12-01
For low energy reaction studies involving radioactive ion beams, the experimental reaction yields are generally small due to the low intensity of the beams. For this reason, the stacked target technique has been often used to measure excitation functions. This technique offers considerable advantages since the reaction cross-section at several energies can be simultaneously measured. In a further effort to increase yields, thick targets are also employed. The main disadvantage of the method is the degradation of the beam quality as it passes through the stack due to the statistical nature of energy loss processes and any nonuniformity of the stacked targets. This degradation can lead to ambiguities of associating effective beam energies to reaction product yields for the targets within the stack and, as a consequence, to an error in the determination of the excitation function for the reaction under study. A thorough investigation of these ambiguities is reported, and a best practice procedure of analyzing data obtained using the stacked target technique with radioactive ion beams is recommended. Using this procedure a re-evaluation is reported of some previously published sub-barrier fusion data in order to demonstrate the possibility of misinterpretations of derived excitation functions. In addition, this best practice procedure has been used to evaluate, from a new data set, the sub-barrier fusion excitation function for the reaction 6Li+120Sn .
Stacking dependence of carrier transport properties in multilayered black phosphorous
NASA Astrophysics Data System (ADS)
Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.
2016-02-01
We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.
A Robust High-Performance GPS L1 Receiver with Single-stage Quadrature Redio-Frequency Circuit
NASA Astrophysics Data System (ADS)
Liu, Jianghua; Xu, Weilin; Wan, Qinq; Liu, Tianci
2018-03-01
A low power current reuse single-stage quadrature raido-frequency part (SQRF) is proposed for GPS L1 receiver in 180nm CMOS process. The proposed circuit consists of LNA, Mixer, QVCO, is called the QLMV cell. A two blocks stacked topology is adopted in this design. The parallel QVCO and mixer placed on the top forms the upper stacked block, and the LNA placed on the bottom forms the other stacked block. The two blocks share the current and achieve low power performance. To improve the stability, a float current source is proposed. The float current isolated the local oscillation signal and the input RF signal, which bring the whole circuit robust high-performance. The result shows conversion gain is 34 dB, noise figure is three dB, the phase noise is -110 dBc/Hz at 1MHz and IIP3 is -20 dBm. The proposed circuit dissipated 1.7mW with 1 V supply voltage.
NASA Astrophysics Data System (ADS)
Fischer, Karen M.; Hopper, Emily
2015-04-01
When broadband stations are spaced at ~70 km or less, as with the EarthScope Transportable Array in North America, common conversion point stacking of Sp receiver functions is capable of continuous three-dimensional imaging of velocity gradients at shallow mantle depths, provided that the gradients are localized over ~30 km or less. In the tectonically active western United States, Sp common conversion points stacks reveal a strong and coherent negative velocity gradient (velocity drop with increasing depth) that falls within the transition from high velocity lithosphere to low velocity asthenosphere seen in surface wave tomography. This negative velocity gradient is interpretable as the seismological lithosphere-asthenosphere boundary. Its depth varies significantly across certain tectonic boundaries at horizontal length scales of less than ~75 km, consistent with a rheologically strong mantle lithosphere in which strain can localize. When station spacing is sufficiently dense (~5 km) coherent imaging of discontinuities in the upper and lower crust is possible, even for Sp phases with dominant periods close to 10 s. With data from the 85 broadband stations of the SESAME array in the southeastern United States (an EarthScope Flexible Array experiment) and adjacent Transportable Array and permanent stations, common conversion point stacking of Sp phases resolves strong velocity gradients in the upper and lower crust that are continuous over hundreds of horizontal kilometers. Across the Suwannee suture (the northern edge of the Gondwanan or peri-Gondwanan Suwannee lithosphere that accreted to Laurentia in the last stages of the Appalachian orogeny) a strong positive velocity discontinuity dips southward from the surface expression of the suture to depths of 25-30 km. Modeling with common conversion point stacks of synthetic Sp phases demonstrates that Sp data can resolve the dipping discontinuity, despite the presence of sediment-filled Mesozoic rift basins and younger sedimentary cover. We interpret the dipping discontinuity as the contact between Suwannee crust and the crust of either Laurentia or previously accreted peri-Gondwanan terranes. The positive sign of the discontinuity could represent an increase in isotropic velocity between the Suwannee crust and the crust to which it accreted, or it could correspond to the base of a strongly foliated radially anisotropic crustal shear zone. In contrast to the more steeply-dipping suture previously inferred from COCORP reflection profiles, the positive discontinuity imaged by the Sp data dips southward at an angle of less than 10˚. This geometry implies that Suwannee crust overthrust the continental margin by more than 300 km and that the final assembly of Pangea in this region included significant convergence.
Exploring the Llaima Volcano Using Receiver Functions
NASA Astrophysics Data System (ADS)
Bishop, J. W.; Biryol, C.; Lees, J. M.
2016-12-01
The Llaima volcano in Chile is one of the most active volcanos in the Southern Andes, erupting at least 50 times since 1640. To understand the eruption dynamics behind these frequent paroxysms, it is important to identify the depth and extent of the magma chamber beneath the volcano. Furthermore, it is also important to identify structural controls on the magma storage regions and volcanic plumbing system, such as fault and fracture zones. To probe these questions, a dense, 26 station broadband seismic array was deployed around the Llaima volcano for 3 months (January to March, 2015). Additionally, broadband seismic data from 7 stations in the nearby Observatorio Volcanológico de Los Andes del Sur (OVDAS) seismic network was also obtained for this period. Teleseismic receiver functions were calculated from this combined data using an iterative deconvolution technique. Receiver function stacks (both H-K and CCP) yield seismic images of the deep structure beneath the volcano. Initial results depict two low velocity layers at approximately 4km and 12km. Furthermore, Moho calculations are 5-8 km deeper than expected from regional models, but a shallow ( 40 km) region is detected beneath the volcano peak. A large high Vp/Vs ratio anomaly (Vp/Vs > 0.185) is discernable to the east of the main peak of the volcano.
Probing the Cypriot Lithosphere: Insights from Broadband Seismology
NASA Astrophysics Data System (ADS)
Ogden, C. S.; Bastow, I. D.; Pilidou, S.; Dimitriadis, I.; Iosif, P.; Constantinou, C.; Kounoudis, R.
2017-12-01
Cyprus, an island in the eastern Mediterranean Sea, is an ideal study locale for understanding both the final stages of subduction, and the internal structure of so-called `ophiolites' - rare, on-land exposures of oceanic crust. The Troodos ophiolite offers an excellent opportunity to interrogate a complete ophiolite sequence from mantle rocks to pillow lavas. However, determining its internal architecture, and that of the subducting African plate deep below it, cannot be easily achieved using traditional field geology. To address this issue, we have built a new network of five broadband seismograph stations across the island. These, along with existing permanent stations, record both local and teleseismic earthquakes that we are now using to image Cyprus' crust and mantle seismic structure. Receiver functions are time series, computed from three-component seismograms, which contain information about lithospheric seismic discontinuities. When a P-wave strikes a velocity discontinuity such as the Moho, energy is converted to S-waves (direct Ps phase). The widely-used H-K Stacking technique utilises this arrival, and subsequent crustal reverberations (PpPs and PsPs+PpSs), to calculate crustal thickness (H) and bulk-crustal Vp/Vs ratio (K). Central to the method is the assumption that the Moho produces the largest amplitude conversions, after the direct P-arrival, which is valid where the Moho is sharp. Where the Moho is gradational or upper crustal discontinuities are present, the Moho signals are weakened and masked by shallow crustal conversions, potentially rendering the H-K stacking method unreliable. Using a combination of synthetic and observed seismograms, we explore Cyprus' crustal structure and, specifically, the reliability of the H-K method in constraining it. Data quality is excellent across the island, but the receiver function Ps phase amplitude is low, and crustal reverberations are almost non-existent. Therefore, a simple, abrupt wavespeed jump at the Moho is lacking (perhaps due to the subducting African plate), and/or evidence for it is obscured by complex structure associated with the Troodos ophiolite. On-going analyses also include joint inversion of receiver functions and surface wave data, which together, are capable of resolving complex lithospheric seismic structure.
Thermal resilient multiple jaw braze fixture
Ney, R.; Perrone, A.J.
1995-07-11
A braze fixture has side walls forming a cavity with an opening to receive a stack of parts to be brazed. Sidewalls of the housing have a plurality of bearing receiving openings into which bearing rods or jaws are inserted to align the stacked elements of the workpiece. The housing can also have view ports to allow a visual check of the alignment. Straps or wires around the fixture are selected to have thermal characteristics similar to the thermal characteristics of the workpiece undergoing brazing. The straps or wires make physical contact with the bearing rods thereby causing bearing rods to maintain the workpiece in proper alignment throughout the entire brazing cycle. 9 figs.
6-[6-(Pyridin-2-yl)-1,2,4,5-tetra-zin-3-yl]pyridin-3-amine monohydrate.
Broichhagen, Johannes; Klingl, Yvonne E; Trauner, Dirk; Mayer, Peter
2016-02-01
The packing of the title compound, C12H9N7·H2O, is dominated by hydrogen bonding and π-stacking. Layers parallel to [010] are established by hydrogen bonds involving all amine donor functions and one of the water donor functions, while the remaining water donor function enables the stacking of the layers along [10-1], which is accompanied by π-stacking. In the molecule, the plane of the central tetra-zine ring forms angles of 5.33 (7) and 19.84 (8)° with the adjacent 3-amine-pyridine and pyridine rings, respectively.
Marques, Tanyse Bahia Carvalho; Neves, Juliana de Carvalho; Portes, Leslie Andrews; Salge, João Marcos; Zanoteli, Edmar; Reed, Umbertina Conti
2014-01-01
OBJECTIVE: Respiratory complications are the main causes of morbidity and mortality in patients with neuromuscular disease (NMD). The objectives of this study were to determine the effects that routine daily home air-stacking maneuvers have on pulmonary function in patients with spinal muscular atrophy (SMA) and in patients with congenital muscular dystrophy (CMD), as well as to identify associations between spinal deformities and the effects of the maneuvers. METHODS: Eighteen NMD patients (ten with CMD and eight with SMA) were submitted to routine daily air-stacking maneuvers at home with manual resuscitators for four to six months, undergoing pulmonary function tests before and after that period. The pulmonary function tests included measurements of FVC; PEF; maximum insufflation capacity (MIC); and assisted and unassisted peak cough flow (APCF and UPCF, respectively) with insufflations. RESULTS: After the use of home air-stacking maneuvers, there were improvements in the APCF and UPCF. In the patients without scoliosis, there was also a significant increase in FVC. When comparing patients with and without scoliosis, the increases in APCF and UPCF were more pronounced in those without scoliosis. CONCLUSIONS: Routine daily air-stacking maneuvers with a manual resuscitator appear to increase UPCF and APCF in patients with NMD, especially in those without scoliosis. PMID:25410841
Mertens, Jan E.J.; Roie, Martijn Van; Merckx, Jonas; Dekoninck, Wouter
2017-01-01
Abstract Digitization of specimen collections has become a key priority of many natural history museums. The camera systems built for this purpose are expensive, providing a barrier in institutes with limited funding, and therefore hampering progress. An assessment is made on whether a low cost compact camera with image stacking functionality can help expedite the digitization process in large museums or provide smaller institutes and amateur entomologists with the means to digitize their collections. Images of a professional setup were compared with the Olympus Stylus TG-4 Tough, a low-cost compact camera with internal focus stacking functions. Parameters considered include image quality, digitization speed, price, and ease-of-use. The compact camera’s image quality, although inferior to the professional setup, is exceptional considering its fourfold lower price point. Producing the image slices in the compact camera is a matter of seconds and when optimal image quality is less of a priority, the internal stacking function omits the need for dedicated stacking software altogether, further decreasing the cost and speeding up the process. In general, it is found that, aware of its limitations, this compact camera is capable of digitizing entomological collections with sufficient quality. As technology advances, more institutes and amateur entomologists will be able to easily and affordably catalogue their specimens. PMID:29134038
Marques, Tanyse Bahia Carvalho; Neves, Juliana de Carvalho; Portes, Leslie Andrews; Salge, João Marcos; Zanoteli, Edmar; Reed, Umbertina Conti
2014-10-01
Respiratory complications are the main causes of morbidity and mortality in patients with neuromuscular disease (NMD). The objectives of this study were to determine the effects that routine daily home air-stacking maneuvers have on pulmonary function in patients with spinal muscular atrophy (SMA) and in patients with congenital muscular dystrophy (CMD), as well as to identify associations between spinal deformities and the effects of the maneuvers. Eighteen NMD patients (ten with CMD and eight with SMA) were submitted to routine daily air-stacking maneuvers at home with manual resuscitators for four to six months, undergoing pulmonary function tests before and after that period. The pulmonary function tests included measurements of FVC; PEF; maximum insufflation capacity (MIC); and assisted and unassisted peak cough flow (APCF and UPCF, respectively) with insufflations. After the use of home air-stacking maneuvers, there were improvements in the APCF and UPCF. In the patients without scoliosis, there was also a significant increase in FVC. When comparing patients with and without scoliosis, the increases in APCF and UPCF were more pronounced in those without scoliosis. Routine daily air-stacking maneuvers with a manual resuscitator appear to increase UPCF and APCF in patients with NMD, especially in those without scoliosis.
Application of preconditioned alternating direction method of multipliers in depth from focal stack
NASA Astrophysics Data System (ADS)
Javidnia, Hossein; Corcoran, Peter
2018-03-01
Postcapture refocusing effect in smartphone cameras is achievable using focal stacks. However, the accuracy of this effect is totally dependent on the combination of the depth layers in the stack. The accuracy of the extended depth of field effect in this application can be improved significantly by computing an accurate depth map, which has been an open issue for decades. To tackle this issue, a framework is proposed based on a preconditioned alternating direction method of multipliers for depth from the focal stack and synthetic defocus application. In addition to its ability to provide high structural accuracy, the optimization function of the proposed framework can, in fact, converge faster and better than state-of-the-art methods. The qualitative evaluation has been done on 21 sets of focal stacks and the optimization function has been compared against five other methods. Later, 10 light field image sets have been transformed into focal stacks for quantitative evaluation purposes. Preliminary results indicate that the proposed framework has a better performance in terms of structural accuracy and optimization in comparison to the current state-of-the-art methods.
High Resolution Velocity Structure in Eastern Turkey
NASA Astrophysics Data System (ADS)
Pasyanos, M. E.; Gok, R.; Zor, E.; Walter, W. R.
2004-12-01
We investigate the crust and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet, forming a complex tectonic regime. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provide a unique opportunity for studying the high resolution velocity structure of the region. Zor et al. (2003) found an average 46 km thick crust in the Anatolian plateau using a six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver functions alone, however, may result in an apparent depth-velocity trade-off [Ammon et al., 1990]. In order to improve upon this velocity model, we have combined the receiver functions with surface wave data using the joint inversion method of Julia et al. (2000). In this technique, the two sets of observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. The receiver functions are calculated using an iterative time-domain deconvolution technique. We also consider azimuthal changes in the receiver functions and have stacked them into different groups accordingly. We are improving our surface wave model by making Love and Rayleigh dispersion measurements at the ETSE stations and incorporating them into a regional group velocity model for periods between 10 and 100 seconds. Preliminary results indicate a strong trend in the long period group velocities toward the northeast, indicating slow upper mantle velocities in the area consistent with Pn, Sn and receiver function results. Starting models used for the joint inversions include both a 1-D model from a 12-ton dam shot recorded by ETSE [Gurbuz et al., 2004] and the models from the original receiver function inversions. We observe that the joint inversion results are independent of the starting model and converge to the same final model, with some differences compared to the original profiles. While we don't observe significant changes in the first order discontinuities of the model, such as Moho depth, we are better able to resolve features in the crust.
USArray Imaging of Continental Crust in the Conterminous United States
NASA Astrophysics Data System (ADS)
Ma, Xiaofei; Lowry, Anthony R.
2017-12-01
The thickness and bulk composition of continental crust provide important constraints on the evolution and dynamics of continents. Crustal mineralogy and thickness both may influence gravity anomalies, topographic elevation, and lithospheric strength, but prior to the inception of EarthScope's USArray, seismic measurements of crustal thickness and properties useful for inferring lithology are sparse. Here we improve upon a previously published methodology for joint inversion of Bouguer gravity anomalies and seismic receiver functions by using parameter space stacking of cross correlations of modeled synthetic and observed receiver functions instead of standard
NASA Astrophysics Data System (ADS)
Dahm, Haider H.; Gao, Stephen S.; Kong, Fansheng; Liu, Kelly H.
2017-12-01
The 410 and 660 km discontinuities (d410 and d660, respectively) beneath Alaska and adjacent areas are imaged by stacking 75,296 radial receiver functions recorded by 438 broadband seismic stations with up to 30 years of recording period. When the 1-D IASP91 Earth model is used for moveout correction and time depth conversion, significant and spatially systematic variations in the apparent depths of the d410 and d660 are observed. The mean apparent depth of the d410 and d660 for the entire study area is 417 ± 12 km and 665 ± 12 km, respectively, and the mean mantle transition zone (MTZ) thickness is 248 ± 8 km which is statistically identical to the global average. For most of the areas, the undulations of the apparent depths of the d410 and d660 are highly correlated, indicating that lateral velocity variations in the upper mantle above the d410 contribute to the bulk of the observed apparent depth variations by affecting the traveltimes of the P-to-S converted phases from both discontinuities. Beneath central Alaska, a broad zone with greater than normal MTZ thicknesses and shallower than normal d410 is imaged, implying that the subducting Pacific slab has reached the MTZ and is fragmented or significantly thickened. Within the proposed Northern Cordilleran slab window, an overall thinner than normal MTZ is observed and is most likely the result of a depressed d410. This observation, when combined with results from seismic tomography investigations, may indicate advective thermal upwelling from the upper MTZ through the slab window.
6-[6-(Pyridin-2-yl)-1,2,4,5-tetrazin-3-yl]pyridin-3-amine monohydrate
Broichhagen, Johannes; Klingl, Yvonne E.; Trauner, Dirk; Mayer, Peter
2016-01-01
The packing of the title compound, C12H9N7·H2O, is dominated by hydrogen bonding and π-stacking. Layers parallel to [010] are established by hydrogen bonds involving all amine donor functions and one of the water donor functions, while the remaining water donor function enables the stacking of the layers along [10-1], which is accompanied by π-stacking. In the molecule, the plane of the central tetrazine ring forms angles of 5.33 (7) and 19.84 (8)° with the adjacent 3-amine-pyridine and pyridine rings, respectively. PMID:26958397
Berry, Robert Randolph; Palmer, Gene David; Wilson, Ian David
2000-01-01
A gas turbine rotor stacking fixture includes upstanding bolts for reception in aligned bolt holes in superposed aft disk, wheels and spacers and upstanding alignment rods received in openings of the disk, wheels and spacers during the rotor stacking assembly. The axially registering openings enable insertion of thin-walled tubes circumferentially about the rim of the rotor, with tight tolerances to the openings to provide supply and return steam for cooling buckets. The alignment rods have radial dimensions substantially less than their dimensions in a circumferential direction to allow for radial opening misalignment due to thermal expansion, tolerance stack-up and wheel-to-spacer mismatch due to rabbet mechanical growth. The circumferential dimension of the alignment rods affords tightly toleranced alignment of the openings through which the cooling tubes are installed.
Reliability analysis and initial requirements for FC systems and stacks
NASA Astrophysics Data System (ADS)
Åström, K.; Fontell, E.; Virtanen, S.
In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.
NASA Technical Reports Server (NTRS)
Carson, John C. (Inventor); Indin, Ronald J. (Inventor); Shanken, Stuart N. (Inventor)
1994-01-01
A computer module is disclosed in which a stack of glued together IC memory chips is structurally integrated with a microprocessor chip. The memory provided by the stack is dedicated to the microprocessor chip. The microprocessor and its memory stack may be connected either by glue and/or by solder bumps. The solder bumps can perform three functions--electrical interconnection, mechanical connection, and heat transfer. The electrical connections in some versions are provided by wire bonding.
NASA Astrophysics Data System (ADS)
Kumar, Sanjay; Ajay
2015-01-01
Stacking dependent quasi-particle spectrum and density of states (DOS) in trilayer (ABC-, ABA- and AAA-stacked) graphene are analyzed using mean-field Green's function equations of motion method. Interlayer coupling (t1) is found to be responsible for the splitting of quasi-particle peaks in each stacking order. Coulomb interaction suppresses the trilayer splitting and generates a finite gap at Fermi level in ABC- while a tiny gap in ABA-stacked trilayer graphene. Influence of t⊥ is prominent for AAA-stacking as compared to ABC- and ABA-stacking orders. The theoretically obtained quasi-particle energies and DOS has been viewed in terms of recent angle resolved photoemission spectroscopic (ARPES) and scanning tunneling microscopic (STM) data available on these systems.
A method of PSF generation for 3D brightfield deconvolution.
Tadrous, P J
2010-02-01
This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z-stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a 'synthetic PSF' in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub-resolution bead suffers from low signal-to-noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z-stack through a thin sample. This Z-stack is deconvolved by an idealized point spread function derived from the same Z-stack to yield a point spread function of high signal-to-noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non-blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the 'extracted PSF') to a synthetic point spread function. Restoration of both high- and low-contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function.
Superresolution near-field imaging with surface waves
NASA Astrophysics Data System (ADS)
Fu, Lei; Liu, Zhaolun; Schuster, Gerard
2018-02-01
We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulae and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve superresolution imaging of subwavelength scatterers if they are located less than about 1/2 of the shear wavelength from the source line. We also show that the TRM operation for a single frequency is equivalent to natural migration, which uses the recorded data to approximate the Green's functions for migration, and only costs O(N4) algebraic operations for post-stack migration compared to O(N6) operations for natural pre-stack migration. Here, we assume the sources and receivers are on an N × N grid and there are N2 trial image points on the free surface. Our theoretical predictions of superresolution are validated with tests on synthetic data. The field-data tests suggest that hidden faults at the near surface can be detected with subwavelength imaging of surface waves by using the TRM operation if they are no deeper than about 1/2 the dominant shear wavelength.
NASA Astrophysics Data System (ADS)
Patel, J. R.
2002-06-01
Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range 925 - 1025 C.
An open-source wireless sensor stack: from Arduino to SDI-12 to Water One Flow
NASA Astrophysics Data System (ADS)
Hicks, S.; Damiano, S. G.; Smith, K. M.; Olexy, J.; Horsburgh, J. S.; Mayorga, E.; Aufdenkampe, A. K.
2013-12-01
Implementing a large-scale streaming environmental sensor network has previously been limited by the high cost of the datalogging and data communication infrastructure. The Christina River Basin Critical Zone Observatory (CRB-CZO) is overcoming the obstacles to large near-real-time data collection networks by using Arduino, an open source electronics platform, in combination with XBee ZigBee wireless radio modules. These extremely low-cost and easy-to-use open source electronics are at the heart of the new DIY movement and have provided solutions to countless projects by over half a million users worldwide. However, their use in environmental sensing is in its infancy. At present a primary limitation to widespread deployment of open-source electronics for environmental sensing is the lack of a simple, open-source software stack to manage streaming data from heterogeneous sensor networks. Here we present a functioning prototype software stack that receives sensor data over a self-meshing ZigBee wireless network from over a hundred sensors, stores the data locally and serves it on demand as a CUAHSI Water One Flow (WOF) web service. We highlight a few new, innovative components, including: (1) a versatile open data logger design based the Arduino electronics platform and ZigBee radios; (2) a software library implementing SDI-12 communication protocol between any Arduino platform and SDI12-enabled sensors without the need for additional hardware (https://github.com/StroudCenter/Arduino-SDI-12); and (3) 'midStream', a light-weight set of Python code that receives streaming sensor data, appends it with metadata on the fly by querying a relational database structured on an early version of the Observations Data Model version 2.0 (ODM2), and uses the WOFpy library to serve the data as WaterML via SOAP and REST web services.
NASA Astrophysics Data System (ADS)
Lee, S.; Park, Y.; Kim, K.; Rhie, J.
2010-12-01
The study on the topography of the upper mantle discontinuities helps us to understand the complex interactions between the subducting slabs and upper mantle discontinuities. To investigate the depth variation of the upper mantle discontinuities beneath the Korean Peninsula and surrounding regions, we applied the common conversion point stacking of the P-to-s receiver functions. The broadband seismic networks in South Korea and Japan were used to produce the high-resolution receiver function images of the region. The 410- and 660-km discontinuities (hereafter referred to as the 410 and the 660) are clearly imaged and their depth variations show interesting features, especially for the 660. In this region, the subducting Pacific slab bends to flatten over the 660 and several tomographic images indicate that the stagnant slab is extending to the west under China. If the depth of the 660 is affected by the temperature, the broad depression of the 660 is expected and several SS precursor studies support this idea. However, our observation shows that the 660 is locally depressed and its pattern is spatially changing. While the depressed 660 due to the Pacific slab is clearly imaged at lower latitudes (< 37°N), there is no evidence of the depressed 660 to the north. It indicates that the effect of the Pacific slab on the depth variation of the 660 is changing significantly in our study area.
A first-principles study of the electrically tunable band gap in few-layer penta-graphene.
Wang, Jinjin; Wang, Zhanyu; Zhang, R J; Zheng, Y X; Chen, L Y; Wang, S Y; Tsoo, Chia-Chin; Huang, Hung-Ji; Su, Wan-Sheng
2018-06-25
The structural and electronic properties of bilayer (AA- and AB-stacked) and tri-layer (AAA-, ABA- and AAB-stacked) penta-graphene (PG) have been investigated in the framework of density functional theory. The present results demonstrate that the ground state energy in AB stacking is lower than that in AA stacking, whereas ABA stacking is found to be the most energetically favorable, followed by AAB and AAA stackings. All considered model configurations are found to be semiconducting, independent of the stacking sequence. In the presence of a perpendicular electric field, their band gaps can be significantly reduced and completely closed at a specific critical electric field strength, demonstrating a Stark effect. These findings show that few-layer PG will have tremendous opportunities to be applied in nanoscale electronic and optoelectronic devices owing to its tunable band gap.
NASA Astrophysics Data System (ADS)
Das, Ritwika; Chowdhury, Suman; Jana, Debnarayan
2015-07-01
The dependence of the stability of single-layer graphene (SLG) sandwiched between hexagonal boron nitride bilayers (h-BN) has been described and investigated for different types of stacking in order to provide the fingerprint of the stacking order which affects the optical properties of such trilayer systems. Considering the four stacking models AAA-, AAB-, ABA-, and ABC-type stacking, the static dielectric functions (in case of parallel polarizations) for AAB-type stacking possesses maximum values, and minimum values are noticed for AAA. However, AAA-type stacking structures contribute the maximum magnetic moment while vanishing magnetic moments are observed for ABA and ABC stacking. The observed optical anisotropy and magnetic properties of these trilayer heterostructures (h-BN/SLG/h-BN) can be understood from the crystallographic stacking order and inherent crystal lattice symmetry. These optical and magnetic results suggest that the h-BN/SLG/h-BN could provide a viable route to graphene-based opto-electronic and spintronic devices.
Research on OpenStack of open source cloud computing in colleges and universities’ computer room
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhang, Dandan
2017-06-01
In recent years, the cloud computing technology has a rapid development, especially open source cloud computing. Open source cloud computing has attracted a large number of user groups by the advantages of open source and low cost, have now become a large-scale promotion and application. In this paper, firstly we briefly introduced the main functions and architecture of the open source cloud computing OpenStack tools, and then discussed deeply the core problems of computer labs in colleges and universities. Combining with this research, it is not that the specific application and deployment of university computer rooms with OpenStack tool. The experimental results show that the application of OpenStack tool can efficiently and conveniently deploy cloud of university computer room, and its performance is stable and the functional value is good.
Porto, Elias Ferreira; Tavolaro, Kelly Cristiani; Kumpel, Claudia; Oliveira, Fernanda Augusta; Sousa, Juciaria Ferreira; de Carvalho, Graciele Vieira; de Castro, Antonio Adolfo Mattos
2014-01-01
Objective To compare the effectiveness of the alveolar recruitment maneuver and the breath stacking technique with respect to lung mechanics and gas exchange in patients with acute lung injury. Methods Thirty patients were distributed into two groups: Group 1 - breath stacking; and Group 2 - alveolar recruitment maneuver. After undergoing conventional physical therapy, all patients received both treatments with an interval of 1 day between them. In the first group, the breath stacking technique was used initially, and subsequently, the alveolar recruitment maneuver was applied. Group 2 patients were initially subjected to alveolar recruitment, followed by the breath stacking technique. Measurements of lung compliance and airway resistance were evaluated before and after the use of both techniques. Gas analyses were collected before and after the techniques were used to evaluate oxygenation and gas exchange. Results Both groups had a significant increase in static compliance after breath stacking (p=0.021) and alveolar recruitment (p=0.03), but with no significant differences between the groups (p=0.95). The dynamic compliance did not increase for the breath stacking (p=0.22) and alveolar recruitment (p=0.074) groups, with no significant difference between the groups (p=0.11). The airway resistance did not decrease for either groups, i.e., breath stacking (p=0.91) and alveolar recruitment (p=0.82), with no significant difference between the groups (p=0.39). The partial pressure of oxygen increased significantly after breath stacking (p=0.013) and alveolar recruitment (p=0.04), but there was no significant difference between the groups (p=0.073). The alveolar-arterial O2 difference decreased for both groups after the breath stacking (p=0.025) and alveolar recruitment (p=0.03) interventions, and there was no significant difference between the groups (p=0.81). Conclusion Our data suggest that the breath stacking and alveolar recruitment techniques are effective in improving the lung mechanics and gas exchange in patients with acute lung injury. PMID:25028951
Porto, Elias Ferreira; Tavolaro, Kelly Cristiani; Kumpel, Claudia; Oliveira, Fernanda Augusta; Sousa, Juciaria Ferreira; Carvalho, Graciele Vieira de; Castro, Antonio Adolfo Mattos de
2014-01-01
To compare the effectiveness of the alveolar recruitment maneuver and the breath stacking technique with respect to lung mechanics and gas exchange in patients with acute lung injury. Thirty patients were distributed into two groups: Group 1 - breath stacking; and Group 2 - alveolar recruitment maneuver. After undergoing conventional physical therapy, all patients received both treatments with an interval of 1 day between them. In the first group, the breath stacking technique was used initially, and subsequently, the alveolar recruitment maneuver was applied. Group 2 patients were initially subjected to alveolar recruitment, followed by the breath stacking technique. Measurements of lung compliance and airway resistance were evaluated before and after the use of both techniques. Gas analyses were collected before and after the techniques were used to evaluate oxygenation and gas exchange. Both groups had a significant increase in static compliance after breath stacking (p=0.021) and alveolar recruitment (p=0.03), but with no significant differences between the groups (p=0.95). The dynamic compliance did not increase for the breath stacking (p=0.22) and alveolar recruitment (p=0.074) groups, with no significant difference between the groups (p=0.11). The airway resistance did not decrease for either groups, i.e., breath stacking (p=0.91) and alveolar recruitment (p=0.82), with no significant difference between the groups (p=0.39). The partial pressure of oxygen increased significantly after breath stacking (p=0.013) and alveolar recruitment (p=0.04), but there was no significant difference between the groups (p=0.073). The alveolar-arterial O2 difference decreased for both groups after the breath stacking (p=0.025) and alveolar recruitment (p=0.03) interventions, and there was no significant difference between the groups (p=0.81). Our data suggest that the breath stacking and alveolar recruitment techniques are effective in improving the lung mechanics and gas exchange in patients with acute lung injury.
P- and S-wave Receiver Function Imaging with Scattering Kernels
NASA Astrophysics Data System (ADS)
Hansen, S. M.; Schmandt, B.
2017-12-01
Full waveform inversion provides a flexible approach to the seismic parameter estimation problem and can account for the full physics of wave propagation using numeric simulations. However, this approach requires significant computational resources due to the demanding nature of solving the forward and adjoint problems. This issue is particularly acute for temporary passive-source seismic experiments (e.g. PASSCAL) that have traditionally relied on teleseismic earthquakes as sources resulting in a global scale forward problem. Various approximation strategies have been proposed to reduce the computational burden such as hybrid methods that embed a heterogeneous regional scale model in a 1D global model. In this study, we focus specifically on the problem of scattered wave imaging (migration) using both P- and S-wave receiver function data. The proposed method relies on body-wave scattering kernels that are derived from the adjoint data sensitivity kernels which are typically used for full waveform inversion. The forward problem is approximated using ray theory yielding a computationally efficient imaging algorithm that can resolve dipping and discontinuous velocity interfaces in 3D. From the imaging perspective, this approach is closely related to elastic reverse time migration. An energy stable finite-difference method is used to simulate elastic wave propagation in a 2D hypothetical subduction zone model. The resulting synthetic P- and S-wave receiver function datasets are used to validate the imaging method. The kernel images are compared with those generated by the Generalized Radon Transform (GRT) and Common Conversion Point stacking (CCP) methods. These results demonstrate the potential of the kernel imaging approach to constrain lithospheric structure in complex geologic environments with sufficiently dense recordings of teleseismic data. This is demonstrated using a receiver function dataset from the Central California Seismic Experiment which shows several dipping interfaces related to the tectonic assembly of this region. Figure 1. Scattering kernel examples for three receiver function phases. A) direct P-to-s (Ps), B) direct S-to-p and C) free-surface PP-to-s (PPs).
Method for using global optimization to the estimation of surface-consistent residual statics
Reister, David B.; Barhen, Jacob; Oblow, Edward M.
2001-01-01
An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.
CHARACTERIZATION OF POLED SINGLE-LAYER PZT FOR PIEZO STACK IN FUEL INJECTION SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay
2010-01-01
Poled single-layer PZT has been characterized in as-extracted and as-received states. PZT plate specimens in the former were extracted from a stack. Flexure strength of PZT was evaluated by using ball-on-ring and 4-point bend tests. Fractography showed that intergranular fractures dominated the fracture surface and that volume pores were the primary strength-limiting flaws. The electric field effect was investigated by testing the PZT in open circuit and coercive field levels. An asymmetrical response on the biaxial flexure strength with respect to the electric field direction was observed. These experimental results will assist reliability design of the piezo stack that ismore » being considered in fuel injection system.« less
NASA Astrophysics Data System (ADS)
Ichinose, G.; Woods, M.; Dwyer, J.
2014-03-01
We estimated the network-averaged mantle attenuation t*(total) of 0.5 s beneath the North Korea test site (NKTS) by use of P-wave spectra and normalized spectral stacks from the 25 May 2009 declared nuclear test (mb 4.5; IDC). This value was checked using P-waves from seven deep (580-600 km) earthquakes (4.8 < M w < 5.5) in the Jilin-Heilongjiang, China region that borders with Russia and North Korea. These earthquakes are 200-300 km from the NKTS, within 200 km of the Global Seismic Network seismic station in Mudanjiang, China (MDJ) and the International Monitoring System primary arrays at Ussuriysk, Russia (USRK) and Wonju, Republic of Korea (KSRS). With the deep earthquakes, we split the t*(total) ray path into two segments: a t*(u), that represents the attenuation of the up-going ray from the deep hypocenters to the local-regional receivers, and t*(d), that represents the attenuation along the down-going ray to teleseismic receivers. The sum of t*(u) and t*(d) should be equal to t*(total), because they both share coincident ray paths. We estimated the upper-mantle attenuation t*(u) of 0.1 s at stations MDJ, USRK, and KSRS from individual and stacks of normalized P-wave spectra. We then estimated the average lower-mantle attenuation t*(d) of 0.4 s using stacked teleseismic P-wave spectra. We finally estimated a network average t*(total) of 0.5 s from the stacked teleseismic P-wave spectra from the 2009 nuclear test, which confirms the equality with the sum of t*(u) and t*(d). We included constraints on seismic moment, depth, and radiation pattern by using results from a moment tensor analysis and corner frequencies from modeling of P-wave spectra recorded at local distances. We also avoided finite-faulting effects by excluding earthquakes with complex source time functions. We assumed ω2 source models for earthquakes and explosions. The mantle attenuation beneath the NKTS is clearly different when compared with the network-averaged t* of 0.75 s for the western US and is similar to values of approximately 0.5 s for the Semipalatinsk test site within the 0.5-2 Hz range.
NASA Astrophysics Data System (ADS)
Ramirez, C.; Nyblade, A.; Hansen, S. E.; Wiens, D. A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Shore, P.; Wilson, T.
2016-03-01
S-wave receiver functions (SRFs) are used to investigate crustal and upper-mantle structure beneath several ice-covered areas of Antarctica. Moho S-to-P (Sp) arrivals are observed at ˜6-8 s in SRF stacks for stations in the Gamburtsev Mountains (GAM) and Vostok Highlands (VHIG), ˜5-6 s for stations in the Transantarctic Mountains (TAM) and the Wilkes Basin (WILK), and ˜3-4 s for stations in the West Antarctic Rift System (WARS) and the Marie Byrd Land Dome (MBLD). A grid search is used to model the Moho Sp conversion time with Rayleigh wave phase velocities from 18 to 30 s period to estimate crustal thickness and mean crustal shear wave velocity. The Moho depths obtained are between 43 and 58 km for GAM, 36 and 47 km for VHIG, 39 and 46 km for WILK, 39 and 45 km for TAM, 19 and 29 km for WARS and 20 and 35 km for MBLD. SRF stacks for GAM, VHIG, WILK and TAM show little evidence of Sp arrivals coming from upper-mantle depths. SRF stacks for WARS and MBLD show Sp energy arriving from upper-mantle depths but arrival amplitudes do not rise above bootstrapped uncertainty bounds. The age and thickness of the crust is used as a heat flow proxy through comparison with other similar terrains where heat flow has been measured. Crustal structure in GAM, VHIG and WILK is similar to Precambrian terrains in other continents where heat flow ranges from ˜41 to 58 mW m-2, suggesting that heat flow across those areas of East Antarctica is not elevated. For the WARS, we use the Cretaceous Newfoundland-Iberia rifted margins and the Mesozoic-Tertiary North Sea rift as tectonic analogues. The low-to-moderate heat flow reported for the Newfoundland-Iberia margins (40-65 mW m-2) and North Sea rift (60-85 mW m-2) suggest that heat flow across the WARS also may not be elevated. However, the possibility of high heat flow associated with localized Cenozoic extension or Cenozoic-recent magmatic activity in some parts of the WARS cannot be ruled out.
Radiation-Tolerant Intelligent Memory Stack - RTIMS
NASA Technical Reports Server (NTRS)
Ng, Tak-kwong; Herath, Jeffrey A.
2011-01-01
This innovation provides reconfigurable circuitry and 2-Gb of error-corrected or 1-Gb of triple-redundant digital memory in a small package. RTIMS uses circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field-programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuits are stacked into a module of 42.7 42.7 13 mm. Triple module redundancy, current limiting, configuration scrubbing, and single- event function interrupt detection are employed to mitigate radiation effects. The novel self-scrubbing and single event functional interrupt (SEFI) detection allows a relatively soft FPGA to become radiation tolerant without external scrubbing and monitoring hardware
Method and Apparatus for Evaluating Multilayer Objects for Imperfections
NASA Technical Reports Server (NTRS)
Heyman, Joseph S. (Inventor); Abedin, Nurul (Inventor); Sun, Kuen J. (Inventor)
1999-01-01
A multilayer object having multiple layers arranged in a stacking direction is evaluated for imperfections such as voids, delaminations and microcracks. First. an acoustic wave is transmitted into the object in the stacking direction via an appropriate transducer/waveguide combination. The wave propagates through the multilayer object and is received by another transducer/waveguide combination preferably located on the same surface as the transmitting combination. The received acoustic wave is correlated with the presence or absence of imperfections by, e.g., generating pulse echo signals indicative of the received acoustic wave. wherein the successive signals form distinct groups over time. The respective peak amplitudes of each group are sampled and curve fit to an exponential curve. wherein a substantial fit of approximately 80-90% indicates an absence of imperfections and a significant deviation indicates the presence of imperfections. Alternatively, the time interval between distinct groups can be measured. wherein equal intervals indicate the absence of imperfections and unequal intervals indicate the presence of imperfections.
Method and apparatus for evaluating multilayer objects for imperfections
NASA Technical Reports Server (NTRS)
Heyman, Joseph S. (Inventor); Abedin, Nurul (Inventor); Sun, Kuen J. (Inventor)
1997-01-01
A multilayer object having multiple layers arranged in a stacking direction is evaluated for imperfections such as voids, delaminations and microcracks. First, an acoustic wave is transmitted into the object in the stacking direction via an appropriate transducer/waveguide combination. The wave propagates through the multilayer object and is received by another transducer/waveguide combination preferably located on the same surface as the transmitting combination. The received acoustic wave is correlated with the presence or absence of imperfections by, e.g., generating pulse echo signals indicative of the received acoustic wave, wherein the successive signals form distinct groups over time. The respective peak amplitudes of each group are sampled and curve fit to an exponential curve, wherein a substantial fit of approximately 80-90% indicates an absence of imperfections and a significant deviation indicates the presence of imperfections. Alternatively, the time interval between distinct groups can be measured, wherein equal intervals indicate the absence of imperfections and unequal intervals indicate the presence of imperfections.
Time functions of deep earthquakes from broadband and short-period stacks
Houston, H.; Benz, H.M.; Vidale, J.E.
1998-01-01
To constrain dynamic source properties of deep earthquakes, we have systematically constructed broadband time functions of deep earthquakes by stacking and scaling teleseismic P waves from U.S. National Seismic Network, TERRAscope, and Berkeley Digital Seismic Network broadband stations. We examined 42 earthquakes with depths from 100 to 660 km that occurred between July 1, 1992 and July 31, 1995. To directly compare time functions, or to group them by size, depth, or region, it is essential to scale them to remove the effect of moment, which varies by more than 3 orders of magnitude for these events. For each event we also computed short-period stacks of P waves recorded by west coast regional arrays. The comparison of broadband with short-period stacks yields a considerable advantage, enabling more reliable measurement of event duration. A more accurate estimate of the duration better constrains the scaling procedure to remove the effect of moment, producing scaled time functions with both correct timing and amplitude. We find only subtle differences in the broadband time-function shape with moment, indicating successful scaling and minimal effects of attenuation at the periods considered here. The average shape of the envelopes of the short-period stacks is very similar to the average broadband time function. The main variations seen with depth are (1) a mild decrease in duration with increasing depth, (2) greater asymmetry in the time functions of intermediate events compared to deep ones, and (3) unexpected complexity and late moment release for events between 350 and 550 km, with seven of the eight events in that depth interval displaying markedly more complicated time functions with more moment release late in the rupture than most events above or below. The first two results are broadly consistent with our previous studies, while the third is reported here for the first time. The greater complexity between 350 and 550 km suggests greater heterogeneity in the failure process in that depth range. Copyright 1998 by the American Geophysical Union.
Lucas, Ricardo; Peñalver, Pablo; Gómez-Pinto, Irene; Vengut-Climent, Empar; Mtashobya, Lewis; Cousin, Jonathan; Maldonado, Olivia S; Perez, Violaine; Reynes, Virginie; Aviñó, Anna; Eritja, Ramón; González, Carlos; Linclau, Bruno; Morales, Juan C
2014-03-21
Carbohydrate-aromatic interactions are highly relevant for many biological processes. Nevertheless, experimental data in aqueous solution relating structure and energetics for sugar-arene stacking interactions are very scarce. Here, we evaluate how structural variations in a monosaccharide including carboxyl, N-acetyl, fluorine, and methyl groups affect stacking interactions with aromatic DNA bases. We find small differences on stacking interaction among the natural carbohydrates examined. The presence of fluorine atoms within the pyranose ring slightly increases the interaction with the C-G DNA base pair. Carbohydrate hydrophobicity is the most determinant factor. However, gradual increase in hydrophobicity of the carbohydrate does not translate directly into a steady growth in stacking interaction. The energetics correlates better with the amount of apolar surface buried upon sugar stacking on top of the aromatic DNA base pair.
Radiation Tolerant Intelligent Memory Stack (RTIMS)
NASA Technical Reports Server (NTRS)
Ng, Tak-kwong; Herath, Jeffrey A.
2006-01-01
The Radiation Tolerant Intelligent Memory Stack (RTIMS), suitable for both geostationary and low earth orbit missions, has been developed. The memory module is fully functional and undergoing environmental and radiation characterization. A self-contained flight-like module is expected to be completed in 2006. RTIMS provides reconfigurable circuitry and 2 gigabits of error corrected or 1 gigabit of triple redundant digital memory in a small package. RTIMS utilizes circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuitries are stacked into a module of 42.7mm x 42.7mm x 13.00mm. Triple module redundancy, current limiting, configuration scrubbing, and single event function interrupt detection are employed to mitigate radiation effects. The mitigation techniques significantly simplify system design. RTIMS is well suited for deployment in real-time data processing, reconfigurable computing, and memory intensive applications.
NASA Astrophysics Data System (ADS)
Gurrola, H.; Pratt, K. W.; Pulliam, J.; Dunbar, J. A.
2011-12-01
In summer of 2010, 21 broadband seismographs were installed at 16-18 km spacing along a transect running from Johnson City, TX, (on the Edwards Plateau), to Matagorda Island to study the current structure of this rifted passive margin. The large magnetic anomaly that parallels the coast throughout the Gulf region moves on-shore beneath our transect such that we will be able to investigate the source of this anomaly. A second important target that will be imaged in this Balcones fault which is associated with the Ouachita front. This project is funded by a grant from the Norman Hackerman Advanced Research Program (NHARP), a biannual competition among Texas Universities to support research, and makes use of Texas Tech, Baylor, and UT Austin equipment. As a result, the deployment includes a less uniform array of seismic equipment, (10 Trillium compact seismometers and 10 Guralps; including 40Ts, 3Ts and 3ESPs), than projects supported by the IRIS PASSCAL center. Our vault construction was similar to Flexible array vaults, but Gulf Coast provides a more challenging environment for deployment than most encountered in the western US. The shallow water table and loose sediment can become almost fluid when storms deluge the area with rain. In dry periods, mud cracks near the vaults cause the vaults to tilt. As a result, even high quality, shallow seismic vaults can "float" or shift sufficiently to cause one or two components of the seismic stations to drift against their stops in days or weeks. As a result, the only data consistently available from all our stations, are vertical components. Horizontal component data from the summer of 2010 can be hit and miss due to the tilting of the vaults. These issues have been reduced in the summer of 2011 due to the drought. To address the data's shortcomings, we will average the vertical components from our stations and nearby EarthScope TA stations, (up 300 km away), to isolate the cleanest representation of the incoming P-wave, (with local PPp reverberations averaged out). This is essentially beam forming for the optimal teleseismic ray path. The clean P-wave will then be deconvolved from the vertical components at each station to produce a vertical component receiver function that will enable us to model and stack local P-wave reverberations to produce a 2-D image of lithospheric structure. To produce traditional receiver functions from time periods where one component is lost from several stations, we will treat neighboring stations as arrays and recover an "array averaged three-component seismogram" for each loacation. These "beamed" seismograms will allow imaging of the crust, lithospheric mantle, and transition zone beneath the broadband array using traditional receiver function stacking or migration.
Enumeration of Extended m-Regular Linear Stacks.
Guo, Qiang-Hui; Sun, Lisa H; Wang, Jian
2016-12-01
The contact map of a protein fold in the two-dimensional (2D) square lattice has arc length at least 3, and each internal vertex has degree at most 2, whereas the two terminal vertices have degree at most 3. Recently, Chen, Guo, Sun, and Wang studied the enumeration of [Formula: see text]-regular linear stacks, where each arc has length at least [Formula: see text] and the degree of each vertex is bounded by 2. Since the two terminal points in a protein fold in the 2D square lattice may form contacts with at most three adjacent lattice points, we are led to the study of extended [Formula: see text]-regular linear stacks, in which the degree of each terminal point is bounded by 3. This model is closed to real protein contact maps. Denote the generating functions of the [Formula: see text]-regular linear stacks and the extended [Formula: see text]-regular linear stacks by [Formula: see text] and [Formula: see text], respectively. We show that [Formula: see text] can be written as a rational function of [Formula: see text]. For a certain [Formula: see text], by eliminating [Formula: see text], we obtain an equation satisfied by [Formula: see text] and derive the asymptotic formula of the numbers of [Formula: see text]-regular linear stacks of length [Formula: see text].
NASA Astrophysics Data System (ADS)
Knuppel, M.; Pratt, K. W.; Evanzia, D.; Gurrola, H.; Pulliam, J.
2012-12-01
For the past two years, Texas Tech and Baylor universities have been operating 21 broadband seismic stations extending from Matagorda Island, crossing the Gulf Coast plain and Balcones fault, ending in the middle of the Llano Uplift at Johnson City, Texas. The goal of this project is to image the basement to better understand the opening of the Gulf of Mexico (GOM) and the stabilization of the southern lithosphere of North America. In this presentation we will present preliminary results of receiver function analysis of data recorded by our broadband array. Using 18 months' of data we performed common conversion point (CCP) stack imaging of the crust and lithosphere along the profile and have produced a cross section showing receiver function derived Vp/Vs ratios along the profile. The strongest phase on the CCP stack is the Ps phase from the base of a 15 to 20-km-deep (at the shoreline) sedimentary basin that shallows to approximately 1 km deep at the Balcones fault. Vp/Vs analysis shows that this sedimentary unit has Vp/Vs ratios between 1.9 and 2.0. This unusually high Vp/Vs ratio is consistent with the basin being dominated by poorly consolidated, relatively young clastic sediment. This layer pinches out to the northwest. No clear Ps phase is observed from base of the Mesozoic carbonates and Ouachita-related sediments that we believe is several kilometers thick, based on observed Vp/Vs ratios of 1.85 to 1.9 (which is more consistent with carbonate rock than granitic basement). The pattern of Vp/Vs implies near-vertical, crust-wide displacement along the Balcones Fault. The Moho appears to be 15 to 20 km deep near the ocean but descends to more than 40 km beneath the Llano uplift. There is a strong Ps phase from about 70 km depth near the coastline that we interpret as remnant depleted mantle from the rifting of the GOM. The region between this P70s phase and the Moho appear to have a low Vp/Vs ratio (~1.75), which would be consistent with mantle depleted in iron as a result of rifting during the opening of the Gulf of Mexico.
Network Modeling and Simulation Environment (NEMSE)
2012-07-01
the NEMSE program investigated complex emulation techniques and selected compatible emulation techniques for all OSI network stack layers. Other...EMULAB; 2) Completed the selection of compatible emulation techniques that allows working with all layers of the Open System Interconnect ( OSI ...elements table, Figure 3, reconciles the various elements of NEMSE against the OSI stack and other functions. OSI Layer or Function EM UL AB NS 2
Retrieval of Body-Wave Reflections Using Ambient Noise Interferometry Using a Small-Scale Experiment
NASA Astrophysics Data System (ADS)
Dantas, Odmaksuel Anísio Bezerra; do Nascimento, Aderson Farias; Schimmel, Martin
2018-02-01
We report the retrieval of body-wave reflections from noise records using a small-scale experiment over a mature oil field. The reflections are obtained by cross-correlation and stacking of the data. We used the stacked correlograms to create virtual source-to-receiver common shot gathers and are able to obtain body-wave reflections. Surface waves that obliterate the body-waves in our noise correlations were attenuated following a standard procedure from active source seismics. Further different strategies were employed to cross-correlate and stack the data: classical geometrical normalized cross-correlation (CCGN), phase cross-correlation (PCC), linear stacking**** and phase weighted stacking (PWS). PCC and PWS are based on the instantaneous phase coherence of analytic signals. The four approaches are independent and reveal the reflections; nevertheless, the combination of PWS and CCGN provided the best results. Our analysis is based on 2145 cross-correlations of 600 s data segments. We also compare the resulted virtual shot gathers with an active 2D seismic line near the passive experiment. It is shown that our ambient noise analysis reproduces reflections which are present in the active seismic data.
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron
2018-01-01
We investigated stability and the electronic structure of extended defects including antisite domain boundaries and stacking faults in the kesterite-structured semiconductors, Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe). Our hybrid density functional theory calculations show that stacking faults in CZTS and CZTSe induce a higher conduction band edge than the bulk counterparts, and thus the stacking faults act as electron barriers. Antisite domain boundaries, however, accumulate electrons as the conduction band edge is reduced in energy, having an opposite role. An Ising model was constructed to account for the stability of stacking faults, which shows the nearest-neighbor interaction is stronger in the case of the selenide.
Sequence-Dependent Elasticity and Electrostatics of Single-Stranded DNA: Signatures of Base-Stacking
McIntosh, Dustin B.; Duggan, Gina; Gouil, Quentin; Saleh, Omar A.
2014-01-01
Base-stacking is a key factor in the energetics that determines nucleic acid structure. We measure the tensile response of single-stranded DNA as a function of sequence and monovalent salt concentration to examine the effects of base-stacking on the mechanical and thermodynamic properties of single-stranded DNA. By comparing the elastic response of highly stacked poly(dA) and that of a polypyrimidine sequence with minimal stacking, we find that base-stacking in poly(dA) significantly enhances the polymer’s rigidity. The unstacking transition of poly(dA) at high force reveals that the intrinsic electrostatic tension on the molecule varies significantly more weakly on salt concentration than mean-field predictions. Further, we provide a model-independent estimate of the free energy difference between stacked poly(dA) and unstacked polypyrimidine, finding it to be ∼−0.25 kBT/base and nearly constant over three orders of magnitude in salt concentration. PMID:24507606
Early, Jack; Kaufman, Arthur; Stawsky, Alfred
1982-01-01
A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.
Multilayer Piezoelectric Stack Actuator Characterization
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph
2008-01-01
Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.
Carlstrom, Jr., Charles M.
2001-01-01
An end plate assembly is disclosed for use in a fuel cell assembly in which the end plate assembly includes a housing having a cavity, and a bladder receivable in the cavity and engageable with the fuel cell stack. The bladder includes a two-phase fluid having a liquid portion and a vapor portion. Desirably, the two-phase fluid has a vapor pressure between about 100 psi and about 600 psi at a temperature between about 70 degrees C. to about 110 degrees C.
Electronic spectrum of trilayer graphene
NASA Astrophysics Data System (ADS)
Kumar, S.; Ajay
2014-08-01
Present work deals with the analysis of the single particle electronic spectral function in trilayer (ABC-, ABA- and AAA-stacked) graphene. Tight binding Hamiltonian containing intralayer nearest-neighbor and next-nearest neighbor hopping along-with the interlayer coupling parameter within two triangular sub-lattice approach for trilayer graphene has been employed. The expression of single particle spectral functions A(kw) is obtained within mean-field Green's function equations of motion approach. Spectral function at Γ, M and K points of the Brillouin zone has been numerically computed. It is pointed out that the nature of electronic states at different points of Brillouin zone is found to be influenced by stacking order and Coulomb interactions. At Γ and M points, a trilayer splitting is predicted while at K point a bilayer splitting effect is observed due to crossing of two bands (at K point). Interlayer coupling ( t_{ bot } ) is found to be responsible for the splitting of quasi-particle peaks at each point of Brillouin zone. The influence of t_{ bot } in trilayer graphene is prominent for AAA-stacking compared to ABC- and ABA-stacking. On the other hand, onsite Coulomb interaction reduces the trilayer splitting effect into bilayer splitting at Γ and M points of Brillouin zone and bilayer splitting into single peak spectral function at K point with a shifting of the peak away from Fermi level.
Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems
NASA Technical Reports Server (NTRS)
Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing
2011-01-01
The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric constant at both resonance and off resonance frequencies. The effective piezoelectric constant can be alternated by varying the size of each component, the degree of the pre-curvature of the positive strain components, the thickness of each layer in the multilayer stacks, and the piezoelectric constant of the material used. Because all of the elements are piezoelectric components, Stacked HYBATS can serve as projector and receiver for underwater detection. The performance of this innovation can be enhanced by improving the piezoelectric properties.
Kung, Woon-Man; Lin, Muh-Shi
2012-01-01
Polymethyl methacrylate (PMMA) is one of the most frequently used cranioplasty materials. However, limitations exist with PMMA cranioplasty including longer operative time, greater blood loss and a higher infection rate. To reduce these disadvantages, it is proposed to introduce a new surgical method for PMMA cranioplasty. Retrospective review of nine patients who received nine PMMA implants using combined cotton stacking and finger fracture method from January 2008 to July 2011. The definitive height of skull defect was quantified by computer-based image analysis of computed tomography (CT) scans. Aesthetic outcomes as measured by post-reduction radiographs and cranial index of symmetry (CIS), cranial nerve V and VII function and complications (wound infection, hardware extrusions, meningitis, osteomyelitis and brain abscess) were evaluated. The mean operation time for implant moulding was 24.56 ± 4.6 minutes and 178.0 ± 53 minutes for skin-to-skin. Average blood loss was 169 mL. All post-operative radiographs revealed excellent reduction. The mean CIS score was 95.86 ± 1.36%, indicating excellent symmetry. These results indicate the safety, practicability, excellent cosmesis, craniofacial symmetry and stability of this new surgical technique.
Research and Development of Fully Automatic Alien Smoke Stack and Packaging System
NASA Astrophysics Data System (ADS)
Yang, Xudong; Ge, Qingkuan; Peng, Tao; Zuo, Ping; Dong, Weifu
2017-12-01
The problem of low efficiency of manual sorting packaging for the current tobacco distribution center, which developed a set of safe efficient and automatic type of alien smoke stack and packaging system. The functions of fully automatic alien smoke stack and packaging system adopt PLC control technology, servo control technology, robot technology, image recognition technology and human-computer interaction technology. The characteristics, principles, control process and key technology of the system are discussed in detail. Through the installation and commissioning fully automatic alien smoke stack and packaging system has a good performance and has completed the requirements for shaped cigarette.
Improved vocal tract reconstruction and modeling using an image super-resolution technique.
Zhou, Xinhui; Woo, Jonghye; Stone, Maureen; Prince, Jerry L; Espy-Wilson, Carol Y
2013-06-01
Magnetic resonance imaging has been widely used in speech production research. Often only one image stack (sagittal, axial, or coronal) is used for vocal tract modeling. As a result, complementary information from other available stacks is not utilized. To overcome this, a recently developed super-resolution technique was applied to integrate three orthogonal low-resolution stacks into one isotropic volume. The results on vowels show that the super-resolution volume produces better vocal tract visualization than any of the low-resolution stacks. Its derived area functions generally produce formant predictions closer to the ground truth, particularly for those formants sensitive to area perturbations at constrictions.
Phases of a stack of membranes in a large number of dimensions of configuration space
NASA Astrophysics Data System (ADS)
Borelli, M. E.; Kleinert, H.
2001-05-01
The phase diagram of a stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is calculated exactly in a large number of dimensions of configuration space. At low temperatures, the system forms a lamellar phase with spontaneously broken translational symmetry in the vertical direction. At a critical temperature, the stack disorders vertically in a meltinglike transition. The critical temperature is determined as a function of the interlayer separation l.
A stacking method and its applications to Lanzarote tide gauge records
NASA Astrophysics Data System (ADS)
Zhu, Ping; van Ruymbeke, Michel; Cadicheanu, Nicoleta
2009-12-01
A time-period analysis tool based on stacking is introduced in this paper. The original idea comes from the classical tidal analysis method. It is assumed that the period of each major tidal component is precisely determined based on the astronomical constants and it is unchangeable with time at a given point in the Earth. We sum the tidal records at a fixed tidal component center period T then take the mean of it. The stacking could significantly increase the signal-to-noise ratio (SNR) if a certain number of stacking circles is reached. The stacking results were fitted using a sinusoidal function, the amplitude and phase of the fitting curve is computed by the least squares methods. The advantage of the method is that: (1) an individual periodical signal could be isolated by stacking; (2) one can construct a linear Stacking-Spectrum (SSP) by changing the stacking period Ts; (3) the time-period distribution of the singularity component could be approximated by a Sliding-Stacking approach. The shortcoming of the method is that in order to isolate a low energy frequency or separate the nearby frequencies, we need a long enough series with high sampling rate. The method was tested with a numeric series and then it was applied to 1788 days Lanzarote tide gauge records as an example.
Farahmandi, C. J.; Dispennette, J. M.; Blank, E.; Kolb, A. C.
1999-05-25
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH[sub 3]CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.
Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.
2002-09-17
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.
Farahmandi, C Joseph [San Diego, CA; Dispennette, John M [Oceanside, CA; Blank, Edward [San Diego, CA; Kolb, Alan C [Rancho Santa Fe, CA
1999-05-25
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.
Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.
1999-01-19
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.
Farahmandi, C.J.; Dispennette, J.M.; Blank, E.; Kolb, A.C.
1999-01-19
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH{sub 3}CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward
A method of making a double layer capacitior includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodesmore » are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two arts of the capacitor case are conductive and function as the capacitor terminals.« less
Leske, David A; Hatt, Sarah R; Liebermann, Laura; Holmes, Jonathan M
2016-02-01
We compare two methods of analysis for Rasch scoring pre- to postintervention data: Rasch lookup table versus de novo stacked Rasch analysis using the Adult Strabismus-20 (AS-20). One hundred forty-seven subjects completed the AS-20 questionnaire prior to surgery and 6 weeks postoperatively. Subjects were classified 6 weeks postoperatively as "success," "partial success," or "failure" based on angle and diplopia status. Postoperative change in AS-20 scores was compared for all four AS-20 domains (self-perception, interactions, reading function, and general function) overall and by success status using two methods: (1) applying historical Rasch threshold measures from lookup tables and (2) performing a stacked de novo Rasch analysis. Change was assessed by analyzing effect size, improvement exceeding 95% limits of agreement (LOA), and score distributions. Effect sizes were similar for all AS-20 domains whether obtained from lookup tables or stacked analysis. Similar proportions exceeded 95% LOAs using lookup tables versus stacked analysis. Improvement in median score was observed for all AS-20 domains using lookup tables and stacked analysis ( P < 0.0001 for all comparisons). The Rasch-scored AS-20 is a responsive and valid instrument designed to measure strabismus-specific health-related quality of life. When analyzing pre- to postoperative change in AS-20 scores, Rasch lookup tables and de novo stacked Rasch analysis yield essentially the same results. We describe a practical application of lookup tables, allowing the clinician or researcher to score the Rasch-calibrated AS-20 questionnaire without specialized software.
Leske, David A.; Hatt, Sarah R.; Liebermann, Laura; Holmes, Jonathan M.
2016-01-01
Purpose We compare two methods of analysis for Rasch scoring pre- to postintervention data: Rasch lookup table versus de novo stacked Rasch analysis using the Adult Strabismus-20 (AS-20). Methods One hundred forty-seven subjects completed the AS-20 questionnaire prior to surgery and 6 weeks postoperatively. Subjects were classified 6 weeks postoperatively as “success,” “partial success,” or “failure” based on angle and diplopia status. Postoperative change in AS-20 scores was compared for all four AS-20 domains (self-perception, interactions, reading function, and general function) overall and by success status using two methods: (1) applying historical Rasch threshold measures from lookup tables and (2) performing a stacked de novo Rasch analysis. Change was assessed by analyzing effect size, improvement exceeding 95% limits of agreement (LOA), and score distributions. Results Effect sizes were similar for all AS-20 domains whether obtained from lookup tables or stacked analysis. Similar proportions exceeded 95% LOAs using lookup tables versus stacked analysis. Improvement in median score was observed for all AS-20 domains using lookup tables and stacked analysis (P < 0.0001 for all comparisons). Conclusions The Rasch-scored AS-20 is a responsive and valid instrument designed to measure strabismus-specific health-related quality of life. When analyzing pre- to postoperative change in AS-20 scores, Rasch lookup tables and de novo stacked Rasch analysis yield essentially the same results. Translational Relevance We describe a practical application of lookup tables, allowing the clinician or researcher to score the Rasch-calibrated AS-20 questionnaire without specialized software. PMID:26933524
Particle beam injection system
Jassby, Daniel L.; Kulsrud, Russell M.
1977-01-01
This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.
van der Waals Heterostructures with High Accuracy Rotational Alignment.
Kim, Kyounghwan; Yankowitz, Matthew; Fallahazad, Babak; Kang, Sangwoo; Movva, Hema C P; Huang, Shengqiang; Larentis, Stefano; Corbet, Chris M; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K; LeRoy, Brian J; Tutuc, Emanuel
2016-03-09
We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moiré pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructures separated by hexagonal boron-nitride dielectric.
Slip-stacking Dynamics for High-Power Proton Beams at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey Scott
Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles andmore » identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.« less
NASA Astrophysics Data System (ADS)
Zhu, Lu-Pei; Zeng, Rong-Sheng; Wu, Francis T.; Owens, Thomas J.; Randall, George E.
1993-05-01
As part of a joint Sino-U.S. research project to study the deep structure of the Tibetan Plateau, 11 broadband digital seismic recorders were deployed on the Plateau for one year of passive seismic recording. In this report we use teleseimic P waveforms to study the seismic velocity structure of crust and upper mantle under three stations by receiver function inversion. The receiver function is obtained by first rotating two horizontal components of seismic records into radial and tangential components and then deconvolving the vertical component from them. The receiver function depends only on the structure near the station because the source and path effects have been removed by the deconvolution. To suppress noise, receiver functions calculated from events clustered in a small range of back-azimuths and epicentral distances are stacked. Using a matrix formalism describing the propagation of elastic waves in laterally homogeneous stratified medium, a synthetic receiver function and differential receiver functions for the parameters in each layer can be calculated to establish a linearized inversion for one-dimensional velocity structure. Preliminary results of three stations, Wen-quan, Golmud and Xigatze (Coded as WNDO, TUNL and XIGA), located in central, northern and southern Plateau are given in this paper. The receiver functions of all three stations show clear P-S converted phases. The time delays of these converted phases relative to direct P arrivals are: WNDO 7.9s (for NE direction) and 8.3s (for SE direction), TUNL 8.2s, XIGA 9.0s. Such long time delays indicate the great thickness of crust under the Plateau. The differences between receiver function of these three station shows the tectonic difference between southern and north-central Plateau. The waveforms of the receiver functions for WNDO and TUNL are very simple, while the receiver function of XIGA has an additional midcrustal converted phase. The S wave velocity structures at these three stations are estimated from inversions of the receiver function. The crustal shear wave velocities at WNDO and TUNL are vertically homogeneous, with value between 3.5 3.6 km/s down to Moho. This value in the lower crust is lower than the normal value for the lower crust of continents, which is consistent with the observed strong Sn attenuation in this region. The velocity structure at XIGA shows a velocity discontinuity at depth of 20 km and high velocity value of 4.0 km/s in the midcrust between 20 30 km depth. Similar results are obtained from a DSS profile in southern Tibet. The velocity under XIGA decreases below a depth of 30 km, reaching the lowest value of 3.2 km/s between 50 55 km. depth. This may imply that the Indian crust underthrusts the low part of Tibetan crust in the southern Plateau, forming a “double crust”. The crustal thickness at each of these sites is: WNDO, 68 km; TUNL, 70 km; XI-GA, 80 km.
Conjugated π electron engineering of generalized stacking fault in graphene and h-BN.
Ouyang, Bin; Chen, Cheng; Song, J
2018-03-02
Generalized-stacking-fault energy (GSFE) serves as an important metric that prescribes dislocation behaviors in materials. In this paper, utilizing first-principle calculations and chemical bonding analysis, we studied the behaviors of generalized stacking fault in graphene and h-BN. It has been shown that the π bond formation plays a critical role in the existence of metastable stacking fault (MSF) in graphene and h-BN lattice along certain slip directions. Chemical functionalization was then proposed as an effective means to engineer the π bond, and subsequently MSF along dislocation slips within graphene and h-BN. Taking hydrogenation as a representative functionalization method, we demonstrated that, with the preferential adsorption of hydrogen along the slip line, π electrons along the slip would be saturated by adsorbed hydrogen atoms, leading to the moderation or elimination of MSF. Our study elucidates the atomic mechanism of MSF formation in graphene-like materials, and more generally, provides important insights towards predictive tuning of mechanic properties in two-dimensional nanomaterials.
Conjugated π electron engineering of generalized stacking fault in graphene and h-BN
NASA Astrophysics Data System (ADS)
Ouyang, Bin; Chen, Cheng; Song, J.
2018-03-01
Generalized-stacking-fault energy (GSFE) serves as an important metric that prescribes dislocation behaviors in materials. In this paper, utilizing first-principle calculations and chemical bonding analysis, we studied the behaviors of generalized stacking fault in graphene and h-BN. It has been shown that the π bond formation plays a critical role in the existence of metastable stacking fault (MSF) in graphene and h-BN lattice along certain slip directions. Chemical functionalization was then proposed as an effective means to engineer the π bond, and subsequently MSF along dislocation slips within graphene and h-BN. Taking hydrogenation as a representative functionalization method, we demonstrated that, with the preferential adsorption of hydrogen along the slip line, π electrons along the slip would be saturated by adsorbed hydrogen atoms, leading to the moderation or elimination of MSF. Our study elucidates the atomic mechanism of MSF formation in graphene-like materials, and more generally, provides important insights towards predictive tuning of mechanic properties in two-dimensional nanomaterials.
Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qin
Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less
Laser Doppler systems in pollution monitoring
NASA Technical Reports Server (NTRS)
Miller, C. R.; Sonnenschein, C. M.; Herget, W. F.; Huffaker, R. M.
1976-01-01
The paper reports on a program undertaken to determine the feasibility of using a laser Doppler velocimeter (LDV) to measure smoke-stack gas exit velocity, particulate concentration, and mass flow. Measurements made with a CO2 laser Doppler radar system at a coal-burning power plant are compared with in-stack measurements made by a pitot tube. The operational principles of a LDV are briefly described along with the system employed in the present study. Data discussed include typical Doppler spectra from smoke-stack effluents at various laser elevation angles, the measured velocity profile across the stack exit, and the LDV-measured exit velocity as a function of the exit velocity measured by the in-stack instrument. The in-stack velocity is found to be about 14% higher than the LDV velocity, but this discrepancy is regarded as a systematic error. In general, linear relationships are observed between the laser data, the exit velocity, and the particulate concentration. It is concluded that an LDV has the capability of determining both the mass concentration and the mass flow from a power-plant smoke stack.
Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes
Wu, Qin
2015-01-30
Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less
The mantle transition zone beneath Antarctica: Evidence for thermal upwellings and hydration
NASA Astrophysics Data System (ADS)
Nyblade, Andrew; Emry, Erica; Hansen, Samantha; Julia, Jordi; Anandakrishnan, Sridhar; Aster, Richard; Wiens, Douglas; Huerta, Audrey; Wilson, Terry
2015-04-01
West Antarctica has experienced abundant Cenozoic volcanism, and it is suspected that the region is influenced by upwelling thermal plumes from the lower mantle; however this has not yet been verified, because seismic tomography results are not well resolved at mantle transition zone (MTZ) depths. We use P-wave receiver functions (PRFs) from temporary and permanent arrays throughout Antarctica, including the Antarctic POLENET, TAMNET, TAMSEIS, and GAMSEIS arrays, to explore the characteristics of the MTZ beneath the continent. We obtained PRFs for earthquakes occurring at 30-90° with Mb>5.5 using a time-domain iterative deconvolution method filtered with a Gaussian-width of 0.5 and 1.0, corresponding to frequencies less than ~0.24 Hz and ~0.48 Hz, respectively. We combine P receiver functions as single-station and as common conversion point stacks and migrate them to depth using the ak135 1-d velocity model. Results from West Antarctica suggest that the thickness of the MTZ varies throughout the region with thinning beneath the Ruppert Coast of Marie Byrd Land and beneath the Bentley Subglacial Trench and Whitmore Mountains. Also, prominent negative peaks are detected above the transition zone beneath much of West Antarctica and may be evidence for water-induced partial melt above the MTZ. Preliminary results from single-station stacks for the mantle transition zone beneath East Antarctica suggests that one section of East Antarctica, off of the South Pole may have slightly thinned transition zone. Results are forthcoming from the mantle transition zone beneath Victoria Land and the Northern Transantarctics. We propose that the MTZ beneath parts of West Antarctica and possibly also beneath one region of East Antarctica, is hotter than average, possibly due to material upwelling from the lower mantle. Furthermore, we propose that the transition zone beneath much of West Antarctica is water-rich and that upward migration of hydrated material results in formation of a partial melt layer above the MTZ.
Crustal Structure beneath Alaska from Receiver Functions
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, A.
2017-12-01
The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.
From underplating to delamination-retreat in the northern Apennines
NASA Astrophysics Data System (ADS)
Chiarabba, C.; Giacomuzzi, G.; Bianchi, I.; Agostinetti, N. P.; Park, J.
2014-10-01
Recordings of teleseismic earthquakes from a dense set of temporary and permanent broadband seismic stations reveal the lithospheric structure of the northern Apennines and support the scenario of a retreating detachment within the mid-crust. Lithospheric delamination appears crucial to the formation and evolution of the Apennines orogen. Receiver-function (RF) stacks outline a continuous west-dipping Ps converted phase from a positive velocity jump that we interpret as the top of the lower crust and mantle of the Adria continental lithosphere, which is descending into the shallow mantle. The correlation of seismicity with two RF profiles across the northern Apennines suggests distinct stages of lithospheric delamination. Active penetration of the detachment into the Adria lithosphere seems evident in the south/east, with induced shallow-mantle flow facilitated by slab dehydration. Penetration of the detachment in the north/west seems to have arrested, and is possibly marked by crustal underplating. This layer atop the Apennines slab is visible only down to 80 km depth and suspends above an oppositely-dipping paired positive/negative Ps converted phase in stacked receiver functions. The break in the west-dipping Adria lithosphere conflicts with a westward-subduction scenario continuous from the Oligocene. Lateral changes of deep structure and seismicity along the northern Apennines suggest that underplating of crustal material and delamination-retreat are distinct mechanisms active today in the western and eastern sectors, respectively, of the northern Apennines. Negative Ps-pulses at 100-120 km depth help to define a seismic lithosphere-asthenosphere boundary (LAB), but cross-cut a volume of high-velocity mantle rock, as inferred from tomographic models. We hypothesize that this seismic LAB is a rheological discontinuity that affects the frequency band of seismic body waves, but not the long-term viscous response that governs the evolution and eventual detachment of the continental slab.
NASA Astrophysics Data System (ADS)
Song, J.; Liu, K. H.; Yu, Y.; Mickus, K. L.; Gao, S. S.
2017-12-01
The Williston Basin of the northcentral United States and southern Canada is a typical intracratonic sag basin, with nearly continuous subsidence from the Cambrian to the Jurassic. A number of contrasting models on the subsidence mechanism of this approximately circular basin have been proposed. While in principle 3D variations of crustal thickness, layering, and Poisson's ratio can provide essential constraints on the models, thick layers of Phanerozoic sediment with up to 4.5 km thickness prevented reliable determinations of those crustal properties using active or passive source seismic techniques. Specifically, the strong reverberations of teleseismic P-to-S converted waves (a.k.a. receiver functions or RFs) from the Moho and intracrustal interfaces in the loose sedimentary layer can severely contaminate the RFs. Here we use RFs recorded by about 200 USArray and other stations in the Williston Basin and adjacent areas to obtain spatial distributions of the crustal properties. We have found that virtually all of the RFs recorded by stations in the Basin contain strong reverberations, which are effectively removed using a recently developed deconvolution-based filter (Yu et al., 2015, DOI: 10.1002/2014JB011610). A "double Moho" structure is clearly imaged beneath the Basin. The top interface has a depth of about 40 km beneath the Basin, and shallows gradually toward the east from the depocenter. It joins with the Moho beneath the western margin of the Superior Craton, where the crust is about 30 km thick. The bottom interface has a depth of 55 km beneath the Wyoming Craton, and deepens to about 70 km beneath the depocenter. Based on preliminary results of H-k stacking and gravity modeling, we interpret the layer between the two interfaces as a high density, probably eclogized layer. Continuous eclogitization from the Cambrian to the Jurassic resulted in the previously observed rates of subsidence being nearly linear rather than exponential.
Effective work function engineering for a TiN/XO(X = La, Zr, Al)/SiO{sub 2} stack structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dongjin, E-mail: dongjin0710.lee@samsung.com; Lee, Jieun; Jung, Kyoungho
In this study, we demonstrated that work function engineering is possible over a wide range (+200 mV to −430 mV) in a TiN/XO (X = La, Zr, or Al)/SiO{sub 2} stack structures. From ab initio simulations, we selected the optimal material for the work function engineering. The work function engineering mechanism was described by metal diffusion into the TiN film and silicate formation in the TiN/SiO{sub 2} interface. The metal doping and the silicate formation were confirmed by transmission electron microscopy and energy dispersive spectroscopy line profiling, respectively. In addition, the amount of doped metal in the TiN film depended on the thickness ofmore » the insertion layer XO. From the work function engineering technique, which can control a variety of threshold voltages (Vth), an improvement in transistors with different V{sub th} values in the TiN/XO/SiO{sub 2} stack structures is expected.« less
The crustal thickness of Australia
Clitheroe, G.; Gudmundsson, O.; Kennett, B.L.N.
2000-01-01
We investigate the crustal structure of the Australian continent using the temporary broadband stations of the Skippy and Kimba projects and permanent broadband stations. We isolate near-receiver information, in the form of crustal P-to-S conversions, using the receiver function technique. Stacked receiver functions are inverted for S velocity structure using a Genetic Algorithm approach to Receiver Function Inversion (GARFI). From the resulting velocity models we are able to determine the Moho depth and to classify the width of the crust-mantle transition for 65 broadband stations. Using these results and 51 independent estimates of crustal thickness from refraction and reflection profiles, we present a new, improved, map of Moho depth for the Australian continent. The thinnest crust (25 km) occurs in the Archean Yilgarn Craton in Western Australia; the thickest crust (61 km) occurs in Proterozoic central Australia. The average crustal thickness is 38.8 km (standard deviation 6.2 km). Interpolation error estimates are made using kriging and fall into the range 2.5-7.0 km. We find generally good agreement between the depth to the seismologically defined Moho and xenolith-derived estimates of crustal thickness beneath northeastern Australia. However, beneath the Lachlan Fold Belt the estimates are not in agreement, and it is possible that the two techniques are mapping differing parts of a broad Moho transition zone. The Archean cratons of Western Australia appear to have remained largely stable since cratonization, reflected in only slight variation of Moho depth. The largely Proterozoic center of Australia shows relatively thicker crust overall as well as major Moho offsets. We see evidence of the margin of the contact between the Precambrian craton and the Tasman Orogen, referred to as the Tasman Line. Copyright 2000 by the American Geophysical Union.
X-band T/R switch with body-floating multi-gate PDSOI NMOS transistors
NASA Astrophysics Data System (ADS)
Park, Mingyo; Min, Byung-Wook
2018-03-01
This paper presents an X-band transmit/receive switch using multi-gate NMOS transistors in a silicon-on-insulator CMOS process. For low loss and high power handling capability, floating body multi-gate NMOS transistors are adopted instead of conventional stacked NMOS transistors, resulting in 53% reduction of transistor area. Comparing to the stacked NMOS transistors, the multi gate transistor shares the source and drain region between stacked transistors, resulting in reduced chip area and parasitics. The impedance between bodies of gates in multi-gate NMOS transistors is assumed to be very large during design and confirmed after measurement. The measured input 1 dB compression point is 34 dBm. The measured insertion losses of TX and RX modes are respectively 1.7 dB and 2.0 dB at 11 GHz, and the measured isolations of TX and RX modes are >27 dB and >20 dB in X-band, respectively. The chip size is 0.086 mm2 without pads, which is 25% smaller than the T/R switch with stacked transistors.
Receiver function structure beneath a broad-band seismic station in south Sumatra
NASA Astrophysics Data System (ADS)
MacPherson, K. A.; Hidayat, D.; Goh, S.
2010-12-01
We estimated the one-dimensional velocity structure beneath a broad-band station in south Sumatra by the forward modeling and inversion of receiver functions. Station PMBI belongs to the GEOFON seismic network maintained by GFZ-Potsdam, and at a longitude of 104.77° and latitude of -2.93°, sits atop the south Sumatran basin. This station is of interest to researchers at the Earth Observatory of Singapore, as data from it and other stations in Sumatra and Singapore will be incorporated into a regional velocity model for use in seismic hazard analyses. Three-component records from 193 events at teleseismic distances and Mw ≥ 5.0 were examined for this study and 67 records were deemed to have sufficient signal to noise characteristics to be retained for analysis. Observations are primarily from source zones in the Bougainville trench with back-azimuths to the east-south-east, the Japan and Kurile trenches with back-azimuths to the northeast, and a scattering of observations from other azimuths. Due to the level of noise present in even the higher-quality records, the usual frequency-domain deconvolution method of computing receiver functions was ineffective, and a time-domain iterative deconvolution was employed to obtain usable wave forms. Receiver functions with similar back-azimuths were stacked in order to improve their signal to noise ratios. The resulting wave forms are relatively complex, with significant energy being present in the tangential components, indicating heterogeneity in the underlying structure. A dip analysis was undertaken but no clear pattern was observed. However, it is apparent that polarities of the tangential components were generally reversed for records that sample the Sunda trench. Forward modeling of the receiver functions indicates the presence of a near-surface low-velocity layer (Vp≈1.9 km/s) and a Moho depth of ~31 km. Details of the crustal structure were investigated by employing time-domain inversions of the receiver functions. General features of those velocity models providing a good fit to the waveform include an approximately one kilometer thick near-surface low-velocity zone, a high-velocity layer over a velocity inversion at mid-crustal depths, and a crust-mantle transition at depths between 30 km and 34 km.
NASA Astrophysics Data System (ADS)
Liu, Y.-S.; Kuo, B.-Y.
2009-04-01
Taiwan is located in the convergent plate boundary zone where the Philippine Sea plate has obliquely collided on the Asian continental margin, initiating the arc-continent collision and subsequent mountain-building in Taiwan. Receiver function has been a powerful tool to image seismic velocity discontinuity structure in the crust and upper mantle which can help illuminate the deep dynamic process of active Taiwan orogeny. In this study, we adopt backprojection migration processing of teleseismic receiver functions to investigate the crust and upper mantle discontinuities beneath southern Taiwan, using the data from Southern Taiwan Transect Seismic Array (STTA), broadband stations of Central Weather Bureau (CWB), Broadband Array in Taiwan for Seismology (BATS), and Taiwan Integrated Geodynamics Research (TAIGER). This composite east-west trending linear array has the aperture of about 150 km with the station spacing of ~5-10 km. Superior to the common midpoint (CMP) stack approach, the migration can properly image the dipping, curved, or laterally-varying topography of discontinuous interfaces which very likely exist under the complicated tectonic setting of Taiwan. We first conduct synthetic experiments to test the depth and lateral resolution of migration images based on the WKBJ synthetic waveforms calculated from available source and receiver distributions. We will next construct the 2-D migration image under the array to reveal the topographic variation of the Moho and lithosphere discontinuities beneath southern Taiwan.
Veligdan, James T.
2001-01-01
An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.
Lighting system combining daylight concentrators and an artificial source
Bornstein, Jonathan G.; Friedman, Peter S.
1985-01-01
A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.
Lee, D S; Ahn, Y C; Eom, D W; Lee, S J
2016-10-01
Non-Hodgkin lymphoma involving the esophagus is very rare. Only a few cases have been reported in the English literature to date, and it accounts for less than 1% of all cases of gastrointestinal lymphoma. As this malignancy manifests as a submucosal tumor, pathological diagnosis by using a simple endoscopic biopsy alone is difficult. Therefore, surgical biopsy, endoscopic mucosal resection, and endoscopic ultrasound-guided fine-needle aspiration have been used in most cases. Herein, we report a case of esophageal mucosa-associated lymphoid tissue lymphoma in a 49-year-old man, which involved the use of a stacked forceps biopsy to obtain adequate samples for pathological analysis; the use of the stacked forceps biopsy method is unlike those used in previous cases. The patient received cyclophosphamide, vincristine, and prednisolone chemotherapy; he achieved a complete response. In addition, we review the literature relevant to this case. © 2015 International Society for Diseases of the Esophagus.
NASA Astrophysics Data System (ADS)
Mulibo, Gabriel D.; Nyblade, Andrew A.
2013-07-01
to S conversions from the 410 and 660 km discontinuities observed in receiver function stacks reveal a mantle transition zone that is ~30-40 km thinner than the global average in a region ~200-400 km wide extending in a SW-NE direction from central Zambia, across Tanzania and into Kenya. The thinning of the transition zone indicates a ~190-300 K thermal anomaly in the same location where seismic tomography models suggest that the lower mantle African superplume structure connects to thermally perturbed upper mantle beneath eastern Africa. This finding provides compelling evidence for the existence of a continuous thermal structure extending from the core-mantle boundary to the surface associated with the African superplume.
Theoretical study of electron transport along self-assembled graphitic nanowires
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Stafström, Sven
2000-11-01
Electron transport through stacks of polyaromatic hydrocarbons is studied theoretically using the Landauer formalism. The polyaromatic hydrocarbons can be synthesized in many different sizes and can form molecular stacks with a varying number of molecules and with a rather strong π-overlap along the stack. This allows for a large flexibility in the nanostructure of these materials and makes it possible to study the variation in the conductance with a number of different factors: a near-linear increase in the conductance as a function of the number of atoms in the individual molecule is observed. Furthermore, the conductance drops exponentially with the number of molecules in the stacks, from which it follows that an increase in the intermolecular hopping results in an increase in the conductance which is proportional to the intermolecular hopping to the power of 2(N-1), where N is the number of molecules in the stack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metz, Peter; Koch, Robert; Cladek, Bernadette
Ion-exchanged Aurivillius materials form perovskite nanosheet booklets wherein well-defined bi-periodic sheets, with ~11.5 Å thickness, exhibit extensive stacking disorder. The perovskite layer contents were defined initially using combined synchrotron X-ray and neutron Rietveld refinement of the parent Aurivillius structure. The structure of the subsequently ion-exchanged material, which is disordered in its stacking sequence, is analyzed using both pair distribution function (PDF) analysis and recursive method simulations of the scattered intensity. Combined X-ray and neutron PDF refinement of supercell stacking models demonstrates sensitivity of the PDF to both perpendicular and transverse stacking vector components. Further, hierarchical ensembles of stacking models weightedmore » by a standard normal distribution are demonstrated to improve PDF fit over 1–25 Å. Recursive method simulations of the X-ray scattering profile demonstrate agreement between the real space stacking analysis and more conventional reciprocal space methods. The local structure of the perovskite sheet is demonstrated to relax only slightly from the Aurivillius structure after ion exchange.« less
Structure of ice crystallized from supercooled water
Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.
2012-01-01
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652
Structure of ice crystallized from supercooled water.
Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G
2012-01-24
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.
Crustal structure of north Peru from analysis of teleseismic receiver functions
NASA Astrophysics Data System (ADS)
Condori, Cristobal; França, George S.; Tavera, Hernando J.; Albuquerque, Diogo F.; Bishop, Brandon T.; Beck, Susan L.
2017-07-01
In this study, we present results from teleseismic receiver functions, in order to investigate the crustal thickness and Vp/Vs ratio beneath northern Peru. A total number of 981 receiver functions were analyzed, from data recorded by 28 broadband seismic stations from the Peruvian permanent seismic network, the regional temporary SisNort network and one CTBTO station. The Moho depth and average crustal Vp/Vs ratio were determined at each station using the H-k stacking technique to identify the arrival times of primary P to S conversion and crustal reverberations (PpPms, PpSs + PsPms). The results show that the Moho depth correlates well with the surface topography and varies significantly from west to east, showing a shallow depth of around 25 km near the coast, a maximum depth of 55-60 km beneath the Andean Cordillera, and a depth of 35-40 km further to the east in the Amazonian Basin. The bulk crustal Vp/Vs ratio ranges between 1.60 and 1.88 with the mean of 1.75. Higher values between 1.75 and 1.88 are found beneath the Eastern and Western Cordilleras, consistent with a mafic composition in the lower crust. In contrast values vary from 1.60 to 1.75 in the extreme flanks of the Eastern and Western Cordillera indicating a felsic composition. We find a positive relationship between crustal thickness, Vp/Vs ratio, the Bouguer anomaly, and topography. These results are consistent with previous studies in other parts of Peru (central and southern regions) and provide the first crustal thickness estimates for the high cordillera in northern Peru.
Seismic Discontinuities beneath the Southwestern United States from S Receiver Functions
NASA Astrophysics Data System (ADS)
Akanbi, O. E.; Li, A.
2015-12-01
S- Receiver functions along the Colorado Plateau-Rio Grande Rift-Great Plains Transect known as La RISTRA in the southwestern United States have been utilized to map the Moho and lithosphere-asthenosphere boundary (LAB) beneath this tectonically active region. The receiver functions were stacked according to ray piercing points with moveout corrections in order to improve the signal-to-noise ratio of converted S-to-P phases. The Moho appears at 30-40 km beneath the Rio Grande Rift (RGR) and deepens to 35-45 km beneath the Great Plains (GP) and the Colorado Plateau (CP). A sharp discontinuity is observed along the profile with the average depth of 80 km beneath the RGR, 100 km beneath the GP, and 160 km beneath the CP. This discontinuity is consistent with the top of a low velocity zone in a shear wave model beneath the array and is interpreted as the LAB. Strong phases imaged at ~90 km beneath the CP and GP could be a combination of side-lobes of the Moho conversions and primary Sp phases from a mid-lithosphere discontinuity (MLD). The relatively shallow Moho and LAB beneath the Rio Grande Rift is indicative of lithosphere extension and asthenosphere upwarp. In addition, the LAB shows depth-step depressions at the RGR-CP and RGR-GP boundaries, providing evidence for mantle downwelling. The variation of the lithospheric depth across the RISTRA array supports that edge-driven, small-scale mantle convection is largely responsible for the recent extension and uplift in the Rio Grande Rift and the Colorado Plateau.
Variation in Crustal Structure of the Lesser Caucasus Region from Teleseismic Receiver Functions
NASA Astrophysics Data System (ADS)
Lin, C. M.; Tseng, T. L.; Huang, B. S.; Legendre, C. P.; Karakhanian, A.
2016-12-01
The Caucasus, including the mountains of Greater and Lesser Caucasus, is formed by the continental collision between Arabia and Eurasia. The crustal thickness for this region was mostly constrained by joint analysis of receiver functions and surface waves. Although the thickest value of 52 km was reported under the Lesser Caucasus, the resolution of earlier studies were often limited by sparse array. Large gradient across Moho also makes the definition of Moho difficult. Moreover, higher value of the Vp/Vs ratio is commonly reported in the northeastern Turkey but no estimates had been made for the Caucasus. To further investigate the detail structure around the Lesser Caucasus, we constructed a new seismic network in Georgia and Armenia. We also include other broadband stations to enhance the coverage. The average interval in the Lesser Caucasus is roughly 30 km, much denser than any previous experiments. We selected P-waveforms from teleseismic earthquakes during the operation (January 2012 - June 2016) to calculate receiver functions and then estimate the crustal thickness (H) and Vp/Vs ratio (k) with the H-k stacking technique. Our preliminary results show that Moho depth increases from 40 km under the northeastern Turkey to 50 km beneath northern Georgia, no station with Moho deeper than 50 km under the Lesser Caucasus. The Vp/Vs ratios in the northeastern Anatolian plateau are around 1.8, which is slightly higher than the average of global continents but consistent with the previous estimates. Further to the east, some stations show anomalously higher Vp/Vs ratio in central & southern Armenia that may be associated with Holocene volcanism. In the future, we plan to join locally measured dispersion curves to invert the velocity model without velocity-depth trade-off. We expect to resolve the velocity variations of the crust beneath this region in small scale that may be tied to the continental collision and surface volcanism. Keywords: Caucasus, receiver function, continental collision, volcanic plateau, crustal structure
Wang, Yixuan
2008-01-01
Self-stacking of four DNA bases, adenine (A), cytosine (C), guanine (G) and thymine (T), and their cross-stacking with (5,5) as well as (10,0) single walled carbon nanotubes (SWCNTs) were extensively investigated with a novel hybrid DFT method, MPWB1K/cc-pVDZ. The binding energies were further corrected with MP2/6-311++G(d,p) method in both gas phase and aqueous solution, where the solvent effects were included with conductor-like polarized continuum model (CPCM) model and UAHF radii. The strongest self-stacking of G and A takes displaced anti-parallel configuration, but un-displaced or “eclipsed” anti-parallel configuration is the most stable for C and T. In gas phase the self-stacking of nucleobases decreases in the sequence G>A>C>T, while because of quite different solvent effects their self-stacking in aqueous solution exhibits a distinct sequence A>G>T>C. For a given base, cross-stacking is stronger than self-stacking in both gas phase and aqueous solution. Binding energy for cross-stacking in gas phase varies as G>A>T>C for both (10,0) and (5,5) SWCNTs, and the binding of four nucleobases to (10,0) is slightly stronger than to (5,5) SWCNT by a range of 0.1–0.5 kcal/mol. The cross-stacking in aqueous solution varies differently from that gas phase: A>G>T>C for (10,0) SWCNT and G>A>T>C for (5,5) SWCNT. It is suggested that the ability of nucleobases to disperse SWCNT depends on relative strength (ΔΔEbinsol) of self-stacking and cross-stacking with SWCNT in aqueous solution. Of the four investigated nucleobases thymine (T) exhibits the highest (ΔΔEbinsol) which can well explain the experimental finding that T more efficiently functionalizes SWCNT than C and A. PMID:18946514
A Stack of Cards Rebuilt with Calculus
ERIC Educational Resources Information Center
Kazachkov, Alexander; Kireš, Marián
2017-01-01
Previous work covers building a tower from a stack of homogeneous rectangular plates, each with a maximum shift in displacement. We suggest using plates shaped as curvilinear triangles bounded by segments of power-law functions. The masses of the plates and the position of their center of mass are calculated and measured experimentally after…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesh, P.; Kim, Jeongnim; Park, Changwon
2014-11-03
In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less
High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene
Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng
2012-01-01
Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199
Development of a High Reliability Compact Air Independent PEMFC Power System
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Wynne, Bob
2013-01-01
Autonomous Underwater Vehicles (AUV's) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Historically, batteries have been employed in these applications, but the energy density and therefore mission duration are limited with current battery technologies. Vehicles with stored energy requirements greater than approximately 10 kWh have an alternate means to get long duration power. High efficiency Proton Exchange Membrane (PEM) fuel cell systems utilizing pure hydrogen and oxygen reactants show the potential for an order of magnitude energy density improvement over batteries as long as the subsystems are compact. One key aspect to achieving a compact and energy dense system is the design of the fuel cell balance of plant (BOP). Recent fuel cell work, initially focused on NASA applications requiring high reliability, has developed systems that can meet target power and energy densities. Passive flow through systems using ejector driven reactant (EDR) circulation have been developed to provide high reactant flow and water management within the stack, with minimal parasitic losses compared to blowers. The ejectors and recirculation loops, along with valves and other BOP instrumentation, have been incorporated within the stack end plate. In addition, components for water management and reactant conditioning have been incorporated within the stack to further minimize the BOP. These BOP systems are thermally and functionally integrated into the stack hardware and fit into the small volumes required for AUV and future NASA applications to maximize the volume available for reactants. These integrated systems provide a compact solution for the fuel cell BOP and maximize the efficiency and reliability of the system. Designs have been developed for multiple applications ranging from less than 1 kWe to 70 kWe. These systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.
NASA Technical Reports Server (NTRS)
Dost, Ernest F.; Ilcewicz, Larry B.; Avery, William B.; Coxon, Brian R.
1991-01-01
Residual strength of an impacted composite laminate is dependent on details of the damage state. Stacking sequence was varied to judge its effect on damage caused by low-velocity impact. This was done for quasi-isotropic layups of a toughened composite material. Experimental observations on changes in the impact damage state and postimpact compressive performance were presented for seven different laminate stacking sequences. The applicability and limitations of analysis compared to experimental results were also discussed. Postimpact compressive behavior was found to be a strong function of the laminate stacking sequence. This relationship was found to depend on thickness, stacking sequence, size, and location of sublaminates that comprise the impact damage state. The postimpact strength for specimens with a relatively symmetric distribution of damage through the laminate thickness was accurately predicted by models that accounted for sublaminate stability and in-plane stress redistribution. An asymmetric distribution of damage in some laminate stacking sequences tended to alter specimen stability. Geometrically nonlinear finite element analysis was used to predict this behavior.
Ab initio study of point defects near stacking faults in 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Jianqi; Liu, Bin; Zhang, Yanwen
Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less
Ab initio study of point defects near stacking faults in 3C-SiC
Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...
2016-07-02
Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less
Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting
2016-01-01
In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery. PMID:27763559
Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting
2016-10-18
In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery.
Schneebeli, Severin T; Kamenetska, Maria; Cheng, Zhanling; Skouta, Rachid; Friesner, Richard A; Venkataraman, Latha; Breslow, Ronald
2011-02-23
Understanding electron transport across π-π-stacked systems will help to answer fundamental questions about biochemical redox processes and benefit the design of new materials and molecular devices. Herein we employed the STM break-junction technique to measure the single-molecule conductance of multiple π-π-stacked aromatic rings. We studied electron transport through up to four stacked benzene rings held together in an eclipsed fashion via a paracyclophane scaffold. We found that the strained hydrocarbons studied herein couple directly to gold electrodes during the measurements; hence, we did not require any heteroatom binding groups as electrical contacts. Density functional theory-based calculations suggest that the gold atoms of the electrodes bind to two neighboring carbon atoms of the outermost cyclophane benzene rings in η(2) fashion. Our measurements show an exponential decay of the conductance with an increasing number of stacked benzene rings, indicating a nonresonant tunneling mechanism. Furthermore, STM tip-substrate displacement data provide additional evidence that the electrodes bind to the outermost benzene rings of the π-π-stacked molecular wires.
ERIC Educational Resources Information Center
Young, Chase; Durham, Patricia; Rosenbaum-Martinez, Crystal
2018-01-01
Fifty 2nd- and 3rd-grade students identified as experiencing difficulty reading were randomly assigned to experimental and control groups. In the experimental group, students received a reading intervention called Read Two Impress for a total of 360 min. Students in the control continued to receive regular instruction from their teacher. A 2 × 3…
Charliecloud: Unprivileged containers for user-defined software stacks in HPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priedhorsky, Reid; Randles, Timothy C.
Supercomputing centers are seeing increasing demand for user-defined software stacks (UDSS), instead of or in addition to the stack provided by the center. These UDSS support user needs such as complex dependencies or build requirements, externally required configurations, portability, and consistency. The challenge for centers is to provide these services in a usable manner while minimizing the risks: security, support burden, missing functionality, and performance. We present Charliecloud, which uses the Linux user and mount namespaces to run industry-standard Docker containers with no privileged operations or daemons on center resources. Our simple approach avoids most security risks while maintaining accessmore » to the performance and functionality already on offer, doing so in less than 500 lines of code. Charliecloud promises to bring an industry-standard UDSS user workflow to existing, minimally altered HPC resources.« less
NASA Astrophysics Data System (ADS)
Tripathi, Shweta
2016-10-01
In the present work, a two-dimensional (2D) analytical framework of triple material symmetrical gate stack (TMGS) DG-MOSFET is presented in order to subdue the short channel effects. A lightly doped channel along with triple material gate having different work functions and symmetrical gate stack structure, showcases substantial betterment in quashing short channel effects to a good extent. The device functioning amends in terms of improved exemption to threshold voltage roll-off, thereby suppressing the short channel effects. The encroachments of respective device arguments on the threshold voltage of the proposed structure are examined in detail. The significant outcomes are compared with the numerical simulation data obtained by using 2D ATLAS™ device simulator to affirm and formalize the proposed device structure.
Light Redirective Display Panel And A Method Of Making A Light Redirective Display Panel
Veligdan, James T.
2005-07-26
An optical display panel which provides improved light intensity at a viewing angle by redirecting light emitting from the viewing screen, and a method of making a light redirective display panel, are disclosed. The panel includes an inlet face at one end for receiving light, and an outlet screen at an opposite end for displaying the light. The inlet face is defined at one end of a transparent body, which body may be formed by a plurality of waveguides, and the outlet screen is defined at an opposite end of the body. The screen includes light redirective elements at the outlet screen for re-directing light emitting from the outlet screen. The method includes stacking a plurality of glass sheets, with a layer of adhesive or epoxy between each sheet, curing the adhesive to form a stack, placing the stack against a saw and cutting the stack at two opposite ends to form a wedge-shaped panel having an inlet face and an outlet face, and forming at the outlet face a plurality of light redirective elements which direct light incident on the outlet face into a controlled light cone.
Light redirective display panel and a method of making a light redirective display panel
Veligdan, James T.
2002-01-01
An optical display panel which provides improved light intensity at a viewing angle by redirecting light emitting from the viewing screen, and a method of making a light redirective display panel, are disclosed. The panel includes an inlet face at one end for receiving light, and an outlet screen at an opposite end for displaying the light. The inlet face is defined at one end of a transparent body, which body may be formed by a plurality of waveguides, and the outlet screen is defined at an opposite end of the body. The screen includes light redirective elements at the outlet screen for re-directing light emitting from the outlet screen. The method includes stacking a plurality of glass sheets, with a layer of adhesive or epoxy between each sheet, curing the adhesive to form a stack, placing the stack against a saw and cutting the stack at two opposite ends to form a wedge-shaped panel having an inlet face and an outlet face, and forming at the outlet face a plurality of light redirective elements which direct light incident on the outlet face into a controlled light cone.
Receiver function analysis applied to refraction survey data
NASA Astrophysics Data System (ADS)
Subaru, T.; Kyosuke, O.; Hitoshi, M.
2008-12-01
For the estimation of the thickness of oceanic crust or petrophysical investigation of subsurface material, refraction or reflection seismic exploration is one of the methods frequently practiced. These explorations use four-component (x,y,z component of acceleration and pressure) seismometer, but only compressional wave or vertical component of seismometers tends to be used in the analyses. Hence, it is needed to use shear wave or lateral component of seismograms for more precise investigation to estimate the thickness of oceanic crust. Receiver function is a function at a place that can be used to estimate the depth of velocity interfaces by receiving waves from teleseismic signal including shear wave. Receiver function analysis uses both vertical and horizontal components of seismograms and deconvolves the horizontal with the vertical to estimate the spectral difference of P-S converted waves arriving after the direct P wave. Once the phase information of the receiver function is obtained, then one can estimate the depth of the velocity interface. This analysis has advantage in the estimation of the depth of velocity interface including Mohorovicic discontinuity using two components of seismograms when P-to-S converted waves are generated at the interface. Our study presents results of the preliminary study using synthetic seismograms. First, we use three types of geological models that are composed of a single sediment layer, a crust layer, and a sloped Moho, respectively, for underground sources. The receiver function can estimate the depth and shape of Moho interface precisely for the three models. Second, We applied this method to synthetic refraction survey data generated not by earthquakes but by artificial sources on the ground or sea surface. Compressional seismic waves propagate under the velocity interface and radiate converted shear waves as well as at the other deep underground layer interfaces. However, the receiver function analysis applied to the second model cannot clearly estimate the velocity interface behind S-P converted wave or multi-reflected waves in a sediment layer. One of the causes is that the incidence angles of upcoming waves are too large compared to the underground source model due to the slanted interface. As a result, incident converted shear waves have non-negligible energy contaminating the vertical component of seismometers. Therefore, recorded refraction waves need to be transformed from depth-lateral coordinate into radial-tangential coordinate, and then Ps converted waves can be observed clearly. Finally, we applied the receiver function analysis to a more realistic model. This model has not only similar sloping Mohorovicic discontinuity and surface source locations as second model but the surface water layer. Receivers are aligned on the sea bottom (OBS; Ocean Bottom Seismometer survey case) Due to intricately bounced reflections, simulated seismic section becomes more complex than the other previously-mentioned models. In spite of the complexity in the seismic records, we could pick up the refraction waves from Moho interface, after stacking more than 20 receiver functions independently produced from each shot gather. After these processing, the receiver function analysis is justified as a method to estimate the depths of velocity interfaces and would be the applicable method for refraction wave analysis. The further study will be conducted for more realistic model that contain inhomogeneous sediment model, for example, and finally used in the inversion of the depth of velocity interfaces like Moho.
NASA Astrophysics Data System (ADS)
Steck, L.; Maceira, M.; Ammon, C. J.; Herrmann, R. B.
2013-12-01
Joint inversion of multiple datasets should produce more realistic images of Earth structure. Here we simultaneously invert surface wave dispersion, receiver functions, and gravity to determine structure of the crust and upper mantle of the western United States. Our target region is comprised of a one-degree grid that spans latitudes from 30 to 50 degrees North and longitudes from 95 to 125 degrees West. Receiver functions come from the Earthscope Automated Receiver system, and are stacked to produce an average model for each cell. Rayleigh and Love dispersion data come from multiple filter analysis of regional earthquakes, while the gravity observations are extracted from the EGM2008 model. Our starting model is comprised of an oceanic PREM model west of the Pacific coast, a western US model between that and the eastern front of the Rocky Mountains, and a continental PREM model east of the Rocky Mountain Front. Several different velocity/density relationships have been tested and all result in very similar models. Our inversion reduces RMS surface wave residuals by 58% and receiver function misfits by about 18%. Gravity residuals are reduced by more than 90%. While the reduction in residuals for receiver functions is not as profound as for surface waves or gravity, they are meaningful and produce sharper boundaries for the observed crustal anomalies. The addition of gravity produces subtle changes to the final model. Our final results are consistent with numerous previous studies in the region. In general, the craton exhibits higher velocities than the tectonically active regions to its west. We see high mid-crustal velocities under the Snake River Plain and the Colorado Plateau. In the lower crust we observe lowest velocities in the western Basin and Range and under the Colorado Mineral Belt. At 80km depth we see broad low velocities fanning out from the Snake River Plain associated with the mantle plume feeding Yellowstone Caldera. Additionally we see high and low velocity anomalies along the west coast that reflect ongoing subduction processes beneath the western US, including the subducting slab and slab window.
340 Ghz Multipixel Transceiver
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam (Inventor); Cooper, Ken B. (Inventor); Decrossas, Emmanuel (Inventor); Gill, John J. (Inventor); Jung-Kubiak, Cecile (Inventor); Lee, Choonsup (Inventor); Lin, Robert (Inventor); Mehdi, Imran (Inventor); Peralta, Alejandro (Inventor); Reck, Theodore (Inventor)
2017-01-01
A multi-pixel terahertz transceiver is constructed using a stack of semiconductor layers that communicate using vias defined within the semiconductor layers. By using a stack of semiconductor layers, the various electrical functions of each layer can be tested easily without having to assemble the entire transceiver. In addition, the design allows the production of a transceiver having pixels set 10 mm apart.
Stacking interactions and DNA intercalation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dr. Shen; Cooper, Valentino R; Thonhauser, Prof. Timo
2009-01-01
The relationship between stacking interactions and the intercalation of proflavine and ellipticine within DNA is investigated using a nonempirical van der Waals density functional for the correlation energy. Our results, employing a binary stack model, highlight fundamental, qualitative differences between base-pair base-pair interactions and that of the stacked intercalator base pair system. Most notable result is the paucity of torque which so distinctively defines the Twist of DNA. Surprisingly, this model, when combined with a constraint on the twist of the surrounding base-pair steps to match the observed unwinding of the sugar-phosphate backbone, was sufficient for explaining the experimentally observedmore » proflavine intercalator configuration. Our extensive mapping of the potential energy surface of base-pair intercalator interactions can provide valuable information for future nonempirical studies of DNA intercalation dynamics.« less
Park, Changwon; Ryou, Junga; Hong, Suklyun; ...
2015-07-02
Bilayer graphene (BLG) with a tunable band gap appears interesting as an alternative to graphene for practical applications; thus, its transport properties are being actively pursued. Using density functional theory and perturbation analysis, we investigated, under an external electric field, the electronic properties of BLG in various stackings relevant to recently observed complex structures. We established the first phase diagram summarizing the stacking-dependent gap openings of BLG for a given field. Lastly, we further identified high-density midgap states, localized on grain boundaries, even under a strong field, which can considerably reduce the overall transport gap.
Perumal, Packiyaraj; Karuppiah, Chelladurai; Liao, Wei-Cheng; Liou, Yi-Rou; Liao, Yu-Ming; Chen, Yang-Fang
2017-08-30
Integrating different dimentional materials on vertically stacked p-n hetero-junctions have facinated a considerable scrunity and can open up excellent feasibility with various functionalities in opto-electronic devices. Here, we demonstrate that vertically stacked p-GaN/SiO 2 /n-MoS 2 /Graphene heterostructures enable to exhibit prominent dual opto-electronic characteristics, including efficient photo-detection and light emission, which represents the emergence of a new class of devices. The photoresponsivity was found to achieve as high as ~10.4 AW -1 and the detectivity and external quantum efficiency were estimated to be 1.1 × 10 10 Jones and ~30%, respectively. These values are superier than most reported hererojunction devices. In addition, this device exhibits as a self-powered photodetector, showing a high responsivity and fast response speed. Moreover, the device demonstrates the light emission with low turn-on voltage (~1.0 V) which can be realized by electron injection from graphene electrode and holes from GaN film into monolayer MoS 2 layer. These results indicate that with a suitable choice of band alignment, the vertical stacking of materials with different dimentionalities could be significant potential for integration of highly efficient heterostructures and open up feasible pathways towards integrated nanoscale multi-functional optoelectronic devices for a variety of applications.
NASA Astrophysics Data System (ADS)
Bialas, David; Zitzler-Kunkel, André; Kirchner, Eva; Schmidt, David; Würthner, Frank
2016-09-01
Exciton coupling is of fundamental importance and determines functional properties of organic dyes in (opto-)electronic and photovoltaic devices. Here we show that strong exciton coupling is not limited to the situation of equal chromophores as often assumed. Quadruple dye stacks were obtained from two bis(merocyanine) dyes with same or different chromophores, respectively, which dimerize in less-polar solvents resulting in the respective homo- and heteroaggregates. The structures of the quadruple dye stacks were assigned by NMR techniques and unambiguously confirmed by single-crystal X-ray analysis. The heteroaggregate stack formed from the bis(merocyanine) bearing two different chromophores exhibits remarkably different ultraviolet/vis absorption bands compared with those of the homoaggregate of the bis(merocyanine) comprising two identical chromophores. Quantum chemical analysis based on an extension of Kasha's exciton theory appropriately describes the absorption properties of both types of stacks revealing strong exciton coupling also between different chromophores within the heteroaggregate.
New Crustal Thickness for Djibouti, Afar, Using Seismic Techniques
NASA Astrophysics Data System (ADS)
Dugda, Mulugeta; Bililign, Solomon
2008-10-01
Crustal thickness and Poisson's ratio for the seismic station ATD in Djibouti, Afar, has been investigated using two seismic techniques (H-κ stacking of receiver functions and a joint inversion of receiver functions and surface wave group velocities). Both techniques give consistent results of crustal thickness 23±1.5 km and Poisson's ratio 0.31±0.02. We also determined a mean P-wave velocity (Vp) of ˜6.2 km/s but ˜6.9-7.0 km/s below a 2 - 5 km thick low velocity layer at the surface. Previous studies of crustal structure for Djibouti reported that the crust is 6 to 11 km thick while our study shows that the crust beneath Djibouti is between 20 and 25 km. This study argues that the crustal thickness values reported for Djibouti for the last 3 decades were not consistent with the reports for the other neighboring region in central and eastern Afar. Our results for ATD in Djibouti, however, are consistent with the reports of crustal thickness in many other parts of central and eastern Afar. We attribute this difference to how the Moho (the crust-mantle discontinuity) is defined (an increase of Vp to 7.4 km/s in this study vs. 6.9 km/s in previous studies).
NASA Astrophysics Data System (ADS)
Ruan, Aiguo; Hu, Hao; Li, Jiabiao; Niu, Xiongwei; Wei, Xiaodong; Zhang, Jie; Wang, Aoxing
2017-06-01
As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8'E) close to a hydrothermal vent (49°39'E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at 9.0 km is the bottom of a layer (2-3 km thick); the Moho (at depth of 6-7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by 15 km, the 660 discontinuity is elevated by 18 km, and a positive thermal anomaly between 182 and 237 K is inferred.
Performance model of a recirculating stack nickel hydrogen cell
NASA Technical Reports Server (NTRS)
Zimmerman, Albert H.
1994-01-01
A theoretical model of the nickel hydrogen battery cell has been utilized to describe the chemical and physical changes during charge and overcharge in a recirculating stack nickel hydrogen cell. In particular, the movement of gas and electrolyte have been examined as a function of the amount of electrolyte put into the cell stack during cell activation, and as a function of flooding in regions of the gas screen in this cell design. Additionally, a two-dimensional variation on this model has been utilized to describe the effects of non-uniform loading in the nickel-electrode on the movement of gas and electrolyte within the recirculating stack nickel hydrogen cell. The type of nonuniform loading that has been examined here is that associated with higher than average loading near the surface of the sintered nickel electrode, a condition present to some degree in many nickel electrodes made by electrochemical impregnation methods. The effects of high surface loading were examined primarily under conditions of overcharge, since the movement of gas and electrolyte in the overcharging condition was typically where the greatest effects of non-uniform loading were found. The results indicate that significant changes in the capillary forces between cell components occur as the percentage of free volume in the stack filled by electrolyte becomes very high. These changes create large gradients in gas-filled space and oxygen concentrations near the boundary between the separator and the hydrogen electrode when the electrolyte fill is much greater than about 95 percent of the stack free volume. At lower electrolyte fill levels, these gaseous and electrolyte gradients become less extreme, and shift through the separator towards the nickel electrode. Similarly, flooding of areas in the gas screen cause higher concentrations of oxygen gas to approach the platinum/hydrogen electrode that is opposite the back side of the nickel electrode. These results illustrate the need for appropriate pore size distributions, and the maintenance of both convective electrolyte and gas flow paths through the stack, if the recirculating stack nickel hydrogen cell design is to work properly.
Highly Conductive and Transparent Large-Area Bilayer Graphene Realized by MoCl5 Intercalation.
Kinoshita, Hiroki; Jeon, Il; Maruyama, Mina; Kawahara, Kenji; Terao, Yuri; Ding, Dong; Matsumoto, Rika; Matsuo, Yutaka; Okada, Susumu; Ago, Hiroki
2017-11-01
Bilayer graphene (BLG) comprises a 2D nanospace sandwiched by two parallel graphene sheets that can be used to intercalate molecules or ions for attaining novel functionalities. However, intercalation is mostly demonstrated with small, exfoliated graphene flakes. This study demonstrates intercalation of molybdenum chloride (MoCl 5 ) into a large-area, uniform BLG sheet, which is grown by chemical vapor deposition (CVD). This study reveals that the degree of MoCl 5 intercalation strongly depends on the stacking order of the graphene; twist-stacked graphene shows a much higher degree of intercalation than AB-stacked. Density functional theory calculations suggest that weak interlayer coupling in the twist-stacked graphene contributes to the effective intercalation. By selectively synthesizing twist-rich BLG films through control of the CVD conditions, low sheet resistance (83 Ω ▫ -1 ) is realized after MoCl 5 intercalation, while maintaining high optical transmittance (≈95%). The low sheet resistance state is relatively stable in air for more than three months. Furthermore, the intercalated BLG film is applied to organic solar cells, realizing a high power conversion efficiency. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dirac electrons in Moiré superlattice: From two to three dimensions
NASA Astrophysics Data System (ADS)
Hu, Chen; Michaud-Rioux, Vincent; Kong, Xianghua; Guo, Hong
2017-11-01
Moiré patterns in van der Waals (vdW) heterostructures bring novel physical effects to the materials. We report theoretical investigations of the Moiré pattern formed by graphene (Gr) on hexagonal boron nitride (h BN). For both the two-dimensional (2D) flat-sheet and the freestanding three-dimensional (3D) wavelike film geometries, the behaviors of Dirac electrons are strongly modulated by the local high-symmetry stacking configurations of the Moiré pattern. In the 2D flat sheet, the secondary Dirac cone (SDC) dispersion emerges due to the stacking-selected localization of SDC wave functions, while the original Dirac cone (ODC) gap is suppressed due to an overall effect of ODC wave functions. In the freestanding 3D wavelike Moiré structure, we predict that a specific local stacking in the Moiré superlattice is promoted at the expense of other local stackings, leading to an electronic structure more similar to that of the perfectly matching flat Gr/h BN than that of the flat-sheet 2D Moiré pattern. To capture the overall picture of the Moiré superlattice, supercells containing 12 322 atoms are simulated by first principles.
A comparative density functional study on electrical properties of layered penta-graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhi Gen, E-mail: yuzg@ihpc.a-star.edu.sg; Zhang, Yong-Wei, E-mail: zhangyw@ihpc.a-star.edu.sg
We present a comparative study of the influence of the number of layers, the biaxial strain in the range of −3% to 3%, and the stacking misalignments on the electronic properties of a new 2D carbon allotrope, penta-graphene (PG), based on hybrid-functional method within the density functional theory (DFT). In comparison with local exchange-correlation approximation in the DFT, the hybrid-functional provides an accurate description on the degree of p{sub z} orbitals localization and bandgap. Importantly, the predicted bandgap of few-layer PG has a weak layer dependence. The bandgap of monolayer PG is 3.27 eV, approximately equal to those of GaN andmore » ZnO; and the bandgap of few-layer PG decreases slowly with the number of layers (N) and converge to 2.57 eV when N ≥ 4. Our calculations using HSE06 functional on few-layer PG reveal that bandgap engineering by stacking misalignment can further tune the bandgap down to 1.37 eV. Importantly, there is no direct-to-indirect bandgap transition in PG by varying strain, layer number, and stacking misalignment. Owing to its tunable, robustly direct, and wide bandgap characteristics, few-layer PG is promising for optoelectronic and photovoltaic applications.« less
Stacking of purines in water: the role of dipolar interactions in caffeine.
Tavagnacco, L; Di Fonzo, S; D'Amico, F; Masciovecchio, C; Brady, J W; Cesàro, A
2016-05-11
During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.
Prins, Pjotr; Goto, Naohisa; Yates, Andrew; Gautier, Laurent; Willis, Scooter; Fields, Christopher; Katayama, Toshiaki
2012-01-01
Open-source software (OSS) encourages computer programmers to reuse software components written by others. In evolutionary bioinformatics, OSS comes in a broad range of programming languages, including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times for different languages, it is possible to share components by bridging computer languages and Bio* projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor. In this chapter, we compare the two principal approaches for sharing software between different programming languages: either by remote procedure call (RPC) or by sharing a local call stack. RPC provides a language-independent protocol over a network interface; examples are RSOAP and Rserve. The local call stack provides a between-language mapping not over the network interface, but directly in computer memory; examples are R bindings, RPy, and languages sharing the Java Virtual Machine stack. This functionality provides strategies for sharing of software between Bio* projects, which can be exploited more often. Here, we present cross-language examples for sequence translation, and measure throughput of the different options. We compare calling into R through native R, RSOAP, Rserve, and RPy interfaces, with the performance of native BioPerl, Biopython, BioJava, and BioRuby implementations, and with call stack bindings to BioJava and the European Molecular Biology Open Software Suite. In general, call stack approaches outperform native Bio* implementations and these, in turn, outperform RPC-based approaches. To test and compare strategies, we provide a downloadable BioNode image with all examples, tools, and libraries included. The BioNode image can be run on VirtualBox-supported operating systems, including Windows, OSX, and Linux.
NASA Astrophysics Data System (ADS)
ShuXiang, Zhang; Hong, Yang; Bo, Tang; Zhaoyun, Tang; Yefeng, Xu; Jing, Xu; Jiang, Yan
2014-10-01
ALD HfO2 films fabricated by a novel multi deposition multi annealing (MDMA) technique are investigated, we have included samples both with and without a Ti scavenging layer. As compared to the reference gate stack treated by conventional one-time deposition and annealing (D&A), devices receiving MDMA show a significant reduction in leakage current. Meanwhile, EOT growth is effectively controlled by the Ti scavenging layer. This improvement strongly correlates with the cycle number of D&A (while keeping the total annealing time and total dielectrics thickness the same). Transmission electron microscope and energy-dispersive X-ray spectroscopy analysis suggests that oxygen incorporation into both the high-k film and the interfacial layer is likely to be responsible for the improvement of the device. This novel MDMA is promising for the development of gate stack technology in a gate last integration scheme.
Characterization of diode-laser stacks for high-energy-class solid state lasers
NASA Astrophysics Data System (ADS)
Pilar, Jan; Sikocinski, Pawel; Pranowicz, Alina; Divoky, Martin; Crump, P.; Staske, R.; Lucianetti, Antonio; Mocek, Tomas
2014-03-01
In this work, we present a comparative study of high power diode stacks produced by world's leading manufacturers such as DILAS, Jenoptik, and Quantel. The diode-laser stacks are characterized by central wavelength around 939 nm, duty cycle of 1 %, and maximum repetition rate of 10 Hz. The characterization includes peak power, electrical-to-optical efficiency, central wavelength and full width at half maximum (FWHM) as a function of diode current and cooling temperature. A cross-check of measurements performed at HiLASE-IoP and Ferdinand-Braun-Institut (FBH) shows very good agreement between the results. Our study reveals also the presence of discontinuities in the spectra of two diode stacks. We consider the results presented here a valuable tool to optimize pump sources for ultra-high average power lasers, including laser fusion facilities.
Improvement in trapped fields by stacking bulk superconductors
NASA Astrophysics Data System (ADS)
Suzuki, A.; Wongsatanawarid, A.; Seki, H.; Murakami, M.
2009-10-01
We studied the effects of stacking several bulk superconductor blocks on the field trapping properties. In order to avoid the detrimental effects of the bottom deteriorated parts, bulk Dy-Ba-Cu-O superconductors 45 mm in diameter and 10 mm in thickness were cut from the top parts of as-grown bulk blocks of 25 mm diameter. We stacked the superconductors and measured the field distribution as a function of the gap. The trapped field measurements were performed by field-cooling the samples inserted in between two permanent magnets with liquid nitrogen. It was found that the trapped field values are almost doubled when the number of stacked bulk superconductors increased from two to three. The present results clearly show that one can expect beneficial effects of increasing the ratio of the height to the diameter even in bulk high temperature superconductors.
NASA Astrophysics Data System (ADS)
Christian Stanciu, A.; Russo, Raymond M.; Mocanu, Victor I.; Bremner, Paul M.; Hongsresawat, Sutatcha; Torpey, Megan E.; VanDecar, John C.; Foster, David A.; Hole, John A.
2016-07-01
We present new images of lithospheric structure obtained from P-to-S conversions defined by receiver functions at the 85 broadband seismic stations of the EarthScope IDaho-ORegon experiment. We resolve the crustal thickness beneath the Blue Mountains province and the former western margin of cratonic North America, the geometry of the western Idaho shear zone (WISZ), and the boundary between the Grouse Creek and Farmington provinces. We calculated P-to-S receiver functions using the iterative time domain deconvolution method, and we used the H-k grid search method and common conversion point stacking to image the lithospheric structure. Moho depths beneath the Blue Mountains terranes range from 24 to 34 km, whereas the crust is 32-40 km thick beneath the Idaho batholith and the regions of extended crust of east-central Idaho. The Blue Mountains group Olds Ferry terrane is characterized by the thinnest crust in the study area, 24 km thick. There is a clear break in the continuity of the Moho across the WISZ, with depths increasing from 28 km west of the shear zone to 36 km just east of its surface expression. The presence of a strong midcrustal converting interface at 18 km depth beneath the Idaho batholith extending 20 km east of the WISZ indicates tectonic wedging in this region. A north striking 7 km offset in Moho depth, thinning to the east, is present beneath the Lost River Range and Pahsimeroi Valley; we identify this sharp offset as the boundary that juxtaposes the Archean Grouse Creek block with the Paleoproterozoic Farmington zone.
NASA Astrophysics Data System (ADS)
Nyblade, A.; Emry, E.; Juliá, J.; Anandakrishnan, S.; Aster, R. C.; Wiens, D. A.; Huerta, A. D.; Wilson, T. J.
2014-12-01
West Antarctica has experienced abundant Cenozoic volcanism, and it is suspected that the region is influenced by upwelling thermal plumes from the lower mantle; however this has not yet been verified, because seismic tomography results are not well resolved at mantle transition zone (MTZ) depths. We use P-wave receiver functions (PRFs) from the 2007-2013 Antarctic POLENET array to explore the characteristics of the MTZ throughout Marie Byrd Land and the West Antarctic Rift System. We obtained over 8000 high-quality PRFs for earthquakes occurring at 30-90° with Mb>5.5 using a time-domain iterative deconvolution method filtered with a Gaussian-width of 0.5 and 1.0, corresponding to frequencies less than ~0.24 Hz and ~0.48 Hz, respectively. We stack P receiver functions as single-station and by common conversion point and migrate them to depth using the ak135 1-d velocity model. Results suggest that the thickness of the MTZ varies throughout the region with thinning beneath the Ruppert Coast of Marie Byrd Land and beneath the Bentley Subglacial Trench and Whitmore Mountains. We identify the 520' discontinuity throughout much of West Antarctica; the discontinuity is most prominent beneath the Bentley Subglacial Trench and Whitmore Mountains. Additionally, prominent negative peaks are detected above the transition zone beneath much of West Antarctica and may be evidence for water-induced partial melt above the MTZ. We propose that the MTZ beneath West Antarctica is hotter than average in some regions, possibly due to material upwelling from the lower mantle. Furthermore, we propose that the transition zone is water-rich and that upward migration of hydrated material results in formation of a partial melt layer above the MTZ.
Moho Depth and Bulk Crustal Properties in Northern Quebec and Labrador
NASA Astrophysics Data System (ADS)
Vervaet, F.; Darbyshire, F. A.
2016-12-01
Northern Quebec and Labrador lie at the heart of the Laurentian landmass and preserve over 3 billion years of continental evolution. In this region the Archean Superior and Nain cratons are surrounded by Paleoproterozoic orogens such as New-Quebec, Trans-Hudson and Torngat, as well as the younger Grenville orogen to the SE. Study of crustal structure in this region provides valuable information on the assembly of the North American continent. We use data from 8 seismic stations installed in summer 2011 as part of the QUiLLE (Quebec-Labrador Lithospheric Experiment) project to investigate crustal structure, using receiver function analysis. The data set covers 5 years (2011-2016) for most of the stations, comprising several hundred events of magnitude ≥5 and epicentral distance 30-90°. After initial data processing and quality control, several tens of events per station were used in an H-κ stacking analysis to estimate Moho depth and bulk crustal properties. Some stations show significant complexity in their receiver functions, leading to inconclusive H-κ results, but the majority show a consistent Moho signal from which crustal parameters are successfully extracted. Crustal thickness varies from 33 to 49 km, with the thickest crust associated with the Trans-Hudson orogen in the Ungava region of northernmost Quebec and the thinnest beneath the central Labrador coast. Vp/Vs ratios (κ) lie in the range 1.71-1.86, with the majority of values consistent with granite-gneiss-tonalite bulk crustal compositions. The receiver functions are combined with surface-wave group velocity data to model the crustal structures in more detail beneath each station, allowing us to investigate crustal layering, Moho complexity and lateral heterogeneity.
Clustering P-Wave Receiver Functions To Constrain Subsurface Seismic Structure
NASA Astrophysics Data System (ADS)
Chai, C.; Larmat, C. S.; Maceira, M.; Ammon, C. J.; He, R.; Zhang, H.
2017-12-01
The acquisition of high-quality data from permanent and temporary dense seismic networks provides the opportunity to apply statistical and machine learning techniques to a broad range of geophysical observations. Lekic and Romanowicz (2011) used clustering analysis on tomographic velocity models of the western United States to perform tectonic regionalization and the velocity-profile clusters agree well with known geomorphic provinces. A complementary and somewhat less restrictive approach is to apply cluster analysis directly to geophysical observations. In this presentation, we apply clustering analysis to teleseismic P-wave receiver functions (RFs) continuing efforts of Larmat et al. (2015) and Maceira et al. (2015). These earlier studies validated the approach with surface waves and stacked EARS RFs from the USArray stations. In this study, we experiment with both the K-means and hierarchical clustering algorithms. We also test different distance metrics defined in the vector space of RFs following Lekic and Romanowicz (2011). We cluster data from two distinct data sets. The first, corresponding to the western US, was by smoothing/interpolation of receiver-function wavefield (Chai et al. 2015). Spatial coherence and agreement with geologic region increase with this simpler, spatially smoothed set of observations. The second data set is composed of RFs for more than 800 stations of the China Digital Seismic Network (CSN). Preliminary results show a first order agreement between clusters and tectonic region and each region cluster includes a distinct Ps arrival, which probably reflects differences in crustal thickness. Regionalization remains an important step to characterize a model prior to application of full waveform and/or stochastic imaging techniques because of the computational expense of these types of studies. Machine learning techniques can provide valuable information that can be used to design and characterize formal geophysical inversion, providing information on spatial variability in the subsurface geology.
Moho Structure of the Central Sierra Nevada From an EarthScope Flex Array Deployment
NASA Astrophysics Data System (ADS)
Burdick, S.; Zandt, G.; Gilbert, H.; Jones, C.; Owens, T.
2005-12-01
Findings from the southern Sierra Nevada (south of 37 degrees north) show that the crustal thickness in the southern Sierra Nevada range does not obey an Airy isostasy model. Receiver function data show that the crustal thickness generally increases across the range from the high eastern peaks to the low western foothills, and the Moho discontinuity disappears beneath parts of the western foothills. This disappearance of the Moho has been attributed to the entrainment of the crust into the mantle by the convective removal of the southern batholithic root during the past 3-4 M yrs (Zandt et al., Nature, 2004). Other possible causes of Moho disappearance include a very gradational, or even inverted, impedance contrast due to lower crustal or upper mantle wavespeed anomalies. During the summer of 2005, the Sierra Nevada Earthscope Project (SNEP) has deployed an Earthscope flex array of over forty broadband seismometers with 25 km spacing, designed to constrain lithospheric structure of the central Sierra Nevada between the latitudes of approximately 37 to 38 degrees north. We will report on a receiver function study to better define the boundaries of the Moho "hole" to the north. Initial receiver functions from the first stations deployed mainly on the western and eastern flanks of the range show a northward continuation of both the "hole" under the western margin and a high amplitude Moho under the eastern flank of the range. This new observation suggests either the Moho disappearance is unrelated to the convective removal of the southern root or that root removal has affected the Sierra Nevada significantly farther north than suggested by presently available volcanic and xenolith evidence. Receiver functions collected from SNEP data will be processed into move-out corrected depth stacks in order to present a more complete map of Moho depth and amplitude beneath the region. To quantify the range of impedance contrasts capable of producing the observed variability in Moho amplitude, observed receiver function arrivals will be compared to synthetic examples calculated for a range of lower crustal and upper mantle wavespeeds. In conjunction with other studies these results should lead to a better understanding of the scale and processes associated with a young lithospheric foundering event.
USDA-ARS?s Scientific Manuscript database
To improve our ability to reduce nutrient losses from agricultural lands to receiving waters, comprehensive approaches that employ a variety of conservation practices placed within and below field edges will be needed. There is a need to obtain experimental data to better understand how conservation...
Interlayer interactions in graphites.
Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian
2013-11-06
Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Feret, J. M.
1981-01-01
A phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration is described. Functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes were performed. Fuel cell materials and components, and performance testing and evaluation of the repeating electrode components were characterized. The state of the art manufacturing technology for all fuel cell components and the fabrication of short stacks of various sites were established. A 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering aproach was developed.
NASA Astrophysics Data System (ADS)
Cui, Z.; Meltzer, A.; Fischer, K. M.; Stachnik, J. C.; Munkhuu, U.; Tsagaan, B.; Russo, R. M.
2017-12-01
The origin and preservation of high-elevation low-relief surfaces in continental interiors remains an open questions. Central Mongolia constitutes a major portion of the Mongolian Plateau and is an excellent place to link deep earth and surface processes. The lithosphere of Mongolia was constructed through accretionary orogenesis associated with the Central Asian Orogenic Belt (CAOB) from the late Paleozoic to the early Triassic. Alkaline volcanic basalt derived from sublithospheric sources has erupted sporadically in Mongolia since 30 Ma. Constraining the depth variation of lithospheric and upper mantle discontinuities is crucial for understanding the interaction between upper mantle structure and surface topography. We conducted receiver functions (RF) analyses suitable data recorded at112 seismic broadband stations in central Mongolia to image the LAB and mantle transition zone beneath Central Mongolia. A modified H-κ stacking was performed to determine crustal average thickness (H) and Vp/Vs ratio (κ). Central Mongolia is characterized by thick crust (43-57 km) enabling use of both P wave RF and to S wave RF to image the LAB. The PRF traces in the depth domain are stacked based on piercing point locations for the 410 and 660 discontinuities using 0.6 ° × 0.6 ° bins in a grid. From south to north, the average lithospheric thickness is 85km in Gobi Altai gradually thinning northeastward to 78km in the southern Hangay Dome, 72 km in the northern Hangay Dome then increases to 75km in Hovsgol area. While there is overall thinning of the lithosphere from SW to NE, beneath the Hangay, there is a slight increase beneath the highest topography. The thickness of the mantle transition zone (MTZ) beneath central Mongolia is similar to global averages. This evidence argues against the hypothesis that a mantle plume exists beneath Central Mongolia causing low velocity anomalies in the upper mantle. To the east of the Hovsgol area in northern Mongolia, the MTZ thickens 10-15 km mainly due to depression in the 660-km discontinuity, perhaps representing a relict of subducted plate during CAOB.
Imaging of the Main Himalayan Thrust and Moho beneath Satluj Valley, Northwest Himalaya
NASA Astrophysics Data System (ADS)
Wadhawan, M.; Hazarika, D.; Paul, A.; Kumar, N.
2016-12-01
The ongoing continental collision between India and Eurasia gave rise to the formation of the great Himalayan fold-thrust belt. Satluj valley is found to be well exposed from foreland to Higher Himalayan Crystalline series along the Satluj River. Receiver function method has been utilized to image crustal features using Common Conversion Point (CCP) stacking beneath Satluj valley recorded by a seismological array of 18 broadband seismometers. The seismological stations cover the geotectonic units starting from the Himalayan Frontal Thrust (HFT) in the south to the Tethyan Himalaya (TH) to the north. The study inferred gentle northward dipping nature of the Main Himalayan Thrust (MHT) between Sub Himalaya (SH) and Higher Himalaya (HH) in the study area rather than flat-ramp-flat geometry as reported in Nepal Himalaya and Garhwal Himalaya. The depth of the MHT obtained from CCP image and inversion of receiver functions shows that it varies from 16 km in the SH to 27 km near the STD which further increases up to 38 km beneath the TH. The absence of both large and moderate magnitude earthquakes in the Himalayan Seismic Belt (HSB) straddling northern Lesser Himalaya and southern Higher Himalaya in Satluj valley is correlated with absence of ramp structure in this part of HSB. The CCP image has mapped the Moho discontinuity at 44 km depth near the HFT which has increased to 62 km beneath the TH. An extremely low shear wave velocity ranging between 0.8 and 1.8 km s-1 is estimated at stations near the HFT, in the upper most 3-4 km of the crust which indicates the effect of sedimentary column of Indo-Gangetic plains. An intra crustal low velocity layer (IC-LVL) is observed beneath the study profile and inferred as partial melt and/or aqueous fluid at mid-crustal depth beneath the TH. The H-K stacking is applied and average Poisson's ratio is observed to be higher in the TH as compared to the stations to the south of STD.
NASA Astrophysics Data System (ADS)
Jiang, M.; He, Y.; Zheng, T.; Mon, C. T.; Thant, M.; Hou, G.; Ai, Y.; Chen, Q. F.; Sein, K.
2017-12-01
The Indo-Myanmar block locates to the southern and southeastern of the Eastern Himalayan Syntax (EHS) and marks a torsional boundary of the collision between the Indian and Eurasian plates. There are two fundamental questions concerned on the tectonics of Indo-Myanmar block since the Cenozoic time. One is whether and how the oblique subduction is active in the deep; the other is where and how the transition from oceanic subduction and continental subduction operates. However, the two problems are still under heated debate mainly because the image of deep structure beneath this region is still blurring. Since June, 2016, we have executed the China-Myanmar Geophysical Survey in the Myanmar Orogen (CMGSMO) and deployed the first portable seismic array in Myanmar in cooperation with Myanmar Geosciences Society (MGS). This array contains 70 stations with a dense-deployed main profile across the Indo-Myanmar Range, Central Basin and Shan State Plateau along latitude of 22° and a 2-D network covering the Indo-Myanmar Range and the western part of the Central Basin. Based on the seismic data collected by the new array, we conducted the studies on the lithospheric structure using the routine surface wave tomography and receiver function CCP stacking. The preliminary results of surface wave tomography displayed a remarkable high seismic velocity fabric in the uppermost of mantle beneath the Indo-Myanmar Range and Central Basin, which was interpreted as the subducted slab eastward. Particularly, we found a low velocity bulk within the high-velocity slab, which was likely to be a slab window due to the slab tearing. The preliminary results of receiver function CCP stacking showed the obvious variations of the lithospheric structures from the Indo-Myanmar Range to the Central Basin and Shan State Plateau. The lithospheric structure beneath the Indo-Myanmar Range is more complex than that beneath the Central Basin and Shan State Plateau. Our resultant high-resolution images will provide important constrains for establishing the tectonic framework of Indian plate eastward subduction. This study is supported by the National Natural Science Foundation of China (grants 41490612, 41274002).
Imaging the Juan de Fuca subduction plate using 3D Kirchoff Prestack Depth Migration
NASA Astrophysics Data System (ADS)
Cheng, C.; Bodin, T.; Allen, R. M.; Tauzin, B.
2014-12-01
We propose a new Receiver Function migration method to image the subducting plate in the western US that utilizes the US array and regional network data. While the well-developed CCP (common conversion point) poststack migration is commonly used for such imaging; our method applies a 3D prestack depth migration approach. The traditional CCP and post-stack depth mapping approaches implement the ray tracing and moveout correction for the incoming teleseismic plane wave based on a 1D earth reference model and the assumption of horizontal discontinuities. Although this works well in mapping the reflection position of relatively flat discontinuities (such as the Moho or the LAB), CCP is known to give poor results in the presence of lateral volumetric velocity variations and dipping layers. Instead of making the flat layer assumption and 1D moveout correction, seismic rays are traced in a 3D tomographic model with the Fast Marching Method. With travel time information stored, our Kirchoff migration is done where the amplitude of the receiver function at a given time is distributed over all possible conversion points (i.e. along a semi-elipse) on the output migrated depth section. The migrated reflectors will appear where the semicircles constructively interfere, whereas destructive interference will cancel out noise. Synthetic tests show that in the case of a horizontal discontinuity, the prestack Kirchoff migration gives similar results to CCP, but without spurious multiples as this energy is stacked destructively and cancels out. For 45 degree and 60 degree dipping discontinuities, it also performs better in terms of imaging at the right boundary and dip angle. This is especially useful in the Western US case, beneath which the Juan de Fuca plate subducted to ~450km with a dipping angle that may exceed 50 degree. While the traditional CCP method will underestimate the dipping angle, our proposed imaging method will provide an accurate 3D subducting plate image without heavy computation. This will provide further thoughts for geodynamic research on the evolution of western US.
Branicio, Paulo Sergio; Rino, José Pedro; Gan, Chee Kwan; Tsuzuki, Hélio
2009-03-04
Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge-charge, charge-dipole and dipole-dipole interactions as well as covalent bond bending and stretching. Predictions are made for the elastic constants as a function of density and temperature, the generalized stacking fault energy and the low-index surface energies.
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.
2009-07-01
Charge formations on superconducting layers and creation of the longitudinal plasma wave in the stack of intrinsic Josephson junctions change crucially the superconducting current through the stack. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers allows us to predict the additional features in the current-voltage characteristics. The charge autocorrelation functions clearly demonstrate the difference between harmonic and chaotic behavior in the breakpoint region. Use of the correlation functions gives us a powerful method for the analysis of the current-voltage characteristics of coupled Josephson junctions.
Chappard, Daniel; Terranova, Lisa; Mallet, Romain; Mercier, Philippe
2015-01-01
The 3D arrangement of porous granular biomaterials usable to fill bone defects has received little study. Granular biomaterials occupy 3D space when packed together in a manner that creates a porosity suitable for the invasion of vascular and bone cells. Granules of beta-tricalcium phosphate (β-TCP) were prepared with either 12.5 or 25 g of β-TCP powder in the same volume of slurry. When the granules were placed in a test tube, this produced 3D stacks with a high (HP) or low porosity (LP), respectively. Stacks of granules mimic the filling of a bone defect by a surgeon. The aim of this study was to compare the porosity of stacks of β-TCP granules with that of cores of trabecular bone. Biomechanical compression tests were done on the granules stacks. Bone cylinders were prepared from calf tibia plateau, constituted high-density (HD) blocks. Low-density (LD) blocks were harvested from aged cadaver tibias. Microcomputed tomography was used on the β-TCP granule stacks and the trabecular bone cores to determine porosity and specific surface. A vector-projection algorithm was used to image porosity employing a frontal plane image, which was constructed line by line from all images of a microCT stack. Stacks of HP granules had porosity (75.3 ± 0.4%) and fractal lacunarity (0.043 ± 0.007) intermediate between that of HD (respectively 69.1 ± 6.4%, p < 0.05 and 0.087 ± 0.045, p < 0.05) and LD bones (respectively 88.8 ± 1.57% and 0.037 ± 0.014), but exhibited a higher surface density (5.56 ± 0.11 mm(2)/mm(3) vs. 2.06 ± 0.26 for LD, p < 0.05). LP granular arrangements created large pores coexisting with dense areas of material. Frontal plane analysis evidenced a more regular arrangement of β-TCP granules than bone trabecule. Stacks of HP granules represent a scaffold that resembles trabecular bone in its porous microarchitecture.
Variable Temperature Performance of a Si(Li) Detector Stack
NASA Technical Reports Server (NTRS)
Hubbard, G. Scott; McMurray, Robert E., Jr.; Keller, R. G.; Wercinski, P. F.; Walton, J. T.; Wong, Y. K.
1994-01-01
New experimental data is presented which displays 137Cs resolution of both single Si(Li) devices and a detector stack 2 cm in height as a function of temperature (85 K greater than or equal to T greater than or equal to 245 K). We also discuss variations in photopeak shape which indicate that detector charge collection may be temperature dependent over the range of interest.
NASA Astrophysics Data System (ADS)
Chagarov, Evgueni A.; Kavrik, Mahmut S.; Fang, Ziwei; Tsai, Wilman; Kummel, Andrew C.
2018-06-01
Comprehensive Density-Functional Theory (DFT) Molecular Dynamics (MD) simulations were performed to investigate interfaces between a-HfO2 and SiGe or Ge semiconductors with fully-stoichiometric a-SiO2 or sub-oxide SiO interlayers. The electronic structure of the selected stacks was calculated with a HSE06 hybrid functional. Simulations were performed before and after hydrogen passivation of residual interlayer defects. For the SiGe substrate with Ge termination prior to H passivation, the stacks with a-SiO suboxide interlayer (a-HfO2/a-SiO/SiGe) demonstrate superior electronic properties and wider band-gaps than the stacks with fully coordinated a-SiO2 interlayers (a-HfO2/a-SiO2/SiGe). After H passivation, most of the a-HfO2/a-SiO2/SiGe defects are passivated. To investigate effect of random placement of Si and Ge atoms additional simulations with a randomized SiGe slab were performed demonstrating improvement of electronic structure. For Ge substrates, before H passivation, the stacks with a SiO suboxide interlayer (a-HfO2/a-SiO/Ge) also demonstrate wider band-gaps than the stacks with fully coordinated a-SiO2 interlayers (a-HfO2/a-SiO2/Ge). However, even for a-HfO2/a-SiO/Ge, the Fermi level is shifted close to the conduction band edge (CBM) consistent with Fermi level pinning. Again, after H passivation, most of the a-HfO2/a-SiO2/Ge defects are passivated. The stacks with fully coordinated a-SiO2 interlayers have much stronger deformation and irregularity in the semiconductor (SiGe or Ge) upper layers leading to multiple under-coordinated atoms which create band-edge states and decrease the band-gap prior to H passivation.
NASA Technical Reports Server (NTRS)
Kromis, Phillip A.
2010-01-01
This viewgraph presentation describes the modeling and simulation of the Ares Upper Stage Transportation, lifting, stacking, and mating operations within the Vehicle Assembly Building (VAB) at Kennedy Space Center (KSC). An aerial view of KSC Launch Shuttle Complex, two views of the Delmia process control layout, and an upper stage move subroutine and breakdown are shown. An overhead image of the VAB and the turning basin along with the Pegasus barge at the turning basin are also shown. This viewgraph presentation also shows the actual design and the removal of the mid-section spring tensioners, the removal of the AFT rear and forward tensioners tie downs, and removing the AFT hold down post and mount. US leaving the Pegasus Barge, the upper stage arriving at transfer aisle, upper stage receiving/inspection in transfer aisle, and an overhead view of upper stage receiving/inspection in transfer aisle are depicted. Five views of the actual connection of the cabling to the upper stage aft lifting hardware are shown. The upper stage transporter forward connector, two views of the rotation horizontal to vertical, the disconnection of the rear bolt ring cabling, the lowering of the upper stage to the inspection stand, disconnection of the rear bolt ring from the upper stage, the lifting of the upper stage and inspection of AFT fange, and the transfer of upper stage in an integrated stack are shown. Six views of the mating of the upper stage to the first stage are depicted. The preparation, inspection, and removal of the forward dome are shown. The upper stage mated on the integrated stack and crawler is also shown. This presentation concludes with A Rapid Upper Limb Assessment (RULA) utilizing male and female models for assessing risk factors to the upper extremities of human beings in an actual physical environment.
Parker, Trent M; Hohenstein, Edward G; Parrish, Robert M; Hud, Nicholas V; Sherrill, C David
2013-01-30
Symmetry-adapted perturbation theory (SAPT) is applied to pairs of hydrogen-bonded nucleobases to obtain the energetic components of base stacking (electrostatic, exchange-repulsion, induction/polarization, and London dispersion interactions) and how they vary as a function of the helical parameters Rise, Twist, and Slide. Computed average values of Rise and Twist agree well with experimental data for B-form DNA from the Nucleic Acids Database, even though the model computations omitted the backbone atoms (suggesting that the backbone in B-form DNA is compatible with having the bases adopt their ideal stacking geometries). London dispersion forces are the most important attractive component in base stacking, followed by electrostatic interactions. At values of Rise typical of those in DNA (3.36 Å), the electrostatic contribution is nearly always attractive, providing further evidence for the importance of charge-penetration effects in π-π interactions (a term neglected in classical force fields). Comparison of the computed stacking energies with those from model complexes made of the "parent" nucleobases purine and 2-pyrimidone indicates that chemical substituents in DNA and RNA account for 20-40% of the base-stacking energy. A lack of correspondence between the SAPT results and experiment for Slide in RNA base-pair steps suggests that the backbone plays a larger role in determining stacking geometries in RNA than in B-form DNA. In comparisons of base-pair steps with thymine versus uracil, the thymine methyl group tends to enhance the strength of the stacking interaction through a combination of dispersion and electrosatic interactions.
Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO(111)
NASA Astrophysics Data System (ADS)
Lazarov, V. K.; Zimmerman, J.; Cheung, S. H.; Li, L.; Weinert, M.; Gajdardziska-Josifovska, M.
2005-06-01
Selected molecular beam epitaxy of zinc blende (111) or wurtzite (0001) GaN films on polar MgO(111) is achieved depending on whether N or Ga is deposited first. The cubic stacking is enabled by nitrogen-induced polar surface stabilization, which yields a metallic MgO(111)-(1×1)-ON surface. High-resolution transmission electron microscopy and density functional theory studies indicate that the atomically abrupt semiconducting GaN(111)/MgO(111) interface has a Mg-O-N-Ga stacking, where the N atom is bonded to O at a top site. This specific atomic arrangement at the interface allows the cubic stacking to more effectively screen the substrate and film electric dipole moment than the hexagonal stacking, thus stabilizing the zinc blende phase even though the wurtzite phase is the ground state in the bulk.
Improved FCG-1 cell technology
NASA Astrophysics Data System (ADS)
Breault, R. D.; Congdon, J. V.; Coykendall, R. D.; Luoma, W. L.
1980-10-01
Fuel cell performance in the ribbed substrate cell configuration consistent with that projected for a commercial power plant is demonstrated. Tests were conducted on subscale cells and on two 20 cell stacks of 4.8 MW demonstrator size cell components. These tests evaluated cell stack materials, processes, components, and assembly configurations. The first task was to conduct a component development effort to introduce improvements in 3.7 square foot, ribbed substrate acid cell repeating parts which represented advances in performance, function, life, and lower cost for application in higher pressure and temperature power plants. Specific areas of change were the electrode substrate, catalyst, matrix, seals, separator plates, and coolers. Full sized ribbed substrate stack components incorporating more stable materials were evaluated at increased pressure (93 psia) and temperature (405 F) conditions. Two 20 cell stacks with a 3.7 square feet, ribbed substrate cell configuration were tested.
Norman, Patrick; Linares, Mathieu
2014-09-01
The chirality of stacked weakly interacting π-systems was interpreted in terms of Frenkel exciton states and the formation of excitonic circular dichroism (CD) bands was monitored for ethylene stacks of varying sizes. Convergence of CD bands with respect to the system size was observed for stacks involving around 10 molecules. By means of rotation around the C-C double bond in ethylene, chirality was induced in the monomeric system and which was shown to dominate the spectral responses, even for polymer aggregates. In helical assemblies of chiral entities, there will always be a mix of excitonic and monomeric contributions to the CD signal and it is demonstrated that the complex polarization propagator approach in combination with Density Functional Theory is a suitable method to address this situation. © 2014 Wiley Periodicals, Inc.
Supra-Nanoparticle Functional Assemblies through Programmable Stacking
Tian, Cheng; Cordeiro, Marco Aurelio L.; Lhermitte, Julien; ...
2017-05-25
The quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. We report a general method of assembling nanoparticles in a linear “pillar” morphology with regulated internal configurations. Our approach is inspired by supramolecular systems, where intermolecular stacking guides the assembly process to form diverse linear morphologies. Programmable stacking interactions were realized through incorporation of DNA coded recognition between the designed planar nanoparticle clusters. This resulted in the formation of multilayered pillar architectures with a well-defined internal nanoparticle organization.more » Furthermore, by controlling the number, position, size, and composition of the nanoparticles in each layer, a broad range of nanoparticle pillars were assembled and characterized in detail. In addition, we demonstrated the utility of this stacking assembly strategy for investigating plasmonic and electrical transport properties.« less
Supra-Nanoparticle Functional Assemblies through Programmable Stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Cheng; Cordeiro, Marco Aurelio L.; Lhermitte, Julien
The quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. We report a general method of assembling nanoparticles in a linear “pillar” morphology with regulated internal configurations. Our approach is inspired by supramolecular systems, where intermolecular stacking guides the assembly process to form diverse linear morphologies. Programmable stacking interactions were realized through incorporation of DNA coded recognition between the designed planar nanoparticle clusters. This resulted in the formation of multilayered pillar architectures with a well-defined internal nanoparticle organization.more » Furthermore, by controlling the number, position, size, and composition of the nanoparticles in each layer, a broad range of nanoparticle pillars were assembled and characterized in detail. In addition, we demonstrated the utility of this stacking assembly strategy for investigating plasmonic and electrical transport properties.« less
Supra-Nanoparticle Functional Assemblies through Programmable Stacking.
Tian, Cheng; Cordeiro, Marco Aurelio L; Lhermitte, Julien; Xin, Huolin L; Shani, Lior; Liu, Mingzhao; Ma, Chunli; Yeshurun, Yosef; DiMarzio, Donald; Gang, Oleg
2017-07-25
The quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. Here, we report a general method of assembling nanoparticles in a linear "pillar" morphology with regulated internal configurations. Our approach is inspired by supramolecular systems, where intermolecular stacking guides the assembly process to form diverse linear morphologies. Programmable stacking interactions were realized through incorporation of DNA coded recognition between the designed planar nanoparticle clusters. This resulted in the formation of multilayered pillar architectures with a well-defined internal nanoparticle organization. By controlling the number, position, size, and composition of the nanoparticles in each layer, a broad range of nanoparticle pillars were assembled and characterized in detail. In addition, we demonstrated the utility of this stacking assembly strategy for investigating plasmonic and electrical transport properties.
Spectral gain profile of a multi-stack terahertz quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachmann, D., E-mail: dominic.bachmann@tuwien.ac.at; Deutsch, C.; Krall, M.
2014-11-03
The spectral gain of a multi-stack terahertz quantum cascade laser, composed of three active regions with emission frequencies centered at 2.3, 2.7, and 3.0 THz, is studied as a function of driving current and temperature using terahertz time-domain spectroscopy. The optical gain associated with the particular quantum cascade stacks clamps at different driving currents and saturates to different values. We attribute these observations to varying pumping efficiencies of the respective upper laser states and to frequency dependent optical losses. The multi-stack active region exhibits a spectral gain full width at half-maximum of 1.1 THz. Bandwidth and spectral position of themore » measured gain match with the broadband laser emission. As the laser action ceases with increasing operating temperature, the gain at the dominant lasing frequency of 2.65 THz degrades sharply.« less
Theoretical analysis of stack gas emission velocity measurement by optical scintillation
NASA Astrophysics Data System (ADS)
Yang, Yang; Dong, Feng-Zhong; Ni, Zhi-Bo; Pang, Tao; Zeng, Zong-Yong; Wu, Bian; Zhang, Zhi-Rong
2014-04-01
Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously.
Interfacial Cation-Defect Charge Dipoles in Stacked TiO2/Al2O3 Gate Dielectrics.
Zhang, Liangliang; Janotti, Anderson; Meng, Andrew C; Tang, Kechao; Van de Walle, Chris G; McIntyre, Paul C
2018-02-14
Layered atomic-layer-deposited and forming-gas-annealed TiO 2 /Al 2 O 3 dielectric stacks, with the Al 2 O 3 layer interposed between the TiO 2 and a p-type germanium substrate, are found to exhibit a significant interface charge dipole that causes a ∼-0.2 V shift of the flat-band voltage and suppresses the leakage current density for gate injection of electrons. These effects can be eliminated by the formation of a trilayer dielectric stack, consistent with the cancellation of one TiO 2 /Al 2 O 3 interface dipole by the addition of another dipole of opposite sign. Density functional theory calculations indicate that the observed interface-dependent properties of TiO 2 /Al 2 O 3 dielectric stacks are consistent in sign and magnitude with the predicted behavior of Al Ti and Ti Al point-defect dipoles produced by local intermixing of the Al 2 O 3 /TiO 2 layers across the interface. Evidence for such intermixing is found in both electrical and physical characterization of the gate stacks.
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-01-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency. PMID:28225028
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-02-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.
StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab
NASA Astrophysics Data System (ADS)
Grund, Michael
2017-04-01
The SplitLab package (Wüstefeld et al., Computers and Geosciences, 2008), written in MATLAB, is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to seaside or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure.
Stack Characterization in CryoSat Level1b SAR/SARin Baseline C
NASA Astrophysics Data System (ADS)
Scagliola, Michele; Fornari, Marco; Di Giacinto, Andrea; Bouffard, Jerome; Féménias, Pierre; Parrinello, Tommaso
2015-04-01
CryoSat was launched on the 8th April 2010 and is the first European ice mission dedicated to the monitoring of precise changes in the thickness of polar ice sheets and floating sea ice. CryoSat is the first altimetry mission operating in SAR mode and it carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. The current CryoSat IPF (Instrument Processing Facility), Baseline B, was released in operation in February 2012. After more than 2 years of development, the release in operations of the Baseline C is expected in the first half of 2015. It is worth recalling here that the CryoSat SAR/SARin IPF1 generates 20Hz waveforms in correspondence of an approximately equally spaced set of ground locations on the Earth surface, i.e. surface samples, and that a surface sample gathers a collection of single-look echoes coming from the processed bursts during the time of visibility. Thus, for a given surface sample, the stack can be defined as the collection of all the single-look echoes pointing to the current surface sample, after applying all the necessary range corrections. The L1B product contains the power average of all the single-look echoes in the stack: the multi-looked L1B waveform. This reduces the data volume, while removing some information contained in the single looks, useful for characterizing the surface and modelling the L1B waveform. To recover such information, a set of parameters has been added to the L1B product: the stack characterization or beam behaviour parameters. The stack characterization, already included in previous Baselines, has been reviewed and expanded in Baseline C. This poster describes all the stack characterization parameters, detailing what they represent and how they have been computed. In details, such parameters can be summarized in: - Stack statistical parameters, such as skewness and kurtosis - Look angle (i.e. the angle at which the surfaces sample is seen with respect to the nadir direction of the satellite) and Doppler angle (i.e. the angle at which the surfaces sample is seen with respect to the normal to the velocity vector) for the first and the last single-look echoes in the stack. - Number of single-looks averaged in the stack (in Baseline C a stack-weighting has been applied that reduces the number of looks). With the correct use of these parameters, users will be able to retrieve some of the 'lost' information contained within the stack and fully exploit the L1B product.
Stacking stability of MoS2 bilayer: An ab initio study
NASA Astrophysics Data System (ADS)
Tao, Peng; Guo, Huai-Hong; Yang, Teng; Zhang, Zhi-Dong
2014-10-01
The study of the stacking stability of bilayer MoS2 is essential since a bilayer has exhibited advantages over single layer MoS2 in many aspects for nanoelectronic applications. We explored the relative stability, optimal sliding path between different stacking orders of bilayer MoS2, and (especially) the effect of inter-layer stress, by combining first-principles density functional total energy calculations and the climbing-image nudge-elastic-band (CI-NEB) method. Among five typical stacking orders, which can be categorized into two kinds (I: AA, AB and II: AA', AB', A'B), we found that stacking orders with Mo and S superposing from both layers, such as AA' and AB, is more stable than the others. With smaller computational efforts than potential energy profile searching, we can study the effect of inter-layer stress on the stacking stability. Under isobaric condition, the sliding barrier increases by a few eV/(ucGPa) from AA' to AB', compared to 0.1 eV/(ucGPa) from AB to [AB]. Moreover, we found that interlayer compressive stress can help enhance the transport properties of AA'. This study can help understand why inter-layer stress by dielectric gating materials can be an effective means to improving MoS2 on nanoelectronic applications.
Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.
Shapiro, Joshua N; Lin, Andrew; Ratsch, Christian; Huffaker, D L
2013-11-29
Impressive opto-electronic devices and transistors have recently been fabricated from GaAs nanopillars grown by catalyst-free selective-area epitaxy, but this growth technique has always resulted in high densities of stacking faults. A stacking fault occurs when atoms on the growing (111) surface occupy the sites of a hexagonal-close-pack (hcp) lattice instead of the normal face-centered-cubic (fcc) lattice sites. When stacking faults occur consecutively, the crystal structure is locally wurtzite instead of zinc-blende, and the resulting band offsets are known to negatively impact device performance. Here we present experimental and theoretical evidence that indicate stacking fault formation is related to the size of the critical nucleus, which is temperature dependent. The difference in energy between the hcp and fcc orientation of small nuclei is computed using density-function theory. The minimum energy difference of 0.22 eV is calculated for a nucleus with 21 atoms, so the population of nuclei in the hcp orientation is expected to decrease as the nucleus grows larger. The experiment shows that stacking fault occurrence is dramatically reduced from 22% to 3% by raising the growth temperature from 730 to 790 ° C. These data are interpreted using classical nucleation theory which dictates a larger critical nucleus at higher growth temperature.
Cheng, Nan; Shang, Ying; Xu, Yuancong; Zhang, Li; Luo, Yunbo; Huang, Kunlun; Xu, Wentao
2017-05-15
Stacked genetically modified organisms (GMO) are becoming popular for their enhanced production efficiency and improved functional properties, and on-site detection of stacked GMO is an urgent challenge to be solved. In this study, we developed a cascade system combining event-specific tag-labeled multiplex LAMP with a DNAzyme-lateral flow biosensor for reliable detection of stacked events (DP305423× GTS 40-3-2). Three primer sets, both event-specific and soybean species-specific, were newly designed for the tag-labeled multiplex LAMP system. A trident-like lateral flow biosensor displayed amplified products simultaneously without cross contamination, and DNAzyme enhancement improved the sensitivity effectively. After optimization, the limit of detection was approximately 0.1% (w/w) for stacked GM soybean, which is sensitive enough to detect genetically modified content up to a threshold value established by several countries for regulatory compliance. The entire detection process could be shortened to 120min without any large-scale instrumentation. This method may be useful for the in-field detection of DP305423× GTS 40-3-2 soybean on a single kernel basis and on-site screening tests of stacked GM soybean lines and individual parent GM soybean lines in highly processed foods. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yokoyama, Yasunori; Tanaka, Hikaru; Yano, Shunsuke; Takahashi, Hiroshi; Kikukawa, Takashi; Sonoyama, Masashi; Takenaka, Koshi
2017-05-01
We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline lattice even after gelation. Time-resolved absorption spectroscopy showed that bR photocycle behaviors in PM/PVA immobilized samples were almost identical to that in suspension. These results suggested that a physically cross-linked PVA hydrogel is appropriate for immobilizing membrane proteins in terms of maintaining their structure and functionality.
NASA Astrophysics Data System (ADS)
Awasthi, Suman; Nautiyal, B. B.; Kumar, Rajiv; Bandyopadhyay, P. K.
2012-09-01
In recent years multi-spectral device is steadily growing popularity. Multi-spectral antireflection coating effective in visible region for sighting system, laser wavelength for ranging and MWIR region for thermal system can use common objective/receiver optics highly useful for state of art thermal instrumentation. In this paper, design and fabrication of antireflection coating simultaneously effective in visible region (450-650 nm), Eye safe laser wave length (1540 nm) and MWIR region (3.6-4.9 μm) has been reported. Comprehensive search method of design was used and the number of layers in the design was optimised with lowest evaluated merit function studied with respect to various layers. Finally eight-layer design stack was established using hafnium oxide as high index layer and silicon-di-oxide as low index coating material combination. The multilayer stack had been fabricated by using electron beam gun evaporation system in Symphony 9 vacuum coating unit. During layer deposition the substrate was irradiated with End-Hall ion gun. The evaporation was carried out in presence of oxygen and layer thicknesses were measured with crystal monitor. The result achieved for the antireflection coating was 85% average transmission from 450 to 650 nm in visible region, 95% transmission at 1540 nm and 96% average transmission from 3.6 to 4.9 μm in MWIR region.
Managing multiple image stacks from confocal laser scanning microscopy
NASA Astrophysics Data System (ADS)
Zerbe, Joerg; Goetze, Christian H.; Zuschratter, Werner
1999-05-01
A major goal in neuroanatomy is to obtain precise information about the functional organization of neuronal assemblies and their interconnections. Therefore, the analysis of histological sections frequently requires high resolution images in combination with an overview about the structure. To overcome this conflict we have previously introduced a software for the automatic acquisition of multiple image stacks (3D-MISA) in confocal laser scanning microscopy. Here, we describe a Windows NT based software for fast and easy navigation through the multiple images stacks (MIS-browser), the visualization of individual channels and layers and the selection of user defined subregions. In addition, the MIS browser provides useful tools for the visualization and evaluation of the datavolume, as for instance brightness and contrast corrections of individual layers and channels. Moreover, it includes a maximum intensity projection, panning and zoom in/out functions within selected channels or focal planes (x/y) and tracking along the z-axis. The import module accepts any tiff-format and reconstructs the original image arrangement after the user has defined the sequence of images in x/y and z and the number of channels. The implemented export module allows storage of user defined subregions (new single image stacks) for further 3D-reconstruction and evaluation.
NASA Astrophysics Data System (ADS)
Ko, Kyul; Son, Dokyun; Kang, Myounggon; Shin, Hyungcheol
2018-02-01
In this work, work-function variation (WFV) on 5 nm node gate-all-around (GAA) silicon 3D stacked nanowire FET (NWFET) and FinFET devices are studied for 6-T SRAM cells through 3D technology computer-aided design (TCAD) simulation. The NWFET devices have strong immunity for the unprecedented short channel effects (SCEs) compared with the FinFET devices owing to increased gate controllability. However, due to the narrow gate area, the single NWFET is more vulnerable to WFV effects than FinFET devices. Our results show that the WFV effects on single NWFETs are larger than the FinFETs by 45-55%. In the case of standard SRAM bit cells (high density: 111 bit cell), the variation of read stability (read static noise margin) on single NWFETs are larger than the FinFETs by 65-75%. Therefore, to improve the performance and having immunity to WFV effects, it is important to analyze the degree of variability in 3D stacked device architectures without area penalty. Moreover, we investigated the WFV effects for an accurate guideline with regard to grain size (GS) and channel area of 3D stacked NWFET in 6-T SRAM bit cells.
How Are Kentucky's Children Stacking Up? A County by County Analysis.
ERIC Educational Resources Information Center
Chandler, Betsy
In a county by county analysis, this report assesses the quality of life for Kentucky's children. Researchers developed a child quotient (CQ) based on 18 indicators: per capita income, children in poverty, women receiving inadequate prenatal care, infant deaths, teens giving birth, substandard dwellings, children in foster care, per-pupil…
19 CFR Appendix to Part 145 - Unknown Title
Code of Federal Regulations, 2010 CFR
2010-04-01
... either the sender or the addressee has been obtained in advance of the opening. Past practice indicates... indicate that merchandise or contraband (e.g., a hard object which may be jewelry, a stack of paper which... known to have mailed or received contraband or merchandise in violation of law in the past. 7. The...
NASA Astrophysics Data System (ADS)
Park, J. J.
2017-12-01
Sheared Layers in the Continental Crust: Nonlinear and Linearized inversion for Ps receiver functions Jeffrey Park, Yale University The interpretation of seismic receiver functions (RFs) in terms of isotropic and anisotropic layered structure can be complex. The relationship between structure and body-wave scattering is nonlinear. The anisotropy can involve more parameters than the observations can readily constrain. Finally, reflectivity-predicted layer reverberations are often not prominent in data, so that nonlinear waveform inversion can search in vain to match ghost signals. Multiple-taper correlation (MTC) receiver functions have uncertainties in the frequency domain that follow Gaussian statistics [Park and Levin, 2016a], so grid-searches for the best-fitting collections of interfaces can be performed rapidly to minimize weighted misfit variance. Tests for layer-reverberations can be performed in the frequency domain without reflectivity calculations, allowing flexible modelling of weak, but nonzero, reverberations. Park and Levin [2016b] linearized the hybridization of P and S body waves in an anisotropic layer to predict first-order Ps conversion amplitudes at crust and mantle interfaces. In an anisotropic layer, the P wave acquires small SV and SH components. To ensure continuity of displacement and traction at the top and bottom boundaries of the layer, shear waves are generated. Assuming hexagonal symmetry with an arbitrary symmetry axis, theory confirms the empirical stacking trick of phase-shifting transverse RFs by 90 degrees in back-azimuth [Shiomi and Park, 2008; Schulte-Pelkum and Mahan, 2014] to enhance 2-lobed and 4-lobed harmonic variation. Ps scattering is generated by sharp interfaces, so that RFs resemble the first derivative of the model. MTC RFs in the frequency domain can be manipulated to obtain a first-order reconstruction of the layered anisotropy, under the above modeling constraints and neglecting reverberations. Examples from long-running continental stations will be discussed. Park, J., and V. Levin, 2016a. doi:10.1093/gji/ggw291. Park, J., and V. Levin, 2016b. doi:10.1093/gji/ggw323. Schulte-Pelkum, V., and Mahan, K. H., 2014. doi:10.1007/s00024-014-0853-4. Shiomi, K., & Park, J., 2008. doi:10.1029/2007JB005535.
NASA Astrophysics Data System (ADS)
Guenanou, A.; Houmat, A.
2018-05-01
The optimum stacking sequence design for the maximum fundamental frequency of symmetrically laminated composite circular plates with curvilinear fibres is investigated for the first time using a layer-wise optimization method. The design variables are two fibre orientation angles per layer. The fibre paths are constructed using the method of shifted paths. The first-order shear deformation plate theory and a curved square p-element are used to calculate the objective function. The blending function method is used to model accurately the geometry of the circular plate. The equations of motion are derived using Lagrange's method. The numerical results are validated by means of a convergence test and comparison with published values for symmetrically laminated composite circular plates with rectilinear fibres. The material parameters, boundary conditions, number of layers and thickness are shown to influence the optimum solutions to different extents. The results should serve as a benchmark for optimum stacking sequences of symmetrically laminated composite circular plates with curvilinear fibres.
Fabrication and characterization of TiO2/SiO2 based Bragg reflectors for light trapping applications
NASA Astrophysics Data System (ADS)
Dubey, R. S.; Ganesan, V.
Distributed Bragg reflectors (DBRs) have received an intensive attention due to their increasing demand in optoelectronic and photonic devices. Such reflectors are capable to prohibit the light propagation within the specified wavelength range of interest. In this paper, we present the fabrication of TiO2/SiO2 stacks based Bragg reflectors by using a simple and in-expensive sol-gel spin coating technique. The prepared single-layer thin films of TiO2 and SiO2 onto glass substrates were characterized for their optical constants. By tuning the process parameters, one-seven DBR stacks of TiO2/SiO2 were prepared. The corresponding shift of the Bragg reflection peak was observed with the increased number of DBR stacks and as much as about 90% reflectance is observed from the 7DBR stacks. The experimentally measured reflectance was compared with the simulated one, which showed good in agreement. FESEM measurement has confirmed the formation of bright and dark strips of TiO2 and SiO2 films with their thicknesses 80 and 115 nm respectively. The simulation study was explored to a design of thin film silicon solar cell using 7DBR stacks. An enhancement in light absorption in the visible wavelength range is observed which coincides with the experimental result of the reflectance. The use of DBR at the bottom of the solar cell could felicitate the better light harvesting with the occurrence of Fabry-Perot resonances in the absorbing layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Aladsair J.; Viswanathan, Vilayanur V.; Stephenson, David E.
A robust performance-based cost model is developed for all-vanadium, iron-vanadium and iron chromium redox flow batteries. Systems aspects such as shunt current losses, pumping losses and thermal management are accounted for. The objective function, set to minimize system cost, allows determination of stack design and operating parameters such as current density, flow rate and depth of discharge (DOD). Component costs obtained from vendors are used to calculate system costs for various time frames. A 2 kW stack data was used to estimate unit energy costs and compared with model estimates for the same size electrodes. The tool has been sharedmore » with the redox flow battery community to both validate their stack data and guide future direction.« less
Hardware Evaluation of the Horizontal Exercise Fixture with Weight Stack
NASA Technical Reports Server (NTRS)
Newby, Nate; Leach, Mark; Fincke, Renita; Sharp, Carwyn
2009-01-01
HEF with weight stack seems to be a very sturdy and reliable exercise device that should function well in a bed rest training setting. A few improvements should be made to both the hardware and software to improve usage efficiency, but largely, this evaluation has demonstrated HEF's robustness. The hardware offers loading to muscles, bones, and joints, potentially sufficient to mitigate the loss of muscle mass and bone mineral density during long-duration bed rest campaigns. With some minor modifications, the HEF with weight stack equipment provides the best currently available means of performing squat, heel raise, prone row, bench press, and hip flexion/extension exercise in a supine orientation.
NASA Astrophysics Data System (ADS)
Luebbert, D.; Arthur, J.; Sztucki, M.; Metzger, T. H.; Griffin, P. B.; Patel, J. R.
2002-10-01
Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range of 925 to 1025 degC. From the growth kinetics we obtain an activation energy for interstitial migration in silicon: EI=1.98plus-or-minus0.06 eV. Fault intensity and size versus time results indicate that faults do not shrink and disappear, but rather are annihilated by a dislocation reaction mechanism.
NASA Astrophysics Data System (ADS)
Cunningham, E.; Lekic, V.
2017-12-01
Despite being on a passive margin for millions of years, the Southeastern United States (SEUS) contains numerous seismogenic zones with the ability to produce damaging earthquakes. However, mechanisms controlling these intraplate earthquakes are poorly understood. Recently, Biryol et al. 2016 use P-wave tomography suggest that upper mantle structures beneath the SEUS correlate with areas of seismicity and seismic quiescence. Specifically, thick and fast velocity lithosphere beneath North Carolina is stable and indicative of areas of low seismicity. In contrast, thin and slow velocity lithosphere is weak, and the transition between the strong and weak lithosphere may be correlated with seismogenic zones found in the SEUS. (eg. Eastern Tennessee seismic zone and the Central Virginia seismic zone) Therefore, I systematically map the heterogeneity of the mantle lithosphere using converted seismic waves and quantify the spatial correlation between seismicity and lithospheric structure. The extensive network of seismometers that makes up the Earthscope USArray combined with the numerous seismic deployments in the Southeastern United States allows for unprecedented opportunity to map changes in lithospheric structure across seismogenic zones and seismic quiescent regions. To do so, I will use both P-to-s and S-to-p receiver functions (RFS). Since RFs are sensitive to seismic wavespeeds and density discontinuities with depth, they particularly useful for studying lithospheric structure. Ps receiver functions contain high frequency information allowing for high resolution, but can become contaminated by large sediment signals; therefore, I removed sediment multiples and correct for time delays of later phases using the method of Yu et. al 2015 which will allow us to see later arriving phases associated with lithospheric discontinuities. S-to-p receiver functions are not contaminated by shallow layers, making them ideal to study deep lithospheric structures but they can suffer from low signal-to-noise levels. I compensate for this difficulty by using high quality deployments and stacking these data at common conversion points to increase lateral resolution.
A new DFT functional based on spin-states and SN2 barriers
NASA Astrophysics Data System (ADS)
Swart, M.; Solà, M.; Bickelhaupt, F. M.
2012-12-01
We recently reported a study into what causes the dramatic differences between OPBE and PBE for reaction barriers, spin-state energies, hydrogen-bonding and π-π stacking energies.1 It was achieved by smoothly switching from OPBE to PBE at a predefined point P of the reduced density gradient s. By letting the point P run as function of the reduced density gradient s, with values from s=0.1 to s=10, we could determine which part of the exchange functional determines its behavior for the different interactions. Based on the thus obtained results, we created a new exchange functional that showed the good results of OPBE for reaction barriers and spin-state energies, and combined it with the good (H-bonds) and reasonable (π-stacking) results of PBE for weak interactions. In other words, it combined the best of OPBE with the best of PBE. Encouraged by these good results, we have further improved the new exchange functional and fine-tuned its parameters.2 Similar to the switched functional from ref. 1, our new SSB functional2 works well for SN2 barriers (see e.g. ref. 3), spin states and H-bonding interactions. Moreover, by including Grimme's dispersion corrections4,5 (to give our final SSB-D functional) it also works well for π-π stacking interactions.2 In summary, we have constructed a new GGA exchange functional that when combined with the sPBE correlation functional6 gives the correct spin ground-state of iron complexes, and small deviations for SN2 barriers (2.7 kcalṡmol-1), geometries (0.005 Å), Hbond distances (0.012 Å), weak interactions (S22 set, 0.5 kcalṡmol-1), and transition-metal ligand distances (0.008 Å).
Extent and relevance of stacking disorder in “ice Ic”
Kuhs, Werner F.; Sippel, Christian; Falenty, Andrzej; Hansen, Thomas C.
2012-01-01
A solid water phase commonly known as “cubic ice” or “ice Ic” is frequently encountered in various transitions between the solid, liquid, and gaseous phases of the water substance. It may form, e.g., by water freezing or vapor deposition in the Earth’s atmosphere or in extraterrestrial environments, and plays a central role in various cryopreservation techniques; its formation is observed over a wide temperature range from about 120 K up to the melting point of ice. There was multiple and compelling evidence in the past that this phase is not truly cubic but composed of disordered cubic and hexagonal stacking sequences. The complexity of the stacking disorder, however, appears to have been largely overlooked in most of the literature. By analyzing neutron diffraction data with our stacking-disorder model, we show that correlations between next-nearest layers are clearly developed, leading to marked deviations from a simple random stacking in almost all investigated cases. We follow the evolution of the stacking disorder as a function of time and temperature at conditions relevant to atmospheric processes; a continuous transformation toward normal hexagonal ice is observed. We establish a quantitative link between the crystallite size established by diffraction and electron microscopic images of the material; the crystallite size evolves from several nanometers into the micrometer range with progressive annealing. The crystallites are isometric with markedly rough surfaces parallel to the stacking direction, which has implications for atmospheric sciences. PMID:23236184
NASA Astrophysics Data System (ADS)
Kim, Geun-Myeong; Oh, Young Jun; Chang, K. J.
2016-07-01
We perform first-principles density functional calculations to investigate the effects of Al incorporation on the p-type Schottky barrier height ≤ft({φ\\text{p}}\\right) and the effective work function for various high-k/metal gate stacks, such as TiN/HfO2 with interface Al impurities, Ti1-x Al x N/HfO2, and TiAl/TiN/HfO2. When Al atoms substitute for the interface Ti atoms at TiN/HfO2 interface, interface dipole fields become stronger, leading to the increase of {φ\\text{p}} and thereby the n-type shift of effective work function. In Ti1-x Al x N/HfO2 interface, {φ\\text{p}} linearly increases with the Al content, attributed to the presence of interface Al atoms. On the other hand, in TiAl/TiN/HfO2 interface, where Al is assumed not to segregate from TiAl to TiN, {φ\\text{p}} is nearly independent of the thickness of TiAl. Our results indicate that Al impurities at the metal/dielectric interface play an important role in controlling the effective work function, and provide a clue to understanding the n-type shift of the effective work function observed in TiAl/TiN/HfO2 gate stacks fabricated by using thegate-last process.
Generation of High Pressure Oxygen via Electrochemical Pumping in a Multi-stage Electrolysis Stack
NASA Technical Reports Server (NTRS)
Setlock, John A (Inventor); Green, Robert D (Inventor); Farmer, Serene (Inventor)
2016-01-01
An oxygen pump can produce high-purity high-pressure oxygen. Oxygen ions (O.sup.2-) are electrochemically pumped through a multi-stage electrolysis stack of cells. Each cell includes an oxygen-ion conducting solid-state electrolyte between cathode and anode sides. Oxygen dissociates into the ions at the cathode side. The ions migrate across the electrolyte and recombine at the anode side. An insulator is between adjacent cells to electrically isolate each individual cell. Each cell receives a similar volt potential. Recombined oxygen from a previous stage can diffuse through the insulator to reach the cathode side of the next stage. Each successive stage similarly incrementally pressurizes the oxygen to produce a final elevated pressure.
Generation of High Pressure Oxygen via Electrochemical Pumping in a Multi-Stage Electrolysis Stack
NASA Technical Reports Server (NTRS)
Setlock, John A (Inventor); Green, Robert D (Inventor); Farmer, Serene (Inventor)
2017-01-01
An oxygen pump can produce high-purity high-pressure oxygen. Oxygen ions (O(2-)) are electrochemically pumped through a multi-stage electrolysis stack of cells. Each cell includes an oxygen-ion conducting solid-state electrolyte between cathode and anode sides. Oxygen dissociates into the ions at the cathode side. The ions migrate across the electrolyte and recombine at the anode side. An insulator is between adjacent cells to electrically isolate each individual cell. Each cell receives a similar volt potential. Recombined oxygen from a previous stage can diffuse through the insulator to reach the cathode side of the next stage. Each successive stage similarly incrementally pressurizes the oxygen to produce a final elevated pressure.
Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise
2014-07-01
The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Hyeondeok; Kim, Jeongnim; Lee, Hoonkyung
α-graphyne is a two-dimensional sheet of sp-sp2 hybridized carbon atoms in a honeycomb lattice. While the geometrical structure is similar to that of graphene, the hybridized triple bonds give rise to electronic structure that is different from that of graphene. Similar to graphene, α-graphyne can be stacked in bilayers with two stable configurations, but the different stackings have very different electronic structures: one is predicted to have gapless parabolic bands and the other a tunable bandgap which is attractive for applications. In order to realize applications, it is crucial to understand which stacking is more stable. This is difficult tomore » model, as the stability is a result of weak interlayer van der Waals interactions which are not well captured by density functional theory (DFT). We have used quantum Monte Carlo simulations that accurately include van der Waals interactions to calculate the interlayer binding energy of bilayer graphyne and to determine its most stable stacking mode. Our results show that inter-layer bindings of sp- and sp2-bonded carbon networks are significantly underestimated in a Kohn-Sham DFT approach, even with an exchange-correlation potential corrected to include, in some approximation, van der Waals interactions. Finally, our quantum Monte Carlo calculations reveal that the interlayer binding energy difference between the two stacking modes is only 0.9(4) eV/atom. From this we conclude that the two stable stacking modes of bilayer α-graphyne are almost degenerate with each other, and both will occur with about the same probability at room temperature unless there is a synthesis path that prefers one stacking over the other.« less
Shin, Hyeondeok; Kim, Jeongnim; Lee, Hoonkyung; ...
2017-10-25
α-graphyne is a two-dimensional sheet of sp-sp2 hybridized carbon atoms in a honeycomb lattice. While the geometrical structure is similar to that of graphene, the hybridized triple bonds give rise to electronic structure that is different from that of graphene. Similar to graphene, α-graphyne can be stacked in bilayers with two stable configurations, but the different stackings have very different electronic structures: one is predicted to have gapless parabolic bands and the other a tunable bandgap which is attractive for applications. In order to realize applications, it is crucial to understand which stacking is more stable. This is difficult tomore » model, as the stability is a result of weak interlayer van der Waals interactions which are not well captured by density functional theory (DFT). We have used quantum Monte Carlo simulations that accurately include van der Waals interactions to calculate the interlayer binding energy of bilayer graphyne and to determine its most stable stacking mode. Our results show that inter-layer bindings of sp- and sp2-bonded carbon networks are significantly underestimated in a Kohn-Sham DFT approach, even with an exchange-correlation potential corrected to include, in some approximation, van der Waals interactions. Finally, our quantum Monte Carlo calculations reveal that the interlayer binding energy difference between the two stacking modes is only 0.9(4) eV/atom. From this we conclude that the two stable stacking modes of bilayer α-graphyne are almost degenerate with each other, and both will occur with about the same probability at room temperature unless there is a synthesis path that prefers one stacking over the other.« less
Generator module architecture for a large solid oxide fuel cell power plant
Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.
2013-06-11
A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.
Solar heating and cooling diode module
Maloney, Timothy J.
1986-01-01
A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.
NASA Astrophysics Data System (ADS)
Plescia, S. M.; Sheehan, A. F.; Haines, S. S.; Cook, S. W.; Worthington, L. L.
2016-12-01
The Bighorn Arch Seismic Experiment (BASE) was a combined active- and passive-source seismic experiment designed to image deep structures including the Moho beneath a basement-involved foreland arch. In summer 2010, over 1800 Texan receivers, with 4.5 Hz vertical component geophones, were deployed at 100-m to 1-km spacing in a region spanning the Bighorn Arch and the adjacent Bighorn and Powder River Basins. Twenty explosive sources were used to create seismic energy during a two-week acquisition period. Teleseismic earthquakes and mine blasts were also recorded during this time period. We utilize both virtual source interferometry and traditional reflection processing to better understand the deep crustal features of the region and the Moho. The large number of receivers, compared to the limited, widely spaced (10 - 30 km) active-source shots, makes the data an ideal candidate for virtual source seismic interferometry to increase fold. Virtual source interferometry results in data representing a geometry where receiver locations act as if they were seismic source positions. A virtual source gather, the product of virtual source interferometry, is produced by the cross correlation of one receiver's recording, the reference trace, with the recordings of all other receivers in a given shot gather. The cross correlation is repeated for all shot gathers and the resulting traces are stacked. This process is repeated until a virtual source gather has been determined for every real receiver location. Virtual source gathers can be processed with a standard reflection seismic processing flow to yield a reflection section. Improper static corrections can be detrimental to effective stacking, and determination of proper statics is often difficult in areas of significant contrast such as between basin and mountain areas. As such, a natural synergy exists between virtual source interferometry and modern industry reflection seismic processing, with its emphasis on detailed static correction and dense acquisition geometries.
NASA Astrophysics Data System (ADS)
Millet, F.; Bodin, T.; Rondenay, S.
2017-12-01
The teleseismic scattered seismic wavefield contains valuable information about heterogeneities and discontinuities inside the Earth. By using fast Receiver Function (RF) migration techniques such as classic Common Conversion Point (CCP) stacks, one can easily interpret structural features down to a few hundred kilometers in the mantle. However, strong simplifying 1D assumptions limit the scope of these methods to structures that are relatively planar and sub-horizontal at local-to-regional scales, such as the Lithosphere-Asthenosphere Boundary and the Mantle Transition Zone discontinuities. Other more robust 2D and 2.5D methods rely on fewer assumptions but require considerable, sometime prohibitive, computation time. Following the ideas of Cheng (2017), we have implemented a simple fully 3D Prestack Kirchhoff RF migration scheme which uses the FM3D fast Eikonal solver to compute travel times and scattering angles. The method accounts for 3D elastic point scattering and includes free surface multiples, resulting in enhanced images of laterally varying dipping structures, such as subducted slabs. The method is tested for subduction structures using 2.5D synthetics generated with Raysum and 3D synthetics generated with specfem3D. Results show that dip angles, depths and lateral variations can be recovered almost perfectly. The approach is ideally suited for applications to dense regional datasets, including those collected across the Cascadia and Alaska subduction zones by USArray.
NASA Astrophysics Data System (ADS)
Kachingwe, Marsella; Nyblade, Andrew; Julià, Jordi
2015-07-01
New estimates of crustal thickness, Poisson's ratio and crustal shear wave velocity have been obtained for 39 stations in Angola, Botswana, the Democratic Republic of Congo, Malawi, Mozambique, Namibia, Rwanda, Tanzania and Zambia by modelling P-wave receiver functions using the H-κ stacking method and jointly inverting the receiver functions with Rayleigh-wave phase and group velocities. These estimates, combined with similar results from previous studies, have been examined for secular trends in Precambrian crustal structure within the southern African subcontinent. In both Archean and Proterozoic terranes we find similar Moho depths [38-39 ± 3 km SD (standard deviation)], crustal Poisson's ratio (0.26 ± 0.01 SD), mean crustal shear wave velocity (3.7 ± 0.1 km s-1 SD), and amounts of heterogeneity in the thickness of the mafic lower crust, as defined by shear wave velocities ≥4.0 km s-1. In addition, the amount of variability in these crustal parameters is similar within each individual age grouping as between age groupings. Thus, the results provide little evidence for secular variation in Precambrian crustal structure, including between Meso- and Neoarchean crust. This finding suggests that (1) continental crustal has been generated by similar processes since the Mesoarchean or (2) plate tectonic processes have reworked and modified the crust through time, erasing variations in structure resulting from crustal genesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, W.E.
1995-12-01
On February 3, 1993, US DOE Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Div. of US EPA, Region X. The compliance order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford site to determine which are subject to the continuous emission measurement requirements in Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, and to continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request required The provision of a written compliance plan to meet the requirements of themore » compliance order. A compliance plan was submitted to EPA, Region X, on April 30, 1993. It set as one of the milestones, the complete assessment of the Hanford Site 84 stacks registered with the Washington State Department of Health, by December 17, 1993. This milestone was accomplished. The compliance plan also called for reaching a Federal Facility Compliance Agreement; this was reached on February 7, 1994, between DOE Richland Operations and EPA, Region X. The milestone to assess the unregistered stacks (powered exhaust) by August 31, 1994, was met. This update presents assessments for 72 registered and 22 unregistered stacks with potential emissions > 0.1 mrem/yr.« less
Advanced carbon nanotubes functionalization
NASA Astrophysics Data System (ADS)
Setaro, A.
2017-10-01
Similar to graphene, carbon nanotubes are materials made of pure carbon in its sp2 form. Their extended conjugated π-network provides them with remarkable quantum optoelectronic properties. Frustratingly, it also brings drawbacks. The π-π stacking interaction makes as-produced tubes bundle together, blurring all their quantum properties. Functionalization aims at modifying and protecting the tubes while hindering π-π stacking. Several functionalization strategies have been developed to circumvent this limitation in order for nanotubes applications to thrive. In this review, we summarize the different approaches established so far, emphasizing the balance between functionalization efficacy and the preservation of the tubes’ properties. Much attention will be given to a functionalization strategy overcoming the covalent-noncovalent dichotomy and to the implementation of two advanced functionalization schemes: (a) conjugation with molecular switches, to yield hybrid nanosystems with chemo-physical properties that can be tuned in a controlled and reversible way, and; (b) plasmonic nanosystems, whose ability to concentrate and enhance the electromagnetic fields can be taken advantage of to enhance the optical response of the tubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuehne, David Patrick; Lattin, Rebecca Renee
The Rad-NESHAP program, part of the Air Quality Compliance team of LANL’s Compliance Programs group (EPC-CP), and the Radiation Instrumentation & Calibration team, part of the Radiation Protection Services group (RP-SVS), frequently partner on issues relating to characterizing air flow streams. This memo documents the most recent example of this partnership, involving performance testing of sulfur hexafluoride detectors for use in stack gas mixing tests. Additionally, members of the Rad-NESHAP program performed a functional trending test on a pair of optical particle counters, comparing results from a non-calibrated instrument to a calibrated instrument. Prior to commissioning a new stack samplingmore » system, the ANSI Standard for stack sampling requires that the stack sample location must meet several criteria, including uniformity of tracer gas and aerosol mixing in the air stream. For these mix tests, tracer media (sulfur hexafluoride gas or liquid oil aerosol particles) are injected into the stack air stream and the resulting air concentrations are measured across the plane of the stack at the proposed sampling location. The coefficient of variation of these media concentrations must be under 20% when evaluated over the central 2/3 area of the stack or duct. The instruments which measure these air concentrations must be tested prior to the stack tests in order to ensure their linear response to varying air concentrations of either tracer gas or tracer aerosol. The instruments used in tracer gas and aerosol mix testing cannot be calibrated by the LANL Standards and Calibration Laboratory, so they would normally be sent off-site for factory calibration by the vendor. Operational requirements can prevent formal factory calibration of some instruments after they have been used in hazardous settings, e.g., within a radiological facility with potential airborne contamination. The performance tests described in this document are intended to demonstrate the reliable performance of the test instruments for the specific tests used in stack flow characterization.« less
An experimental investigation on orthogonal cutting of hybrid CFRP/Ti stacks
NASA Astrophysics Data System (ADS)
Xu, Jinyang; El Mansori, Mohamed
2016-10-01
Hybrid CFRP/Ti stack has been widely used in the modern aerospace industry owing to its superior mechanical/physical properties and excellent structural functions. Several applications require mechanical machining of these hybrid composite stacks in order to achieve dimensional accuracy and assembly performance. However, machining of such composite-to-metal alliance is usually an extremely challenging task in the manufacturing sectors due to the disparate natures of each stacked constituent and their respective poor machinability. Special issues may arise from the high force/heat generation, severe subsurface damage and rapid tool wear. To study the fundamental mechanisms controlling the bi-material machining, this paper presented an experimental study on orthogonal cutting of hybrid CFRP/Ti stack by using superior polycrystalline diamond (PCD) tipped tools. The utilized cutting parameters for hybrid CFRP/Ti machining were rigorously adopted through a compromise selection due to the disparate machinability behaviors of the CFRP laminate and Ti alloy. The key cutting responses in terms of cutting force generation, machined surface quality and tool wear mechanism were precisely addressed. The experimental results highlighted the involved five stages of CFRP/Ti cutting and the predominant crater wear and edge fracture failure governing the PCD cutting process.
Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.
Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V
2014-09-24
We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.
Experimental and computational studies on stacking faults in zinc titanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, W.; Ageh, V.; Mohseni, H.
Zinc titanate (ZnTiO{sub 3}) thin films grown by atomic layer deposition with ilmenite structure have recently been identified as an excellent solid lubricant, where low interfacial shear and friction are achieved due to intrafilm shear velocity accommodation in sliding contacts. In this Letter, high resolution transmission electron microscopy with electron diffraction revealed that extensive stacking faults are present on ZnTiO{sub 3} textured (104) planes. These growth stacking faults serve as a pathway for dislocations to glide parallel to the sliding direction and hence achieve low interfacial shear/friction. Generalized stacking fault energy plots also known as γ-surfaces were computed for themore » (104) surface of ZnTiO{sub 3} using energy minimization method with classical effective partial charge potential and verified by using density functional theory first principles calculations for stacking fault energies along certain directions. These two are in qualitative agreement but classical simulations generally overestimate the energies. In addition, the lowest energy path was determined to be along the [451{sup ¯}] direction and the most favorable glide system is (104) 〈451{sup ¯}〉 that is responsible for the experimentally observed sliding-induced ductility.« less
Extracting surface waves, hum and normal modes: time-scale phase-weighted stack and beyond
NASA Astrophysics Data System (ADS)
Ventosa, Sergi; Schimmel, Martin; Stutzmann, Eleonore
2017-10-01
Stacks of ambient noise correlations are routinely used to extract empirical Green's functions (EGFs) between station pairs. The time-frequency phase-weighted stack (tf-PWS) is a physically intuitive nonlinear denoising method that uses the phase coherence to improve EGF convergence when the performance of conventional linear averaging methods is not sufficient. The high computational cost of a continuous approach to the time-frequency transformation is currently a main limitation in ambient noise studies. We introduce the time-scale phase-weighted stack (ts-PWS) as an alternative extension of the phase-weighted stack that uses complex frames of wavelets to build a time-frequency representation that is much more efficient and fast to compute and that preserve the performance and flexibility of the tf-PWS. In addition, we propose two strategies: the unbiased phase coherence and the two-stage ts-PWS methods to further improve noise attenuation, quality of the extracted signals and convergence speed. We demonstrate that these approaches enable to extract minor- and major-arc Rayleigh waves (up to the sixth Rayleigh wave train) from many years of data from the GEOSCOPE global network. Finally we also show that fundamental spheroidal modes can be extracted from these EGF.
StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab
NASA Astrophysics Data System (ADS)
Grund, Michael
2017-08-01
SplitLab is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to the noisy seaside, ocean bottom or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure which is based on MATLAB. The effectiveness and use of this plugin is demonstrated with data examples of a long running seismological recording station in Finland.
First-principles studies of electric field effects on the electronic structure of trilayer graphene
NASA Astrophysics Data System (ADS)
Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping
2016-10-01
A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.
Stacked-unstacked equilibrium at the nick site of DNA.
Protozanova, Ekaterina; Yakovchuk, Peter; Frank-Kamenetskii, Maxim D
2004-09-17
Stability of duplex DNA with respect to separation of complementary strands is crucial for DNA executing its major functions in the cell and it also plays a central role in major biotechnology applications of DNA: DNA sequencing, polymerase chain reaction, and DNA microarrays. Two types of interaction are well known to contribute to DNA stability: stacking between adjacent base-pairs and pairing between complementary bases. However, their contribution into the duplex stability is yet to be determined. Now we fill this fundamental gap in our knowledge of the DNA double helix. We have prepared a series of 32, 300 bp-long DNA fragments with solitary nicks in the same position differing only in base-pairs flanking the nick. Electrophoretic mobility of these fragments in the gel has been studied. Assuming the equilibrium between stacked and unstacked conformations at the nick site, all 32 stacking free energy parameters have been obtained. Only ten of them are essential and they govern the stacking interactions between adjacent base-pairs in intact DNA double helix. A full set of DNA stacking parameters has been determined for the first time. From these data and from a well-known dependence of DNA melting temperature on G.C content, the contribution of base-pairing into duplex stability has been estimated. The obtained energy parameters of the DNA double helix are of paramount importance for understanding sequence-dependent DNA flexibility and for numerous biotechnology applications.
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Feret, J. M.
1982-01-01
The efforts performed to develop a phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration are described. The work involves: (1) Performance of pertinent functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes, (2) characterization of fuel cell materials and components, and performance testing and evaluation of the repeating electrode components, (3) establishment of the state-of-the-art manufacturing technology for all fuel cell components at Westinghouse and the fabrication of short stacks of various sites, and (4) development of a 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering approach.
Temperature dependence of trapping effects in metal gates/Al2O3/InGaAs stacks
NASA Astrophysics Data System (ADS)
Palumbo, F.; Pazos, S.; Aguirre, F.; Winter, R.; Krylov, I.; Eizenberg, M.
2017-06-01
The influence of the temperature on Metal Gate/Al2O3/n-InGaAs stacks has been studied by means of capacitance-voltage (C-V) hysteresis and flat band voltage as function of both negative and positive stress fields. It was found that the de-trapping effect decreases at low-temperature, indicating that the de-trapping of trapped electrons from oxide traps may be performed via Al2O3/InGaAs interface defects. The dependence of the C-V hysteresis on the stress field at different temperatures in our InGaAs stacks can be explained in terms of the defect spatial distribution. An oxide defect distribution can be found very close to the metal gate/Al2O3 interface. On the other side, the Al2O3/InGaAs interface presents defects distributed from the interface into the bulk of the oxide, showing the influence of InGaAs on Al2O3 in terms of the spatial defect distribution. At the present, he is a research staff of the National Council of Science and Technology (CONICET), working in the National Commission of Atomic Energy (CNEA) in Buenos Aires, Argentina, well embedded within international research collaboration. Since 2008, he is Professor at the National Technological University (UTN) in Buenos Aires, Argentina. Dr. Palumbo has received research fellowships from: Marie Curie Fellowship within the 7th European Community Framework Programme, Abdus Salam International Centre for Theoretical Physics (ICTP) Italy, National Council of Science and Technology (CONICET) Argentina, and Consiglio Nazionale delle Ricerche (CNR) Italy. He is also a frequent scientific visitor of academic institutions as IMM-CNR-Italy, Minatec Grenoble-France, the Autonomous University of Barcelona-Spain, and the Israel Institute of Technology-Technion. He has authored and co-authored more than 50 papers in international conferences and journals.
Terahertz Array Receivers with Integrated Antennas
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro;
2011-01-01
Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.
Interfacial Stacks of Polymeric Nanofilms on Soft Biological Surfaces that Release Multiple Agents.
Herron, Maggie; Schurr, Michael J; Murphy, Christopher J; McAnulty, Jonathan F; Czuprynski, Charles J; Abbott, Nicholas L
2016-10-03
We report a general and facile method that permits the transfer (stacking) of multiple independently fabricated and nanoscopically thin polymeric films, each containing a distinct bioactive agent, onto soft biomedically relevant surfaces (e.g., collagen-based wound dressings). By using polyelectrolyte multilayer films (PEMs) formed from poly(allyl amine hydrochloride) and poly(acrylic acid) as representative polymeric nanofilms and micrometer-thick water-soluble poly(vinyl alcohol) sacrificial films to stack the PEMs, we demonstrate that it is possible to create stacked polymeric constructs containing multiple bioactive agents (e.g., antimicrobial and antibiofilm agents) on soft and chemically complex surfaces onto which PEMs cannot be routinely transferred by stamping. We illustrate the characteristics and merits of the approach by fabricating stacks of Ga 3+ (antibiofilm agent)- and Ag + (antimicrobial agent)-loaded PEMs as prototypical examples of agent-containing PEMs and demonstrate that the stacked PEMs incorporate precise loadings of the agents and provide flexibility in terms of tuning release rates. Specifically, we show that simultaneous release of Ga 3+ and Ag + from the stacked PEMs on collagen-based wound dressings can lead to synergistic effects on bacteria, killing and dispersing biofilms formed by Pseudomonas aeruginosa (two strains: ATCC 27853 and MPAO1) at sufficiently low loadings of agents such that cytotoxic effects on mammalian cells are avoided. The approach is general (a wide range of bioactive agents other than Ga 3+ and Ag + can be incorporated into PEMs), and the modular nature of the approach potentially allows end-user functionalization of soft biological surfaces for programmed release of multiple bioactive agents.
Madison, Stephanie L; Nebenführ, Andreas
2011-09-01
In plant cells, the Golgi apparatus consists of numerous stacks that, in turn, are composed of several flattened cisternae with a clear cis-to-trans polarity. During normal functioning within living cells, this unusual organelle displays a wide range of dynamic behaviors such as whole stack motility, constant membrane flux through the cisternae, and Golgi enzyme recycling through the ER. In order to further investigate various aspects of Golgi stack dynamics and integrity, we co-expressed pairs of established Golgi markers in tobacco BY-2 cells to distinguish sub-compartments of the Golgi during monensin treatments, movement, and brefeldin A (BFA)-induced disassembly. A combination of cis and trans markers revealed that Golgi stacks remain intact as they move through the cytoplasm. The Golgi stack orientation during these movements showed a slight preference for the cis side moving ahead, but trans cisternae were also found at the leading edge. During BFA treatments, the different sub-compartments of about half of the observed stacks fused with the ER sequentially; however, no consistent order could be detected. In contrast, the ionophore monensin resulted in swelling of trans cisternae while medial and particularly cis cisternae were mostly unaffected. Our results thus demonstrate a remarkable equivalence of the different cisternae with respect to movement and BFA-induced fusion with the ER. In addition, we propose that a combination of dual-label fluorescence microscopy and drug treatments can provide a simple alternative approach to the determination of protein localization to specific Golgi sub-compartments.
NASA Astrophysics Data System (ADS)
Garabito, German; Cruz, João Carlos Ribeiro; Oliva, Pedro Andrés Chira; Söllner, Walter
2017-01-01
The Common Reflection Surface stack is a robust method for simulating zero-offset and common-offset sections with high accuracy from multi-coverage seismic data. For simulating common-offset sections, the Common-Reflection-Surface stack method uses a hyperbolic traveltime approximation that depends on five kinematic parameters for each selected sample point of the common-offset section to be simulated. The main challenge of this method is to find a computationally efficient data-driven optimization strategy for accurately determining the five kinematic stacking parameters on which each sample of the stacked common-offset section depends. Several authors have applied multi-step strategies to obtain the optimal parameters by combining different pre-stack data configurations. Recently, other authors used one-step data-driven strategies based on a global optimization for estimating simultaneously the five parameters from multi-midpoint and multi-offset gathers. In order to increase the computational efficiency of the global optimization process, we use in this paper a reduced form of the Common-Reflection-Surface traveltime approximation that depends on only four parameters, the so-called Common Diffraction Surface traveltime approximation. By analyzing the convergence of both objective functions and the data enhancement effect after applying the two traveltime approximations to the Marmousi synthetic dataset and a real land dataset, we conclude that the Common-Diffraction-Surface approximation is more efficient within certain aperture limits and preserves at the same time a high image accuracy. The preserved image quality is also observed in a direct comparison after applying both approximations for simulating common-offset sections on noisy pre-stack data.
Scale dependant compensational stacking of channelized sedimentary deposits
NASA Astrophysics Data System (ADS)
Wang, Y.; Straub, K. M.; Hajek, E. A.
2010-12-01
Compensational stacking, the tendency for sediment transport system to preferentially fill topographic lows, thus smoothing out topographic relief is a concept used in the interpretation of the stratigraphic record. Recently, a metric was developed to quantify the strength of compensation in sedimentary basins by comparing observed stacking patterns to what would be expected from simple, uncorrelated stacking. This method uses the rate of decay of spatial variability in sedimentation between picked depositional horizons with increasing vertical stratigraphic averaging distance. We explore how this metric varies as a function of stratigraphic scale using data from physical experiments, stratigraphy exposed in outcrops and numerical models. In an experiment conducted at Tulane University’s Sediment Dynamics Laboratory, the topography of a channelized delta formed by weakly cohesive sediment was monitored along flow-perpendicular transects at a high temporal resolution relative to channel kinematics. Over the course of this experiment a uniform relative subsidence pattern, designed to isolate autogenic processes, resulted in the construction of a stratigraphic package that is 25 times as thick as the depth of the experimental channels. We observe a scale-dependence on the compensational stacking of deposits set by the system’s avulsion time-scale. Above the avulsion time-scale deposits stack purely compensationally, but below this time-scale deposits stack somewhere between randomly and deterministically. The well-exposed Ferris Formation (Cretaceous/Paleogene, Hanna Basin, Wyoming, USA) also shows scale-dependant stratigraphic organization which appears to be set by an avulsion time-scale. Finally, we utilize simple object-based models to illustrate how channel avulsions influence compensation in alluvial basins.
Two applications of time reversal mirrors: seismic radio and seismic radar.
Hanafy, Sherif M; Schuster, Gerard T
2011-10-01
Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibration Green's functions in the area of interest. This reference Green's function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismic radar can detect the moving coordinates (x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs. © 2011 Acoustical Society of America
Effect of vacancy defects on generalized stacking fault energy of fcc metals.
Asadi, Ebrahim; Zaeem, Mohsen Asle; Moitra, Amitava; Tschopp, Mark A
2014-03-19
Molecular dynamics (MD) and density functional theory (DFT) studies were performed to investigate the influence of vacancy defects on generalized stacking fault (GSF) energy of fcc metals. MEAM and EAM potentials were used for MD simulations, and DFT calculations were performed to test the accuracy of different common parameter sets for MEAM and EAM potentials in predicting GSF with different fractions of vacancy defects. Vacancy defects were placed at the stacking fault plane or at nearby atomic layers. The effect of vacancy defects at the stacking fault plane and the plane directly underneath of it was dominant compared to the effect of vacancies at other adjacent planes. The effects of vacancy fraction, the distance between vacancies, and lateral relaxation of atoms on the GSF curves with vacancy defects were investigated. A very similar variation of normalized SFEs with respect to vacancy fractions were observed for Ni and Cu. MEAM potentials qualitatively captured the effect of vacancies on GSF.
ACBD3 functions as a scaffold to organize the Golgi stacking proteins and a Rab33b-GAP.
Yue, Xihua; Bao, Mengjing; Christiano, Romain; Li, Siyang; Mei, Jia; Zhu, Lianhui; Mao, Feifei; Yue, Qiang; Zhang, Panpan; Jing, Shuaiyang; Rothman, James E; Qian, Yi; Lee, Intaek
2017-09-01
Golgin45 plays important roles in Golgi stack assembly and is known to bind both the Golgi stacking protein GRASP55 and Rab2 in the medial-Golgi cisternae. In this study, we sought to further characterize the cisternal adhesion complex using a proteomics approach. We report here that Acyl-CoA binding domain containing 3 (ACBD3) is likely to be a novel binding partner of Golgin45. ACBD3 interacts with Golgin45 via its GOLD domain, while its co-expression significantly increases Golgin45 targeting to the Golgi. Furthermore, ACBD3 recruits TBC1D22, a Rab33b GTPase activating protein (GAP), to a large multi-protein complex containing Golgin45 and GRASP55. These results suggest that ACBD3 may provide a scaffolding to organize the Golgi stacking proteins and a Rab33b-GAP at the medial-Golgi. © 2017 Federation of European Biochemical Societies.
Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods.
Demortière, Arnaud; Leonard, Donovan N; Petkov, Valeri; Chapman, Karena; Chattopadhyay, Soma; She, Chunxing; Cullen, David A; Shibata, Tomohiro; Pelton, Matthew; Shevchenko, Elena V
2018-04-19
Colloidal semiconductor nanocrystals are commonly grown with a shell of a second semiconductor material to obtain desired physical properties, such as increased photoluminescence quantum yield. However, the growth of a lattice-mismatched shell results in strain within the nanocrystal, and this strain has the potential to produce crystalline defects. Here, we study CdSe/CdS core/shell nanorods as a model system to investigate the influence of core size and shape on the formation of stacking faults in the nanocrystal. Using a combination of high-angle annular dark-field scanning transmission electron microscopy and pair-distribution-function analysis of synchrotron X-ray scattering, we show that growth of the CdS shell on smaller, spherical CdSe cores results in relatively small strain and few stacking faults. By contrast, growth of the shell on larger, prolate spheroidal cores leads to significant strain in the CdS lattice, resulting in a high density of stacking faults.
Liu, Yan; Guenneau, Sébastien; Gralak, Boris
2013-01-01
We investigate a high-order homogenization (HOH) algorithm for periodic multi-layered stacks. The mathematical tool of choice is a transfer matrix method. Expressions for effective permeability, permittivity and magnetoelectric coupling are explored by frequency power expansions. On the physical side, this HOH uncovers a magnetoelectric coupling effect (odd-order approximation) and artificial magnetism (even-order approximation) in moderate contrast photonic crystals. Comparing the effective parameters' expressions of a stack with three layers against that of a stack with two layers, we note that the magnetoelectric coupling effect vanishes while the artificial magnetism can still be achieved in a centre-symmetric periodic structure. Furthermore, we numerically check the effective parameters through the dispersion law and transmission property of a stack with two dielectric layers against that of an effective bianisotropic medium: they are in good agreement throughout the low-frequency (acoustic) band until the first stop band, where the analyticity of the logarithm function of the transfer matrix () breaks down. PMID:24101891
Structural and electronic transformation in low-angle twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Gargiulo, Fernando; Yazyev, Oleg V.
2018-01-01
Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moiré pattern inherent to twisted bilayer graphene taking place at twist angles θ below a crossover angle θ\\star=1.2\\circ . The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.
The Characterisation of a PEM Fuel-Cell System with a Focus on UAS Applications
2014-01-01
consumption at rated output Approximately 580 ml/min (at normal conditions) Maximum permissible cell temperature Operation: 50 °C; starting: 45 °C...serves to control the temperature of the stack as well as to provide oxygen for the reaction. Fur- thermore, the theoretically computed airflow rate is...The stack temperature has a significant effect on the performance of a fuel cell. Therefore, an understanding of how a fuel cell functions across a
Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2
NASA Astrophysics Data System (ADS)
Qiao, Xiao-Fen; Wu, Jiang-Bin; Zhou, Linwei; Qiao, Jingsi; Shi, Wei; Chen, Tao; Zhang, Xin; Zhang, Jun; Ji, Wei; Tan, Ping-Heng
2016-04-01
Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01569g
Measurement of Ferroelectric Films in MFM and MFIS Structures
NASA Astrophysics Data System (ADS)
Anderson, Jackson D.
For many years ferroelectric memory has been used in applications requiring low power, yet mainstream adoption has been stifled due to integration and scaling issues. With the renewed interest in these devices due to the recent discovery of ferroelectricity in HfO2, it is imperative that the properties of these films are well understood. To aid that end, a ferroelectric analysis package has been developed and released on GitHub and PyPI under a creative commons non-commercial share-alike license. This package contains functions for visualization and analysis of data from polarization, leakage current, and FORC measurements as well as basic modeling capability. Functionality is verified via the analysis of lead zirconate titanate (PZT) capacitors, where a multi-domain simulation based on an experimental Preisach density shows decent agreement despite measurement noise. The package is then used in the analysis of ferroelectric HfO2 films deposited in metal-ferroelectric-metal (MFM) and metal-ferroelectric-insulator-semiconductor (MFIS) stacks. 13.5 nm HfO2 films deposited on a semiconductor surface are shown to have a coercive voltage of 2.5 V, rather than the 1.9 V of the film in an MFM stack. This value further increases to 3-5 V when a lightly doped semiconductor depletion and inversion capacitance is added to the stack. The magnitude of this change is more than can be accounted for from the 10% voltage drop across the interfacial oxide layer, indicating that the modified surface properties are impacting the formation of the ferroelectric phase during anneal. In light of this, care should be taken to map out ferroelectric HfO2 properties using the particular physical stack that will be used, rather than using an MFM stack as a proxy.
Mukherjee, Sanchita; Kailasam, Senthilkumar; Bansal, Manju; Bhattacharyya, Dhananjay
2014-01-01
Double helical structures of DNA and RNA are mostly determined by base pair stacking interactions, which give them the base sequence-directed features, such as small roll values for the purine-pyrimidine steps. Earlier attempts to characterize stacking interactions were mostly restricted to calculations on fiber diffraction geometries or optimized structure using ab initio calculations lacking variation in geometry to comment on rather unusual large roll values observed in AU/AU base pair step in crystal structures of RNA double helices. We have generated stacking energy hyperspace by modeling geometries with variations along the important degrees of freedom, roll, and slide, which were chosen via statistical analysis as maximally sequence dependent. Corresponding energy contours were constructed by several quantum chemical methods including dispersion corrections. This analysis established the most suitable methods for stacked base pair systems despite the limitation imparted by number of atom in a base pair step to employ very high level of theory. All the methods predict negative roll value and near-zero slide to be most favorable for the purine-pyrimidine steps, in agreement with Calladine's steric clash based rule. Successive base pairs in RNA are always linked by sugar-phosphate backbone with C3'-endo sugars and this demands C1'-C1' distance of about 5.4 Å along the chains. Consideration of an energy penalty term for deviation of C1'-C1' distance from the mean value, to the recent DFT-D functionals, specifically ωB97X-D appears to predict reliable energy contour for AU/AU step. Such distance-based penalty improves energy contours for the other purine-pyrimidine sequences also. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 107-120, 2014. Copyright © 2013 Wiley Periodicals, Inc.
Hyperchromatic lens for recording time-resolved phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frayer, Daniel K.
A method and apparatus for the capture of a high number of quasi-continuous effective frames of 2-D data from an event at very short time scales (from less than 10.sup.-12 to more than 10.sup.-8 seconds) is disclosed which allows for short recording windows and effective number of frames. Active illumination, from a chirped laser pulse directed to the event creates a reflection where wavelength is dependent upon time and spatial position is utilized to encode temporal phenomena onto wavelength. A hyperchromatic lens system receives the reflection and maps wavelength onto axial position. An image capture device, such as holography ormore » plenoptic imaging device, captures the resultant focal stack from the hyperchromatic lens system in both spatial (imaging) and longitudinal (temporal) axes. The hyperchromatic lens system incorporates a combination of diffractive and refractive components to maximally separate focal position as a function of wavelength.« less
Perl Extension to the Bproc Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grunau, Daryl W.
2004-06-07
The Beowulf Distributed process Space (Bproc) software stack is comprised of UNIX/Linux kernel modifications and a support library by which a cluster of machines, each running their own private kernel, can present itself as a unified process space to the user. A Bproc cluster contains a single front-end machine and many back-end nodes which receive and run processes given to them by the front-end. Any process which is migrated to a back-end node is also visible as a ghost process on the fron-end, and may be controlled there using traditional UNIX semantics (e.g. ps(1), kill(1), etc). This software is amore » Perl extension to the Bproc library which enables the Perl programmer to make direct calls to functions within the Bproc library. See http://www.clustermatic.org, http://bproc.sourceforge.net, and http://www.perl.org« less
Mantle transition zone structure beneath Tanzania, east Africa
NASA Astrophysics Data System (ADS)
Owens, Thomas J.; Nyblade, Andrew A.; Gurrola, Harold; Langston, Charles A.
2000-03-01
We apply a three-dimensional stacking method to receiver functions from the Tanzania Broadband Seismic Experiment to determine relative variations in the thickness of the mantle transition zone beneath Tanzania. The transition zone under the Eastern rift is 30-40 km thinner than under areas of the Tanzania Craton in the interior of the East African Plateau unaffected by rift faulting. The region of transition zone thinning under the Eastern rift is several hundred kilometers wide and coincides with a 2-3% reduction in S wave velocities. The thinning of the transition zone, as well as the reduction in S wave velocities, can be attributed to a 200-300°K increase in temperature. This thermal anomaly at >400 km depth beneath the Eastern rift cannot be easily explained by passive rifting and but is consistent with a plume origin for the Cenozoic rifting, volcanism and plateau uplift in East Africa.
Crustal thickness and vP/vS ratio in Shanxi Graben, China
NASA Astrophysics Data System (ADS)
Shi, Yutao; Gao, Yuan; Jing, Honglin
2014-12-01
Shanxi Graben is in the middle part of the North China Craton, from south to north. With the teleseismic data recorded by Regional Seismograph Networks and the temporary ZBnet-W Seismic Array around east part of Shanxi Graben, we measured the crustal thickness and v P/ v S ratio beneath each station using the H-κ stack of receiver functions. The observed crustal thickness shows obvious lateral variation, increasing gradually from east to west in the Shanxi Graben. Beneath the Shanxi Graben the crust is relatively thicker than both sides of the south and the north. In addition, the v P/ v S ratio in the north of study zone is higher than that in the south. The highest v P/ v S ratio exists in the crust of the Xinding basin and the Datong basin. Our study also suggests that high velocity ratio might result from the strong activities of the magmation and volcanism.
Wang, Weijia; Pröller, Stephan; Niedermeier, Martin A; Körstgens, Volker; Philipp, Martine; Su, Bo; Moseguí González, Daniel; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter
2015-01-14
Highly efficient poly(3-hexylthiophene-2,5-diyl) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction solar cells are achieved by using an inverted geometry. The development of the morphology is investigated as a function of the multilayer stack assembling during the inverted solar cell preparation. Atomic force microscopy is used to reveal the surface morphology of each stack, and the inner structure is probed with grazing incidence small-angle X-ray scattering. It is found that the smallest domain size of P3HT is introduced by replicating the fluorine-doped tin oxide structure underneath. The structure sizes of the P3HT:PCBM active layer are further optimized after thermal annealing. Compared to devices with standard geometry, the P3HT:PCBM layer in the inverted solar cells shows smaller domain sizes, which are much closer to the exciton diffusion length in the polymer. The decrease in domain sizes is identified as the main reason for the improvement of the device performance.
Mainil, Michaël; Alexandre, Michaël; Monteverde, Fabien; Dubois, Philippe
2006-02-01
High density polyethylene (HDPE)/clay nanocomposites have been prepared using three different functionalized polyethylene compatibilizers: an ethylene/vinyl acetate copolymer, a polyethylene grafted with maleic anhydride functions and a (styrene-b-ethylene/butylene-b-styrene) block copolymer. The nanocomposites were prepared via two different routes: (1) the dispersion in HDPE of a masterbatch prepared from the compatibilizer and the clay or (2) the direct melt blending of the three components. For each compatibilizer, essentially intercalated nanocomposites were formed as determined by X-ray diffraction and transmission electron microscopy. With the ethylene/vinyl acetate copolymer, a significant delamination of the intercalated clay in thin stacks was observed. This dispersion of thin intercalated stacks within the polymer matrix allowed increasing significantly the stiffness and the flame resistance of the nanocomposite. A positive effect of shear rate and blending time has also been put into evidence, especially for the process based on the masterbatch preparation, improving both the formation of thin stacks of intercalated clay and the mechanical properties and the flame resistance of the formed nanocomposites.
NASA Astrophysics Data System (ADS)
Arjmand, T.; Tagani, M. Bagheri; Soleimani, H. Rahimpour
2018-01-01
Bilayer germanene nanoribbons are investigated in different stacks like buckled and flat armchair and buckled zigzag germanene nanoribbons by performing theoretical calculations using the nonequilibrium Greens function method combined with density functional theory. In these bilayer types, the current oscillates with change of interlayer distances or intra-layer overlaps and is dependent on the type of the bilayer. Band gap of AA-stacked of shifted flat bilayer armchair germanene nanoribbon oscillates by change of interlayer distance which is in contrast to buckled bilayer armchair germanene nanoribbon. So, results show the buckling makes system tend to be a semiconductor with wide band gap. Therefore, AA-stacked of shifted flat bilayer armchair germanene nanoribbon has properties between zigzag and armchair edges, the higher current under bias voltages similar to zigzag edge and also oscillations in current like buckled armchair edges. Also, it is found that HOMO-LUMO band gap strongly affects oscillation in currents and their I-V characteristic. This kind of junction improves the switching properties at low voltages around the band gap.
Xu, Renxiao; Lee, Jung Woo; Pan, Taisong; Ma, Siyi; Wang, Jiayi; Han, June Hyun; Ma, Yinji; Rogers, John A; Huang, Yonggang
2017-01-26
Many recently developed soft, skin-like electronics with high performance circuits and low modulus encapsulation materials can accommodate large bending, stretching, and twisting deformations. Their compliant mechanics also allows for intimate, nonintrusive integration to the curvilinear surfaces of soft biological tissues. By introducing a stacked circuit construct, the functional density of these systems can be greatly improved, yet their desirable mechanics may be compromised due to the increased overall thickness. To address this issue, the results presented here establish design guidelines for optimizing the deformable properties of stretchable electronics with stacked circuit layers. The effects of three contributing factors (i.e., the silicone inter-layer, the composite encapsulation, and the deformable interconnects) on the stretchability of a multilayer system are explored in detail via combined experimental observation, finite element modeling, and theoretical analysis. Finally, an electronic module with optimized design is demonstrated. This highly deformable system can be repetitively folded, twisted, or stretched without observable influences to its electrical functionality. The ultrasoft, thin nature of the module makes it suitable for conformal biointegration.
Xu, Renxiao; Lee, Jung Woo; Pan, Taisong; Ma, Siyi; Wang, Jiayi; Han, June Hyun; Ma, Yinji
2017-01-01
Many recently developed soft, skin-like electronics with high performance circuits and low modulus encapsulation materials can accommodate large bending, stretching, and twisting deformations. Their compliant mechanics also allows for intimate, nonintrusive integration to the curvilinear surfaces of soft biological tissues. By introducing a stacked circuit construct, the functional density of these systems can be greatly improved, yet their desirable mechanics may be compromised due to the increased overall thickness. To address this issue, the results presented here establish design guidelines for optimizing the deformable properties of stretchable electronics with stacked circuit layers. The effects of three contributing factors (i.e., the silicone inter-layer, the composite encapsulation, and the deformable interconnects) on the stretchability of a multilayer system are explored in detail via combined experimental observation, finite element modeling, and theoretical analysis. Finally, an electronic module with optimized design is demonstrated. This highly deformable system can be repetitively folded, twisted, or stretched without observable influences to its electrical functionality. The ultrasoft, thin nature of the module makes it suitable for conformal biointegration. PMID:29046624
Lee, Han Suk; Kim, Jin Ung
2013-01-01
[Purpose] We evaluated the effect of self-directed exercise using a task board on function and pain in the upper extremities of stroke patients [Subjects and Methods] We used the one group pre-post test design. Seven stroke patients who were selected based on the inclusion criteria participated in the program once a week for 10 weeks. The self-directed exercise comprised 5 stages that were divided according to the level of difficulty. The exercise was performed for 60 minutes using a special task board that we designed. The FMA (Fugl-Meyer Motor Assessment), VAS (Visual Analogue Scale), and speed of stacking were assessed to evaluate the amount of use of the affected arm at before and after intervention. [Results] The scores of the VAS and FMA, but not that of the speed of stacking cups, were improved. There was no significant correlation between the changes in VAS, FMA, and the speed of stacking cups. [Conclusion] The findings suggest that self-directed exercise with the task board could improve the levels of function and pain in the upper extremities. We suggest that self-directed exercise can be utilized as a clinical rehabilitation program and improve therapeutic effects. PMID:24259894
Yan, Zhequan; Chen, Liang; Yoon, Mina; ...
2016-01-12
Hexagonal boron nitride (h-BN) is a substrate for graphene based nano-electronic devices. We investigate the ballistic phonon transport at the interface of vertically stacked graphene and h-BN heterostructures using first principles density functional theory and atomistic Green's function simulations considering the influence of lattice stacking. We compute the frequency and wave-vector dependent transmission function and observe distinct stacking-dependent phonon transmission features for the h-BN/graphene/h-BN sandwiched systems. We find that the in-plane acoustic modes have the dominant contributions to the phonon transmission and thermal boundary conductance (TBC) for the interfaces with the carbon atom located directly on top of the boronmore » atom (C–B matched) because of low interfacial spacing. The low interfacial spacing is a consequence of the differences in the effective atomic volume of N and B and the difference in the local electron density around N and B. For the structures with the carbon atom directly on top of the nitrogen atom (C–N matched), the spatial distance increases and the contribution of in-plane modes to the TBC decreases leading to higher contributions by out-of-plane acoustic modes. We find that the C–B matched interfaces have stronger phonon–phonon coupling than the C–N matched interfaces, which results in significantly higher TBC (more than 50%) in the C–B matched interface. The findings in this study will provide insights to understand the mechanism of phonon transport at h-BN/graphene/h-BN interfaces, to better explain the experimental observations and to engineer these interfaces to enhance heat dissipation in graphene based electronic devices.« less
Marine Controlled Source EM Methods: Equipment, Methodology, and Results
NASA Astrophysics Data System (ADS)
Constable, S.; Behrens, J.; Key, K.
2005-12-01
The marine CSEM method has become an important tool for academia and the petroleum industry. Commercially viable seafloor receivers were developed for marine MT exploration over the last decade, but progress in CSEM transmitter design is still at an early stage. We have developed 200~A and 500~A transmitters (Scripps Undersea Electromagnetic Source Instrument, or SUESI-200/500) which operate within the 30~kVA power limitations of academic tow cables. This is done by careful control of antenna impedance (resistance and inductance) and power efficiency. Electrode impedance is largely a function of length, rather than surface area or diameter. The antenna can be made neutrally buoyant by balancing the weight of an aluminum conductor with a thick plastic jacket. Telemetry for control, navigation, and monitoring is overlaid on high voltage power transmission down coaxial tow cables, as an alternative to fiber optic telemetry, allowing use with winches and cables of opportunity. The CSEM noise floor determines the source--receiver ranges, and thus the investigation depths, that can be achieved, and depends on frequency, dipole moment, receiver noise, magnetotelluric interference, and stack time. For typical values, this is 10-15~VA-1m-2. We present examples of data from a sub-salt hydrocarbon prospect in the Gulf of Mexico, and an academic project over the magma chambers of the East Pacific Rise.
Location of Microearthquakes in Various Noisy Environments Using Envelope Stacking
NASA Astrophysics Data System (ADS)
Oye, V.; Gharti, H.
2009-12-01
Monitoring of microearthquakes is routinely conducted in various environments such as hydrocarbon and geothermal reservoirs, mines, dams, seismically active faults, volcanoes, nuclear power plants and CO2 storages. In many of these cases the handled data is sensitive and the interpretation of the data may be vital. In some cases, such as during mining or hydraulic fracturing activities, the number of microearthquakes is very large with tens to thousands of events per hour. In others, almost no events occur during a week and furthermore, it might not be anticipated that many events occur at all. However, the general setup of seismic networks, including surface and downhole stations, is usually optimized to record as many microearthquakes as possible, thereby trying to lower the detection threshold of the network. This process is obviously limited to some extent. Most microearthquake location techniques take advantage of a combination of P- and S-wave onset times that often can be picked reliably in an automatic mode. Moreover, when using seismic wave onset times, sometimes in combination with seismic wave polarization, these methods are more accurate compared to migration-based location routines. However, many events cannot be located because their magnitude is too small, i.e. the P- and/or S-wave onset times cannot be picked accurately on a sufficient number of receivers. Nevertheless, these small events are important for the interpretation of the processes that are monitored and even an inferior estimate of event locations and strengths is valuable information. Moreover, the smaller the event the more often such events statistically occur and the more important such additional information becomes. In this study we try to enhance the performance of any microseismic network, providing additional estimates of event locations below the actual detection threshold. We present a migration-based event location method, where we project the recorded seismograms onto the ray coordinate system, which corresponds to a configuration of trial sources and the real receiver network. A time window of predefined length is centered on the arrival time of the related phase that is calculated for the same grid of trial locations. The area spanned by the time window below the computed envelope is stacked for each component (L, T, Q) individually. Subsequently, the objective function is formulated as the squared sum of the stacked values. To obtain the final location, we apply a robust global optimization routine called differential evolution, which provides the maximum value of the objective function. This method provides a complete algorithm with a minimum of control parameters making it suitable for automated processing. The method can be applied to both single and multi-component data, and either P or S or both phases can be used. As a result, this method allows for a flexible application to a wide range of data. Synthetic data were computed for a complex and heterogeneous model of an ore mine and we applied this method to real, observed microearthquake data.
Datskos, Panagiotis G.; Rajic, Solobodan; Datskou, Irene C.
1999-01-01
Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.
NASA Astrophysics Data System (ADS)
Baumard, Théo; De Almeida, Olivier; Menary, Gary; Le Maoult, Yannick; Schmidt, Fabrice; Bikard, Jérôme
2016-10-01
The infrared heating of a vacuum-bagged, thermoplastic prepreg stack of glass/PA66 was studied to investigate the influence of vacuum level on thermal contact resistance between plies. A higher vacuum level was shown experimentally to decrease the transverse heat transfer efficiency, indicating that considering only the effect of heat conduction at the plies interfaces is not sufficient to predict the temperature distribution. An inverse analysis was used to retrieve the contact resistance coefficients as a function of vacuum pressure.
Small Patch Antennas for UWB Wireless Body Area Network
NASA Astrophysics Data System (ADS)
Klemm, M.; Tröster, G.
This paper presents the transient characteristics of an aperture-stacked patch antenna (ASPA) and its miniaturized version. These antennas were designed for ultra-wideband (UWB) body area network (BAN) applications, to operate within the 3 to 6 GHz frequency band. The APSA with large ground plane size has a planar dimensions 70 × 70 mm2, the smaller version has dimensions 32 × 26 mm2. The latest yields 85% reduction of the antenna surface. Time- and frequency-domain characteristics of these antennas were calculated in a transmission mode (Tx) and also in a complete, two-antenna (Tx-Rx) system. We have used 3 different waveforms to drive the antenna: gaussian pulse (duration-250 ps), monocycle pulse (duration-300 ps) and defined wavelet (duration-650 ps). The received pulses have very similar shapes (fidelity >90%), but they differ in the voltage amplitudes. Results show that the highest received voltage (best transmission efficiency) is achieved for the pulse with the closest spectrum to the antenna's transfer function characteristic. In order to disclose the effects of the human body proximity, two body models were built and full-wave FDTD method was employed to carry out the simulations. Significant changes of the UWB antenna performance when close to the body were identified. The most important effects are the seriously decreased radiation efficiency (16 to 34%) and different (from that in a free space) shape of the antenna transfer function. The first one can have the impact on low power implementations of UWB wearable radios; the second one discloses possible influence on the UWB systems design (especially for template receivers). The impact of the human body on antenna characteristics was identified to be a key factor in UWB body-worn antenna design.
Systolic array processing of the sequential decoding algorithm
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Yao, K.
1989-01-01
A systolic array processing technique is applied to implementing the stack algorithm form of the sequential decoding algorithm. It is shown that sorting, a key function in the stack algorithm, can be efficiently realized by a special type of systolic arrays known as systolic priority queues. Compared to the stack-bucket algorithm, this approach is shown to have the advantages that the decoding always moves along the optimal path, that it has a fast and constant decoding speed and that its simple and regular hardware architecture is suitable for VLSI implementation. Three types of systolic priority queues are discussed: random access scheme, shift register scheme and ripple register scheme. The property of the entries stored in the systolic priority queue is also investigated. The results are applicable to many other basic sorting type problems.
A trait stacking system via intra-genomic homologous recombination.
Kumar, Sandeep; Worden, Andrew; Novak, Stephen; Lee, Ryan; Petolino, Joseph F
2016-11-01
A gene targeting method has been developed, which allows the conversion of 'breeding stacks', containing unlinked transgenes into a 'molecular stack' and thereby circumventing the breeding challenges associated with transgene segregation. A gene targeting method has been developed for converting two unlinked trait loci into a single locus transgene stack. The method utilizes intra-genomic homologous recombination (IGHR) between stably integrated target and donor loci which share sequence homology and nuclease cleavage sites whereby the donor contains a promoterless herbicide resistance transgene. Upon crossing with a zinc finger nuclease (ZFN)-expressing plant, double-strand breaks (DSB) are created in both the stably integrated target and donor loci. DSBs flanking the donor locus result in intra-genomic mobilization of a promoterless selectable marker-containing donor sequence, which can be utilized as a template for homology-directed repair of a concomitant DSB at the target locus resulting in a functional selectable marker via nuclease-mediated cassette exchange (NMCE). The method was successfully demonstrated in maize using a glyphosate tolerance gene as a donor whereby up to 3.3 % of the resulting progeny embryos cultured on selection medium regenerated plants with the donor sequence integrated into the target locus. The process could be extended to multiple cycles of trait stacking by virtue of a unique intron sequence homology for NMCE between the target and the donor loci. This is the first report that describes NMCE via IGHR, thereby enabling trait stacking using conventional crossing.
The SBOL Stack: A Platform for Storing, Publishing, and Sharing Synthetic Biology Designs.
Madsen, Curtis; McLaughlin, James Alastair; Mısırlı, Göksel; Pocock, Matthew; Flanagan, Keith; Hallinan, Jennifer; Wipat, Anil
2016-06-17
Recently, synthetic biologists have developed the Synthetic Biology Open Language (SBOL), a data exchange standard for descriptions of genetic parts, devices, modules, and systems. The goals of this standard are to allow scientists to exchange designs of biological parts and systems, to facilitate the storage of genetic designs in repositories, and to facilitate the description of genetic designs in publications. In order to achieve these goals, the development of an infrastructure to store, retrieve, and exchange SBOL data is necessary. To address this problem, we have developed the SBOL Stack, a Resource Description Framework (RDF) database specifically designed for the storage, integration, and publication of SBOL data. This database allows users to define a library of synthetic parts and designs as a service, to share SBOL data with collaborators, and to store designs of biological systems locally. The database also allows external data sources to be integrated by mapping them to the SBOL data model. The SBOL Stack includes two Web interfaces: the SBOL Stack API and SynBioHub. While the former is designed for developers, the latter allows users to upload new SBOL biological designs, download SBOL documents, search by keyword, and visualize SBOL data. Since the SBOL Stack is based on semantic Web technology, the inherent distributed querying functionality of RDF databases can be used to allow different SBOL stack databases to be queried simultaneously, and therefore, data can be shared between different institutes, centers, or other users.
Vargas, Anthony; Liu, Fangze; Lane, Christopher; Rubin, Daniel; Bilgin, Ismail; Hennighausen, Zachariah; DeCapua, Matthew; Bansil, Arun; Kar, Swastik
2017-01-01
Vertical stacking is widely viewed as a promising approach for designing advanced functionalities using two-dimensional (2D) materials. Combining crystallographically commensurate materials in these 2D stacks has been shown to result in rich new electronic structure, magnetotransport, and optical properties. In this context, vertical stacks of crystallographically incommensurate 2D materials with well-defined crystallographic order are a counterintuitive concept and, hence, fundamentally intriguing. We show that crystallographically dissimilar and incommensurate atomically thin MoS2 and Bi2Se3 layers can form rotationally aligned stacks with long-range crystallographic order. Our first-principles theoretical modeling predicts heterocrystal electronic band structures, which are quite distinct from those of the parent crystals, characterized with an indirect bandgap. Experiments reveal striking optical changes when Bi2Se3 is stacked layer by layer on monolayer MoS2, including 100% photoluminescence (PL) suppression, tunable transmittance edge (1.1→0.75 eV), suppressed Raman, and wide-band evolution of spectral transmittance. Disrupting the interface using a focused laser results in a marked the reversal of PL, Raman, and transmittance, demonstrating for the first time that in situ manipulation of interfaces can enable “reconfigurable” 2D materials. We demonstrate submicrometer resolution, “laser-drawing” and “bit-writing,” and novel laser-induced broadband light emission in these heterocrystal sheets. PMID:28740860
NASA Astrophysics Data System (ADS)
Rai, D. P.; Kaur, Sumandeep; Srivastava, Sunita
2018-02-01
Density functional theory has been employed to study the electronic and mechanical properties of the monolayer and bilayer ZnS. AB stacked ZnS bilayer is found to be energetically more favorable over the AA stacked ZnS bilayer. The electronic bandgap decreases on moving from monolayer to bilayer. Application of positive transverse electric field in AA/AB stacked bilayers leads to a semiconductor to metal transition at 1.10 V/Å. Reversed polarity of electric field, on the other hand, leads to an asymmetric behavior of the bandgap for AB stacking while the behavior of the bandgap in AA stacking is polarity independent. The strong dependency of bandgap on polarity of electric field in AB stacked ZnS bilayer is due to the balancing of external field with the induced internal field which arises due the electronegativity and heterogeneity in the arrangements of atoms. The electronic structure varies with the variation of applied biaxial strain (compression/tensile). We report an increase in band gap in both single and double layers under compression up to -8.0%, which can be attributed to greater superposition of atomic orbitals (Zn-d and S-p hybridization). We expect that our results may stimulate more theoretical and experimental work on hexagonal multi-layers of ZnS employing external field (temperature, pressure, field etc.) for future applications of our present work.
Solid State Energy Conversion Energy Alliance (SECA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennessy, Daniel; Sibisan, Rodica; Rasmussen, Mike
2011-09-12
The overall objective is to develop a Solid Oxide Fuel Cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of ≥ 35 percent (AC/LHV). In Phase II andmore » Phase III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of ≥ 40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of ≥ 30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of ≥ 30 percent (DC/LHV) and a factory cost of ≤ $400/kW.« less
Solid State Energy Conversion Energy Alliance (SECA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennessy, Daniel; Sibisan, Rodica; Rasmussen, Mike
2011-09-12
The overall objective is to develop a solid oxide fuel cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of 35 percent (AC/LHV). In Phase II and Phasemore » III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of ≥40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of ≥30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of 30 percent (DC/LHV) and a factory cost of ≤$400/kW.« less
NASA Astrophysics Data System (ADS)
Deng, S.; Levander, A.
2017-12-01
Almost half of the North American continental plate is formed by the juvenile terrane accretion between 1.8-1.0 Ga, therefore, the suturing process of juvenile crust in East Central United States, not receiving as much attention probably due to low station coverage before the deployment of US transportable array, is of great importance to better understand the evolution of North American Plate. The Yavapai province is formed by the accretion of juvenile crust during 1.8-1.7 Ga. The northeastern part of Yavapai province is accreted to the Superior province along the Spirit Lake Tectonic Zone (SLTZ). During the period of 1.7-1.6 Ga, the Mazatzal Province, bounded the south of Yavapai Province, was added to Laurentia. The previous research mainly focuses on the southwestern Yavapai-Mazatzal boundary (Karlstrom et.al 2002, Magnani et.al 2004) but less in the northeastern area that we are interested in. The Granite-Rhyolite province is the product of the suturing event of juvenile arc crust reoccurring along the southeast margin of Laurentia between 1.55-1.35 Ga, which has been proved by the Nd model age (Whitmeyer et.al 2007). Here we will select the Mw>=5.5 teleseismic events with epicenter distance between 35 and 90 recorded by 300 available seismic stations in our study region. The receiver functions will be calculated by the water-level deconvolution in frequency domain (Langston 1979) and iterative deconvolution in time domain (Ligorria et.al 1999). The common conversion point (CCP) stacking method will then be applied to the receiver functions to create the 3-D image volume by imaging the conversion points in space from the time domain signals (Levander and Miller 2012). The preliminary results show that the accretion process of the tectonic provinces may have different models. The profiles of CCP image volume will inform us the seismic evidence to model the suturing process of juvenile Yavapai, Mozatzal and Granite-Rhyolite crust, hence providing great indication to interpret the growth of the North American plate. The updated results will be presented in the meeting.
NASA Astrophysics Data System (ADS)
Zhang, H.; Schmandt, B.
2017-12-01
The mantle transition zone has been widely studied by multiple sub-fields in geosciences including seismology, mineral physics and geodynamics. Due to the relatively high water storage capacity of olivine polymorphs (wadsleyite and ringwoodite) inside the transition zone, it is proposed to be a potential geochemical water reservoir that may contain one or more ocean masses of water. However, there is an ongoing debate about the hydration level of those minerals and how it varies from place to place. Considering that dehydration melting, which may happen during mantle flow across phase transitions between hydrated olivine polymorphs, may be seismically detectable, large-scale seismic imaging of heterogeneous scattering in the transition zone can contribute to the debate. To improve our understanding of the properties of the mantle transition zone and how they relate to mantle flow across its boundaries, it is important to gain an accurate image with large spatial coverage. The accuracy is primarily limited by the density of broadband seismic data and the imaging algorithms applied to the data, while the spatial coverage is limited by the availability of wide-aperture (>500 km) seismic arrays. Thus, the emergence of the USArray seismic data set (www.usarray.org) provides a nearly ideal data source for receiver side imaging of the mantle transition zone due to its large aperture ( 4000 km) with relatively small station spacing ( 70 km), which ensures that the transition zone beneath it is well sampled by teleseismic waves. In total, more than 200,000 P to S receiver functions will be used for imaging structures in depth range of 300 km to 800 km beneath the continental US with an improved 3D Kirchhoff pre-stacking migration method. The method uses 3-D wave fronts calculated for P and S tomography models to more accurately calculate point scattering coefficients and map receiver function lag times to 3-D position. The new images will help resolve any laterally sporadic or dipping interfaces that may be present at transition zone depths. The locations of sporadic velocity decreases will be compared with mantle flow models to evaluate the possibility of dehydration melting.
NASA Astrophysics Data System (ADS)
Chen, J.; Wiens, D.; Wei, S. S.; Zha, Y.; Julià, J.; Cai, C.; Chen, Y. J.
2015-12-01
In order to investigate the crustal thickness and lithospheric structure beneath active and inactive volcanic arcs in Fiji and Tonga, we analyzed receiver functions from teleseismic P waves as well as Rayleigh waves from teleseismic earthquakes and ambient noise. The data were recorded by stations from three previous temporary seismic arrays deployed on the islands during 1993-1995, 2001-2002, and 2009-2010. Receiver functions were calculated with an iterative deconvolution in the time domain. We used an H-k stacking method to get preliminary Moho depth estimates under the island arcs, after assuming constant seismic average crustal P velocity. We also determined the shear wave velocity structure beneath each station from a 1-D combined inversion of receiver functions and Rayleigh wave phase velocity dispersion curves from ambient noise cross correlation at 8s - 20s and teleseismic surface waves at 20s-90s. The joint inversion models reveal that the Moho beneath the main islands of the Fiji plateau is 26-31 km deep, whereas the crust under the outer islands - including the Lau Ridge - is generally thinner, with Moho depths of 21-23.5 km. The thinnest crust (16 km) is found beneath Moala Island located between the Fiji Platform and the Lau Ridge. Crustal thickness beneath several Tonga islands is about 18-20 km. A relatively high velocity lithosphere (Vs of 4.4 - 4.5 km/s) extends to only about 60 km depth beneath the outer Fiji Islands and Lau Ridge, but to depths of 90 km underneath the main islands of the Fiji Plateau. The much thicker crust and lithosphere of the Fiji plateau relative to the Lau Ridge and Tonga Arc reflects its much longer geological history of arc crust building, going back to the early Miocene.
Seismic character of the crust and upper mantle beneath the Sierra Nevada
NASA Astrophysics Data System (ADS)
Frassetto, A.; Gilbert, H.; Zandt, G.; Owens, T. J.; Jones, C.
2008-12-01
Recent geophysical studies of the Southern Sierra Nevada suggest that the removal of a gravitationally unstable, eclogitic residue links to recent volcanism and uplift in the Eastern Sierra. The Sierra Nevada EarthScope Project (SNEP) investigates the extent of this process beneath Central and Northern Sierra Nevada. We present receiver functions, which provide estimates of crustal thickness and Vp/Vs and image the response of the crust and upper mantle to lithospheric removal. For completeness this study combines data from the 2005-2007 SNEP broadband experiment, EarthScope's BigFoot Array, regional backbone stations, and earlier PASSCAL deployments. We analyze transects of teleseismic receiver functions generated using a common-conversion-point stacking algorithm. These identify a narrow, "bright" conversion from the Moho at depths of ~25-35 km along the crest of the Eastern Sierra and adjacent Basin and Range northward to the Cascade Arc. Trade-off analysis using the primary conversion and reverberations shows a high Vp/Vs (~1.9) throughout the Eastern Sierra, which may relate to partial melt present in the lower crust. To the west the crust-mantle boundary vanishes beneath the western foothills. However, low frequency receiver functions do image the crust-mantle boundary exceeding 50 km depth along the foothills to the west and south of Yosemite National Park. Unusually deep, intraplate earthquakes (Ryan et al., this session) occur in the center of this region. The frequency dependence of the Moho conversion implies a gradational increase from crust to mantle wavespeeds over a significant depth interval. The transition from a sharp to gradational Moho probably relates to the change from a delaminated granitic crust to crust with an intact, dense, eclogitic residue. The spatial correlation and focal mechanisms of the deep earthquakes suggest that a segment of this still intact residue is currently delaminating.
The Capricorn Orogen Passive source Array (COPA) in Western Australia
NASA Astrophysics Data System (ADS)
Gessner, K.; Yuan, H.; Murdie, R.; Dentith, M. C.; Johnson, S.; Brett, J.
2015-12-01
COPA is the passive source component of a multi-method geophysical program aimed at assessing the mineral deposits potential of the Proterozoic Capricorn Orogen. Previous results from the active source surveys, receiver functions and magnetotelluric studies show reworked orogenic crust in the orogen that contrasts with more simple crust in the neighbouring Archean cratons, suggesting progressive and punctuated collisional processes during the final amalgamation of the Western Australian craton. Previous seismic studies are all based on line deployment or single station analyses; therefore it is essential to develop 3D seismic images to test whether these observations are representative for the whole orogen. With a careful design that takes advantage of previous passive source surveys, the current long-term and short-term deployments span an area of approximately 500 x 500 km. The 36-month total deployment can guarantee enough data recording for 3D structure imaging using body wave tomography, ambient noise surface wave tomography and P- and S-wave receiver function Common Conversion Point (CCP) stacking techniques. A successive instrument loan from the ANSIR national instrument pool, provided 34 broadband seismometers that have been deployed in the western half of the orogen since March 2014. We expect approximately 40-km lateral resolution near the surface for the techniques we propose, which due to low frequency nature of earthquake waves will degrade to about 100 km near the base of the cratonic lithosphere, which is expected at depths between 200 to 250 km. Preliminary results from the first half of the COPA deployment will be presented in the light of the hypotheses that 1) distinct crustal blocks can be detected continuously throughout the orogen (using ambient noise/body wave tomography); 2) distinct lithologies are present in the crust and upper mantle across the orogen (using receiver function CCP images); and 3) crustal and lithosphere deformation along craton margins in general follows the "wedge" tectonic model (e.g. subduction of Juvenile blocks under the craton mantle as represented by craton-ward dipping sutures.
NASA Astrophysics Data System (ADS)
Ma, X.; Lowry, A. R.; Ravat, D.
2014-12-01
Thickness andseismic velocity of crustal layers are useful for understanding the history and evolution of continental lithosphere. Lowry and Pérez-Gussinyé (2011) observed that low bulk crustal seismic velocity ratio, Vp/Vs, strongly correlates with high geothermal gradient and active deformation, indicating quartz (to which Vp/Vs is most sensitive) plays a role in these processes. The lower crust (where ductile flow occurs which might explain the relationship) is commonly thought to be quartz-poor. However, layering of the crust may represent changes in either lithology or the phase of quartz. Laboratory strain-stress experiments on quartz indicate that near the a- to b-quartz phase transition, both Vp and Vp/Vs initially drop dramatically but then increase relative to the a-quartz regime because Young's modulus initially decreases by 30% before increasing by a net ~20%. Shear modulus varies only ~3% across the transition. Crustal structure is commonly represented by an upper, mid- and lower layer (e.g., Crust1.0) and conceptualized as primarily reflecting a change to more mafic lithology at greater depth, but estimates of Moho temperature indicate a quartz phase transition should be present in much of the western and central U.S. We have imaged multiple layering of the contiguous U.S. by applying a new cross-correlation and stacking method to USArray receiver functions. Synthetic models of a multiple layer crust indicate 'splitting' of converted-phase arrivals would be expected if a quartz phase transition were responsible. Preliminary imaging using cross-correlation of observed receiver functions with multiple layer synthetics demonstrates a marked improvement in correlation coefficients relative to a single-layer crust. In this presentation we will examine observational evidence for possible a- to b- phase transition layering (indicating quartz at depth) and compare with depths predicted for the quartz phase transition based on Pn-derived Moho temperatures and estimates of magnetic Curie depths.
NASA Astrophysics Data System (ADS)
Sun, Ya; Liu, Jianxin; Zhou, Keping; Chen, Bo; Guo, Rongwen
2015-07-01
The convergence of India and Eurasia and the obstruction from the rigid Sichuan Basin cause the Longmenshan (LMS) to have the steepest topographic gradient at the eastern margin of the Tibetan Plateau. However, the mechanisms of surface uplift are still controversial. In this paper, we estimate the crustal structure and deformation under the LMS and its surroundings by analyzing a large amount of receiver function data recorded by regional seismic networks of the China Earthquake Administration. We apply a comprehensive splitting measurement technique on Ps conversion phase at the Moho (Moho Ps splitting) to calculate crustal anisotropy from azimuthal variations of receiver functions. Our results show that most of the seismic stations beneath the LMS area exhibit significant seismic anisotropy with the splitting time of 0.22-0.94 s and a fast polarization direction of NW-SE, while less or even no crustal anisotropy has been observed under the Sichuan Basin. Comparing the fast polarization directions of Moho Ps splitting with the indicators of lithospheric deformation (such as shear wave splitting, absolute plate motion, and global positioning system) imply a consistent tendency of deformation between the lower crust and upper mantle, but decoupling deformation in the crust beneath the LMS area. We further compare Moho Ps splitting time to that estimated from previous SKS splitting, indicating that crustal anisotropy is an important source of the SKS splitting time in this study area. In addition, a thick crust (>50 km) with high Vp/Vs values (1.74-1.86) is also observed using the H-κ stacking method. These seismic observations are consistent with the scenario that the LMS area has been built by the lower crustal flow. Combined with the seismic reflection/refraction profile and geology studies, we further suggest that the lower crustal flow may extrude upward into the upper crust along the steeply dipping strike faults under the LMS area, resulting in the surface uplift of the LMS.
NASA Astrophysics Data System (ADS)
Lavayssiere, A.; Rychert, C.; Harmon, N.; Keir, D.; Hammond, J. O. S.; Kendall, J. M.; Leroy, S. D.; Doubre, C.
2017-12-01
The lithosphere is modified during rifting by a combination of mechanical stretching, heating and potentially partial melt. We image the crust and upper mantle discontinuity structure beneath the northern East African Rift System (EARS), a unique tectonically active continental rift exposing along strike the transition from continental rifting in the Main Ethiopian rift (MER) to incipient seafloor spreading in Afar and the Red Sea. S-to-P receiver functions from 182 stations across the northern EARS were generated from 3688 high quality waveforms using a multitaper technique and then migrated to depth using a regional velocity model. Waveform modelling of data stacked in large conversion point bins confirms the depth and strength of imaged discontinuities. We image the Moho at 29.6±4.7 km depth beneath the Ethiopian plateaux with a variability in depth that is possibly due to lower crustal intrusions. The crust is 27.3±3.9 km thick in the MER and thinner in northern Afar, 17.5±0.7 km. The model requires a 3±1.2% reduction in shear velocity with increasing depth at 68.5±1.5 km beneath the Ethiopian plateaux, consistent with the lithosphere-asthenosphere boundary (LAB). We do not resolve a LAB beneath Afar and the MER. This is likely associated with partial melt near the base of the lithosphere, reducing the velocity contrast between the melt-intruded lithosphere and the partially molten asthenosphere. We identify a 4.5±0.7% increase in velocity with depth at 91±3 km beneath the MER. This change in velocity is consistent with the onset of melting found by previous receiver functions and petrology studies. Our results provide independent constraints on the depth of melt production in the asthenosphere and suggest melt percolation through the base of the lithosphere beneath the northernmost East African rift.
Dynamic Cooperation of Hydrogen Binding and π Stacking in ssDNA Adsorption on Graphene Oxide.
Xu, Zhen; Lei, Xiaoling; Tu, Yusong; Tan, Zhi-Jie; Song, Bo; Fang, Haiping
2017-09-21
Functional nanoscale structures consisting of a DNA molecule coupled to graphene or graphene oxide (GO) have great potential for applications in biosensors, biomedicine, nanotechnology, and materials science. Extensive studies using the most sophisticated experimental techniques and theoretical methods have still not clarified the dynamic process of single-stranded DNA (ssDNA) adsorbed on GO surfaces. Based on a molecular dynamics simulation, this work shows that an ssDNA segment could be stably adsorbed on a GO surface through hydrogen bonding and π-π stacking interactions, with preferential binding to the oxidized rather than to the unoxidized region of the GO surface. The adsorption process shows a dynamic cooperation adsorption behavior; the ssDNA segment first captures the oxidized groups of the GO surface by hydrogen bonding interaction, and then the configuration relaxes to maximize the π-π stacking interactions between the aromatic rings of the nucleobases and those of the GO surface. We attributed this behavior to the faster forming hydrogen bonding interaction compared to π-π stacking; the π-π stacking interaction needs more relaxation time to regulate the configuration of the ssDNA segment to fit the aromatic rings on the GO surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of cooling system parameters on heat transfer in PAFC stack. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali A.
1985-01-01
Analytical and experimental study for the effects of cooling system parameters on the heat transfer and temperature distribution in the electrode plates of a phosphoric acid fuel-cell has been conducted. An experimental set-up that simulates the operating conditions prevailing in a phosphoric-acid fuel-cell stack was designed and constructed. The set-up was then used to measure the overall heat transfer coefficient, the thermal contact resistance, and the electrode temperature distribution for two different cooling plate configurations. Two types of cooling plate configurations, serpentine and straight, were tested. Air, water, and oil were used as coolants. Measurements for the heat transfer coefficient and the thermal contact resistance were made for various flow rates ranging from 16 to 88 Kg/hr, and stack clamping pressure ranging from O to 3448 Kpa. The experimental results for the overall heat transfer coefficient were utilized to derive mathematical relations for the overall heat transfer coefficient as a function of stack clamping pressure and Reynolds number for the three coolants. The empirically derived formulas were incorporated in a previously developed computer program to predict electrodes temperature distribution and the performance of the stack cooling system. The results obtained were then compared with those available in the literature. The comparison showed maximum deviation of +/- 11%.
Role of Naphthenic Acids in Controlling Self-Aggregation of a Polyaromatic Compound in Toluene.
Teklebrhan, Robel B; Jian, Cuiying; Choi, Phillip; Xu, Zhenghe; Sjöblom, Johan
2016-04-14
In this work, a series of molecular dynamics simulations were performed to investigate the effect of naphthenic acids (NAs) in early stage self-assembly of polyaromatic (PA) molecules in toluene. By exploiting NA molecules of the same polar functional group but different aliphatic/cycloaliphatic nonpolar tails, it was found that irrespective of the presence of the NA molecules in the system, the dominant mode of π-π stacking is a twisted, offset parallel stacking of a slightly larger overlapping area. Unlike large NA molecules, the presence of small NA molecules enhanced the number of π-π stacked PA molecules by suppressing the hydrogen bonding interactions among the PA molecules. Smaller NA molecules were found to have a higher tendency to associate with PA molecules than larger NA molecules. Moreover, the size and distribution of π-π stacking structures were affected to different degrees by changing the size and structural features of the NA molecules in the system. It was further revealed that the association between NA and PA molecules, mainly through hydrogen bonding, creates a favorable local environment for the overlap of PA cores (i.e., π-π stacking growth) by depressing the hydrogen bonding between PA molecules, which results in the removal of some toluene molecules from the vicinity of the PA molecules.
Lithospheric Layering beneath the Contiguous United States Constrained by S-to-P Receiver Functions
NASA Astrophysics Data System (ADS)
Liu, L.; Liu, K. H.; Kong, F.; Gao, S. S.
2017-12-01
The greatly-improved spatial coverage of broadband seismic stations as a result of the deployment of the EarthScope Transportable Array (TA) stations and the diversity of tectonic environments in the contiguous United States provide a unique opportunity to investigate the depth variation and nature of intra-lithospheric interfaces in different tectonic regimes. A total of 284,121 high-quality S-to-P receiver functions (SRFs) are obtained from 3,809 broadband seismic stations in the TA and other permanent and temporary deployments in the contiguous United States. The SRFs are computed using frequency domain deconvolution, and are stacked in consecutive circles with a radius of 2°. They are converted to depth series after move-out corrections using the IASP91 Earth model. Similar to previous SRF studies, a robust negative arrival, representing a sharp discontinuity of velocity reduction with depth, is visible in virtually all the stacked traces in the depth range of 30-110 km. Beneath the western US, the depth of this discontinuity is 69±17 km, and beneath the eastern US, it ranges from 75 to 90 km, both of which are comparable to the depth of the tomographically-determined lithosphere-asthenosphere boundary (LAB). In contrast, the depth of the discontinuity beneath the central US is 83±10 km which is significantly smaller than the 250 km LAB depth determined by seismic surface wave tomography. Based on previous seismic tomography, shear-wave splitting and mantle xenolith studies, we interpret this discontinuity as the top of a frozen-in layer of volatile-rich melt beneath the central US. The observations and the discrepancy between the SRF and seismic tomography results for the central US as well as the amplitude of the corresponding arrival on the SRFs may be explained by spatial variations of the thickness of the transitional layer between the "pure" lithosphere and the "pure" asthenosphere. Under this hypothesis, the consistency between the results from the SRFs and seismic tomography for the western and eastern US suggests a thin transitional layer. On the contrary, a thick transitional layer is inferred for the central US. For this area, while the long-period surface waves can detect the transitional layer, the gradual natural of its lower boundary makes it hard for the short wavelength SRFs to detect.
High lateral resolution exploration using surface waves from noise records
NASA Astrophysics Data System (ADS)
Chávez-García, Francisco José Yokoi, Toshiaki
2016-04-01
Determination of the shear-wave velocity structure at shallow depths is a constant necessity in engineering or environmental projects. Given the sensitivity of Rayleigh waves to shear-wave velocity, subsoil structure exploration using surface waves is frequently used. Methods such as the spectral analysis of surface waves (SASW) or multi-channel analysis of surface waves (MASW) determine phase velocity dispersion from surface waves generated by an active source recorded on a line of geophones. Using MASW, it is important that the receiver array be as long as possible to increase the precision at low frequencies. However, this implies that possible lateral variations are discarded. Hayashi and Suzuki (2004) proposed a different way of stacking shot gathers to increase lateral resolution. They combined strategies used in MASW with the common mid-point (CMP) summation currently used in reflection seismology. In their common mid-point with cross-correlation method (CMPCC), they cross-correlate traces sharing CMP locations before determining phase velocity dispersion. Another recent approach to subsoil structure exploration is based on seismic interferometry. It has been shown that cross-correlation of a diffuse field, such as seismic noise, allows the estimation of the Green's Function between two receivers. Thus, a virtual-source seismic section may be constructed from the cross-correlation of seismic noise records obtained in a line of receivers. In this paper, we use the seismic interferometry method to process seismic noise records obtained in seismic refraction lines of 24 geophones, and analyse the results using CMPCC to increase the lateral resolution of the results. Cross-correlation of the noise records allows reconstructing seismic sections with virtual sources at each receiver location. The Rayleigh wave component of the Green's Functions is obtained with a high signal-to-noise ratio. Using CMPCC analysis of the virtual-source seismic lines, we are able to identify lateral variations of phase velocity inside the seismic line, and increase the lateral resolution compared with results of conventional analysis.
Laser warning receiver to identify the wavelength and angle of arrival of incident laser light
Sinclair; Michael B.; Sweatt, William C.
2010-03-23
A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.
Hydration of Caffeine at High Temperature by Neutron Scattering and Simulation Studies.
Tavagnacco, L; Brady, J W; Bruni, F; Callear, S; Ricci, M A; Saboungi, M L; Cesàro, A
2015-10-22
The solvation of caffeine in water is examined with neutron diffraction experiments at 353 K. The experimental data, obtained by taking advantage of isotopic H/D substitution in water, were analyzed by empirical potential structure refinement (EPSR) in order to extract partial structure factors and site-site radial distribution functions. In parallel, molecular dynamics (MD) simulations were carried out to interpret the data and gain insight into the intermolecular interactions in the solutions and the solvation process. The results obtained with the two approaches evidence differences in the individual radial distribution functions, although both confirm the presence of caffeine stacks at this temperature. The two approaches point to different accessibility of water to the caffeine sites due to different stacking configurations.
NASA Astrophysics Data System (ADS)
Massin, F.; Malcolm, A. E.
2017-12-01
Knowing earthquake source mechanisms gives valuable information for earthquake response planning and hazard mitigation. Earthquake source mechanisms can be analyzed using long period waveform inversion (for moderate size sources with sufficient signal to noise ratio) and body-wave first motion polarity or amplitude ratio inversion (for micro-earthquakes with sufficient data coverage). A robust approach that gives both source mechanisms and their associated probabilities across all source scales would greatly simplify the determination of source mechanisms and allow for more consistent interpretations of the results. Following previous work on shift and stack approaches, we develop such a probabilistic source mechanism analysis, using waveforms, which does not require polarity picking. For a given source mechanism, the first period of the observed body-waves is selected for all stations, multiplied by their corresponding theoretical polarity and stacked together. (The first period is found from a manually picked travel time by measuring the central period where the signal power is concentrated, using the second moment of the power spectral density function.) As in other shift and stack approaches, our method is not based on the optimization of an objective function through an inversion. Instead, the power of the polarity-corrected stack is a proxy for the likelihood of the trial source mechanism, with the most powerful stack corresponding to the most likely source mechanism. Using synthetic data, we test our method for robustness to the data coverage, coverage gap, signal to noise ratio, travel-time picking errors and non-double couple component. We then present results for field data in a volcano-tectonic context. Our results are reliable when constrained by 15 body-wavelets, with gap below 150 degrees, signal to noise ratio over 1 and arrival time error below a fifth of the period (0.2T) of the body-wave. We demonstrate that the source scanning approach for source mechanism analysis has similar advantages to waveform inversion (full waveform data, no manual intervention, probabilistic approach) and similar applicability to polarity inversion (any source size, any instrument type).
Planar varactor frequency multiplier devices with blocking barrier
NASA Technical Reports Server (NTRS)
Lieneweg, Udo (Inventor); Frerking, Margaret A. (Inventor); Maserjian, Joseph (Inventor)
1994-01-01
The invention relates to planar varactor frequency multiplier devices with a heterojunction blocking barrier for near millimeter wave radiation of moderate power from a fundamental input wave. The space charge limitation of the submillimeter frequency multiplier devices of the BIN(sup +) type is overcome by a diode structure comprising an n(sup +) doped layer of semiconductor material functioning as a low resistance back contact, a layer of semiconductor material with n-type doping functioning as a drift region grown on the back contact layer, a delta doping sheet forming a positive charge at the interface of the drift region layer with a barrier layer, and a surface metal contact. The layers thus formed on an n(sup +) doped layer may be divided into two isolated back-to-back BNN(sup +) diodes by separately depositing two surface metal contacts. By repeating the sequence of the drift region layer and the barrier layer with the delta doping sheet at the interfaces between the drift and barrier layers, a plurality of stacked diodes is formed. The novelty of the invention resides in providing n-type semiconductor material for the drift region in a GaAs/AlGaAs structure, and in stacking a plurality of such BNN(sup +) diodes stacked for greater output power with and connected back-to-back with the n(sup +) GaAs layer as an internal back contact and separate metal contact over an AlGaAs barrier layer on top of each stack.
Takazaki, Hiroko; Liu, Zhongmei; Jin, Mingyue; Kamiya, Ritsu; Yasunaga, Takuo
2010-07-01
Outer arm dynein (OAD) in cilia and flagella contains two to three nonidentical heavy chains (HCs) that possess motor activity. In Chlamydomonas, flagellar OAD contains three HCs, alpha-, beta-, and gamma-HCs, each appearing to have a distinct role. To determine the precise molecular mechanism of their function, cross-sectional electron micrographs of wild-type and single HC-disruption mutants were compared and statistically analyzed. While the alpha-HC mutant displayed an OAD of lower density, which was attributed to a lack of alpha-HC, the OAD of beta- and gamma-HC mutants not only lacked the corresponding HC, but was also significantly affected in its structure, particularly with respect to the localization of alpha-HC. The lack of beta-HC induced mislocalization of alpha-HC, while a disruption of the gamma-HC gene resulted in the synchronized movement of alpha-HC and beta-HC in the manners for stacking. Interestingly, using cryo-electron microscopy, purified OADs were typically observed consisting of two stacked heads and an independent single head, which presumably corresponded to gamma-HC. This conformation is different from previous reports in which the three HCs displayed a stacked form in flagella observed by cryo-electron tomography and a bouquet structure on mica in deep-etch replica images. These results suggest that gamma-HC supports the tight stacking arrangement of inter or intra alpha-/beta-HC to facilitate the proper functioning of OAD. 2010 Wiley-Liss, Inc.
Basic criteria for formation of growth twins in high stacking fault energy metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, K. Y.; Zhang, X.; Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843
Nanotwinned metals received significant interest lately as twin boundaries may enable simultaneous enhancement of strength, ductility, thermal stability, and radiation tolerance. However, nanotwins have been the privilege of metals with low-to-intermediate stacking fault energy (SFE). Recent scattered studies show that nanotwins could be introduced into high SFE metals, such as Al. In this paper, we examine several sputter-deposited, (111) textured Ag/Al, Cu/Ni, and Cu/Fe multilayers, wherein growth twins were observed in Al, Ni, and face-centered cubic (fcc) Fe. The comparisons lead to two important design criteria that dictate the introduction of growth twins in high SFE metals. The validity ofmore » these criteria was then examined in Ag/Ni multilayers. Furthermore, another twin formation mechanism in high SFE metals was discovered in Ag/Ni system.« less
Receiver Functions of the Mangystau Region, Western Kazakhstan
NASA Astrophysics Data System (ADS)
Martinetti, L. B.; Mackey, K. G.
2017-12-01
The Mangystau Region, in southwestern Kazakhstan contains many geographic features such as basins, plateaus, and mountain ranges. However, little has been published in English or Russian, and the region has never been instrumented with broadband seismometers before. From August through September 2016, a seismic noise survey took place where 10 broadband seismic stations were deployed throughout the region for 20 days each by MSU. The sensors recorded various teleseismic events and the data were used to infer crustal thickness. The goal of this study is to determine if reliable receiver functions can be created with 20 days of data recorded, and test what is the best way to use the data to find the thickness of the crust. Since a limited amount of data is available, teleseismic events of magnitude > 5 and that occurred from 30 to 90 degrees from the station were used. To have a better solution, a local calibration event was used to solve the seismic velocity and match the results of a previously done study (5.6 - 6.5 km/s) by a Kazak group, which was then used for H-k stacking. While the work is still in progress, it will add to the knowledge of the area, thus give an insight to the crustal thickness of the overall region. This study can also be used to provide information of the crustal thickness of the northern Caspian basin, near the Caucasus, where another major effort is being conducted.
Hongo, Kenta; Cuong, Nguyen Thanh; Maezono, Ryo
2013-02-12
We report fixed-node diffusion Monte Carlo (DMC) calculations of stacking interaction energy between two adenine(A)-thymine(T) base pairs in B-DNA (AA:TT), for which reference data are available, obtained from a complete basis set estimate of CCSD(T) (coupled-cluster with singles, doubles, and perturbative triples). We consider four sets of nodal surfaces obtained from self-consistent field calculations and examine how the different nodal surfaces affect the DMC potential energy curves of the AA:TT molecule and the resulting stacking energies. We find that the DMC potential energy curves using the different nodes look similar to each other as a whole. We also benchmark the performance of various quantum chemistry methods, including Hartree-Fock (HF) theory, second-order Møller-Plesset perturbation theory (MP2), and density functional theory (DFT). The DMC and recently developed DFT results of the stacking energy reasonably agree with the reference, while the HF, MP2, and conventional DFT methods give unsatisfactory results.
Ito, Yoko; Uemura, Tomohiro; Shoda, Keiko; Fujimoto, Masaru; Ueda, Takashi; Nakano, Akihiko
2012-01-01
The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration. PMID:22740633
Ito, Yoko; Uemura, Tomohiro; Shoda, Keiko; Fujimoto, Masaru; Ueda, Takashi; Nakano, Akihiko
2012-08-01
The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.
NASA Astrophysics Data System (ADS)
Masy, J.; Levander, A.; Niu, F.
2011-12-01
We have made teleseismic Ps and Sp receiver functions from data recorded from 2003 to 2009 by the permanent national seismic network of Venezuela, the BOLIVAR (Broadband Onshore-offshore Lithospheric Investigation of Venezuela and the Antilles arc Region) and WAVE (Western Array for Venezuela) experiments. The receiver functions show rapid variations in Moho and lithosphere-asthenosphere boundary (LAB) depths both across and along the southern Caribbean plate boundary region. We used a total of 69 events with Mw > 6 occurring at epicentral distances from 30° to 90° for the Ps receiver functions, and 43 events with Mw > 5.7 from 55° to 85° to make Sp receiver functions. For CCP stacking we constructed a 3D velocity model from numerous active source profiles (Schmitz et al., 2001; Bezada et al., 2007; Clark et al., 2008; Guedez, 2008; Magnani et al., 2009), from finite-frequency P wave upper mantle tomography model of Bezada et al., (2010) and the Rayleigh wave tomography model of Miller et al., (2009). The Moho ranges in depth from ~25 km beneath the Caribbean Large Igneous Provinces to ~55 km beneath the Mérida Andes in western Venezuela. These results are consistent with previous receiver functions studies (Niu et al., 2007) and the available active source profiles. Beneath the Maracaibo Block in northwestern Venezuela, we observe a strong positive signal at 40 to 60 km depth dipping ~6° towards the continent. We interpret this as the Moho of the Caribbean slab subducting beneath northernmost South America from the west. Beneath northern Colombia and northwestern Venezuela the top of this slab has been previously inferred from intermediate depth seismicity (Malavé and Suarez, 1995), which indicates a slab dipping between 20° - 30° beneath Lake Maracaibo. Our results could indicate that the slab is tearing beneath Lake Maracaibo as suggested previously by Masy et al. (2011). The deeper (> 100 km depth) part of the slab has been imaged using P-wave tomography (Bezada et al, 2010). Like others we attribute the uplift of the Mérida Andes to flat Caribbean slab subduction (for example Kellogg and Bonini, 1982). In central Venezuela beneath the Cordillera de la Costa we observe a positive signal shallower than the Moho at <30 km depth beneath the entire range. We interpret this as a detachment surface beneath Caribbean & arc terranes thrust onto the SA margin (Bezada et al., 2010). The lithosphere-asthenosphere boundary (LAB) beneath the Mérida Andes is shallow, ~65km depth, and parallels the range. In the plate boundary region under the Cordillera de la Costa the lithosphere is also thin, ~65km, beneath the Cariaco basin the lithosphere thickens to 85 km. In the far east under Serranía del Interior the lithosphere is ~75 km. Cratonic lithosphere thickness varies from 85 to 100 km.
Davtyan, Arman; Lehmann, Sebastian; Kriegner, Dominik; Zamani, Reza R; Dick, Kimberly A; Bahrami, Danial; Al-Hassan, Ali; Leake, Steven J; Pietsch, Ullrich; Holý, Václav
2017-09-01
Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the [000\\bar{1}] direction in the vicinity of the wurtzite 00\\bar{1}\\bar{5} Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire.
Davtyan, Arman; Lehmann, Sebastian; Zamani, Reza R.; Dick, Kimberly A.; Bahrami, Danial; Al-Hassan, Ali; Leake, Steven J.; Pietsch, Ullrich; Holý, Václav
2017-01-01
Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the direction in the vicinity of the wurtzite Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire. PMID:28862620
Characterizing the Crustal architecture of the Parnaiba basin with passive-source seismology
NASA Astrophysics Data System (ADS)
Coelho, Diogo; Julià, Jordi; Rodríguez Tribaldos, Verónica; White, Nicky
2017-04-01
Lithospheric-scale processes, such as the origin and evolution of large cratonic basins, can create big footprints or signatures in the subsurface that can be observed by geophysical means. With a huge potential for natural resources, the equatorial margin of NE Brazil has motivated many geophysical investigations by the oil industry. Our study area is the Parnaíba Basin, one of the largest cratonic basins of the world. The main goal of our study is to provide new images of the crust and lithosphere under the basin and highlight seismic discontinuities within, in order to improve our understanding of its architecture and help constrain models for its origin and evolution. A total of 9 broadband seismographic stations were installed within the PBAP project, a collaboration among several universities and BP Energy do Brasil, along an approximately 500 km-long transect across the basin, with interstation spacing of around 50 km. The receiver function technique is probably one of the most successful methodologies in broadband seismology for imaging of the crust and lithospheric mantle in continental areas, and we estimated crustal thickness and Vp/Vs ratio of the Parnaíba Basin by developing P-wave receiver functions from the acquired dataset. We also developed one-dimensional velocity models calculated from the joint inversion of P-wave receiver function and Rayleigh dispersion curves. Results from HK-Stacking, receiver function migration and joint inversion indicate the Moho dips gently toward the depocenter of the basin, displaying up to three different behaviors: A flat Moho in the depocenter of the basin, which showed the thickest crust (>42 km) and Vp/Vs ratio values arround 1,75; A thinning crust towards the eastern flank (<38 km), bounding with the Borborema Province, with Vp/Vs ratio of 1,74; An almost flat Moho with thickness of 40 km and Vp/Vs ratio around 1,72 on the western border, bounding with the Araguaia Belt. We also noted some mid crustal reflections at 15-20 km depth indicating the presence of a mid-crustal discontinuity. The presence of this discontinuity, along with the segmentation of the Parnaíba crust, suggest that limited stretching might have occurred during the development of this cratonic basin.
NASA Astrophysics Data System (ADS)
Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim
2018-05-01
In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at BNS station may be attributed to the widespread recently discovered hydrocarbon fields at the Beni-Suef Basin along the Eastern Desert. Finally, an integrated geophysical and hydrological study of the dimensions and physical properties of the aquifer and hydrocarbon fields at SWA and BNS stations to confirm if they are sufficient to produce the elevated Vp/Vs ratios or not become essential and highly recommended.
NASA Astrophysics Data System (ADS)
Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim
2018-01-01
In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at BNS station may be attributed to the widespread recently discovered hydrocarbon fields at the Beni-Suef Basin along the Eastern Desert. Finally, an integrated geophysical and hydrological study of the dimensions and physical properties of the aquifer and hydrocarbon fields at SWA and BNS stations to confirm if they are sufficient to produce the elevated Vp/Vs ratios or not become essential and highly recommended.
Development of an automatic subsea blowout preventer stack control system using PLC based SCADA.
Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Wang, Fei; Tian, Xiaojie; Zhang, Yanzhen
2012-01-01
An extremely reliable remote control system for subsea blowout preventer stack is developed based on the off-the-shelf triple modular redundancy system. To meet a high reliability requirement, various redundancy techniques such as controller redundancy, bus redundancy and network redundancy are used to design the system hardware architecture. The control logic, human-machine interface graphical design and redundant databases are developed by using the off-the-shelf software. A series of experiments were performed in laboratory to test the subsea blowout preventer stack control system. The results showed that the tested subsea blowout preventer functions could be executed successfully. For the faults of programmable logic controllers, discrete input groups and analog input groups, the control system could give correct alarms in the human-machine interface. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
The influence of arene-ring size on stacking interaction with canonical base pairs
NASA Astrophysics Data System (ADS)
Formánek, Martin; Burda, Jaroslav V.
2014-04-01
Stacking interactions between aromatic molecules (benzene, p-cymene, biphenyl, and di- and tetra-hydrogen anthracene) and G.C and A.T canonical Watson-Crick (WC) base pairs are explored. Two functionals with dispersion corrections: ω-B97XD and B3LYP-D3 are used. For a comparison also the MP2 and B3LYP-D3/PCM methods were used for the most stable p-cymene…WC geometries. It was found that the stacking interaction increases with the size of π-conjugation system. Its extent is in agreement with experimental finding on anticancer activity of Ru(II) piano-stool complexes where intercalation of these aromatic molecules should play an important role. The explored structures are considered as ternary system so that decomposition of the interaction energy to pairwise and non-additivity contributions is also examined.
Heteroaromatic π-Stacking Energy Landscapes
2014-01-01
In this study we investigate π-stacking interactions of a variety of aromatic heterocycles with benzene using dispersion corrected density functional theory. We calculate extensive potential energy surfaces for parallel-displaced interaction geometries. We find that dispersion contributes significantly to the interaction energy and is complemented by a varying degree of electrostatic interactions. We identify geometric preferences and minimum interaction energies for a set of 13 5- and 6-membered aromatic heterocycles frequently encountered in small drug-like molecules. We demonstrate that the electrostatic properties of these systems are a key determinant for their orientational preferences. The results of this study can be applied in lead optimization for the improvement of stacking interactions, as it provides detailed energy landscapes for a wide range of coplanar heteroaromatic geometries. These energy landscapes can serve as a guide for ring replacement in structure-based drug design. PMID:24773380
NASA Astrophysics Data System (ADS)
Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi
2006-02-01
Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.
Performance of low resistance microchannel plate stacks
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Stock, J.
1991-01-01
Results are presented from an evaluation of three sets of low resistance microchannel plate (MCP) stacks; the tests encompassed gain, pulse-height distribution, background rate, event rate capacity as a function of illuminated area, and performance changes due to high temperature bakeout and high flux UV scrub. The MCPs are found to heat up, requiring from minutes to hours to reach stabilization. The event rate is strongly dependent on the size of the area being illuminated, with larger areas experiencing a gain drop onset at lower rates than smaller areas.
NASA Astrophysics Data System (ADS)
Chen, Y.; Gu, Y. J.; Dokht, R.; Wang, R.
2017-12-01
The crustal and lithospheric structures beneath the Western Canada Sedimentary Basin (WCSB) and northern Montana contain vital records of the Precambrian tectonic development of Laurentia. In this study, we analyze the broadband seismic data recorded by the USArray and the most complete set of regional seismic networks to date near the WCSB. We adopt an integrated approach to investigate crustal structure and history, based primarily on P-to-S receiver functions but incorporate results from noise correlation functions, finite-frequency tomography and potential field measurements. In comparison with existing regional and global models, our stacked receiver functions show considerable improvements in the resolution of both Moho depth and Vp/Vs ratio. We identify major variations in Moho depth from the WCSB to the adjacent Cordillera. The Moho deepens steeply from 40 km in the Alberta basin to 50 km beneath the foothills, following Airy isostasy, but thermal buoyancy may be responsible for a flat, shallow ( 35 km) Moho to the west of the Rocky Mountain Trench. The Moho depth also increases sharply near the Snowbird Tectonic Zone (STZ), which is consistent with earlier findings from active-source data. Multiple lower crustal phases, a high velocity shallow mantle and elevated Vp/Vs ratios along the westernmost STZ jointly suggest major Proterozoic subduction and magmatism along this collisional boundary. In northern Montana, the Moho deepens along the Great Falls Tectonic Zone (GFTZ), a proposed Proterozoic suture between the Medicine Hat Block and Wyoming craton. This transition occurs near the Little Belt Mountain, which is located south of the Great Falls Shear Zone, an extensive northeast striking fault system characterized by strong potential field gradients. Similar to the STZ, our receiver functions offer new evidence for Proterozoic underplating in the vicinity of the GFTZ. In view of similar rock ages near the collisional boundaries in all parts of northern Montana and the WCSB basement, we conjecture that the Rae, Hearn, Medicine Hat and Wyoming cratons were all active during the Paleoproterozoic era and their interactions, particularly coeval subductions and collisions, are largely responsible for the basement geology beneath western Laurentia.
Zhachuk, R; Teys, S; Coutinho, J
2013-06-14
Si(111) and Ge(111) surface formation energies were calculated using density functional theory for various biaxial strain states ranging from -0.04 to 0.04, and for a wide set of experimentally observed surface reconstructions: 3 × 3, 5 × 5, 7 × 7 dimer-adatom-stacking fault reconstructions and c(2 × 8), 2 × 2, and √3×√3 adatoms based surfaces. The calculations are compared with scanning tunneling microscopy data obtained on stepped Si(111) surfaces and on Ge islands grown on a Si(111) substrate. It is shown that the surface structure transformations observed in these strained systems are accounted for by a phase diagram that relates the equilibrium surface structure to the applied strain. The calculated formation energy of the unstrained Si(111)-9 × 9 dimer-adatom-stacking fault surface is reported for the first time and it is higher than corresponding energies of Si(111)-5 × 5 and Si(111)-7 × 7 dimer-adatom-stacking fault surfaces as expected. We predict that the Si(111) surface should adopt a c(2 × 8) reconstruction when tensile strain is above 0.03.
Automated assembling of single fuel cell units for use in a fuel cell stack
NASA Astrophysics Data System (ADS)
Jalba, C. K.; Muminovic, A.; Barz, C.; Nasui, V.
2017-05-01
The manufacturing of PEMFC stacks (POLYMER ELEKTROLYT MEMBRAN Fuel Cell) is nowadays still done by hand. Over hundreds of identical single components have to be placed accurate together for the construction of a fuel cell stack. Beside logistic problems, higher total costs and disadvantages in weight the high number of components produce a higher statistic interference because of faulty erection or material defects and summation of manufacturing tolerances. The saving of costs is about 20 - 25 %. Furthermore, the total weight of the fuel cells will be reduced because of a new sealing technology. Overall a one minute cycle time has to be aimed per cell at the manufacturing of these single components. The change of the existing sealing concept to a bonded sealing is one of the important requisites to get an automated manufacturing of single cell units. One of the important steps for an automated gluing process is the checking of the glue application by using of an image processing system. After bonding the single fuel cell the sealing and electrical function can be checked, so that only functional and high qualitative cells can get into further manufacturing processes.
Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations
Bell, David R.; Cheng, Sara Y.; Salazar, Heber; Ren, Pengyu
2017-01-01
We introduce a coarse-grained RNA model for molecular dynamics simulations, RACER (RnA CoarsE-gRained). RACER achieves accurate native structure prediction for a number of RNAs (average RMSD of 2.93 Å) and the sequence-specific variation of free energy is in excellent agreement with experimentally measured stabilities (R2 = 0.93). Using RACER, we identified hydrogen-bonding (or base pairing), base stacking, and electrostatic interactions as essential driving forces for RNA folding. Also, we found that separating pairing vs. stacking interactions allowed RACER to distinguish folded vs. unfolded states. In RACER, base pairing and stacking interactions each provide an approximate stability of 3–4 kcal/mol for an A-form helix. RACER was developed based on PDB structural statistics and experimental thermodynamic data. In contrast with previous work, RACER implements a novel effective vdW potential energy function, which led us to re-parameterize hydrogen bond and electrostatic potential energy functions. Further, RACER is validated and optimized using a simulated annealing protocol to generate potential energy vs. RMSD landscapes. Finally, RACER is tested using extensive equilibrium pulling simulations (0.86 ms total) on eleven RNA sequences (hairpins and duplexes). PMID:28393861
Correlation and Stacking of Relative Paleointensity and Oxygen Isotope Data
NASA Astrophysics Data System (ADS)
Lurcock, P. C.; Channell, J. E.; Lee, D.
2012-12-01
The transformation of a depth-series into a time-series is routinely implemented in the geological sciences. This transformation often involves correlation of a depth-series to an astronomically calibrated time-series. Eyeball tie-points with linear interpolation are still regularly used, although these have the disadvantages of being non-repeatable and not based on firm correlation criteria. Two automated correlation methods are compared: the simulated annealing algorithm (Huybers and Wunsch, 2004) and the Match protocol (Lisiecki and Lisiecki, 2002). Simulated annealing seeks to minimize energy (cross-correlation) as "temperature" is slowly decreased. The Match protocol divides records into intervals, applies penalty functions that constrain accumulation rates, and minimizes the sum of the squares of the differences between two series while maintaining the data sequence in each series. Paired relative paleointensity (RPI) and oxygen isotope records, such as those from IODP Site U1308 and/or reference stacks such as LR04 and PISO, are warped using known warping functions, and then the un-warped and warped time-series are correlated to evaluate the efficiency of the correlation methods. Correlations are performed in tandem to simultaneously optimize RPI and oxygen isotope data. Noise spectra are introduced at differing levels to determine correlation efficiency as noise levels change. A third potential method, known as dynamic time warping, involves minimizing the sum of distances between correlated point pairs across the whole series. A "cost matrix" between the two series is analyzed to find a least-cost path through the matrix. This least-cost path is used to nonlinearly map the time/depth of one record onto the depth/time of another. Dynamic time warping can be expanded to more than two dimensions and used to stack multiple time-series. This procedure can improve on arithmetic stacks, which often lose coherent high-frequency content during the stacking process.
Wide modulation bandwidth terahertz detection in 130 nm CMOS technology
NASA Astrophysics Data System (ADS)
Nahar, Shamsun; Shafee, Marwah; Blin, Stéphane; Pénarier, Annick; Nouvel, Philippe; Coquillat, Dominique; Safwa, Amr M. E.; Knap, Wojciech; Hella, Mona M.
2016-11-01
Design, manufacturing and measurements results for silicon plasma wave transistors based wireless communication wideband receivers operating at 300 GHz carrier frequency are presented. We show the possibility of Si-CMOS based integrated circuits, in which by: (i) specific physics based plasma wave transistor design allowing impedance matching to the antenna and the amplifier, (ii) engineering the shape of the patch antenna through a stacked resonator approach and (iii) applying bandwidth enhancement strategies to the design of integrated broadband amplifier, we achieve an integrated circuit of the 300 GHz carrier frequency receiver for wireless wideband operation up to/over 10 GHz. This is, to the best of our knowledge, the first demonstration of low cost 130 nm Si-CMOS technology, plasma wave transistors based fast/wideband integrated receiver operating at 300 GHz atmospheric window. These results pave the way towards future large scale (cost effective) silicon technology based terahertz wireless communication receivers.
Numerical evaluation of an innovative cup layout for open volumetric solar air receivers
NASA Astrophysics Data System (ADS)
Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz
2016-05-01
This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.
Detailed Northern Anatolian Fault Zone crustal structure from receiver functions
NASA Astrophysics Data System (ADS)
Cornwell, D. G.; Kahraman, M.; Thompson, D. A.; Houseman, G. A.; Rost, S.; Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.
2013-12-01
We present high resolution images derived from receiver functions of the continental crust in Northern Turkey that is dissected by two fault strands of the Northern Anatolian Fault Zone (NAFZ). The NAFZ is a major continental strike-slip fault system that is comparable in length and slip rate to the San Andreas Fault Zone. Recent large earthquakes occurred towards the western end of the NAFZ in 1999 at Izmit (M7.5) and Düzce (M7.2). As part of the multi-disciplinary Faultlab project, we aim to develop a model of NAFZ crustal structure and locate deformation by constraining variations in seismic properties and anisotropy in the upper and lower crust. The crustal model will be an input to test deformation scenarios in order to match geodetic observations from different phases of the earthquake loading cycle. We calculated receiver functions from teleseismic earthquakes recorded by a rectangular seismometer array spanning the NAFZ with 66 stations at a nominal inter-station spacing of 7 km and 7 additional stations further afield. This Dense Array for North Anatolia (DANA) was deployed from May 2012 until September 2013 and we selected large events (Mw>5.5) from the high quality seismological dataset to analyze further. Receiver functions were calculated for different frequency bands then collected into regional stacks before being inverted for crustal S-wave velocity structure beneath the entire DANA array footprint. In addition, we applied common conversion point (CCP) migration using a regional velocity model to construct a migrated 3D volume of P-to-S converted and multiple energy in order to identify the major crustal features and layer boundaries. We also performed the CCP migration with transverse receiver functions in order to identify regions of anisotropy within the crustal layers. Our preliminary results show a heterogeneous crust above a flat Moho that is typically at a depth of 33 km. We do not observe a prominent step in the Moho beneath the surface locations at either of the NAFZ fault branches. We observe first-order differences in crustal structure between the crustal blocks that are separated by the faults. Each crustal block also contains regions of strong anisotropy at various depths that will be analyzed further with the full seismological dataset and compared to petrofabric analyses of exhumed fault segments. We will compare our results with other seismological imaging techniques to attempt to resolve the distribution of fault zone deformation with respect to depth. This information will be useful to other complementary Faultlab techniques that will add a detailed insight into the fault structure and dynamics of the NAFZ and contribute more broadly into ongoing research into major strike-slip fault zones.
NASA Astrophysics Data System (ADS)
Li, Mengyue; Yuan, Jie; Kinev, Nickolay; Li, Jun; Gross, Boris; Guénon, Stefan; Ishii, Akira; Hirata, Kazuto; Hatano, Takeshi; Koelle, Dieter; Kleiner, Reinhold; Koshelets, Valery P.; Wang, Huabing; Wu, Peiheng
2012-08-01
We report on measurements of the linewidth Δf of terahertz radiation emitted from intrinsic Josephson junction stacks, using a Nb/AlN/NbN integrated receiver for detection. Previous resolution-limited measurements indicated that Δf may be below 1 GHz—much smaller than expected from a purely cavity-induced synchronization. While at low bias we found Δf to be not smaller than ˜500 MHz, at high bias, where a hot spot coexists with regions which are still superconducting, Δf turned out to be as narrow as 23 MHz. We attribute this to the hot spot acting as a synchronizing element. Δf decreases with increasing bath temperature, a behavior reminiscent of motional narrowing in NMR or electron spin resonance (ESR), but hard to explain in standard electrodynamic models of Josephson junctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Gerry; et al.
The DAQ system of the CMS experiment at CERN collects data from more than 600 custom detector Front-End Drivers (FEDs). During 2013 and 2014 the CMS DAQ system will undergo a major upgrade to address the obsolescence of current hardware and the requirements posed by the upgrade of the LHC accelerator and various detector components. For a loss-less data collection from the FEDs a new FPGA based card implementing the TCP/IP protocol suite over 10Gbps Ethernet has been developed. To limit the TCP hardware implementation complexity the DAQ group developed a simplified and unidirectional but RFC 793 compliant version ofmore » the TCP protocol. This allows to use a PC with the standard Linux TCP/IP stack as a receiver. We present the challenges and protocol modifications made to TCP in order to simplify its FPGA implementation. We also describe the interaction between the simplified TCP and Linux TCP/IP stack including the performance measurements.« less
Bao, Wei; Yue, Jun; Rao, Yulei
2017-01-01
The application of deep learning approaches to finance has received a great deal of attention from both investors and researchers. This study presents a novel deep learning framework where wavelet transforms (WT), stacked autoencoders (SAEs) and long-short term memory (LSTM) are combined for stock price forecasting. The SAEs for hierarchically extracted deep features is introduced into stock price forecasting for the first time. The deep learning framework comprises three stages. First, the stock price time series is decomposed by WT to eliminate noise. Second, SAEs is applied to generate deep high-level features for predicting the stock price. Third, high-level denoising features are fed into LSTM to forecast the next day's closing price. Six market indices and their corresponding index futures are chosen to examine the performance of the proposed model. Results show that the proposed model outperforms other similar models in both predictive accuracy and profitability performance.
NASA Astrophysics Data System (ADS)
Meng, Hui; Hui, Hui; Hu, Chaoen; Yang, Xin; Tian, Jie
2017-03-01
The ability of fast and single-neuron resolution imaging of neural activities enables light-sheet fluorescence microscopy (LSFM) as a powerful imaging technique in functional neural connection applications. The state-of-art LSFM imaging system can record the neuronal activities of entire brain for small animal, such as zebrafish or C. elegans at single-neuron resolution. However, the stimulated and spontaneous movements in animal brain result in inconsistent neuron positions during recording process. It is time consuming to register the acquired large-scale images with conventional method. In this work, we address the problem of fast registration of neural positions in stacks of LSFM images. This is necessary to register brain structures and activities. To achieve fast registration of neural activities, we present a rigid registration architecture by implementation of Graphics Processing Unit (GPU). In this approach, the image stacks were preprocessed on GPU by mean stretching to reduce the computation effort. The present image was registered to the previous image stack that considered as reference. A fast Fourier transform (FFT) algorithm was used for calculating the shift of the image stack. The calculations for image registration were performed in different threads while the preparation functionality was refactored and called only once by the master thread. We implemented our registration algorithm on NVIDIA Quadro K4200 GPU under Compute Unified Device Architecture (CUDA) programming environment. The experimental results showed that the registration computation can speed-up to 550ms for a full high-resolution brain image. Our approach also has potential to be used for other dynamic image registrations in biomedical applications.
Imaging Subsurface Structure of Tehran/Iran region using Ambient Seismic Noise Tomography
NASA Astrophysics Data System (ADS)
Shirzad Iraj, Taghi; Shmomali, Z. Hossein
2013-04-01
Tehran, capital of Iran, is surrounded by many active faults (including Mosha, North Tehran and North and/or South Rey faults), however our knowledge about the 3D velocity structure of the study area is limited. Recent developments in seismology have shown that cross-correlation of a long time ambient seismic noise recorded by pair of stations, contain information about the Green's function between the stations. Thus ambient seismic noise carries valuable information of propagation path which can be extracted. We obtained 2D model of shear wave velocity (Vs) for Tehran/Iran area using seismic ambient noise tomography (ANT) method. In this study, we use continuous vertical component of data recorded by TDMMO (Tehran Disaster Mitigation and Management Organization) and IRSC (Iranian Seismological Center) networks in the Tehran/Iran area. The TDMMO and IRSC networks are equipped with CMG-5TD Guralp sensor and SS-1 Kinemetrics sensor respectively. We use data from 25 stations for 12 months from 2009/Oct. to 2010/Oct. Data processing is similar to that explained in detail by Bensen et al. (2007) including processed daily base data. The mean, trend, and instrument response were removed and the data were decimated to 10 sps. One-bit time-domain normalization was then applied to suppress the influence of instrument irregularities and earthquake signals followed by spectral normalization between 0.1-1.0 Hz (period 1-10 sec). After cross-correlation processing, we implement a new stacking method to stack many cross-correlation functions bases on the highest energy in a time interval which we expect to receive the Rayleigh wave fundamental mode. We then obtained group velocity of Rayleigh wave by using phase match filtering and frequency-time analysis techniques. Finally, we applied iterative inversion method to extract Vs model of shallow structure in the Tehran/Iran area.
NASA Astrophysics Data System (ADS)
Nakahara, Hisashi
2015-02-01
For monitoring temporal changes in subsurface structures I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Use of coda waves requires earthquakes resulting in decreased time resolution for monitoring. Nonetheless, it may be possible to monitor subsurface structures in sufficient time resolutions in regions with high seismicity. In studying the 2011 Tohoku-Oki, Japan earthquake (Mw 9.0), for which velocity changes have been previously reported, I try to validate the method. KiK-net stations in northern Honshu are used in this analysis. For each moderate earthquake normalized auto correlation functions of surface records are stacked with respect to time windows in the S-wave coda. Aligning the stacked, normalized auto correlation functions with time, I search for changes in phases arrival times. The phases at lag times of <1 s are studied because changes at shallow depths are focused. Temporal variations in the arrival times are measured at the stations based on the stretching method. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. The amounts of the phase delays are 10 % on average with the maximum of about 50 % at some stations. The deconvolution analysis using surface and subsurface records at the same stations is conducted for validation. The results show the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percent, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable in detecting larger changes. In spite of these disadvantages, this analysis is still attractive because it can be applied to many records on the surface in regions where no boreholes are available.
Malba, V.
1998-11-10
A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.
Malba, Vincent
1998-01-01
A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.
Morisaki, Yasuhiro; Ueno, Shizue; Saeki, Akinori; Asano, Atsushi; Seki, Shu; Chujo, Yoshiki
2012-04-02
[2.2]Paracyclophane-based through-space conjugated oligomers and polymers were prepared, in which poly(p-arylene-ethynylene) (PAE) units were partially π-stacked and layered, and their properties in the ground state and excited state were investigated in detail. Electronic interactions among PAE units were effective through at least ten units in the ground state. Photoexcited energy transfer occurred from the stacked PAE units to the end-capping PAE moieties. The electrical conductivity of the polymers was estimated using the flash-photolysis time-resolved microwave conductivity (FP-TRMC) method and investigated together with time-dependent density functional theory (TD-DFT) calculations, showing that intramolecular charge carrier mobility through the stacked PAE units was a few tens of percentage larger than through the twisted PAE units. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Dentoni Litta, Eugenio; Ritzenthaler, Romain; Schram, Tom; Spessot, Alessio; O’Sullivan, Barry; Machkaoutsan, Vladimir; Fazan, Pierre; Ji, Yunhyuck; Mannaert, Geert; Lorant, Christophe; Sebaai, Farid; Thiam, Arame; Ercken, Monique; Demuynck, Steven; Horiguchi, Naoto
2018-04-01
Integration of high-k/metal gate stacks in peripheral transistors is a major candidate to ensure continued scaling of dynamic random access memory (DRAM) technology. In this paper, the CMOS integration of diffusion and gate replacement (D&GR) high-k/metal gate stacks is investigated, evaluating four different approaches for the critical patterning step of removing the N-type field effect transistor (NFET) effective work function (eWF) shifter stack from the P-type field effect transistor (PFET) area. The effect of plasma exposure during the patterning step is investigated in detail and found to have a strong impact on threshold voltage tunability. A CMOS integration scheme based on an experimental wet-compatible photoresist is developed and the fulfillment of the main device metrics [equivalent oxide thickness (EOT), eWF, gate leakage current density, on/off currents, short channel control] is demonstrated.
Correlated lateral phase separations in stacks of lipid membranes
NASA Astrophysics Data System (ADS)
Hoshino, Takuma; Komura, Shigeyuki; Andelman, David
2015-12-01
Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, Tc, for larger inter-layer interaction. When the temperature ratio, T/Tc, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.
Solute effect on basal and prismatic slip systems of Mg.
Moitra, Amitava; Kim, Seong-Gon; Horstemeyer, M F
2014-11-05
In an effort to design novel magnesium (Mg) alloys with high ductility, we present a first principles data based on the Density Functional Theory (DFT). The DFT was employed to calculate the generalized stacking fault energy curves, which can be used in the generalized Peierls-Nabarro (PN) model to study the energetics of basal slip and prismatic slip in Mg with and without solutes to calculate continuum scale dislocation core widths, stacking fault widths and Peierls stresses. The generalized stacking fault energy curves for pure Mg agreed well with other DFT calculations. Solute effects on these curves were calculated for nine alloying elements, namely Al, Ca, Ce, Gd, Li, Si, Sn, Zn and Zr, which allowed the strength and ductility to be qualitatively estimated based on the basal dislocation properties. Based on our multiscale methodology, a suggestion has been made to improve Mg formability.
NASA Astrophysics Data System (ADS)
Smith, T. M.; Esser, B. D.; Good, B.; Hooshmand, M. S.; Viswanathan, G. B.; Rae, C. M. F.; Ghazisaeidi, M.; McComb, D. W.; Mills, M. J.
2018-06-01
In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed near 750 °C using stresses of 552 and 750 MPa, respectively. Through high-resolution scanning transmission electron microscopy (STEM) and state-of-the-art energy dispersive X-ray spectroscopy, ordered compositional changes were measured along SISFs in both alloys. For both instances, the elemental segregation and local crystal structure present along the SISFs are consistent with a nanoscale γ' to D019 phase transformation. Other notable observations are prominent γ-rich Cottrell atmospheres and new evidence of more complex reordering processes responsible for the formation of these faults. These findings are further supported using density functional theory calculations and high-angle annular dark-field (HAADF)-STEM image simulations.
Rich magneto-absorption spectra of AAB-stacked trilayer graphene.
Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa
2016-06-29
A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra.
An improved artifact removal in exposure fusion with local linear constraints
NASA Astrophysics Data System (ADS)
Zhang, Hai; Yu, Mali
2018-04-01
In exposure fusion, it is challenging to remove artifacts because of camera motion and moving objects in the scene. An improved artifact removal method is proposed in this paper, which performs local linear adjustment in artifact removal progress. After determining a reference image, we first perform high-dynamic-range (HDR) deghosting to generate an intermediate image stack from the input image stack. Then, a linear Intensity Mapping Function (IMF) in each window is extracted based on the intensities of intermediate image and reference image, the intensity mean and variance of reference image. Finally, with the extracted local linear constraints, we reconstruct a target image stack, which can be directly used for fusing a single HDR-like image. Some experiments have been implemented and experimental results demonstrate that the proposed method is robust and effective in removing artifacts especially in the saturated regions of the reference image.
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.
1996-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
Structural, electronic and vibrational properties of few-layer 2H-and 1T-TaSe 2
Yan, Jia -An; Dela Cruz, Mack A.; Cook, Brandon G.; ...
2015-11-16
Two-dimensional metallic transition metal dichalcogenides (TMDs) are of interest for studying phenomena such as charge-density wave (CDW) and superconductivity. Few-layer tantalum diselenides (TaSe 2) are typical metallic TMDs exhibiting rich CDW phase transitions. However, a description of the structural, electronic and vibrational properties for different crystal phases and stacking configurations, essential for interpretation of experiments, is lacking. We present first principles calculations of structural phase energetics, band dispersion near the Fermi level, phonon properties and vibrational modes at the Brillouin zone center for different layer numbers, crystal phases and stacking geometries. Evolution of the Fermi surfaces as well as themore » phonon dispersions as a function of layer number reveals dramatic dimensionality effects in this CDW material. Lastly, our results indicate strong electronic interlayer coupling, detail energetically possible stacking geometries, and provide a basis for interpretation of Raman spectra.« less
Techno-economic assessment of novel vanadium redox flow batteries with large-area cells
NASA Astrophysics Data System (ADS)
Minke, Christine; Kunz, Ulrich; Turek, Thomas
2017-09-01
The vanadium redox flow battery (VRFB) is a promising electrochemical storage system for stationary megawatt-class applications. The currently limited cell area determined by the bipolar plate (BPP) could be enlarged significantly with a novel extruded large-area plate. For the first time a techno-economic assessment of VRFB in a power range of 1 MW-20 MW and energy capacities of up to 160 MWh is presented on the basis of the production cost model of large-area BPP. The economic model is based on the configuration of a 250 kW stack and the overall system including stacks, power electronics, electrolyte and auxiliaries. Final results include a simple function for the calculation of system costs within the above described scope. In addition, the impact of cost reduction potentials for key components (membrane, electrode, BPP, vanadium electrolyte) on stack and system costs is quantified and validated.
Architecture of the Mammalian Golgi
Klumperman, Judith
2011-01-01
Since its first visualization in 1898, the Golgi has been a topic of intense morphological research. A typical mammalian Golgi consists of a pile of stapled cisternae, the Golgi stack, which is a key station for modification of newly synthesized proteins and lipids. Distinct stacks are interconnected by tubules to form the Golgi ribbon. At the entrance site of the Golgi, the cis-Golgi, vesicular tubular clusters (VTCs) form the intermediate between the endoplasmic reticulum and the Golgi stack. At the exit site of the Golgi, the trans-Golgi, the trans-Golgi network (TGN) is the major site of sorting proteins to distinct cellular locations. Golgi functioning can only be understood in light of its complex architecture, as was revealed by a range of distinct electron microscopy (EM) approaches. In this article, a general concept of mammalian Golgi architecture, including VTCs and the TGN, is described. PMID:21502307
Generalized constitutive equations for piezo-actuated compliant mechanism
NASA Astrophysics Data System (ADS)
Cao, Junyi; Ling, Mingxiang; Inman, Daniel J.; Lin, Jin
2016-09-01
This paper formulates analytical models to describe the static displacement and force interactions between generic serial-parallel compliant mechanisms and their loads by employing the matrix method. In keeping with the familiar piezoelectric constitutive equations, the generalized constitutive equations of compliant mechanism represent the input-output displacement and force relations in the form of a generalized Hooke’s law and as analytical functions of physical parameters. Also significantly, a new model of output displacement for compliant mechanism interacting with piezo-stacks and elastic loads is deduced based on the generalized constitutive equations. Some original findings differing from the well-known constitutive performance of piezo-stacks are also given. The feasibility of the proposed models is confirmed by finite element analysis and by experiments under various elastic loads. The analytical models can be an insightful tool for predicting and optimizing the performance of a wide class of compliant mechanisms that simultaneously consider the influence of loads and piezo-stacks.
Dislocation Ledge Sources: Dispelling the Myth of Frank-Read Source Importance
NASA Astrophysics Data System (ADS)
Murr, L. E.
2016-12-01
In the early 1960s, J.C.M. Li questioned the formation of dislocation pileups at grain boundaries, especially in high-stacking-fault free-energy fcc metals and alloys, and proposed grain boundary ledge sources for dislocations in contrast to Frank -Read sources. This article reviews these proposals and the evolution of compelling evidence for grain boundary or related interfacial ledge sources of dislocations in metals and alloys, including unambiguous observations using transmission electron microscopy. Such observations have allowed grain boundary ledge source emission profiles of dislocations to be quantified in 304 stainless steel (with a stacking-fault free energy of 23 mJ/m2) and nickel (with a stacking-fault free energy of 128 mJ/m2) as a function of engineering strain. The evidence supports the conclusion that FR dislocation sources are virtually absent in metal and alloy deformation with ledges at interfaces dominating as dislocation sources.
The Geoinformatica free and open source software stack
NASA Astrophysics Data System (ADS)
Jolma, A.
2012-04-01
The Geoinformatica free and open source software (FOSS) stack is based mainly on three established FOSS components, namely GDAL, GTK+, and Perl. GDAL provides access to a very large selection of geospatial data formats and data sources, a generic geospatial data model, and a large collection of geospatial analytical and processing functionality. GTK+ and the Cairo graphics library provide generic graphics and graphical user interface capabilities. Perl is a programming language, for which there is a very large set of FOSS modules for a wide range of purposes and which can be used as an integrative tool for building applications. In the Geoinformatica stack, data storages such as FOSS RDBMS PostgreSQL with its geospatial extension PostGIS can be used below the three above mentioned components. The top layer of Geoinformatica consists of a C library and several Perl modules. The C library comprises a general purpose raster algebra library, hydrological terrain analysis functions, and visualization code. The Perl modules define a generic visualized geospatial data layer and subclasses for raster and vector data and graphs. The hydrological terrain functions are already rather old and they suffer for example from the requirement of in-memory rasters. Newer research conducted using the platform include basic geospatial simulation modeling, visualization of ecological data, linking with a Bayesian network engine for spatial risk assessment in coastal areas, and developing standards-based distributed water resources information systems in Internet. The Geoinformatica stack constitutes a platform for geospatial research, which is targeted towards custom analytical tools, prototyping and linking with external libraries. Writing custom analytical tools is supported by the Perl language and the large collection of tools that are available especially in GDAL and Perl modules. Prototyping is supported by the GTK+ library, the GUI tools, and the support for object-oriented programming in Perl. New feature types, geospatial layer classes, and tools as extensions with specific features can be defined, used, and studied. Linking with external libraries is possible using the Perl foreign function interface tools or with generic tools such as Swig. We are interested in implementing and testing linking Geoinformatica with existing or new more specific hydrological FOSS.
Wagner, Daniel-Christoph; Scheibe, Johanna; Glocke, Isabelle; Weise, Gesa; Deten, Alexander; Boltze, Johannes; Kranz, Alexander
2013-01-01
The astrocytic response to ischemic brain injury is characterized by specific alterations of glial cell morphology and function. Various studies described both beneficial and detrimental aspects of activated astrocytes, suggesting the existence of different subtypes. We investigated this issue using a novel object-based approach to study characteristics of astrogliosis after stroke. Spontaneously hypertensive rats received permanent middle cerebral artery occlusion. After 96 h, brain specimens were removed, fixed and stained for GFAP, glutamine synthetase (GS), S100Beta and Musashi1 (Msh1). Three regions of interest were defined (contralateral hemisphere, ipsilateral remote zone and infarct border zone), and confocal stacks were acquired (n=5 biological with each n=4 technical replicates). The stacks were background-corrected and colocalization between the selected markers and GFAP was determined using an automated thresholding algorithm. The fluorescence and colocalization channels were then converted into 3D-objects using both intensity and volume as filters to ultimately determine the final volumes of marker expression and colocalization, as well as the morphological changes of astrocyte process arborisation. We found that both S100Beta and Msh1 determined the same GFAP-positive astroglial cell population albeit the cellular compartments differed. GFAP stained most of the astrocyte processes and is hence suitable for the analysis of qualitative characteristics of astrogliosis. Due to its peri-nuclear localization, Msh1 is appropriate to estimate the total number of astrocytes even in regions with severe reactive astrogliosis. GS expression in GFAP-positive astrocytes was high in the remote zone and low at the infarct border, indicating the existence of astrocyte subclasses.
Design and Implementation of an Operations Module for the ARGOS paperless Ship System
1989-06-01
A. OPERATIONS STACK SCRIPTS SCRIPTS FOR STACK: operations * BACKGROUND #1: Operations * on openStack hide message box show menuBar pass openStack end... openStack ** CARD #1, BUTTON #1: Up ***** on mouseUp visual effect zoom out go to card id 10931 of stack argos end mouseUp ** CARD #1, BUTTON #2...STACK SCRIPTS SCRIPTS FOR STACK: Reports ** BACKGROUND #1: Operations * on openStack hie message box show menuBar pass openStack end openStack ** CARD #1
Graphene membranes with nanoslits for seawater desalination via forward osmosis.
Dahanayaka, Madhavi; Liu, Bo; Hu, Zhongqiao; Pei, Qing-Xiang; Chen, Zhong; Law, Adrian Wing-Keung; Zhou, Kun
2017-11-22
Stacked graphene (GE) membranes with cascading nanoslits can be synthesized economically compared to monolayer nanoporous GE membranes, and have potential for molecular separation. This study focuses on investigating the seawater desalination performance of these stacked GE layers as forward osmosis (FO) membranes by using molecular dynamics simulations. The FO performance is evaluated in terms of water flux and salt rejection and is explained by analysing the water density distribution and radial distribution function. The water flow displays an Arrhenius type relation with temperature and the activation energy for the stacked GE membrane is estimated to be 8.02 kJ mol -1 , a value much lower than that of commercially available FO membranes. The study reveals that the membrane characteristics including the pore width, offset, interlayer separation distance and number of layers have significant effects on the desalination performance. Unlike monolayer nanoporous GE membranes, at an optimum layer separation distance, the stacked GE membranes with large pore widths and completely misaligned pore configuration can retain complete ion rejection and maintain a high water flux. Findings from the present study are helpful in developing GE-based membranes for seawater desalination via FO.
Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim
2016-09-15
The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.
Electrostatically confined trilayer graphene quantum dots
NASA Astrophysics Data System (ADS)
Mirzakhani, M.; Zarenia, M.; Vasilopoulos, P.; Peeters, F. M.
2017-04-01
Electrically gating of trilayer graphene (TLG) opens a band gap offering the possibility to electrically engineer TLG quantum dots. We study the energy levels of such quantum dots and investigate their dependence on a perpendicular magnetic field B and different types of stacking of the graphene layers. The dots are modeled as circular and confined by a truncated parabolic potential which can be realized by nanostructured gates or position-dependent doping. The energy spectra exhibit the intervalley symmetry EKe(m ) =-EK'h(m ) for the electron (e ) and hole (h ) states, where m is the angular momentum quantum number and K and K ' label the two valleys. The electron and hole spectra for B =0 are twofold degenerate due to the intervalley symmetry EK(m ) =EK'[-(m +1 ) ] . For both ABC [α =1.5 (1.2) for large (small) R ] and ABA (α =1 ) stackings, the lowest-energy levels show approximately a R-α dependence on the dot radius R in contrast with the 1 /R3 one for ABC-stacked dots with infinite-mass boundary. As functions of the field B , the oscillator strengths for dipole-allowed transitions differ drastically for the two types of stackings.
Fujimoto, Takeshi; Nakano, Shu-ichi; Sugimoto, Naoki; Miyoshi, Daisuke
2013-01-31
We systematically investigated the effects of loop length on the conformation, thermodynamic stability, and hydration of DNA G-quadruplexes under dilute and molecular crowding conditions in the presence of Na(+). Structural analysis showed that molecular crowding induced conformational switches of oligonucleotides with the longer guanine stretch and the shorter thymine loop. Thermodynamic parameters further demonstrated that the thermodynamic stability of G-quadruplexes increased by increasing the loop length from two to four, whereas it decreased by increasing the loop length from four to six. Interestingly, we found by osmotic pressure analysis that the number of water molecules released from the G-quadruplex decreased with increasing thermodynamic stability. We assumed that base-stacking interactions within the loops not only stabilized the whole G-quadruplex structure but also created hydration sites by accumulating nucleotide functional groups. The molecular crowding effects on the stability of G-quadruplexes composed of abasic sites, which reduce the stacking interactions at the loops, further demonstrated that G-quadruplexes with fewer stacking interactions within the loops released a larger number of water molecules upon folding. These results showed that the stacking interactions within the loops determined the thermodynamic stability and hydration of the whole G-quadruplex.
Development and Applications of a Stage Stacking Procedure
NASA Technical Reports Server (NTRS)
Kulkarni, Sameer; Celestina, Mark L.; Adamczyk, John J.
2012-01-01
The preliminary design of multistage axial compressors in gas turbine engines is typically accomplished with mean-line methods. These methods, which rely on empirical correlations, estimate compressor performance well near the design point, but may become less reliable off-design. For land-based applications of gas turbine engines, off-design performance estimates are becoming increasingly important, as turbine plant operators desire peaking or load-following capabilities and hot-day operability. The current work develops a one-dimensional stage stacking procedure, including a newly defined blockage term, which is used to estimate the off-design performance and operability range of a 13-stage axial compressor used in a power generating gas turbine engine. The new blockage term is defined to give mathematical closure on static pressure, and values of blockage are shown to collapse to curves as a function of stage inlet flow coefficient and corrected shaft speed. In addition to these blockage curves, the stage stacking procedure utilizes stage characteristics of ideal work coefficient and adiabatic efficiency. These curves are constructed using flow information extracted from computational fluid dynamics (CFD) simulations of groups of stages within the compressor. Performance estimates resulting from the stage stacking procedure are shown to match the results of CFD simulations of the entire compressor to within 1.6% in overall total pressure ratio and within 0.3 points in overall adiabatic efficiency. Utility of the stage stacking procedure is demonstrated by estimation of the minimum corrected speed which allows stable operation of the compressor. Further utility of the stage stacking procedure is demonstrated with a bleed sensitivity study, which estimates a bleed schedule to expand the compressors operating range.
NASA Astrophysics Data System (ADS)
Chen, Chen; Gilbert, Hersh; Fischer, Karen M.; Andronicos, Christopher L.; Pavlis, Gary L.; Hamburger, Michael W.; Marshak, Stephen; Larson, Timothy; Yang, Xiaotao
2018-01-01
Seismic discontinuities between the Moho and the inferred lithosphere-asthenosphere boundary (LAB) are known as mid-lithospheric discontinuities (MLDs) and have been ascribed to a variety of phenomena that are critical to understanding lithospheric growth and evolution. In this study, we used S-to-P converted waves recorded by the USArray Transportable Array and the OIINK (Ozarks-Illinois-Indiana-Kentucky) Flexible Array to investigate lithospheric structure beneath the central U.S. This region, a portion of North America's cratonic platform, provides an opportunity to explore how terrane accretion, cratonization, and subsequent rifting may have influenced lithospheric structure. The 3D common conversion point (CCP) volume produced by stacking back-projected Sp receiver functions reveals a general absence of negative converted phases at the depths of the LAB across much of the central U.S. This observation suggests a gradual velocity decrease between the lithosphere and asthenosphere. Within the lithosphere, the CCP stacks display negative arrivals at depths between 65 km and 125 km. We interpret these as MLDs resulting from the top of a layer of crystallized melts (sill-like igneous intrusions) or otherwise chemically modified lithosphere that is enriched in water and/or hydrous minerals. Chemical modification in this manner would cause a weak layer in the lithosphere that marks the MLDs. The depth and amplitude of negative MLD phases vary significantly both within and between the physiographic provinces of the midcontinent. Double, or overlapping, MLDs can be seen along Precambrian terrane boundaries and appear to result from stacked or imbricated lithospheric blocks. A prominent negative Sp phase can be clearly identified at 80 km depth within the Reelfoot Rift. This arrival aligns with the top of a zone of low shear-wave velocities, which suggests that it marks an unusually shallow seismic LAB for the midcontinent. This boundary would correspond to the top of a region of mechanically and chemically rejuvenated mantle that was likely emplaced during late Precambrian/early Cambrian rifting. These observations suggest that the lithospheric structure beneath the Reelfoot Rift may be an example of a global phenomenon in which MLDs act as weak zones that facilitate the removal of cratonic lithosphere that lies beneath.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugraha, Andri Dian; Adisatrio, Philipus Ronnie
2013-09-09
Seismic refraction survey is one of geophysical method useful for imaging earth interior, definitely for imaging near surface. One of the common problems in seismic refraction survey is weak amplitude due to attenuations at far offset. This phenomenon will make it difficult to pick first refraction arrival, hence make it challenging to produce the near surface image. Seismic interferometry is a new technique to manipulate seismic trace for obtaining Green's function from a pair of receiver. One of its uses is for improving first refraction arrival quality at far offset. This research shows that we could estimate physical properties suchmore » as seismic velocity and thickness from virtual refraction processing. Also, virtual refraction could enhance the far offset signal amplitude since there is stacking procedure involved in it. Our results show super - virtual refraction processing produces seismic image which has higher signal-to-noise ratio than its raw seismic image. In the end, the numbers of reliable first arrival picks are also increased.« less
Mantle Earthquakes in Thinned Proterozoic Lithosphere: Harrat Lunayyir, Saudi Arabia
NASA Astrophysics Data System (ADS)
Blanchette, A. R.; Klemperer, S. L.; Mooney, W. D.; Zahran, H. M.
2017-12-01
Harrat Lunayyir is an active volcanic field located in the western Arabian Shield 100 km outside of the Red Sea rift margin. We use common conversion point (CCP) stacking of P-wave receiver functions (PRFs) to show that the Moho is at 38 km depth, close to the 40 km crustal thickness measured in the center of the craton, whereas the lithosphere-asthenosphere boundary (LAB) is at 60 km, far shallower than the 150 km furthest in the craton. We locate 67 high-frequency earthquakes with mL ≤ 2.5 at depths of 40-50 km below the surface, located clearly within the mantle lid. The occurrence of earthquakes within the lithospheric mantle requires a geothermal temperature profile that is below equilibrium. The lithosphere cannot have thinned to its present thickness earlier than 15 Ma, either during an extended period of rifting possibly beginning 24 Ma or, more likely, as part of the second stage of rifting following collision between Arabia and Eurasia.
GALEX Study of the UV Variability of Nearby Galaxies and a Deep Probe of the UV Luminosity Function
NASA Technical Reports Server (NTRS)
Schlegel, Eric
2005-01-01
The proposal has two aims - a deep exposure of NGC 300, about a factor of 10 deeper than the GALEX all-sky survey; and an examination of the UV variability. The data were received just prior to a series of proposal deadlines in early spring. A subsequent analysis delay includes a move from SAO to the University of Texas - San Antonio. Nevertheless, we have merged the data into a single deep exposure as well as undertaking a preliminary examination of the variability. No UV halo is present as detected in the GALEX observation of M83. No UV bursts are visible; however a more stringent limit will only be obtained through a differencing of the sub-images. Papers: we expect 2 papers at about 12 pages/paper to flow from this project. The first paper will report on the time variability while the second will focus on the deep UV image obtained from stacking the individual observations.
Error minimizing algorithms for nearest eighbor classifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Reid B; Hush, Don; Zimmer, G. Beate
2011-01-03
Stack Filters define a large class of discrete nonlinear filter first introd uced in image and signal processing for noise removal. In recent years we have suggested their application to classification problems, and investigated their relationship to other types of discrete classifiers such as Decision Trees. In this paper we focus on a continuous domain version of Stack Filter Classifiers which we call Ordered Hypothesis Machines (OHM), and investigate their relationship to Nearest Neighbor classifiers. We show that OHM classifiers provide a novel framework in which to train Nearest Neighbor type classifiers by minimizing empirical error based loss functions. Wemore » use the framework to investigate a new cost sensitive loss function that allows us to train a Nearest Neighbor type classifier for low false alarm rate applications. We report results on both synthetic data and real-world image data.« less
Numerical Aspects of Cone Beam Contour Reconstruction
NASA Astrophysics Data System (ADS)
Louis, Alfred K.
2017-12-01
We describe a method for directly calculating the contours of a function from cone beam data. The algorithm is based on a new inversion formula for the gradient of a function presented in Louis (Inverse Probl 32(11):115005, 2016. http://stacks.iop.org/0266-5611/32/i=11/a=115005). The Radon transform of the gradient is found by using a Grangeat type of formula, reducing the inversion problem to the inversion of the Radon transform. In that way the influence of the scanning curve, vital for all exact inversion formulas for complete data, is avoided Numerical results are presented for the circular scanning geometry which neither fulfills the Tuy-Kirillov condition nor the much weaker condition given by the author in Louis (Inverse Probl 32(11):115005, 2016. http://stacks.iop.org/0266-5611/32/i=11/a=115005).
Integrated Arrays on Silicon at Terahertz Frequencies
NASA Technical Reports Server (NTRS)
Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand
2011-01-01
In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.
NASA Astrophysics Data System (ADS)
Wantha, Channarong
2018-02-01
This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.
Optical signal processing for a smart vehicle lighting system using a-SiCH technology
NASA Astrophysics Data System (ADS)
Vieira, M. A.; Vieira, M.; Vieira, P.; Louro, P.
2017-05-01
We propose the use of Visible Light Communication (VLC) for vehicle safety applications, creating a smart vehicle lighting system that combines the functions of illumination and signaling, communications, and positioning. The feasibility of VLC is demonstrated by employing trichromatic Red-Green-Blue (RGB) LEDs as transmitters, since they offer the possibility of Wavelength Division Multiplexing (WDM), which can greatly increase the transmission data rate, when using SiC double p-i-n receivers to encode/decode the information. Trichromatic RGB Light Emitting Diodes (LED)s (RGB-LED) are used together for illumination proposes (headlamps) and individually, each chip, to transmit the driving range distance and data information. An on-off code is used to transmit the data. Free space is the transmission medium. The receivers consist of two stacked amorphous a-H:SiC cells. They combine the simultaneous demultiplexing operation with the photodetection and self-amplification. The proposed coding is based on SiC technology. Multiple Input Multi Output (MIMO) architecture is used. For data transmission, we propose the use of two headlights based on commercially available modulated white RGB-LEDs. For data receiving and decoding we use three a-SiC:H double pin/pin optical processors symmetrically distributed at the vehicle tail Moreover, we present a way to achieve vehicular communication using the parity bits. A representation with a 4 bit original string color message and the transmitted 7 bit string, the encoding and decoding accurate positional information processes and the design of SiC navigation system are discussed and tested. A visible multilateration method estimates the drive distance range by using the decoded information received from several non-collinear transmitters.
NASA Astrophysics Data System (ADS)
Liu, Lin; Gao, Stephen S.; Liu, Kelly H.; Mickus, Kevin
2017-06-01
The Upper Mississippi Embayment (UME), where the seismically active New Madrid Seismic Zone resides, experienced two phases of subsidence commencing in the Late Precambrian and Cretaceous, respectively. To provide new constraints on models proposed for the mechanisms responsible for the subsidence, we computed and stacked P-to-S receiver functions recorded by 49 USArray and other seismic stations located in the UME and the adjacent Ozark Uplift and modeled Bouguer gravity anomaly data. The inferred thickness, density, and Vp/Vs of the upper and lower crustal layers suggest that the UME is characterized by a mafic and high-density upper crustal layer of ˜30 km thickness, which is underlain by a higher-density lower crustal layer of up to ˜15 km. Those measurements, in the background of previously published geological observations on the subsidence and uplift history of the UME, are in agreement with the model that the Cretaceous subsidence, which was suggested to be preceded by an approximately 2 km uplift, was the consequence of the passage of a previously proposed thermal plume. The thermoelastic effects of the plume would have induced wide-spread intrusion of mafic mantle material into the weak UME crust fractured by Precambrian rifting and increased its density, resulting in renewed subsidence after the thermal source was removed. In contrast, the Ozark Uplift has crustal density, thickness, and Vp/Vs measurements that are comparable to those observed on cratonic areas, suggesting an overall normal crust without significant modification by the proposed plume, probably owing to the relatively strong and thick lithosphere.
NASA Astrophysics Data System (ADS)
Xu, Qiang; Zhao, Junmeng; Yuan, Xiaohui; Liu, Hongbing; Pei, Shunping
2017-10-01
We analyze the teleseismic waveform data recorded by 42 temporary stations from the Y2 and ANTILOPE-1 arrays using the P and S receiver function techniques to investigate the lithospheric structure beneath western Tibet. The Moho is reliably identified as a prominent feature at depths of 55-82 km in the stacked traces and in depth migrated images. It has a concave shape and reaches the deepest location at about 80 km north of the Indus-Yarlung suture (IYS). An intracrustal discontinuity is observed at 55 km depth below the southern Lhasa terrane, which could represent the upper border of the eclogitized underthrusting Indian lower crust. Underthrusting of the Indian crust has been widely observed beneath the Lhasa terrane and correlates well with the Bouguer gravity low, suggesting that the gravity anomalies in the Lhasa terrane are induced by topography of the Moho. At 20 km depth, a midcrustal low-velocity zone (LVZ) is observed beneath the Tethyan Himalaya and southern Lhasa terrane, suggesting a layer of partial melts that decouples the thrust/fold deformation of the upper crust from the shortening and underthrusting in the lower crust. The Sp conversions at the lithosphere-asthenosphere boundary (LAB) can be recognized at depths of 130-200 km, showing that the Indian lithospheric mantle is underthrusting with a ramp-flat shape beneath southern Tibet and probably is detached from the lower crust immediately under the IYS. Our observations reconstruct the configuration of the underthrusting Indian lithosphere and indicate significant along strike variations.
NASA Astrophysics Data System (ADS)
Yang, Q.; Gao, S. S.; Liu, K. H.
2017-12-01
To provide new constraints on crustal structure and evolution models beneath a collage of tectonic provinces in the southeastern United States, a total of 10,753 teleseismic receiver functions recorded by 125 USArray and other seismic stations are used to compute crustal thickness and Vp/Vs values. The resulting crustal thicknesses range from 25 km at the coast to 51 km beneath the peak of the southern Appalachians with an average of 36.2 km ± 5.5 km. The resulting crustal thicknesses correlate well with surface elevation and Bouguer gravity anomalies. Beneath the Atlantic Coastal Plain, the crustal thicknesses show a clear eastward thinning with a magnitude of 10 km, from about 40 km beneath the western margin to 30 km beneath the coast. The Vp/Vs values for the entire study area range from 1.71 to 1.90 with a mean value of 1.80 ± 0.04. The mean Vp/Vs value is 1.82±0.035 in the southern Appalachian Mountain. The slightly larger than normal crustal Vp/Vs for this area might be the result of significant erosion of the felsic upper crust over the past 300 million years. Alternatively, it could also suggest the existence of pervasive magmatic intrusion into the Appalachian crust. The Vp/Vs measurements in the Atlantic Coastal Plain increase toward the east, ranging from 1.75 to 1.82, probably indicating a gradual increase of mafic magmatic intrusion into thinner crust during the development of the passive continental margin.
The lithosphere-asthenosphere boundary beneath the Korean Peninsula from S receiver functions
NASA Astrophysics Data System (ADS)
Lee, S. H.; Rhie, J.
2017-12-01
The shallow lithosphere in the Eastern Asia at the east of the North-South Gravity Lineament is well published. The reactivation of the upper asthenosphere induced by the subducting plates is regarded as a dominant source of the lithosphere thinning. Additionally, assemblage of various tectonic blocks resulted in complex variation of the lithosphere thickness in the Eastern Asia. Because, the Korean Peninsula located at the margin of the Erasian Plate in close vicinity to the trench of subducting oceanic plate, significant reactivation of the upper asthenosphere is expected. For the study of the tectonic history surrounding the Korean Peninsula, we determined the lithosphere-asthenosphere boundary (LAB) beneath the Korean Peninsula using common conversion point stacking method with S receiver functions. The depth of the LAB beneath the Korean Peninsula ranges from 60 km to 100 km and confirmed to be shallower than that expected for Cambrian blocks as previous global studies. The depth of the LAB is getting shallower to the south, 95 km at the north and 60 km at the south. And rapid change of the LAB depth is observed between 36°N and 37°N. The depth change of the LAB getting shallower to the south implies that the source of the lithosphere thinning is a hot mantle upwelling induced by the northward subduction of the oceanic plates since Mesozoic. Unfortunately, existing tectonic models can hardly explain the different LAB depth in the north and in the south as well as the rapid change of the LAB depth.
Arabidopsis ANGULATA10 is required for thylakoid biogenesis and mesophyll development
Micol, José Luis
2014-01-01
The chloroplasts of land plants contain internal membrane systems, the thylakoids, which are arranged in stacks called grana. Because grana have not been found in Cyanobacteria, the evolutionary origin of genes controlling the structural and functional diversification of thylakoidal membranes in land plants remains unclear. The angulata10-1 (anu10-1) mutant, which exhibits pale-green rosettes, reduced growth, and deficient leaf lateral expansion, resulting in the presence of prominent marginal teeth, was isolated. Palisade cells in anu10-1 are larger and less packed than in the wild type, giving rise to large intercellular spaces. The ANU10 gene encodes a protein of unknown function that localizes to both chloroplasts and amyloplasts. In chloroplasts, ANU10 associates with thylakoidal membranes. Mutant anu10-1 chloroplasts accumulate H2O2, and have reduced levels of chlorophyll and carotenoids. Moreover, these chloroplasts are small and abnormally shaped, thylakoidal membranes are less abundant, and their grana are absent due to impaired thylakoid stacking in the anu10-1 mutant. Because the trimeric light-harvesting complex II (LHCII) has been reported to be required for thylakoid stacking, its levels were determined in anu10-1 thylakoids and they were found to be reduced. Together, the data point to a requirement for ANU10 for chloroplast and mesophyll development. PMID:24663344
Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Trevino, Luis A.; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt
2010-01-01
The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the most suitable candidate among commercial alternatives for HoFi SWME prototype development. A design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype consisting 14,300 tube bundled into 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Vacuum chamber testing has been performed characterize heat rejection as a function of inlet water temperature and water vapor backpressure and to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the tolerance to freezing and suitability to reject heat in a Mars pressure environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Minjee; Lee, Byeongdu; Leal, Cecilia
Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less
Kang, Minjee; Lee, Byeongdu; Leal, Cecilia
2017-10-20
Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less
Trotier, Aurélien J; Castets, Charles R; Lefrançois, William; Ribot, Emeline J; Franconi, Jean-Michel; Thiaudière, Eric; Miraux, Sylvain
2016-08-01
To develop and assess a 3D-cine self-gated method for cardiac imaging of murine models. A 3D stack-of-stars (SOS) short echo time (STE) sequence with a navigator echo was performed at 7T on healthy mice (n = 4) and mice with acute myocardial infarction (MI) (n = 4) injected with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. In all, 402 spokes were acquired per stack with the incremental or the golden angle method using an angle increment of (360/402)° or 222.48°, respectively. A cylindrical k-space was filled and repeated with a maximum number of repetitions (NR) of 10. 3D cine cardiac images at 156 μm resolution were reconstructed retrospectively and compared for the two methods in terms of contrast-to-noise ratio (CNR). The golden angle images were also reconstructed with NR = 10, 6, and 3, to assess cardiac functional parameters (ejection fraction, EF) on both animal models. The combination of 3D SOS-STE and USPIO injection allowed us to optimize the identification of cardiac peaks on navigator signal and generate high CNR between blood and myocardium (15.3 ± 1.0). The golden angle method resulted in a more homogeneous distribution of the spokes inside a stack (P < 0.05), enabling reducing the acquisition time to 15 minutes. EF was significantly different between healthy and MI mice (P < 0.05). The method proposed here showed that 3D-cine images could be obtained without electrocardiogram or respiratory gating in mice. It allows precise measurement of cardiac functional parameters even on MI mice. J. Magn. Reson. Imaging 2016;44:355-365. © 2016 Wiley Periodicals, Inc.
Transient Deformation of Stable Continental Lithosphere by the 2011 M9.0 Tohoku-Oki Megatrust
NASA Astrophysics Data System (ADS)
Hong, T. K.; Chi, D.
2015-12-01
The Korean Peninsula was dislocated laterally by 1-6cm after the 11 March 2011 M9.0 Tohoku-Oki megathrust at a distance of ~1300 km. These lateral displacements produced apparent tensional stresses of 1-7 kPa in the crust of the peninsula, perturbing the medium. Temporal variation of seismic velocities is investigated to assess the lithospheric responses to the megatrust. The Green's function over inter-station paths are retrieved from ambient noises recorded at broadband seismic stations that are densely deployed over the peninsula. The ambient noises are bandpass-filtered between 0.03 and 0.08 Hz, and spectral whitening and one-bit normalization are applied. The fundamental-mode Rayleigh waves are retrieved by stacking the cross-correlation functions of 10-days-long ambient noises from 2010 to 2015. The traveltime changes of Rayleigh waves with respect to the reference traveltimes are calculated by comparing the stacked cross-correlation functions. The reference Rayleigh waves are calculated by stacking the cross-correlation functions for 4 to 6 months before the megathrust. The traveltime changes are normalized by the inter-station distances. Abrupt traveltime delays are observed right after the megathrust, which are particularly strong along paths subparallel to the great-circle direction to the megathrust. The peak traveltime delay reaches 0.028 s/km, which corresponds to shear velocity decrease of 8.9 %. The traveltime delays are weak along the paths deviated from the great-circle directions. The observation suggests that the transient tension stress field caused longitudinal lithospheric perturbation with preferential mineral orientation and fluid migration, decreasing the seismic velocities. The traveltime delays were recovered with rates of 0.000025 to 0.000059 s/km per day, completing the recovery in several hundred days after the megathrust.
NASA Astrophysics Data System (ADS)
Juliá, J.; Tang, Z.; Mai, P. M.; Zahran, H.
2014-12-01
Cenozoic volcanic outcrops in Arabia - locally known as harrats - span more than 2000 km along the western half of the Arabian plate, from eastern Yemen to southern Syria. The magmatism is bimodal in character, with older volcanics (30 to 20 My) being tholeiitic-to-transitional and paralleling the Red Sea margin, and younger volcanics (12 Ma to Recent) being transitional-to-strongly-alkalic and aligning in a more north-south direction. The bimodal character has been attributed to a two-stage rifting process along the Red Sea, where the old volcanics would have produced from shallow sources related to an initial passive rifting stage, and young volcanics would have originated from one or more deep-seated mantle plumes driving present active rifting. Early models suggested the harrats would have resulted from either lateral flow from the Afar plume in Ethiopia, or more locally from a separate mantle plume directly located under the shield. Most recently, tomographic images of the Arabian mantle have suggested the northern harrats could be resulting from flow originating at a deep plume under Jordan. In this work, we investigate the location of deep mantle plumes under the Arabian plate by mapping transition zone thickness with teleseismic receiver functions. The transition zone is bounded by seismic discontinuities, nominally at 410 and 660 km depth, originating from phase transitions in the olivine-normative component of the mantle. The precise depth of the discontinuities is strongly dependent on temperature and, due to the opposing signs of the corresponding Clapeyron slopes, positive temperature anomalies are expected to result in thinning of the transition zone. Our dataset consists of ~5000 low-frequency (fc < 0.25 Hz) receiver function waveforms obtained at ~110 broadband stations belonging to a number of permanent and temporary seismic networks in the region. The receiver functions were migrated to depth and stacked along a ~2000 km long record section displaying P-to-S conversions at seismic discontinuities under Western Arabia. Our results display a normal to thicker-than-average transition zone under the study area, suggesting thermal perturbations of the transition zone due to deep mantle upwellings under the western shield and/or Jordan are unlikely.
Crustal structure across the lateral edge of the Southern Tyrrhenian slab
NASA Astrophysics Data System (ADS)
Pio Lucente, Francesco; Piana Agostinetti, Nicola; Di Bona, Massimo; Govoni, Aladino; Bianchi, Irene
2015-04-01
In the southeastern corner of the Tyrrhenian basin, in the central Mediterranean Sea, a tight alignment of earthquakes along a well-defined Benioff zone reveals the presence of one of the narrowest active trenches worldwide, where one of the last fragments of the former Tethys ocean is consumed. Seismic tomography furnishes snapshot images of the present-day position and shape of this slab. Through receiver function analysis we investigate the layered structures overlying the slab. We compute receiver functions from the P-coda of teleseismic events at 13 temporary station deployed during the "Messina 1908-2008" research project (Margheriti, 2008), and operating for an average period of 15 months each. The crustal and uppermost mantle structure has been investigated using a trans-dimensional McMC algorithm developed by Piana Agostinetti and Malinverno (2010), obtaining a 1D S-wave velocity profile for each station. At three of the stations, operating for a longer period of time, the number and the azimuthal distribution of teleseisms allowed us to stack the RF data-set with back azimuth and to compute the harmonic expansion. The analysis of the back-azimuthal harmonics gave us insight on the presence of dipping interfaces and anisotropic layers at depth. The strike and the dip of interfaces and the anisotropic parameters have been quantified using the Neighbourhood Algorithm (Sambridge, 1999). Preliminary results highlight: (1) a neat differentiation of the isotropic S-wave velocity structure passing through the slab edge, from the tip of the Calabrian arc to the Peloritani Range, and (2) the presence of crustal complexities, such as dipping interfaces and anisotropic layers, both in the upper and lower crust. Margheriti, L. (2008), Understanding Crust Dynamics and Subduction in Southern Italy, Eos Trans. AGU, 89(25), 225-226, doi:10.1029/2008EO250002. Piana Agostinetti, N. and A. Malinverno (2010) Receiver Function inversion by trans-dimensional Monte Carlo sampling, Geophys. J. Int., 181(2) 858-872, doi: 10.1111/j.1365-246X.2010.04530.x Sambridge, M. (1999), Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space, Geophys. J. Int., 138, 479-494, doi:10.1046/j.1365-246X.1999.00876.x.
NASA Astrophysics Data System (ADS)
Dugda, Mulugeta T.; Nyblade, Andrew A.; Julia, Jordi; Langston, Charles A.; Ammon, Charles J.; Simiyu, Silas
2005-01-01
Crustal structure in Kenya and Ethiopia has been investigated using receiver function analysis of broadband seismic data to determine the extent to which the Cenozoic rifting and magmatism has modified the thickness and composition of the Proterozoic crust in which the East African rift system developed. Data for this study come from broadband seismic experiments conducted in Ethiopia between 2000 and 2002 and in Kenya between 2001 and 2002. Two methods have been used to analyze the receiver functions, the H-κ method, and direct stacks of the waveforms, yielding consistent results. Crustal thickness to the east of the Kenya rift varies between 39 and 42 km, and Poisson's ratios for the crust vary between 0.24 and 0.27. To the west of the Kenya rift, Moho depths vary between 37 and 38 km, and Poisson's ratios vary between 0.24 and 0.27. These findings support previous studies showing that crust away from the Kenya rift has not been modified extensively by Cenozoic rifting and magmatism. Beneath the Ethiopian Plateau on either side of the Main Ethiopian Rift, crustal thickness ranges from 33 to 44 km, and Poisson's ratios vary from 0.23 to 0.28. Within the Main Ethiopian Rift, Moho depths vary from 27 to 38 km, and Poisson's ratios range from 0.27 to 0.35. A crustal thickness of 25 km and a Poisson's ratio of 0.36 were obtained for a single station in the Afar Depression. These results indicate that the crust beneath the Ethiopian Plateau has not been modified significantly by the Cenozoic rifting and magmatism, even though up to a few kilometers of flood basalts have been added, and that the crust beneath the rifted regions in Ethiopia has been thinned in many places and extensively modified by the addition of mafic rock. The latter finding is consistent with models for rift evolution, suggesting that magmatic segments with the Main Ethiopian Rift, characterized by dike intrusion and Quaternary volcanism, act now as the locus of extension rather than the rift border faults.
TESTING FOR CPT VIOLATION IN B0s SEMILEPTONIC DECAYS
NASA Astrophysics Data System (ADS)
Kooten, R. Van
2014-01-01
A DØ analysis measuring the charge asymmetry Absl of like-sign dimuon events due to semileptonic b-hadron decays at the Fermilab Tevatron Collider has shown indications of possible anomalous CP violation in the mixing of neutral B mesons. This result has been used to extract the first senstivity to CPT violation in the B0s system. An analysis to explore further this anomaly by specifically measuring the semileptonic charge asymmetry, assl, in B0s decays is described, as well as how a variant of this analysis can be used to explore a larger set of CPT-violating parameters in the B0s system for the first time.
Microtechnology management considering test and cost aspects for stacked 3D ICs with MEMS
NASA Astrophysics Data System (ADS)
Hahn, K.; Wahl, M.; Busch, R.; Grünewald, A.; Brück, R.
2018-01-01
Innovative automotive systems require complex semiconductor devices currently only available in consumer grade quality. The European project TRACE will develop and demonstrate methods, processes, and tools to facilitate usage of Consumer Electronics (CE) components to be deployable more rapidly in the life-critical automotive domain. Consumer electronics increasingly use heterogeneous system integration methods and "More than Moore" technologies, which are capable to combine different circuit domains (Analog, Digital, RF, MEMS) and which are integrated within SiP or 3D stacks. Making these technologies or at least some of the process steps available under automotive electronics requirements is an important goal to keep pace with the growing demand for information processing within cars. The approach presented in this paper aims at a technology management and recommendation system that covers technology data, functional and non-functional constraints, and application scenarios, and that will comprehend test planning and cost consideration capabilities.
Yuan, Kun; Zhao, Rui-Sheng; Zheng, Jia-Jia; Zheng, Hong; Nagase, Shigeru; Zhao, Sheng-Dun; Liu, Yan-Zhi; Zhao, Xiang
2017-04-15
Noncovalent interactions involving aromatic rings, such as π···π stacking, CH···π are very essential for supramolecular carbon nanostructures. Graphite is a typical homogenous carbon matter based on π···π stacking of graphene sheets. Even in systems not involving aromatic groups, the stability of diamondoid dimer and layer-layer graphane dimer originates from C - H···H - C noncovalent interaction. In this article, the structures and properties of novel heterogeneous layer-layer carbon-nanostructures involving π···H-C-C-H···π···H-C-C-H stacking based on [n]-graphane and [n]-graphene and their derivatives are theoretically investigated for n = 16-54 using dispersion corrected density functional theory B3LYP-D3 method. Energy decomposition analysis shows that dispersion interaction is the most important for the stabilization of both double- and multi-layer-layer [n]-graphane@graphene. Binding energy between graphane and graphene sheets shows that there is a distinct additive nature of CH···π interaction. For comparison and simplicity, the concept of H-H bond energy equivalent number of carbon atoms (noted as NHEQ), is used to describe the strength of these noncovalent interactions. The NHEQ of the graphene dimers, graphane dimers, and double-layered graphane@graphene are 103, 143, and 110, indicating that the strength of C-H···π interaction is close to that of π···π and much stronger than that of C-H···H-C in large size systems. Additionally, frontier molecular orbital, electron density difference and visualized noncovalent interaction regions are discussed for deeply understanding the nature of the C-H···π stacking interaction in construction of heterogeneous layer-layer graphane@graphene structures. We hope that the present study would be helpful for creations of new functional supramolecular materials based on graphane and graphene carbon nano-structures. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Naval Weapons Bulletin. October-December, Number 4-62.
1962-12-01
conducted on the prototype installa- by continuously to execute pre-recorded tion in USS NORTON SOUND ( AVM -1). commands. One of these commands will (See...1T[LMET[IIING TACAN",- TOWER STACK /AN/SPG-59 MISSILE / Figure 1. --Computed radiation hazard zone, USS NORTON SOUND ( AVM -lI) CONFIDENTIAL C7...equipment also located in the checkout area are the Signal Comparator CM- 12Z/ DSM and the Telemetric Data Receiving, Recording, and Scoring Set AN/SKQ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinde, Subhash L.; Teifel, John; Flores, Richard S.
A 3D stacked sASIC is provided that includes a plurality of 2D reconfigurable structured structured ASIC (sASIC) levels interconnected through hard-wired arrays of 3D vias. The 2D sASIC levels may contain logic, memory, analog functions, and device input/output pad circuitry. During fabrication, these 2D sASIC levels are stacked on top of each other and fused together with 3D metal vias. Such 3D vias may be fabricated as through-silicon vias (TSVs). They may connect to the back-side of the 2D sASIC level, or they may be connected to top metal pads on the front-side of the 2D sASIC level.
NASA Technical Reports Server (NTRS)
Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.
2012-01-01
Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.
Electronic and mechanical characteristics of stacked dimer molecular junctions.
Magyarkuti, András; Adak, Olgun; Halbritter, Andras; Venkataraman, Latha
2018-02-15
Break-junction measurements are typically aimed at characterizing electronic properties of single molecules bound between two metal electrodes. Although these measurements have provided structure-function relationships for such devices, there is little work that studies the impact of molecule-molecule interactions on junction characteristics. Here, we use a scanning tunneling microscope based break-junction technique to study pi-stacked dimer junctions formed with two amine-terminated conjugated molecules. We show that the conductance, force and flicker noise of such dimers differ dramatically when compared with the corresponding monomer junctions and discuss the implications of these results on intra- and inter-molecular charge transport.
An ab initio study of the electronic structure of indium and gallium chalcogenide bilayers
NASA Astrophysics Data System (ADS)
Ayadi, T.; Debbichi, L.; Said, M.; Lebègue, S.
2017-09-01
Using first principle calculations, we have studied the structural and electronic properties of two dimensional bilayers of indium and gallium chalcogenides. With density functional theory corrected for van der Waals interactions, the different modes of stacking were investigated in a systematic way, and several of them were found to compete in energy. Then, their band structures were obtained with the GW approximation and found to correspond to indirect bandgap semiconductors with a small dependency on the mode of stacking. Finally, by analysing the electron density, it appeared that GaSe-InS is a promising system for electron-hole separation.
Creep Mechanisms of a Ni-Co-Based-Wrought Superalloy with Low Stacking Fault Energy
NASA Astrophysics Data System (ADS)
Tian, Chenggang; Xu, Ling; Cui, Chuanyong; Sun, Xiaofeng
2015-10-01
In order to study the influences of stress and temperature on the creep deformation mechanisms of a newly developed Ni-Co-based superalloy with low stacking fault energy, creep experiments were carried out under a stress range of 345 to 840 MPa and a temperature range of 923 K to 1088 K (650 °C to 815 °C). The mechanisms operated under the various creep conditions were identified and the reasons for their transformation were well discussed. A deformation mechanism map under different creep conditions was summarized, which provides a qualitative representation of the operative creep mechanisms as a function of stress and temperature.
Fraiwan, Arwa; Kwan, Landen; Choi, Seokheun
2016-11-15
We report a novel paper-based biobattery which generates power from microorganism-containing liquid derived from renewable and sustainable wastewater which is readily accessible in the local environment. The device fuses the art of origami and the technology of microbial fuel cells (MFCs) and has the potential to shift the paradigm for flexible and stackable paper-based batteries by enabling exceptional electrical characteristics and functionalities. 3D, modular, and retractable battery stack is created from (i) 2D paper sheets through high degrees of folding and (ii) multifunctional layers sandwiched for MFC device configuration. The stack is based on ninja star-shaped origami design formed by eight MFC modular blades, which is retractable from sharp shuriken (closed) to round frisbee (opened). The microorganism-containing wastewater is added into an inlet of the closed battery stack and it is transported into each MFC module through patterned fluidic pathways in the paper layers. During operation, the battery stack is transformed into the round frisbee to connect eight MFC modules in series for improving the power output and simultaneously expose all air-cathodes to the air for their cathodic reactions. The device generates desired values of electrical current and potential for powering an LED for more than 20min. Copyright © 2016 Elsevier B.V. All rights reserved.
Schimelman, Jacob B; Dryden, Daniel M; Poudel, Lokendra; Krawiec, Katherine E; Ma, Yingfang; Podgornik, Rudolf; Parsegian, V Adrian; Denoyer, Linda K; Ching, Wai-Yim; Steinmetz, Nicole F; French, Roger H
2015-02-14
The role of base pair composition and stacking sequence in the optical properties and electronic transitions of DNA is of fundamental interest. We present and compare the optical properties of DNA oligonucleotides (AT)10, (AT)5(GC)5, and (AT-GC)5 using both ab initio methods and UV-vis molar absorbance measurements. Our data indicate a strong dependence of both the position and intensity of UV absorbance features on oligonucleotide composition and stacking sequence. The partial densities of states for each oligonucleotide indicate that the valence band edge arises from a feature associated with the PO4(3-) complex anion, and the conduction band edge arises from anti-bonding states in DNA base pairs. The results show a strong correspondence between the ab initio and experimentally determined optical properties. These results highlight the benefit of full spectral analysis of DNA, as opposed to reductive methods that consider only the 260 nm absorbance (A260) or simple purity ratios, such as A260/A230 or A260/A280, and suggest that the slope of the absorption edge onset may provide a useful metric for the degree of base pair stacking in DNA. These insights may prove useful for applications in biology, bioelectronics, and mesoscale self-assembly.
Wu, Qun; Chen, Liangqiang; Xu, Yan
2013-09-02
Yeasts are the most important group of microorganisms contributing to liquor quality in the solid-state fermentation process of Chinese Maotai-flavor liquor. There occurred a complex yeast community structure during this process, including stages of Daqu (the starter) making, stacking fermentation on the ground and liquor fermentation in the pits. In the Daqu making stage, few yeast strains accumulated. However, the stacking fermentation stage accumulated nine yeast species with different physio-biochemical characteristics. But only four species kept dominant until liquor fermentation, which were Zygosaccharomyces bailii, Saccharomyces cerevisiae, Pichia membranifaciens, and Schizosaccharomyces pombe, implying their important functions in liquor making. The four species tended to inhabit in different locations of the stack and pits during stacking and liquor fermentation, due to the condition heterogeneity of the solid-state fermentation, including the different fermentation temperature profiles and oxygen density in different locations. Moreover, yeast population was much larger in the upper layer than that in the middle and bottom layers in liquor fermentation, which was in accordance with the profile of reducing sugar consumption and ethanol production. This was a systematical investigation of yeast community structure dynamics in the Maotai-flavor liquor fermentation process. It would be of help to understand the fermentative mechanism in solid-state fermentation for Maotai-flavor liquor. © 2013.
Yan, Keyi; Toku, Yuhki; Morita, Yasuyuki; Ju, Yang
2018-06-22
In this research, we propose a new simple method to fabricate hydrogen gas sensor by stacking the multiwall carbon nanotube (MWCNT) sheets. MWCNT sheet offers a larger surface area and more CNT contacts, which are key factors for gas sensing, because of its super-high alignment and end-to-end structure comparing to the traditional CNT film. Besides, MWCNT sheet can be directly drawn from the spinnable CNT array in large scales. Therefore, this method is a potential answer for the mass production and commercialization of CNT based sensor with high response. By stacking different layers of sheet, microstructure and CNT interactions in the layers were changed and their influences towards gas sensing were investigated. It was observed that the sample with 3 layers of sheet and functionalized with 3 nm-thick Pd showed the best gas sensing performance with a response of 12.31% at 4% H2 and response time below 200 s. © 2018 IOP Publishing Ltd.
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.; Neutzler, Jay K.
1997-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Alkasab, Kalil A.
1991-01-01
The influence of the thermal contact resistance on the heat transfer between the electrode plates, and the cooling system plate in a phosphoric-acid fuel-cell stack was experimentally investigated. The investigation was conducted using a set-up that simulates the operating conditions prevailing in a phosphoric acid fuel-cell stack. The fuel-cell cooling system utilized three types of coolants, water, engine oil, and air, to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The thermal contact resistance was measured as a function of pressure at the interface between the electrode plate and the cooling system plate. The interface pressure range was from 0 kPa to 3448 kPa, while the Reynolds number for the cooling limits varied from 15 to 79 for oil, 1165 to 6165 for water, and 700 to 6864 for air. Results showed that increasing the interface pressure resulted in a higher heat transfer coefficient.
Clustering on Magnesium Surfaces - Formation and Diffusion Energies.
Chu, Haijian; Huang, Hanchen; Wang, Jian
2017-07-12
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.
Manipulation of domain-wall solitons in bi- and trilayer graphene
NASA Astrophysics Data System (ADS)
Jiang, Lili; Wang, Sheng; Shi, Zhiwen; Jin, Chenhao; Utama, M. Iqbal Bakti; Zhao, Sihan; Shen, Yuen-Ron; Gao, Hong-Jun; Zhang, Guangyu; Wang, Feng
2018-01-01
Topological dislocations and stacking faults greatly affect the performance of functional crystalline materials1-3. Layer-stacking domain walls (DWs) in graphene alter its electronic properties and give rise to fascinating new physics such as quantum valley Hall edge states4-10. Extensive efforts have been dedicated to the engineering of dislocations to obtain materials with advanced properties. However, the manipulation of individual dislocations to precisely control the local structure and local properties of bulk material remains an outstanding challenge. Here we report the manipulation of individual layer-stacking DWs in bi- and trilayer graphene by means of a local mechanical force exerted by an atomic force microscope tip. We demonstrate experimentally the capability to move, erase and split individual DWs as well as annihilate or create closed-loop DWs. We further show that the DW motion is highly anisotropic, offering a simple approach to create solitons with designed atomic structures. Most artificially created DW structures are found to be stable at room temperature.
NASA Astrophysics Data System (ADS)
Gerhardt, Lisa; Bhimji, Wahid; Canon, Shane; Fasel, Markus; Jacobsen, Doug; Mustafa, Mustafa; Porter, Jeff; Tsulaia, Vakho
2017-10-01
Bringing HEP computing to HPC can be difficult. Software stacks are often very complicated with numerous dependencies that are difficult to get installed on an HPC system. To address this issue, NERSC has created Shifter, a framework that delivers Docker-like functionality to HPC. It works by extracting images from native formats and converting them to a common format that is optimally tuned for the HPC environment. We have used Shifter to deliver the CVMFS software stack for ALICE, ATLAS, and STAR on the supercomputers at NERSC. As well as enabling the distribution multi-TB sized CVMFS stacks to HPC, this approach also offers performance advantages. Software startup times are significantly reduced and load times scale with minimal variation to 1000s of nodes. We profile several successful examples of scientists using Shifter to make scientific analysis easily customizable and scalable. We will describe the Shifter framework and several efforts in HEP and NP to use Shifter to deliver their software on the Cori HPC system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Haojie; Dhomkar, Siddharth; Roy, Bidisha
2014-10-28
For submonolayer quantum dot (QD) based photonic devices, size and density of QDs are critical parameters, the probing of which requires indirect methods. We report the determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer QDs, based on spectral analysis of the optical signature of Aharanov-Bohm (AB) excitons, complemented by photoluminescence studies, secondary-ion mass spectroscopy, and numerical calculations. Numerical calculations are employed to determine the AB transition magnetic field as a function of the type-II QD radius. The study of four samples grown with different tellurium fluxes shows that the lateral size of QDs increases by just 50%, evenmore » though tellurium concentration increases 25-fold. Detailed spectral analysis of the emission of the AB exciton shows that the QD radii take on only certain values due to vertical correlation and the stacked nature of the QDs.« less
Moiré-pattern interlayer potentials in van der Waals materials in the random-phase approximation
NASA Astrophysics Data System (ADS)
Leconte, Nicolas; Jung, Jeil; Lebègue, Sébastien; Gould, Tim
2017-11-01
Stacking-dependent interlayer interactions are important for understanding the structural and electronic properties in incommensurable two-dimensional material assemblies where long-range moiré patterns arise due to small lattice constant mismatch or twist angles. Here we study the stacking-dependent interlayer coupling energies between graphene (G) and hexagonal boron nitride (BN) homo- and heterostructures using high-level random-phase approximation (RPA) ab initio calculations. Our results show that although total binding energies within LDA and RPA differ substantially by a factor of 200%-400%, the energy differences as a function of stacking configuration yield nearly constant values with variations smaller than 20%, meaning that LDA estimates are quite reliable. We produce phenomenological fits to these energy differences, which allows us to calculate various properties of interest including interlayer spacing, sliding energetics, pressure gradients, and elastic coefficients to high accuracy. The importance of long-range interactions (captured by RPA but not LDA) on various properties is also discussed. Parametrizations for all fits are provided.
The Weak Lensing Masses of Filaments between Luminous Red Galaxies
NASA Astrophysics Data System (ADS)
Epps, Seth D.; Hudson, Michael J.
2017-07-01
In the standard model of non-linear structure formation, a cosmic web of dark-matter-dominated filaments connects dark matter haloes. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. Specifically, we detect the weak lensing signal, using CFHTLenS galaxy ellipticities, from stacked filaments between Sloan Digital Sky Survey (SDSS)-III/Baryon Oscillation Spectroscopic Survey luminous red galaxies (LRGs). As a control, we compare the physical LRG pairs with projected LRG pairs that are more widely separated in redshift space. We detect the excess filament mass density in the projected pairs at the 5σ level, finding a mass of (1.6 ± 0.3) × 1013 M⊙ for a stacked filament region 7.1 h-1 Mpc long and 2.5 h-1 Mpc wide. This filament signal is compared with a model based on the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt et al., yielding reasonable agreement.
Kothmann, Richard E.; Somers, Edward V.
1982-01-01
Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.
NASA Astrophysics Data System (ADS)
Goff, J.; Zahirovic, S.; Müller, D.
2017-12-01
Recently published spectral analyses of seafloor bathymetry concluded that abyssal hills, highly linear ridges that are formed along seafloor spreading centers, exhibit periodicities that correspond to Milankovitch cycles - variations in Earth's orbit that affect climate on periods of 23, 41 and 100 thousand years. These studies argue that this correspondence could be explained by modulation of volcanic output at the mid-ocean ridge due to lithostatic pressure variations associated with rising and falling sea level. If true, then the implications are substantial: mapping the topography of the seafloor with sonar could be used as a way to investigate past climate change. This "Milankovitch cycle" hypothesis predicts that the rise and fall of abyssal hills will be correlated to crustal age, which can be tested by stacking, or averaging, bathymetry as a function of age; stacking will enhance any age-dependent signal while suppressing random components, such as fault-generated topography. We apply age-stacking to data flanking the Southeast Indian Ridge ( 3.6 cm/yr half rate), northern East Pacific Rise ( 5.4 cm/yr half rate) and southern East Pacific Rise ( 7.8 cm/yr half rate), where multibeam bathymetric coverage is extensive on the ridge flanks. At the greatest precision possible given magnetic anomaly data coverage, we have revised digital crustal age models in these regions with updated axis and magnetic anomaly traces. We also utilize known 2nd-order spatial statistical properties of abyssal hills to predict the variability of the age-stack under the null hypothesis that abyssal hills are entirely random with respect to crustal age; the age-stacked profile is significantly different from zero only if it exceeds this expected variability by a large margin. Our results indicate, however, that the null hypothesis satisfactorily explains the age-stacking results in all three regions of study, thus providing no support for the Milankovitch cycle hypothesis. The random nature of abyssal hills is consistent with a primarily faulted origin. .
Nucleic acid-functionalized transition metal nanosheets for biosensing applications
Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong
2017-01-01
In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. PMID:27020066
Nucleic acid-functionalized transition metal nanosheets for biosensing applications.
Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong
2017-03-15
In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. Copyright © 2016 Elsevier B.V. All rights reserved.
Total Scattering Analysis of Disordered Nanosheet Materials
NASA Astrophysics Data System (ADS)
Metz, Peter C.
Two dimensional materials are of increasing interest as building blocks for functional coatings, catalysts, and electrochemical devices. While increasingly sophisticated processing routes have been designed to obtain high-quality exfoliated nanosheets and controlled, self-assembled mesostructures, structural characterization of these materials remains challenging. This work presents a novel method of analyzing pair distribution function (PDF) data for disordered nanosheet ensembles, where supercell stacking models are used to infer atom correlations over as much as 50 A. Hierarchical models are used to reduce the parameter space of the refined model and help eliminate strongly correlated parameters. Three data sets for restacked nanosheet assemblies with stacking disorder are analyzed using these methods: simulated data for graphene-like layers, experimental data for 1 nm thick perovskite layers, and experimental data for highly defective delta-MnO2 layers. In each case, the sensitivity of the PDF to the real-space distribution of layer positions is demonstrated by exploring the fit residual as a function of stacking vectors. The refined models demonstrate that nanosheets tend towards local interlayer ordering, which is hypothesized to be driven by the electrostatic potential of the layer surfaces. Correctly accounting for interlayer atom correlations permits more accurate refinement of local structural details including local structure perturbations and defect site occupancies. In the delta-MnO2 nanosheet material, the new modeling approach identified 14% Mn vacancies while application of 3D periodic crystalline models to the < 7 A PDF region suggests a 25% vacancy concentration. In contrast, the perovskite nanosheet material is demonstrated to exhibit almost negligible structural relaxation in contrast with the bulk crystalline material from which it is derived.
NASA Technical Reports Server (NTRS)
Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg
2009-01-01
The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.
NASA Astrophysics Data System (ADS)
Swapna Mary, G.; Hema Chandra, G.; Anantha Sunil, M.; Gupta, Mukul
2018-01-01
We have studied the effects of selenization time on the microstructural, optical, and electrical properties of stacked (Cu/Se/ZnSe/Se/Ge/Se) × 4 layers to demonstrate growth of Cu2ZnGeSe4 (CZGSe) thin films. Electron beam evaporation was used to deposit CZGSe films on glass substrates for selenization in high vacuum at 450°C for different times (15 min, 30 min, 45 min, and 60 min). The incomplete reaction of the precursor layers necessitates selenization at higher temperature for different durations to achieve desirable microstructural and optoelectronic properties. Energy-dispersive spectroscopic measurements revealed that the stacked layers selenized at 450°C for 30 min were nearly stoichiometric with atomic ratios of Cu/(Zn + Ge) = 0.88, Zn/Ge = 1.11, and Se/(Cu + Zn + Ge) = 1.03. X-ray diffraction analysis revealed that the stacks selenized at 450°C for 30 min crystallized in tetragonal stannite structure. Selenization-time-dependent Raman measurements of the selenized stacks are systematically presented to understand the growth of CZGSe. The elemental distribution through depth as a function of selenization time was investigated using secondary-ion mass spectroscopy. The ionic valency of the constituent elements in CZGSe films selenized at 450°C for 30 min was examined using high-resolution x-ray photoelectron spectroscopy. Significant changes were observed in the surface morphology of the stacked layers with increase in selenization time. The effects of defects on the electrical properties and of binary phases on the optical properties are discussed.
NASA Astrophysics Data System (ADS)
Pussak, Marcin; Bauer, Klaus; Stiller, Manfred; Bujakowski, Wieslaw
2014-04-01
Within a seismic reflection processing work flow, the common-reflection-surface (CRS) stack can be applied as an alternative for the conventional normal moveout (NMO) or the dip moveout (DMO) stack. The advantages of the CRS stack include (1) data-driven automatic determination of stacking operator parameters, (2) imaging of arbitrarily curved geological boundaries, and (3) significant increase in signal-to-noise (S/N) ratio by stacking far more traces than used in a conventional stack. In this paper we applied both NMO and CRS stackings to process a sparse 3D seismic data set acquired within a geothermal exploration study in the Polish Basin. The stacked images show clear enhancements in quality achieved by the CRS stack in comparison with the conventional stack. While this was expected from previous studies, we also found remarkable improvements in the quality of seismic attributes when the CRS stack was applied instead of the conventional stack. For the major geothermal target reservoir (Lower Jurassic horizon Ja1), we present a comparison between both stacking methods for a number of common attributes, including root-mean-square (RMS) amplitudes, instantaneous frequencies, coherency, and spectral decomposition attributes derived from the continuous wavelet transform. The attribute maps appear noisy and highly fluctuating after the conventional stack, and are clearly structured after the CRS stack. A seismic facies analysis was finally carried out for the Ja1 horizon using the attributes derived from the CRS stack by using self-organizing map clustering techniques. A corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and decreased instantaneous frequencies. In our interpretation, this region represents a fractured, fluid-bearing compartment within the sandstone reservoir, which indicates favorable conditions for geothermal exploitation.
NASA Astrophysics Data System (ADS)
Almadani, Sattam Abdulkareem
The dissertation utilizes a set of sophisticated computer programs developed at the Geophysics group at Missouri S&T to characterize crustal properties beneath the Afar Depression in Ethiopia where extensional tectonics dominates. In this study, measurements of crustal thickness (H), crustal mean V p/Vs [which is related to Poisson's ratio (sigma)], and the sharpness of the Moho (R) were determined using teleseismic data from 18 broadband seismic sensors that we deployed along a profile of 250 km long with a station spacing of ˜ 10 km. The stations had been recording continuously for an entire year from December 2009 until December 2010. The measurements were determined by stacking P-to-S converted waves (PmS) and their multiples (PPmS and PSmS). Results suggest that the average crustal thickness beneath the Afar Depression is about 28.56+/-0.28 km and the crust is characterized by large Vp/Vs of 1.93+/-0.017 and smaller-than-normal overall stacking amplitude of the P-to-S converted phases beneath most stations. Our results suggest that the crust beneath the entire study area is significantly thinned and extensively intruded by mafic dikes, representing a transitional stage between continental and ocean crust. The Tendaho Graben has the thinnest and most mafic crust, which is also supported by the observation of gravity data which suggest that the active magmatic areas are characterized by higher gravity anomalies while the thicker crusts have smaller and negative anomalies. Thus, the crust beneath the center of the Tendaho Graben is likely to be oceanic-type, and becomes progressively more continental away from the center.
Chiral Redox-Active Isosceles Triangles
Nalluri, Siva Krishna Mohan; Liu, Zhichang; Wu, Yilei; ...
2016-04-12
Designing small-molecule organic redox-active materials, with potential applications in energy storage, has received considerable interest of late. Herein, we report on the synthesis, characterization, and application of two rigid chiral triangles, each of which consist of non-identical pyromellitic diimide (PMDI) and naphthalene diimide (NDI)-based redox-active units. 1H and 13C NMR spectroscopic investigations in solution confirm the lower symmetry (C2 point group) associated with these two isosceles triangles. Single-crystal X-ray diffraction analyses reveal their rigid triangular prism-like geometries. Unlike previously investigated equilateral triangle containing three identical NDI subunits, both isosceles triangles do not choose to form one-dimensional supramolecular nanotubes by dintmore » of [C–H···O] interaction-driven columnar stacking. The rigid isosceles triangle, composed of one NDI and two PMDI subunits, forms—in the presence of N,N-dimethylformamide—two different types of intermolecular NDI–NDI and NDI–PMDI π–π stacked dimers with opposite helicities in the solid state. Cyclic voltammetry reveals that both isosceles triangles can accept reversibly up to six electrons. Continuous-wave electron paramagnetic resonance and electron–nuclear double-resonance spectroscopic investigations, supported by density functional theory calculations, on the single-electron reduced radical anions of the isosceles triangles confirm the selective sharing of unpaired electrons among adjacent redox-active NDI subunit(s) within both molecules. The isosceles triangles have been employed as electrode-active materials in organic rechargeable lithium-ion batteries. The evaluation of the structure–performance relationships of this series of diimide-based triangles reveals that the increase in the number of NDI subunits, replacing PMDI ones, within the molecules improves the electrochemical cell performance of the batteries.« less
NASA Astrophysics Data System (ADS)
Liu, L.; Gao, S. S.; Liu, K. H.
2015-12-01
The New Madrid Seismic Zone (NMSZ) and some of the adjacent areas are covered by a low-velocity sedimentary sequence, giving rise to strong reverberations in the P-to-S receiver functions (RFs) and making it difficult to reliably determine crustal thickness and Poisson's ratio using the conventional H-k stacking technique. Here we apply a newly developed technique (Yu et al., 2015; doi: 10.1002/2014JB011610) to effectively remove or reduce the reverberations from the sedimentary layer to obtain more reliable results. Stacking of a total of 38528 radial RFs recorded by 343 stations in the study area shows systematic spatial variations in crustal thickness (H), Vp/Vs ratio and amplitude (R; relative to the direction P) of the converted Moho phases. Our results indicate that the upper Mississippi Embayment (ME), a broad southwest-plunging trough with the thickest sedimentary layer in the study area, is characterized by a thin crustal thickness (~32 km), while adjacent areas have relatively thicker crust (>40 km). This area also possesses relatively large Vp/Vs (>1.85) values, suggesting possible intrusion of mantle-derived mafic rocks. Most part of the Ozark Uplift is characterized by relatively small Vp/Vs (<1.79) values which indicate an overall felsic crust. In contrast to the NMSZ which is part of the Reelfoot rift, the southern Illinois Basin, which is an intracontinental sag basin, is characterized by a crust of about 45 km which is a few km thicker than the surrounding areas, and a normal Vp/Vs, suggesting sharp differences in crustal structure between rift and sag basins.
High Efficiency Stacked Organic Light-Emitting Diodes Employing Li2O as a Connecting Layer
NASA Astrophysics Data System (ADS)
Kanno, Hiroshi; Hamada, Yuji; Nishimura, Kazuki; Okumoto, Kenji; Saito, Nobuo; Ishida, Hiroki; Takahashi, Hisakazu; Shibata, Kenichi; Mameno, Kazunobu
2006-12-01
We demonstrate the high-efficiency stacked organic light-emitting diodes (OLEDs) introducing new connecting layers. In the green stacked OLEDs, the external efficiencies increase proportionally to the number of the stacked units without suffering the decrease in power efficiency. The current, power and external efficiencies at 0.5 mA/cm2 of the stacked OLED with six stacked units (6-stacked OLED) have reached 235 cd/A, 46.6 lm/W, and 65.8%, respectively. Furthermore, we have applied the connecting layers to a white stacked OLED and fabricated an active-matrix full-color display with a low temperature polysilicon thin film transistor backplane. In the device, the current efficiency of the white 2-stacked OLED is enhanced by a factor of 2.2. The initial luminance drop is significantly suppressed for the white 2-stacked OLED compared to 1-stacked OLED. The proposed white stacked OLED technology can be applied to a full-color display for a practical use.
3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar.
Li, Ying-Chun; Choi, Byunggil; Chong, Jong-Wha; Oh, Daegun
2018-05-20
In this paper, a modified 3D multiple signal classification (MUSIC) algorithm is proposed for joint estimation of range, azimuth, and elevation angles of K-band radar with a small 2 × 2 horn antenna array. Three channels of the 2 × 2 horn antenna array are utilized as receiving channels, and the other one is a transmitting antenna. The proposed modified 3D MUSIC is designed to make use of a stacked autocorrelation matrix, whose element matrices are related to each other in the spatial domain. An augmented 2D steering vector based on the stacked autocorrelation matrix is proposed for the modified 3D MUSIC, instead of the conventional 3D steering vector. The effectiveness of the proposed modified 3D MUSIC is verified through implementation with a K-band frequency-modulated continuous-wave (FMCW) radar with the 2 × 2 horn antenna array through a variety of experiments in a chamber.
Gopalakrishnan, V; Baskaran, R; Venkatraman, B
2016-08-01
A decision support system (DSS) is implemented in Radiological Safety Division, Indira Gandhi Centre for Atomic Research for providing guidance for emergency decision making in case of an inadvertent nuclear accident. Real time gamma dose rate measurement around the stack is used for estimating the radioactive release rate (source term) by using inverse calculation. Wireless gamma dose logging network is designed, implemented, and installed around the Madras Atomic Power Station reactor stack to continuously acquire the environmental gamma dose rate and the details are presented in the paper. The network uses XBee-Pro wireless modules and PSoC controller for wireless interfacing, and the data are logged at the base station. A LabView based program is developed to receive the data, display it on the Google Map, plot the data over the time scale, and register the data in a file to share with DSS software. The DSS at the base station evaluates the real time source term to assess radiation impact.
Volume efficient sodium sulfur battery
Mikkor, Mati
1980-01-01
In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalakrishnan, V.; Baskaran, R.; Venkatraman, B.
A decision support system (DSS) is implemented in Radiological Safety Division, Indira Gandhi Centre for Atomic Research for providing guidance for emergency decision making in case of an inadvertent nuclear accident. Real time gamma dose rate measurement around the stack is used for estimating the radioactive release rate (source term) by using inverse calculation. Wireless gamma dose logging network is designed, implemented, and installed around the Madras Atomic Power Station reactor stack to continuously acquire the environmental gamma dose rate and the details are presented in the paper. The network uses XBee–Pro wireless modules and PSoC controller for wireless interfacing,more » and the data are logged at the base station. A LabView based program is developed to receive the data, display it on the Google Map, plot the data over the time scale, and register the data in a file to share with DSS software. The DSS at the base station evaluates the real time source term to assess radiation impact.« less
Bao, Wei; Rao, Yulei
2017-01-01
The application of deep learning approaches to finance has received a great deal of attention from both investors and researchers. This study presents a novel deep learning framework where wavelet transforms (WT), stacked autoencoders (SAEs) and long-short term memory (LSTM) are combined for stock price forecasting. The SAEs for hierarchically extracted deep features is introduced into stock price forecasting for the first time. The deep learning framework comprises three stages. First, the stock price time series is decomposed by WT to eliminate noise. Second, SAEs is applied to generate deep high-level features for predicting the stock price. Third, high-level denoising features are fed into LSTM to forecast the next day’s closing price. Six market indices and their corresponding index futures are chosen to examine the performance of the proposed model. Results show that the proposed model outperforms other similar models in both predictive accuracy and profitability performance. PMID:28708865
Guanine base stacking in G-quadruplex nucleic acids
Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân
2013-01-01
G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444
Kushwaha, Manvir S
2011-09-28
We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The resultant quantum wire is characterized by a two-dimensional harmonic confining potential in the x-y plane and a periodic (Kronig-Penney) potential along the z (or the growth) direction within the tight-binding approximation. Since the wells and barriers are formed from two different materials, we employ the Bastard's boundary conditions in order to determine the eigenfunctions along the z direction. These wave functions are then used to generate the Wannier functions, which, in turn, constitute the legitimate Bloch functions that govern the electron dynamics along the direction of periodicity. Thus, the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus, developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices and in the quantum computation, it is quite interesting and important to explore the electronic, optical, and transport phenomena in such systems. © 2011 American Institute of Physics
The Direct FuelCell™ stack engineering
NASA Astrophysics Data System (ADS)
Doyon, J.; Farooque, M.; Maru, H.
FuelCell Energy (FCE) has developed power plants in the size range of 300 kW to 3 MW for distributed power generation. Field-testing of the sub-megawatt plants is underway. The FCE power plants are based on its Direct FuelCell™ (DFC) technology. This is so named because of its ability to generate electricity directly from a hydrocarbon fuel, such as natural gas, by reforming it inside the fuel cell stack itself. All FCE products use identical 8000 cm 2 cell design, approximately 350-400 cells per stack, external gas manifolds, and similar stack compression systems. The difference lies in the packaging of the stacks inside the stack module. The sub-megawatt system stack module contains a single horizontal stack whereas the MW-class stack module houses four identical vertical stacks. The commonality of the design, internal reforming features, and atmospheric operation simplify the system design, reduce cost, improve efficiency, increase reliability and maintainability. The product building-block stack design has been advanced through three full-size stack operations at company's headquarters in Danbury, CT. The initial proof-of-concept of the full-size stack design was verified in 1999, followed by a 1.5 year of endurance verification in 2000-2001, and currently a value-engineered stack version is in operation. This paper discusses the design features, important engineering solutions implemented, and test results of FCE's full-size DFC stacks.
ESTIMATION OF THE SPACE SHUTTLE ROLLOUT FORCING FUNCTION
NASA Technical Reports Server (NTRS)
James, George H., III; Carne, Thomas; Elliott, Kenny; Wilson, Bruce
2005-01-01
The Space Shuttle Vehicle is assembled in the Vertical Assembly Building (VAB) at Kennedy Space Flight Center in Florida. The Vehicle is stacked on a Mobile Launch Platform (MLP) that weighs eight million pounds. A Crawler Transporter (CT) then carries the MLP and the stacked vehicle (12 million pounds total weight) to the launch complex located 5 miles away. This operation is performed at 0.9 mph resulting in a 4.5-hour transport. A recent test was performed to monitor the dynamic environment that was produced during rollout. It was found that the rollout is a harmonic-rich dynamic environment that was previously not understood. This paper will describe work that has been performed to estimate the forcing function that is produced in the transportation process. The rollout analysis team has determined that there are two families of harmonics of the drive train, which excite the system as a function of CT speed. There are also excitation sources, which are random or narrow-band in frequency and are not a function of CT speed. This presentation will discuss the application of the Sum of Weighted Accelerations Technique (SWAT) to further refine this understanding by estimating the forces and moments at the center-of-mass.
A computational study of bulk porous two-dimensional polymers related to graphyne.
Sánchez-González, A; Dobado, J A; Torneiro, M
2016-08-03
Over the last twelve years there has been an explosion in the area of reticular chemistry with several classes of carbonaceous or carbon-rich reticular compounds coming into the scene and/or suffering an exponential growth in the number of related studies. Examples are MOFs, COFs, graphene and 2D polymers. π-Conjugated reticular compounds in particular are of great interest due to their optoelectronic properties. In this study we use density functional theory methods with periodic boundary conditions to investigate the stacking arrangements of bulk 2D polymer multilayer porous graphyne A, the related carbon allotrope multilayer graphyne B, and the analog bulk 2D polymer C in which the triple bonds of A are substituted by double bonds. The results show that for the three materials the eclipsed stacking arrangements are considerably less stable than staggered and slipped arrangements, with the more stable structures being slipped, staggered and off-centered-staggered arrangements for A, B and C, respectively. To shed light on the π-π interactions responsible for the geometry and relative energies of the different stacking modes we analyze the topology of the electron density using the electron localization function. In addition, simulated patterns for powder X-ray diffraction have been obtained from the optimized systems, which can be used for identification of the bulk 2D reticular compounds in future syntheses.
Temporal changes in shear velocity from ambient noise at New Zealand geothermal fields
NASA Astrophysics Data System (ADS)
Civilini, F.; Savage, M. K.; Townend, J.
2016-12-01
We use ambient noise to compare shear velocity changes with geothermal production processes at the Ngatamariki and Rotokawa geothermal fields, located in the central North Island of New Zealand. We calculate shear velocity changes through an analysis of cross correlation functions of diffusive seismic wavefields between stations, which are proportional to Green's functions of the station path. Electricity production at Ngatamariki uses an 82 MW binary type power station manufactured by Ormat Technologies, which began operations in mid-2013 and is owned and operated by Mighty River Power. The "Nga Awa Purua" triple flash power plant at the Rotokawa geothermal field was established in 2010 with parnership between Mighty River Power and Tauhara North No. 2 trust and currently operates 174 MW of generation. The seismometers of both networks, deployed primarily to observe microseismicity within the field, were installed prior to well stimulation and the start of production. Although cultural noise dominates the energy spectrum, a strong natural ambient noise signal can be detected when filtering below 1 Hz. Despite similar noise settings, the signal-to-noise ratio of cross correlation stacks at Rotokawa was more than two times greater than at Ngatamariki. We use stacks of cross correlations between stations prior to the onset of production as references, and compare them with cross correlations of moving stacks in time periods of well stimulation and the onset of electricity production.
Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series
NASA Astrophysics Data System (ADS)
Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong
2017-02-01
Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.
Electrical Transfer Function and Poling Mechanisms for Nonlinear Optical Polymer Modulators
NASA Technical Reports Server (NTRS)
Watson, Michael Dale
2004-01-01
Electro-Optic Polymers hold great promise in increased electro-optic coefficients as compared to their inorganic corollaries. Many researchers have focused on quantum chemistry to describe how the dipoles respond to temperature and electric fields. Much work has also been done for single layer films to confirm these results. For optical applications, waveguide structures are utilized to guide the optical waves in 3 layer stacks. Electrode poling is the only practical poling method for these structures. This research takes an electrical engineering approach to develop poling models and electrical and optical transfer functions of the waveguide structure. The key aspect of the poling model is the large boundary charge density deposited during the poling process. The boundary charge density also has a large effect on the electrical transfer function which is used to explain the transient response of the system. These models are experimentally verified. Exploratory experiment design is used to study poling parameters including time, temperature, and voltage. These studies verify the poling conditions for CLDX/APC and CLDZ/APEC guest host electro optic polymer films in waveguide stacks predicted by the theoretical developments.
Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain.
Koyama, Minoru; Kinkhabwala, Amina; Satou, Chie; Higashijima, Shin-ichi; Fetcho, Joseph
2011-01-18
The hindbrain of larval zebrafish contains a relatively simple ground plan in which the neurons throughout it are arranged into stripes that represent broad neuronal classes that differ in transmitter identity, morphology, and transcription factor expression. Within the stripes, neurons are stacked continuously according to age as well as structural and functional properties, such as axonal extent, input resistance, and the speed at which they are recruited during movements. Here we address the question of how particular networks among the many different sensory-motor networks in hindbrain arise from such an orderly plan. We use a combination of transgenic lines and pairwise patch recording to identify excitatory and inhibitory interneurons in the hindbrain network for escape behaviors initiated by the Mauthner cell. We map this network onto the ground plan to show that an individual hindbrain network is built by drawing components in predictable ways from the underlying broad patterning of cell types stacked within stripes according to their age and structural and functional properties. Many different specialized hindbrain networks may arise similarly from a simple early patterning.
NASA Astrophysics Data System (ADS)
Bingi, J.; Hemalatha, M.; Anita, R. W.; Vijayan, C.; Murukeshan, V. M.
2015-11-01
Light transport and the physical phenomena related to light propagation in random media are very intriguing, they also provide scope for new paradigms of device functionality, most of which remain unexplored. Here we demonstrate, experimentally and by simulation, a novel kind of asymmetric light transmission (diffusion) in a stack of random media (SRM) with graded transport mean free path. The structure is studied in terms of transmission, of photons propagated through and photons generated within the SRM. It is observed that the SRM exhibits asymmetric transmission property with a transmission contrast of 0.25. In addition, it is shown that the SRM works as a perfect optical low-pass filter with a well-defined cutoff wavelength at 580 nm. Further, the photons generated within the SRM found to exhibit functionality similar to an optical diode with a transmission contrast of 0.62. The basis of this functionality is explained in terms of wavelength dependent photon randomization and the graded transport mean free path of SRM.
Okuda, Hiroko; Yonezawa, Yasushige; Takano, Yu; Okamura, Yasushi; Fujiwara, Yuichiro
2016-01-01
The voltage-gated H+ channel (Hv) is a voltage sensor domain-like protein consisting of four transmembrane segments (S1–S4). The native Hv structure is a homodimer, with the two channel subunits functioning cooperatively. Here we show that the two voltage sensor S4 helices within the dimer directly cooperate via a π-stacking interaction between Trp residues at the middle of each segment. Scanning mutagenesis showed that Trp situated around the original position provides the slow gating kinetics characteristic of the dimer's cooperativity. Analyses of the Trp mutation on the dimeric and monomeric channel backgrounds and analyses with tandem channel constructs suggested that the two Trp residues within the dimer are functionally coupled during Hv deactivation but are less so during activation. Molecular dynamics simulation also showed direct π-stacking of the two Trp residues. These results provide new insight into the cooperative function of voltage-gated channels, where adjacent voltage sensor helices make direct physical contact and work as a single unit according to the gating process. PMID:26755722
Nano-gold corking and enzymatic uncorking of carbon nanotube cups
Zhao, Yong; Burkert, Seth C.; Tang, Yifan; ...
2014-12-21
Because of their unique stacked, cup-shaped, hollow compartments, nitrogen-doped carbon nanotube cups (NCNCs) have promising potential as nanoscale containers. Individual NCNCs are isolated from their stacked structure through acid oxidation and subsequent probe-tip sonication. The NCNCs are then effectively corked with gold nanoparticles (GNPs) by sodium citrate reduction with chloroauric acid, forming graphitic nanocapsules with significant surface-enhanced Raman signature. Mechanistically, the growth of the GNP corks starts from the nucleation and welding of gold seeds on the open rims of NCNCs enriched with nitrogen functionalities, as confirmed by density functional theory calculations. A potent oxidizing enzyme of neutrophils, myeloperoxidase (MPO),more » can effectively open the corked NCNCs through GNP detachment, with subsequent complete enzymatic degradation of the graphitic shells. Lastly, this controlled opening and degradation was further carried out in vitro with human neutrophils. In addition, the GNP-corked NCNCs were demonstrated to function as novel drug delivery carriers, capable of effective (i) delivery of paclitaxel to tumor-associated myeloid-derived suppressor cells (MDSC), (ii) MPO-regulated release, and (iii) blockade of MDSC immunosuppressive potential.« less
Tsipis, Athanassios C; Stalikas, Alexandros V
2013-01-18
The interplay of electrostatics, charge transfer, and dispersion forces contributing to the interaction energies in 1:1, 1:2, and 2:1 binary stacks of the c-Au(3)(μ(2)-X)(3) (X = F, Cl, Br, I) clusters with benzene, hexafluorobenzene, or borazine were investigated by employing a multitude of electronic structure computational techniques. The molecular and electronic structures, stabilities, bonding features, and magnetotropicity of [c-Au(3)(μ(2)-X)(3)](n)(L)(m) (X = halide; L = C(6)H(6), C(6)F(6), B(3)N(3)H(6); n, m ≤ 2) columnar binary stacks have been investigated by DFT calculations employing the M05-2X functional. The novel binary stacks could be considered as the building blocks of extended columnar supramolecular assemblies formulated as {[c-Au(3)(μ(2)-X)(3)](C(6)H(6))}(∞), {[c-Au(3)(μ(2)-X)(3)](2)(C(6)F(6))}(∞), and {[c-Au(3)(μ(2)-X)(3)](B(3)N(3)H(6))(2)}(∞). In all binary stacks, with a few exceptions, the plane of the alternating c-Au(3)(μ(2)-X)(3) and L (C(6)H(6), C(6)F(6), B(3)N(3)H(6)) stacking participants adopt an almost parallel face-to-face (pff) orientation. The observed trends in the intermolecular distances R in the [c-Au(3)(μ(2)-X)(3)](n)(L)(m) (X = halide; L = C(6)H(6), C(6)F(6), B(3)N(3)H(6); n, m ≤ 2) columnar binary stacks are explained by the diverse intermolecular interactions characterizing the stacks, since the three ligands L and the c-Au(3)(μ(2)-X)(3) cyclic trinuclear clusters (CTCs) exhibit diverse physical properties being important determinants of the intermolecular interactions (consisting of covalent, electrostatic, and dispersion forces). The properties considered are the zz tensor components of quadrupole moment, Q(zz), polarizability, α(zz), nucleus-independent chemical shift, NICS(zz)(1), along with the molecular electrostatic potential, MEP(0), and surface area (S). Energy decomposition analysis (EDA) at the revPBE-D3/TZ2P level revealed that the dominant term in the stacking interactions arises mainly from dispersion and electrostatic forces, while the contribution of covalent interactions are predicted to be small. On the other hand, charge decomposition analysis (CDA) illustrated very small charge transfer from the L stacking participants toward the c-Au(3)(μ(2)-X)(3) clusters. Excellent linear correlations of the interaction energy, ΔE(int), and its components (ΔE(disp), ΔE(elstat), ΔE(orb), and ΔE(Pauli)) with calculated physical properties related to dispersion, covalent, and electrostatic forces have been established. The most important finding is the excellent linear relationship between ΔE(int) and the NICS(zz)(1) magnetic criterion of aromaticity, indicating that ΔE(int) is also affected by the coupling of the induced magnetic fields of the interacting stacking participants. The magnetotropicity of the binary stacks evaluated by the NICS(zz)-scan curves indicated an enhancement of the diatropicity in the space between the interacting inorganic and organic rings, probably due to the superposition of the diamagnetic ring currents of the interacting ring systems. The energy splitting in dimer (ESID) model was employed to estimate the charge transport of electrons and holes between the ligands L and the [c-Au(3)(μ(2)-X)(3)] clusters in [c-Au(3)(μ(2)-X)(3)](L) 1:1 binary stacks.
Thermal energy recycling fuel cell arrangement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanrahan, Paul R.
An example fuel cell arrangement includes a fuel cell stack configured to receive a supply fluid and to provide an exhaust fluid that has more thermal energy than the supply fluid. The arrangement also includes an ejector and a heat exchanger. The ejector is configured to direct at least some of the exhaust fluid into the supply fluid. The heat exchanger is configured to increase thermal energy in the supply fluid using at least some of the exhaust fluid that was not directed into the supply fluid.
Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components
NASA Technical Reports Server (NTRS)
Reck, Theodore (Inventor); Perez, Jose Vicente Siles (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Jung-Kubiak, Cecile (Inventor); Mehdi, Imran (Inventor); Chattopadhyay, Goutam (Inventor); Lin, Robert H. (Inventor); Peralta, Alejandro (Inventor)
2016-01-01
A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.
Fuel cell manifold sealing system
Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.
1980-01-01
A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.
Method for producing a fuel cell manifold seal
Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.
1982-01-01
A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.
NASA Astrophysics Data System (ADS)
Das, Aniruddha
2017-11-01
5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides (N-phenyl AICA) (2a-e) and 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carbonitriles (N-phenyl AICN) (3a-e) had been synthesized. X-ray crystallographic studies of 2a-e and 3a-e had been performed to identify any distinct change in stacking patterns in their crystal lattice. Single crystal X-ray diffraction studies of 2a-e revealed π-π stack formations with both imidazole and phenyl/p-halophenyl units in anti and syn parallel-displaced (PD)-type dispositions. No π-π stacking of imidazole occurred when the halogen substituent is bromo or iodo; π-π stacking in these cases occurred involving phenyl rings only. The presence of an additional T-stacking had been observed in crystal lattices of 3a-e. Vertical π-π stacking distances in anti-parallel PD-type arrangements as well as T-stacking distances had shown stacking distances short enough to impart stabilization whereas syn-parallel stacking arrangements had got much larger π-π stacking distances to belie any syn-parallel stacking stabilization. DFT studies had been pursued for quantifying the π-π stacking and T-stacking stabilization. The plotted curves for anti-parallel and T-stacked moieties had similarities to the 'Morse potential energy curve for diatomic molecule'. The minima of the curves corresponded to the most stable stacking distances and related energy values indicated stacking stabilization. Similar DFT studies on syn-parallel systems of 2b corresponded to no π-π stacking stabilization at all. Halogen-halogen interactions had also been observed to stabilize the compounds 2d, 2e and 3d. Nano-structural behaviour of the series of compounds 2a-e and 3a-e were thoroughly investigated.
Transient analysis of a solid oxide fuel cell stack with crossflow configuration
NASA Astrophysics Data System (ADS)
Yuan, P.; Liu, S. F.
2018-05-01
This study investigates the transient response of the cell temperature and current density of a solid oxide fuel cell having 6 stacks with crossflow configuration. A commercial software repeatedly solves the governing equations of each stack, and get the convergent results of the whole SOFC stack. The preliminary results indicate that the average current density of each stack is similar to others, so the power output between different stacks are uniform. Moreover, the average cell temperature among stacks is different, and the central stacks have higher temperature due to its harder heat dissipation. For the operating control, the cell temperature difference among stacks is worth to concern because the temperature difference will be over 10 °C in the analysis case. The increasing of the inlet flow rate of the fuel and air will short the transient state, increase the average current density, and drop the cell temperature difference among the stacks. Therefore, the inlet flow rate is an important factor for transient performance of a SOFC stack.
NASA Astrophysics Data System (ADS)
Kattke, K. J.; Braun, R. J.
2011-08-01
A novel, highly integrated tubular SOFC system intended for small-scale power is characterized through a series of sensitivity analyses and parametric studies using a previously developed high-fidelity simulation tool. The high-fidelity tubular SOFC system modeling tool is utilized to simulate system-wide performance and capture the thermofluidic coupling between system components. Stack performance prediction is based on 66 anode-supported tubular cells individually evaluated with a 1-D electrochemical cell model coupled to a 3-D computational fluid dynamics model of the cell surroundings. Radiation is the dominate stack cooling mechanism accounting for 66-92% of total heat loss at the outer surface of all cells at baseline conditions. An average temperature difference of nearly 125 °C provides a large driving force for radiation heat transfer from the stack to the cylindrical enclosure surrounding the tube bundle. Consequently, cell power and voltage disparities within the stack are largely a function of the radiation view factor from an individual tube to the surrounding stack can wall. The cells which are connected in electrical series, vary in power from 7.6 to 10.8 W (with a standard deviation, σ = 1.2 W) and cell voltage varies from 0.52 to 0.73 V (with σ = 81 mV) at the simulation baseline conditions. It is observed that high cell voltage and power outputs directly correspond to tubular cells with the smallest radiation view factor to the enclosure wall, and vice versa for tubes exhibiting low performance. Results also reveal effective control variables and operating strategies along with an improved understanding of the effect that design modifications have on system performance. By decreasing the air flowrate into the system by 10%, the stack can wall temperature increases by about 6% which increases the minimum cell voltage to 0.62 V and reduces deviations in cell power and voltage by 31%. A low baseline fuel utilization is increased by decreasing the fuel flowrate and by increasing the stack current demand. Simulation results reveal fuel flow as a poor control variable because excessive tail-gas combustor temperatures limit fuel flow to below 110% of the baseline flowrate. Additionally, system efficiency becomes inversely proportional to fuel utilization over the practical fuel flow range. Stack current is found to be an effective control variable in this type of system because system efficiency becomes directly proportional to fuel utilization. Further, the integrated system acts to dampen temperature spikes when fuel utilization is altered by varying current demand. Radiation remains the dominate heat transfer mechanism within the stack even if stack surfaces are polished lowering emissivities to 0.2. Furthermore, the sensitivity studies point to an optimal system insulation thickness that balances the overall system volume and total conductive heat loss.
It's Still Downhill From Tonopah to Las Vegas, but the Crust Doesn't Ride for Free
NASA Astrophysics Data System (ADS)
Pettit, M. M.; Schulte-Pelkum, V.; Sheehan, A.
2008-12-01
We investigate the crustal thickness in the central Basin and Range province of the western US. There is a gravity anomaly at 37 degrees N latitude at which the gravity increases ~100mgal from North to South over a distance of ~100 km. The majority of recent publications ascribe the gravity signal to a mantle influence based on observations of near constant crustal thickness in the area. However, Moho depth estimates are sparse in the area, and therefore higher gravity due to a thinner crust in the south is still a possible explanation to date. In order to determine Moho depths, we examined teleseismic receiver functions from broadband and short-period stations from 1993 to 2008 located within the region, including stations from the recent Earthscope Transportable Array deployment. We used a total of 11,751 high-quality receiver functions at 80 stations and picked arrival times of the Moho converted phase from backazimuthal and moveout stacks. Moho depths were determined from these arrival times using a fixed velocity model, as well as from forward modeling of moveout curves of the direct conversion as well as multiples. Our results confirm the presence of thinner crust south of 37N latitude. Assuming an average crustal velocity of 6.3 km/s and a Vp/Vs ratio of 1.732, we found an average crustal thickness between 33 and 34 km north of 37N, and roughly 27 km south of 37N. We also found an interesting pattern of thin crust trending NE from the southern tip of Nevada to approximately 38N, 245E. The findings indicate that a least part of the gravity signal is of crustal origin.
New Lithospheric Model of Taiwan based on the Receiver Function Method
NASA Astrophysics Data System (ADS)
Wang, H.; Zhu, L.; Chen, H.
2008-12-01
Taiwan is situated on the junction area between two subduction systems. The complex orogeny was developed by collision between the Eurasian continental plate and Philippine Sea plate and is still active in the present. Therefore, Taiwan provides unique opportunities for geophysical imaging of the ongoing process underneath. The TAiwan Integrated GEodynamics Research (TAIGER) combined a field program of active and passive seismology, which will undoubtedly be a major step forward in understanding mountain building process. In 2006, we developed a new crustal model of Taiwan from teleseismic waveforms by the receiver function method. We determined lateral variation of Moho discontinuity, crustal thickness (H), and Vp/Vs ratios (Kappa) for each permanent broadband station using all the available teleseismic data collected by BATS (Broadband Array in Taiwan for Seismology) and CWB (Central Weather Bureau). All the broadband stations are distributed uniformly over the whole Taiwan area so that we could delineate the Moho depth contour map. Recently, we concentrated on the three linear temporary arrays of the TAIGER project and obtained three high-resolution images of crustal structure across Taiwan along west-to-east direction from north to south by using the CCP (common-conversion-point) stacking of teleseismic P-to-S converted waves. Sharp impedance contrasts in these images clearly show the relief of each of seismic discontinuities in the crust and upper mantle. The preliminary results show that the Moho depth, 40 to 50 km of central Taiwan is deeper than in other parts of the island, which suggests crustal thickening due to collision. In addition, shallow part of western foothill area show highly acoustic impedance which probably results from thick sediment.
NASA Astrophysics Data System (ADS)
Li, Yonghua; Wang, Xingchen; Zhang, Ruiqing; Wu, Qingju; Ding, Zhifeng
2017-05-01
We investigated the crustal structure at 34 stations using the H-κ stacking method and jointly inverting receiver functions with Rayleigh-wave phase and group velocities. These seismic stations are distributed along a profile extending across the Songpan-Ganzi Terrane, Qinling-Qilian terranes and southwestern Ordos Basin. Our results reveal the variation in crustal thickness across this profile. We found thick crust beneath the Songpan-Ganzi Terrane (47-59 km) that decreases to 45-47 km in the west Qinling and Qilian terranes, and reaches its local minimum beneath the southwestern Ordos Block (43-51 km) at an average crustal thickness of 46.7 ± 2.5 km. A low-velocity zone in the upper crust was found beneath most of the stations in NE Tibet, which may be indicative of partial melt or a weak detachment layer. Our observations of low to moderate Vp/Vs (1.67-1.79) represent a felsic to intermediate crustal composition. The shear velocity models estimated from joint inversions also reveal substantial lateral variations in velocity beneath the profile, which is mainly reflected in the lower crustal velocities. For the Ordos Block, the average shear wave velocities below 20 km are 3.8 km/s, indicating an intermediate-to-felsic lower crust. The thick NE Tibet crust is characterized by slow shear wave velocities (3.3-3.6 km/s) below 20 km and lacks high-velocity material (Vs ≥ 4.0 km/s) in the lower crust, which may be attributed to mafic lower crustal delamination or/and the thickening of the upper and middle crust.
NASA Astrophysics Data System (ADS)
Sun, M.; Liu, K. H.; Fu, X.; Gao, S. S.
2017-12-01
To investigate the mechanism of initiation and development of the Eastern African Rifting System (EARS) circumfluent the Tanzania Craton (TC), over 7,100 P-to-S radial receiver functions (RFs) recorded by 87 broadband seismic stations are stacked to map the topography of mantle transition zone (MTZ) discontinuities beneath the TC and the Eastern and Western Branches of the EARS. After time-depth conversion using the 1-D IASP91 Earth model, the resulting 410 km (d410) and 660 km (d660) discontinuity apparent depths are found to be greater than the global averages beneath the whole study area, implying slower than normal upper mantle velocities. The mean thickness of the MTZ beneath the Western Branch and TC is about 252 km, which is comparable to the global average and is inconsistent with the existence of present-day thermal upwelling originating from the lower mantle. In contrast, beneath the Eastern Branch, an 30 km thinning of the MTZ is observed from an up to 50 km and 20 km apparent depression of the d410 and d660, respectively. On the basis of previous seismic tomographic results and empirical relationships between velocity and thermal anomalies, we propose that the most plausible explanation for the observations beneath the volcanic Eastern Branch is the existence of a low-velocity layer extending from the surface to the upper MTZ, probably caused by decompression partial melting associated with continental rifting. The observations are in general agreement with an upper mantle origin for the initiation and development of both the Western and Eastern Branches of the EARS beneath the study area.
Crustal structure beneath northeast India inferred from receiver function modeling
NASA Astrophysics Data System (ADS)
Borah, Kajaljyoti; Bora, Dipok K.; Goyal, Ayush; Kumar, Raju
2016-09-01
We estimated crustal shear velocity structure beneath ten broadband seismic stations of northeast India, by using H-Vp/Vs stacking method and a non-linear direct search approach, Neighbourhood Algorithm (NA) technique followed by joint inversion of Rayleigh wave group velocity and receiver function, calculated from teleseismic earthquakes data. Results show significant variations of thickness, shear velocities (Vs) and Vp/Vs ratio in the crust of the study region. The inverted shear wave velocity models show crustal thickness variations of 32-36 km in Shillong Plateau (North), 36-40 in Assam Valley and ∼44 km in Lesser Himalaya (South). Average Vp/Vs ratio in Shillong Plateau is less (1.73-1.77) compared to Assam Valley and Lesser Himalaya (∼1.80). Average crustal shear velocity beneath the study region varies from 3.4 to 3.5 km/s. Sediment structure beneath Shillong Plateau and Assam Valley shows 1-2 km thick sediment layer with low Vs (2.5-2.9 km/s) and high Vp/Vs ratio (1.8-2.1), while it is observed to be of greater thickness (4 km) with similar Vs and high Vp/Vs (∼2.5) in RUP (Lesser Himalaya). Both Shillong Plateau and Assam Valley show thick upper and middle crust (10-20 km), and thin (4-9 km) lower crust. Average Vp/Vs ratio in Assam Valley and Shillong Plateau suggest that the crust is felsic-to-intermediate and intermediate-to-mafic beneath Shillong Plateau and Assam Valley, respectively. Results show that lower crust rocks beneath the Shillong Plateau and Assam Valley lies between mafic granulite and mafic garnet granulite.
The lithosphere-asthenosphere boundary beneath the South Island of New Zealand
NASA Astrophysics Data System (ADS)
Hua, Junlin; Fischer, Karen M.; Savage, Martha K.
2018-02-01
Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. Using data from onland seismometers, especially the 29 broadband stations of the New Zealand permanent seismic network (GeoNet), we obtained 24,971 individual receiver functions by extended-time multi-taper deconvolution, and mapped them to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the northwest of the Alpine fault. The deeper LAB to the northwest of the Alpine fault is consistent with models in which oceanic lithosphere attached to the Australian plate was partially subducted, or models in which the Pacific lithosphere has been underthrust northwest past the Alpine fault. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the northwest of the fault, juxtaposed against a region of anomalously weak LAB conversions to the southeast of the fault. This structure could be explained by lithospheric blocks with contrasting LAB properties that meet beneath the Alpine fault, or by the effects of Pacific plate subduction. The observed variations in LAB properties indicate strong modification of the LAB by the interplay of convergence and strike-slip deformation along and across this transpressional plate boundary.
NASA Astrophysics Data System (ADS)
Kim, Cheolhwan; Kim, Kyu-Jung; Ha, Man Yeong
To investigate the possibility of the portable application of a direct borohydride fuel cell (DBFC), weight reduction of the stack and high stacking of the cells are investigated for practical running conditions. For weight reduction, carbon graphite is adopted as the bipolar plate material even though it has disadvantages in tight stacking, which results in stacking loss from insufficient material strength. For high stacking, it is essential to have a uniform fuel distribution among cells and channels to maintain equal electric load on each cell. In particular, the design of the anode channel is important because active hydrogen generation causes non-uniformity in the fuel flow-field of the cells and channels. To reduce the disadvantages of stacking force margin and fuel maldistribution, an O-ring type-sealing system with an internal manifold and a parallel anode channel design is adopted, and the characteristics of a single and a five-cell fuel cell stack are analyzed. By adopting carbon graphite, the stack weight can be reduced by 4.2 times with 12% of performance degradation from the insufficient stacking force. When cells are stacked, the performance exceeds the single-cell performance because of the stack temperature increase from the reduction of the radiation area from the narrow stacking of cells.
Pressurized electrolysis stack with thermal expansion capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourgeois, Richard Scott
The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, themore » electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.« less
Chirality-induced magnon transport in AA-stacked bilayer honeycomb chiral magnets.
Owerre, S A
2016-11-30
In this Letter, we study the magnetic transport in AA-stacked bilayer honeycomb chiral magnets coupled either ferromagnetically or antiferromagnetically. For both couplings, we observe chirality-induced gaps, chiral protected edge states, magnon Hall and magnon spin Nernst effects of magnetic spin excitations. For ferromagnetically coupled layers, thermal Hall and spin Nernst conductivities do not change sign as function of magnetic field or temperature similar to single-layer honeycomb ferromagnetic insulator. In contrast, for antiferromagnetically coupled layers, we observe a sign change in the thermal Hall and spin Nernst conductivities as the magnetic field is reversed. We discuss possible experimental accessible honeycomb bilayer quantum materials in which these effects can be observed.
NASA Astrophysics Data System (ADS)
Kim, Kyoung H.; Gordon, Roy G.; Ritenour, Andrew; Antoniadis, Dimitri A.
2007-05-01
Atomic layer deposition (ALD) was used to deposit passivating interfacial nitride layers between Ge and high-κ oxides. High-κ oxides on Ge surfaces passivated by ultrathin (1-2nm) ALD Hf3N4 or AlN layers exhibited well-behaved C-V characteristics with an equivalent oxide thickness as low as 0.8nm, no significant flatband voltage shifts, and midgap density of interface states values of 2×1012cm-1eV-1. Functional n-channel and p-channel Ge field effect transistors with nitride interlayer/high-κ oxide/metal gate stacks are demonstrated.
Development of Thread-compatible Open Source Stack
NASA Astrophysics Data System (ADS)
Zimmermann, Lukas; Mars, Nidhal; Schappacher, Manuel; Sikora, Axel
2017-07-01
The Thread protocol is a recent development based on 6LoWPAN (IPv6 over IEEE 802.15.4), but with extensions regarding a more media independent approach, which - additionally - also promises true interoperability. To evaluate and analyse the operation of a Thread network a given open source 6LoWPAN stack for embedded devices (emb::6) has been extended in order to comply with the Thread specification. The implementation covers Mesh Link Establishment (MLE) and network layer functionality as well as 6LoWPAN mesh under routing mechanism based on MAC short addresses. The development has been verified on a virtualization platform and allows dynamical establishment of network topologies based on Thread’s partitioning algorithm.
Capillary-tube-based extension of thermoacoustic theory for a random medium
NASA Astrophysics Data System (ADS)
Roh, Heui-Seol; Raspet, Richard; Bass, Henry E.
2005-09-01
Thermoacoustic theory for a single capillary tube is extended to random bulk medium on the basis of capillary tubes. The characteristics of the porous stack inside the resonator such as the tortuosity, dynamic shape factor, and porosity are introduced for the extension of wave equation by following Attenborough's approach. Separation of the dynamic shape factor for the viscous and thermal effect is adopted and scaling using the dynamic shape factor and tortuosity factor is demonstrated. The theoretical and experimental comparison of thermoviscous functions in reticulated vitreous carbon (RVC) and aluminum foam shows reasonable agreement. The extension is useful for investigations of the properties of a stack with arbitrary shapes of non-parallel pores.
Lightweight Stacks of Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram; Valdez, Thomas
2004-01-01
An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.
NASA Astrophysics Data System (ADS)
Nakahara, H.
2013-12-01
For monitoring temporal changes in subsurface structures, I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Because the use of coda waves requires earthquakes, time resolution for monitoring decreases. But at regions with high seismicity, it may be possible to monitor subsurface structures in sufficient time resolutions. Studying the 2011 Tohoku-Oki (Mw 9.0), Japan, earthquake for which velocity changes have been already reported by previous studies, I try to validate the method. KiK-net stations in northern Honshu are used in the analysis. For each moderate earthquake, normalized auto correlation functions of surface records are stacked with respect to time windows in S-wave coda. Aligning the stacked normalized auto correlation functions with time, I search for changes in arrival times of phases. The phases at lag times of less than 1s are studied because changes at shallow depths are focused. Based on the stretching method, temporal variations in the arrival times are measured at the stations. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. Amounts of the phase delays are in the order of 10% on average with the maximum of about 50% at some stations. For validation, the deconvolution analysis using surface and subsurface records at the same stations are conducted. The results show that the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percents, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable to detect larger changes. In spite of these disadvantages, this analysis is still attractive because it can be applied to many records on the surface in regions where no boreholes are available. Acknowledgements: Seismograms recorded by KiK-net managed by National Research Institute for Earth Science and Disaster Prevention (NIED) were used in this study. This study was partially supported by JST J-RAPID program and JSPS KAKENHI Grant Numbers 24540449 and 23540449.
Anode reactive bleed and injector shift control strategy
Cai, Jun [Rochester, NY; Chowdhury, Akbar [Pittsford, NY; Lerner, Seth E [Honeoye Falls, NY; Marley, William S [Rush, NY; Savage, David R [Rochester, NY; Leary, James K [Rochester, NY
2012-01-03
A system and method for correcting a large fuel cell voltage spread for a split sub-stack fuel cell system. The system includes a hydrogen source that provides hydrogen to each split sub-stack and bleed valves for bleeding the anode side of the sub-stacks. The system also includes a voltage measuring device for measuring the voltage of each cell in the split sub-stacks. The system provides two levels for correcting a large stack voltage spread problem. The first level includes sending fresh hydrogen to the weak sub-stack well before a normal reactive bleed would occur, and the second level includes sending fresh hydrogen to the weak sub-stack and opening the bleed valve of the other sub-stack when the cell voltage spread is close to stack failure.
Plated lamination structures for integrated magnetic devices
Webb, Bucknell C.
2014-06-17
Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.
1995-12-01
ogy and Theoretical Computer Science 1993, Bombay, New York, 1993. Springer-Verlag. Extended abstract. [17] E. Biagioni . Sequence types for functional...FOX-95-06. [18] E. Biagioni , R. Harper, P. Lee, and B. Milnes. Signatures for a network protocol stack: A systems application of Standard ML. In ACM
Choudhary, Nitin; Park, Juhong; Hwang, Jun Yeon; Chung, Hee-Suk; Dumas, Kenneth H; Khondaker, Saiful I; Choi, Wonbong; Jung, Yeonwoong
2016-05-05
Two-dimensional (2D) van der Waal (vdW) heterostructures composed of vertically-stacked multiple transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are envisioned to present unprecedented materials properties unobtainable from any other material systems. Conventional fabrications of these hybrid materials have relied on the low-yield manual exfoliation and stacking of individual 2D TMD layers, which remain impractical for scaled-up applications. Attempts to chemically synthesize these materials have been recently pursued, which are presently limited to randomly and scarcely grown 2D layers with uncontrolled layer numbers on very small areas. Here, we report the chemical vapor deposition (CVD) growth of large-area (>2 cm(2)) patterned 2D vdW heterostructures composed of few layer, vertically-stacked MoS2 and WS2. Detailed structural characterizations by Raman spectroscopy and high-resolution/scanning transmission electron microscopy (HRTEM/STEM) directly evidence the structural integrity of two distinct 2D TMD layers with atomically sharp vdW heterointerfaces. Electrical transport measurements of these materials reveal diode-like behavior with clear current rectification, further confirming the formation of high-quality heterointerfaces. The intrinsic scalability and controllability of the CVD method presented in this study opens up a wide range of opportunities for emerging applications based on the unconventional functionalities of these uniquely structured materials.
Porous Structures in Stacked, Crumpled and Pillared Graphene-Based 3D Materials.
Guo, Fei; Creighton, Megan; Chen, Yantao; Hurt, Robert; Külaots, Indrek
2014-01-01
Graphene, an atomically thin material with the theoretical surface area of 2600 m 2 g -1 , has great potential in the fields of catalysis, separation, and gas storage if properly assembled into functional 3D materials at large scale. In ideal non-interacting ensembles of non-porous multilayer graphene plates, the surface area can be adequately estimated using the simple geometric law ~ 2600 m 2 g -1 /N, where N is the number of graphene sheets per plate. Some processing operations, however, lead to secondary plate-plate stacking, folding, crumpling or pillaring, which give rise to more complex structures. Here we show that bulk samples of multilayer graphene plates stack in an irregular fashion that preserves the 2600/N surface area and creates regular slot-like pores with sizes that are multiples of the unit plate thickness. In contrast, graphene oxide deposits into films with massive area loss (2600 to 40 m 2 g -1 ) due to nearly perfect alignment and stacking during the drying process. Pillaring graphene oxide sheets by co-deposition of colloidal-phase particle-based spacers has the potential to partially restore the large monolayer surface. Surface areas as high as 1000 m 2 g -1 are demonstrated here through colloidal-phase deposition of graphene oxide with water-dispersible aryl-sulfonated ultrafine carbon black as a pillaring agent.
Guo, Wei; Yu, Chang; Li, Shaofeng; Yang, Juan; Liu, Zhibin; Zhao, Changtai; Huang, Huawei; Zhang, Mengdi; Han, Xiaotong; Niu, Yingying; Qiu, Jieshan
2017-10-01
The high-performance electrode materials with tuned surface and interface structure and functionalities are highly demanded for advanced supercapacitors. A novel strategy is presented to conFigure high-stacking-density, superior-roughness nickel manganese layered double hydroxide (LDH) bridged by vertically aligned graphene (VG) with nickel foam (NF) as the conductive collector, yielding the LDH-NF@VG hybrids for asymmetric supercapacitors. The VG nanosheets provide numerous electron transfer channels for quick redox reactions, and well-developed open structure for fast mass transport. Moreover, the high-stacking-density LDH grown and assembled on VG nanosheets result in a superior hydrophilicity derived from the tuned nano/microstructures, especially microroughness. Such a high stacking density with abundant active sites and superior wettability can be easily accessed by aqueous electrolytes. Benefitting from the above features, the LDH-NF@VG can deliver a high capacitance of 2920 F g -1 at a current density of 2 A g -1 , and the asymmetric supercapacitor with the LDH-NF@VG as positive electrode and activated carbon as negative electrode can deliver a high energy density of 56.8 Wh kg -1 at a power density of 260 W kg -1 , with a high specific capacitance retention rate of 87% even after 10 000 cycles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Weiqiang; Chen, Rujun; Cai, Hongzhu; Luo, Weibin
2016-12-01
In this paper, we investigated the robust processing of noisy spread spectrum induced polarization (SSIP) data. SSIP is a new frequency domain induced polarization method that transmits pseudo-random m-sequence as source current where m-sequence is a broadband signal. The potential information at multiple frequencies can be obtained through measurement. Removing the noise is a crucial problem for SSIP data processing. Considering that if the ordinary mean stack and digital filter are not capable of reducing the impulse noise effectively in SSIP data processing, the impact of impulse noise will remain in the complex resistivity spectrum that will affect the interpretation of profile anomalies. We implemented a robust statistical method to SSIP data processing. The robust least-squares regression is used to fit and remove the linear trend from the original data before stacking. The robust M estimate is used to stack the data of all periods. The robust smooth filter is used to suppress the residual noise for data after stacking. For robust statistical scheme, the most appropriate influence function and iterative algorithm are chosen by testing the simulated data to suppress the outliers' influence. We tested the benefits of the robust SSIP data processing using examples of SSIP data recorded in a test site beside a mine in Gansu province, China.
Multi-wafer bonding technology for the integration of a micromachined Mirau interferometer
NASA Astrophysics Data System (ADS)
Wang, Wei-Shan; Lullin, Justine; Froemel, Joerg; Wiemer, Maik; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Gessner, Thomas
2015-02-01
The paper presents the multi-wafer bonding technology as well as the integration of electrical connection to the zscanner wafer of the micromachined array-type Mirau interferometer. A Mirau interferometer, which is a key-component of optical coherence tomography (OCT) microsystem, consists of a microlens doublet, a MOEMS Z-scanner, a focusadjustment spacer and a beam splitter plate. For the integration of this MOEMS device heterogeneous bonding of Si, glass and SOI wafers is necessary. Previously, most of the existing methods for multilayer wafer bonding require annealing at high temperature, i.e., 1100°C. To be compatible with MEMS devices, bonding of different material stacks at temperatures lower than 400°C has also been investigated. However, if more components are involved, it becomes less effective due to the alignment accuracy or degradation of surface quality of the not-bonded side after each bonding operation. The proposed technology focuses on 3D integration of heterogeneous building blocks, where the assembly process is compatible with the materials of each wafer stack and with position accuracy which fits optical requirement. A demonstrator with up to 5 wafers bonded lower than 400°C is presented and bond interfaces are evaluated. To avoid the complexity of through wafer vias, a design which creates electrical connections along vertical direction by mounting a wafer stack on a flip chip PCB is proposed. The approach, which adopts vertically-stacked wafers along with electrical connection functionality, provides not only a space-effective integration of MOEMS device but also a design where the Mirau stack can be further integrated with other components of the OCT microsystem easily.
Determination of Algorithm Parallelism in NP Complete Problems for Distributed Architectures
1990-03-05
12 structure STACK declare OpenStack (S-.NODE **TopPtr) -+TopPtrI FlushStack(S.-NODE **TopPtr) -*TopPtr PushOnStack(S-.NODE **TopPtr, ITEM *NewltemPtr...OfCoveringSets, CoveringSets, L, Best CoverTime, Vertex, Set3end SCND ADT B.26 structure STACKI declare OpenStack (S-NODE **TopPtr) -+TopPtr FlushStack(S
NASA Astrophysics Data System (ADS)
Ray, Sibdas; Das, Aniruddha
2015-06-01
Reaction of 2-ethoxymethyleneamino-2-cyanoacetamide with primary alkyl amines in acetonitrile solvent affords 1-substituted-5-aminoimidazole-4-carboxamides. Single crystal X-ray diffraction studies of these imidazole compounds show that there are both anti-parallel and syn-parallel π-π stackings between two imidazole units in parallel-displaced (PD) conformations and the distance between two π-π stacked imidazole units depends mainly on the anti/ syn-parallel nature and to some extent on the alkyl group attached to N-1 of imidazole; molecules with anti-parallel PD-stacking arrangements of the imidazole units have got vertical π-π stacking distance short enough to impart stabilization whereas the imidazole unit having syn-parallel stacking arrangement have got much larger π-π stacking distances. DFT studies on a pair of anti-parallel imidazole units of such an AICA lead to curves for 'π-π stacking stabilization energy vs. π-π stacking distance' which have got similarity with the 'Morse potential energy diagram for a diatomic molecule' and this affords to find out a minimum π-π stacking distance corresponding to the maximum stacking stabilization energy between the pair of imidazole units. On the other hand, a DFT calculation based curve for 'π-π stacking stabilization energy vs. π-π stacking distance' of a pair of syn-parallel imidazole units is shown to have an exponential nature.
NASA Astrophysics Data System (ADS)
Gassilloud, R.; Maunoury, C.; Leroux, C.; Piallat, F.; Saidi, B.; Martin, F.; Maitrejean, S.
2014-04-01
We studied Ta, TaN, and sub-stoichiometric TaNx electrodes (obtained by nitrogen redistribution in Ta/TaN or Ti/TaN bilayers) deposited on thermal SiO2 and HfO2/IL (0.8 nm SiO2 IL, i.e., interlayer) stacks. Effective work-functions (WF) were extracted on MOS capacitor structures on SiO2 bevelled insulator of 4.2 eV for pure Ta, 4.6 eV for TaN, and 4.3 eV for sub-stoichiometric TaNx. This intermediate WF value is explained by TaN nitrogen redistribution with reactive Ta or Ti elements shifting the gate work-function toward the Si conduction band. The same electrodes deposited on an HfO2/IL dielectric showed different behavior: First, the Ta/HfO2/IL stack shows a +200 meV WF increase (towards the Si valence band) compared to the SiO2 dielectric stack. This increase is explained by the well-known HfO2/IL dipole formation. Second, in contrast to electrodes deposited on SiO2, sub-stoichiometric TaNx/HfO2 is found to have a lower WF (4.3 eV), than pure Ta on HfO2 (4.4 eV). This inversion in work-function behavior measured on SiO2 vs. HfO2 is explained by the nitrogen redistribution in Ta/TaN bilayer together with diffusion of nitrogen through the HfO2 layer, leading to Si-N formation which prevents dipole formation at the HfO2/IL interface.
Evaluation of a dense seismic array for acquisition of high quality data in the ACROSS observation
NASA Astrophysics Data System (ADS)
Tsuruga, K.; Kunitomo, T.; Hasada, Y.; Kumazawa, M.; Shigeta, N.; Kasahara, J.
2004-12-01
ACROSS is an active monitoring methodology to detect any subtle temporal change of physical properties in the Earth's interior. We demonstrate the potentiality of the ACROSS observation with a dense sensor array. We have conducted a dense seismic array observation at the distance of 1 km from the ACROSS source since 2003. The array is composed of 36 three-component velocity seismometers buried at 1.8 m deep in an area 25 m square. All the data are recorded accurately referring to a GPS clock. We derived and analyzed a transfer function (TF) from the source to a receiver by the following steps: (1) evaluating a force vector as source characteristics, (2) converting the observed data to the displacement vectors by incorporating all the corrections of the instruments, (3) stacking the observed data for an enough time to suppress the temporal noise, (4) extracting ACROSS signal and evaluating noise level, (5) representing TF in a tensor form with the estimated errors, (6) slant-stacking with variable ray parameters, (7) estimating the travel times and amplitudes of the wave arrivals by Sompi Event Analysis (Hasada et al., 2001) and representing the result by a pulse sequence, and (8) deriving the polarization vector for each arrival to identify all the wave modes. We analyzed TF of SH-wave component from 16 to 20 Hz as an example. We obtained good quality TF with S/N ratio up to 104 by stacking for 12 days at the step (3). The spatial noise originated from the local heterogeneity around the array was eliminated by the step (6). Several arrivals were recognized within the time windows from 0.6 to 1.8 s. The maximum amplitude of event traces was detected at the travel time of 1.064 s with a ray parameter of 7.9x10-4 s/m. We also found the scattered waves probably generated by the heterogeneities around the array. The ACROSS dense array observation would provide a lot of information on the underground heterogeneities. Consequently, we have the important and challenging subjects: (1) optimum designing of ACROSS array to acquire the better data and (2) development of new theoretical method to deal with the variable types of the wave.
NASA Astrophysics Data System (ADS)
Silveira, Graça; Kiselev, Sergey; Stutzmann, Eleonore; Schimmel, Martin; Haned, Abderrahmane; Dias, Nuno; Morais, Iolanda; Custódio, Susana
2015-04-01
Ambient Noise Tomography (ANT) is now widely used to image the subsurface seismic structure, with a resolution mainly dependent on the seismic network coverage. Most of these studies are limited to Rayleigh waves for periods shorter than 40/45 s and, as a consequence, they can image only the crust or, at most, the uppermost mantle. Recently, some studies successfully showed that this analysis could be extended to longer periods, thus allowing a deeper probing. In this work we present the combination of two complementary datasets. The first was obtained from the analysis of ambient noise in the period range 5-50 sec, for Western Iberia, using a dense temporary seismic network that operated between 2010 and 2012. The second one was computed for a global study, in the period range 30-250 sec, from analysis of 150 stations of the global networks GEOSCOPE and GSN. In both datasets, the Empirical Green Functions are computed by phase cross-correlation. The ambient noise phase cross-correlations are stacked using the time-frequency domain phase weighted stack (Schimmel et al. 2011, Geoph. J. Int., 184, 494-506). A bootstrap approach is used to measure the group velocities between pairs of stations and to estimate the corresponding error. We observed a good agreement between the dispersion measurements on both short period and long period datasets for most of the grid nodes. They are then inverted to obtain the 3D S-wave model from the crust to the upper mantle, using a bayesian approach. A simulated annealing method is applied, in which the number of splines that describes the model is adapted within the inversion. We compare the S-wave velocity model at some selected profiles with the S-wave velocity models gathered from Ps and Sp receiver functions joint inversion. Both results, issued from ambient noise tomography and body wave's analysis for the crust and upper mantle are consistent. This work is supported by project AQUAREL (PTDC/CTEGIX/116819/2010) and is a contribution to project QuakeLoc-PT (PTDC/GEO-FIQ/3522/2012).
The Deep Impact Network Experiment Operations Center Monitor and Control System
NASA Technical Reports Server (NTRS)
Wang, Shin-Ywan (Cindy); Torgerson, J. Leigh; Schoolcraft, Joshua; Brenman, Yan
2009-01-01
The Interplanetary Overlay Network (ION) software at JPL is an implementation of Delay/Disruption Tolerant Networking (DTN) which has been proposed as an interplanetary protocol to support space communication. The JPL Deep Impact Network (DINET) is a technology development experiment intended to increase the technical readiness of the JPL implemented ION suite. The DINET Experiment Operations Center (EOC) developed by JPL's Protocol Technology Lab (PTL) was critical in accomplishing the experiment. EOC, containing all end nodes of simulated spaces and one administrative node, exercised publish and subscribe functions for payload data among all end nodes to verify the effectiveness of data exchange over ION protocol stacks. A Monitor and Control System was created and installed on the administrative node as a multi-tiered internet-based Web application to support the Deep Impact Network Experiment by allowing monitoring and analysis of the data delivery and statistics from ION. This Monitor and Control System includes the capability of receiving protocol status messages, classifying and storing status messages into a database from the ION simulation network, and providing web interfaces for viewing the live results in addition to interactive database queries.
NASA Astrophysics Data System (ADS)
Haldar, C.; Kumar, P.; Kumar, M. Ravi
2014-05-01
Deciphering the seismic character of the young lithosphere near mid-oceanic ridges (MORs) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs using the P-to-S conversions isolated from quality data recorded at five broadband seismological stations situated on ocean islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform inversion of the P-receiver function stacks at individual stations reveal that the Moho depth varies between ~ 10 ± 1 km and ~ 20 ± 1 km with the depths of the lithosphere-asthenosphere boundary (LAB) varying between ~ 40 ± 4 and ~ 65 ± 7 km. We found evidence for an additional low-velocity layer below the expected LAB depths at stations on Ascension, São Jorge and Easter islands. The layer probably relates to the presence of a hot spot corresponding to a magma chamber. Further, thinning of the upper mantle transition zone suggests a hotter mantle transition zone due to the possible presence of plumes in the mantle beneath the stations.
Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study
NASA Astrophysics Data System (ADS)
Makarska-Bialokoz, Magdalena
2018-03-01
The binding interactions between hemin (Hmi) and bovine serum albumin (BSA) or human hemoglobin (HHb), respectively, have been examined in aqueous solution at pH = 7.4, applying UV-vis absorption, as well as steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative results received for both BSA and HHb intrinsic fluorescence proceeding from the interactions with hemin suggest the formation of stacking non-covalent and non-fluorescent complexes in both the Hmi-BSA and Hmi-HHb systems, with highly possible concurrent formation of a coordinate bond between a group on the protein surface and the metal in Hmi molecule. All the values of calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants point to the involvement of static quenching in both the systems studied. The blue shift in the synchronous fluorescence spectra imply the participation of both tryptophan and tyrosine residues in quenching of BSA and HHb intrinsic fluorescence. Depicted outcomes suggest that hemin is supposedly able to influence the physiological functions of BSA and HHb, the most important blood proteins, particularly in case of its overuse.
Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K
2012-12-19
A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.
Space Shuttle Transportation (Roll-Out) Loads Diagnostics
NASA Technical Reports Server (NTRS)
Elliott, Kenny B.; Buehrle, Ralph D.; James, George H.; Richart, Jene A.
2005-01-01
The Space Transportation System (STS) consists of three primary components; an Orbiter Vehicle, an External Fuel Tank, and two Solid Rocket Boosters. The Orbiter Vehicle and Solid Rocket Boosters are reusable components, and as such, they are susceptible to durability issues. Recently, the fatigue load spectra for these components have been updated to include load histories acquired during the rollout phase of the STS processing for flight. Using traditional program life assessment techniques, the incorporation of these "rollout" loads produced unacceptable life estimates for certain Orbiter structural members. As a result, the Space Shuttle System Engineering and Integration Office has initiated a program to re-assess the method used for developing the "rollout" loads and performing the life assessments. In the fall of 2003 a set of tests were preformed to provide information to either validate existing load spectra estimation techniques or generate new load spectra estimation methods. Acceleration and strain data were collected from two rollouts of a partial-stack configuration of the Space Shuttle. The partial stack configuration consists of two Solid Rocket Boosters tied together at the upper External Tank attachment locations mounted on the Mobile Launch Platform carried by a Crawler Transporter (CT). In the current analysis, the data collected from this test is examined for consistency in speed, surface condition effects, and the characterization of the forcing function. It is observed that the speed of the CT is relatively stable. The dynamic response acceleration of the partial-stack is slightly sensitive to the surface condition of the road used for transport, and the dynamic response acceleration of the partial-stack generally increases as the transport speed increases. However, the speed sensitivity is dependent on the measurement location. Finally, the character of the forcing function is narrow-banded with the primary drivers being harmonics of two CT speed dependent excitations. One source is an excitation due to the CT treads striking the road surface, and the second is unknown.