Sample records for receiver tracking phase

  1. Optimized tracking of RF carriers with phase noise, including Pioneer 10 results

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Hurd, W. J.; Brown, D. H.

    1987-01-01

    The ability to track very weak signals from distant spacecraft is limited by the phase instabilities of the received signal and of the local oscillator employed by the receiver. These instabilities ultimately limit the minimum loop bandwidth that can be used in a phase-coherent receiver, and hence limit the ratio of received carrier power to noise spectral density which can be tracked phase coherently. A method is presented for near real time estimation of the received carrier phase and additive noise spectrum, and optimization of the phase locked loop bandwidth. The method was used with the breadboard Deep Space Network (DSN) Advanced Receiver to optimize tracking of very weak signals from the Pioneer 10 spacecraft, which is now more distant that the edge of the solar system. Tracking with bandwidths of 0.1 Hz to 1.0 Hz reduces tracking signal threshold and increases carrier loop signal to noise ratio (SNR) by 5 dB to 15 dB compared to the 3 Hz bandwidth of the receivers now used operationally in the DSN. This will enable the DSN to track Pioneer 10 until its power sources fails near the end of the century.

  2. Advanced Receiver tracking of Voyager 2 near solar conjunction

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Hurd, W. J.; Vilnrotter, V. A.; Wiggins, J. D.

    1988-01-01

    The Advanced Receiver (ARX) was used to track the Voyager 2 spacecraft at low Sun-Earth-Probe (SEP) angles near solar conjunction in December of 1987. The received carrier signal exhibited strong fluctuations in both phase and amplitude. The ARX used spectral estimation and mathematical modeling of the phase and receiver noise processes to set an optimum carrier tracking bandwidth. This minimized the mean square phase error in tracking carrier phase and thus minimized the loss in the telemetry signal-to-noise ratio due to the carrier loop. Recovered symbol SNRs and errors in decoded engineering data for the ARX are compared with those for the current Block 3 telemetry stream. Optimum bandwidths are plotted against SEP angle. Measurements of the power spectral density of the solar phase and amplitude fluctuations are also given.

  3. Effect of GNSS receiver carrier phase tracking loops on earthquake monitoring performance

    NASA Astrophysics Data System (ADS)

    Clare, Adam; Lin, Tao; Lachapelle, Gérard

    2017-06-01

    This research focuses on the performance of GNSS receiver carrier phase tracking loops for early earthquake monitoring systems. An earthquake was simulated using a hardware simulator and position, velocity and acceleration displacements were obtained to recreate the dynamics of the 2011 Tohoku earthquake. Using a software defined receiver, GSNRx, tracking bandwidths of 5, 10, 15, 20, 30, 40 and 50 Hz along with integration times of 1, 5 and 10 ms were tested. Using the phase lock indicator, an adaptive tracking loop was designed and tested to maximize performance for this application.

  4. Design concepts and performance of NASA X-band transponder (DST) for deep space spacecraft applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Perret, Jonathan D.; Kermode, Arthur W.

    1991-01-01

    The design concepts and measured performance characteristics of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DST) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the X band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.

  5. An X-band spacecraft transponder for deep space applications - Design concepts and breadboard performance

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Perret, Jonathan D.; Kermode, Arthur W.

    1992-01-01

    The design concepts and measured performance characteristics are summarized of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DSP) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control, static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.

  6. Design concepts and performance of NASA X-band (7162 MHz/8415 MHz) transponder for deep-space spacecraft applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Perret, J. D.; Kermode, A. W.

    1991-01-01

    The design concepts and measured performance characteristics are summarized of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DSP) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the X band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control, static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.

  7. Reduction of Phase Ambiguity in an Offset-QPSK Receiver

    NASA Technical Reports Server (NTRS)

    Berner, Jeff; Kinman, Peter

    2004-01-01

    Proposed modifications of an offset-quadri-phase-shift keying (offset-QPSK) transmitter and receiver would reduce the amount of signal processing that must be done in the receiver to resolve the QPSK fourfold phase ambiguity. Resolution of the phase ambiguity is necessary in order to synchronize, with the received carrier signal, the signal generated by a local oscillator in a carrier-tracking loop in the receiver. Without resolution of the fourfold phase ambiguity, the loop could lock to any of four possible phase points, only one of which has the proper phase relationship with the carrier. The proposal applies, more specifically, to an offset-QPSK receiver that contains a carrier-tracking loop like that shown in Figure 1. This carrier-tracking loop does not resolve or reduce the phase ambiguity. A carrier-tracking loop of a different design optimized for the reception of offset QPSK could reduce the phase ambiguity from fourfold to twofold, but would be more complex. Alternatively, one could resolve the fourfold phase ambiguity by use of differential coding in the transmitter, at a cost of reduced power efficiency. The proposed modifications would make it possible to reduce the fourfold phase ambiguity to twofold, with no loss in power efficiency and only relatively simple additional signal-processing steps in the transmitter and receiver. The twofold phase ambiguity would then be resolved by use of a unique synchronization word, as is commonly done in binary phase-shift keying (BPSK). Although the mathematical and signal-processing principles underlying the modifications are too complex to explain in detail here, the modifications themselves would be relatively simple and are best described with the help of simple block diagrams (see Figure 2). In the transmitter, one would add a unit that would periodically invert bits going into the QPSK modulator; in the receiver, one would add a unit that would effect different but corresponding inversions of bits coming out of the QPSK demodulator. The net effect of all the inversions would be that depending on which lock point the carrier-tracking loop had selected, all the output bits would be either inverted or non-inverted together; hence, the ambiguity would be reduced from fourfold to twofold, as desired.

  8. Faraday rotation measurement method and apparatus

    NASA Technical Reports Server (NTRS)

    Brockman, M. H. (Inventor)

    1981-01-01

    A method and device for measuring Faraday rotation of a received RF signal is described. A simultaneous orthogonal polarization receiver compensates for a 3 db loss due to splitting of a received signal into left circular and right circular polarization channels. The compensation is achieved by RF and modulation arraying utilizing a specific receiver array which also detects and measures Faraday rotation in the presence or absence of spin stabilization effects on a linear polarization vector. Either up-link or down-link measurement of Faraday rotation is possible. Specifically, the Faraday measurement apparatus utilized in conjunction with the specific receiver array provides a means for comparing the phase of a reference signal in the receiver array to the phase of a tracking loop signal related to the incoming signal, and comparing the phase of the reference signal to the phase of the tracking signal shifted in phase by 90 degrees. The averaged and unaveraged signals, are compared, the phase changes between the two signals being related to Faraday rotation.

  9. Receiver design and performance characteristics

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Yuen, J. H.

    1982-01-01

    The basic design, principles of operation, and characteristics of deep space communications receivers are examined. In particular, the basic fundamentals of phase-locked loop and Costas loop receivers used for synchronization, tracking, and demodulation of phase-coherent signals in residual carrier and suppressed carrier systems are addressed.

  10. Free-space laser communication technologies IV; Proceedings of the 4th Conference, Los Angeles, CA, Jan. 23, 24, 1992

    NASA Technical Reports Server (NTRS)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1992-01-01

    Papers included in this volume are grouped under topics of receivers; laser transmitters; components; system analysis, performance, and applications; and beam control (pointing, acquisition, and tracking). Papers are presented on an experimental determination of power penalty contributions in an optical Costas-type phase-locked loop receiver, a resonant laser receiver for free-space laser communications, a simple low-loss technique for frequency-locking lasers, direct phase modulation of laser diodes, and a silex beacon. Particular attention is given to experimental results on an optical array antenna for nonmechanical beam steering, a potassium Faraday anomalous dispersion optical filter, a 100-Mbps resonant cavity phase modulator for coherent optical communications, a numerical simulation of a 325-Mbit/s QPPM optical communication system, design options for an optical multiple-access data relay terminal, CCD-based optical tracking loop design trades, and an analysis of a spatial-tracking subsystem for optical communications.

  11. Development of a Receiver Processor For UAV Video Signal Acquisition and Tracking Using Digital Phased Array Antenna

    DTIC Science & Technology

    2010-09-01

    53 Figure 26. Image of the phased array antenna...................................................................54...69 Figure 38. Computation of correction angle from array factor and sum/difference beams...71 Figure 39. Front panel of the tracking algorithm

  12. Robust GPS carrier tracking under ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance of the proposed tracking scheme is assessed by using both simulated and real data. Real data have been collected in Vietnam by using a USRP (Universal Software Radio Peripheral) N210 front end connected to a rubidium oscillator. Selected events are exploited in order to challenge the algorithm with strong phase and amplitude variations. Moreover, simulated data have been collected by using the prototype of a digital front end developed by Novatel, namely the 'Firehose'. Since the latter includes a TCXO oscillator, the proposed tracking scheme is also opportunely modified to take in account the clock error contribution. References 1. R.S., Conker, M. B. El-Arini, C. J. Hegarty, and T. Hsiao, Modelling the effects of ionospheric scintillation on GPS/satellite-based augmentation system availability. Radio Sci., 38, 1, 1001, doi: 10.1029/2000RS002604, 2003. 2. B. Bougard et al, 'CIGALA: Challenging the Solar Maximum in Brazil with PolaRxS,' ION GNSS, Portland, Sept. 2011.

  13. Navigating the Return Trip from the Moon Using Earth-Based Ground Tracking and GPS

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Carpenter, Russell; Moreau, Michael C.; Lee, Taesul; Holt, Gregg N.

    2009-01-01

    NASA s Constellation Program is planning a human return to the Moon late in the next decade. From a navigation perspective, one of the most critical phases of a lunar mission is the series of burns performed to leave lunar orbit, insert onto a trans-Earth trajectory, and target a precise re-entry corridor in the Earth s atmosphere. A study was conducted to examine sensitivity of the navigation performance during this phase of the mission to the type and availability of tracking data from Earth-based ground stations, and the sensitivity to key error sources. This study also investigated whether GPS measurements could be used to augment Earth-based tracking data, and how far from the Earth GPS measurements would be useful. The ability to track and utilize weak GPS signals transmitted across the limb of the Earth is highly dependent on the configuration and sensitivity of the GPS receiver being used. For this study three GPS configurations were considered: a "standard" GPS receiver with zero dB antenna gain, a "weak signal" GPS receiver with zero dB antenna gain, and a "weak signal" GPS receiver with an Earth-pointing direction antenna (providing 10 dB additional gain). The analysis indicates that with proper selection and configuration of the GPS receiver on the Orion spacecraft, GPS can potentially improve navigation performance during the critical final phases of flight prior to Earth atmospheric entry interface, and may reduce reliance on two-way range tracking from Earth-based ground stations.

  14. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  15. Performance Improvement of Receivers Based on Ultra-Tight Integration in GNSS-Challenged Environments

    PubMed Central

    Qin, Feng; Zhan, Xingqun; Du, Gang

    2013-01-01

    Ultra-tight integration was first proposed by Abbott in 2003 with the purpose of integrating a global navigation satellite system (GNSS) and an inertial navigation system (INS). This technology can improve the tracking performances of a receiver by reconfiguring the tracking loops in GNSS-challenged environments. In this paper, the models of all error sources known to date in the phase lock loops (PLLs) of a standard receiver and an ultra-tightly integrated GNSS/INS receiver are built, respectively. Based on these models, the tracking performances of the two receivers are compared to verify the improvement due to the ultra-tight integration. Meanwhile, the PLL error distributions of the two receivers are also depicted to analyze the error changes of the tracking loops. These results show that the tracking error is significantly reduced in the ultra-tightly integrated GNSS/INS receiver since the receiver's dynamics are estimated and compensated by an INS. Moreover, the mathematical relationship between the tracking performances of the ultra-tightly integrated GNSS/INS receiver and the quality of the selected inertial measurement unit (IMU) is derived from the error models and proved by the error comparisons of four ultra-tightly integrated GNSS/INS receivers aided by different grade IMUs.

  16. Phase-locked tracking loops for LORAN-C

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1978-01-01

    Portable battery operated LORAN-C receivers were fabricated to evaluate simple envelope detector methods with hybrid analog to digital phase locked loop sensor processors. The receivers are used to evaluate LORAN-C in general aviation applications. Complete circuit details are given for the experimental sensor and readout system.

  17. GNSS triple-frequency geometry-free and ionosphere-free track-to-track ambiguities

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Rothacher, Markus

    2015-06-01

    During the last few years, more and more GNSS satellites have become available sending signals on three or even more frequencies. Examples are the GPS Block IIF and the Galileo In-Orbit-Validation (IOV) satellites. Various investigations have been performed to make use of the increasing number of frequencies to find a compromise between eliminating different error sources and minimizing the noise level, including the investigations in the triple-frequency geometry-free (GF) and ionosphere-free (IF) linear combinations, which eliminate all the geometry-related errors and the first-order term of the ionospheric delays. In contrast to the double-difference GF and IF ambiguity resolution, the resolution of the so-called track-to-track GF and IF ambiguities between two tracks of a satellite observed by the same station only requires one receiver and one satellite. Most of the remaining errors like receiver and satellite delays (electronics, cables, etc.) are eliminated, if they are not changing rapidly in time, and the noise level is reduced theoretically by a factor of square root of two compared to double-differences. This paper presents first results concerning track-to-track ambiguity resolution using triple-frequency GF and IF linear combinations based on data from the Multi-GNSS Experiment (MGEX) from April 29 to May 9, 2012 and from December 23 to December 29, 2012. This includes triple-frequency phase and code observations with different combinations of receiver tracking modes. The results show that it is possible to resolve the combined track-to-track ambiguities of the best two triple-frequency GF and IF linear combinations for the Galileo frequency triplet E1, E5b and E5a with more than 99.6% of the fractional ambiguities for the best linear combination being located within ± 0.03 cycles and more than 98.8% of the fractional ambiguities for the second best linear combination within ± 0.2 cycles, while the fractional parts of the ambiguities for the GPS frequency triplet L1, L2 and L5 are more disturbed by errors as e.g. the uncalibrated Phase Center Offsets (PCOs) and Phase Center Variations (PCVs), that have not been considered. The best two GF and IF linear combinations between tracks are helpful to detect problems in data and receivers. Furthermore, resolving the track-to-track ambiguities is helpful to connect the single-receiver ambiguities on the normal equation level and to improve ambiguity resolution.

  18. Improving Estimates Of Phase Parameters When Amplitude Fluctuates

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Brown, D. H.; Hurd, W. J.

    1989-01-01

    Adaptive inverse filter applied to incoming signal and noise. Time-varying inverse-filtering technique developed to improve digital estimate of phase of received carrier signal. Intended for use where received signal fluctuates in amplitude as well as in phase and signal tracked by digital phase-locked loop that keeps its phase error much smaller than 1 radian. Useful in navigation systems, reception of time- and frequency-standard signals, and possibly spread-spectrum communication systems.

  19. Design and Implementation of an RTK-Based Vector Phase Locked Loop

    PubMed Central

    Shafaati, Ahmad; Lin, Tao; Broumandan, Ali; Lachapelle, Gérard

    2018-01-01

    This paper introduces a novel double-differential vector phase-locked loop (DD-VPLL) for Global Navigation Satellite Systems (GNSS) that leverages carrier phase position solutions as well as base station measurements in the estimation of rover tracking loop parameters. The use of double differencing alleviates the need for estimating receiver clock dynamics and atmospheric delays; therefore, the navigation filter consists of the baseline dynamic states only. It is shown that using vector processing for carrier phase tracking leads to a significant enhancement in the receiver sensitivity compared to using the conventional scalar-based tracking loop (STL) and vector frequency locked loop (VFLL). The sensitivity improvement of 8 to 10 dB compared to STL, and 7 to 8 dB compared to VFLL, is obtained based on the test cases reported in the paper. Also, an increased probability of ambiguity resolution in the proposed method results in better availability for real time kinematic (RTK) applications. PMID:29533994

  20. Analysis of Multi-Antenna GNSS Receiver Performance under Jamming Attacks.

    PubMed

    Vagle, Niranjana; Broumandan, Ali; Lachapelle, Gérard

    2016-11-17

    Although antenna array-based Global Navigation Satellite System (GNSS) receivers can be used to mitigate both narrowband and wideband electronic interference sources, measurement distortions induced by array processing methods are not suitable for high precision applications. The measurement distortions have an adverse effect on the carrier phase ambiguity resolution, affecting the navigation solution. Depending on the array attitude information availability and calibration parameters, different spatial processing methods can be implemented although they distort carrier phase measurements in some cases. This paper provides a detailed investigation of the effect of different array processing techniques on array-based GNSS receiver measurements and navigation performance. The main novelty of the paper is to provide a thorough analysis of array-based GNSS receivers employing different beamforming techniques from tracking to navigation solution. Two beamforming techniques, namely Power Minimization (PM) and Minimum Power Distortionless Response (MPDR), are being investigated. In the tracking domain, the carrier Doppler, Phase Lock Indicator (PLI), and Carrier-to-Noise Ratio (C/N₀) are analyzed. Pseudorange and carrier phase measurement distortions and carrier phase position performance are also evaluated. Performance analyses results from simulated GNSS signals and field tests are provided.

  1. [Study on a wireless energy transmission system for the noninvasive examination micro system inside alimentary tracts].

    PubMed

    He, Xiu; Yan, Guo-Zheng; Wang, Fu-Min

    2008-01-01

    A wireless energy transmission system for the MEMS system inside alimentary tracts is reported here in the paper. It consists of an automatic frequency tracking circuit of phase lock loop and phase shift PWM control circuit. Experimental results show that the energy transmission system is capable of automatic frequency-tracking and transmission power-adjusting and has stable received energy.

  2. Phased-array laser radar: Concept and application

    NASA Technical Reports Server (NTRS)

    Kadrmas, K. A.

    1973-01-01

    The design and construction of a coaxial transmitter-receiver combination was investigated. Major emphasis was placed on simple permanent optical alignment, transmitter-receiver field of view matching, use of a pulsed gas laser as a transmitter maximum optical efficiency, complete digital control of data acquisition, and optical mount pointing and tracking. Also a means of expanding the coaxial transmitter-receiver concept to allow phased-array lidar, par-lidar was described.

  3. Automated absolute phase retrieval in across-track interferometry

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Zebker, Howard A.

    1992-01-01

    Discussed is a key element in the processing of topographic radar maps acquired by the NASA/JPL airborne synthetic aperture radar configured as an across-track interferometer (TOPSAR). TOPSAR utilizes a single transmit and two receive antennas; the three-dimensional target location is determined by triangulation based on a known baseline and two measured slant ranges. The slant range difference is determined very accurately from the phase difference between the signals received by the two antennas. This phase is measured modulo 2pi, whereas it is the absolute phase which relates directly to the difference in slant range. It is shown that splitting the range bandwidth into two subbands in the processor and processing each individually allows for the absolute phase. The underlying principles and system errors which must be considered are discussed, together with the implementation and results from processing data acquired during the summer of 1991.

  4. A GPS measurement system for precise satellite tracking and geodesy

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, S.-C.; Lichten, S. M.

    1985-01-01

    NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.

  5. Analysis of the PLL phase error in presence of simulated ionospheric scintillation events

    NASA Astrophysics Data System (ADS)

    Forte, B.

    2012-01-01

    The functioning of standard phase locked loops (PLL), including those used to track radio signals from Global Navigation Satellite Systems (GNSS), is based on a linear approximation which holds in presence of small phase errors. Such an approximation represents a reasonable assumption in most of the propagation channels. However, in presence of a fading channel the phase error may become large, making the linear approximation no longer valid. The PLL is then expected to operate in a non-linear regime. As PLLs are generally designed and expected to operate in their linear regime, whenever the non-linear regime comes into play, they will experience a serious limitation in their capability to track the corresponding signals. The phase error and the performance of a typical PLL embedded into a commercial multiconstellation GNSS receiver were analyzed in presence of simulated ionospheric scintillation. Large phase errors occurred during scintillation-induced signal fluctuations although cycle slips only occurred during the signal re-acquisition after a loss of lock. Losses of lock occurred whenever the signal faded below the minimumC/N0threshold allowed for tracking. The simulations were performed for different signals (GPS L1C/A, GPS L2C, GPS L5 and Galileo L1). L5 and L2C proved to be weaker than L1. It appeared evident that the conditions driving the PLL phase error in the specific case of GPS receivers in presence of scintillation-induced signal perturbations need to be evaluated in terms of the combination of the minimumC/N0 tracking threshold, lock detector thresholds, possible cycle slips in the tracking PLL and accuracy of the observables (i.e. the error propagation onto the observables stage).

  6. Impact of Swarm GPS receiver updates on POD performance

    NASA Astrophysics Data System (ADS)

    van den IJssel, Jose; Forte, Biagio; Montenbruck, Oliver

    2016-05-01

    The Swarm satellites are equipped with state-of-the-art Global Positioning System (GPS) receivers, which are used for the precise geolocation of the magnetic and electric field instruments, as well as for the determination of the Earth's gravity field, the total electron content and low-frequency thermospheric neutral densities. The onboard GPS receivers deliver high-quality data with an almost continuous data rate. However, the receivers show a slightly degraded performance when flying over the geomagnetic poles and the geomagnetic equator, due to ionospheric scintillation. Furthermore, with only eight channels available for dual-frequency tracking, the amount of collected GPS tracking data is relatively low compared with various other missions. Therefore, several modifications have been implemented to the Swarm GPS receivers. To optimise the amount of collected GPS data, the GPS antenna elevation mask has slowly been reduced from 10° to 2°. To improve the robustness against ionospheric scintillation, the bandwidths of the GPS receiver tracking loops have been widened. Because these modifications were first implemented on Swarm-C, their impact can be assessed by a comparison with the close flying Swarm-A satellite. This shows that both modifications have a positive impact on the GPS receiver performance. The reduced elevation mask increases the amount of GPS tracking data by more than 3 %, while the updated tracking loops lead to around 1.3 % more observations and a significant reduction in tracking losses due to severe equatorial scintillation. The additional observations at low elevation angles increase the average noise of the carrier phase observations, but nonetheless slightly improve the resulting reduced-dynamic and kinematic orbit accuracy as shown by independent satellite laser ranging (SLR) validation. The more robust tracking loops significantly reduce the large carrier phase observation errors at the geomagnetic poles and along the geomagnetic equator and do not degrade the observations at midlatitudes. SLR validation indicates that the updated tracking loops also improve the reduced-dynamic and kinematic orbit accuracy. It is expected that the Swarm gravity field recovery will benefit from the improved kinematic orbit quality and potentially also from the expected improvement of the kinematic baseline determination and the anticipated reduction in the systematic gravity field errors along the geomagnetic equator. Finally, other satellites that carry GPS receivers that encounter similar disturbances might also benefit from this analysis.

  7. A Polarization-Diversity Simultaneous-Lobing Angle-Tracking Receiver

    NASA Technical Reports Server (NTRS)

    Renhult, W. B.

    1961-01-01

    This report describes a simultaneous-lobing angle-tracking receiver operating in the 225-260 milli-cycle-per-second telemetry band and employing polarization diversity. Its operation is considered primarily in the context of the Mercury range and tracking of the Mercury capsule. Several methods of providing diversity are briefly considered, and a number of ways of implementing the phase shifts required at one polarization for coherent signal addition are discussed. A prototype receiver is briefly described although circuitry which may be somewhat novel is covered in greater detail. No attempt has been made to include all of the sophistication one might expect in a receiver of this type; circuits have been simplified in some areas where, for example, a manual control can replace an automatic function and reduce complexity. Some conclusions are drawn as to how this receiver might perform in the Mercury environment.

  8. Comparison of Two Detection Combination Algorithms for Phased Array Radars

    DTIC Science & Technology

    2015-07-01

    data were generated by a simulator of multi-function radar ( MFR ) and the combination algorithms are evaluated with the recorded simulation data. With...electronically scanned phased array Multi-Function Radar ( MFR ), is a type of radar whose transmitter and receiver functions are composed of numerous...small transmit/receive modules. An MFR can perform many functions previously performed by individual, dedicated radars for search, tracking and

  9. Passive Tracking System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Chen, Henry A. (Inventor); Phan, Chau T. (Inventor); Bourgeois, Brian A. (Inventor); Dusl, Jon (Inventor); Hill, Brent W. (Inventor)

    2003-01-01

    Systems and methods are disclosed for passively determining the location of a moveable transmitter utilizing a pair of phase shifts at a receiver for extracting a direction vector from a receiver to the transmitter. In a preferred embodiment, a phase difference between the transmitter and receiver is extracted utilizing a noncoherent demodulator in the receiver. The receiver includes an antenna array with three antenna elements, which preferably are patch antenna elements spaced apart by one-half wavelength. Three receiver channels are preferably utilized for simultaneously processing the received signal from each of the three antenna elements. Multipath transmission paths for each of the three receiver channels are indexed so that comparisons of the same multipath component are made for each of the three receiver channels. The phase difference for each received signal is determined by comparing only the magnitudes of received and stored modulation signals to determine a winning modulation symbol.

  10. Passive Tracking System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Chen, Henry A. (Inventor); Phan, Chau T. (Inventor); Bourgeois, Brian A. (Inventor); Dusl, John (Inventor); Hill, Brent W. (Inventor)

    2005-01-01

    System and methods are disclosed for passively determining the location of a moveable transmitter utilizing a pair of phase shifts at a receiver for extracting a direction vector from a receiver to the transmitter. In a preferred embodiment, a phase difference between the transmitter and receiver is extracted utilizing a noncoherent demodulator in the receiver. The receiver includes antenna array with three antenna elements, which preferably are patch antenna elements placed apart by one-half wavelength. Three receiver channels are preferably utilized for simultaneously processing the received signal from each of the three antenna elements. Multipath transmission paths for each of the three receiver channels are indexed so that comparisons of the same multipath component are made for each of the three receiver channels. The phase difference for each received signal is determined by comparing only the magnitudes of received and stored modulation signals to determine a winning modulation symbol.

  11. Bandwidth controller for phase-locked-loop

    NASA Technical Reports Server (NTRS)

    Brockman, Milton H. (Inventor)

    1992-01-01

    A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.

  12. The Effects of L2C Signal Tracking on High-Precision Carrier Phase GPS Positioning: Implications for the Next Generation of GNSS Systems

    NASA Astrophysics Data System (ADS)

    Blume, F.; Berglund, H.; Estey, L.

    2012-12-01

    In December 2005, the L2C signal was introduced to improve the accuracy, tracking and redundancy of the GPS system for civilian users. The L2C signal also provides improved SNR data when compared with the L2P(Y) legacy signal. However, GNSS network operators have been hesitant to use the new signal as it is not well determined how positions derived from L2 carrier phase measurements are affected. L2C carrier phase is in quadrature with L2P(Y); some manufacturers correct for this when logging L2C phase while others do not. In cases where both L2C and L2P(Y) are logged simultaneously, translation software must be used carefully in order to select which phase is used in positioning. Modifications were made to UNAVCO's teqc pre-processing software to eliminate confusion, however GNSS networks such as the IGS still suffer occasional data loss due to improperly configured GPS receivers or data flow routines. To date L2C analyses have been restricted to special applications such as snow depth and soil moisture using SNR data, as some high-precision data analysis packages are not compatible with L2C. We use several different methods to determine the effect that tracking and logging L2C has on carrier phase measurements and positioning for various receiver models and configurations. Twenty-four hour zero-length baseline solutions using L2 show sub- millimeter differences in mean positions for both horizontal and vertical components. Direct comparisons of the L2 phase observable from RINEX files with and without the L2C observable show sub-millicycle differences. The magnitude of the variations increased at low elevations. The behavior of the L2P(Y) phase observations or positions from a given receiver were not affected by the enabling of L2C tracking. We find that the use of the L2C-derived carrier phase in real-time applications can be disastrous in cases where receiver brands are mixed between those that correct for quadrature and those that do not (Figure 1). Until standards are implemented for universal phase corrections in either receivers or software the use of L2C should be avoided by real-time network operators. The complexity involved in the adoption of a single new signal on an existing GPS frequency over a period of 7 years has implications for the use of multi-GNSS systems and modernized GPS in geodetic networks.

  13. UWB Tracking Software Development

    NASA Technical Reports Server (NTRS)

    Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.

  14. Observations with the GISMOS Airborne Radio Occultation System

    NASA Astrophysics Data System (ADS)

    Muradyan, Paytsar; Haase, Jennifer; Garrison, James; Lulich, Tyler; Xie, Feiqin

    2010-05-01

    The spatial sample density of temperature and moisture profiles derived from the current spaceborne GPS radio occultation (RO) constellation is limited by the number of occultation satellites in operation. With the current RO satellite configuration, only one RO profile per day is typically available in a 160,000 square kilometer area in the mid-latitude and tropics and slightly more in high latitudes. The airborne RO technique, which has the GPS receiver onboard an airplane, offers flexibility and much denser sampling for targeted observation within 400 km of the aircraft, and provides comparable high vertical resolution to that of the spaceborne case. With an airborne system, targeted measurements can be planned in an optimal geometry to study the accuracy of RO measurements in the lower troposphere where strong vertical gradients in moisture might lead to disruption of signal tracking. These dense measurements can also be used to test assimilation techniques of refractivity and lower tropospheric moisture derived from RO data. In February 2008, the GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS), developed at Purdue University, was successfully deployed on the NSF HIAPER aircraft for series of research flights in the Gulf of Mexico coastal region to validate the airborne observing system. During this campaign, occultation observations were collected in conjunction with supplemental radiosonde and dropsonde soundings. RO signals were recorded using side-looking GPS antennas and dual frequency GPS receivers. However, these conventional phase-locked-loop GPS receivers cannot always track the signal in the lower troposphere, where there are rapid phase accelerations caused by highly variable moisture structures. To extend the observations deeper into the atmosphere, the raw signal from occulting satellites is recorded at 10MHz sampling interval by a GPS recording system (GRS). Open-loop (OL) tracking, which replaces the traditional GPS receiver feedback loop using an a priori estimate of Doppler frequency, was implemented in a software receiver and the data was post-processed after the flight. Such an extensive dataset can be of importance in studies aimed at improving signal processing performance for spaceborne as well as airborne RO measurements. We present data from the February 2008 campaign, and show several examples of occultations with clear atmospheric signals in the excess phase and Doppler. Many recordings that were made with conventional receivers descend below 5 km in the atmosphere. With an OL tracking procedure using the data recorded by the GRS, the measurements extended deeper into the atmosphere (~ 2km above surface). Raytracing was used to simulate the atmospheric excess phase profile from a nearby radiosonde sounding. The excess phase profiles acquired with both closed-loop and open-loop tracking show consistent patterns compared to the radiosonde observations.

  15. Initial flight test of a Loran-C receiver/data collection system

    NASA Technical Reports Server (NTRS)

    Fischer, J. P.; Nickum, J. D.

    1978-01-01

    Development of a low cost Loran C receiver for general aviation use is discussed. The preparation and procedure of a flight test conducted with a receiver design which utilizes a phase locked loop oscillator to track the Loran C signals is described. It is indicated that such a receiver is a viable alternative for future work in developing a low cost Loran-C navigator.

  16. Hybrid Analog/Digital Receiver

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Hurd, W. J.

    1989-01-01

    Advanced hybrid analog/digital receiver processes intermediate-frequency (IF) signals carrying digital data in form of phase modulation. Uses IF sampling and digital phase-locked loops to track carrier and subcarrier signals and to synchronize data symbols. Consists of three modules: IF assembly, signal-processing assembly, and test-signal assembly. Intended for use in Deep Space Network, but presumably basic design modified for such terrestrial uses as communications or laboratory instrumentation where signals weak and/or noise strong.

  17. An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.

    PubMed

    Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan

    2017-11-18

    Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz.

  18. An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers

    PubMed Central

    Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan

    2017-01-01

    Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration—which are the basis of tracking error estimation—are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (−0.25 cycle, 0.25 cycle) to (−0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz. PMID:29156581

  19. Receivers

    NASA Technical Reports Server (NTRS)

    Donnelly, H.

    1983-01-01

    Before discussing Deep Space Network receivers, a brief description of the functions of receivers and how they interface with other elements of the Network is presented. Different types of receivers are used in the Network for various purposes. The principal receiver type is used for telemetry and tracking. This receiver provides the capability, with other elements of the Network, to track the space probe utilizing Doppler and range measurements, and to receive telemetry, including both scientific data from the onboard experiments and engineering data pertaining to the health of the probe. Another type of receiver is used for radio science applications. This receiver measures phase perturbations on the carrier signal to obtain information on the composition of solar and planetary atmospheres and interplanetary space. A third type of receiver utilizes very long baseline interferometry (VLBI) techniques for both radio science and spacecraft navigation data. Only the telemetry receiver is described in detail in this document. The integration of the Receiver-Exciter subsystem with other portions of the Deep Space Network is described.

  20. A GPS Phase-Locked Loop Performance Metric Based on the Phase Discriminator Output

    PubMed Central

    Stevanovic, Stefan; Pervan, Boris

    2018-01-01

    We propose a novel GPS phase-lock loop (PLL) performance metric based on the standard deviation of tracking error (defined as the discriminator’s estimate of the true phase error), and explain its advantages over the popular phase jitter metric using theory, numerical simulation, and experimental results. We derive an augmented GPS phase-lock loop (PLL) linear model, which includes the effect of coherent averaging, to be used in conjunction with this proposed metric. The augmented linear model allows more accurate calculation of tracking error standard deviation in the presence of additive white Gaussian noise (AWGN) as compared to traditional linear models. The standard deviation of tracking error, with a threshold corresponding to half of the arctangent discriminator pull-in region, is shown to be a more reliable/robust measure of PLL performance under interference conditions than the phase jitter metric. In addition, the augmented linear model is shown to be valid up until this threshold, which facilitates efficient performance prediction, so that time-consuming direct simulations and costly experimental testing can be reserved for PLL designs that are much more likely to be successful. The effect of varying receiver reference oscillator quality on the tracking error metric is also considered. PMID:29351250

  1. Filter for third order phase locked loops

    NASA Technical Reports Server (NTRS)

    Crow, R. B.; Tausworthe, R. C. (Inventor)

    1973-01-01

    Filters for third-order phase-locked loops are used in receivers to acquire and track carrier signals, particularly signals subject to high doppler-rate changes in frequency. A loop filter with an open-loop transfer function and set of loop constants, setting the damping factor equal to unity are provided.

  2. Performance Analysis of Digital Tracking Loops for Telemetry Ranging Applications

    NASA Astrophysics Data System (ADS)

    Vilnrotter, V.; Hamkins, J.; Xie, H.; Ashrafi, S.

    2015-08-01

    In this article, we analyze mathematical models of digital loops used to track the phase and timing of communications and navigation signals. The limits on the accuracy of phase and timing estimates play a critical role in the accuracy achievable in telemetry ranging applications. We describe in detail a practical algorithm to compute the loop parameters for discrete update (DU) and continuous update (CU) loop formulations, and we show that a simple power-series approximation to the DU model is valid over a large range of time-bandwidth product . Several numerical examples compare the estimation error variance of the DU and CU models to each other and to Cramer-Rao lower bounds. Finally, the results are applied to the problem of ranging, by evaluating the performance of a phase-locked loop designed to track a typical ambiguity-resolving pseudonoise (PN) code received and demodulated at the spacecraft on the uplink part of the two-way ranging link, and a data transition tracking loop (DTTL) on the downlink part.

  3. Shuttle GPS R/PA evaluation analysis and performance tradeoff study

    NASA Technical Reports Server (NTRS)

    Booth, R. W. D.; Lindsey, W. C.

    1978-01-01

    Primary responsibility was understanding and analyzing the various GPS receiver functions as they relate to the shuttle environment. These receiver functions included acquisition properties of the sequential detector, acquisition and tracking properties of the various receiver phase locked loops, and the techniques of sequential receiver operation. In addition to these areas, support was provided in the areas of oscillator stability requirements, antenna management, and navigation filter requirements, including preposition aiding.

  4. Two AFC Loops For Low CNR And High Dynamics

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.; Aguirre, Sergio

    1992-01-01

    Two alternative digital automatic-frequency-control (AFC) loops proposed to acquire (or reacquire) and track frequency of received carrier radio signal. Intended for use where carrier-to-noise ratios (CNR's) low and carrier frequency characterized by high Doppler shift and Doppler rate because of high relative speed and acceleration, respectively, between transmitter and receiver. Either AFC loops used in place of phase-locked loop. New loop concepts integrate ideas from classical spectrum-estimation, digital-phase-locked-loop, and Kalman-Filter theories.

  5. A Markov chain technique for determining the acquisition behavior of a digital tracking loop

    NASA Technical Reports Server (NTRS)

    Chadwick, H. D.

    1972-01-01

    An iterative procedure is presented for determining the acquisition behavior of discrete or digital implementations of a tracking loop. The technique is based on the theory of Markov chains and provides the cumulative probability of acquisition in the loop as a function of time in the presence of noise and a given set of initial condition probabilities. A digital second-order tracking loop to be used in the Viking command receiver for continuous tracking of the command subcarrier phase was analyzed using this technique, and the results agree closely with experimental data.

  6. Performance of a Ka-band transponder breadboard for deep-space applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Lane, J. P.; Kayalar, S.; Kermode, A. W.

    1995-01-01

    This article summarizes the design concepts applied in the development of and advanced Ka-band (34.4 GHz/32 GHz) transponder breadboard for the next generation of space communications systems applications. The selected architecture upgrades the X-band (7.2 GHz/8.4 GHz) deep-space transponder (DST) to provide Da-band up/Ka- and X-band down capability. The Ka-band transponder breadboard incorporates several state-of-the-art components, including sampling mixers, a Ka-band dielectric resonator oscillator, and microwave monolithic integrated circuits (MMICs). The MMICs that were tested in the breadboard include upconverters, downconverters, automatic gain control circuits, mixers, phase modulators, and amplifiers. The measured receiver dynamic range, tracking range, acquisition rate, static phase error, and phase jitter characteristics of the Ka-band breadboard interfaced to the advanced engineering model X-band DST are in good agreement with the expected performance. The results show a receiver tracking threshold of -149 dBm with a dynamic range of 80 dB and a downlink phase jitter of 7 deg rms. The analytical results of phase noise and Allan standard deviation are in good agreement with the experimental results.

  7. Synchronized Radar-Target Simulator

    NASA Technical Reports Server (NTRS)

    Chin, B. C.

    1985-01-01

    Apparatus for testing radar system generates signals that simulate amplitude and phase characteristics of target returns and their variation with antenna-pointing direction. Antenna movement causes equipment to alter test signal in imitation of behavior of real signal received during tracking.

  8. New approaches for tracking earth orbiters using modified GPS ground receivers

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.; Young, L. E.; Nandi, S.; Haines, B. J.; Dunn, C. E.; Edwards, C. D.

    1993-01-01

    A Global Positioning System (GPS) flight receiver provides a means to precisely determine orbits for satellites in low to moderate altitude orbits. Above a 5000-km altitude, however, relatively few GPS satellites are visible. New approaches to orbit determination for satellites at higher altitudes could reduce DSN antenna time needed to provide navigation and orbit determination support to future missions. Modification of GPS ground receivers enables a beacon from the orbiter to be tracked simultaneously with GPS data. The orbit accuracy expected from this GPS-like tracking (GLT) technique is expected to be in the range of a few meters or better for altitudes up to 100,000 km with a global ground network. For geosynchronous satellites, however, there are unique challenges due to geometrical limitations and to the lack of strong dynamical signature in tracking data. We examine two approaches for tracking the Tracking and Data Relay Satellite System (TDRSS) geostationary orbiters. One uses GLT with a global network; the other relies on a small 'connected element' ground network with a distributed clock for short-baseline differential carrier phase (SB Delta Phi). We describe an experiment planned for late 1993, which will combine aspects of both GLT and SB Delta Phi, to demonstrate a new approach for tracking the Tracking and Data Relay Satellites (TDRSs) that offers a number of operationally convenient and attractive features. The TDRS demonstration will be in effect a proof-of-concept experiment for a new approach to tracking spacecraft which could be applied more generally to deep-space as well as near-Earth regimes.

  9. Performance of the all-digital data-transition tracking loop in the advanced receiver

    NASA Astrophysics Data System (ADS)

    Cheng, U.; Hinedi, S.

    1989-11-01

    The performance of the all-digital data-transition tracking loop (DTTL) with coherent or noncoherent sampling is described. The effects of few samples per symbol and of noncommensurate sampling rates and symbol rates are addressed and analyzed. Their impacts on the loop phase-error variance and the mean time to lose lock (MTLL) are quantified through computer simulations. The analysis and preliminary simulations indicate that with three to four samples per symbol, the DTTL can track with negligible jitter because of the presence of earth Doppler rate. Furthermore, the MTLL is also expected to be large engough to maintain lock over a Deep Space Network track.

  10. Carrier phase altimetry using Zeppelin based GNSS-R observations and water gauge reference data

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Schön, Steffen; Beckheinrich, Jamila; Beyerle, Georg; Ge, Maorong; Wickert, Jens

    2014-05-01

    The increasing number of transmitters in global navigation satellite systems (GNSS), like GPS, Galileo, Glonass or Compass, provide observations with an increasing coverage for positioning but also for remote sensing. A space based GNSS remote sensing application is radio occultation, a limb sounding method. Globally distributed vertical profiles of temperature, water vapour and electron density are provided operationally for weather forecast and ionospheric monitoring. Another application is GNSS reflectometry (GNSS-R) that is currently developed especially for ocean remote sensing. The high reflection coefficient of water is crucial for GNSS-R. This study presents a method that uses GNSS phase observations for lake altimetry with the potential for ocean application. Phase observations are deduced from a GORS (GNSS Occultaction Reflectometry Scatterometry) receiver in Master-Slave-Configuration. The Master sampling dedicated for direct signal acquisition is connected to an up-looking antenna with right hand circular polarization (RHCP). Two Slave samplings dedicated for acquisition of the reflected signals are connected to down-looking antennas with right- and left-hand circular polarization (RHCP and LHCP). Based on in-phase and quad-phase (I, Q) sample components, an altimetric phase residual is retrieved. This residual can be related to the height of the reflecting surface. An altimetric challenge arises from the unknown ambiguity of phase residuals that introduces a height bias. The presented study uses ancillary data deduced from water gauges to mitigate the ambiguity bias. Reference tracks are formed by linear surface height interpolation between the water gauge stations. At crossover points of reflection tracks with reference tracks a phase ambiguity estimate is determined for bias mitigation. For this study airborne GNSS measurements were conducted aboard a Zeppelin NT (New Technology) airship with a geodetic receiver for navigation and a GORS receiver for reflectometry. The corresponding Zeppelin campaign was conducted in Sep 2012. It comprised three days with in total 13 flight hours over lake Constance (9.0°-9.8°E; 47.5°-47.8°N). Compared to a similar Zeppelin campaign in Oct 2010, Slave tracking problems could be solved providing reflection events with continuous tracks of up to 30min. The airship's trajectory is determined from navigation data with a precision better than 10cm in Precise Point Positioning mode supported by additional GNSS ground station data. Water gauge reference data around the lake is provided by stations at Friedrichshafen, Konstanz, Lindau and Romanshorn. Situated in vicinity of the Upper Rhine Plain the lake surface is affected by gravity anomalies in this region. As a consequence geoid undulations with up to 1m amplitude occur along the lake. Predictions of surface height undulation (including GCG-05 model) agree with phase altimetric retrievals. An example event shows a standard deviation of only 2cm (4cm) for RHCP (LHCP) data. The corresponding mean difference with 53cm (51cm) for RHCP (LHCP), respectively, is related to the residual ambiguity bias persisting after mitigation with reference data.

  11. Ground-Truthing a Next Generation Snow Radar

    NASA Astrophysics Data System (ADS)

    Yan, S.; Brozena, J. M.; Gogineni, P. S.; Abelev, A.; Gardner, J. M.; Ball, D.; Liang, R.; Newman, T.

    2016-12-01

    During the early spring of 2016 the Naval Research Laboratory (NRL) performed a test of a next generation airborne snow radar over ground truth data collected on several areas of fast ice near Barrow, AK. The radar was developed by the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas, and includes several improvements compared to their previous snow radar. The new unit combines the earlier Ku-band and snow radars into a single unit with an operating frequency spanning the entire 2-18 GHz, an enormous bandwidth which provides the possibility of snow depth measurements with 1.5 cm range resolution. Additionally, the radar transmits on dual polarizations (H and V), and receives the signal through two orthogonally polarized Vivaldi arrays, each with 128 phase centers. The 8 sets of along-track phase centers are combined in hardware to improve SNR and narrow the beamwidth in the along-track, resulting in 8 cross-track effective phase centers which are separately digitized to allow for beam sharpening and forming in post-processing. Tilting the receive arrays 30 degrees from the horizontal also allows the formation of SAR images and the potential for estimating snow-water equivalent (SWE). Ground truth data (snow depth, density, salinity and SWE) were collected over several 60 m wide swaths that were subsequently overflown with the snow radar mounted on a Twin Otter. The radar could be operated in nadir (by beam steering the receive antennas to point beneath the aircraft) or side-looking modes. Results from the comparisons will be shown.

  12. Fast-Acquisition/Weak-Signal-Tracking GPS Receiver for HEO

    NASA Technical Reports Server (NTRS)

    Wintemitz, Luke; Boegner, Greg; Sirotzky, Steve

    2004-01-01

    A report discusses the technical background and design of the Navigator Global Positioning System (GPS) receiver -- . a radiation-hardened receiver intended for use aboard spacecraft. Navigator is capable of weak signal acquisition and tracking as well as much faster acquisition of strong or weak signals with no a priori knowledge or external aiding. Weak-signal acquisition and tracking enables GPS use in high Earth orbits (HEO), and fast acquisition allows for the receiver to remain without power until needed in any orbit. Signal acquisition and signal tracking are, respectively, the processes of finding and demodulating a signal. Acquisition is the more computationally difficult process. Previous GPS receivers employ the method of sequentially searching the two-dimensional signal parameter space (code phase and Doppler). Navigator exploits properties of the Fourier transform in a massively parallel search for the GPS signal. This method results in far faster acquisition times [in the lab, 12 GPS satellites have been acquired with no a priori knowledge in a Low-Earth-Orbit (LEO) scenario in less than one second]. Modeling has shown that Navigator will be capable of acquiring signals down to 25 dB-Hz, appropriate for HEO missions. Navigator is built using the radiation-hardened ColdFire microprocessor and housing the most computationally intense functions in dedicated field-programmable gate arrays. The high performance of the algorithm and of the receiver as a whole are made possible by optimizing computational efficiency and carefully weighing tradeoffs among the sampling rate, data format, and data-path bit width.

  13. Surveillance versus Reconnaissance: An Entropy Based Model

    DTIC Science & Technology

    2012-03-22

    sensor detection since no new information is received. (Berry, Pontecorvo, & Fogg , Optimal Search, Location and Tracking of Surface Maritime Targets by...by Berry, Pontecorvo and Fogg (Berry, Pontecorvo, & Fogg , July, 2003) facilitates the optimal solutions to dynamically determining the allocation and...region (Berry, Pontecorvo, & Fogg , July, 2003). Phase II: Locate During the locate phase, the objective was to determine the location of the targets

  14. Interactive tools for inpatient medication tracking: a multi-phase study with cardiothoracic surgery patients

    PubMed Central

    Woollen, Janet; Prey, Jennifer; Restaino, Susan; Bakken, Suzanne; Feiner, Steven; Sackeim, Alexander; Vawdrey, David K

    2016-01-01

    Objective Prior studies of computing applications that support patients’ medication knowledge and self-management offer valuable insights into effective application design, but do not address inpatient settings. This study is the first to explore the design and usefulness of patient-facing tools supporting inpatient medication management and tracking. Materials and Methods We designed myNYP Inpatient, a custom personal health record application, through an iterative, user-centered approach. Medication-tracking tools in myNYP Inpatient include interactive views of home and hospital medication data and features for commenting on these data. In a two-phase pilot study, patients used the tools during cardiothoracic postoperative care at Columbia University Medical Center. In Phase One, we provided 20 patients with the application for 24–48 h and conducted a closing interview after this period. In Phase Two, we conducted semi-structured interviews with 12 patients and 5 clinical pharmacists who evaluated refinements to the tools based on the feedback received during Phase One. Results Patients reported that the medication-tracking tools were useful. During Phase One, 14 of the 20 participants used the tools actively, to review medication lists and log comments and questions about their medications. Patients’ interview responses and audit logs revealed that they made frequent use of the hospital medications feature and found electronic reporting of questions and comments useful. We also uncovered important considerations for subsequent design of such tools. In Phase Two, the patients and pharmacists participating in the study confirmed the usability and usefulness of the refined tools. Conclusions Inpatient medication-tracking tools, when designed to meet patients’ needs, can play an important role in fostering patient participation in their own care and patient-provider communication during a hospital stay. PMID:26744489

  15. Lunar Radio_phase Ranging in Chinese Lunar Lander Mission for Astrometry

    NASA Astrophysics Data System (ADS)

    Ping, Jinsong; Meng, Qiao; Li, Wenxiao; Wang, Mingyuan; Wang, Zhen; Zhang, Tianyi; Han, Songtao

    2015-08-01

    The radio tracking data in lunar and planetary missions can be directly applied for scientific investigation. The variations of phase and of amplitude of the radio carrier wave signal linked between the spacecraft and the ground tracking antenna are used to deduce the planetary atmospheric and ionospheric structure, planetary gravity field, mass, ring, ephemeris, and even to test the general relativity. In the Chinese lunar missions, we developed the lunar and planetary radio science receiver to measure the distance variation between the tracking station-lander by means of open loop radio phase tracking. Using this method in Chang’E-3 landing mission, a lunar radio_phase ranging (LRR) technique was realized at Chinese deep space tracking stations and astronomical VLBI stations with H-maser clocks installed. Radio transponder and transmitter had been installed on the Chang’E-3/4. Transponder will receive the uplink S/X band radio wave transmitted from the two newly constructed Chinese deep space stations, where the high quality hydrogen maser atomic clocks have been used as local time and frequency standard. The clocks between VLBI stations and deep space stations can be synchronized to UTC standard within 20 nanoseconds using satellite common view methods. In the near future there will be a plan to improve this accuracy to 5 nanoseconds or better, as the level of other deep space network around world. In the preliminary LRR experiments of Chang'E-3, the obtained 1sps phase ranging observables have a resolution of 0.2 millimeter or better, with a fitting RMS about 2~3 millimeter, after the atmospheric and ionospheric errors removed. This method can be a new astrometric technique to measure the Earth tide and rotation, lunar orbit, tides and liberation, by means of solo observation or of working together with Lunar Laser Ranging. After differencing the ranging, we even obtained 1sps doppler series of 2-way observables with resolution of 0.07mm/second, which can be used to check the uplimit for low frequency (0.001~1 Hz) gravitational wave detection between the Earth and the Moon.

  16. Multi-static MIMO along track interferometry (ATI)

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Deming, Ross; Gunther, Jake

    2016-05-01

    Along-track interferometry (ATI) has the ability to generate high-quality synthetic aperture radar (SAR) images and concurrently detect and estimate the positions of ground moving target indicators (GMTI) with moderate processing requirements. This paper focuses on several different ATI system configurations, with an emphasis on low-cost configurations employing no active electronic scanned array (AESA). The objective system has two transmit phase centers and four receive phase centers and supports agile adaptive radar behavior. The advantages of multistatic, multiple input multiple output (MIMO) ATI system configurations are explored. The two transmit phase centers can employ a ping-pong configuration to provide the multistatic behavior. For example, they can toggle between an up and down linear frequency modulated (LFM) waveform every other pulse. The four receive apertures are considered in simple linear spatial configurations. Simulated examples are examined to understand the trade space and verify the expected results. Finally, actual results are collected with the Space Dynamics Laboratorys (SDL) FlexSAR system in diverse configurations. The theory, as well as the simulated and actual SAR results, are presented and discussed.

  17. The Ionospheric Scintillation Effects on the BeiDou Signal Receiver

    PubMed Central

    He, Zhijun; Zhao, Hongbo; Feng, Wenquan

    2016-01-01

    Irregularities in the Earth’s ionosphere can make the amplitude and phase of radio signals fluctuate rapidly, which is known as ionospheric scintillation. Severe ionospheric scintillation could affect the performance of the Global Navigation Satellite System (GNSS). Currently, the Multiple Phase Screen (MPS) technique is widely used in solving problems caused by weak and strong scintillations. Considering that Southern China is mainly located in the area where moderate and intense scintillation occur frequently, this paper built a model based on the MPS technique and discussed the scintillation impacts on China’s BeiDou navigation system. By using the BeiDou B1I signal, this paper analyzed the scintillation effects on the receiver, which includes the acquisition and tracking process. For acquisition process, this paper focused on the correlation peak and acquisition probability. For the tracking process, this paper focused on the carrier tracking loop and the code tracking loop. Simulation results show that under high scintillation intensity, the phase fluctuation could be −1.13 ± 0.087 rad to 1.40 ± 0.087 rad and the relative amplitude fluctuation could be −10 dB to 8 dB. As the scintillation intensity increased, the average correlation peak would decrease more than 8%, which could thus degrade acquisition performance. On the other hand, when the signal-to-noise ratio (SNR) is comparatively lower, the influence of strong scintillation on the phase locked loop (PLL) is much higher than that of weak scintillation. As the scintillation becomes more intense, PLL variance could consequently results in an error of more than 2.02 cm in carrier-phase based ranging. In addition, the delay locked loop (DLL) simulation results indicated that the pseudo-range error caused by strong scintillation could be more than 4 m and the consequent impact on positioning accuracy could be more than 6 m. PMID:27834867

  18. Route planning with transportation network maps: an eye-tracking study.

    PubMed

    Grison, Elise; Gyselinck, Valérie; Burkhardt, Jean-Marie; Wiener, Jan Malte

    2017-09-01

    Planning routes using transportation network maps is a common task that has received little attention in the literature. Here, we present a novel eye-tracking paradigm to investigate psychological processes and mechanisms involved in such a route planning. In the experiment, participants were first presented with an origin and destination pair before we presented them with fictitious public transportation maps. Their task was to find the connecting route that required the minimum number of transfers. Based on participants' gaze behaviour, each trial was split into two phases: (1) the search for origin and destination phase, i.e., the initial phase of the trial until participants gazed at both origin and destination at least once and (2) the route planning and selection phase. Comparisons of other eye-tracking measures between these phases and the time to complete them, which depended on the complexity of the planning task, suggest that these two phases are indeed distinct and supported by different cognitive processes. For example, participants spent more time attending the centre of the map during the initial search phase, before directing their attention to connecting stations, where transitions between lines were possible. Our results provide novel insights into the psychological processes involved in route planning from maps. The findings are discussed in relation to the current theories of route planning.

  19. Synchronisation, acquisition and tracking for telemetry and data reception

    NASA Astrophysics Data System (ADS)

    Vandoninck, A.

    1992-06-01

    The important parameters of synchronization, acquisition, and tracking are addressed, and each function is highlighted separately. The following sequence is such as the functions occur in the system in time and for the type of data to be received, with distinction between telemetry and data reception, between direct carrier modulation or the use of a subcarrier, and between deep space and normal reception. For the telemetry reception the acquisition is described taking into account the difference in performances as geostationary or polar orbits, and the dependencies on the different Doppler offsets and rates are distinguished. The related functions and parameters are covered and the specifications of an average receiver are summarized. The synchronization of the valid data is described with a distinction for data directly modulated or via a subcarrier, the type of modulation and bitrate. The relevant functions and parameters of the average receiver/demodulator are summarized. The tracking of the signal in the course of the operational phase is described and relevant parameters of an actual system are presented. The reception of real data is handled and a sequence of acquisition, synchronization, and tracking is applied. Here higher bitrates and direct modulation schemes play an important role. The market equipment with the relevant parameters are discussed. The three functions in cases where deep reception is needed are covered. The high performance receiver/demodulator functions and how the acquisition, synchronization, and tracking is handled in such application, are explained.

  20. Ultrasonic ranging for the oculometer

    NASA Technical Reports Server (NTRS)

    Guy, W. J.

    1981-01-01

    Ultrasonic tracking techniques are investigated for an oculometer. Two methods are reported in detail. The first is based on measurements of time from the start of a transmit burst to a received echo. Knowing the sound velocity, distance can be calculated. In the second method, a continuous signal is transmitted. Target movement causes phase shifting of the echo. By accumulating these phase shifts, tracking from a set point can be achieved. Both systems have problems with contoured targets, but work well on flat plates and the back of a human head. Also briefly reported is an evaluation of an ultrasonic ranging system. Interface circuits make this system compatible with the echo time design. While the system is consistently accurate, it has a beam too narrow for oculometer use. Finally, comments are provided on a tracking system using the Doppler frequency shift to give range data.

  1. An all-digital receiver for satellite audio broadcasting signals using trellis coded quasi-orthogonal code-division multiplexing

    NASA Astrophysics Data System (ADS)

    Braun, Walter; Eglin, Peter; Abello, Ricard

    1993-02-01

    Spread Spectrum Code Division Multiplex is an attractive scheme for the transmission of multiple signals over a satellite transponder. By using orthogonal or quasi-orthogonal spreading codes the interference between the users can be virtually eliminated. However, the acquisition and tracking of the spreading code phase can not take advantage of the code orthogonality since sequential acquisition and Delay-Locked loop tracking depend on correlation with code phases other than the optimal despreading phase. Hence, synchronization is a critical issue in such a system. A demonstration hardware for the verification of the orthogonal CDM synchronization and data transmission concept is being designed and implemented. The system concept, the synchronization scheme, and the implementation are described. The performance of the system is discussed based on computer simulations.

  2. Novel multireceiver communication systems configurations based on optimal estimation theory

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1992-01-01

    A novel multireceiver configuration for carrier arraying and/or signal arraying is presented. The proposed configuration is obtained by formulating the carrier and/or signal arraying problem as an optimal estimation problem, and it consists of two stages. The first stage optimally estimates various phase processes received at different receivers with coupled phase-locked loops wherein the individual loops acquire and track their respective receivers' phase processes but are aided by each other in an optimal manner via LF error signals. The proposed configuration results in the minimization of the the effective radio loss at the combiner output, and thus maximization of energy per bit to noise power spectral density ratio is achieved. A novel adaptive algorithm for the estimator of the signal model parameters when these are not known a priori is also presented.

  3. The Radar Roadmap

    DTIC Science & Technology

    2013-01-01

    local oscillator to measure the phase of both the transmitted and received pulses and then matching them to the correct range ambiguity. 2.5 High...track closely spaced objects. White Sands Missile Range (WSMR) and Patrick Air Force Base (AFB) operate the phased -array AN/MPS-39 MOTRs. The...ABERDEEN TEST CENTER DUGWAY PROVING GROUND REAGAN TEST SITE YUMA PROVING GROUND WHITE SANDS MISSILE RANGE NAVAL AIR WARFARE CENTER AIRCRAFT

  4. Loran digital phase-locked loop and RF front-end system error analysis

    NASA Technical Reports Server (NTRS)

    Mccall, D. L.

    1979-01-01

    An analysis of the system performance of the digital phase locked loops (DPLL) and RF front end that are implemented in the MINI-L4 Loran receiver is presented. Three of the four experiments deal with the performance of the digital phase locked loops. The other experiment deals with the RF front end and DPLL system error which arise in the front end due to poor signal to noise ratios. The ability of the DPLLs to track the offsets is studied.

  5. Open-loop radio science with a suppressed-carrier signal

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1980-01-01

    When a suppressed-carrier signal is squared, the carrier reappears in doubled form. An open-loop receiver can be used to deliver a recording of a band-limited waveform containing this carrier, whose amplitude and phase can be tracked by the radio science experimenter.

  6. Functional description of signal processing in the Rogue GPS receiver

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1988-01-01

    Over the past year, two Rogue GPS prototype receivers have been assembled and successfully subjected to a variety of laboratory and field tests. A functional description is presented of signal processing in the Rogue receiver, tracing the signal from RF input to the output values of group delay, phase, and data bits. The receiver can track up to eight satellites, without time multiplexing among satellites or channels, simultaneously measuring both group delay and phase for each of three channels (L1-C/A, L1-P, L2-P). The Rogue signal processing described requires generation of the code for all three channels. Receiver functional design, which emphasized accuracy, reliability, flexibility, and dynamic capability, is summarized. A detailed functional description of signal processing is presented, including C/A-channel and P-channel processing, carrier-aided averaging of group delays, checks for cycle slips, acquistion, and distinctive features.

  7. Miniaturized Ka-Band Dual-Channel Radar

    NASA Technical Reports Server (NTRS)

    Hoffman, James P.; Moussessian, Alina; Jenabi, Masud; Custodero, Brian

    2011-01-01

    Smaller (volume, mass, power) electronics for a Ka-band (36 GHz) radar interferometer were required. To reduce size and achieve better control over RFphase versus temperature, fully hybrid electronics were developed for the RF portion of the radar s two-channel receiver and single-channel transmitter. In this context, fully hybrid means that every active RF device was an open die, and all passives were directly attached to the subcarrier. Attachments were made using wire and ribbon bonding. In this way, every component, even small passives, was selected for the fabrication of the two radar receivers, and the devices were mounted relative to each other in order to make complementary components isothermal and to isolate other components from potential temperature gradients. This is critical for developing receivers that can track each other s phase over temperature, which is a key mission driver for obtaining ocean surface height. Fully hybrid, Ka-band (36 GHz) radar transmitter and dual-channel receiver were developed for spaceborne radar interferometry. The fully hybrid fabrication enables control over every aspect of the component selection, placement, and connection. Since the two receiver channels must track each other to better than 100 millidegrees of RF phase over several minutes, the hardware in the two receivers must be "identical," routed the same (same line lengths), and as isothermal as possible. This level of design freedom is not possible with packaged components, which include many internal passive, unknown internal connection lengths/types, and often a single orientation of inputs and outputs.

  8. GOCE SSTI GNSS Receiver Re-Entry Phase Analysis

    NASA Astrophysics Data System (ADS)

    Zin, A.; Zago, S.; Scaciga, L.; Marradi, L.; Floberghagen, R.; Fehringer, M.; Bigazzi, A.; Piccolo, A.; Luini, L.

    2015-03-01

    Gravity field and Ocean Circulation Explorer (GOCE) was an ESA Earth Explorer mission dedicated to the measure of the Earth Gravity field. The Spacecraft has been launched in 2009 and the re-entry in atmosphere happened at the end of 2013 [1]. The mean orbit altitude was set to 260 km to maximize the ultra-sensitive accelerometers on board. GOCE was equipped with two main payloads: the Electrostatic Gravity Gradiometer (EGG), a set of six 3-axis accelerometers able to measure the gravity field with unrivalled precision and then to produce the most accurate shape of the ‘geoid’ and two GPS receivers (nominal and redundant), used as a Satellite-to-Satellite Tracking Instrument (SSTI) to geolocate the gradiometer measurements and to measure the long wavelength components of the gravity field with an accuracy never reached before. Previous analyses have shown that the Precise Orbit Determination (POD) of the GOCE satellite, derived by processing the dual-frequency SSTI data (carrier phases and pseudoranges) are at the “state-of-art” of the GPS based POD: kinematic Orbits Average of daily 3D-RMS is 2,06 cm [2]. In most cases the overall accuracy is better than 2 cm 3D RMS. Moreover, the “almost continuous” [2] 1 Hz data availability from the SSTI receiver is unique and allows for a time series of kinematic positions with only 0.5% of missing epochs [2]. In October 2013 GOCE mission was concluded and in November the GOCE spacecraft re-entered in the atmosphere. During the re-entry phase the two SSTI receivers have been switched on simultaneously in order to maximize the data availability. In summer 2013, the SSTI firmware was tailored in order to sustain additional dynamic error (tracking loops robustness), expected during the re-entry phase. The SW was uploaded on SSTI-B (and purposely not on SSTI-A). Therefore this was an unique opportunity to compare a “standard” receiver behaviour (SSTI-A) with an improved one (SSTI-B) in the challenging reentry phase. This paper focuses on the analysis of the data from summer 2013 up to the re-entry phase in November 2013.

  9. An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments.

    PubMed

    Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui

    2016-01-23

    As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs' tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N₀), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods.

  10. Experimental Evaluation of an Invasive Medical Instrument Based on a Displacement Measurement System.

    PubMed

    Fotiadis, Dimitris A; Astaras, Alexandros; Bamidis, Panagiotis D; Papathanasiou, Kostas; Kalfas, Anestis

    2015-09-01

    This paper presents a novel method for tracking the position of a medical instrument's tip. The system is based on phase locking a high frequency signal transmitted from the medical instrument's tip to a reference signal. Displacement measurement is established having the loop open, in order to get a low frequency voltage representing the medical instrument's movement; therefore, positioning is established by means of conventional measuring techniques. The voltage-controlled oscillator stage of the phase-locked loop (PLL), combined to an appropriate antenna, comprises the associated transmitter located inside the medical instrument tip. All the other low frequency PLL components, low noise amplifier and mixer, are located outside the human body, forming the receiver part of the system. The operating details of the proposed system were coded in Verilog-AMS. Simulation results indicate robust medical instrument tracking in 1-D. Experimental evaluation of the proposed position tracking system is also presented. The experiments described in this paper are based on a transmitter moving opposite a stationary receiver performing either constant velocity or uniformly accelerated movement, and also together with two stationary receivers performing constant velocity movement again. This latter setup is implemented in order to demonstrate the prototype's accuracy for planar (2-D) motion measurements. Error analysis and time-domain analysis are presented for system performance characterization. Furthermore, preliminary experimental assessment using a saline solution container to more closely approximate the human body as a radio frequency wave transmission medium has proved the system's capability of operating underneath the skin.

  11. SweepSAR: Beam-forming on Receive Using a Reflector-Phased Array Feed Combination for Spaceborne SAR

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Krieger, G.; Rosen, P.; Younis, M.; Johnson, W. T. K.; Huber, S.; Jordan, R.; Moreira, A.

    2012-01-01

    In this paper, an alternative approach is described that is suited for longer wavelength SARs in particular, employing a large, deployable reflector antenna and a much simpler phased array feed. To illuminate a wide swath, a substantial fraction of the phased array feed is excited on transmit to sub-illuminate the reflector. Shorter transmit pulses are required than for conventional SAR. On receive, a much smaller portion of the phased array feed is used to collect the return echo, so that a greater portion of the reflector antenna area is used. The locus of the portion of the phased array used on receive is adjusted using an analog beam steering network, to 'sweep' the receive beam(s) across the illuminated swath, tracking the return echo. This is similar in some respects to the whiskbroom approach to optical sensors, hence the name: SweepSAR.SweepSAR has advantages over conventional SAR in that it requires less transmit power, and if the receive beam is narrow enough, it is relatively immune to range ambiguities. Compared to direct radiating arrays with digital beam- forming, it is much simpler to implement, uses currently available technologies, is better suited for longer wavelength systems, and does not require extremely high data rates or onboard processing.

  12. mActive: A Randomized Clinical Trial of an Automated mHealth Intervention for Physical Activity Promotion.

    PubMed

    Martin, Seth S; Feldman, David I; Blumenthal, Roger S; Jones, Steven R; Post, Wendy S; McKibben, Rebeccah A; Michos, Erin D; Ndumele, Chiadi E; Ratchford, Elizabeth V; Coresh, Josef; Blaha, Michael J

    2015-11-09

    We hypothesized that a fully automated mobile health (mHealth) intervention with tracking and texting components would increase physical activity. mActive enrolled smartphone users aged 18 to 69 years at an ambulatory cardiology center in Baltimore, Maryland. We used sequential randomization to evaluate the intervention's 2 core components. After establishing baseline activity during a blinded run-in (week 1), in phase I (weeks 2 to 3), we randomized 2:1 to unblinded versus blinded tracking. Unblinding allowed continuous access to activity data through a smartphone interface. In phase II (weeks 4 to 5), we randomized unblinded participants 1:1 to smart texts versus no texts. Smart texts provided smartphone-delivered coaching 3 times/day aimed at individual encouragement and fostering feedback loops by a fully automated, physician-written, theory-based algorithm using real-time activity data and 16 personal factors with a 10 000 steps/day goal. Forty-eight outpatients (46% women, 21% nonwhite) enrolled with a mean±SD age of 58±8 years, body mass index of 31±6 kg/m(2), and baseline activity of 9670±4350 steps/day. Daily activity data capture was 97.4%. The phase I change in activity was nonsignificantly higher in unblinded participants versus blinded controls by 1024 daily steps (95% confidence interval [CI], -580 to 2628; P=0.21). In phase II, participants receiving texts increased their daily steps over those not receiving texts by 2534 (95% CI, 1318 to 3750; P<0.001) and over blinded controls by 3376 (95% CI, 1951 to 4801; P<0.001). An automated tracking-texting intervention increased physical activity with, but not without, the texting component. These results support new mHealth tracking technologies as facilitators in need of behavior change drivers. URL: http://ClinicalTrials.gov/. Unique identifier: NCT01917812. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  13. Design of an Airborne L-Band Cross-Track Scanning Scatterometer

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M. (Technical Monitor)

    2002-01-01

    In this report, we describe the design of an airborne L-band cross-track scanning scatterometer suitable for airborne operation aboard the NASA P-3 aircraft. The scatterometer is being designed for joint operation with existing L-band radiometers developed by NASA for soil moisture and ocean salinity remote sensing. In addition, design tradeoffs for a space-based radar system have been considered, with particular attention given to antenna architectures suitable for sharing the antenna between the radar and radiometer. During this study, we investigated a number of imaging techniques, including the use of real and synthetic aperture processing in both the along track and cross-track dimensions. The architecture selected will permit a variety of beamforming algorithms to be implemented, although real aperture processing, with hardware beamforming, provides better sidelobe suppression than synthetic array processing and superior signal-to-noise performance. In our discussions with the staff of NASA GSFC, we arrived at an architecture that employs complete transmit/receive modules for each subarray. Amplitude and phase control at each of the transmit modules will allow a low-sidelobe transmit pattern to be generated over scan angles of +/- 50 degrees. Each receiver module will include all electronics necessary to downconvert the received signal to an IF offset of 30 MHz where it will be digitized for further processing.

  14. Interactive tools for inpatient medication tracking: a multi-phase study with cardiothoracic surgery patients.

    PubMed

    Wilcox, Lauren; Woollen, Janet; Prey, Jennifer; Restaino, Susan; Bakken, Suzanne; Feiner, Steven; Sackeim, Alexander; Vawdrey, David K

    2016-01-01

    Prior studies of computing applications that support patients' medication knowledge and self-management offer valuable insights into effective application design, but do not address inpatient settings. This study is the first to explore the design and usefulness of patient-facing tools supporting inpatient medication management and tracking. We designed myNYP Inpatient, a custom personal health record application, through an iterative, user-centered approach. Medication-tracking tools in myNYP Inpatient include interactive views of home and hospital medication data and features for commenting on these data. In a two-phase pilot study, patients used the tools during cardiothoracic postoperative care at Columbia University Medical Center. In Phase One, we provided 20 patients with the application for 24-48 h and conducted a closing interview after this period. In Phase Two, we conducted semi-structured interviews with 12 patients and 5 clinical pharmacists who evaluated refinements to the tools based on the feedback received during Phase One. Patients reported that the medication-tracking tools were useful. During Phase One, 14 of the 20 participants used the tools actively, to review medication lists and log comments and questions about their medications. Patients' interview responses and audit logs revealed that they made frequent use of the hospital medications feature and found electronic reporting of questions and comments useful. We also uncovered important considerations for subsequent design of such tools. In Phase Two, the patients and pharmacists participating in the study confirmed the usability and usefulness of the refined tools. Inpatient medication-tracking tools, when designed to meet patients' needs, can play an important role in fostering patient participation in their own care and patient-provider communication during a hospital stay. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Comparison of direct and heterodyne detection optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1987-01-01

    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.

  16. L-Band Ionosphere Scintillations Observed by A GNSS Receiver Array at HAARP

    NASA Astrophysics Data System (ADS)

    Morton, Y.; Pelgrum, W.; van Graas, F.

    2011-12-01

    As we enter a new solar maximum period, GNSS receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to gain better understandings of scintillation effects on GNSS signals. During the past decade, many GPS receivers have been deployed around the globe to monitor ionosphere scintillations. Most of these GPS receivers are commercial receivers whose tracking mechanisms are not designed to operate under ionosphere scintillation. When strong scintillations occur, these receivers will either generate erroneous outputs or completely lose lock. Even when the scintillation is mild, the tracking loop outputs are not true representation of the signal parameters due the tracking loop transfer function. High quality, unprocessed GNSS receiver front end raw IF samples collected during ionosphere scintillations are necessary to produce realistic scintillation signal parameter estimations. In this presentation, we will update our effort in establishing a unique GNSS receiver array at HAARP, Alaska to collect GPS and GLONASS satellite signals at various stages of the GNSS receiver processing. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array as well as additional on-site diagnostic instrumentation measurements obtained from two active heating experiment campaigns conducted in 2011 will be presented. Additionally, we will also highlight and contrast the artificial heating experiment results with observations of natural scintillation events captured by our receivers using an automatic event trigger mechanism during the past year. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  17. An intelligent classifier for prognosis of cardiac resynchronization therapy based on speckle-tracking echocardiograms.

    PubMed

    Chao, Pei-Kuang; Wang, Chun-Li; Chan, Hsiao-Lung

    2012-03-01

    Predicting response after cardiac resynchronization therapy (CRT) has been a challenge of cardiologists. About 30% of selected patients based on the standard selection criteria for CRT do not show response after receiving the treatment. This study is aimed to build an intelligent classifier to assist in identifying potential CRT responders by speckle-tracking radial strain based on echocardiograms. The echocardiograms analyzed were acquired before CRT from 26 patients who have received CRT. Sequential forward selection was performed on the parameters obtained by peak-strain timing and phase space reconstruction on speckle-tracking radial strain to find an optimal set of features for creating intelligent classifiers. Support vector machine (SVM) with a linear, quadratic, and polynominal kernel were tested to build classifiers to identify potential responders and non-responders for CRT by selected features. Based on random sub-sampling validation, the best classification performance is correct rate about 95% with 96-97% sensitivity and 93-94% specificity achieved by applying SVM with a quadratic kernel on a set of 3 parameters. The selected 3 parameters contain both indexes extracted by peak-strain timing and phase space reconstruction. An intelligent classifier with an averaged correct rate, sensitivity and specificity above 90% for assisting in identifying CRT responders is built by speckle-tracking radial strain. The classifier can be applied to provide objective suggestion for patient selection of CRT. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Signal analysis and radioholographic methods for airborne radio occultations

    NASA Astrophysics Data System (ADS)

    Wang, Kuo-Nung

    Global Positioning System (GPS) radio occultation (RO) is an atmospheric sounding technique utilizing the change in propagation direction and delay of the GPS signal to measure refractivity, which provides information on temperature and humidity. The GPS-RO technique is now operational on several Low Earth Orbiting (LEO) satellite missions. Nevertheless, when observing localized transient events, such as tropical storms, current LEO satellite systems cannot provide sufficiently high temporal and spatial resolution soundings. An airborne RO (ARO) system has therefore been developed for localized GPS-RO campaigns. The open-loop (OL) tracking in post-processing is used to cross-correlates the received Global Navigation Satellite System (GNSS) signal with an internally generated local carrier signal predicted from a Doppler model and extract the atmospheric refractivity information. OL tracking also allows robust processing of rising GPS signals using backward tracking, which will double the observed occultation event numbers. RO signals in the lower troposphere are adversely affected by rapid phase accelerations and severe signal power fading, however. The negative bias caused by low signal-to-noise ratio (SNR) and multipath ray propagation limits the depth of tracking in the atmosphere. Therefore, we developed a model relating the SNR to the variance in the residual phase of the observed signal produced from OL tracking, and its applicability to airborne data is demonstrated. We then apply this model to set a threshold on refractivity retrieval, based upon the cumulative unwrapping error bias, to determine the altitude limit for reliable signal tracking. To enhance the SNR and decrease the unwrapping error rate, the CIRA-Q climatological model and signal residual phase pre-filtering are utilized to process the ARO residual phase. This more accurately modeled phase and less noisy received signal are shown to greatly reduce the bias caused by unwrapping error at lower altitude. On the other hand, to process the superimposed signal in the lower troposphere with its highly variable moisture distribution, Radio-Holographic (RH) methods such as Phase Matching (PM) have been adapted for ARO platforms to untangle the bending angle of each signal path. Under the assumption of spherically symmetric atmosphere, ARO PM can identify different subsignals using the Method of the Stationary Phase (MSP) and determine the arrival angle for each impact parameter. As a result, each subsignal can be distinguished and its corresponding bending angle can be retrieved without producing a negative bias. The refractivity retrieval results using ARO PM are compared to those using the traditional Geometrical Optics (GO) method. The improvements are shown and discussed in the dissertation. We applied these new methods to the received ARO data collected by the GNSS instrument system for multistatic and occultation sensing (GISMOS) in the 2010 PREDepression Investigation of Cloud systems (PREDICT) campaign. A data set of 5 research flights with 57 occultation events during the formation stage of the Hurricane Karl are processed and analyzed. In this research, the refractivity fractional difference with ERA-I model can be maintained at an average 2% above a height of 2km with a climatological model and ARO PM. Compared to the traditional geometrical optics (GO) method without climatological method assistance, the new ARO processing can effectively decrease the refractivity negative bias and significantly improve the retrieval depth of ARO.

  19. Status of the development of Brazilian Decimetric Array (BDA)

    NASA Astrophysics Data System (ADS)

    Sawant, Hanumant; Fernandes, Francisco; Chellasamy, Ebenezer; Cecatto, Jose R.; Costa, D. Joaquim; Sirothia, Sandeep Kumar; Subramanian, Koovapady

    BDA will consists of 38 antennas of 4 meters diameter, capable of operating at frequency range of (1.2-1.7, 2.8 and 5.6) GHz. The array will be spread over the distances 2 x 1 km in a T shape with longest base line in E-W direction, having spatial resolution of ~10 sec of arc at 5.6 GHz. The visibility data can be processed to provide two dimensional images at a time resolution of 100 ms (or higher). In the second phase of the BDA, almost all systems of the 26 antennas are installed. LO of 10 MHz is send from receiver room to each receiver located in the each antenna tower. This receiver operates in the frequency range of 1-6 GHz and converts received signal to 70 MHz. Fiber optical system is partially installed in tower converts 70 MHz signal to optical signal and send to receiver room with low loss and phase compensation of 100 ps, where it is converted back to 70 MHz and processed to give output of 0-5 MHz bandpass and further processed by the correlator. Tracking system, with Dual feed back facility has tracking accuracy of +/- 3 arc minutes. All safety features are installed, with on line offset adjustment. Data logging and event logging for future investigations are available. Tracking system was tested for one month with 8 hours tracking and results of these will also be presented. Field programmable Gate Array based complex correlator system capable of producing all four Stokes parameters was designed and developed for correlating base band outputs from 38 antennas. The correlator produces delay and fringe corrected, visibility correlations between any two signal channels of the same polarizations from any given pair of antennas, providing visibility data. Fringes using this system have been obtained for baseline combinations of 12 fully installed antennas. Simulations of the UV coverage and imaging were carried out for the full synthesis observations of sources at different configurations and various declinations in -70 to +23 degrees range. The current system can image the Sun with spatial resolution of 3.40 x 4.54 arc min at 1.4 GHz. Results of the each of the above systems along with the observed fringes from the FPGA based complex correlator system from non redundant 12 antennas in two dimensions will be presented. BDA phase II will be operational shortly.

  20. GNSS Signal Tracking Performance Improvement for Highly Dynamic Receivers by Gyroscopic Mounting Crystal Oscillator.

    PubMed

    Abedi, Maryam; Jin, Tian; Sun, Kewen

    2015-08-31

    In this paper, the efficiency of the gyroscopic mounting method is studied for a highly dynamic GNSS receiver's reference oscillator for reducing signal loss. Analyses are performed separately in two phases, atmospheric and upper atmospheric flights. Results show that the proposed mounting reduces signal loss, especially in parts of the trajectory where its probability is the highest. This reduction effect appears especially for crystal oscillators with a low elevation angle g-sensitivity vector. The gyroscopic mounting influences frequency deviation or jitter caused by dynamic loads on replica carrier and affects the frequency locked loop (FLL) as the dominant tracking loop in highly dynamic GNSS receivers. In terms of steady-state load, the proposed mounting mostly reduces the frequency deviation below the one-sigma threshold of FLL (1σ(FLL)). The mounting method can also reduce the frequency jitter caused by sinusoidal vibrations and reduces the probability of signal loss in parts of the trajectory where the other error sources accompany this vibration load. In the case of random vibration, which is the main disturbance source of FLL, gyroscopic mounting is even able to suppress the disturbances greater than the three-sigma threshold of FLL (3σ(FLL)). In this way, signal tracking performance can be improved by the gyroscopic mounting method for highly dynamic GNSS receivers.

  1. All-digital GPS receiver mechanization

    NASA Astrophysics Data System (ADS)

    Ould, P. C.; van Wechel, R. J.

    The paper describes the all-digital baseband correlation processing of GPS signals, which is characterized by (1) a potential for improved antijamming performance, (2) fast acquisition by a digital matched filter, (3) reduction of adjustment, (4) increased system reliability, and (5) provision of a basis for the realization of a high degree of VLSI potential for the development of small economical GPS sets. The basic technical approach consists of a broadband fix-tuned RF converter followed by a digitizer; digital-matched-filter acquisition section; phase- and delay-lock tracking via baseband digital correlation; software acquisition logic and loop filter implementation; and all-digital implementation of the feedback numerical controlled oscillators and code generator. Broadband in-phase and quadrature tracking is performed by an arctangent angle detector followed by a phase-unwrapping algorithm that eliminates false locks induced by sampling and data bit transitions, and yields a wide pull-in frequency range approaching one-fourth of the loop iteration frequency.

  2. Air Brayton Solar Receiver, phase 1

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.

    1979-01-01

    A six month analysis and conceptual design study of an open cycle Air Brayton Solar Receiver (ABSR) for use on a tracking, parabolic solar concentrator are discussed. The ABSR, which includes a buffer storage system, is designed to provide inlet air to a power conversion unit. Parametric analyses, conceptual design, interface requirements, and production cost estimates are described. The design features were optimized to yield a zero maintenance, low cost, high efficiency concept that will provide a 30 year operational life.

  3. Airborne electronically steerable phased array. [steerable antennas - systems analysis

    NASA Technical Reports Server (NTRS)

    Coats, R.

    1975-01-01

    Results of a study directed to the design of a lightweight high-gain, spaceborne communications array are presented. The array includes simultaneous transmission and receiving, automatic acquisition and tracking of a signal within a 60-degree cone from the array normal, and provides for independent forming of the transmit and receive beams. Application for this array is the space shuttle, space station, or any of the advanced manned (or unmanned) orbital vehicles. Performance specifications are also given.

  4. Improvements in deep-space tracking by use of third-order loops.

    NASA Technical Reports Server (NTRS)

    Tausworth, R. C.; Crow, R. B.

    1972-01-01

    Third-order phase-locked receivers have not yet found wide application in deep-space communications systems because the second-order systems now used have performed adequately on past spacecraft missions. However, a survey of the doppler profiles for future missions shows that an unaided second-order loop may be unable to perform within reasonable error bounds. This article discusses the characteristics of a simple third-order extension to present second-order systems that not only extends doppler-tracking capability, but widens the pull-in range and decreases pull-in time as well.

  5. Digital signal processor and processing method for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1989-01-01

    A digital signal processor and processing method therefor for use in receivers of the NAVSTAR/GLOBAL POSITIONING SYSTEM (GPS) employs a digital carrier down-converter, digital code correlator and digital tracking processor. The digital carrier down-converter and code correlator consists of an all-digital, minimum bit implementation that utilizes digital chip and phase advancers, providing exceptional control and accuracy in feedback phase and in feedback delay. Roundoff and commensurability errors can be reduced to extremely small values (e.g., less than 100 nanochips and 100 nanocycles roundoff errors and 0.1 millichip and 1 millicycle commensurability errors). The digital tracking processor bases the fast feedback for phase and for group delay in the C/A, P.sub.1, and P.sub.2 channels on the L.sub.1 C/A carrier phase thereby maintaining lock at lower signal-to-noise ratios, reducing errors in feedback delays, reducing the frequency of cycle slips and in some cases obviating the need for quadrature processing in the P channels. Simple and reliable methods are employed for data bit synchronization, data bit removal and cycle counting. Improved precision in averaged output delay values is provided by carrier-aided data-compression techniques. The signal processor employs purely digital operations in the sense that exactly the same carrier phase and group delay measurements are obtained, to the last decimal place, every time the same sampled data (i.e., exactly the same bits) are processed.

  6. Challenges and Solutions for GNSS Receivers onboard LEO Satellites Traveling through the Ionosphere during Space Weather Events

    NASA Astrophysics Data System (ADS)

    Morton, Y.; Xu, D.; Yang, R.; Jiao, Y.; Rino, C.; Carrano, C. S.

    2017-12-01

    This presentation discusses challenges imposed on GNSS receiver carrier-tracking loop for receivers onboard LEO satellites traveling through ionosphere during space weather events and techniques that mitigate the effects. Recent studies show that the ESA's swarm satellites experienced a total loss of GPS signals in areas known for frequent occurrence of ionosphere plasma irregularities. The same phenomena have been observed in other satellite missions. More robust GNSS receiver technologies are needed to improve the navigation capabilities for future LEO satellite missions. A major challenge to characterize GNSS signals traversing ionospheric plasma structures to reach a LEO satellite is the lack of data. To overcome this challenge, we utilized a physics-based GNSS scintillation signal simulator to generate simulated data for analysis and algorithm development. The simulator relies on real scintillation data collected by ground-based receivers as the initializer to generate a realization of ionosphere irregularity structure statistical distribution. A user specifies desired satellite orbit, signal modulation scheme, receiver platform dynamics, and receiver front-end hardware design. These inputs are used to establish the signal propagation geometry to allow interception of the disturbed signal by a realistic GNSS receiver. The simulator results showed that plasma structures lead to strong disturbances on GNSS signals reaching a LEO platform. The disturbances are characterized by simultaneous deep amplitude fades and extremely rapid carrier phase fluctuations. The carrier phase rate is orders of magnitude higher than the ones experienced by receivers on the ground. Such high carrier dynamics far exceeds the range that can be tolerated by the bandwidth of a typical GNSS receiver. The deep amplitude fades further exacerbate the problem. Based on the simulator outputs, we established models of the disturbed signal parameters. These models are used in an adaptive carrier-tracking algorithm that demonstrated improved performances when applied to various simulated scenarios of plasma structures and receiver trajectories. The presentation will discuss the simulator, disturbed signal characterization, and the adaptive algorithm architecture and performances.

  7. Anti-ship missile tracking with a chirped amplitude modulation ladar

    NASA Astrophysics Data System (ADS)

    Redman, Brian C.; Stann, Barry L.; Ruff, William C.; Giza, Mark M.; Aliberti, Keith; Lawler, William B.

    2004-09-01

    Shipboard infrared search and track (IRST) systems can detect sea-skimming anti-ship missiles at long ranges. Since IRST systems cannot measure range and velocity, they have difficulty distinguishing missiles from slowly moving false targets and clutter. ARL is developing a ladar based on its patented chirped amplitude modulation (AM) technique to provide unambiguous range and velocity measurements of targets handed over to it by the IRST. Using the ladar's range and velocity data, false alarms and clutter objects will be distinguished from valid targets. If the target is valid, it's angular location, range, and velocity, will be used to update the target track until remediation has been effected. By using an array receiver, ARL's ladar can also provide 3D imagery of potential threats in support of force protection. The ladar development program will be accomplished in two phases. In Phase I, currently in progress, ARL is designing and building a breadboard ladar test system for proof-of-principle static platform field tests. In Phase II, ARL will build a brassboard ladar test system that will meet operational goals in shipboard testing against realistic targets. The principles of operation for the chirped AM ladar for range and velocity measurements, the ladar performance model, and the top-level design for the Phase I breadboard are presented in this paper.

  8. The relationship of storm severity to directionally resolved radio emissions

    NASA Technical Reports Server (NTRS)

    Johnson, R. O.; Bushman, M. L.; Sherrill, W. M.

    1980-01-01

    Directionally resolved atmospheric radio frequency emission data were acquired from thunderstorms occurring in the central and southwestern United States. In addition, RF sferic tracking data were obtained from hurricanes and tropical depressions occurring in the Gulf of Mexico. The data were acquired using a crossed baseline phase interferometer operating at a frequency of 2.001 MHz. The received atmospherics were tested for phase linearity across the array, and azimuth/elevation angles of arrival were computed in real time. A histogram analysis of sferic burst count versus azimuth provided lines of bearing to centers of intense electrical activity. Analysis indicates a consistent capability of the phase linear direction finder to detect severe meteorological activity to distances of 2000 km from the receiving site. The technique evidences the ability to discriminate severe storms from nonsevere storms coexistent in large regional scale thunderstorm activity.

  9. MULTIPLE INPUT BINARY ADDER EMPLOYING MAGNETIC DRUM DIGITAL COMPUTING APPARATUS

    DOEpatents

    Cooke-Yarborough, E.H.

    1960-12-01

    A digital computing apparatus is described for adding a plurality of multi-digit binary numbers. The apparatus comprises a rotating magnetic drum, a recording head, first and second reading heads disposed adjacent to the first and second recording tracks, and a series of timing signals recorded on the first track. A series of N groups of digit-representing signals is delivered to the recording head at time intervals corresponding to the timing signals, each group consisting of digits of the same significance in the numbers, and the signal series is recorded on the second track of the drum in synchronism with the timing signals on the first track. The multistage registers are stepped cyclically through all positions, and each of the multistage registers is coupled to the control lead of a separate gate circuit to open the corresponding gate at only one selected position in each cycle. One of the gates has its input coupled to the bistable element to receive the sum digit, and the output lead of this gate is coupled to the recording device. The inputs of the other gates receive the digits to be added from the second reading head, and the outputs of these gates are coupled to the adding register. A phase-setting pulse source is connected to each of the multistage registers individually to step the multistage registers to different initial positions in the cycle, and the phase-setting pulse source is actuated each N time interval to shift a sum digit to the bistable element, where the multistage register coupled to bistable element is operated by the phase- setting pulse source to that position in its cycle N steps before opening the first gate, so that this gate opens in synchronism with each of the shifts to pass the sum digits to the recording head.

  10. Estimating Effects of Multipath Propagation on GPS Signals

    NASA Technical Reports Server (NTRS)

    Byun, Sung; Hajj, George; Young, Lawrence

    2005-01-01

    Multipath Simulator Taking into Account Reflection and Diffraction (MUSTARD) is a computer program that simulates effects of multipath propagation on received Global Positioning System (GPS) signals. MUSTARD is a very efficient means of estimating multipath-induced position and phase errors as functions of time, given the positions and orientations of GPS satellites, the GPS receiver, and any structures near the receiver as functions of time. MUSTARD traces each signal from a GPS satellite to the receiver, accounting for all possible paths the signal can take, including all paths that include reflection and/or diffraction from surfaces of structures near the receiver and on the satellite. Reflection and diffraction are modeled by use of the geometrical theory of diffraction. The multipath signals are added to the direct signal after accounting for the gain of the receiving antenna. Then, in a simulation of a delay-lock tracking loop in the receiver, the multipath-induced range and phase errors as measured by the receiver are estimated. All of these computations are performed for both right circular polarization and left circular polarization of both the L1 (1.57542-GHz) and L2 (1.2276-GHz) GPS signals.

  11. Low data rate digital space communications

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1973-01-01

    The low available transmitter power and the large frequency uncertainty constrain the data rate to be low. An all-digital communication receiver is proposed, and its feasibility is established. Although coherent systems should be used whenever practical, the noncoherent MFSK system is more suitable for very low data rates. The effect of Rician fading on the performance of MFSK receiver is studied. Fading characteristics of the Venus channel are examined based on the exponential model and available experimental data on the Venus atmosphere. Because of the requirement of high communication efficiency, three codes are evaluated and compared. The rapidly varying phase error at low data rate has great effects on the tracking loop behaviors which are examined by extensive computer study of the phase plane trajectories.

  12. DPLL implementation in carrier acquisition and tracking for burst DS-CDMA receivers.

    PubMed

    Guan, Yun-feng; Zhang, Zhao-yang; Lai, Li-feng

    2003-01-01

    This paper presents the architectures, algorithms, and implementation considerations of the digital phase locked loop (DPLL) used for burst-mode packet DS-CDMA receivers. As we know, carrier offset is a rather challenging problem in CDMA system. According to different applications, different DPLL forms should be adopted to correct different maximum carrier offset in CDMA systems. One classical DPLL and two novel DPLL forms are discussed in the paper. The acquisition range of carrier offset can be widened by using the two novel DPLL forms without any performance degradation such as longer acquisition time or larger variance of the phase error. The maximum acquisition range is 1/(4T), where T is the symbol period. The design can be implemented by FPGA directly.

  13. Millimetre Level Accuracy GNSS Positioning with the Blind Adaptive Beamforming Method in Interference Environments.

    PubMed

    Daneshmand, Saeed; Marathe, Thyagaraja; Lachapelle, Gérard

    2016-10-31

    The use of antenna arrays in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its superior capability to suppress both narrowband and wideband interference. However, the phase distortions resulting from array processing may limit the applicability of these methods for high precision applications using carrier phase based positioning techniques. This paper studies the phase distortions occurring with the adaptive blind beamforming method in which satellite angle of arrival (AoA) information is not employed in the optimization problem. To cater to non-stationary interference scenarios, the array weights of the adaptive beamformer are continuously updated. The effects of these continuous updates on the tracking parameters of a GNSS receiver are analyzed. The second part of this paper focuses on reducing the phase distortions during the blind beamforming process in order to allow the receiver to perform carrier phase based positioning by applying a constraint on the structure of the array configuration and by compensating the array uncertainties. Limitations of the previous methods are studied and a new method is proposed that keeps the simplicity of the blind beamformer structure and, at the same time, reduces tracking degradations while achieving millimetre level positioning accuracy in interference environments. To verify the applicability of the proposed method and analyze the degradations, array signals corresponding to the GPS L1 band are generated using a combination of hardware and software simulators. Furthermore, the amount of degradation and performance of the proposed method under different conditions are evaluated based on Monte Carlo simulations.

  14. A novel multireceiver communications system configuration based on optimal estimation theory

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1990-01-01

    A multireceiver configuration for the purpose of carrier arraying and/or signal arraying is presented. Such a problem arises for example, in the NASA Deep Space Network where the same data-modulated signal from a spacecraft is received by a number of geographically separated antennas and the data detection must be efficiently performed on the basis of the various received signals. The proposed configuration is arrived at by formulating the carrier and/or signal arraying problem as an optimal estimation problem. Two specific solutions are proposed. The first solution is to simultaneously and optimally estimate the various phase processes received at different receivers with coupled phase locked loops (PLLs) wherein the individual PLLs acquire and track their respective receivers' phase processes, but are aided by each other in an optimal manner. However, when the phase processes are relatively weakly correlated, and for the case of relatively high values of symbol energy-to-noise spectral density ratio, a novel configuration for combining the data modulated, loop-output signals is proposed. The scheme can be extended to the case of low symbol energy-to-noise case by performing the combining/detection process over a multisymbol period. Such a configuration results in the minimization of the effective radio loss at the combiner output, and thus a maximization of energy per bit to noise-power spectral density ration is achieved.

  15. Beam width and transmitter power adaptive to tracking system performance for free-space optical communication.

    PubMed

    Arnon, S; Rotman, S; Kopeika, N S

    1997-08-20

    The basic free-space optical communication system includes at least two satellites. To communicate between them, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is to increase the satellite receiver beacon power. However, this solution requires increased power consumption and weight, both of which are disadvantageous in satellite development. Considering these facts, we derive a mathematical model of a communication system that adapts optimally the transmitter beam width and the transmitted power to the tracking system performance. Based on this model, we investigate the performance of a communication system with discrete element optical phased array transmitter telescope gain. An example for a practical communication system between a Low Earth Orbit Satellite and a Geostationary Earth Orbit Satellite is presented. From the results of this research it can be seen that a four-element adaptive transmitter telescope is sufficient to compensate for vibration amplitude doubling. The benefits of the proposed model are less required transmitter power and improved communication system performance.

  16. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  17. System using leo satellites for centimeter-level navigation

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor); Parkinson, Bradford W. (Inventor); Cohen, Clark E. (Inventor); Lawrence, David G. (Inventor)

    2002-01-01

    Disclosed herein is a system for rapidly resolving position with centimeter-level accuracy for a mobile or stationary receiver [4]. This is achieved by estimating a set of parameters that are related to the integer cycle ambiguities which arise in tracking the carrier phase of satellite downlinks [5,6]. In the preferred embodiment, the technique involves a navigation receiver [4] simultaneously tracking transmissions [6] from Low Earth Orbit Satellites (LEOS) [2] together with transmissions [5] from GPS navigation satellites [1]. The rapid change in the line-of-sight vectors from the receiver [4] to the LEO signal sources [2], due to the orbital motion of the LEOS, enables the resolution with integrity of the integer cycle ambiguities of the GPS signals [5] as well as parameters related to the integer cycle ambiguity on the LEOS signals [6]. These parameters, once identified, enable real-time centimeter-level positioning of the receiver [4]. In order to achieve high-precision position estimates without the use of specialized electronics such as atomic clocks, the technique accounts for instabilities in the crystal oscillators driving the satellite transmitters, as well as those in the reference [3] and user [4] receivers. In addition, the algorithm accommodates as well as to LEOS that receive signals from ground-based transmitters, then re-transmit frequency-converted signals to the ground.

  18. Fundamental and practical limits of planar tracking solar concentrators.

    PubMed

    Grede, Alex J; Price, Jared S; Giebink, Noel C

    2016-12-26

    Planar microtracking provides an alternate paradigm for solar concentration that offers the possibility of realizing high-efficiency embedded concentrating photovoltaic systems in the form factor of standard photovoltaic panels. Here, we investigate the thermodynamic limit of planar tracking optical concentrators and establish that they can, in principal, achieve the sine limit of their orientationally-tracked counterparts provided that the receiver translates a minimum distance set by the field of view half-angle. We develop a phase space methodology to optimize practical planar tracking concentrators and apply it to the design of a two surface, catadioptric system that operates with > 90% optical efficiency over a 140° field of view at geometric gains exceeding 1000×. These results provide a reference point for subsequent developments in the field and indicate that planar microtracking can achieve the high optical concentration ratio required in commercial concentrating photovoltaic systems.

  19. An Improved Model Predictive Current Controller of Switched Reluctance Machines Using Time-Multiplexed Current Sensor

    PubMed Central

    Li, Bingchu; Ling, Xiao; Huang, Yixiang; Gong, Liang; Liu, Chengliang

    2017-01-01

    This paper presents a fixed-switching-frequency model predictive current controller using multiplexed current sensor for switched reluctance machine (SRM) drives. The converter was modified to distinguish currents from simultaneously excited phases during the sampling period. The only current sensor installed in the converter was time division multiplexing for phase current sampling. During the commutation stage, the control steps of adjacent phases were shifted so that sampling time was staggered. The maximum and minimum duty ratio of pulse width modulation (PWM) was limited to keep enough sampling time for analog-to-digital (A/D) conversion. Current sensor multiplexing was realized without complex adjustment of either driver circuit nor control algorithms, while it helps to reduce the cost and errors introduced in current sampling due to inconsistency between sensors. The proposed controller is validated by both simulation and experimental results with a 1.5 kW three-phase 12/8 SRM. Satisfied current sampling is received with little difference compared with independent phase current sensors for each phase. The proposed controller tracks the reference current profile as accurately as the model predictive current controller with independent phase current sensors, while having minor tracking errors compared with a hysteresis current controller. PMID:28513554

  20. Non-dynamic decimeter tracking of earth satellites using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, S. C.

    1986-01-01

    A technique is described for employing the Global Positioning System (GPS) to determine the position of a low earth orbiter with decimeter accuracy without the need for user dynamic models. A differential observing strategy is used requiring a GPS receiver on the user vehicle and a network of six ground receivers. The technique uses the continuous record of position change obtained from GPS carrier phase to smooth position measurements made with pseudo-range. The result is a computationally efficient technique that can deliver decimeter accuracy down to the lowest altitude orbits.

  1. Design evaluation: S-band exciters

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A design evaluation study was conducted to produce S-band exciter (SBE) system to provide a highly stable phase or modulated carrier for transmission to spacecraft. The exciter is part of an S-band receiver/exciter/ranging system at Spaceflight Tracking and Data Network (STDN) ground stations. The major features of the system are defined. Circuit diagrams of the electronic components are provided.

  2. GPS-Based Navigation and Orbit Determination for the AMSAT Phase 3D Satellite

    NASA Technical Reports Server (NTRS)

    Davis, George; Carpenter, Russell; Moreau, Michael; Bauer, Frank H.; Long, Anne; Kelbel, David; Martin, Thomas

    2002-01-01

    This paper summarizes the results of processing GPS data from the AMSAT Phase 3D (AP3) satellite for real-time navigation and post-processed orbit determination experiments. AP3 was launched into a geostationary transfer orbit (GTO) on November 16, 2000 from Kourou, French Guiana, and then was maneuvered into its HEO over the next several months. It carries two Trimble TANS Vector GPS receivers for signal reception at apogee and at perigee. Its spin stabilization mode currently makes it favorable to track GPS satellites from the backside of the constellation while at perigee, and to track GPS satellites from below while at perigee. To date, the experiment has demonstrated that it is feasible to use GPS for navigation and orbit determination in HEO, which will be of great benefit to planned and proposed missions that will utilize such orbits for science observations. It has also shown that there are many important operational considerations to take into account. For example, GPS signals can be tracked above the constellation at altitudes as high as 58000 km, but sufficient amplification of those weak signals is needed. Moreover, GPS receivers can track up to 4 GPS satellites at perigee while moving as fast as 9.8 km/sec, but unless the receiver can maintain lock on the signals long enough, point solutions will be difficult to generate. The spin stabilization of AP3, for example, appears to cause signal levels to fluctuate as other antennas on the satellite block the signals. As a result, its TANS Vectors have been unable to lock on to the GPS signals long enough to down load the broadcast ephemeris and then generate position and velocity solutions. AP3 is currently in its eclipse season, and thus most of the spacecraft subsystems have been powered off. In Spring 2002, they will again be powered up and AP3 will be placed into a three-axis stabilization mode. This will significantly enhance the likelihood that point solutions can be generated, and perhaps more important, that the receiver clock can be synchronized to GPS time. This is extremely important for real-time and post-processed orbit determination, where removal of receiver clock bias from the data time tags is needed, for time-tagging of science observations. Current analysis suggests that the inability to generate point solutions has allowed the TANS Vector clock bias to drift freely, being perhaps as large as 5-7 seconds by October, 2001, thus causing up to 50 km of along-track orbit error. The data collected in May, 2002 while in three-axis stabilized mode should provide a significant improvement in the orbit determination results.

  3. Carrier-to-noise power estimation for the Block 5 Receiver

    NASA Technical Reports Server (NTRS)

    Monk, A. M.

    1991-01-01

    Two possible algorithms for the carrier to noise power (P sub c/N sub 0) estimation in the Block V Receiver are analyzed and their performances compared. The expected value and the variance of each estimator algorithm are derived. The two algorithms examined are known as the I arm estimator, which relies on samples from only the in-phase arm of the digital phase lock loop, and the IQ arm estimator, which uses both in-phase and quadrature-phase arm signals. The IQ arm algorithm is currently implemented in the Advanced Receiver II (ARX II). Both estimators are biased. The performance degradation due to phase jitter in the carrier tracking loop is taken into account. Curves of the expected value and the signal to noise ratio of the P sub c/N sub 0 estimators vs. actual P sub c/N sub 0 are shown. From this, it is clear that the I arm estimator performs better than the IQ arm estimator when the data to noise power ratio (P sub d/N sub 0) is high, i.e., at high P sub c/N sub 0 values and a significant modulation index. When P sub d/N sub 0 is low, the two estimators have essentially the same performance.

  4. Solar Pilot Plant, Phase I. Preliminary design report. Volume II, Book 2. Central receiver optical model users manual. CDRL item 2. [HELIAKI code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-05-01

    HELIAKI is a FORTRAN computer program which simulates the optical/thermal performance of a central receiver solar thermal power plant for the dynamic conversion of solar-generated heat to electricity. The solar power plant which this program simulates consists of a field of individual sun tracking mirror units, or heliostats, redirecting sunlight into a cavity, called the receiver, mounted atop a tower. The program calculates the power retained by that cavity receiver at any point in time or the energy into the receiver over a year's time using a Monte Carlo ray trace technique to solve the multiple integral equations. An artist'smore » concept of this plant is shown.« less

  5. An analysis of carrier phase jitter in an MPSK receiver utilizing map estimation. Ph.D. Thesis Semiannual Status Report, Jul. 1993 - Jan. 1994

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1994-01-01

    The use of 8 and 16 PSK TCM to support satellite communications in an effort to achieve more bandwidth efficiency in a power-limited channel has been proposed. This project addresses the problem of carrier phase jitter in an M-PSK receiver utilizing the high SNR approximation to the maximum aposteriori estimation of carrier phase. In particular, numerical solutions to the 8 and 16 PSK self-noise and phase detector gain in the carrier tracking loop are presented. The effect of changing SNR on the loop noise bandwidth is also discussed. These data are then used to compute variance of phase error as a function of SNR. Simulation and hardware data are used to verify these calculations. The results show that there is a threshold in the variance of phase error versus SNR curves that is a strong function of SNR and a weak function of loop bandwidth. The M-PSK variance thresholds occur at SNR's in the range of practical interest for the use of 8 and 16-PSK TCM. This suggests that phase error variance is an important consideration in the design of these systems.

  6. Scintillation Effects on Space Shuttle GPS Data

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Kramer, Leonard

    2001-01-01

    Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.

  7. Design of 2*6 optical hybrid in inter-satellite coherent laser communications

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Liu, Liren; Liu, De'an; Wan, Lingyu; Zhou, Yu

    2008-08-01

    Compared with direct detection, homodyne binary phase shift keying receivers can achieve the best sensitivity theoretically, and became the trend of the research and application in inter-satellite coherent laser communications. In coherent optical communication systems an optical hybrid is an essential component of the receiver. It demodulates the incoming signal by mixing it with the local oscillator. We present a design of a 2*6 optical hybrid. 4 output ports of the hybrid give the narrow mixed beams of the incoming signal and the local oscillator shifted by 90°for communication, and the others give the wide mixed beams with a shifted degree of 180°for position errors detection. CCD captures the interference pattern from the wide beams, and then the pattern is processed and analyzed by the computer. Target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signals of PAT (pointing, acquisition and tracking) subsystem drive the receiver telescope to keep tracking to the target. The application extends to coherent laser rang finder.

  8. Center for Space Telemetering and Telecommunications Systems, New Mexico State University

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; DeLeon, Phillip; Borah, Deva; Lyman, Ray

    2002-01-01

    This viewgraph presentation gives an overview of the Center for Space Telemetering and Telecommunications Systems activities at New Mexico State University. Presentations cover the following topics: (1) small satellite communications, including nanosatellite radio and virtual satellite development; (2) modulation and detection studies, including details on smooth phase interpolated keying (SPIK) spectra and highlights of an adaptive turbo multiuser detector; (3) decoupled approaches to nonlinear ISI compensation; (4) space internet testing; (4) optical communication; (5) Linux-based receiver for lightweight optical communications without a laser in space, including software design, performance analysis, and the receiver algorithm; (6) carrier tracking hardware; and (7) subband transforms for adaptive direct sequence spread spectrum receivers.

  9. Higher-order differential phase shift keyed modulation

    NASA Astrophysics Data System (ADS)

    Vanalphen, Deborah K.; Lindsey, William C.

    1994-02-01

    Advanced modulation/demodulation techniques which are robust in the presence of phase and frequency uncertainties continue to be of interest to communication engineers. We are particularly interested in techniques which accommodate slow channel phase and frequency variations with minimal performance degradation and which alleviate the need for phase and frequency tracking loops in the receiver. We investigate the performance sensitivity to frequency offsets of a modulation technique known as binary Double Differential Phase Shift Keying (DDPSK) and compare it to that of classical binary Differential Phase Shift Keying (DPSK). We also generalize our analytical results to include n(sup -th) order, M-ary DPSK. The DDPSK (n = 2) technique was first introduced in the Russian literature circa 1972 and was studied more thoroughly in the late 1970's by Pent and Okunev. Here, we present an expression for the symbol error probability that is easy to derive and to evaluate numerically. We also present graphical results that establish when, as a function of signal energy-to-noise ratio and normalized frequency offset, binary DDPSK is preferable to binary DPSK with respect to performance in additive white Gaussian noise. Finally, we provide insight into the optimum receiver from a detection theory viewpoint.

  10. GNSS Signal Tracking Performance Improvement for Highly Dynamic Receivers by Gyroscopic Mounting Crystal Oscillator

    PubMed Central

    Abedi, Maryam; Jin, Tian; Sun, Kewen

    2015-01-01

    In this paper, the efficiency of the gyroscopic mounting method is studied for a highly dynamic GNSS receiver’s reference oscillator for reducing signal loss. Analyses are performed separately in two phases, atmospheric and upper atmospheric flights. Results show that the proposed mounting reduces signal loss, especially in parts of the trajectory where its probability is the highest. This reduction effect appears especially for crystal oscillators with a low elevation angle g-sensitivity vector. The gyroscopic mounting influences frequency deviation or jitter caused by dynamic loads on replica carrier and affects the frequency locked loop (FLL) as the dominant tracking loop in highly dynamic GNSS receivers. In terms of steady-state load, the proposed mounting mostly reduces the frequency deviation below the one-sigma threshold of FLL (1σFLL). The mounting method can also reduce the frequency jitter caused by sinusoidal vibrations and reduces the probability of signal loss in parts of the trajectory where the other error sources accompany this vibration load. In the case of random vibration, which is the main disturbance source of FLL, gyroscopic mounting is even able to suppress the disturbances greater than the three-sigma threshold of FLL (3σFLL). In this way, signal tracking performance can be improved by the gyroscopic mounting method for highly dynamic GNSS receivers. PMID:26404286

  11. Digital receiver study and implementation

    NASA Technical Reports Server (NTRS)

    Fogle, D. A.; Lee, G. M.; Massey, J. C.

    1972-01-01

    Computer software was developed which makes it possible to use any general purpose computer with A/D conversion capability as a PSK receiver for low data rate telemetry processing. Carrier tracking, bit synchronization, and matched filter detection are all performed digitally. To aid in the implementation of optimum computer processors, a study of general digital processing techniques was performed which emphasized various techniques for digitizing general analog systems. In particular, the phase-locked loop was extensively analyzed as a typical non-linear communication element. Bayesian estimation techniques for PSK demodulation were studied. A hardware implementation of the digital Costas loop was developed.

  12. Word timing recovery in direct detection optical PPM communication systems with avalanche photodiodes using a phase lock loop

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1990-01-01

    A technique for word timing recovery in a direct-detection optical PPM communication system is described. It tracks on back-to-back pulse pairs in the received random PPM data sequences with the use of a phase locked loop. The experimental system consisted of an 833-nm AlGaAs laser diode transmitter and a silicon avalanche photodiode photodetector, and it used Q = 4 PPM signaling at source data rate 25 Mb/s. The mathematical model developed to describe system performance is shown to be in good agreement with the experimental measurements. Use of this recovered PPM word clock with a slot clock recovery system caused no measurable penalty in receiver sensitivity. The completely self-synchronized receiver was capable of acquiring and maintaining both slot and word synchronizations for input optical signal levels as low as 20 average detected photons per information bit. The receiver achieved a bit error probability of 10 to the -6th at less than 60 average detected photons per information bit.

  13. Miniature Low-Noise G-Band I-Q Receiver

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Pukala, David M.; Gaier, Todd C.; Tanner, Alan B.; O'Dwyer, Ian J.; Lambrigtsen, Bjom H.; Soria, Mary M.; Owen, Heather R.; Lai, Richard; Mei, Xiaobing

    2010-01-01

    Weather forecasting, hurricane tracking, and atmospheric science applications depend on humidity sounding of atmosphere. Current instruments provide these measurements from groundbased, airborne, and low Earth orbit (LEO) satellites by measuring radiometric temperature on the flanks of the 183-GHz water vapor line. Miniature, low-noise receivers have been designed that will enable these measurements from a geostationary, thinned array sounder, which is based on hundreds of low-noise receivers that convert the 180-GHz signal directly to baseband in-phase and in-quadrature signals for digitization and correlation. The developed receivers provide a noise temperature of 450 K from 165 to 183 GHz (NF = 4.1 dB), and have a mass of 3 g while consuming 24 mW of power. These are the most sensitive broadband I-Q receivers at this frequency range that operate at room temperature, and are significantly lower in mass and power consumption than previously reported receivers.

  14. Shuttle S-band communications technical concepts

    NASA Technical Reports Server (NTRS)

    Seyl, J. W.; Seibert, W. W.; Porter, J. A.; Eggers, D. S.; Novosad, S. W.; Vang, H. A.; Lenett, S. D.; Lewton, W. A.; Pawlowski, J. F.

    1985-01-01

    Using the S-band communications system, shuttle orbiter can communicate directly with the Earth via the Ground Spaceflight Tracking and Data Network (GSTDN) or via the Tracking and Data Relay Satellite System (TDRSS). The S-band frequencies provide the primary links for direct Earth and TDRSS communications during all launch and entry/landing phases of shuttle missions. On orbit, S-band links are used when TDRSS Ku-band is not available, when conditions require orbiter attitudes unfavorable to Ku-band communications, or when the payload bay doors are closed. the S-band communications functional requirements, the orbiter hardware configuration, and the NASA S-band communications network are described. The requirements and implementation concepts which resulted in techniques for shuttle S-band hardware development discussed include: (1) digital voice delta modulation; (2) convolutional coding/Viterbi decoding; (3) critical modulation index for phase modulation using a Costas loop (phase-shift keying) receiver; (4) optimum digital data modulation parameters for continuous-wave frequency modulation; (5) intermodulation effects of subcarrier ranging and time-division multiplexing data channels; (6) radiofrequency coverage; and (7) despreading techniques under poor signal-to-noise conditions. Channel performance is reviewed.

  15. Optically interconnected phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  16. Experiment definition phase shuttle laboratory LDRL-10.6 experiment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This report for the Experiment Definition Phase of the Shuttle Laboratory LDRL 10.6 Micrometer Experiment covers period 27 June through 26 September 1975. Activities during the fifth quarter included: (1) reevaluation of system obscuration ratio with a subsequent reduction of this ratio from 0.417 to 0.362, (2) completion of detail drawings for the 6X pre-expander, (3) completion of detail drawings for the nine mirrors that comprise pointing and tracking optomechanical subsystem, (4) continuation of detailing of mechanical portions of CMSS and modifications to accommodate new obscuration ratio, (5) qualitative operation of the optomechanical subsystem of the 10.6 um receiver achieved under experiment measurement task; receiver fully integrated and operation demonstrated over a 10 km experimental link, and (6) data collection task initiated to begin preparation of link analysis volumes.

  17. Radio science ground data system for the Voyager-Neptune encounter, part 1

    NASA Technical Reports Server (NTRS)

    Kursinski, E. R.; Asmar, S. W.

    1991-01-01

    The Voyager radio science experiments at Neptune required the creation of a ground data system array that includes a Deep Space Network complex, the Parkes Radio Observatory, and the Usuda deep space tracking station. The performance requirements were based on experience with the previous Voyager encounters, as well as the scientific goals at Neptune. The requirements were stricter than those of the Uranus encounter because of the need to avoid the phase-stability problems experienced during that encounter and because the spacecraft flyby was faster and closer to the planet than previous encounters. The primary requirement on the instrument was to recover the phase and amplitude of the S- and X-band (2.3 and 8.4 GHz) signals under the dynamic conditions encountered during the occultations. The primary receiver type for the measurements was open loop with high phase-noise and frequency stability performance. The receiver filter bandwidth was predetermined based on the spacecraft's trajectory and frequency uncertainties.

  18. Radar for tracer particles

    NASA Astrophysics Data System (ADS)

    Ott, Felix; Herminghaus, Stephan; Huang, Kai

    2017-05-01

    We introduce a radar system capable of tracking a 5 mm spherical target continuously in three dimensions. The 10 GHz (X-band) radar system has a transmission power of 1 W and operates in the near field of the horn antennae. By comparing the phase shift of the electromagnetic wave traveling through the free space with an IQ-mixer, we obtain the relative movement of the target with respect to the antennae. From the azimuth and inclination angles of the receiving antennae obtained in the calibration, we reconstruct the target trajectory in a three-dimensional Cartesian system. Finally, we test the tracking algorithm with target moving in circular as well as in pendulum motions and discuss the capability of the radar system.

  19. Construction and testing of a Scanning Laser Radar (SLR), phase 2

    NASA Technical Reports Server (NTRS)

    Flom, T.; Coombes, H. D.

    1971-01-01

    The scanning laser radar overall system is described. Block diagrams and photographs of the hardware are included with the system description. Detailed descriptions of all the subsystems that make up the scanning laser radar system are included. Block diagrams, photographs, and detailed optical and electronic schematics are used to help describe such subsystem hardware as the laser, beam steerer, receiver optics and detector, control and processing electronics, visual data displays, and the equipment used on the target. Tests were performed on the scanning laser radar to determine its acquisition and tracking performance and to determine its range and angle accuracies while tracking a moving target. The tests and test results are described.

  20. A flight test method for pilot/aircraft analysis

    NASA Technical Reports Server (NTRS)

    Koehler, R.; Buchacker, E.

    1986-01-01

    In high precision flight maneuvres a pilot is a part of a closed loop pilot/aircraft system. The assessment of the flying qualities is highly dependent on the closed loop characteristics related to precision maneuvres like approach, landing, air-to-air tracking, air-to-ground tracking, close formation flying and air-to air refueling of the receiver. The object of a research program at DFVLR is the final flight phase of an air to ground mission. In this flight phase the pilot has to align the aircraft with the target, correct small deviations from the target direction and keep the target in his sights for a specific time period. To investigate the dynamic behavior of the pilot-aircraft system a special ground attack flight test technique with a prolonged tracking maneuvres was developed. By changing the targets during the attack the pilot is forced to react continously on aiming errors in his sights. Thus the closed loop pilot/aircraft system is excited over a wide frequency range of interest, the pilot gets more information about mission oriented aircraft dynamics and suitable flight test data for a pilot/aircraft analysis can be generated.

  1. Predictability of GNSS signal observations in support of Space Situational Awareness using passive radar

    NASA Astrophysics Data System (ADS)

    Mahmud, M. S.; Lambert, A.; Benson, C.

    2015-07-01

    GNSS signals have been proposed as emitters of opportunity to enhance Space Situational Awareness (SSA) by tracking small items of space debris using bistatic radar. Although the scattered GNSS signal levels from small items of space debris are incredibly low, the dynamic disturbances of the observed object are very small, and the phase of the scattered signals is well behaved. It is therefore plausible that coherent integration periods on the order of many minutes could be achieved. However, even with long integration periods, very large receiver arrays with extensive, but probably viable, processing are required to recover the scattered signal. Such large arrays will be expensive, and smaller more affordable arrays will collect insufficient signal power to detect the small objects (relative to wavelength) that are necessary to maintain the necessary phase coherency. The investments necessary to build a large receiver array are unlikely without substantial risk reduction. Pini and Akos have previously reported on use of very large radio telescopes to analyse the short-term modulation performance of GNSS satellite signals. In this work we report on tracking of GPS satellites with a radio-astronomy VLBI antenna system to assess the stability of the observed GPS signal over a time period indicative of that proposed for passive radar. We also confirm some of the processing techniques that may be used in both demonstrations and the final system. We conclude from the limited data set that the signal stability when observed by a high-gain tracking antenna and compared against a high quality, low phase-noise clock is excellent, as expected. We conclude by framing further works to reduce risk for a passive radar SSA capability using GNSS signals. http://www.ignss.org/Conferences/PastConferencePapers/2015ConferencePastPapers/2015PeerReviewedPapers/tabid/147/Default.aspx

  2. Characterization of a Track-and-Hold Amplifier for Application to a High Performance SAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUBBERT, DALE F.; HARDIN, TERRY LYNN; DELAPLAIN, GILBERT G.

    2002-07-01

    A Synthetic Aperture Radar (SAR) which employs direct IF sampling can significantly reduce the complexity of the analog electronics prior to the analog-to-digital converter (ADC). For relatively high frequency IF bands, a wide-bandwidth track-and-hold amplifier (THA) is required prior to the ADC. The THA functions primarily as a means of converting, through bandpass sampling, the IF signal to a baseband signal which can be sampled by the ADC. For a wide-band, high dynamic-range receiver system, such as a SAR receiver, stringent performance requirements are placed on the THA. We first measure the THA parameters such as gain, gain compression, third-ordermore » intercept (TOI), signal-to-noise ratio (SNR), spurious-free dynamic-range (SFDR), noise figure (NF), and phase noise. The results are then analyzed in terms of their respective impact on the overall performance of the SAR. The specific THA under consideration is the Rockwell Scientific RTH010.« less

  3. Microwave Landing System. Phase II. Tracker Error Study.

    DTIC Science & Technology

    1974-12-01

    the runways and environs. The geographical locations of the four phototheodolite towers are indicated on Figure 1-1. A Contraves Model C phototheodolite...temperature 400 K above 500 elevation (dark sky) Side lobe location 1.720 (Ist) Type of scan Monopulse R-f transmission line Rectangular waveguide Line loss ...receiving 1.3 db Line loss transmitting 2.3 db System Facts Azimuth coverage 3600 Elevation coverage -10* to 190* (tracking -10* to 85*) Range accuracy

  4. Time-Domain Simulation of Along-Track Interferometric SAR for Moving Ocean Surfaces.

    PubMed

    Yoshida, Takero; Rheem, Chang-Kyu

    2015-06-10

    A time-domain simulation of along-track interferometric synthetic aperture radar (AT-InSAR) has been developed to support ocean observations. The simulation is in the time domain and based on Bragg scattering to be applicable for moving ocean surfaces. The time-domain simulation is suitable for examining velocities of moving objects. The simulation obtains the time series of microwave backscattering as raw signals for movements of ocean surfaces. In terms of realizing Bragg scattering, the computational grid elements for generating the numerical ocean surface are set to be smaller than the wavelength of the Bragg resonant wave. In this paper, the simulation was conducted for a Bragg resonant wave and irregular waves with currents. As a result, the phases of the received signals from two antennas differ due to the movement of the numerical ocean surfaces. The phase differences shifted by currents were in good agreement with the theoretical values. Therefore, the adaptability of the simulation to observe velocities of ocean surfaces with AT-InSAR was confirmed.

  5. Adaptive waveform optimization design for target detection in cognitive radar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Wang, Kaizhi; Liu, Xingzhao

    2017-01-01

    The problem of adaptive waveform design for target detection in cognitive radar (CR) is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended target with unknown target impulse response (TIR). In order to estimate the TIR accurately, the Kalman filter is used in target tracking. In each Kalman filtering iteration, a flexible online waveform spectrum optimization design taking both detection and range resolution into account is modeled in Fourier domain. Unlike existing CR waveform, the proposed waveform can be simultaneously updated according to the environment information fed back by receiver and radar performance demands. Moreover, the influence of waveform spectral phase to radar performance is analyzed. Simulation results demonstrate that CR with the proposed waveform performs better than a traditional radar system with a fixed waveform and offers more flexibility and suitability. In addition, waveform spectral phase will not influence tracking, detection, and range resolution performance but will greatly influence waveform forming speed and peak-to-average power ratio.

  6. Method of resolving radio phase ambiguity in satellite orbit determination

    NASA Technical Reports Server (NTRS)

    Councelman, Charles C., III; Abbot, Richard I.

    1989-01-01

    For satellite orbit determination, the most accurate observable available today is microwave radio phase, which can be differenced between observing stations and between satellites to cancel both transmitter- and receiver-related errors. For maximum accuracy, the integer cycle ambiguities of the doubly differenced observations must be resolved. To perform this ambiguity resolution, a bootstrapping strategy is proposed. This strategy requires the tracking stations to have a wide ranging progression of spacings. By conventional 'integrated Doppler' processing of the observations from the most widely spaced stations, the orbits are determined well enough to permit resolution of the ambiguities for the most closely spaced stations. The resolution of these ambiguities reduces the uncertainty of the orbit determination enough to enable ambiguity resolution for more widely spaced stations, which further reduces the orbital uncertainty. In a test of this strategy with six tracking stations, both the formal and the true errors of determining Global Positioning System satellite orbits were reduced by a factor of 2.

  7. Time-Domain Simulation of Along-Track Interferometric SAR for Moving Ocean Surfaces

    PubMed Central

    Yoshida, Takero; Rheem, Chang-Kyu

    2015-01-01

    A time-domain simulation of along-track interferometric synthetic aperture radar (AT-InSAR) has been developed to support ocean observations. The simulation is in the time domain and based on Bragg scattering to be applicable for moving ocean surfaces. The time-domain simulation is suitable for examining velocities of moving objects. The simulation obtains the time series of microwave backscattering as raw signals for movements of ocean surfaces. In terms of realizing Bragg scattering, the computational grid elements for generating the numerical ocean surface are set to be smaller than the wavelength of the Bragg resonant wave. In this paper, the simulation was conducted for a Bragg resonant wave and irregular waves with currents. As a result, the phases of the received signals from two antennas differ due to the movement of the numerical ocean surfaces. The phase differences shifted by currents were in good agreement with the theoretical values. Therefore, the adaptability of the simulation to observe velocities of ocean surfaces with AT-InSAR was confirmed. PMID:26067197

  8. Environmental Media Phase-Tracking Units in the Classroom

    ERIC Educational Resources Information Center

    Langseth, David E.

    2009-01-01

    When teaching phase partitioning concepts for solutes in porous media, and other multi-phase environmental systems, explicitly tracking the environmental media phase with which a substance of interest (S0I) is associated can enhance the students' understanding of the fundamental concepts and derivations. It is common to explicitly track the…

  9. Discriminator aided phase lock acquisition for suppressed carrier signals

    NASA Technical Reports Server (NTRS)

    Carson, L. M.; Krasin, F. E. (Inventor)

    1982-01-01

    A discriminator aided technique for acquisition of phase lock to a suppressed carrier signal utilizes a Costas loop which is initially operated open loop and control voltage for its VCXO is derived from a phase detector that compares the VCXO to a reference frequency thus establishing coarse frequency resolution with the received signal. Then the Costas loop is closed with the low-pass filter of the channel having a bandwidth much greater (by a factor of about 10) than in the I channel so that a frequency discriminator effect results to aid carrier resolution. Finally, after carrier acquisition, the Q-channel filter of the Costas loop is switched to a bandwidth substantially equal to that of the I-channel for carrier tracking.

  10. Tracking formulas and strategies for a receiver oriented dual-axis tracking toroidal heliostat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Minghuan; Wang, Zhifeng; Liang, Wenfeng

    2010-06-15

    A 4 m x 4 m toroidal heliostat with receiver oriented dual-axis tracking, also called spinning-elevation tracking, was developed as an auxiliary heat source for a hydrogen production system. A series of spinning-elevation tracking formulas have been derived for this heliostat. This included basic tracking formulas, a formula for the elevation angle for heliostat with a mirror-pivot offset, and a more general formula for the biased elevation angle. This paper presents the new tracking formulas in detail and analyzes the accuracy of applying a simplifying approximation. The numerical results show these receiver oriented dual-axis tracking formula approximations are accurate tomore » within 2.5 x 10{sup -6} m in image plane. Some practical tracking strategies are discussed briefly. Solar images from the toroidal heliostat at selected times are also presented. (author)« less

  11. An automatic tracking system for phase-noise measurement.

    PubMed

    Yuen, Chung Ming; Tsang, Kim Fung

    2005-05-01

    A low cost, automatic tracking system for phase noise measurement has been implemented successfully. The tracking system is accomplished by applying a charge pump phase-locked loop as an external reference source to a digital spectrum analyzer. Measurement of a 2.5 GHz, free-running, voltage-controlled oscillator demonstrated the tracking accuracy, thus verifying the feasibility of the system.

  12. Orbit and clock determination of BDS regional navigation satellite system based on IGS M-GEX and WHU BETS tracking network

    NASA Astrophysics Data System (ADS)

    GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.

    2013-12-01

    BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped with Rubidium clocks and clocks performance are also presented. Finally, benefits of BDS processing strategies and further developments are concluded.

  13. Temporal and Spatial Characterization of GPS Fading From Ionospheric Irregularities Under Low latitude

    NASA Astrophysics Data System (ADS)

    De Paula, E. R.; Moraes, A. D. O.; Vani, B. C.; Sobral, J. H. A.; Abdu, M. A.; Galera Monico, J. F.

    2017-12-01

    The ionosphere over the peak of the anomaly represents a treat for navigation systems based on GNSS. Brazilian territory is mostly under this harsh layer for satellite communication in general and in particular for navigation, like GPS users, where their receivers tracking performance are damaged under scintillation conditions. Ionospheric scintillation is responsible for significant degradation in the accuracy of navigation and positioning. Phase shifts accompanied by amplitude fades significantly degrades the signal-to-noise ratio of the received signal disrupting the channel and loosing navigation performance. The stronger the scintillations are, more difficulty will be for the GNSS receiver tracking loops to recover the phase and code replicas. These phenomena under specific geophysical conditions may severely affect the system availability and positioning. In this work the temporal characteristics of amplitude scintillation will be analyzed at the three available GPS frequencies, L1, L2C and L5. Aspect like fading duration and depth will be evaluated and compared among the three available frequencies for the current solar cycle. This work will use GPS scintillation data recorded during six months of data during 2014 to 2015 at three stations under Brazilian territory located near the southern crest of the equatorial ionization anomaly. The analysis will be performed focusing on the fading profile of the three frequencies comparing how the fading of those signals behave statistically between them. Aspects like loss of lock, spatial orientation between the signal across the ionospheric irregularity will also be discussed showing how much more susceptible the new frequencies might be in comparison to the widely used and studied L1 frequency.

  14. Receiver performance of laser ranging measurements between the Lunar Observer and a subsatellite for lunar gravity studies

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1992-01-01

    The optimal receiver for a direct detection laser ranging system for slow Doppler frequency shift measurement is shown to consist of a phase tracking loop which can be implemented approximately as a phase lock loop with a 2nd or 3rd order loop filter. The laser transmitter consists of an AlGaAs laser diode at a wavelength of about 800 nm and is intensity modulated by a sinewave. The receiver performance is shown to be limited mainly by the preamplifier thermal noise when a silicon avalanche photodiode is used. A high speed microchannel plate photomultiplier tube is shown to outperform a silicon APD despite its relatively low quantum efficiency at wavelengths near 800 nm. The maximum range between the Lunar Observer and the subsatellite for lunar gravity studies is shown to be about 620 km when using a state-of-the-art silicon APD and about 1000 km when using a microchannel plate photomultiplier tube in order to achieve a relative velocity measurement accuracy of 1 millimeter per second. Other parameters such as the receiver time base jitter and drift also limit performance and have to be considered in the design of an actual system.

  15. Instrumentation for one-way satellite PTTI applications. [calibration and synchronization of clocks from navigation satellite

    NASA Technical Reports Server (NTRS)

    Osborne, A. E.

    1973-01-01

    A review of general principles and operational procedures illustrates how the typical passive user and omni receiving antenna can recover Precise Time and Time Interval (PTTI) information from a low altitude navigation satellite system for clock calibration and synchronization. Detailed discussions of concepts and theory of the receiver design are presented. The importance of RF correlation of the received and local PN encoded sequences is emphasized as a means of reducing delay uncertainties of the instrumentation to values compatible with nanosecond to submicrosecond PTTI objectives. Two receiver configurations were fabricated for use in satellite-to-laboratory experiments. In one receiver the delay-locked loop for PN signals synchronization used a dithered amplitude detection process while the second receiver used a complex sums phase detection method for measurement of delay error. The necessity for compensation of Doppler shift is discussed. Differences in theoretical signal acquisition and tracking performance of the design concepts are noted.

  16. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations

    NASA Astrophysics Data System (ADS)

    Montenbruck, Oliver; Hackel, Stefan; Jäggi, Adrian

    2017-11-01

    The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d'Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM.

  17. Energy Games - A Grade 5 Competition, The Data Analysis and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Kao, W. H.

    2016-12-01

    ISF Academy, a K-G12 school in Hong Kong with over 1500 students and currently spanning 3 buildings, is retrofitting the school with an energy tracking system in three phases. The first phase that happened during February to June 2016, has included retrofitting nine Grade 5 classrooms. In this program, the daily energy usage data from these classrooms were shown. The Grade 5 students received feedback on their energy use in real time, as they competed over four months in their homeroom classes to lower their electrical use, and subsequently their carbon footprint. This competition has successfully given the 180 Grade 5 students initiative to decrease their energy use, leading to a significant decrease in energy usage throughout this competition, compared to the baseline recorded in late 2015. The winning classroom's total energy usage was around 30% lower than the average total energy usage, showing that by using energy efficiently, energy usage in a school can be decreased by a lot. The energy tracking system installed and maintained by from Global Design Corporation utilizes uniquely identified current detectors attached to circuit breakers, to monitor electrical use of individual circuits. The detectors monitor the energy used for classroom lighting, fans and plugs, as well as the air conditioners. Further analysis can also be calculated with current data that is collected in the Phase 1 experiment, such as calculating the carbon emissions reduction throughout the school year, providing possible class learning activities and also aiding in future energy use and carbon footprint predictions. This data collected will help refine phase 2 and 3 of the installation, expanding the system to more buildings and also giving insight to the rollout of the system to the whole school when the systems are fully in place. In Phase 2, the energy tracking system would be expanded to all classrooms in the old buildings, while in Phase 3, the system would be expanded the all classrooms throughout the whole campus.

  18. Solar Stirling power generation - Systems analysis and preliminary tests

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  19. Air Brayton Solar Receiver, phase 2

    NASA Technical Reports Server (NTRS)

    Deanda, L. E.

    1981-01-01

    An air Brayton solar receiver (ABSR) is discussed. The ABSR consists of a cylindrical, insulated, offset plate fin heat exchanger which is mounted at the focal plane of a fully tracking parabolic solar collector. The receiver transfer heat from the concentrated solar radiation (which impinges on the inside walls of the heat exchanger) to the working fluid i.e., air. The hot air would then e used to drive a small Brayton cycle heat engine. The engine in turn drives a generator which produces electrical energy. Symmetrical and asymmetrical solar power input into the ABSR are analyzed. The symmetrical cases involve the baseline incident flux and the axially shifted incident fluxes. The asymmetrical cases correspond to the solar fluxes that are obtained by reduced solar input from one half of the concentrator or by receiver offset of plus or minus 1 inch from the concentrator optical axis.

  20. Laser Linewidth Requirements for Optical Bpsk and Qpsk Heterodyne Lightwave Systems.

    NASA Astrophysics Data System (ADS)

    Boukli-Hacene, Mokhtar

    In this dissertation, optical Binary Phase-Shift Keying (BPSK) and Quadrature Phase-Shift Keying (QPSK) heterodyne communication receivers are investigated. The main objective of this research work is to analyze the performance of these receivers in the presence of laser phase noise and shot noise. The heterodyne optical BPSK is based on the square law carrier recovery (SLCR) scheme for phase detection. The BPSK heterodyne receiver is analyzed assuming a second order linear phase-locked loop (PLL) subsystem and a small phase error. The noise properties are analyzed and the problem of minimizing the effect of noise is addressed. The performance of the receiver is evaluated in terms of the bit error rate (BER), which leads to the analysis of the BER versus the laser linewidth and the number of photons/bit to achieve good performance. Since we cannot track the pure carrier component in the presence of noise, a non-linear model is used to solve the problem of recovery of the carrier. The non -linear system is analyzed in the presence of a low signal -to-noise ratio (SNR). The non-Gaussian noise model represented by its probability density function (PDF) is used to analyze the performance of the receiver, especially the phase error. In addition the effect of the PLL is analyzed by studying the cycle slippage (cs). Finally, the research effort is expanded from BPSK to QPSK systems. The heterodyne optical QPSK based on the fourth power multiplier scheme (FPMS) in conjunction with linear and non-linear PLL model is investigated. Optimum loop and higher power penalty in the presence of phase noise and shot noise are analyzed. It is shown that the QPSK system yields a high speed and high sensitivity coherent means for transmission of information accompanied by a small degradation in the laser linewidth. Comparative analysis of BPSK and QPSK systems leads us to conclude that in terms of laser linewidth, bit rate, phase error and power penalty, the QPSK system is more sensitive than the BPSK system and suffers less from higher power penalty. The BPSK and QPSK heterodyne receivers used in the uncoded scheme demand a realistic laser linewidth. Since the laser linewidth is the critical measure of the performance of a receiver, a convolutional code applied to QPSK of the system is used to improve the sensitivity of the system. The effect of coding is particularly important as means of relaxing the laser linewidth requirement. The validity and usefulness of the analysis presented in the dissertation is supported by computer simulations.

  1. A multi-instrument case study of high-latitude ionospheric GNSS scintillation due to drifting plasma irregularities

    NASA Astrophysics Data System (ADS)

    van der Meeren, C.; Oksavik, K.; Moen, J. I.; Romano, V.

    2013-12-01

    For this study, GPS receiver scintillation and Total Electron Content (TEC) data from high-latitude locations on Svalbard have been combined with several other data sets, including the EISCAT Svalbard Radar (ESR) and allsky cameras, to perform a multi-instrument case study of high-latitude GPS ionospheric scintillations in relation to drifting plasma irregularities at night over Svalbard on 31 October 2011. Scintillations are rapid amplitude and phase fluctuations of electromagnetic signals. GNSS-based systems may be disturbed by ionospheric plasma irregularities and structures such as plasma patches (areas of enhanced electron density in the polar cap) and plasma gradients. When the GNSS radio signals propagate through such areas, in particular gradients, the signals experience scintillations that at best increases positioning errors and at worst may break the receiver's signal lock, potentially resulting in the GNSS receiver losing track of its position. Due to the importance of many GNSS applications, it is desirable to study the scintillation environment to understand the limitations of the GNSS systems. We find scintillation mainly localised to plasma gradients, with predominantly phase scintillation at the leading edge of patches and both phase and amplitude scintillation at the trailing edge. A single edge may also contain different scintillation types at different locations.

  2. Determination of use of a real time tone tracker to obtain same beam interferometry data

    NASA Technical Reports Server (NTRS)

    Nandi, S.; Border, J. S.; Folkner, W. M.

    1993-01-01

    The radio metric tracking technique known as Same-Beam Interferometry (SBI) has been shown to improve orbit determination accuracy for the Magellan and Pioneer 12 orbiter. Previous efforts to explore the technique were carried out by making open loop recordings of the carrier signals from the two spacecraft and extracting their phases through post processing. This paper reports on the use of a closed loop receiver to simultaneously measure the carrier signals from two spacecraft in order to produce SBI data in near real time. The Experiment Tone Tracker is a digital closed loop receiver installed in two of NASA's Deep Space Network stations which can simultaneously extract the phase of up to eight tones. The receivers were used in late September and October of 1992 to collect Doppler and SBI data from Pioneer 12 and Magellan. The demise of the Pionner 12 on October 8th during the start-up phase of our tests precluded the collection of an extensive set of SBI data, however two passes of SBI and several arcs of single spacecraft Doppler data were recorded. The SBI data were analyzed and determined to have statistical errors consistent with error models and similar to open loop data.

  3. Application of Hybrid Along-Track Interferometry/Displaced Phase Center Antenna Method for Moving Human Target Detection in Forest Environments

    DTIC Science & Technology

    2016-10-01

    ARL-TR-7846 ● OCT 2016 US Army Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center...Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center Antenna Method for Moving Human Target Detection...TYPE Technical Report 3. DATES COVERED (From - To) 2015–2016 4. TITLE AND SUBTITLE Application of Hybrid Along-Track Interferometry/ Displaced

  4. Space Photovoltaic Concentrator Using Robust Fresnel Lenses, 4-Junction Cells, Graphene Radiators, and Articulating Receivers

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Spence, Brian; Iqbal, Shawn; Sharps, Paul; McPheeters, Clay; Steinfeldt, Jeff; Piszczor, Michael; Myers, Matt

    2016-01-01

    At the 42nd PVSC, our team presented recent advances in our space photovoltaic concentrator technology. These advances include more robust Fresnel lenses for optical concentration, more thermally conductive graphene radiators for waste heat rejection, improved color-mixing lens technology to minimize chromatic aberration losses with 4-junction solar cells, and an articulating photovoltaic receiver enabling single-axis sun-tracking, while maintaining a sharp focal line despite large beta angles of incidence. In the past year, under a NASA Phase II SBIR program, our team has made much additional progress in the development of this new space photovoltaic concentrator technology, as described in this paper.

  5. Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Gardner, Chester S.

    1989-01-01

    Given the rms transmitter pointing error and the desired probability of bit error (PBE), it can be shown that an optimal transmitter antenna gain exists which minimizes the required transmitter power. Given the rms local oscillator tracking error, an optimum receiver antenna gain can be found which optimizes the receiver performance. The impact of pointing and tracking errors on the design of direct-detection pulse-position modulation (PPM) and heterodyne noncoherent frequency-shift keying (NCFSK) systems are then analyzed in terms of constraints on the antenna size and the power penalty incurred. It is shown that in the limit of large spatial tracking errors, the advantage in receiver sensitivity for the heterodyne system is quickly offset by the smaller antenna gain and the higher power penalty due to tracking errors. In contrast, for systems with small spatial tracking errors, the heterodyne system is superior because of the higher receiver sensitivity.

  6. Optical communications and a comparison of optical technologies for a high data rate return link from Mars

    NASA Technical Reports Server (NTRS)

    Spence, Rodney L.

    1993-01-01

    The important principles of direct- and heterodyne-detection optical free-space communications are reviewed. Signal-to-noise-ratio (SNR) and bit-error-rate (BER) expressions are derived for both the direct-detection and heterodyne-detection optical receivers. For the heterodyne system, performance degradation resulting from received-signal and local oscillator-beam misalignment and laser phase noise is analyzed. Determination of interfering background power from local and extended background sources is discussed. The BER performance of direct- and heterodyne-detection optical links in the presence of Rayleigh-distributed random pointing and tracking errors is described. Finally, several optical systems employing Nd:YAG, GaAs, and CO2 laser sources are evaluated and compared to assess their feasibility in providing high-data-rate (10- to 1000-Mbps) Mars-to-Earth communications. It is shown that the root mean square (rms) pointing and tracking accuracy is a critical factor in defining the system transmitting laser-power requirements and telescope size and that, for a given rms error, there is an optimum telescope aperture size that minimizes the required power. The results of the analysis conducted indicate that, barring the achievement of extremely small rms pointing and tracking errors (less than 0.2 microrad), the two most promising types of optical systems are those that use an Nd:YAG laser (lambda = 1.064 microns) and high-order pulse position modulator (PPM) and direct detection, and those that use a CO2 laser (lambda = 10.6 microns) and phase shifting keying homodyne modulation and coherent detection. For example, for a PPM order of M = 64 and an rms pointing accuracy of 0.4 microrad, an Nd:YAG system can be used to implement a 100-Mbps Mars link with a 40-cm transmitting telescope, a 20-W laser, and a 10-m receiving photon bucket. Under the same conditions, a CO2 system would require 3-m transmitting and receiving telescopes and a 32-W laser to implement such a link. Other types of optical systems, such as a semiconductor laser systems, are impractical in the presence of large rms pointing errors because of the high power requirements of the 100-Mbps Mars link, even when optimal-size telescopes are used.

  7. The Differential Vector Phase-Locked Loop for Global Navigation Satellite System Signal Tracking

    DTIC Science & Technology

    2014-06-01

    DAF Approved: //signed// John F. Raquet, PhD (Chairman) //signed// Mark E. Oxley, PhD (Member) //signed// Maj Marshall E. Haker , PhD (Member) 16 May...busy as you keep yourself. Dr. Mark Oxley and Dr. Marshall Haker for your sage guidance as members of my committee. Dr. Ken Fisher for making Kalman...Raquet, Dr. Marshall Haker , and Mr. Ben Downing at AFIT, following notes for Dr. Raquet’s Advanced GPS Receiver Design class. The second type was RINEX

  8. Integrated Budget Office Toolbox

    NASA Technical Reports Server (NTRS)

    Rushing, Douglas A.; Blakeley, Chris; Chapman, Gerry; Robertson, Bill; Horton, Allison; Besser, Thomas; McCarthy, Debbie

    2010-01-01

    The Integrated Budget Office Toolbox (IBOT) combines budgeting, resource allocation, organizational funding, and reporting features in an automated, integrated tool that provides data from a single source for Johnson Space Center (JSC) personnel. Using a common interface, concurrent users can utilize the data without compromising its integrity. IBOT tracks planning changes and updates throughout the year using both phasing and POP-related (program-operating-plan-related) budget information for the current year, and up to six years out. Separating lump-sum funds received from HQ (Headquarters) into separate labor, travel, procurement, Center G&A (general & administrative), and servicepool categories, IBOT creates a script that significantly reduces manual input time. IBOT also manages the movement of travel and procurement funds down to the organizational level and, using its integrated funds management feature, helps better track funding at lower levels. Third-party software is used to create integrated reports in IBOT that can be generated for plans, actuals, funds received, and other combinations of data that are currently maintained in the centralized format. Based on Microsoft SQL, IBOT incorporates generic budget processes, is transportable, and is economical to deploy and support.

  9. Increasing the use of patient decision aids in orthopaedic care: results of a quality improvement project.

    PubMed

    Mangla, Mahima; Cha, Thomas D; Dorrwachter, Janet M; Freiberg, Andrew A; Leavitt, Lauren J; Rubash, Harry E; Simmons, Leigh H; Wendell, Emily L; Sepucha, Karen R

    2018-05-01

    To integrate patient decision aid (DA) delivery to promote shared decision-making and provide more patient-centred care within an orthopaedic surgery department for treatment of hip and knee osteoarthritis, lumbar herniated disc and lumbar spinal stenosis. Different strategies were used across three distinct phases to promote DA delivery. First, we used a quality improvement bonus to generate awareness and interest in the DAs among specialists. Second, we adapted the electronic referral management system to enable DA orders at referral to a specialist. Third, we engaged clinic staff and specialists to design workflows that promoted DA delivery. We tracked the number of patients who received a DA, who ordered the DA, and collected usage data from a subset of patients. Our target was to reach 60% of patients with DAs. In phase 1, 28% (43/155) of spine patients and 37% (114/308) of hip/knee patients received a DA. In phase 2, 54% (64/118) of spine referrals and 58% (189/324) of hip/knee referrals included a request to send a patient a DA. In phase 3, 56% (90/162) of spine patients and 69% (213/307) of hip/knee patients received a DA, significantly more than in phase 1 (P<0.0001). In phase 3, both more DAs were ordered by clinic staff compared with specialists (56% phase 3 vs 34% phase 1, P<0.001) and sent before the visit (74% phase 3 vs 17% phase 1, P<0.001). Patients were more likely to report reviewing the DA when delivered before the visit (63% before vs 50% after, P=0.005). DA implementation into clinic workflow is possible and facilitated by engagement of the entire care team and the support of health information technology. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Application of multirate digital filter banks to wideband all-digital phase-locked loops design

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Shah, Biren; Hinedi, Sami

    1993-01-01

    A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.

  11. Application of multirate digital filter banks to wideband all-digital phase-locked loops design

    NASA Astrophysics Data System (ADS)

    Sadr, Ramin; Shah, Biren; Hinedi, Sami

    1993-06-01

    A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.

  12. Application of multirate digital filter banks to wideband all-digital phase-locked loops design

    NASA Astrophysics Data System (ADS)

    Sadr, R.; Shah, B.; Hinedi, S.

    1992-11-01

    A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.

  13. Application of multirate digital filter banks to wideband all-digital phase-locked loops design

    NASA Technical Reports Server (NTRS)

    Sadr, R.; Shah, B.; Hinedi, S.

    1992-01-01

    A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.

  14. Programmable Oscillator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Lee, Clement G.; Nguyen, Huy

    2011-01-01

    A programmable oscillator is a frequency synthesizer with an output phase that tracks an arbitrary function. An offset, phase-locked loop circuit is used in combination with an error control feedback loop to precisely control the output phase of the oscillator. To down-convert the received signal, several stages of mixing may be employed with the compensation for the time-base distortion of the carrier occurring at any one of those stages. In the Goldstone Solar System Radar (GSSR), the compensation occurs in the mixing from an intermediate frequency (IF), whose value is dependent on the station and band, to a common IF used in the final stage of down-conversion to baseband. The programmable oscillator (PO) is used in the final stage of down-conversion to generate the IF, along with a time-varying phase component that matches the time-base distortion of the carrier, thus removing it from the final down-converted signal.

  15. Precise Ionosphere Monitoring via a DSFH Satellite TT&C Link

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Li, Guangxia; Li, Zhiqiang; Yue, Chao

    2014-11-01

    A phase-coherent and frequency-hopped PN ranging system was developed, originally for the purpose of anti-jamming TT&C (tracking, telemetry and telecommand) of military satellites of China, including the Beidou-2 navigation satellites. The key innovation in the synchronization of this system is the unambiguous phase recovery of direct sequence and frequency hopping (DSFH) spread spectrum signal and the correction of frequency-dependent phase rotation caused by ionosphere. With synchronization achieved, a TEC monitoring algorithm based on maximum likelihood (ML) principle is proposed and its measuring precision is analyzed through ground simulation, onboard confirmation tests will be performed when transionosphere DSFH links are established in 2014. The measuring precision of TEC exceeds that obtained from GPS receiver data because the measurement is derived from unambiguous carrier phase estimates, not pseudorange estimates. The observation results from TT&C stations can provide real time regional ionosphere TEC estimation.

  16. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  17. GNSS reflectometry aboard the International Space Station: phase-altimetry simulation to detect ocean topography anomalies

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Leister, Vera; Saynisch, Jan; Zus, Florian; Wickert, Jens

    2016-04-01

    An ocean altimetry experiment using Earth reflected GNSS signals has been proposed to the European Space Agency (ESA). It is part of the GNSS Reflectometry Radio Occultation Scatterometry (GEROS) mission that is planned aboard the International Space Station (ISS). Altimetric simulations are presented that examine the detection of ocean topography anomalies assuming GNSS phase delay observations. Such delay measurements are well established for positioning and are possible due to a sufficient synchronization of GNSS receiver and transmitter. For altimetric purpose delays of Earth reflected GNSS signals can be observed similar to radar altimeter signals. The advantage of GNSS is the synchronized separation of transmitter and receiver that allow a significantly increased number of observation per receiver due to more than 70 GNSS transmitters currently in orbit. The altimetric concept has already been applied successfully to flight data recorded over the Mediterranean Sea. The presented altimetric simulation considers anomalies in the Agulhas current region which are obtained from the Region Ocean Model System (ROMS). Suitable reflection events in an elevation range between 3° and 30° last about 10min with ground track's length >3000km. Typical along-track footprints (1s signal integration time) have a length of about 5km. The reflection's Fresnel zone limits the footprint of coherent observations to a major axis extention between 1 to 6km dependent on the elevation. The altimetric performance depends on the signal-to-noise ratio (SNR) of the reflection. Simulation results show that precision is better than 10cm for SNR of 30dB. Whereas, it is worse than 0.5m if SNR goes down to 10dB. Precision, in general, improves towards higher elevation angles. Critical biases are introduced by atmospheric and ionospheric refraction. Corresponding correction strategies are still under investigation.

  18. Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase

    PubMed Central

    Lu, Kelin; Zhou, Rui

    2016-01-01

    A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications. PMID:27537883

  19. Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase.

    PubMed

    Lu, Kelin; Zhou, Rui

    2016-08-15

    A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications.

  20. Thermal buffering of receivers for parabolic dish solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.; Gajanana, B. C.; Marcus, C. J.

    1980-01-01

    A parabolic dish solar thermal power plant comprises a field of parabolic dish power modules where each module is composed of a two-axis tracking parabolic dish concentrator which reflects sunlight (insolation) into the aperture of a cavity receiver at the focal point of the dish. The heat generated by the solar flux entering the receiver is removed by a heat transfer fluid. In the dish power module, this heat is used to drive a small heat engine/generator assembly which is directly connected to the cavity receiver at the focal point. A computer analysis is performed to assess the thermal buffering characteristics of receivers containing sensible and latent heat thermal energy storage. Parametric variations of the thermal inertia of the integrated receiver-buffer storage systems coupled with different fluid flow rate control strategies are carried out to delineate the effect of buffer storage, the transient response of the receiver-storage systems and corresponding fluid outlet temperature. It is concluded that addition of phase change buffer storage will substantially improve system operational characteristics during periods of rapidly fluctuating insolation due to cloud passage.

  1. Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues.

    PubMed

    Robinson, Mike J F; Anselme, Patrick; Suchomel, Kristen; Berridge, Kent C

    2015-08-01

    Amphetamine and stress can sensitize mesolimbic dopamine-related systems. In Pavlovian autoshaping, repeated exposure to uncertainty of reward prediction can enhance motivated sign-tracking or attraction to a discrete reward-predicting cue (lever-conditioned stimulus; CS+), as well as produce cross-sensitization to amphetamine. However, it remains unknown how amphetamine sensitization or repeated restraint stress interact with uncertainty in controlling CS+ incentive salience attribution reflected in sign-tracking. Here rats were tested in 3 successive phases. First, different groups underwent either induction of amphetamine sensitization or repeated restraint stress, or else were not sensitized or stressed as control groups (either saline injections only, or no stress or injection at all). All next received Pavlovian autoshaping training under either certainty conditions (100% CS-UCS association) or uncertainty conditions (50% CS-UCS association and uncertain reward magnitude). During training, rats were assessed for sign-tracking to the CS+ lever versus goal-tracking to the sucrose dish. Finally, all groups were tested for psychomotor sensitization of locomotion revealed by an amphetamine challenge. Our results confirm that reward uncertainty enhanced sign-tracking attraction toward the predictive CS+ lever, at the expense of goal-tracking. We also reported that amphetamine sensitization promoted sign-tracking even in rats trained under CS-UCS certainty conditions, raising them to sign-tracking levels equivalent to the uncertainty group. Combining amphetamine sensitization and uncertainty conditions did not add together to elevate sign-tracking further above the relatively high levels induced by either manipulation alone. In contrast, repeated restraint stress enhanced subsequent amphetamine-elicited locomotion, but did not enhance CS+ attraction. (c) 2015 APA, all rights reserved).

  2. Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues

    PubMed Central

    Robinson, Mike J.F.; Anselme, Patrick; Suchomel, Kristen; Berridge, Kent C.

    2015-01-01

    Amphetamine and stress can sensitize mesolimbic dopamine-related systems. In Pavlovian autoshaping, repeated exposure to uncertainty of reward prediction can enhance motivated sign-tracking or attraction to a discrete reward-predicting cue (lever CS+), as well as produce cross-sensitization to amphetamine. However, it remains unknown how amphetamine-sensitization or repeated restraint stress interact with uncertainty in controlling CS+ incentive salience attribution reflected in sign-tracking. Here rats were tested in three successive phases. First, different groups underwent either induction of amphetamine sensitization or repeated restraint stress, or else were not sensitized or stressed as control groups (either saline injections only, or no stress or injection at all). All next received Pavlovian autoshaping training under either certainty conditions (100% CS-UCS association) or uncertainty conditions (50% CS-UCS association and uncertain reward magnitude). During training, rats were assessed for sign-tracking to the lever CS+ versus goal-tracking to the sucrose dish. Finally, all groups were tested for psychomotor sensitization of locomotion revealed by an amphetamine challenge. Our results confirm that reward uncertainty enhanced sign-tracking attraction toward the predictive CS+ lever, at the expense of goal-tracking. We also report that amphetamine sensitization promoted sign-tracking even in rats trained under CS-UCS certainty conditions, raising them to sign-tracking levels equivalent to the uncertainty group. Combining amphetamine sensitization and uncertainty conditions together did not add together to elevate sign-tracking further above the relatively high levels induced by either manipulation alone. In contrast, repeated restraint stress enhanced subsequent amphetamine-elicited locomotion, but did not enhance CS+ attraction. PMID:26076340

  3. GPS Navigation for the Magnetospheric Multi-Scale Mission

    NASA Technical Reports Server (NTRS)

    Bamford, William; Mitchell, Jason; Southward, Michael; Baldwin, Philip; Winternitz, Luke; Heckler, Gregory; Kurichh, Rishi; Sirotzky, Steve

    2009-01-01

    In 2014. NASA is scheduled to launch the Magnetospheric Multiscale Mission (MMS), a four-satellite formation designed to monitor fluctuations in the Earth's magnetosphere. This mission has two planned phases with different orbits (1? x 12Re and 1.2 x 25Re) to allow for varying science regions of interest. To minimize ground resources and to mitigate the probability of collisions between formation members, an on-board orbit determination system consisting of a Global Positioning System (GPS) receiver and crosslink transceiver was desired. Candidate sensors would be required to acquire GPS signals both below and above the constellation while spinning at three revolutions-per-minute (RPM) and exchanging state and science information among the constellation. The Intersatellite Ranging and Alarm System (IRAS), developed by Goddard Space Flight Center (GSFC) was selected to meet this challenge. IRAS leverages the eight years of development GSFC has invested in the Navigator GPS receiver and its spacecraft communication expertise, culminating in a sensor capable of absolute and relative navigation as well as intersatellite communication. The Navigator is a state-of-the-art receiver designed to acquire and track weak GPS signals down to -147dBm. This innovation allows the receiver to track both the main lobe and the much weaker side lobe signals. The Navigator's four antenna inputs and 24 tracking channels, together with customized hardware and software, allow it to seamlessly maintain visibility while rotating. Additionally, an extended Kalman filter provides autonomous, near real-time, absolute state and time estimates. The Navigator made its maiden voyage on the Space Shuttle during the Hubble Servicing Mission, and is scheduled to fly on MMS as well as the Global Precipitation Measurement Mission (GPM). Additionally, Navigator's acquisition engine will be featured in the receiver being developed for the Orion vehicle. The crosslink transceiver is a 1/4 Watt transmitter utilizing a TDMA schedule to distribute a science quality message to all constellation members every ten seconds. Additionally the system generates one-way range measurements between formation members which is used as input to the Kalman filter. In preparation for the MMS Preliminary Design Review (PDR), the Navigator was required to pass a series of Technology Readiness Level (TRL) tests to earn the necessary TRL-6 classification. The TRL-6 level is achieved by demonstrating a prototype unit in a relevant end-to-end environment. The IRAS unit was able to meet all requirements during the testing phase, and has thus been TRL-6 qualified

  4. A quality improvement project to improve the rate of early breast milk expression in mothers of preterm infants.

    PubMed

    Murphy, Lindsey; Warner, Diane D; Parks, Jessica; Whitt, Jenny; Peter-Wohl, Sigal

    2014-11-01

    Providing breast milk is challenging for non-nursing mothers of premature infants. Early breast milk expression results in successful and longer lactation in mothers of very low birth weight (VLBW) infants. This quality improvement initiative sought to increase the rate of early milk expression in mothers of VLBW infants and increase the proportion of infants receiving maternal breast milk (MBM) at 28 days of age and at discharge. Phase 1 (n = 45) occurred between April 1, 2012, and August 31, 2012. Phase 2 (n = 58) occurred between September 1, 2012, and February 28, 2013. Pre-phase 2 actions included increased lactation consultant workforce, early lactation consultation, tracking of MBM supply, and physician education. Inborn infants < 1500 grams were eligible. Primary outcomes were the time of first maternal milk expression (TFME) and infant feeding type at 28 days of age and at discharge. The median TFME decreased from 9 (25th, 75th percentile; 6, 16) hours to 6 (5, 11) hours after implementation (P = .06). The proportion of infants receiving exclusive MBM at 28 days and at discharge was 64% and 74%, respectively (P = .40), and the proportion of infants receiving exclusive MBM at discharge increased from 37% to 59% (P = .046). In conclusion, a multidisciplinary initiative aimed at improving the rate of early milk expression was associated with more VLBW infants receiving exclusive MBM at discharge. © The Author(s) 2014.

  5. Self-tracking solar concentrator with an acceptance angle of 32°.

    PubMed

    Zagolla, Volker; Dominé, Didier; Tremblay, Eric; Moser, Christophe

    2014-12-15

    Solar concentration has the potential to decrease the cost associated with solar cells by replacing the receiving surface aperture with cheaper optics that concentrate light onto a smaller cell aperture. However a mechanical tracker has to be added to the system to keep the concentrated light on the size reduced solar cell at all times. The tracking device itself uses energy to follow the sun's position during the day. We have previously shown a mechanism for self-tracking that works by making use of the infrared energy of the solar spectrum, to activate a phase change material. In this paper, we show an implementation of a working 53 x 53 mm(2) self-tracking system with an acceptance angle of 32° ( ± 16°). This paper describes the design optimizations and upscaling process to extend the proof-of-principle self-tracking mechanism to a working demonstration device including the incorporation of custom photodiodes for system characterization. The current version demonstrates an effective concentration of 3.5x (compared to 8x theoretical) over 80% of the desired acceptance angle. Further improvements are expected to increase the efficiency of the system and open the possibility to expand the device to concentrations as high as 200x (C(geo) = 400x, η = 50%, for a solar cell matched spectrum).

  6. A comparison of atmospheric effects on differential phase for a two-element antenna array and nearby site test interferometer

    NASA Astrophysics Data System (ADS)

    Morabito, David D.; D'Addario, Larry; Finley, Susan

    2016-02-01

    Phased arrays of reflector antennas can be used to obtain effective area and gain that are much larger than is practical with a single antenna. This technique is routinely used by NASA for receiving weak signals from deep space. Phase alignment of the signals can be disrupted by turbulence in the troposphere, which causes fluctuations in the differences of signal delays among the antennas. At the Deep Space Network stations, site test interferometers (STIs) are being used for long-term monitoring of these delay fluctuations using signals from geostationary satellites. In this paper, we compare the STI measurements with the phase variations seen by a nearby two-element array of 34 m diameter antennas tracking 8.4 GHz and 32 GHz signals from the Cassini spacecraft in orbit around Saturn. It is shown that the statistics of the STI delay fluctuations, after appropriate scaling for differences in antenna separation and elevation angle and conversion to phase at the spacecraft frequencies, provide reliable estimates of the phase fluctuations seen by the large antennas on the deep space signal. Techniques for adaptive compensation of the phase fluctuations are available when receiving a sufficiently strong signal, but compensation is often impractical or impossible when using the array for transmitting. These results help to validate the use of long-term STI data for assessing the feasibility of large transmitting arrays at various sites.

  7. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 2: Design and development

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; White, M. A.; Lindsey, W. C.; Davarian, F.; Dixon, R. C.

    1984-01-01

    Functional requirements and specifications are defined for an autonomous integrated receive system (AIRS) to be used as an improvement in the current tracking and data relay satellite system (TDRSS), and as a receiving system in the future tracking and data acquisition system (TDAS). The AIRS provides improved acquisition, tracking, bit error rate (BER), RFI mitigation techniques, and data operations performance compared to the current TDRSS ground segment receive system. A computer model of the AIRS is used to provide simulation results predicting the performance of AIRS. Cost and technology assessments are included.

  8. Joint Carrier-Phase Synchronization and LDPC Decoding

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Valles, Esteban

    2009-01-01

    A method has been proposed to increase the degree of synchronization of a radio receiver with the phase of a suppressed carrier signal modulated with a binary- phase-shift-keying (BPSK) or quaternary- phase-shift-keying (QPSK) signal representing a low-density parity-check (LDPC) code. This method is an extended version of the method described in Using LDPC Code Constraints to Aid Recovery of Symbol Timing (NPO-43112), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 54. Both methods and the receiver architectures in which they would be implemented belong to a class of timing- recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. The proposed method calls for the use of what is known in the art as soft decision feedback to remove the modulation from a replica of the incoming signal prior to feeding this replica to a phase-locked loop (PLL) or other carrier-tracking stage in the receiver. Soft decision feedback refers to suitably processed versions of intermediate results of iterative computations involved in the LDPC decoding process. Unlike a related prior method in which hard decision feedback (the final sequence of decoded symbols) is used to remove the modulation, the proposed method does not require estimation of the decoder error probability. In a basic digital implementation of the proposed method, the incoming signal (having carrier phase theta theta (sub c) plus noise would first be converted to inphase (I) and quadrature (Q) baseband signals by mixing it with I and Q signals at the carrier frequency [wc/(2 pi)] generated by a local oscillator. The resulting demodulated signals would be processed through one-symbol-period integrate and- dump filters, the outputs of which would be sampled and held, then multiplied by a soft-decision version of the baseband modulated signal. The resulting I and Q products consist of terms proportional to the cosine and sine of the carrier phase cc as well as correlated noise components. These products would be fed as inputs to a digital PLL that would include a number-controlled oscillator (NCO), which provides an estimate of the carrier phase, theta(sub c).

  9. Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO

    PubMed Central

    Braaf, Boy; Vienola, Kari V.; Sheehy, Christy K.; Yang, Qiang; Vermeer, Koenraad A.; Tiruveedhula, Pavan; Arathorn, David W.; Roorda, Austin; de Boer, Johannes F.

    2012-01-01

    In phase-resolved OCT angiography blood flow is detected from phase changes in between A-scans that are obtained from the same location. In ophthalmology, this technique is vulnerable to eye motion. We address this problem by combining inter-B-scan phase-resolved OCT angiography with real-time eye tracking. A tracking scanning laser ophthalmoscope (TSLO) at 840 nm provided eye tracking functionality and was combined with a phase-stabilized optical frequency domain imaging (OFDI) system at 1040 nm. Real-time eye tracking corrected eye drift and prevented discontinuity artifacts from (micro)saccadic eye motion in OCT angiograms. This improved the OCT spot stability on the retina and consequently reduced the phase-noise, thereby enabling the detection of slower blood flows by extending the inter-B-scan time interval. In addition, eye tracking enabled the easy compounding of multiple data sets from the fovea of a healthy volunteer to create high-quality eye motion artifact-free angiograms. High-quality images are presented of two distinct layers of vasculature in the retina and the dense vasculature of the choroid. Additionally we present, for the first time, a phase-resolved OCT angiogram of the mesh-like network of the choriocapillaris containing typical pore openings. PMID:23304647

  10. Phased Array GNSS Antenna for the FORMOSAT-7/COSMIC-2 Radio Occultation Mission

    NASA Technical Reports Server (NTRS)

    Turbiner, Dmitry; Young, Larry E.; Meehan, Tom K.

    2012-01-01

    Future GNSS remote sensing instruments such as the TriG receiver require more capable antennas than those flown on missions such as COSMIC. To maximize the number of ionospheric and atmospheric profiles, the TriG receiver will be capable of tracking legacy and new GPS signals such as L5, L2C and L1C; GLONASS CDMA and Galileo E1 and E5a. There has been an in-house effort at JPL to develop a set of antennas that would provide excellent Radio Occultations performance as well as navigation and ionospheric profiling. This effort is on-going but near completion for the manufacture and delivery of a set of flight antennas for the FORMOSAT-7/COSMIC-2 mission.

  11. The impact of GPS receiver modifications and ionospheric activity on Swarm baseline determination

    NASA Astrophysics Data System (ADS)

    Mao, X.; Visser, P. N. A. M.; van den IJssel, J.

    2018-05-01

    The European Space Agency (ESA) Swarm mission is a satellite constellation launched on 22 November 2013 aiming at observing the Earth geomagnetic field and its temporal variations. The three identical satellites are equipped with high-precision dual-frequency Global Positioning System (GPS) receivers, which make the constellation an ideal test bed for baseline determination. From October 2014 to August 2016, a number of GPS receiver modifications and a new GPS Receiver Independent Exchange Format (RINEX) converter were implemented. Moreover, the on-board GPS receiver performance has been influenced by the ionospheric scintillations. The impact of these factors is assessed for baseline determination of the pendulum formation flying Swarm-A and -C satellites. In total 30 months of data - from 15 July 2014 to the end of 2016 - is analyzed. The assessment includes analysis of observation residuals, success rate of GPS carrier phase ambiguity fixing, a consistency check between the so-called kinematic and reduced-dynamic baseline solution, and validations of orbits by comparing with Satellite Laser Ranging (SLR) observations. External baseline solutions from The German Space Operations Center (GSOC) and Astronomisches Institut - Universität Bern (AIUB) are also included in the comparison. Results indicate that the GPS receiver modifications and RINEX converter changes are effective to improve the baseline determination. This research eventually shows a consistency level of 9.3/4.9/3.0 mm between kinematic and reduced-dynamic baselines in the radial/along-track/cross-track directions. On average 98.3% of the epochs have kinematic solutions. Consistency between TU Delft and external reduced-dynamic baseline solutions is at a level of 1 mm level in all directions.

  12. Ka-Band Transponder for Deep-Space Radio Science

    NASA Technical Reports Server (NTRS)

    Dennis, Matthew S.; Mysoor, Narayan R.; Folkner, William M.; Mendoza, Ricardo; Venkatesan, Jaikrishna

    2008-01-01

    A one-page document describes a Ka-band transponder being developed for use in deep-space radio science. The transponder receives in the Deep Space Network (DSN) uplink frequency band of 34.2 to 34.7 GHz, transmits in the 31.8- to 32.3 GHz DSN downlink band, and performs regenerative ranging on a DSN standard 4-MHz ranging tone subcarrier phase-modulated onto the uplink carrier signal. A primary consideration in this development is reduction in size, relative to other such transponders. The transponder design is all-analog, chosen to minimize not only the size but also the number of parts and the design time and, thus, the cost. The receiver features two stages of frequency down-conversion. The receiver locks onto the uplink carrier signal. The exciter signal for the transmitter is derived from the same source as that used to generate the first-stage local-oscillator signal. The ranging-tone subcarrier is down-converted along with the carrier to the second intermediate frequency, where the 4-MHz tone is demodulated from the composite signal and fed into a ranging-tone-tracking loop, which regenerates the tone. The regenerated tone is linearly phase-modulated onto the downlink carrier.

  13. Detector Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Dusl, John (Inventor)

    2003-01-01

    Transceiver and methods are included that are especially suitable for detecting metallic materials, such as metallic mines, within an environment. The transceiver includes a digital waveform generator used to transmit a signal into the environment and a receiver that produces a digital received signal. A tracking module preferably compares an in-phase and quadrature transmitted signal with an in-phase and quadrature received signal to produce a spectral transfer function of the magnetic transceiver over a selected range of frequencies. The transceiver initially preferably creates a reference transfer function which is then stored in a memory. Subsequently measured transfer functions will vary depending on the presence of metal in the environment which was not in the environment when the reference transfer function was determined. The system may be utilized in the presence of other antennas, metal, and electronics which may comprise a plastic mine detector for detecting plastic mines. Despite the additional antennas and other metallic materials that may be in the environment due to the plastic mine detector, the magnetic transceiver remains highly sensitive to metallic material which may be located in various portions of the environment and which may be detected by sweeping the detector over ground that may contain metals or mines.

  14. ‘M-TRACK’ (mobile phone reminders and electronic tracking tool) cuts the risk of pre-treatment loss to follow-up by 80% among people living with HIV under programme settings: a mixed-methods study from Gujarat, India

    PubMed Central

    Mehta, Kedar; Kumar, Ajay M. V.; Chawla, Sudhir; Chavda, Paragkumar; Selvaraj, Kalaiselvi; Shringarpure, Kalpita S.; Solanki, Dipak M.; Verma, Pramod B.; Rewari, B. B.

    2018-01-01

    ABSTRACT Background: In 2016, the National AIDS Control Programme (NACP) in Gujarat, India implemented an innovative intervention called ‘M-TRACK’ (mobile phone reminders once every week for four weeks after diagnosis and electronic patient tracking tool) to reduce pre-treatment loss to follow-up (LFU) among people living with HIV (PLHIV) in Vadodara district while other districts received standard of care. Objectives: To assess the effectiveness of M-TRACK in reducing pre-treatment LFU (proportion of diagnosed PLHIV not registering for HIV care by four weeks after diagnosis) and to explore the implementation enablers and challenges from health care providers’ and PLHIV perspective. Methods: An explanatory mixed-methods study design was used wherein the quantitative phase (cohort study with two groups: Vadodara district exposed to M-TRACK and Rajkot district as unexposed) was followed by a qualitative phase (descriptive study involving group interview with 16 health care providers, personal interviews with two programme managers and telephonic interviews with 16 PLHIV). Data were collected during October 2016 to February 2017. Results: During the pre-M-TRACK period (July–September 2016), the LFU proportion was similar [13% (25/191) in Vadodara; 15% (21/141) in Rajkot (p = 0.8)]. During the M-TRACK period (October–December 2016), LFU decreased to 4% (9/209) in Vadodara (exposed), whereas it remained similar at 16% (18/113) in Rajkot (unexposed) district (p = 0.02). PLHIV exposed to M-TRACK had an 80% lower risk of LFU (aRR 0.2; 95% CI: 0.1–0.5) compared with standard care, after adjusting for socio-demographics, time and clustering at district level. During interviews, M-TRACK was welcomed by both PLHIV and the counsellors. The latter felt it saved time by obviating the need for home visits and helped in documentation. Inconvenience of using landline phone available at the health facility, lack of budgets for reimbursement of mobile call expenses and internet connectivity problems were the key implementation challenges. Conclusion: M-TRACK was highly effective in reducing the gap between diagnosis and treatment. It may be considered for scale-up after addressing the challenges noted. PMID:29482468

  15. Continuous fractional-order Zero Phase Error Tracking Control.

    PubMed

    Liu, Lu; Tian, Siyuan; Xue, Dingyu; Zhang, Tao; Chen, YangQuan

    2018-04-01

    A continuous time fractional-order feedforward control algorithm for tracking desired time varying input signals is proposed in this paper. The presented controller cancels the phase shift caused by the zeros and poles of controlled closed-loop fractional-order system, so it is called Fractional-Order Zero Phase Tracking Controller (FZPETC). The controlled systems are divided into two categories i.e. with and without non-cancellable (non-minimum-phase) zeros which stand in unstable region or on stability boundary. Each kinds of systems has a targeted FZPETC design control strategy. The improved tracking performance has been evaluated successfully by applying the proposed controller to three different kinds of fractional-order controlled systems. Besides, a modified quasi-perfect tracking scheme is presented for those systems which may not have available future tracking trajectory information or have problem in high frequency disturbance rejection if the perfect tracking algorithm is applied. A simulation comparison and a hardware-in-the-loop thermal peltier platform are shown to validate the practicality of the proposed quasi-perfect control algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Coherent detection of position errors in inter-satellite laser communications

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Liu, Liren; Liu, De'an; Sun, Jianfeng; Luan, Zhu

    2007-09-01

    Due to the improved receiver sensitivity and wavelength selectivity, coherent detection became an attractive alternative to direct detection in inter-satellite laser communications. A novel method to coherent detection of position errors information is proposed. Coherent communication system generally consists of receive telescope, local oscillator, optical hybrid, photoelectric detector and optical phase lock loop (OPLL). Based on the system composing, this method adds CCD and computer as position error detector. CCD captures interference pattern while detection of transmission data from the transmitter laser. After processed and analyzed by computer, target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signal of PAT subsystem drive the receiver telescope to keep tracking to the target. Theoretical deviation and analysis is presented. The application extends to coherent laser rang finder, in which object distance and position information can be obtained simultaneously.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Michael L M; Chan, Anthony T C; The Chinese University of Hong Kong

    Purpose: To develop a formulation for 4D treatment planning for a tumour tracking volumetric modulated arc therapy treatment (VMAT) plan for lung cancer. Methods: A VMAT plan was optimized based on a reference phase of the 4DCT of a lung cancer patient. The PTV was generated from the GTV of the reference phase. The collimator angle was set to 90 degrees such that the MLC travels along superior-inferior direction which is the main component of movement of a lung tumour. Then, each control point of the VMAT plan was assigned to a particular phase of the 4DCT in chronological order.more » The MLC positions of each control point were shifted according to the position of the tumour centroid of its assigned phase to form a tumour tracking VMAT plan. The control points of the same phase were grouped to form a pseudo VMAT plan for that particular phase. Dose calculation was performed for each pseudo VMAT plan on the corresponding phase of the 4DCT. The CTs of all phases were registered to the reference phase CT according to the displacement of the tumour centroid. The individual dose distributions of the pseudo VMAT plans were summed up and displayed on the reference phase of the 4DCT. A control VMAT plan was optimized based on a PTV generated from the ITV of all phases and compared with the tumour tracking VMAT plan. Results: Both plans achieved >95% volume coverage at the prescription dose level (96% for the tumour tracking plan and 97% for the control plan). But the normal lung volume irradiated at the prescription dose level was 39% less for the tumour tracking plan than the control plan. Conclusion: A formulation of 4D treatment planning for tumour tracking VMAT plans for lung cancer was developed.« less

  18. Integrated Reconfigurable Aperture, Digital Beam Forming, and Software GPS Receiver for UAV Navigation

    DTIC Science & Technology

    2007-12-11

    Implemented both carrier and code phase tracking loop for performance evaluation of a minimum power beam forming algorithm and null steering algorithm...4 Antennal Antenna2 Antenna K RF RF RF ct, Ct~2 ChKx1 X2 ....... Xk A W ~ ~ =Z, x W ,=1 Fig. 5. Schematics of a K-element antenna array spatial...adaptive processor Antennal Antenna K A N-i V/ ( Vil= .i= VK Fig. 6. Schematics of a K-element antenna array space-time adaptive processor Two additional

  19. A decametric wavelength radio telescope for interplanetary scintillation observations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.

    1975-01-01

    A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.

  20. Decision feedback loop for tracking a polyphase modulated carrier

    NASA Technical Reports Server (NTRS)

    Simon, M. K. (Inventor)

    1974-01-01

    A multiple phase modulated carrier tracking loop for use in a frequency shift keying system is described in which carrier tracking efficiency is improved by making use of the decision signals made on the data phase transmitted in each T-second interval. The decision signal is used to produce a pair of decision-feedback quadrature signals for enhancing the loop's performance in developing a loop phase error signal.

  1. Project 8, Phase III Design: Placing an eV-Scale Limit on the Neutrino Mass using Cyclotron Radiation Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Oblath, Noah; Project 8 Collaboration

    2016-09-01

    We report on the design concept for Phase III of the Project 8 experiment. In the third phase of Project 8 we aim to place a limit on the neutrino mass that is similar to the current limits set by tritium beta-decay experiments, mν < 2eV . From the first two phases of Project 8 we move to a novel design consisting of a 100cm3 cylindrical volume of tritium gas instrumented with two 30-element rings of inward-facing antennas. Beam-forming techniques similar to those used in radioastronomy will be employed to search for and track electron signals in the fiducial volume. This talk will present the quantitative design concept for the phased-array receiver, and illustrate how we are progressing towards the Phase IV experiment, which will have sensitivity to the neutrino mass scale allowed by the inverted mass hierarchy. This work is supported by the DOE Office of Science Early Career Research Program, and the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory.

  2. Complex versus simple ankle movement training in stroke using telerehabilitation: a randomized controlled trial.

    PubMed

    Deng, Huiqiong; Durfee, William K; Nuckley, David J; Rheude, Brandon S; Severson, Amy E; Skluzacek, Katie M; Spindler, Kristen K; Davey, Cynthia S; Carey, James R

    2012-02-01

    Telerehabilitation allows rehabilitative training to continue remotely after discharge from acute care and can include complex tasks known to create rich conditions for neural change. The purposes of this study were: (1) to explore the feasibility of using telerehabilitation to improve ankle dorsiflexion during the swing phase of gait in people with stroke and (2) to compare complex versus simple movements of the ankle in promoting behavioral change and brain reorganization. This study was a pilot randomized controlled trial. Training was done in the participant's home. Testing was done in separate research labs involving functional magnetic resonance imaging (fMRI) and multi-camera gait analysis. Sixteen participants with chronic stroke and impaired ankle dorsiflexion were assigned randomly to receive 4 weeks of telerehabilitation of the paretic ankle. Participants received either computerized complex movement training (track group) or simple movement training (move group). Behavioral changes were measured with the 10-m walk test and gait analysis using a motion capture system. Brain reorganization was measured with ankle tracking during fMRI. Dorsiflexion during gait was significantly larger in the track group compared with the move group. For fMRI, although the volume, percent volume, and intensity of cortical activation failed to show significant changes, the frequency count of the number of participants showing an increase versus a decrease in these values from pretest to posttest measurements was significantly different between the 2 groups, with the track group decreasing and the move group increasing. Limitations of this study were that no follow-up test was conducted and that a small sample size was used. The results suggest that telerehabilitation, emphasizing complex task training with the paretic limb, is feasible and can be effective in promoting further dorsiflexion in people with chronic stroke.

  3. Energy Tracking in Classrooms - A Real Time Experiment with Grade 5 Students

    NASA Astrophysics Data System (ADS)

    Lam, H. M.; Ho, F.

    2015-12-01

    ISF Academy, a K-G12 school in Hong Kong with over 1500 students and currently spanning 3 buildings, is retrofitting the school with an energy tracking system in three phases. The first phase during the fall of 2015 will include retrofitting eight Grade 5 classrooms. This new program will show the daily energy usage data from these classrooms. The Grade 5 students receive feedback on their energy use in real time as they compete over two months in their homeroom classes to lower their electrical use, and subsequently their carbon footprint. This competition style initiative will teach the 180 Grade 5 students about their energy usage in a fun and informative manner. ISF Academy has over 400 air-conditioners and we have already determined that the air conditioners are the largest single use of energy in the school. The energy tracking system installed and maintained by from Global Design Corporation utilizes uniquely identified current detectors attached to circuit breakers, to monitor electrical use of individual circuits. These detectors will also monitor the energy used for classroom lighting, fans and plugs, as well as the air conditioners. The system has been installed and the Grade 5 classrooms averaged between 40 kWh and 120 kWh of usage in May 2015. This data will be used as the baseline for the competition. Further analysis can also be done with the data, such as calculating the carbon emissions reduction throughout the school year, providing possible class learning activities and also aiding in future energy use and carbon footprint predictions. The data collected will help refine phase 2 and 3 of the installation, expanding the system to more buildings and also giving insight to the rollout of the system to the whole school when the systems are fully in place.

  4. Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume

    PubMed Central

    Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin

    2016-01-01

    Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions. PMID:27598164

  5. Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume.

    PubMed

    Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin

    2016-09-02

    Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions.

  6. The theory, design, and operation of the suppressed carrier data-aided tracking receiver

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Springett, J. C.

    1973-01-01

    A viable, efficient, and easily mechanized carrier regenerating receiver for use in suppressed carrier-tracking system is described. The receiver referred to as a data-aided receiver (DAR) incorporates a data-aided loop (DAL) which provides the required carrier reference signal. The DAL employs the principle of decision feedback and as such is more efficient than other forms of suppressed carrier-tracking loops. The analysis, design, and implementation of the DAR are covered in detail. Performance comparisons and mechanization tradeoffs are made, wherever possible, with discrete carrier systems and other suppressed carrier systems presently in use. Experimental performance verification is given throughout in support of the theory presented.

  7. 78 FR 52166 - Quantitative Messaging Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... COMMODITY FUTURES TRADING COMMISSION Quantitative Messaging Research AGENCY: Commodity Futures... survey will follow qualitative message testing research (for which CFTC received fast-track OMB approval... message testing research (for which CFTC received fast-track OMB approval) and is necessary to identify...

  8. Sea level measurements using multi-frequency GPS and GLONASS observations

    NASA Astrophysics Data System (ADS)

    Löfgren, Johan S.; Haas, Rüdiger

    2014-12-01

    Global Positioning System (GPS) tide gauges have been realized in different configurations, e.g., with one zenith-looking antenna, using the multipath interference pattern for signal-to-noise ratio (SNR) analysis, or with one zenith- and one nadir-looking antenna, analyzing the difference in phase delay, to estimate the sea level height. In this study, for the first time, we use a true Global Navigation Satellite System (GNSS) tide gauge, installed at the Onsala Space Observatory. This GNSS tide gauge is recording both GPS and Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) signals and makes it possible to use both the one- and two-antenna analysis approach. Both the SNR analysis and the phase delay analysis were evaluated using dual-frequency GPS and GLONASS signals, i.e., frequencies in the L-band, during a 1-month-long campaign. The GNSS-derived sea level results were compared to independent sea level observations from a co-located pressure tide gauge and show a high correlation for both systems and frequency bands, with correlation coefficients of 0.86 to 0.97. The phase delay results show a better agreement with the tide gauge sea level than the SNR results, with root-mean-square differences of 3.5 cm (GPS L1 and L2) and 3.3/3.2 cm (GLONASS L1/L2 bands) compared to 4.0/9.0 cm (GPS L1/L2) and 4.7/8.9 cm (GLONASS L1/L2 bands). GPS and GLONASS show similar performance in the comparison, and the results prove that for the phase delay analysis, it is possible to use both frequencies, whereas for the SNR analysis, the L2 band should be avoided if other signals are available. Note that standard geodetic receivers using code-based tracking, i.e., tracking the un-encrypted C/A-code on L1 and using the manufacturers' proprietary tracking method for L2, were used. Signals with the new C/A-code on L2, the so-called L2 C , were not tracked. Using wind speed as an indicator for sea surface roughness, we find that the SNR analysis performs better in rough sea surface conditions than the phase delay analysis. The SNR analysis is possible even during the highest wind speed observed during this campaign (17.5 m/s), while the phase delay analysis becomes difficult for wind speeds above 6 m/s.

  9. Adaptive remote sensing technology for feature recognition and tracking

    NASA Technical Reports Server (NTRS)

    Wilson, R. G.; Sivertson, W. E., Jr.; Bullock, G. F.

    1979-01-01

    A technology development plan designed to reduce the data load and data-management problems associated with global study and monitoring missions is described with a heavy emphasis placed on developing mission capabilities to eliminate the collection of unnecessary data. Improved data selectivity can be achieved through sensor automation correlated with the real-time needs of data users. The first phase of the plan includes the Feature Identification and Location Experiment (FILE) which is scheduled for the 1980 Shuttle flight. The FILE experiment is described with attention given to technology needs, development plan, feature recognition and classification, and cloud-snow detection/discrimination. Pointing, tracking and navigation received particular consideration, and it is concluded that this technology plan is viewed as an alternative to approaches to real-time acquisition that are based on extensive onboard format and inventory processing and reliance upon global-satellite-system navigation data.

  10. Implementation of a vector-based tracking loop receiver in a pseudolite navigation system.

    PubMed

    So, Hyoungmin; Lee, Taikjin; Jeon, Sanghoon; Kim, Chongwon; Kee, Changdon; Kim, Taehee; Lee, Sanguk

    2010-01-01

    We propose a vector tracking loop (VTL) algorithm for an asynchronous pseudolite navigation system. It was implemented in a software receiver and experiments in an indoor navigation system were conducted. Test results show that the VTL successfully tracks signals against the near-far problem, one of the major limitations in pseudolite navigation systems, and could improve positioning availability by extending pseudolite navigation coverage.

  11. Multipath noise reduction spread spectrum signals

    NASA Technical Reports Server (NTRS)

    Meehan, Thomas K. (Inventor)

    1994-01-01

    The concepts of early-prompt delay tracking, multipath correction of early-prompt delay tracking from correlation shape, and carrier phase multipath correction are addressed. In early-prompt delay tracking, since multipath is always delayed with respect to the direct signals, the system derives phase and pseudorange observables from earlier correlation lags. In multipath correction of early-prompt delay tracking from correlation shape, the system looks for relative variations of amplitude across the code correlation function that do not match the predicted multipath-free code cross-correlation shape. The system then uses deviations from the multipath-free shape to infer the magnitude of multipath, and to generate corrections pseudorange observables. In carrier phase multipath correction, the system looks for variations of phase among plural early and prompt lags. The system uses the measured phase variations, along with the general principle that the multipath errors are larger for later lags, to infer the presence of multipath, and to generate corrections for carrier-phase observables.

  12. Application of least mean square algorithm to suppression of maglev track-induced self-excited vibration

    NASA Astrophysics Data System (ADS)

    Zhou, D. F.; Li, J.; Hansen, C. H.

    2011-11-01

    Track-induced self-excited vibration is commonly encountered in EMS (electromagnetic suspension) maglev systems, and a solution to this problem is important in enabling the commercial widespread implementation of maglev systems. Here, the coupled model of the steel track and the magnetic levitation system is developed, and its stability is investigated using the Nyquist criterion. The harmonic balance method is employed to investigate the stability and amplitude of the self-excited vibration, which provides an explanation of the phenomenon that track-induced self-excited vibration generally occurs at a specified amplitude and frequency. To eliminate the self-excited vibration, an improved LMS (Least Mean Square) cancellation algorithm with phase correction (C-LMS) is employed. The harmonic balance analysis shows that the C-LMS cancellation algorithm can completely suppress the self-excited vibration. To achieve adaptive cancellation, a frequency estimator similar to the tuner of a TV receiver is employed to provide the C-LMS algorithm with a roughly estimated reference frequency. Numerical simulation and experiments undertaken on the CMS-04 vehicle show that the proposed adaptive C-LMS algorithm can effectively eliminate the self-excited vibration over a wide frequency range, and that the robustness of the algorithm suggests excellent potential for application to EMS maglev systems.

  13. A Simplified Baseband Prefilter Model with Adaptive Kalman Filter for Ultra-Tight COMPASS/INS Integration

    PubMed Central

    Luo, Yong; Wu, Wenqi; Babu, Ravindra; Tang, Kanghua; Luo, Bing

    2012-01-01

    COMPASS is an indigenously developed Chinese global navigation satellite system and will share many features in common with GPS (Global Positioning System). Since the ultra-tight GPS/INS (Inertial Navigation System) integration shows its advantage over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS integration has been investigated in this paper, particularly, by proposing a simplified prefilter model. Compared with a traditional prefilter model, the state space of this simplified system contains only carrier phase, carrier frequency and carrier frequency rate tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. Since the code tracking error related parameters were excluded from the state space of traditional prefilter models, the code/carrier divergence would destroy the carrier tracking process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance matrix based on state correction sequence was incorporated to compensate for the divergence. The federated ultra-tight COMPASS/INS integration was implemented with a hardware COMPASS intermediate frequency (IF), and INS's accelerometers and gyroscopes signal sampling system. Field and simulation test results showed almost similar tracking and navigation performances for both the traditional prefilter model and the proposed system; however, the latter largely decreased the computational load. PMID:23012564

  14. TH-AB-202-03: A Novel Tool for Computing Deliverable Doses in Dynamic MLC Tracking Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, M; Kamerling, C; Menten, M

    2016-06-15

    Purpose: In tracked dynamic multi-leaf collimator (MLC) treatments, segments are continuously adapted to the target centroid motion in beams-eye-view. On-the-fly segment adaptation, however, potentially induces dosimetric errors due to the finite MLC leaf width and non-rigid target motion. In this study, we outline a novel tool for computing the 4d dose of lung SBRT plans delivered with MLC tracking. Methods: The following automated workflow was developed: A) centroid tracking, where the initial segments are morphed to each 4dCT phase based on the beams-eye-view GTV shift (followed by a dose calculation on each phase); B) re-optimized tracking, in which all morphedmore » initial plans from (A) are further optimised (“warm-started”) in each 4dCT phase using the initial optimisation parameters but phase-specific volume definitions. Finally, both dose sets are accumulated to the reference phase using deformable image registration. Initial plans were generated according to the RTOG-1021 guideline (54Gy, 3-Fx, equidistant 9-beam IMRT) on the peak-exhale (reference) phase of a phase-binned 4dCT. Treatment planning and delivery simulations were performed in RayStation (research v4.6) using our in-house segment-morphing algorithm, which directly links to RayStation through a native C++ interface. Results: Computing the tracking plans and 4d dose distributions via the in-house interface takes 5 and 8 minutes respectively for centroid and re-optimized tracking. For a sample lung SBRT patient with 14mm peak-to-peak motion in sup-inf direction, mainly perpendicular leaf motion (0-collimator) resulted in small dose changes for PTV-D95 (−13cGy) and GTV-D98 (+18cGy) for the centroid tracking case compared to the initial plan. Modest reductions of OAR doses (e.g. spinal cord D2: −11cGy) were achieved in the idealized tracking case. Conclusion: This study presents an automated “1-click” workflow for computing deliverable MLC tracking doses in RayStation. Adding a non-deliverable re-optimized tracking scenario is expected to help quantify plan robustness for more challenging patients with anatomy deformations. We acknowledge support of the MLC tracking research from Elekta AB. MFF is supported by Cancer Research UK under Programme C33589/A19908. Research at ICR is also supported by Cancer Research UK under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Centre at RMH and ICR.« less

  15. Multichannel Phase and Power Detector

    NASA Technical Reports Server (NTRS)

    Li, Samuel; Lux, James; McMaster, Robert; Boas, Amy

    2006-01-01

    An electronic signal-processing system determines the phases of input signals arriving in multiple channels, relative to the phase of a reference signal with which the input signals are known to be coherent in both phase and frequency. The system also gives an estimate of the power levels of the input signals. A prototype of the system has four input channels that handle signals at a frequency of 9.5 MHz, but the basic principles of design and operation are extensible to other signal frequencies and greater numbers of channels. The prototype system consists mostly of three parts: An analog-to-digital-converter (ADC) board, which coherently digitizes the input signals in synchronism with the reference signal and performs some simple processing; A digital signal processor (DSP) in the form of a field-programmable gate array (FPGA) board, which performs most of the phase- and power-measurement computations on the digital samples generated by the ADC board; and A carrier board, which allows a personal computer to retrieve the phase and power data. The DSP contains four independent phase-only tracking loops, each of which tracks the phase of one of the preprocessed input signals relative to that of the reference signal (see figure). The phase values computed by these loops are averaged over intervals, the length of which is chosen to obtain output from the DSP at a desired rate. In addition, a simple sum of squares is computed for each channel as an estimate of the power of the signal in that channel. The relative phases and the power level estimates computed by the DSP could be used for diverse purposes in different settings. For example, if the input signals come from different elements of a phased-array antenna, the phases could be used as indications of the direction of arrival of a received signal and/or as feedback for electronic or mechanical beam steering. The power levels could be used as feedback for automatic gain control in preprocessing of incoming signals. For another example, the system could be used to measure the phases and power levels of outputs of multiple power amplifiers to enable adjustment of the amplifiers for optimal power combining.

  16. Ultrawideband asynchronous tracking system and method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Phan, Chau T. (Inventor); Gross, Julia A. (Inventor); Ni, Jianjun (Inventor); Dusl, John (Inventor)

    2012-01-01

    A passive tracking system is provided with a plurality of ultrawideband (UWB) receivers that is asynchronous with respect to a UWB transmitter. A geometry of the tracking system may utilize a plurality of clusters with each cluster comprising a plurality of antennas. Time Difference of Arrival (TDOA) may be determined for the antennas in each cluster and utilized to determine Angle of Arrival (AOA) based on a far field assumption regarding the geometry. Parallel software communication sockets may be established with each of the plurality of UWB receivers. Transfer of waveform data may be processed by alternately receiving packets of waveform data from each UWB receiver. Cross Correlation Peak Detection (CCPD) is utilized to estimate TDOA information to reduce errors in a noisy, multipath environment.

  17. Multibeam monopulse radar for airborne sense and avoid system

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-10-01

    The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.

  18. Object Locating System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    2000-01-01

    A portable system is provided that is operational for determining, with three dimensional resolution, the position of a buried object or approximately positioned object that may move in space or air or gas. The system has a plurality of receivers for detecting the signal front a target antenna and measuring the phase thereof with respect to a reference signal. The relative permittivity and conductivity of the medium in which the object is located is used along with the measured phase signal to determine a distance between the object and each of the plurality of receivers. Knowing these distances. an iteration technique is provided for solving equations simultaneously to provide position coordinates. The system may also be used for tracking movement of an object within close range of the system by sampling and recording subsequent position of the object. A dipole target antenna. when positioned adjacent to a buried object, may be energized using a separate transmitter which couples energy to the target antenna through the medium. The target antenna then preferably resonates at a different frequency, such as a second harmonic of the transmitter frequency.

  19. SU-F-J-99: Dose Accumulation and Evaluation in Lung SBRT Among All Phases of Respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azcona, JD; Barbes, B; Aristu, J

    Purpose: To calculate the total planning dose on lung tumors (GTV) by accumulating the dose received in all respiration phases. Methods: A patient 4D planning CT (phase-binned, from a Siemens Somatom CT) was used to locate the GTV of a lung tumor in all respiratory phases with Pinnacle (v9.10). GTV contours defined in all phases were projected to the reference phase, where the ITV was defined. Centroids were calculated for all the GTV projections. No deformation or rotation was taken into account. The only GTV contour as defined in the reference phase was voxelized to track each voxel individually. Wemore » accumulated the absorbed dose in different phases on each voxel. A 3DCRT and a VMAT plan were designed on the reference phase fulfilling the ITV dosimetric requirements, using the 10MV FFF photon model from an Elekta Versa linac. ITV-to-PTV margins were set to 5mm. In-house developed MATLAB code was used for tumor voxeling and dose accumulation, assuming that the dose distribution planned in the reference phase behaved as a “dose-cloud” during patient breathing. Results: We tested the method on a patient 4DCT set of images exhibiting limited tumor motion (<5mm). For the 3DCRT plan, D95 was calculated for the GTV with motion and for the ITV, showing an agreement of 0.04%. For the VMAT plan, we calculated the D95 for every phase as if the GTV in that phase had received the whole treatment. Differences in D95 for all phases are within 1%, and estimate the potential interplay effect during delivery. Conclusion: A method for dose accumulation and assessment was developed that can compare GTV motion with ITV dosage, and estimate the potential interplay effect for VMAT plans. Work in progress includes the incorporation of deformable image registration and 4D CBCT dose calculation for dose reconstruction and assessment during treatment.« less

  20. Phase fluctuation spectra: New radio science information to become available in the DSN tracking system Mark III-77

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    An algorithm was developed for the continuous and automatic computation of Doppler noise concurrently at four sample rate intervals, evenly spanning three orders of magnitude. Average temporal Doppler phase fluctuation spectra will be routinely available in the DSN tracking system Mark III-77 and require little additional processing. The basic (noise) data will be extracted from the archival tracking data file (ATDF) of the tracking data management system.

  1. Low-Cost Tracking Ground Terminal Designed to Use Cryogenically Cooled Electronics

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Romanofsky, Robert R.; Warner, Joseph D.

    2000-01-01

    A computer-controlled, tracking ground terminal will be assembled at the NASA Glenn Research Center at Lewis Field to receive signals transmitted by the Glenn's Direct Data Distribution (D3) payload planned for a shuttle flight in low Earth orbit. The terminal will enable direct data reception of up to two 622-megabits-per-second (Mbps) beams from the space-based, K-band (19.05-GHz) transmitting array at an end-user bit error rate of up to 10(exp -12). The ground terminal will include a 0.9-m-diameter receive-only Cassegrain reflector antenna with a corrugated feed horn incorporating a dual circularly polarized, K-band feed assembly mounted on a multiaxis, gimbaled tracking pedestal as well as electronics to receive the downlink signals. The tracking system will acquire and automatically track the shuttle through the sky for all elevations greater than 20 above the horizon. The receiving electronics for the ground terminal consist of a six-pole microstrip bandpass filter, a three-stage monolithic microwave integrated circuit (MMIC) amplifier, and a Stirling cycle cryocooler (1 W at 80 K). The Sterling cycle cryocooler cools the front end of the receiver, also known as the low-noise amplifier (LNA), to about 77 K. Cryocooling the LNA significantly increases receiver performance, which is necessary so that it can use the antenna, which has an aperture of only 0.9 m. The following drawing illustrates the cryoterminal.

  2. Quantifying the tracking capability of space-based AIS systems

    NASA Astrophysics Data System (ADS)

    Skauen, Andreas Nordmo

    2016-01-01

    The Norwegian Defence Research Establishment (FFI) has operated three Automatic Identification System (AIS) receivers in space. Two are on dedicated nano-satellites, AISSat-1 and AISSat-2. The third, the NORAIS Receiver, was installed on the International Space Station. A general method for calculating the upper bound on the tracking capability of a space-based AIS system has been developed and the results from the algorithm applied to AISSat-1 and the NORAIS Receiver individually. In addition, a constellation of AISSat-1 and AISSat-2 is presented. The tracking capability is defined as the probability of re-detecting ships as they move around the globe and is explained to represent and upper bound on a space-based AIS system performance. AISSat-1 and AISSat-2 operates on the nominal AIS1 and AIS2 channels, while the NORAIS Receiver data used are from operations on the dedicated space AIS channels, AIS3 and AIS4. The improved tracking capability of operations on the space AIS channels is presented.

  3. A review of GPS-based tracking techniques for TDRS orbit determination

    NASA Technical Reports Server (NTRS)

    Haines, B. J.; Lichten, S. M.; Malla, R. P.; Wu, S.-C.

    1993-01-01

    This article evaluates two fundamentally different approaches to the Tracking and Data Relay Satellite (TDRS) orbit determination utilizing Global Positioning System (GPS) technology and GPS-related techniques. In the first, a GPS flight receiver is deployed on the TDRS. The TDRS ephemerides are determined using direct ranging to the GPS spacecraft, and no ground network is required. In the second approach, the TDRS's broadcast a suitable beacon signal, permitting the simultaneous tracking of GPS and Tracking and Data Relay Satellite System satellites by ground receivers. Both strategies can be designed to meet future operational requirements for TDRS-II orbit determination.

  4. Experimental Validation of Pulse Phase Tracking for X-Ray Pulsar Based

    NASA Technical Reports Server (NTRS)

    Anderson, Kevin

    2012-01-01

    Pulsars are a form of variable celestial source that have shown to be usable as aids for autonomous, deep space navigation. Particularly those sources emitting in the X-ray band are ideal for navigation due to smaller detector sizes. In this paper X-ray photons arriving from a pulsar are modeled as a non-homogeneous Poisson process. The method of pulse phase tracking is then investigated as a technique to measure the radial distance traveled by a spacecraft over an observation interval. A maximum-likelihood phase estimator (MLE) is used for the case where the observed frequency signal is constant. For the varying signal frequency case, an algorithm is used in which the observation window is broken up into smaller blocks over which an MLE is used. The outputs of this phase estimation process were then looped through a digital phase-locked loop (DPLL) in order to reduce the errors and produce estimates of the doppler frequency. These phase tracking algorithms were tested both in a computer simulation environment and using the NASA Goddard Space flight Center X-ray Navigation Laboratory Testbed (GXLT). This provided an experimental validation with photons being emitted by a modulated X-ray source and detected by a silicon-drift detector. Models of the Crab pulsar and the pulsar B1821-24 were used in order to generate test scenarios. Three different simulated detector trajectories were used to be tracked by the phase tracking algorithm: a stationary case, one with constant velocity, and one with constant acceleration. All three were performed in one-dimension along the line of sight to the pulsar. The first two had a constant signal frequency and the third had a time varying frequency. All of the constant frequency cases were processed using the MLE, and it was shown that they tracked the initial phase within 0.15% for the simulations and 2.5% in the experiments, based on an average of ten runs. The MLE-DPLL cascade version of the phase tracking algorithm was used in the varying frequency case. This resulted in tracking of the phase and frequency by the DPLL outputs in both the simulation and experimental environments. The crab pulsar was experimentally tested with a trajectory with a higher acceleration. In this case the phase error tended toward zero as the observation extended to 250 seconds and the doppler frequency error tended to zero in under 100 seconds.

  5. Application of Tracking and Data Relay Satellite (TDRS) Differenced One-Way Doppler (DOWD) Tracking Data for Orbit Determination and Station Acquisition Support of User Spacecraft Without TDRS Compatible Transponders

    NASA Technical Reports Server (NTRS)

    Olszewski, A. D., Jr.; Wilcox, T. P.; Beckman, Mark

    1996-01-01

    Many spacecraft are launched today with only an omni-directional (omni) antenna and do not have an onboard Tracking and Data Relay Satellite (TDRS) transponder that is capable of coherently returning a carrier signal through TDRS. Therefore, other means of tracking need to be explored and used to adequately acquire the spacecraft. Differenced One-Way Doppler (DOWD) tracking data are very useful in eliminating the problems associated with the instability of the onboard oscillators when using strictly one-way Doppler data. This paper investigates the TDRS DOWD tracking data received by the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) during the launch and early orbit phases for the the Interplanetary Physics Laboratory (WIND) and the National Oceanographic and Atmospheric Administration (NOAA)-J missions. In particular FDF personnel performed an investigation of the data residuals and made an assessment of the acquisition capabilities of DOWD-based solutions. Comparisons of DOWD solutions with existing data types were performed and analyzed in this study. The evaluation also includes atmospheric editing of the DOWD data and a study of the feasibility of solving for Doppler biases in an attempt to minimize error. Furthermore, by comparing the results from WIND and NOAA-J, an attempt is made to show the limitations involved in using DOWD data for the two different mission profiles. The techniques discussed in this paper benefit the launches of spacecraft that do not have TDRS transponders on board, particularly those launched into a low Earth orbit. The use of DOWD data is a valuable asset to missions which do not have a stable local oscillator to enable high-quality solutions from the one-way/return-link Doppler tracking data.

  6. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  7. Trajectory tracking and backfitting techniques against theater ballistic missiles

    NASA Astrophysics Data System (ADS)

    Hutchins, Robert G.; Britt, Patrick T.

    1999-10-01

    Since the SCUD launches in the Gulf War, theater ballistic missile (TBM) systems have become a growing concern for the US military. Detection, fast track initiation, backfitting for launch point determination, and tracking and engagement during boost phase or shortly after booster cutoff are goals that grow in importance with the proliferation of weapons of mass destruction. This paper focuses on track initiation and backfitting techniques, as well as extending some earlier results on tracking a TBM during boost phase cutoff. Results indicate that Kalman techniques are superior to third order polynomial extrapolations in estimating the launch point, and that some knowledge of missile parameters, especially thrust, is extremely helpful in track initiation.

  8. Phase accumulation tracking algorithm for effective index retrieval of fishnet metamaterials and other resonant guided wave networks

    NASA Astrophysics Data System (ADS)

    Feigenbaum, Eyal; Hiszpanski, Anna M.

    2017-07-01

    A phase accumulation tracking (PAT) algorithm is proposed and demonstrated for the retrieval of the effective index of fishnet metamaterials (FMMs) in order to avoid the multi-branch uncertainty problem. This algorithm tracks the phase and amplitude of the dominant propagation mode across the FMM slab. The suggested PAT algorithm applies to resonant guided wave networks having only one mode that carries the light between the two slab ends, where the FMM is one example of this metamaterials sub-class. The effective index is a net effect of positive and negative accumulated phase in the alternating FMM metal and dielectric layers, with a negative effective index occurring when negative phase accumulation dominates.

  9. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  10. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems.

    PubMed

    Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio

    2016-12-17

    Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.

  11. Handling cycle slips in GPS data during ionospheric plasma bubble events

    NASA Astrophysics Data System (ADS)

    Banville, S.; Langley, R. B.; Saito, S.; Yoshihara, T.

    2010-12-01

    During disturbed ionospheric conditions such as the occurrence of plasma bubbles, the phase and amplitude of the electromagnetic waves transmitted by GPS satellites undergo rapid fluctuations called scintillation. When this phenomenon is observed, GPS receivers are more prone to signal tracking interruptions, which prevent continuous measurement of the total electron content (TEC) between a satellite and the receiver. In order to improve TEC monitoring, a study was conducted with the goal of reducing the effects of signal tracking interruptions by correcting for "cycle slips," an integer number of carrier wavelengths not measured by the receiver during a loss of signal lock. In this paper, we review existing cycle-slip correction methods, showing that the characteristics associated with ionospheric plasma bubbles (rapid ionospheric delay fluctuations, data gaps, increased noise, etc.) prevent reliable correction of cycle slips. Then, a reformulation of the "geometry-free" model conventionally used for ionospheric studies with GPS is presented. Geometric information is used to obtain single-frequency estimates of TEC variations during momentary L2 signal interruptions, which also provides instantaneous cycle-slip correction capabilities. The performance of this approach is assessed using data collected on Okinawa Island in Japan during a plasma bubble event that occurred on 23 March 2004. While an improvement in the continuity of TEC time series is obtained, we question the reliability of any cycle-slip correction technique when discontinuities on both GPS legacy frequencies occur simultaneously for more than a few seconds.

  12. GPS-aided gravimetry at 30 km altitude from a balloon-borne platform

    NASA Technical Reports Server (NTRS)

    Lazarewicz, Andrew R.; Evans, Alan G.

    1989-01-01

    A balloon-borne experiment, flown at 30 km altitude over New Mexico, was used to test dynamic differential Global Positioning System (GPS) tracking in support of gravimetry at high-altitudes. The experiment package contained a gravimeter (Vibrating String Accelerometer), a full complement of inertial instruments, a TI-4100 GPS receiver and a radar transponder. The flight was supported by two GPS receivers on the ground near the flight path. From the 8 hour flight, about a forty minute period was selected for analysis. Differential GPS phase measurements were used to estimate changes in position over the sample time interval, or average velocity. In addition to average velocity, differential positions and numerical averages of acceleration were obtained in three components. Gravitational acceleration was estimated by correcting for accelerations due to translational motion, ignoring all rotational effects.

  13. Spacecraft Doppler tracking with a VLBI antenna

    NASA Technical Reports Server (NTRS)

    Comoretto, G.; Iess, L.; Bertotti, B.; Brenkle, J. P.; Horton, T.

    1990-01-01

    Preliminary results are reported from Doppler-shift measurements to the Voyager-2 spacecraft at a distance of 26 AU, obtained using the 32-m VLBI antenna at Medicina (Italy) during July and August 1988. The apparatus comprises the el-az antenna, an S-X-band receiver, a hydrogen maser to generate the reference signal, a Mark III VLBI terminal, and a digital tone extractor capable of isolating a tone of known frequency from a noisy signal and giving its phase and amplitude. A signal transmitted in S-band from the NASA Deep Space Network (DSN) station in Australia and retransmitted coherently in X-band by Voyager, was received 7 h 6 min later at Medicina and at the DSN station in Madrid. Sample data are presented graphically and shown to be of generally high quality; further in-depth analysis is under way.

  14. Ion track etching revisited: II. Electronic properties of aged tracks in polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz Hernández, G.; Cruz, S. A.; Garcia-Arellano, H.; Vacik, J.; Hnatowicz, V.; Kiv, A.; Alfonta, L.

    2018-02-01

    We compile here electronic ion track etching effects, such as capacitive-type currents, current spike emission, phase shift, rectification and background currents that eventually emerge upon application of sinusoidal alternating voltages across thin, aged swift heavy ion-irradiated polymer foils during etching. Both capacitive-type currents and current spike emission occur as long as obstacles still prevent a smooth continuous charge carrier passage across the foils. In the case of sufficiently high applied electric fields, these obstacles are overcome by spike emission. These effects vanish upon etchant breakthrough. Subsequent transmitted currents are usually of Ohmic type, but shortly after breakthrough (during the track' core etching) often still exhibit deviations such as strong positive phase shifts. They stem from very slow charge carrier mobility across the etched ion tracks due to retarding trapping/detrapping processes. Upon etching the track's penumbra, one occasionally observes a split-up into two transmitted current components, one with positive and another one with negative phase shifts. Usually, these phase shifts vanish when bulk etching starts. Current rectification upon track etching is a very frequent phenomenon. Rectification uses to inverse when core etching ends and penumbra etching begins. When the latter ends, rectification largely vanishes. Occasionally, some residual rectification remains which we attribute to the aged polymeric bulk itself. Last not least, we still consider background currents which often emerge transiently during track etching. We could assign them clearly to differences in the electrochemical potential of the liquids on both sides of the etched polymer foils. Transient relaxation effects during the track etching cause their eventually chaotic behaviour.

  15. Detection of ionospheric scintillation effects using LMD-DFA

    NASA Astrophysics Data System (ADS)

    Tadivaka, Raghavendra Vishnu; Paruchuri, Bhanu Priyanka; Miriyala, Sridhar; Koppireddi, Padma Raju; Devanaboyina, Venkata Ratnam

    2017-08-01

    The performance and measurement accuracy of global navigation satellite system (GNSS) receivers is greatly affected by ionospheric scintillations. Rapid amplitude and phase variations in the received GPS signal, known as ionospheric scintillation, affects the tracking of signals by GNSS receivers. Hence, there is a need to investigate the monitoring of various activities of the ionosphere and to develop a novel approach for mitigation of ionospheric scintillation effects. A method based on Local Mean Decomposition (LMD)-Detrended Fluctuation Analysis (DFA) has been proposed. The GNSS data recorded at Koneru Lakshmaiah (K L) University, Guntur, India were considered for analysis. The carrier to noise ratio (C/N0) of GNSS satellite vehicles were decomposed into several product functions (PF) using LMD to extract the intrinsic features in the signal. Scintillation noise was removed by the DFA algorithm by selecting a suitable threshold. It was observed that the performance of the proposed LMD-DFA was better than that of empirical mode decomposition (EMD)-DFA.

  16. Research in Application of Geodetic GPS Receivers in Time Synchronization

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Zhang, P.; Sun, Z.; Wang, F.; Wang, X.

    2018-04-01

    In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV) which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV) is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability) cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns). In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km) were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2-4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even there will be at least 2 common-view satellites for each tracking period when the elevation angle is 30°. Data processing used precise GPS satellite ephemeris, double-frequency P-code combination observations without ionosphere effects and the correction of the Black troposphere Delay Model. the weighted average of all common-viewed GPS satellites in the same tracking period is taken by weighting the root-mean-square error of each satellite, finally a time comparison data between two stations is obtained, and then the time synchronization result between the two stations (PTB and USNO) is obtained. It can be seen from the analysis of time synchronization result that the root mean square error of REFSV (the difference between the local frequency standard at the mid-point of the actual tracking length and the tracked satellite time in unit of 0.1 ns) shows a linear change within one day, However the jump occurs when jumping over the day which is mainly caused by satellites position being changed due to the interpolation of two-day precise satellite ephemeris across the day. the overall trend of time synchronization result is declining and tends to be stable within a week-long time. We compared the time synchronization results (without considering the hardware delay correction) with those published by the International Bureau of Weights and Measures (BIPM), and the comparing result from a week earlier shows that the trend is same but there is a systematic bias which was mainly caused by hardware delays of geodetic GPS receiver. Regardless of the hardware delay, the comparing result is about between 102 ns and 106 ns. the vast majority of the difference within 2 ns but the difference of individual moment does not exceed 4ns when taking into account the systemic bias which mainly caused by hardware delay. Therefore, it is feasible to use the geodetic GPS receiver to achieve the time synchronization result in nanosecond order between two stations which separated by thousands kilometers, and multi-channel geodetic GPS receivers have obvious advantages over single-channel geodetic GPS receivers in the number of common-viewing satellites. In order to obtain higher precision (e.g sub-nanosecond order) time synchronization results, we shall take account into carrier phase observations, hardware delay ,and more error-influencing factors should be considered such as troposphere delay correction, multipath effects, and hardware delays changes due to temperature changes.

  17. 12 CFR 1807.600 - Tracking funds-general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Tracking funds-general. 1807.600 Section 1807.600 Banks and Banking COMMUNITY DEVELOPMENT FINANCIAL INSTITUTIONS FUND, DEPARTMENT OF THE TREASURY CAPITAL MAGNET FUND Tracking Requirements § 1807.600 Tracking funds—general. An Awardee receiving a CMF...

  18. IMM tracking of a theater ballistic missile during boost phase

    NASA Astrophysics Data System (ADS)

    Hutchins, Robert G.; San Jose, Anthony

    1998-09-01

    Since the SCUD launches in the Gulf War, theater ballistic missile (TBM) systems have become a growing concern for the US military. Detection, tracking and engagement during boost phase or shortly after booster cutoff are goals that grow in importance with the proliferation of weapons of mass destruction. This paper addresses the performance of tracking algorithms for TBMs during boost phase and across the transition to ballistic flight. Three families of tracking algorithms are examined: alpha-beta-gamma trackers, Kalman-based trackers, and the interactive multiple model (IMM) tracker. In addition, a variation on the IMM to include prior knowledge of a booster cutoff parameter is examined. Simulated data is used to compare algorithms. Also, the IMM tracker is run on an actual ballistic missile trajectory. Results indicate that IMM trackers show significant advantage in tracking through the model transition represented by booster cutoff.

  19. AUTOMATIC COUNTER

    DOEpatents

    Robinson, H.P.

    1960-06-01

    An automatic counter of alpha particle tracks recorded by a sensitive emulsion of a photographic plate is described. The counter includes a source of mcdulated dark-field illumination for developing light flashes from the recorded particle tracks as the photographic plate is automatically scanned in narrow strips. Photoelectric means convert the light flashes to proportional current pulses for application to an electronic counting circuit. Photoelectric means are further provided for developing a phase reference signal from the photographic plate in such a manner that signals arising from particle tracks not parallel to the edge of the plate are out of phase with the reference signal. The counting circuit includes provision for rejecting the out-of-phase signals resulting from unoriented tracks as well as signals resulting from spurious marks on the plate such as scratches, dust or grain clumpings, etc. The output of the circuit is hence indicative only of the tracks that would be counted by a human operator.

  20. The optimization of self-phased arrays for diurnal motion tracking of synchronous satellites

    NASA Technical Reports Server (NTRS)

    Theobold, D. M.; Hodge, D. B.

    1977-01-01

    The diurnal motion of a synchronous satellite necessitates mechanical tracking when a large aperture, high gain antenna is employed at the earth terminal. An alternative solution to this tracking problem is to use a self phased array consisting of a number of fixed pointed elements, each with moderate directivity. Non-mechanical tracking and adequate directive gain are achieved electronically by phase coherent summing of the element outputs. The element beamwidths provide overlapping area coverage of the satellite motion but introduce a diurnal variation into the array gain. The optimum element beamwidth and pointing direction of these elements can be obtained under the condition that the array gain is maximized simultaneously with the minimization of the diurnal variation.

  1. Prototype of a coherent tracking and detection receiver with wideband vibration compensation for free-space laser communications

    NASA Astrophysics Data System (ADS)

    Giggenbach, Dirk; Schex, Anton; Wandernoth, Bernhard

    1996-04-01

    The Optical Communications Group of the German Aerospace Research Establishment (DLR) has investigated the feasibility of a fiberless receiver telescope for high sensitive coherent optical space communication, resulting in an elegant pointing, acquisition and tracking (PAT) concept. To demonstrate the feasibility of this new concept, an optical receiver terminal that coherently obtains both the spatial error signal for tracking and the data signal with only one set of detectors has been built. The result is a very simple and compact setup with few optical surfaces. It does not require fibers for superpositioning and is capable to compensate for microaccelerations up to about one kilohertz.

  2. Multi-object tracking of human spermatozoa

    NASA Astrophysics Data System (ADS)

    Sørensen, Lauge; Østergaard, Jakob; Johansen, Peter; de Bruijne, Marleen

    2008-03-01

    We propose a system for tracking of human spermatozoa in phase-contrast microscopy image sequences. One of the main aims of a computer-aided sperm analysis (CASA) system is to automatically assess sperm quality based on spermatozoa motility variables. In our case, the problem of assessing sperm quality is cast as a multi-object tracking problem, where the objects being tracked are the spermatozoa. The system combines a particle filter and Kalman filters for robust motion estimation of the spermatozoa tracks. Further, the combinatorial aspect of assigning observations to labels in the particle filter is formulated as a linear assignment problem solved using the Hungarian algorithm on a rectangular cost matrix, making the algorithm capable of handling missing or spurious observations. The costs are calculated using hidden Markov models that express the plausibility of an observation being the next position in the track history of the particle labels. Observations are extracted using a scale-space blob detector utilizing the fact that the spermatozoa appear as bright blobs in a phase-contrast microscope. The output of the system is the complete motion track of each of the spermatozoa. Based on these tracks, different CASA motility variables can be computed, for example curvilinear velocity or straight-line velocity. The performance of the system is tested on three different phase-contrast image sequences of varying complexity, both by visual inspection of the estimated spermatozoa tracks and by measuring the mean squared error (MSE) between the estimated spermatozoa tracks and manually annotated tracks, showing good agreement.

  3. Adaptive ground implemented phase array

    NASA Technical Reports Server (NTRS)

    Spearing, R. E.

    1973-01-01

    The simulation of an adaptive ground implemented phased array of five antenna elements is reported for a very high frequency system design that is tolerant to the radio frequency interference environment encountered by a tracking data relay satellite. Signals originating from satellites are received by the VHF ring array and both horizontal and vertical polarizations from each of the five elements are multiplexed and transmitted down to ground station. A panel on the transmitting end of the simulation chamber contains up to 10 S-band RFI sources along with the desired signal to simulate the dynamic relationship between user and TDRS. The 10 input channels are summed, and desired and interference signals are separated and corrected until the resultant sum signal-to-interference ratio is maximized. Testing performed with this simulation equipment demonstrates good correlation between predicted and actual results.

  4. Design study of a HEAO-C spread spectrum transponder telemetry system for use with the TDRSS subnet

    NASA Technical Reports Server (NTRS)

    Weathers, G.

    1975-01-01

    The results of a design study of a spread spectrum transponder for use on the HEAO-C satellite were given. The transponder performs the functions of code turn-around for ground range and range-rate determination, ground command receiver, and telemetry data transmitter. The spacecraft transponder and associated communication system components will allow the HEAO-C satellite to utilize the Tracking and Data Relay Satellite System (TDRSS) subnet of the post 1978 STDN. The following areas were discussed in the report: TDRSS Subnet Description, TDRSS-HEAO-C System Configuration, Gold Code Generator, Convolutional Encoder Design and Decoder Algorithm, High Speed Sequence Generators, Statistical Evaluation of Candidate Code Sequences using Amplitude and Phase Moments, Code and Carrier Phase Lock Loops, Total Spread Spectrum Transponder System, and Reference Literature Search.

  5. Visualization of frequency-modulated electric field based on photonic frequency tracking in asynchronous electro-optic measurement system

    NASA Astrophysics Data System (ADS)

    Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao

    2018-04-01

    We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.

  6. Status of the Direct Data Distribution (D(exp 3)) Experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence

    2001-01-01

    NASA Glenn Research Center's Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communications system that transmits information from an advanced technology payload carried by a NASA spacecraft in low Earth orbit (LEO) to a small receiving terminal on Earth. The space-based communications package will utilize a solid-state, K-band phased-array antenna that electronically steers the radiated energy beam toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The array-based link will also demonstrate new digital processing technology that will allow the transmission of substantially increased amounts of latency-tolerant data collected from the LEO spacecraft directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. The technologies demonstrated by D3 will facilitate NASA's transition from using Government-owned communication assets to using commercial communication services. The hardware for D3 will incorporate advanced technology components developed under the High Rate Data Delivery (HRDD) Thrust Area of NASA's Office of Aerospace Technology Space Base Program at Glenn's Communications Technology Division. The flight segment components will include the electrically steerable phased-array antenna, which is being built by the Raytheon System Corporation and utilizes monolithic microwave integrated circuit (MMIC) technology operating at 19.05 GHz; and the digital encoder/modulator chipset, which uses four-channel orthogonal frequency division multiplexing (OFDM). The encoder/modulator will use a chipset developed by SICOM, Inc., which is both bandwidth and power efficient. The ground segment components will include a low-cost, open-loop tracking ground terminal incorporating a cryoreceiver to minimize terminal size without compromising receiver capability. The project is planning to hold a critical design review in the second quarter of fiscal year 2002.

  7. Array Phase Shifters: Theory and Technology

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2007-01-01

    While there are a myriad of applications for microwave phase shifters in instrumentation and metrology, power combining, amplifier linearization, and so on, the most prevalent use is in scanning phased-array antennas. And while this market continues to be dominated by military radar and tracking platforms, many commercial applications have emerged in the past decade or so. These new and potential applications span low-Earth-orbit (LEO) communications satellite constellations and collision warning radar, an aspect of the Intelligent Vehicle Highway System or Automated Highway System. In any case, the phase shifters represent a considerable portion of the overall antenna cost, with some estimates approaching 40 percent for receive arrays. Ferrite phase shifters continue to be the workhorse in military-phased arrays, and while there have been advances in thin film ferrite devices, the review of this device technology in the previous edition of this book is still highly relevant. This chapter will focus on three types of phase shifters that have matured in the past decade: GaAs MESFET monolithic microwave integrated circuit (MMIC), micro-electromechanical systems (MEMS), and thin film ferroelectric-based devices. A brief review of some novel devices including thin film ferrite phase shifters and superconducting switches for phase shifter applications will be provided. Finally, the effects of modulo 2 phase shift limitations, phase errors, and transient response on bit error rate degradation will be considered.

  8. Radiation-hardened fast acquisition/weak signal tracking system and method

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke (Inventor); Boegner, Gregory J. (Inventor); Sirotzky, Steve (Inventor)

    2009-01-01

    A global positioning system (GPS) receiver and method of acquiring and tracking GPS signals comprises an antenna adapted to receive GPS signals; an analog radio frequency device operatively connected to the antenna and adapted to convert the GPS signals from an analog format to a digital format; a plurality of GPS signal tracking correlators operatively connected to the analog RF device; a GPS signal acquisition component operatively connected to the analog RF device and the plurality of GPS signal tracking correlators, wherein the GPS signal acquisition component is adapted to calculate a maximum vector on a databit correlation grid; and a microprocessor operatively connected to the plurality of GPS signal tracking correlators and the GPS signal acquisition component, wherein the microprocessor is adapted to compare the maximum vector with a predetermined correlation threshold to allow the GPS signal to be fully acquired and tracked.

  9. Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)

    2001-01-01

    In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange,, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide CIA code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets [Bull, ION-GPS-2000]. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance [Montenbruck et al., ION-GPS-2000]. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly 17g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached a maximum altitude of over 80 km. A detailed analysis of the attained flight data will be given in the paper together with a evaluation of different receiver designs and antenna concepts.

  10. Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)

    2002-01-01

    In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide C/A code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly l7g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached an altitude of over 80 km. A detailed analysis of the attained flight data is given together with a evaluation of different receiver designs and antenna concepts.

  11. Polynomial Method for PLL Controller Optimization†

    PubMed Central

    Wang, Ta-Chung; Lall, Sanjay; Chiou, Tsung-Yu

    2011-01-01

    The Phase-Locked Loop (PLL) is a key component of modern electronic communication and control systems. PLL is designed to extract signals from transmission channels. It plays an important role in systems where it is required to estimate the phase of a received signal, such as carrier tracking from global positioning system satellites. In order to robustly provide centimeter-level accuracy, it is crucial for the PLL to estimate the instantaneous phase of an incoming signal which is usually buried in random noise or some type of interference. This paper presents an approach that utilizes the recent development in the semi-definite programming and sum-of-squares field. A Lyapunov function will be searched as the certificate of the pull-in range of the PLL system. Moreover, a polynomial design procedure is proposed to further refine the controller parameters for system response away from the equilibrium point. Several simulation results as well as an experiment result are provided to show the effectiveness of this approach. PMID:22163973

  12. Noncoherent Symbol Synchronization Techniques

    NASA Technical Reports Server (NTRS)

    Simon, Marvin

    2005-01-01

    Traditional methods for establishing symbol synchronization (sync) in digital communication receivers assume that carrier sync has already been established, i.e., the problem is addressed at the baseband level assuming that a 'perfect' estimate of carrier phase is available. We refer to this approach as coherent symbol sync. Since, for NRZ signaling, a suppressed carrier sync loop such as an I-Q Costas loop includes integrate-and-dump (I and D) filters in its in-phase (1) and quadrature (Q) arms, the traditional approach is to first track the carrier in the absence of symbol sync information, then feed back the symbol sync estimate to these filters, and then iterate between the two to a desirable operating level In this paper, we revisit the symbol sync problem by examining methods for obtaining such sync in the absence of carrier phase information, i.e., so-called noncoherent symbol sync loops. We compare the performance of these loops with that of a well-known coherent symbol sync loop and examine the conditions under which one is preferable over the other.

  13. A randomized trial using motivational interviewing for maintenance of blood pressure improvements in a community-engaged lifestyle intervention: HUB city steps

    PubMed Central

    Landry, Alicia; Madson, Michael; Thomson, Jessica; Zoellner, Jamie; Connell, Carol; Yadrick, Kathleen

    2015-01-01

    Little is known about the effective dose of motivational interviewing for maintaining intervention-induced health outcome improvements. The purpose of this study was to compare effects of two doses of motivational interviewing for maintaining blood pressure improvements in a community-engaged lifestyle intervention conducted with African-Americans. Participants were tracked through a 12-month maintenance phase following a 6-month intervention targeting physical activity and diet. For the maintenance phase, participants were randomized to receive a low (4) or high (10) dose of motivational interviewing delivered via telephone by trained research staff. Generalized linear models were used to test for group differences in blood pressure. Blood pressure significantly increased during the maintenance phase. No differences were apparent between randomized groups. Results suggest that 10 or fewer motivational interviewing calls over a 12-month period may be insufficient to maintain post-intervention improvements in blood pressure. Further research is needed to determine optimal strategies for maintaining changes. PMID:26590242

  14. A Carrier Estimation Method Based on MLE and KF for Weak GNSS Signals.

    PubMed

    Zhang, Hongyang; Xu, Luping; Yan, Bo; Zhang, Hua; Luo, Liyan

    2017-06-22

    Maximum likelihood estimation (MLE) has been researched for some acquisition and tracking applications of global navigation satellite system (GNSS) receivers and shows high performance. However, all current methods are derived and operated based on the sampling data, which results in a large computation burden. This paper proposes a low-complexity MLE carrier tracking loop for weak GNSS signals which processes the coherent integration results instead of the sampling data. First, the cost function of the MLE of signal parameters such as signal amplitude, carrier phase, and Doppler frequency are used to derive a MLE discriminator function. The optimal value of the cost function is searched by an efficient Levenberg-Marquardt (LM) method iteratively. Its performance including Cramér-Rao bound (CRB), dynamic characteristics and computation burden are analyzed by numerical techniques. Second, an adaptive Kalman filter is designed for the MLE discriminator to obtain smooth estimates of carrier phase and frequency. The performance of the proposed loop, in terms of sensitivity, accuracy and bit error rate, is compared with conventional methods by Monte Carlo (MC) simulations both in pedestrian-level and vehicle-level dynamic circumstances. Finally, an optimal loop which combines the proposed method and conventional method is designed to achieve the optimal performance both in weak and strong signal circumstances.

  15. Count Your Calories and Share Them: Health Benefits of Sharing mHealth Information on Social Networking Sites.

    PubMed

    Oeldorf-Hirsch, Anne; High, Andrew C; Christensen, John L

    2018-04-23

    This study investigates the relationship between sharing tracked mobile health (mHealth) information online, supportive communication, feedback, and health behavior. Based on the Integrated Theory of mHealth, our model asserts that sharing tracked health information on social networking sites benefits users' perceptions of their health because of the supportive communication they gain from members of their online social networks and that the amount of feedback people receive moderates these associations. Users of mHealth apps (N = 511) completed an online survey, and results revealed that both sharing tracked health information and receiving feedback from an online social network were positively associated with supportive communication. Network support both corresponded with improved health behavior and mediated the association between sharing health information and users' health behavior. As users received greater amounts of feedback from their online social networks, however, the association between sharing tracked health information and health behavior decreased. Theoretical implications for sharing tracked health information and practical implications for using mHealth apps are discussed.

  16. MW 08-multi-beam air and surface surveillance radar

    NASA Astrophysics Data System (ADS)

    1989-09-01

    Signal of the Netherlands has developed and is marketing the MW 08, a 3-D radar to be used for short to medium range surveillance, target acquisition, and tracking. MW 08 is a fully automated detecting and tracking radar. It is designed to counter threats from aircraft and low flying antiship missiles. It can also deal with the high level missile threat. MW 08 operates in the 5 cm band using one antenna for both transmitting and receiving. The antenna is an array, consisting of 8 stripline antennas. The received radar energy is processed by 8 receiver channels. These channels come together in the beam forming network, in which 8 virtual beams are formed. From this beam pattern, 6 beams are used for the elevation coverage of 0-70 degrees. MW 08's output signals of the beam former are further handled by FFT and plot processors for target speed information, clutter rejection, and jamming suppression. A general purpose computer handles target track initiation, and tracking. Tracking data are transferred to the command and control systems with 3-D target information for fastest possible lockon.

  17. Accuracy of tracking forest machines with GPS

    Treesearch

    M.W. Veal; S.E. Taylor; T.P. McDonald; D.K. McLemore; M.R. Dunn

    2001-01-01

    This paper describes the results of a study that measured the accuracy of using GPS to track movement of forest machines. Two different commercially available GPS receivers (Trimble ProXR and GeoExplorer II) were used to track\\r\

  18. Power collection reduction by mirror surface nonflatness and tracking error for a central receiver solar power system.

    PubMed

    McFee, R H

    1975-07-01

    The effects of random waviness, curvature, and tracking error of plane-mirror heliostats in a rectangular array around a central-receiver solar power system are determined by subdividing each mirror into 484 elements, assuming the slope of each element to be representative of the surface slope average at its location, and summing the contributions of all elements and then of all mirrors in the array. Total received power and flux density distribution are computed for a given sun location and set of array parameter values. Effects of shading and blocking by adjacent mirrors are included in the calculation. Alt-azimuth mounting of the heliostats is assumed. Representative curves for two receiver diameters and two sun locations indicate a power loss of 20% for random waviness, curvature, and tracking error of 0.1 degrees rms, 0.002 m(-1), and 0.5 degrees , 3sigma, respectively, for an 18.2-m diam receiver and 0.3 degrees rms, 0.005 m(-1), and greater than 1 degrees , respectively, for a 30.4-m diam receiver.

  19. On the Effects of a Spacecraft Subcarrier Unbalanced Modulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien Manh

    1993-01-01

    This paper presents mathematical models with associated analysis of the deleterious effects which a spacecraft's subcarrier unbalanced modulator has on the performance of a phase-modulated residual carrier communications link. The undesired spectral components produced by the phase and amplitude imbalances in the subcarrier modulator can cause (1) potential interference to the carrier tracking and (2) degradation in the telemetry bit signal-to-noise ratio (SNR). A suitable model for the unbalanced modulator is developed and the threshold levels of undesired components that fall into the carrier tracking loop are determined. The distribution of the carrier phase error caused by the additive White Gaussian noise (AWGN) and undesired component at the residual RF carrier is derived for the limiting cases. Further, this paper analyses the telemetry bit signal-to-noise ratio degradations due to undesirable spectral components as well as the carrier tracking phase error induced by phase and amplitude imbalances. Numerical results which indicate the sensitivity of the carrier tracking loop and the telemetry symbol-error rate (SER) to various parameters of the models are also provided as a tool in the design of the subcarrier balanced modulator.

  20. Digital accumulators in phase and frequency tracking loops

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami; Statman, Joseph I.

    1990-01-01

    Results on the effects of digital accumulators in phase and frequency tracking loops are presented. Digital accumulators or summers are used extensively in digital signal processing to perform averaging or to reduce processing rates to acceptable levels. For tracking the Doppler of high-dynamic targets at low carrier-to-noise ratios, it is shown through simulation and experiment that digital accumulators can contribute an additional loss in operating threshold. This loss was not considered in any previous study and needs to be accounted for in performance prediction analysis. Simulation and measurement results are used to characterize the loss due to the digital summers for three different tracking loops: a digital phase-locked loop, a cross-product automatic frequency tracking loop, and an extended Kalman filter. The tracking algorithms are compared with respect to their frequency error performance and their ability to maintain lock during severe maneuvers at various carrier-to-noise ratios. It is shown that failure to account for the effect of accumulators can result in an inaccurate performance prediction, the extent of which depends highly on the algorithm used.

  1. Complex Versus Simple Ankle Movement Training in Stroke Using Telerehabilitation: A Randomized Controlled Trial

    PubMed Central

    Deng, Huiqiong; Durfee, William K.; Nuckley, David J.; Rheude, Brandon S.; Severson, Amy E.; Skluzacek, Katie M.; Spindler, Kristen K.; Davey, Cynthia S.

    2012-01-01

    Background Telerehabilitation allows rehabilitative training to continue remotely after discharge from acute care and can include complex tasks known to create rich conditions for neural change. Objectives The purposes of this study were: (1) to explore the feasibility of using telerehabilitation to improve ankle dorsiflexion during the swing phase of gait in people with stroke and (2) to compare complex versus simple movements of the ankle in promoting behavioral change and brain reorganization. Design This study was a pilot randomized controlled trial. Setting Training was done in the participant's home. Testing was done in separate research labs involving functional magnetic resonance imaging (fMRI) and multi-camera gait analysis. Patients Sixteen participants with chronic stroke and impaired ankle dorsiflexion were assigned randomly to receive 4 weeks of telerehabilitation of the paretic ankle. Intervention Participants received either computerized complex movement training (track group) or simple movement training (move group). Measurements Behavioral changes were measured with the 10-m walk test and gait analysis using a motion capture system. Brain reorganization was measured with ankle tracking during fMRI. Results Dorsiflexion during gait was significantly larger in the track group compared with the move group. For fMRI, although the volume, percent volume, and intensity of cortical activation failed to show significant changes, the frequency count of the number of participants showing an increase versus a decrease in these values from pretest to posttest measurements was significantly different between the 2 groups, with the track group decreasing and the move group increasing. Limitations Limitations of this study were that no follow-up test was conducted and that a small sample size was used. Conclusions The results suggest that telerehabilitation, emphasizing complex task training with the paretic limb, is feasible and can be effective in promoting further dorsiflexion in people with chronic stroke. PMID:22095209

  2. System and circuitry to provide stable transconductance for biasing

    NASA Technical Reports Server (NTRS)

    Garverick, Steven L. (Inventor); Yu, Xinyu (Inventor)

    2012-01-01

    An amplifier system can include an input amplifier configured to receive an analog input signal and provide an amplified signal corresponding to the analog input signal. A tracking loop is configured to employ delta modulation for tracking the amplified signal, the tracking loop providing a corresponding output signal. A biasing circuit is configured to adjust a bias current to maintain stable transconductance over temperature variations, the biasing circuit providing at least one bias signal for biasing at least one of the input amplifier and the tracking loop, whereby the circuitry receiving the at least one bias signal exhibits stable performance over the temperature variations. In another embodiment the biasing circuit can be utilized in other applications.

  3. Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahnd, Guillaume, E-mail: g.zahnd@erasmusmc.nl; Salles, Sébastien; Liebgott, Hervé

    2015-02-15

    Purpose: Tracking the motion of biological tissues represents an important issue in the field of medical ultrasound imaging. However, the longitudinal component of the motion (i.e., perpendicular to the beam axis) remains more challenging to extract due to the rather coarse resolution cell of ultrasound scanners along this direction. The aim of this study is to introduce a real-time beamforming strategy dedicated to acquire tagged images featuring a distinct pattern in the objective to ease the tracking. Methods: Under the conditions of the Fraunhofer approximation, a specific apodization function was applied to the received raw channel data, in real-time duringmore » image acquisition, in order to introduce a periodic oscillations pattern along the longitudinal direction of the radio frequency signal. Analytic signals were then extracted from the tagged images, and subpixel motion tracking of the intima–media complex was subsequently performed offline, by means of a previously introduced bidimensional analytic phase-based estimator. Results: The authors’ framework was applied in vivo on the common carotid artery from 20 young healthy volunteers and 6 elderly patients with high atherosclerosis risk. Cine-loops of tagged images were acquired during three cardiac cycles. Evaluated against reference trajectories manually generated by three experienced analysts, the mean absolute tracking error was 98 ± 84 μm and 55 ± 44 μm in the longitudinal and axial directions, respectively. These errors corresponded to 28% ± 23% and 13% ± 9% of the longitudinal and axial amplitude of the assessed motion, respectively. Conclusions: The proposed framework enables tagged ultrasound images of in vivo tissues to be acquired in real-time. Such unconventional beamforming strategy contributes to improve tracking accuracy and could potentially benefit to the interpretation and diagnosis of biomedical images.« less

  4. Experimental demonstration of tri-aperture Differential Synthetic Aperture Ladar

    NASA Astrophysics Data System (ADS)

    Zhao, Zhilong; Huang, Jianyu; Wu, Shudong; Wang, Kunpeng; Bai, Tao; Dai, Ze; Kong, Xinyi; Wu, Jin

    2017-04-01

    A tri-aperture Differential Synthetic Aperture Ladar (DSAL) is demonstrated in laboratory, which is configured by using one common aperture to transmit the illuminating laser and another two along-track receiving apertures to collect back-scattered laser signal for optical heterodyne detection. The image formation theory on this tri-aperture DSAL shows that there are two possible methods to reconstruct the azimuth Phase History Data (PHD) for aperture synthesis by following standard DSAL principle, either method resulting in a different matched filter as well as an azimuth image resolution. The experimental setup of the tri-aperture DSAL adopts a frequency chirped laser of about 40 mW in 1550 nm wavelength range as the illuminating source and an optical isolator composed of a polarizing beam-splitter and a quarter wave plate to virtually line the three apertures in the along-track direction. Various DSAL images up to target distance of 12.9 m are demonstrated using both PHD reconstructing methods.

  5. Precision pointing and tracking through random media by exploitation of the enhanced backscatter phenomenon.

    PubMed

    Harvey, J E; Reddy, S P; Phillips, R L

    1996-07-20

    The active illumination of a target through a turbulent medium with a monostatic transmitter-receiver results in a naturally occurring conjugate wave caused by reciprocal scattering paths that experience identical phase variations. This reciprocal path-scattering phenomenon produces an enhanced backscatter in the retroverse direction (precisely along the boresight of the pointing telescope). A dual aperture causes this intensity enhancement to take the form of Young's interference fringes. Interference fringes produced by the reciprocal path-scattering phenomenon are temporally stable even in the presence of time-varying turbulence. Choosing the width-to-separation ratio of the dual apertures appropriately and utilizing orthogonal polarizations to suppress the time-varying common-path scattered radiation allow one to achieve interferometric sensitivity in pointing accuracy through a random medium or turbulent atmosphere. Computer simulations are compared with laboratory experimental data. This new precision pointing and tracking technique has potential applications in ground-to-space laser communications, laser power beaming to satellites, and theater missile defense scenarios.

  6. Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.

    PubMed

    Thomas, Paul M; Foster, Gregory D

    2005-01-01

    Pharmaceuticals are a class of emerging contaminants whose fate in the wastewater treatment process has received increasing attention in past years. Acidic pharmaceuticals (ibuprofen, naproxen, mefenamic acid, ketoprofen, and diclofenac), caffeine, and the antibacterial triclosan were quantified at four different steps of wastewater treatment from three urban wastewater treatment plants. The compounds were extracted from wastewater samples on Waters Oasis hydrophilic-lipophilic balance solid-phase extraction columns, silylated, and analyzed by gas chromatography-mass spectrometry. For the chemicals studied, it was found that the majority of the influent load was removed during secondary treatment (51-99%), yielding expected surface water concentrations of 13 to 56 ng/L.

  7. Critical Spacecraft-to-Earth Communications for Mars Exploration Rover (MER) entry, descent and landing

    NASA Technical Reports Server (NTRS)

    Hurd, William J.; Estabrook, Polly; Racho, Caroline S.; Satorius, Edgar H.

    2002-01-01

    For planetary lander missions, the most challenging phase of the spacecraft to ground communications is during the entry, descent, and landing (EDL). As each 2003 Mars Exploration Rover (MER) enters the Martian atmosphere, it slows dramatically. The extreme acceleration and jerk cause extreme Doppler dynamics on the X-band signal received on Earth. When the vehicle slows sufficiently, the parachute is deployed, causing almost a step in deceleration. After parachute deployment, the lander is lowered beneath the parachute on a bridle. The swinging motion of the lander imparts high Doppler dynamics on the signal and causes the received signal strength to vary widely, due to changing antenna pointing angles. All this time, the vehicle transmits important health and status information that is especially critical if the landing is not successful. Even using the largest Deep Space Network antennas, the weak signal and high dynamics render it impossible to conduct reliable phase coherent communications. Therefore, a specialized form of frequency-shift-keying will be used. This paper describes the EDL scenario, the signal conditions, the methods used to detect and frequency-track the carrier and to detect the data modulation, and the resulting performance estimates.

  8. Semi-automatic tracking, smoothing and segmentation of hyoid bone motion from videofluoroscopic swallowing study.

    PubMed

    Kim, Won-Seok; Zeng, Pengcheng; Shi, Jian Qing; Lee, Youngjo; Paik, Nam-Jong

    2017-01-01

    Motion analysis of the hyoid bone via videofluoroscopic study has been used in clinical research, but the classical manual tracking method is generally labor intensive and time consuming. Although some automatic tracking methods have been developed, masked points could not be tracked and smoothing and segmentation, which are necessary for functional motion analysis prior to registration, were not provided by the previous software. We developed software to track the hyoid bone motion semi-automatically. It works even in the situation where the hyoid bone is masked by the mandible and has been validated in dysphagia patients with stroke. In addition, we added the function of semi-automatic smoothing and segmentation. A total of 30 patients' data were used to develop the software, and data collected from 17 patients were used for validation, of which the trajectories of 8 patients were partly masked. Pearson correlation coefficients between the manual and automatic tracking are high and statistically significant (0.942 to 0.991, P-value<0.0001). Relative errors between automatic tracking and manual tracking in terms of the x-axis, y-axis and 2D range of hyoid bone excursion range from 3.3% to 9.2%. We also developed an automatic method to segment each hyoid bone trajectory into four phases (elevation phase, anterior movement phase, descending phase and returning phase). The semi-automatic hyoid bone tracking from VFSS data by our software is valid compared to the conventional manual tracking method. In addition, the ability of automatic indication to switch the automatic mode to manual mode in extreme cases and calibration without attaching the radiopaque object is convenient and useful for users. Semi-automatic smoothing and segmentation provide further information for functional motion analysis which is beneficial to further statistical analysis such as functional classification and prognostication for dysphagia. Therefore, this software could provide the researchers in the field of dysphagia with a convenient, useful, and all-in-one platform for analyzing the hyoid bone motion. Further development of our method to track the other swallowing related structures or objects such as epiglottis and bolus and to carry out the 2D curve registration may be needed for a more comprehensive functional data analysis for dysphagia with big data.

  9. Bounded tracking for nonminimum phase nonlinear systems with fast zero dynamics

    DOT National Transportation Integrated Search

    1996-12-01

    A PostScript file. In this paper, tracking control laws for nonminimum phase nonlinear systems with both fast and slow, possibly unstable, zero dynamics are derived. The fast zero dynamics arise from a perturbation of a nominal system. These fast zer...

  10. Laser interferometer used for nanometer vibration measurements

    NASA Astrophysics Data System (ADS)

    Sun, Jiaxing; Yang, Jun; Liu, Zhihai; Yuan, Libo

    2007-01-01

    A novel laser interferometer which adopts alternating modulation phase tracking homodyne technique is proposed. The vibration of nanometer-accuracy is measured with the improved Michelson interferometer by adding cat's eye moving mirror and PZT phase modulation tracking structure. The working principle and the structure of the interferometer are analyzed and the demodulation scheme of alternating phase modulation and tracking is designed. The signal detection is changed from direct current detecting to alternating current detecting. The signal's frequency spectrum transform is achieved, the low-frequency noise jamming is abated, the Signal-to-Noise of the system is improved and the measured resolution is enhanced. Phase tracking technique effectively suppresses the low-frequency noise which is caused by outside environment factors such as temperature and vibration, and the stability of the system is enhanced. The experimental results indicate that for the signal with the frequency of 100Hz and the amplitude of 25nm, the output Signal-to-Noise is 30dB and the measured resolution is 1nm.

  11. Analysis on Tracking Schedule and Measurements Characteristics for the Spacecraft on the Phase of Lunar Transfer and Capture

    NASA Astrophysics Data System (ADS)

    Song, Young-Joo; Choi, Su-Jin; Ahn, Sang-il; Sim, Eun-Sup

    2014-03-01

    In this work, the preliminary analysis on both the tracking schedule and measurements characteristics for the spacecraft on the phase of lunar transfer and capture is performed. To analyze both the tracking schedule and measurements characteristics, lunar transfer and capture phases¡¯ optimized trajectories are directly adapted from former research, and eleven ground tracking facilities (three Deep Space Network sties, seven Near Earth Network sites, one Daejeon site) are assumed to support the mission. Under these conceptual mission scenarios, detailed tracking schedules and expected measurement characteristics during critical maneuvers (Trans Lunar Injection, Lunar Orbit Insertion and Apoapsis Adjustment Maneuver), especially for the Deajeon station, are successfully analyzed. The orders of predicted measurements' variances during lunar capture phase according to critical maneuvers are found to be within the order of mm/s for the range and micro-deg/s for the angular measurements rates which are in good agreement with the recommended values of typical measurement modeling accuracies for Deep Space Networks. Although preliminary navigation accuracy guidelines are provided through this work, it is expected to give more practical insights into preparing the Korea's future lunar mission, especially for developing flight dynamics subsystem.

  12. Ionospheric corrections to precise time transfer using GPS

    NASA Technical Reports Server (NTRS)

    Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.

    1994-01-01

    The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of ionospheric time delay in the northeastern U.S., and initial results with the ICS-4000Z, will be presented.

  13. 21 CFR 821.55 - Confidentiality.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... MEDICAL DEVICE TRACKING REQUIREMENTS Records and Inspections § 821.55 Confidentiality. (a) Any patient receiving a device subject to tracking requirements under this part may refuse to release, or refuse... identifying information for the purpose of tracking. (b) Records and other information submitted to FDA under...

  14. Artificial light on water attracts turtle hatchlings during their near shore transit

    PubMed Central

    Thums, Michele; Whiting, Scott D.; Reisser, Julia; Pendoley, Kellie L.; Proietti, Maira; Hetzel, Yasha; Fisher, Rebecca; Meekan, Mark G.

    2016-01-01

    We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s−1. This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal. PMID:27293795

  15. Artificial light on water attracts turtle hatchlings during their near shore transit.

    PubMed

    Thums, Michele; Whiting, Scott D; Reisser, Julia; Pendoley, Kellie L; Pattiaratchi, Charitha B; Proietti, Maira; Hetzel, Yasha; Fisher, Rebecca; Meekan, Mark G

    2016-05-01

    We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s(-1). This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal.

  16. High dynamic GPS receiver validation demonstration

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Statman, J. I.; Vilnrotter, V. A.

    1985-01-01

    The Validation Demonstration establishes that the high dynamic Global Positioning System (GPS) receiver concept developed at JPL meets the dynamic tracking requirements for range instrumentation of missiles and drones. It was demonstrated that the receiver can track the pseudorange and pseudorange rate of vehicles with acceleration in excess of 100 g and jerk in excess of 100 g/s, dynamics ten times more severe than specified for conventional High Dynamic GPS receivers. These results and analytic extensions to a complete system configuration establish that all range instrumentation requirements can be met. The receiver can be implemented in the 100 cu in volume required by all missiles and drones, and is ideally suited for transdigitizer or translator applications.

  17. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems

    PubMed Central

    Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio

    2016-01-01

    Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information. PMID:27999318

  18. Standard B-Mode Ultrasound Measures Local Carotid Artery Characteristics as Reliably as Radiofrequency Phase Tracking in Symptomatic Carotid Artery Patients.

    PubMed

    Steinbuch, Jeire; Hoeks, Arnold P G; Hermeling, Evelien; Truijman, Martine T B; Schreuder, Floris H B M; Mess, Werner H

    2016-02-01

    Local arterial stiffness can be assessed with high accuracy and precision by measuring arterial distension on the basis of phase tracking of radiofrequency ultrasound signals acquired at a high frame rate. However, in clinical practice, B-mode ultrasound registrations are made at a low frame rate (20-50 Hz). We compared the accuracy and intra-subject precision of edge tracking and phase tracking distension in symptomatic carotid artery patients. B-mode ultrasound recordings (40 mm, 37 fps) and radiofrequency recordings (31 lines covering 29 mm, 300 fps) were acquired from the left common carotid artery of 30 patients (aged 45-88 y) with recent cerebrovascular events. To extract the distension, semi-automatic echo edge and phase tracking algorithms were applied to B-mode and radiofrequency recordings, respectively. Both methods exhibited a similar intra-subject precision for distension (standard deviation = 44 μm and 47 μm, p = 0.66) and mean distension (difference: -6 ± 69 μm, p = 0.67). Intra-subject distension inhomogeneity tends to be larger for edge tracking (difference: 15 ± 35 μm, p = 0.04). Standard B-mode scanners are suitable for measuring local artery characteristics in symptomatic carotid artery patients with good precision and accuracy. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Autonomous Airborne Refueling Demonstration: Phase I Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Nabaa, Nassib

    2007-01-01

    The first phase of the Autonomous Airborne Refueling Demonstration (AARD) project was completed on August 30, 2006. The goal of this 15-month effort was to develop and flight-test a system to demonstrate an autonomous refueling engagement using the Navy style hose-and-drogue air-to-air refueling method. The prime contractor for this Defense Advanced Research Projects Agency (DARPA) sponsored program was Sierra Nevada Corporation (SNC), Sparks, Nevada. The responsible flight-test organization was the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC), Edwards, California, which also provided the F/A-18 receiver airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). The B-707-300 tanker airplane (The Boeing Company) was contracted through Omega Aerial Refueling Services, Inc., Alexandria, Virginia, and the optical tracking system was contracted through OCTEC Ltd., Bracknell, Berkshire, United Kingdom. Nine research flights were flown, testing the functionality and performance of the system in a stepwise manner, culminating in the plug attempts on the final flight. Relative position keeping was found to be very stable and accurate. The receiver aircraft was capable of following the tanker aircraft through turns while maintaining its relative position. During the last flight, six capture attempts were made, two of which were successful. The four misses demonstrated excellent characteristics, the receiver retreating from the drogue in a controlled, safe, and predictable manner that precluded contact between the drogue and the receiver aircraft. The position of the receiver aircraft when engaged and in position for refueling was found to be 5.5 to 8.5 ft low of the ideal position. The controller inputs to the F/A-18 were found to be extremely small.

  20. Autonomous Airborne Refueling Demonstration, Phase I Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Nabaa, Nassib

    2007-01-01

    The first phase of the Autonomous Airborne Refueling Demonstration (AARD) project was completed on August 30, 2006. The goal of this 15-month effort was to develop and flight-test a system to demonstrate an autonomous refueling engagement using the Navy style hose-and-drogue air-to-air refueling method. The prime contractor for this Defense Advanced Research Projects Agency (DARPA) sponsored program was Sierra Nevada Corporation (SNC), Sparks, Nevada. The responsible flight-test organization was the NASA Dryden Flight Research Center (DFRC), Edwards, California, which also provided the F/A-18 receiver airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). The B-707-300 tanker airplane (The Boeing Company) was contracted through Omega Aerial Refueling Services, Inc., Alexandria, Virginia, and the optical tracking system was contracted through OCTEC Ltd., Bracknell, Berkshire, United Kingdom. Nine research flights were flown, testing the functionality and performance of the system in a stepwise manner, culminating in the plug attempts on the final flight. Relative position keeping was found to be very stable and accurate. The receiver aircraft was capable of following the tanker aircraft through turns while maintaining its relative position. During the last flight, six capture attempts were made, two of which were successful. The four misses demonstrated excellent characteristics, the receiver retreating from the drogue in a controlled, safe, and predictable manner that precluded contact between the drogue and the receiver aircraft. The position of the receiver aircraft when engaged and in position for refueling was found to be 5.5 to 8.5 ft low of the ideal position. The controller inputs to the F/A-18 were found to be extremely small

  1. 25. INTERIOR VIEW LOOKING SOUTH IN THE ORE RECEIVING LEVEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. INTERIOR VIEW LOOKING SOUTH IN THE ORE RECEIVING LEVEL SHOWING THE TRAMWAY TRACKS IN THE FLOOR, ORE CHUTES IN THE FLOOR, NEWER TRACKS COMING IN FROM THE TRESTLE ON THE EAST SIDE OF THE MILL., AND THE WINDING DRUM THE TRAMWAY IN THE BACKGROUND. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  2. A new 3D tracking method for cell mechanics investigation exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Netti, P. A.; Ferraro, P.

    2014-03-01

    A method for 3D tracking has been developed exploiting Digital Holography features in Microscopy (DHM). In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of samples with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the amplitude refocusing in traditional tracking processes. Moreover, in biology and biomedical research fields one of the main topic is the understanding of morphology and mechanics of cells and microorganisms. Biological samples present low amplitude contrast that limits the information that can be retrieved through optical bright-field microscope measurements. The main effect on light propagating in such objects is in phase. This is known as phase-retardation or phase-shift. DHM is an innovative and alternative approach in microscopy, it's a good candidate for no-invasive and complete specimen analysis because its main characteristic is the possibility to discern between intensity and phase information performing quantitative mapping of the Optical Path Length. In this paper, the flexibility of DH is employed to analyze cell mechanics of unstained cells subjected to appropriate stimuli. DHM is used to measure all the parameters useful to understand the deformations induced by external and controlled stresses on in-vitro cells. Our configuration allows 3D tracking of micro-particles and, simultaneously, furnish quantitative phase-contrast maps. Experimental results are presented and discussed for in vitro cells.

  3. 3D deformable organ model based liver motion tracking in ultrasound videos

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Bae; Hwang, Youngkyoo; Oh, Young-Taek; Bang, Won-Chul; Lee, Heesae; Kim, James D. K.; Kim, Chang Yeong

    2013-03-01

    This paper presents a novel method of using 2D ultrasound (US) cine images during image-guided therapy to accurately track the 3D position of a tumor even when the organ of interest is in motion due to patient respiration. Tracking is possible thanks to a 3D deformable organ model we have developed. The method consists of three processes in succession. The first process is organ modeling where we generate a personalized 3D organ model from high quality 3D CT or MR data sets captured during three different respiratory phases. The model includes the organ surface, vessel and tumor, which can all deform and move in accord with patient respiration. The second process is registration of the organ model to 3D US images. From 133 respiratory phase candidates generated from the deformable organ model, we resolve the candidate that best matches the 3D US images according to vessel centerline and surface. As a result, we can determine the position of the US probe. The final process is real-time tracking using 2D US cine images captured by the US probe. We determine the respiratory phase by tracking the diaphragm on the image. The 3D model is then deformed according to respiration phase and is fitted to the image by considering the positions of the vessels. The tumor's 3D positions are then inferred based on respiration phase. Testing our method on real patient data, we have found the accuracy of 3D position is within 3.79mm and processing time is 5.4ms during tracking.

  4. Evaluation of the U.S. Army Alcohol and Drug Abuse Prevention and Control Program. Phase 2

    DTIC Science & Technology

    1994-06-13

    24 Alcohol Last Use and Frequency of Use by Track ................ 26 ! Cannabis and Cocaine Last Use By Track...Outcome ...................................... 69 Alcohol Track II Probability Results ........................... 70 Cannabis Track I1 Probability...81 Time By Treatment Modality for Alcohol By Track ................. 82 Time By Treatment Modality for Cannabis and Cocaine ............. 84

  5. Autonomous Flight Safety System Road Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.; Zoemer, Roger D.; Forney, Chris S.

    2005-01-01

    On February 3, 2005, Kennedy Space Center (KSC) conducted the first Autonomous Flight Safety System (AFSS) test on a moving vehicle -- a van driven around the KSC industrial area. A subset of the Phase III design was used consisting of a single computer, GPS receiver, and UPS antenna. The description and results of this road test are described in this report.AFSS is a joint KSC and Wallops Flight Facility project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations.

  6. Millimeter-wave radar for vital signs sensing

    NASA Astrophysics Data System (ADS)

    Petkie, Douglas T.; Benton, Carla; Bryan, Erik

    2009-05-01

    In this paper, we will describe the development of a 228 GHz heterodyne radar system as a vital signs sensing monitor that can remotely measure respiration and heart rates from distances of 1 to 50 meters. We will discuss the design of the radar system along with several studies of its performance. The system includes the 228 GHz transmitter and heterodyne receiver that are optically coupled to the same 6 inch optical mirror that is used to illuminate the subject under study. Intermediate Frequency (IF) signal processing allows the system to track the phase of the reflected signal through I and Q detection and phase unwrapping. The system monitors the displacement in real time, allowing various studies of its performance to be made. We will review its successes by comparing the measured rates with a wireless health monitor and also describe the challenges of the system.

  7. The track structure in condensed matter

    NASA Astrophysics Data System (ADS)

    Kaplan, I. G.

    1995-11-01

    The physical stage of track formation in a condensed phase is discussed. For interaction of charged particles with condensed molecular media its most important specific features are: (a) the continuous oscillator strength distribution with the broak peak in the energy range 21-22 eV attributed to the collective plasmon-type state; (b) the lowering of ionization potential compared to a gas phase. These specific features must be taken into account for simulation of track structures. The great difference in mass and charge for a electron and heavy ions cause a qualitative difference in their track structures. We analyse the structure of heavy ion tracks and prove the impossibility to use the LET as a universal characteristic for the radiation action of different ions.

  8. Deep Space Navigation with Noncoherent Tracking Data

    NASA Technical Reports Server (NTRS)

    Ellis, J.

    1983-01-01

    Navigation capabilities of noncoherent tracking data are evaluated for interplanetary cruise phase and planetary (Venus) flyby orbit determination. Results of a formal covariance analysis are presented which show that a combination of one-way Doppler and delta DOR yields orbit accuracies comparable to conventional two-way Doppler tracking. For the interplanetary cruise phase, a tracking cycle consisting of a 3-hour Doppler pass and delta DOR (differential one-way range) from two baselines (one observation per overlap) acquired 3 times a month results in 100-km orbit determination accuracy. For reconstruction of a Venus flyby orbit, 10 days tracking at encounter consisting of continuous one-way Doppler and delta DOR sampled at one observation per overlap is sufficient to satisfy the accuracy requirements.

  9. Chang’E-5T Orbit Determination Using Onboard GPS Observations

    PubMed Central

    Su, Xing; Geng, Tao; Li, Wenwen; Zhao, Qile; Xie, Xin

    2017-01-01

    In recent years, Global Navigation Satellite System (GNSS) has played an important role in Space Service Volume, the region enclosing the altitudes above 3000 km up to 36,000 km. As an in-flight test for the feasibility as well as for the performance of GNSS-based satellite orbit determination (OD), the Chinese experimental lunar mission Chang’E-5T had been equipped with an onboard high-sensitivity GNSS receiver with GPS and GLONASS tracking capability. In this contribution, the 2-h onboard GPS data are evaluated in terms of tracking performance as well as observation quality. It is indicated that the onboard receiver can track 7–8 GPS satellites per epoch on average and the ratio of carrier to noise spectral density (C/N0) values are higher than 28 dB-Hz for 90% of all the observables. The C1 code errors are generally about 4.15 m but can be better than 2 m with C/N0 values over 36 dB-Hz. GPS-based Chang’E-5T OD is performed and the Helmert variance component estimation method is investigated to determine the weights of code and carrier phase observations. The results reveal that the orbit consistency is about 20 m. OD is furthermore analyzed with GPS data screened out according to different C/N0 thresholds. It is indicated that for the Chang’E-5T, the precision of OD is dominated by the number of observed satellite. Although increased C/N0 thresholds can improve the overall data quality, the available number of GPS observations is greatly reduced and the resulting orbit solution is poor. PMID:28587174

  10. Chang'E-5T Orbit Determination Using Onboard GPS Observations.

    PubMed

    Su, Xing; Geng, Tao; Li, Wenwen; Zhao, Qile; Xie, Xin

    2017-06-01

    In recent years, Global Navigation Satellite System (GNSS) has played an important role in Space Service Volume, the region enclosing the altitudes above 3000 km up to 36,000 km. As an in-flight test for the feasibility as well as for the performance of GNSS-based satellite orbit determination (OD), the Chinese experimental lunar mission Chang'E-5T had been equipped with an onboard high-sensitivity GNSS receiver with GPS and GLONASS tracking capability. In this contribution, the 2-h onboard GPS data are evaluated in terms of tracking performance as well as observation quality. It is indicated that the onboard receiver can track 7-8 GPS satellites per epoch on average and the ratio of carrier to noise spectral density (C/N0) values are higher than 28 dB-Hz for 90% of all the observables. The C1 code errors are generally about 4.15 m but can be better than 2 m with C/N0 values over 36 dB-Hz. GPS-based Chang'E-5T OD is performed and the Helmert variance component estimation method is investigated to determine the weights of code and carrier phase observations. The results reveal that the orbit consistency is about 20 m. OD is furthermore analyzed with GPS data screened out according to different C/N0 thresholds. It is indicated that for the Chang'E-5T, the precision of OD is dominated by the number of observed satellite. Although increased C/N0 thresholds can improve the overall data quality, the available number of GPS observations is greatly reduced and the resulting orbit solution is poor.

  11. Recent reflux receiver developments under the US DOE program

    NASA Astrophysics Data System (ADS)

    Andraka, C. E.; Diver, R. B.; Moreno, J. B.; Moss, T. A.; Adkins, D. R.

    The United States Department of Energy (DOE) Solar Thermal Program, through Sandia National Laboratories (SNL), is cooperating with industry to commercialize dish-Stirling technology. Sandia and the DOE have actively encouraged the use of liquid metal reflux receivers in these systems to improve efficiency and lower the levelized cost of electricity. The reflux receiver uses two-phase heat transfer as a 'thermal transformer' to transfer heat from a parabolic tracking-concentrator to the heater heads of the Stirling engine. The two-phase system leads to a higher available input temperature, lower thermal stresses, longer life, and independent design of the absorber and engine sections. Two embodiments of reflux receivers have been investigated: Pool boilers and heat pipes. Several pool-boiler reflux receivers have been successfully demonstrated on sun at up to 64 kWt throughput at SNL. In addition, a bench-scale device was operated for 7500 hours to investigate materials compatibility and boiling stability. Significant progress has also been made on heat pipe receiver technology. Sintered metal wick heat pipes have been investigated extensively for application to 7.5 kWe and 25 kWe systems. One test article has amassed over 1800 hours of on-sun operation. Another was limit tested at Sandia to 65 kWt throughput. These devices incorporate a nickel-powder thick wick structure with condensate return directly to the wick surface. Circumferential tubular arteries are optionally employed to improve the operating margin. In addition, DOE has begun a development program for advanced wick structures capable of supporting the Utility Scale Joint Venture Program, requiring up to 100 kWt throughput. Promising technologies include a brazed stainless steel powdered metal wick and a stainless steel metal felt wick. Bench-scale testing has been encouraging, and on-sun testing is expected this fall. Prototype gas-fired hybrid solar receivers have also been demonstrated.

  12. Recent reflux receiver developments under the US DOE program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andraka, C.E.; Diver, R.B.; Moreno, J.B.

    1994-10-01

    The United States Department of Energy (DOE) Solar Thermal Program, through Sandia National Laboratories (SNL), is cooperating with industry to commercialize dish-Stirling technology. Sandia and the DOE have actively encouraged the use of liquid metal reflux receivers in these systems to improve efficiency and lower the levelized cost of electricity. The reflux receiver uses two-phase heat transfer as a {open_quotes}thermal transformer{close_quotes} to transfer heat from a parabolic tracking-concentrator to the heater heads of the Stirling engine. The two-phase system leads to a higher available input temperature, lower thermal stresses, longer life, and independent design of the absorber and engine sections.more » Two embodiments of reflux receivers have been investigated: Pool boilers and heat pipes. Several pool-boiler reflux receivers have been successfully demonstrated on sun at up to 64 kWt throughput at SNL. In addition, a bench-scale device was operated for 7500 hours to investigate materials compatibility and boiling stability. Significant progress has also been made on heat pipe receiver technology. Sintered metal wick heat pipes have been investigated extensively for application to 7.5 kWe and 25 kWe systems. One test article has a massed over 1800 hours of on-sun operation. Another was limit tested at Sandia to 65 kWt throughput. These devices incorporate a nickel-powder thick wick structure with condensate return directly to the wick surface. Circumferential tubular arteries are optionally employed to improve the operating margin. In addition, DOE has begun a development program for advanced wick structures capable of supporting the Utility Scale Joint Venture Program, requiring up to 100 kWt throughput. Promising technologies include a brazed stainless steel powdered metal wick and a stainless steel metal felt wick. Bench-scale testing has been encouraging, and on-sun testing is expected this fall. Prototype gas-fired hybrid solar receivers have also been.« less

  13. Radio Tracking Fish with Small Unmanned Aircraft Systems (sUAS).

    NASA Astrophysics Data System (ADS)

    Dahlgren, R. P.; Anderson, K. R.; Hanson, L.; Pinsker, E. A.; Jonsson, J.; Chapman, D. C.; Witten, D. M.; O'Connor, K. A.

    2017-12-01

    Tracking radio tagged fish by boat or on foot in riverine systems is difficult and time consuming, particularly in large braided island complexes, shallow wetlands, and rocky reaches. Invasive Asian carp are commonly found in these hard to reach areas, but their near-surface feeding behavior makes radio tracking possible. To identify new methods of fish tracking that could same time and money, this study tested the feasibility of tracking Asian carp with Small Unmanned Aerial Systems (sUAS) in areas generally inaccessible to traditional tracking equipment. The U.S. Geological Survey worked with NanoElectromagnetics LLC and WWR Development to create and integrate a lightweight custom radio receiver, directional antenna, and accompanying software into a sUAS platform. The receiver includes independent GPS, software defined radio, and compass. The NASA Ames Research Center (ARC) completed payload integration, electromagnetic-interference and airworthiness testing, and provided a DJI Matrice 600 sUAS for this study. Additionally, ARC provided subject matter experts, airworthiness and flight readiness evaluation, and flight test facilities during preparation; and a pilot, range safety officer, and aircraft engineer during field deployment. Results demonstrate that this custom sUAS and sensor combination can detect radio tags at 100m above ground level and at horizontal ranges of 100m and 300m, with operators in either onshore or offshore locations. With this combination of sUAS and radio receiver, fish can be tracked in areas previously inaccessible and during flooding, providing new insights into riverine fish movement and habitat utilization.

  14. Auto-steering apparatus and method

    DOEpatents

    McKay, Mark D.; Anderson, Matthew O.

    2007-03-13

    A vehicular guidance method involves providing a user interface using which data can be input to establish a contour for a vehicle to follow, the user interface further configured to receive information from a differential global positioning system (DGPS), determining cross track and offset data using information received from the DGPS, generating control values, using at least vehicular kinematics, the cross track, and the offset data, and providing an output to control steering of the vehicle, using the control values, in a direction to follow the established contour while attempting to minimize the cross track and the offset data.

  15. Improvement in the workflow efficiency of treating non-emergency outpatients by using a WLAN-based real-time location system in a level I trauma center.

    PubMed

    Stübig, Timo; Suero, Eduardo; Zeckey, Christian; Min, William; Janzen, Laura; Citak, Musa; Krettek, Christian; Hüfner, Tobias; Gaulke, Ralph

    2013-01-01

    Patient localization can improve workflow in outpatient settings, which might lead to lower costs. The existing wireless local area network (WLAN) architecture in many hospitals opens up the possibility of adopting real-time patient tracking systems for capturing and processing position data; once captured, these data can be linked with clinical patient data. To analyze the effect of a WLAN-based real-time patient localization system for tracking outpatients in our level I trauma center. Outpatients from April to August 2009 were included in the study, which was performed in two different stages. In phase I, patient tracking was performed with the real-time location system, but acquired data were not displayed to the personnel. In phase II tracking, the acquired data were automatically collected and displayed. Total treatment time was the primary outcome parameter. Statistical analysis was performed using multiple linear regression, with the significance level set at 0.05. Covariates included sex, age, type of encounter, prioritization, treatment team, number of residents, and radiographic imaging. 1045 patients were included in our study (540 in phase I and 505 in phase 2). An overall improvement of efficiency, as determined by a significantly decreased total treatment time (23.7%) from phase I to phase II, was noted. Additionally, significantly lower treatment times were noted for phase II patients even when other factors were considered (increased numbers of residents, the addition of imaging diagnostics, and comparison among various localization zones). WLAN-based real-time patient localization systems can reduce process inefficiencies associated with manual patient identification and tracking.

  16. Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2018-01-01

    This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.

  17. Improvement in the workflow efficiency of treating non-emergency outpatients by using a WLAN-based real-time location system in a level I trauma center

    PubMed Central

    Stübig, Timo; Suero, Eduardo; Zeckey, Christian; Min, William; Janzen, Laura; Citak, Musa; Krettek, Christian; Hüfner, Tobias; Gaulke, Ralph

    2013-01-01

    Background Patient localization can improve workflow in outpatient settings, which might lead to lower costs. The existing wireless local area network (WLAN) architecture in many hospitals opens up the possibility of adopting real-time patient tracking systems for capturing and processing position data; once captured, these data can be linked with clinical patient data. Objective To analyze the effect of a WLAN-based real-time patient localization system for tracking outpatients in our level I trauma center. Methods Outpatients from April to August 2009 were included in the study, which was performed in two different stages. In phase I, patient tracking was performed with the real-time location system, but acquired data were not displayed to the personnel. In phase II tracking, the acquired data were automatically collected and displayed. Total treatment time was the primary outcome parameter. Statistical analysis was performed using multiple linear regression, with the significance level set at 0.05. Covariates included sex, age, type of encounter, prioritization, treatment team, number of residents, and radiographic imaging. Results/discussion 1045 patients were included in our study (540 in phase I and 505 in phase 2). An overall improvement of efficiency, as determined by a significantly decreased total treatment time (23.7%) from phase I to phase II, was noted. Additionally, significantly lower treatment times were noted for phase II patients even when other factors were considered (increased numbers of residents, the addition of imaging diagnostics, and comparison among various localization zones). Conclusions WLAN-based real-time patient localization systems can reduce process inefficiencies associated with manual patient identification and tracking. PMID:23676246

  18. Track-Before-Declare Methods in IR Image Sequences

    DTIC Science & Technology

    1992-09-01

    processing methods of this type, known as track- before-declare (TBD), and sometimes by the misleading term track - before - detect , have been employed in systems...Electronic Systems, Vol. AES-il, No. 6. November 1975. 8. A. Corbeil, J. DiDomizio, Track - Before - Detect Development and Demonstration Program, Phase

  19. Noncoherent DTTLs for Symbol Synchronization

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Tkacenko, Andre

    2007-01-01

    Noncoherent data-transition tracking loops (DTTLs) have been proposed for use as symbol synchronizers in digital communication receivers. [Communication- receiver subsystems that can perform their assigned functions in the absence of synchronization with the phases of their carrier signals ( carrier synchronization ) are denoted by the term noncoherent, while receiver subsystems that cannot function without carrier synchronization are said to be coherent. ] The proposal applies, more specifically, to receivers of binary phase-shift-keying (BPSK) signals generated by directly phase-modulating binary non-return-to-zero (NRZ) data streams onto carrier signals having known frequencies but unknown phases. The proposed noncoherent DTTLs would be modified versions of traditional DTTLs, which are coherent. The symbol-synchronization problem is essentially the problem of recovering symbol timing from a received signal. In the traditional, coherent approach to symbol synchronization, it is necessary to establish carrier synchronization in order to recover symbol timing. A traditional DTTL effects an iterative process in which it first generates an estimate of the carrier phase in the absence of symbol-synchronization information, then uses the carrier-phase estimate to obtain an estimate of the symbol-synchronization information, then feeds the symbol-synchronization estimate back to the carrier-phase-estimation subprocess. In a noncoherent symbol-synchronization process, there is no need for carrier synchronization and, hence, no need for iteration between carrier-synchronization and symbol- synchronization subprocesses. The proposed noncoherent symbolsynchronization process is justified theoretically by a mathematical derivation that starts from a maximum a posteriori (MAP) method of estimation of symbol timing utilized in traditional, coherent DTTLs. In that MAP method, one chooses the value of a variable of interest (in this case, the offset in the estimated symbol timing) that causes a likelihood function of symbol estimates over some number of symbol periods to assume a maximum value. In terms that are necessarily oversimplified to fit within the space available for this article, it can be said that the mathematical derivation involves a modified interpretation of the likelihood function that lends itself to noncoherent DTTLs. The proposal encompasses both linear and nonlinear noncoherent DTTLs. The performances of both have been computationally simulated; for comparison, the performances of linear and nonlinear coherent DTTLs have also been computationally simulated. The results of these simulations show that, among other things, the expected mean-square timing errors of coherent and noncoherent DTTLs are relatively insensitive to window width. The results also show that at high signal-to-noise ratios (SNRs), the performances of the noncoherent DTTLs approach those of their coherent counterparts at, while at low SNRs, the noncoherent DTTLs incur penalties of the order of 1.5 to 2 dB.

  20. Tracking and data system support for the Viking 1975 mission to Mars. Volume 2: Launch through landing of Viking 1

    NASA Technical Reports Server (NTRS)

    Mudgway, D. J.; Traxler, M. R.

    1977-01-01

    Problems inherent in the deployment and management of a worldwide tracking and data acquisition network to support the two Viking Orbiters and two Viking Landers simultaneously over 320 million kilometers (200 million miles) of deep space are discussed. Activities described include tracking coverage of the launch phase, the deep space operations during the long cruise phase that occupied approximately 11 months, and the implementation of the a vast worldwide network of tracking sttions and global communications systems. The performance of the personnel, hardware, and software involved in this vast undertaking are evaluated.

  1. Particle tracking and extended object imaging by interferometric super resolution microscopy

    NASA Astrophysics Data System (ADS)

    Gdor, Itay; Yoo, Seunghwan; Wang, Xiaolei; Daddysman, Matthew; Wilton, Rosemarie; Ferrier, Nicola; Hereld, Mark; Cossairt, Oliver (Ollie); Katsaggelos, Aggelos; Scherer, Norbert F.

    2018-02-01

    An interferometric fluorescent microscope and a novel theoretic image reconstruction approach were developed and used to obtain super-resolution images of live biological samples and to enable dynamic real time tracking. The tracking utilizes the information stored in the interference pattern of both the illuminating incoherent light and the emitted light. By periodically shifting the interferometer phase and a phase retrieval algorithm we obtain information that allow localization with sub-2 nm axial resolution at 5 Hz.

  2. Machine protection system for rotating equipment and method

    DOEpatents

    Lakshminarasimha, Arkalgud N.; Rucigay, Richard J.; Ozgur, Dincer

    2003-01-01

    A machine protection system and method for rotating equipment introduces new alarming features and makes use of full proximity probe sensor information, including amplitude and phase. Baseline vibration amplitude and phase data is estimated and tracked according to operating modes of the rotating equipment. Baseline vibration and phase data can be determined using a rolling average and variance and stored in a unit circle or tracked using short term average and long term average baselines. The sensed vibration amplitude and phase is compared with the baseline vibration amplitude and phase data. Operation of the rotating equipment can be controlled based on the vibration amplitude and phase.

  3. 75 FR 63141 - Information Collection; Research Data Archive Use Tracking

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ..., filing of petitions and applications and agency #0;statements of organization and functions are examples... Information Collection; Research Data Archive Use Tracking AGENCY: Forest Service, USDA. ACTION: Notice... information collection, Research Data Archive Use Tracking. DATES: Comments must be received in writing on or...

  4. Optimization of MLS receivers for multipath environments

    NASA Technical Reports Server (NTRS)

    Mcalpine, G. A.; Highfill, J. H., III

    1976-01-01

    The design of a microwave landing system (MLS) aircraft receiver, capable of optimal performance in multipath environments found in air terminal areas, is reported. Special attention was given to the angle tracking problem of the receiver and includes tracking system design considerations, study and application of locally optimum estimation involving multipath adaptive reception and then envelope processing, and microcomputer system design. Results show processing is competitive in this application with i-f signal processing performance-wise and is much more simple and cheaper. A summary of the signal model is given.

  5. Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals

    PubMed Central

    Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Lu, Mingquan

    2017-01-01

    Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm. PMID:29035350

  6. Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals.

    PubMed

    Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Zhao, Sihao; Lu, Mingquan

    2017-10-16

    Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm.

  7. Navigator GPS Receiver for Fast Acquisition and Weak Signal Space Applications

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke; Moreau, Michael; Boegner, Gregory J.; Sirotzky, Steve

    2004-01-01

    NASA Goddard Space Flight Center (GSFC) is developing a new space-borne GPS receiver that can operate effectively in the full range of Earth orbiting missions from Low Earth Orbit (LEO) to geostationary and beyond. Navigator is designed to be a fully space flight qualified GPS receiver optimized for fast signal acquisition and weak signal tracking. The fast acquisition capabilities provide exceptional time to first fix performance (TIFF) with no a priori receiver state or GPS almanac information, even in the presence of high Doppler shifts present in LEO (or near perigee in highly eccentric orbits). The fast acquisition capability also makes it feasible to implement extended correlation intervals and therefore significantly reduce Navigator s acquisition threshold. This greatly improves GPS observability when the receiver is above the GPS constellation (and satellites must be tracked from the opposite side of the Earth) by providing at least 10 dB of increased acquisition sensitivity. Fast acquisition and weak signal tracking algorithms have been implemented and validated on a hardware development board. A fully functional version of the receiver, employing most of the flight parts, with integrated navigation software is expected by mid 2005. An ultimate goal of this project is to license the Navigator design to an industry partner who will then market the receiver as a commercial product.

  8. The Statistical Loop Analyzer (SLA)

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  9. Open-loop GPS signal tracking at low elevation angles from a ground-based observation site

    NASA Astrophysics Data System (ADS)

    Beyerle, Georg; Zus, Florian

    2016-04-01

    For more than a decade space-based global navigation satellite system (GNSS) radio occultation (RO) observations are used by meteorological services world-wide for their numerical weather prediction models. In addition, climate studies increasingly rely on validated GNSS-RO data sets of atmospheric parameters. GNSS-RO profiles typically cover an altitude range from the boundary layer up to the upper stratosphere; their highest accuracy and precision, however, are attained at the tropopause level. In the lower troposphere, multipath ray propagation tend to induce signal amplitude and frequency fluctuations which lead to the development and implementation of open-loop signal tracking methods in GNSS-RO receiver firmwares. In open-loop mode the feed-back values for the carrier tracking loop are derived not from measured data, but from a Doppler frequency model which usually is extracted from an atmospheric climatology. In order to ensure that this receiver-internal parameter set, does not bias the carrier phase path observables, dual-channel open-loop GNSS-RO signal tracking was suggested. Following this proposal the ground-based "GLESER" (GPS low-elevation setting event recorder) campaign was established. Its objective was to disproof the existence of model-induced frequency biases using ground-based GPS observations at very low elevation angles. Between January and December 2014 about 2600 validated setting events, starting at geometric elevation angles of +2° and extending to -1°… - 1.5°, were recorded by the single frequency "OpenGPS" GPS receiver at a measurement site located close to Potsdam, Germany (52.3808°N, 13.0642°E). The study is based on the assumption that these ground-based observations may be used as proxies for space-based RO measurements, even if the latter occur on a one order of magnitude faster temporal scale. The "GLESER" data analysis shows that the open-loop Doppler model has negligible influence on the derived frequency profile provided signal-to-noise density ratios remain above about 30 dB Hz. At low signal levels, however, the dual-channel open-loop design, which tracks the same signal using two Doppler models separated by a 10 Hz offset, reveals a notable bias. A significant fraction of this bias is caused by frequency aliasing. The receiver's dual-channel setup, however, allows for unambiguous identification of the affected observation samples. Finally, the repeat patterns in terms of azimuth angle of the GPS orbit traces reveals characteristic signatures in both, signal amplitude and Doppler frequency with respect to the topography close to the observation site. On the other hand, mean vertical refractivity gradients extracted from ECMWF meteorological fields exhibit moderate correlations with observed signal amplitude fluctuations at negative elevation angles emphasizing the information content of low-elevation GPS signals with respect to the atmospheric state in the boundary layer.

  10. Properties of fouled railroad ballast (phase 1).

    DOT National Transportation Integrated Search

    2012-10-01

    Ballasted tracks are the most common tracks used in the railroad industry and are designed to provide a stable, safe, and efficient rail : foundation. A ballasted track consists of superstructure (ties, fasteners, and rails) and substructure (ballast...

  11. Joint compensation scheme of polarization crosstalk, intersymbol interference, frequency offset, and phase noise based on cascaded Kalman filter

    NASA Astrophysics Data System (ADS)

    Zhang, Qun; Yang, Yanfu; Xiang, Qian; Zhou, Zhongqing; Yao, Yong

    2018-02-01

    A joint compensation scheme based on cascaded Kalman filter is proposed, which can implement polarization tracking, channel equalization, frequency offset, and phase noise compensation simultaneously. The experimental results show that the proposed algorithm can not only compensate multiple channel impairments simultaneously but also improve the polarization tracking capacity and accelerate the convergence speed. The scheme has up to eight times faster convergence speed compared with radius-directed equalizer (RDE) + Max-FFT (maximum fast Fourier transform) + BPS (blind phase search) and can track up polarization rotation 60 times and 15 times faster than that of RDE + Max-FFT + BPS and CMMA (cascaded multimodulus algorithm) + Max-FFT + BPS, respectively.

  12. Tracking the Evolution of Infrastructure Systems and Mass Responses Using Publically Available Data

    PubMed Central

    Guan, Xiangyang; Chen, Cynthia; Work, Dan

    2016-01-01

    Networks can evolve even on a short-term basis. This phenomenon is well understood by network scientists, but receive little attention in empirical literature involving real-world networks. On one hand, this is due to the deceitfully fixed topology of some networks such as many physical infrastructures, whose evolution is often deemed unlikely to occur in short term; on the other hand, the lack of data prohibits scientists from studying subjects such as social networks that seem likely to evolve on a short-term basis. We show that both networks—the infrastructure network and social network—are able to demonstrate evolutionary dynamics at the system level even in the short-term, characterized by shifting between different phases as predicted in network science. We develop a methodology of tracking the evolutionary dynamics of the two networks by incorporating flows and the microstructure of networks such as motifs. This approach is applied to the human interaction network and two transportation networks (subway and taxi) in the context of Hurricane Sandy, using publically available Twitter data and transportation data. Our result shows that significant changes in the system-level structure of networks can be detected on a continuous basis. This result provides a promising channel for real-time tracking in the future. PMID:27907061

  13. Sentinel-1 TOPS interferometry for along-track displacement measurement

    NASA Astrophysics Data System (ADS)

    Jiang, H. J.; Pei, Y. Y.; Li, J.

    2017-02-01

    The European Space Agency’s Sentinel-1 mission, a constellation of two C-band synthetic aperture radar (SAR) satellites, utilizes terrain observation by progressive scan (TOPS) antenna beam steering as its default operation mode to achieve wide-swath coverage and short revisit time. The beam steering during the TOPS acquisition provides a means to measure azimuth motion by using the phase difference between forward and backward looking interferograms within regions of burst overlap. Hence, there are two spectral diversity techniques for along-track displacement measurement, including multi-aperture interferometry (MAI) and “burst overlap interferometry”. This paper analyses the measurement accuracies of MAI and burst overlap interferometry. Due to large spectral separation in the overlap region, burst overlap interferometry is a more sensitive measurement. We present a TOPS interferometry approach for along-track displacement measurement. The phase bias caused by azimuth miscoregistration is first estimated by burst overlap interferometry over stationary regions. After correcting the coregistration error, the MAI phase and the interferometric phase difference between burst overlaps are recalculated to obtain along-track displacements. We test the approach with Sentinel-1 TOPS interferometric data over the 2015 Mw 7.8 Nepal earthquake fault. The results prove the feasibility of our approach and show the potential of joint estimation of along-track displacement with burst overlap interferometry and MAI.

  14. Preview-Based Stable-Inversion for Output Tracking

    NASA Technical Reports Server (NTRS)

    Zou, Qing-Ze; Devasia, Santosh

    1999-01-01

    Stable Inversion techniques can be used to achieve high-accuracy output tracking. However, for nonminimum phase systems, the inverse is non-causal - hence the inverse has to be pre-computed using a pre-specified desired-output trajectory. This requirement for pre-specification of the desired output restricts the use of inversion-based approaches to trajectory planning problems (for nonminimum phase systems). In the present article, it is shown that preview information of the desired output can be used to achieve online inversion-based output tracking of linear systems. The amount of preview-time needed is quantified in terms of the tracking error and the internal dynamics of the system (zeros of the system). The methodology is applied to the online output tracking of a flexible structure and experimental results are presented.

  15. Keeping an eye on pain: investigating visual attention biases in individuals with chronic pain using eye-tracking methodology

    PubMed Central

    Fashler, Samantha R; Katz, Joel

    2016-01-01

    Attentional biases to painful stimuli are evident in individuals with chronic pain, although the directional tendency of these biases (ie, toward or away from threat-related stimuli) remains unclear. This study used eye-tracking technology, a measure of visual attention, to evaluate the attentional patterns of individuals with and without chronic pain during exposure to injury-related and neutral pictures. Individuals with (N=51) and without chronic pain (N=62) completed a dot-probe task using injury-related and neutral pictures while their eye movements were recorded. Mixed-design analysis of variance evaluated the interaction between group (chronic pain, pain-free) and picture type (injury-related, neutral). Reaction time results showed that regardless of chronic pain status, participants responded faster to trials with neutral stimuli in comparison to trials that included injury-related pictures. Eye-tracking measures showed within-group differences whereby injury-related pictures received more frequent fixations and visits, as well as longer average visit durations. Between-group differences showed that individuals with chronic pain had fewer fixations and shorter average visit durations for all stimuli. An examination of how biases change over the time-course of stimulus presentation showed that during the late phase of attention, individuals with chronic pain had longer average gaze durations on injury pictures relative to pain-free individuals. The results show the advantage of incorporating eye-tracking methodology when examining attentional biases, and suggest future avenues of research. PMID:27570461

  16. Simultaneous Ka-Band Site Characterization: Goldstone, CA, White Sands, NM, and Guam, USA

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto; Morse, Jacquelynne; Zemba, Michael; Nessel, James; Morabito, David; Caroglanian, Armen

    2011-01-01

    To statistically characterize atmospheric effects on Ka-band links at NASA operational sites, NASA has constructed site test interferometers (STI s) which directly measure the tropospheric phase stability and rain attenuation. These instruments observe an unmodulated beacon signal broadcast from a geostationary satellite (e.g., Anik F2) and measure the phase difference between the signals received by the two antennas and its signal attenuation. Three STI s have been deployed so far: the first one at the NASA Deep Space Network Tracking Complex in Goldstone, California (May 2007); the second at the NASA White Sands Complex, in Las Cruses, New Mexico (February 2009); and the third at the NASA Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam (May 2010). Two station-years of simultaneous atmospheric phase fluctuation data have been collected at Goldstone and White Sands, while one year of data has been collected in Guam. With identical instruments operating simultaneously, we can directly compare the phase stability and rain attenuation at the three sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric induced time delay fluctuations over 10 minute blocks. For two years, the time delay fluctuations at the DSN site in Goldstone, CA, have been better than 2.5 picoseconds (ps) for 90% of the time (with reference to zenith), meanwhile at the White Sands, New Mexico site, the time delay fluctuations have been better than 2.2 ps with reference to zenith) for 90% of time. For Guam, the time delay fluctuations have been better than 12 ps (reference to zenith) at 90% of the time, the higher fluctuations are as expected from a high humidity tropical rain zone. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.) will be used to determine the suitability of all the sites for NASA s future communication services at Ka-band.

  17. Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides

    PubMed Central

    Rosser, Gabriel; Fletcher, Alexander G.; Wilkinson, David A.; de Beyer, Jennifer A.; Yates, Christian A.; Armitage, Judith P.; Maini, Philip K.; Baker, Ruth E.

    2013-01-01

    Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile behaviour. The trajectories obtained contain much information relating to the complex patterns of bacterial motility. However, methods for the quantitative analysis of such data are limited. Most swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. It is therefore necessary to segment observed tracks into swimming and reorientation phases to extract useful statistics. We present novel robust analysis tools to discern these two phases in tracks. Our methods comprise a simple and effective protocol for removing spurious tracks from tracking datasets, followed by analysis based on a two-state hidden Markov model, taking advantage of the availability of mutant strains that exhibit swimming-only or reorientating-only motion to generate an empirical prior distribution. Using simulated tracks with varying levels of added noise, we validate our methods and compare them with an existing heuristic method. To our knowledge this is the first example of a systematic assessment of analysis methods in this field. The new methods are substantially more robust to noise and introduce less systematic bias than the heuristic method. We apply our methods to tracks obtained from the bacterial species Rhodobacter sphaeroides and Escherichia coli. Our results demonstrate that R. sphaeroides exhibits persistence over the course of a tumbling event, which is a novel result with important implications in the study of this and similar species. PMID:24204227

  18. Analyses of Phase III Dynamic Buckling Tests. Final Report

    DOT National Transportation Integrated Search

    1990-02-01

    Thermal buckling of railroad tracks in the lateral plane is an important problem in the design and maintenance of continuous welded rail (CWR) tracks. The problem is manifested through derailments which are attributable to track buckling, indicating ...

  19. Validation of the Calypso Surface Beacon Transponder.

    PubMed

    Belanger, Maxwell; Saleh, Ziad; Volpe, Tom; Margiasso, Rich; Li, Xiang; Chan, Maria; Zhu, Xiaofeng; Tang, Xiaoli

    2016-07-08

    Calypso L-shaped Surface Beacon transponder has recently become available for clinical applications. We herein conduct studies to validate the Surface Beacon transponder in terms of stability, reproducibility, orientation sensitivity, cycle rate dependence, and respiratory waveform tracking accuracy. The Surface Beacon was placed on a Quasar respiratory phantom and positioned at the isocenter with its two arms aligned with the lasers. Breathing waveforms were simulated, and the motion of the transponder was tracked. Stability and drift analysis: sinusoidal waveforms (200 cycles) were produced, and the amplitudes of phases 0% (inhale) and 50% (exhale) were recorded at each breathing cycle. The mean and standard deviation (SD) of the amplitudes were calculated. Linear least-squares fitting was performed to access the possible amplitude drift over the breathing cycles. Reproducibility: similar setting to stability and drift analysis, and the phantom generated 100 cycles of the sinusoidal waveform per run. The Calypso system's was re-setup for each run. Recorded amplitude and SD of 0% and 50% phase were compared between runs to assess contribution of Calypso electromagnetic array setup variation. Beacon orientation sensitivity: the Calypso tracks sinusoidal phantom motion with a defined angular offset of the beacon to assess its effect on SD and peak-to-peak amplitude. Rate dependence: sinusoidal motion was generated at cycle rates of 1 Hz, .33 Hz, and .2 Hz. Peak-to-peak displacement and SDs were assessed. Respiratory waveform tracking accuracy: the phantom reproduced recorded breathing cycles (by volunteers and patients) were tracked by the Calypso system. Deviation in tracking position from produced waveform was used to calculate SD throughout entire breathing cycle. Stability and drift analysis: Mean amplitude ± SD of phase 0% or 50% were 20.01 ± 0.04 mm and -19.65 ± 0.08 mm, respectively. No clinically significant drift was detected with drift measured as 5.1 × 10-5 mm/s at phase 0% and -6.0 × 10-5 mm/s at phase 50%. Reproducibility: The SD of the setup was 0.06 mm and 0.02 mm for phases 0% and 50%, respectively. The combined SDs, including both setup and intrarun error of all runs at phases 0% and 50%, were 0.07mm and 0.11 mm, respectively. Beacon orientation: SD ranged from 0.032mm to 0.039 mm at phase 0% and from 0.084 mm to 0.096 mm at phase 50%. The SD was found not to vary linearly with Beacon angle in the range of 0° and 15°. A positive systematic error was observed with amplitude 0.07 mm/degree at phase 0% and 0.05 mm/degree at phase 50%. Rate dependence: SD and displacement amplitudes did not vary significantly between 0.2 Hz and 0.33 Hz. At 1 Hz, both 0% and 50% amplitude measurements shifted up appreciably, by 0.72 mm and 0.78mm, respectively. As compared with the 0.33 Hz data, SD at phase 0% was 1.6 times higher and 5.4 times higher at phase 50%. Respiratory waveform tracking accuracy: SD of 0.233 mm with approximately normal distribution in over 134 min of tracking (201468 data points). The Surface Beacon transponder appears to be stable, accurate, and reproducible. Submillimeter resolution is achieved throughout breathing and sinusoidal waveforms. © 2016 The Authors

  20. Validation of the Calypso Surface Beacon Transponder

    PubMed Central

    Saleh, Ziad; Volpe, Tom; Margiasso, Rich; Li, Xiang; Chan, Maria; Zhu, Xiaofeng; Tang, Xiaoli

    2016-01-01

    Calypso L‐shaped Surface Beacon transponder has recently become available for clinical applications. We herein conduct studies to validate the Surface Beacon transponder in terms of stability, reproducibility, orientation sensitivity, cycle rate dependence, and respiratory waveform tracking accuracy. The Surface Beacon was placed on a Quasar respiratory phantom and positioned at the isocenter with its two arms aligned with the lasers. Breathing waveforms were simulated, and the motion of the transponder was tracked. Stability and drift analysis: sinusoidal waveforms (200 cycles) were produced, and the amplitudes of phases 0% (inhale) and 50% (exhale) were recorded at each breathing cycle. The mean and standard deviation (SD) of the amplitudes were calculated. Linear least‐squares fitting was performed to access the possible amplitude drift over the breathing cycles. Reproducibility: similar setting to stability and drift analysis, and the phantom generated 100 cycles of the sinusoidal waveform per run. The Calypso system's was re‐setup for each run. Recorded amplitude and SD of 0% and 50% phase were compared between runs to assess contribution of Calypso electromagnetic array setup variation. Beacon orientation sensitivity: the Calypso tracks sinusoidal phantom motion with a defined angular offset of the beacon to assess its effect on SD and peak‐to‐peak amplitude. Rate dependence: sinusoidal motion was generated at cycle rates of 1 Hz, .33 Hz, and .2 Hz. Peak‐to‐peak displacement and SDs were assessed. Respiratory waveform tracking accuracy: the phantom reproduced recorded breathing cycles (by volunteers and patients) were tracked by the Calypso system. Deviation in tracking position from produced waveform was used to calculate SD throughout entire breathing cycle. Stability and drift analysis: Mean amplitude ± SD of phase 0% or 50% were 20.01±0.04 mm and ‐19.65±0.08 mm, respectively. No clinically significant drift was detected with drift measured as 5.1×10‐5 mm/s at phase 0% and ‐6.0×10‐5 mm/s at phase 50%. Reproducibility: The SD of the setup was 0.06 mm and 0.02 mm for phases 0% and 50%, respectively. The combined SDs, including both setup and intrarun error of all runs at phases 0% and 50%, were 0.07 mm and 0.11 mm, respectively. Beacon orientation: SD ranged from 0.032 mm to 0.039 mm at phase 0% and from 0.084 mm to 0.096 mm at phase 50%. The SD was found not to vary linearly with Beacon angle in the range of 0° and 15°. A positive systematic error was observed with amplitude 0.07 mm/degree at phase 0% and 0.05 mm/degree at phase 50%. Rate dependence: SD and displacement amplitudes did not vary significantly between 0.2 Hz and 0.33 Hz. At 1 Hz, both 0% and 50% amplitude measurements shifted up appreciably, by 0.72 mm and 0.78 mm, respectively. As compared with the 0.33 Hz data, SD at phase 0% was 1.6 times higher and 5.4 times higher at phase 50%. Respiratory waveform tracking accuracy: SD of 0.233 mm with approximately normal distribution in over 134 min of tracking (201468 data points). The Surface Beacon transponder appears to be stable, accurate, and reproducible. Submillimeter resolution is achieved throughout breathing and sinusoidal waveforms. PACS number(s): 87.50.ct, 87.50.st, 87.50.ux, 87.50.wp, 87.50.yt PMID:27455489

  1. Continuous adaptive beam pointing and tracking for laser power transmission.

    PubMed

    Schäfer, Christian A

    2010-06-21

    The adaptive beam pointing concept has been revisited for the purpose of controlled transmission of laser energy from an optical transmitter to a target. After illumination, a bidirectional link is established by a retro-reflector on the target and an amplifier-phase conjugate mirror (A-PCM) on the transmitter. By setting the retro-reflector's aperture smaller than the diffraction limited spot size but big enough to provide sufficient amount of optical feedback, a stable link can be maintained and light that hits the retro-reflector's surrounded area can simultaneously be reconverted into usable electric energy. The phase conjugate feedback ensures that amplifier's distortions are compensated and the target tracked accurately.After deriving basic arithmetic expressions for the proposed system, a section is devoted for the motivation of free-space laser power transmission which is supposed to find varied applicability in space. As an example, power transmission from a satellite to the earth is described where recently proposed solar power generating structures on high-altitudes receive the power above the clouds to provide constant energy supply.In the experimental part, an A-PCM setup with reflectivity of about R(A-PCM) = 100 was realized using a semiconductor optical amplifier and a photorefractive self-pumped PCM. Simulation results show that a reflectivity of R(A-PCM)>1000 could be obtained by improving the self-pumped PCM's efficiency. That would lead to a transmission efficiency of eta>90%.

  2. A bandwidth compressive modulation system using multi-amplitude minimum shift keying /MAMSK/. [for spacecraft communication

    NASA Technical Reports Server (NTRS)

    Weber, W. J., III; Stanton, P. H.; Sumida, J. T.

    1978-01-01

    A bandwidth compressive modem making use of multi-amplitude minimum shift keying (MAMSK) has been designed and implemented in a laboratory environment at microwave frequencies. This system achieves a substantial bandwidth reduction over binary PSK and operates within 0.5 dB of theoretical performance. A number of easily implemented microwave transmitters have been designed to generate the required set of 16 signals. The receiver has been designed to work at 1 Mbit/s and contains the necessary phase tracking, AGC, and symbol synchronization loops as well as a lock detector, SNR estimator and provisions for differential decoding. This paper describes this entire system and presents the experimental results.

  3. VLF Radio Wave Propagation Across the Day/Night Terminator

    NASA Astrophysics Data System (ADS)

    Burch, H.; Moore, R. C.

    2016-12-01

    In May 2016, a new array of VLF radio receivers was deployed spanning the East Coast of the United States. We present preliminary observations from the array, which was designed in part to track the propagation of the narrowband VLF transmitter signal, NAA (24.0 kHz), down the coast from Cutler, Maine. Amplitude, phase, and polarization observations are compared over multiple days and at different times of year to investigate the dependence of VLF propagation characteristics on solar zenith angle. Measurements are compared to simulations using the Long Wave Propagation Capability code (LWPC) in order to evaluate the accuracy of LWPC's built-in ionosphere model. Efforts to improve the ionosphere model based on observations are discussed.

  4. Experiment definition phase shuttle laboratory LDRL-10.6 experiment. [applying optical communication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The 10.6 microns laser data relay link (LDRL 10.6) program was directed to applying optical communications to NASA's wideband data transmission requirements through the 1980's. The LDRL consists of a transmitter on one or more low earth orbit satellites with an elliptical orbit satellite receivers. Topics discussed include: update of the LDRL design control table to detail the transmitter optical chain losses and to incorporate the change to a reflective beam pre-expander; continued examination of the link establishment sequence, including its dependence upon spacecraft stability; design of the transmitter pointing and tracking control system; and finalization of the transmitter brassboard optical and mechanical design.

  5. GPS-based precision orbit determination - A Topex flight experiment

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.; Davis, Edgar S.

    1988-01-01

    Plans for a Topex/Poseiden flight experiment to test the accuracy of using GPS data for precision orbit determination of earth satellites are presented. It is expected that the GPS-based precision orbit determination will provide subdecimeter accuracies in the radial component of the Topex orbit when the extant gravity model is tuned for wavelengths longer than about 1000 kms. The concept, design, flight receiver, antenna system, ground processing, and data processing of GPS are examined. Also, an accurate quasi-geometric orbit determination approach called nondynamic or reduced dynamic tracking which relies on the use of the pseudorange and the carrier phase measurements to reduce orbit errors arising from mismodeled dynamics is discussed.

  6. A recursive solution for a fading memory filter derived from Kalman filter theory

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    1986-01-01

    A simple recursive solution for a class of fading memory tracking filters is presented. A fading memory filter provides estimates of filter states based on past measurements, similar to a traditional Kalman filter. Unlike a Kalman filter, an exponentially decaying weight is applied to older measurements, discounting their effect on present state estimates. It is shown that Kalman filters and fading memory filters are closely related solutions to a general least squares estimator problem. Closed form filter transfer functions are derived for a time invariant, steady state, fading memory filter. These can be applied in loop filter implementation of the Deep Space Network (DSN) Advanced Receiver carrier phase locked loop (PLL).

  7. Time synchronization via lunar radar.

    NASA Technical Reports Server (NTRS)

    Higa, W. H.

    1972-01-01

    The advent of round-trip radar measurements has permitted the determination of the ranges to the nearby planets with greater precision than was previously possible. When the distances to the planets are known with high precision, the propagation delay for electromagnetic waves reflected by the planets may be calculated and used to synchronize remotely located clocks. Details basic to the operation of a lunar radar indicate a capability for clock synchronization to plus or minus 20 microsec. One of the design goals for this system was to achieve a simple semiautomatic receiver for remotely located tracking stations. The lunar radar system is in operational use for deep space tracking at Jet Propulsion Laboratory and synchronizes five world-wide tracking stations with a master clock at Goldstone, Calif. Computers are programmed to correct the Goldstone transmissions for transit time delay and Doppler shifts so as to be received on time at the tracking stations; this dictates that only one station can be synchronized at a given time period and that the moon must be simultaneously visible to both the transmitter and receiver for a minimum time of 10 min.-

  8. Multi-modal cockpit interface for improved airport surface operations

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J. (Inventor); Bailey, Randall E. (Inventor); Prinzel, III, Lawrence J. (Inventor); Kramer, Lynda J. (Inventor); Williams, Steven P. (Inventor)

    2010-01-01

    A system for multi-modal cockpit interface during surface operation of an aircraft comprises a head tracking device, a processing element, and a full-color head worn display. The processing element is configured to receive head position information from the head tracking device, to receive current location information of the aircraft, and to render a virtual airport scene corresponding to the head position information and the current aircraft location. The full-color head worn display is configured to receive the virtual airport scene from the processing element and to display the virtual airport scene. The current location information may be received from one of a global positioning system or an inertial navigation system.

  9. A second-order frequency-aided digital phase-locked loop for Doppler rate tracking

    NASA Astrophysics Data System (ADS)

    Chie, C. M.

    1980-08-01

    A second-order digital phase-locked loop (DPLL) has a finite lock range which is a function of the frequency of the incoming signal to be tracked. For this reason, it is not capable of tracking an input with Doppler rate for an indefinite period of time. In this correspondence, an analytical expression for the hold-in time is derived. In addition, an all-digital scheme to alleviate this problem is proposed based on the information obtained from estimating the input signal frequency.

  10. Beam tracking phase tomography with laboratory sources

    NASA Astrophysics Data System (ADS)

    Vittoria, F. A.; Endrizzi, M.; Kallon, G. K. N.; Hagen, C. K.; Diemoz, P. C.; Zamir, A.; Olivo, A.

    2018-04-01

    An X-ray phase-contrast laboratory system is presented, based on the beam-tracking method. Beam-tracking relies on creating micro-beamlets of radiation by placing a structured mask before the sample, and analysing them by using a detector with sufficient resolution. The system is used in tomographic configuration to measure the three dimensional distribution of the linear attenuation coefficient, difference from unity of the real part of the refractive index, and of the local scattering power of specimens. The complementarity of the three signals is investigated, together with their potential use for material discrimination.

  11. Indoor Trajectory Tracking Scheme Based on Delaunay Triangulation and Heuristic Information in Wireless Sensor Networks.

    PubMed

    Qin, Junping; Sun, Shiwen; Deng, Qingxu; Liu, Limin; Tian, Yonghong

    2017-06-02

    Object tracking and detection is one of the most significant research areas for wireless sensor networks. Existing indoor trajectory tracking schemes in wireless sensor networks are based on continuous localization and moving object data mining. Indoor trajectory tracking based on the received signal strength indicator ( RSSI ) has received increased attention because it has low cost and requires no special infrastructure. However, RSSI tracking introduces uncertainty because of the inaccuracies of measurement instruments and the irregularities (unstable, multipath, diffraction) of wireless signal transmissions in indoor environments. Heuristic information includes some key factors for trajectory tracking procedures. This paper proposes a novel trajectory tracking scheme based on Delaunay triangulation and heuristic information (TTDH). In this scheme, the entire field is divided into a series of triangular regions. The common side of adjacent triangular regions is regarded as a regional boundary. Our scheme detects heuristic information related to a moving object's trajectory, including boundaries and triangular regions. Then, the trajectory is formed by means of a dynamic time-warping position-fingerprint-matching algorithm with heuristic information constraints. Field experiments show that the average error distance of our scheme is less than 1.5 m, and that error does not accumulate among the regions.

  12. Track Starter's Guide.

    ERIC Educational Resources Information Center

    Dailey, Charles H.; Rankin, Kelly D.

    This guide was developed to serve both the novice and experienced starter in track and field events. Each year in the United States, runners encounter dozens of different starters' mannerisms as they travel to track meets in various towns and states. The goal of any competent and conscientious starter is to insure that all runners receive a fair…

  13. Numerical Modeling of Three-Dimensional Fluid Flow with Phase Change

    NASA Technical Reports Server (NTRS)

    Esmaeeli, Asghar; Arpaci, Vedat

    1999-01-01

    We present a numerical method to compute phase change dynamics of three-dimensional deformable bubbles. The full Navier-Stokes and energy equations are solved for both phases by a front tracking/finite difference technique. The fluid boundary is explicitly tracked by discrete points that are connected by triangular elements to form a front that is used to keep the stratification of material properties sharp and to calculate the interfacial source terms. Two simulations are presented to show robustness of the method in handling complex phase boundaries. In the first case, growth of a vapor bubble in zero gravity is studied where large volume increase of the bubble is managed by adaptively increasing the front resolution. In the second case, growth of a bubble under high gravity is studied where indentation at the rear of the bubble results in a region of large curvature which challenges the front tracking in three dimensions.

  14. The Block V Receiver fast acquisition algorithm for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Aung, M.; Hurd, W. J.; Buu, C. M.; Berner, J. B.; Stephens, S. A.; Gevargiz, J. M.

    1994-01-01

    A fast acquisition algorithm for the Galileo suppressed carrier, subcarrier, and data symbol signals under low data rate, signal-to-noise ratio (SNR) and high carrier phase-noise conditions has been developed. The algorithm employs a two-arm fast Fourier transform (FFT) method utilizing both the in-phase and quadrature-phase channels of the carrier. The use of both channels results in an improved SNR in the FFT acquisition, enabling the use of a shorter FFT period over which the carrier instability is expected to be less significant. The use of a two-arm FFT also enables subcarrier and symbol acquisition before carrier acquisition. With the subcarrier and symbol loops locked first, the carrier can be acquired from an even shorter FFT period. Two-arm tracking loops are employed to lock the subcarrier and symbol loops parameter modification to achieve the final (high) loop SNR in the shortest time possible. The fast acquisition algorithm is implemented in the Block V Receiver (BVR). This article describes the complete algorithm design, the extensive computer simulation work done for verification of the design and the analysis, implementation issues in the BVR, and the acquisition times of the algorithm. In the expected case of the Galileo spacecraft at Jupiter orbit insertion PD/No equals 14.6 dB-Hz, R(sym) equals 16 symbols per sec, and the predicted acquisition time of the algorithm (to attain a 0.2-dB degradation from each loop to the output symbol SNR) is 38 sec.

  15. Trellis coded modulation for 4800-9600 bps transmission over a fading mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Simon, M. K.

    1986-01-01

    The combination of trellis coding and multiple phase-shift-keyed (MPSK) signalling with the addition of asymmetry to the signal set is discussed with regard to its suitability as a modulation/coding scheme for the fading mobile satellite channel. For MPSK, introducing nonuniformity (asymmetry) into the spacing between signal points in the constellation buys a further improvement in performance over that achievable with trellis coded symmetric MPSK, all this without increasing average or peak power, or changing the bandwidth constraints imposed on the system. Whereas previous contributions have considered the performance of trellis coded modulation transmitted over an additive white Gaussian noise (AWGN) channel, the emphasis in the paper is on the performance of trellis coded MPSK in the fading environment. The results will be obtained by using a combination of analysis and simulation. It will be assumed that the effect of the fading on the phase of the received signal is fully compensated for either by tracking it with some form of phase-locked loop or with pilot tone calibration techniques. Thus, results will reflect only the degradation due to the effect of the fading on the amplitude of the received signal. Also, we shall consider only the case where interleaving/deinterleaving is employed to further combat the fading. This allows for considerable simplification of the analysis and is of great practical interest. Finally, the impact of the availability of channel state information on average bit error probability performance is assessed.

  16. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  17. Telemetry Tracking and Control Through Commercial LEO Satellites

    NASA Technical Reports Server (NTRS)

    Streich, Ronald C.; Morgan, Dwayne R.; Bull, Barton B.; Grant, Charles E.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF in Virginia have successfully tested commercial LEO communications satellites for sounding rocket, balloon and aircraft flight TT&C. The Flight Modern became a GSFC/WFF Advanced Range Technology Initiative (ARTI) in an effort to streamline TT&C capability to the user community at low cost. Ground tests of the Flight Modem verified duplex communications quality of service and measured transmission latencies. These tests were completed last year and results reported in the John Hopkins University (JHU) Applied Physics Laboratory (APL) 4th International Symposium on Reducing Spacecraft Costs for Ground Systems and Operations. The second phase of the Flight Modem baseline test program was a demonstration of the ruggedized version of the WFF Flight Modem flown on a sounding rocket launched it the Swedish rocket range (Esrangc) near Kiruna, Sweden, with results contained in this paper. Aircraft flight tests have been and continue to be conducted. Flights of opportunity are being actively pursued with other centers, ranges and users at universities. The WFF Flight Modem contains a CPS receiver to provide vehicle position for tracking and vehicle recovery. The system architecture, which integrates antennas, CPS receiver, commercial satellite packet data modem and a single board computer with custom software, is described. Small satellite use of the WFF Flight Modem is also being investigated, The Flight Modem provides an independent vehicle position source for Range Safety applications. The LEO communication system contains a coarse position location system, which is compared to GPS ace acy. This comparison allows users, to determine the need for a CPS receiver in addition to the satellite packet data modem for their application.

  18. Software breadboard study

    NASA Technical Reports Server (NTRS)

    Nuckolls, C.; Frank, Mark

    1990-01-01

    The overall goal of this study was to develop new concepts and technology for the Comet Rendezvous Asteroid Flyby (CRAF), Cassini, and other future deep space missions which maximally conform to the Functional Specification for the NASA X-Band Transponder (NXT), FM513778 (preliminary, revised July 26, 1988). The study is composed of two tasks. The first task was to investigate a new digital signal processing technique which involves the processing of 1-bit samples and has the potential for significant size, mass, power, and electrical performance improvements over conventional analog approaches. The entire X-band receiver tracking loop was simulated on a digital computer using a high-level programming language. Simulations on this 'software breadboard' showed the technique to be well-behaved and a good approximation to its analog predecessor from threshold to strong signal levels in terms of tracking-loop performance, command signal-to-noise ratio and ranging signal-to-noise ratio. The successful completion of this task paves the way for building a hardware breadboard, the recommended next step in confirming this approach is ready for incorporation into flight hardware. The second task in this study was to investigate another technique which provides considerable simplification in the synthesis of the receiver first LO over conventional phase-locked multiplier schemes and in this approach, provides down-conversion for an S-band emergency receive mode without the need of an additional LO. The objective of this study was to develop methodology and models to predict the conversion loss, input RF bandwidth, and output RF bandwidth of a series GaAs FET sampling mixer and to breadboard and test a circuit design suitable for the X and S-band down-conversion applications.

  19. Chemical etching for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1981-01-01

    Chemical etching for automatic processing of integrated circuits is discussed. The wafer carrier and loading from a receiving air track into automatic furnaces and unloading onto a sending air track are included.

  20. Prototype Test Results for the Single Photon Detection SLR2000 Satellite Laser Ranging System

    NASA Technical Reports Server (NTRS)

    Zagwodzki, Thomas W.; McGarry, Jan F.; Degnan, John J.; Cheek, Jack W.; Dunn, Peter J.; Patterson, Don; Donovan, Howard

    2004-01-01

    NASA's aging Satellite Laser Ranging (SLR) network is scheduled to be replaced over the next few years with a fully automated single photon detection system. A prototype of this new system, called SLR2000, is currently undergoing field trials at the Goddard Space Flight Center in Greenbelt, Maryland to evaluate photon counting techniques and determine system hardware, software, and control algorithm performance levels and limitations. Newly developed diode pumped microchip lasers and quadrant microchannel plate-based photomultiplier tubes have enabled the development of this high repetition rate single photon detection SLR system. The SLR2000 receiver threshold is set at the single photoelectron (pe) level but tracks satellites with an average signal level typically much less than 1 pe. The 2 kHz laser fire rate aids in satellite acquisition and tracking and will enable closed loop tracking by accumulating single photon count statistics in a quadrant detector and using this information to correct for pointing errors. Laser transmitter beamwidths of 10 arcseconds (FWHM) or less are currently being used to maintain an adequate signal level for tracking while the receiver field of view (FOV) has been opened to 40 arcseconds to accommodate point ahead/look behind angular offsets. In the near future, the laser transmitter point ahead will be controlled by a pair of Risley prisms. This will allow the telescope to point behind and enable closure of the receiver FOV to roughly match the transmitter beam divergence. Bandpass filters (BPF) are removed for night tracking operations while 0.2 nm or 1 nm filters are used during daylight operation. Both day and night laser tracking of Low Earth Orbit (LEO) satellites has been achieved with a laser transmitter energy of only 65 microjoules per pulse. Satellite tracking is presently limited to LEO satellites until the brassboard laser transmitter can be upgraded or replaced. Simultaneous tracks have also been observed with NASA s SLR standard, MOBLAS 7, for the purposes of data comparison and identification of biases. Work continues to optimize the receive optics; upgrade or replace the laser transmitter; calibrate the quadrant detector, the point ahead Risley prisms, and event timer verniers; and test normal point generation with SLR2000 data. This paper will report on the satellite tracking results to date, issues yet to be resolved, and future plans for the SLR2000 system.

  1. A distributed database view of network tracking systems

    NASA Astrophysics Data System (ADS)

    Yosinski, Jason; Paffenroth, Randy

    2008-04-01

    In distributed tracking systems, multiple non-collocated trackers cooperate to fuse local sensor data into a global track picture. Generating this global track picture at a central location is fairly straightforward, but the single point of failure and excessive bandwidth requirements introduced by centralized processing motivate the development of decentralized methods. In many decentralized tracking systems, trackers communicate with their peers via a lossy, bandwidth-limited network in which dropped, delayed, and out of order packets are typical. Oftentimes the decentralized tracking problem is viewed as a local tracking problem with a networking twist; we believe this view can underestimate the network complexities to be overcome. Indeed, a subsequent 'oversight' layer is often introduced to detect and handle track inconsistencies arising from a lack of robustness to network conditions. We instead pose the decentralized tracking problem as a distributed database problem, enabling us to draw inspiration from the vast extant literature on distributed databases. Using the two-phase commit algorithm, a well known technique for resolving transactions across a lossy network, we describe several ways in which one may build a distributed multiple hypothesis tracking system from the ground up to be robust to typical network intricacies. We pay particular attention to the dissimilar challenges presented by network track initiation vs. maintenance and suggest a hybrid system that balances speed and robustness by utilizing two-phase commit for only track initiation transactions. Finally, we present simulation results contrasting the performance of such a system with that of more traditional decentralized tracking implementations.

  2. Direct numerical simulations of fluid flow, heat transfer and phase changes

    NASA Technical Reports Server (NTRS)

    Juric, D.; Tryggvason, G.; Han, J.

    1997-01-01

    Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.

  3. Tracking and data systems support for the Helios project. Volume 1: Project development through end of mission, phase 2

    NASA Technical Reports Server (NTRS)

    Goodwin, P. S.; Traxler, M. R.; Meeks, W. G.; Flanagan, F. M.

    1976-01-01

    The overall evolution of the Helios Project is summarized from its conception through to the completion of the Helios-1 mission phase 2. Beginning with the project objectives and concluding with the Helios-1 spacecraft entering its first superior conjunction (end of mission phase 2), descriptions of the project, the mission and its phases, international management and interfaces, and Deep Space Network-spacecraft engineering development in telemetry, tracking, and command systems to ensure compatibility between the U.S. Deep Space Network and the German-built spacecraft are included.

  4. Adaptive Correlation Space Adjusted Open-Loop Tracking Approach for Vehicle Positioning with Global Navigation Satellite System in Urban Areas

    PubMed Central

    Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng

    2015-01-01

    For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N0) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N0. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N0. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area. PMID:26343683

  5. Radiant energy collector

    DOEpatents

    Winston, Roland

    1977-01-11

    An electromagnetic energy collection device is provided which does not require a solar tracking capability. It includes an energy receiver positioned between two side walls which reflect substantially all incident energy received over a predetermined included angle directly onto the energy receiver.

  6. Computer-aided evaluation of the railway track geometry on the basis of satellite measurements

    NASA Astrophysics Data System (ADS)

    Specht, Cezary; Koc, Władysław; Chrostowski, Piotr

    2016-05-01

    In recent years, all over the world there has been a period of intensive development of GNSS (Global Navigation Satellite Systems) measurement techniques and their extension for the purpose of their applications in the field of surveying and navigation. Moreover, in many countries a rising trend in the development of rail transportation systems has been noticed. In this paper, a method of railway track geometry assessment based on mobile satellite measurements is presented. The paper shows the implementation effects of satellite surveying railway geometry. The investigation process described in the paper is divided on two phases. The first phase is the GNSS mobile surveying and the analysis obtained data. The second phase is the analysis of the track geometry using the flat coordinates from the surveying. The visualization of the measured route, separation and quality assessment of the uniform geometric elements (straight sections, arcs), identification of the track polygon (main directions and intersection angles) are discussed and illustrated by the calculation example within the article.

  7. Post-flight trajectory reconstruction of suborbital free-flyers using GPS raw data

    NASA Astrophysics Data System (ADS)

    Ivchenko, N.; Yuan, Y.; Linden, E.

    2017-08-01

    This paper describes the reconstruction of postflight trajectories of suborbital free flying units by using logged GPS raw data. We took the reconstruction as a global least squares optimization problem, using both the pseudo-range and Doppler observables, and solved it by using the trust-region-reflective algorithm, which enabled navigational solutions of high accuracy. The code tracking was implemented with a large number of correlators and least squares curve fitting, in order to improve the precision of the code start times, while a more conventional phased lock loop was used for Doppler tracking. We proposed a weighting scheme to account for fast signal strength variation due to free-flier fast rotation, and a penalty for jerk to achieve a smooth solution. We applied these methods to flight data of two suborbital free flying units launched on REXUS 12 sounding rocket, reconstructing the trajectory, receiver clock error and wind up rates. The trajectory exhibits a parabola with the apogee around 80 km, and the velocity profile shows the details of payloadwobbling. The wind up rates obtained match the measurements from onboard angular rate sensors.

  8. Flight dynamics facility operational orbit determination support for the ocean topography experiment

    NASA Technical Reports Server (NTRS)

    Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.

    1991-01-01

    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.

  9. Real-time Astrometry Using Phase Congruency

    NASA Astrophysics Data System (ADS)

    Lambert, A.; Polo, M.; Tang, Y.

    Phase congruency is a computer vision technique that proves to perform well for determining the tracks of optical objects (Flewelling, AMOS 2014). We report on a real-time implementation of this using an FPGA and CMOS Image Sensor, with on-sky data. The lightweight instrument can provide tracking update signals to the mount of the telescope, as well as determine abnormal objects in the scene.

  10. Accuracy of Tracking Forest Machines with GPS

    Treesearch

    M.W. Veal; S.E. Taylor; T.P. McDonald; D.K. McLemore; M.R. Dunn

    2001-01-01

    This paper describes the results of a study that measured the accuracy of using GPS to track movement offorest machines. Two different commercially available GPS receivers (Trimble ProXR and GeoExplorer II) were used to track wheeled skidders under three different canopy conditions at two different vehicle speeds. Dynamic GPS data were compared to position data...

  11. ICMS. Chemical Tracking, Management, and Reporting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramlette, J.; Miles, R.; Carlson, M.

    1997-10-10

    The ICMS provides: management and system users a cost-effective method for identifying, reporting, and tracking chemicals from identifying the chemical when it is received until it enters a waste stream for a facility or area.

  12. In-situ Calibration Methods for Phased Array High Frequency Radars

    NASA Astrophysics Data System (ADS)

    Flament, P. J.; Flament, M.; Chavanne, C.; Flores-vidal, X.; Rodriguez, I.; Marié, L.; Hilmer, T.

    2016-12-01

    HF radars measure currents through the Doppler-shift of electromagnetic waves Bragg-scattered by surface gravity waves. While modern clocks and digital synthesizers yield range errors negligible compared to the bandwidth-limited range resolution, azimuth calibration issues arise for beam-forming phased arrays. Sources of errors in the phases of the received waves can be internal to the radar system (phase errors of filters, cable lengths, antenna tuning) and geophysical (standing waves, propagation and refraction anomalies). They result in azimuthal biases (which can be range-dependent) and beam-forming side-lobes (which induce Doppler ambiguities). We analyze the experimental calibrations of 17 deployments of WERA HF radars, performed between 2003 and 2012 in Hawaii, the Adriatic, France, Mexico and the Philippines. Several strategies were attempted: (i) passive reception of continuous multi-frequency transmitters on GPS-tracked boats, cars, and drones; (ii) bi-static calibrations of radars in mutual view; (iii) active echoes from vessels of opportunity of unknown positions or tracked through AIS; (iv) interference of unknown remote transmitters with the chirped local oscillator. We found that: (a) for antennas deployed on the sea shore, a single-azimuth calibration is sufficient to correct phases within a typical beam-forming azimuth range; (b) after applying this azimuth-independent correction, residual pointing errors are 1-2 deg. rms; (c) for antennas deployed on irregular cliffs or hills, back from shore, systematic biases appear for some azimuths at large incidence angles, suggesting that some of the ground-wave electromagnetic energy propagates in a terrain-following mode between the sea shore and the antennas; (d) for some sites, fluctuations of 10-25 deg. in radio phase at 20-40 deg. azimuthal period, not significantly correlated among antennas, are omnipresent in calibrations along a constant-range circle, suggesting standing waves or multiple paths in the presence of reflecting structures (buildings, fences), or possibly fractal nature of the wavefronts; (e) amplitudes lack stability in time and azimuth to be usable as a-priori calibrations, confirming the accepted method of re-normalizing amplitudes by the signal of nearby cells prior to beam-forming.

  13. Stability of the phase motion in race-track microtrons

    NASA Astrophysics Data System (ADS)

    Kubyshin, Yu. A.; Larreal, O.; Ramírez-Ros, R.; Seara, T. M.

    2017-06-01

    We model the phase oscillations of electrons in race-track microtrons by means of an area preserving map with a fixed point at the origin, which represents the synchronous trajectory of a reference particle in the beam. We study the nonlinear stability of the origin in terms of the synchronous phase -the phase of the synchronous particle at the injection. We estimate the size and shape of the stability domain around the origin, whose main connected component is enclosed by an invariant curve. We describe the evolution of the stability domain as the synchronous phase varies. We also clarify the role of the stable and unstable invariant curves of some hyperbolic (fixed or periodic) points.

  14. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m.

    PubMed

    Ren, Yongxiong; Wang, Zhe; Liao, Peicheng; Li, Long; Xie, Guodong; Huang, Hao; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Willner, Asher; Lavery, Martin P J; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe; Djordjevic, Ivan B; Neifeld, Mark A; Willner, Alan E

    2016-02-01

    We experimentally demonstrate and characterize the performance of a 400-Gbit/s orbital angular momentum (OAM) multiplexed free-space optical link over 120 m on the roof of a building. Four OAM beams, each carrying a 100-Gbit/s quadrature-phase-shift-keyed channel are multiplexed and transmitted. We investigate the influence of channel impairments on the received power, intermodal crosstalk among channels, and system power penalties. Without laser tracking and compensation systems, the measured received power and crosstalk among OAM channels fluctuate by 4.5 dB and 5 dB, respectively, over 180 s. For a beam displacement of 2 mm that corresponds to a pointing error less than 16.7 μrad, the link bit error rates are below the forward error correction threshold of 3.8×10(-3) for all channels. Both experimental and simulation results show that power penalties increase rapidly when the displacement increases.

  15. Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons.

    PubMed

    Azevedo, Anthony W; Wilson, Rachel I

    2017-10-11

    To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na + and K + conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Ocean Tracks: College Edition - Promoting Data Literacy in Science Education at the Undergraduate Level

    NASA Astrophysics Data System (ADS)

    Kochevar, R. E.; Krumhansl, R.; Louie, J.; Aluwihare, L.; Bardar, E. W.; Hirsch, L.; Hoyle, C.; Krumhansl, K.; Madura, J.; Mueller-Northcott, J.; Peach, C. L.; Trujillo, A.; Winney, B.; Zetterlind, V.

    2015-12-01

    Ocean Tracks is a Web-based interactive learning experience which allows users to explore the migrations of marine apex predators, and the way their behaviors relate to the physical and chemical environment surrounding them. Ocean Tracks provides access to data from the Tagging of Pelagic Predators (TOPP) program, NOAA's Global Drifter Program, and Earth-orbiting satellites via the Ocean Tracks interactive map interface; customized data analysis tools; multimedia supports; along with laboratory modules customized for undergraduate student use. It is part of a broader portfolio of projects comprising the Oceans of Data Institute, dedicated to transforming education to prepare citizens for a data-intensive world. Although originally developed for use in high school science classrooms, the Ocean Tracks interface and associated curriculum has generated interest among instructors at the undergraduate level, who wanted to engage their students in hands-on work with real scientific datasets. In 2014, EDC and the Scripps Institution of Oceanography received funding from NSF's IUSE program for Ocean Tracks: College Edition, to investigate how a learning model that includes a data interface, set of analysis tools, and curricula can be used to motivate students to learn and do science with real data; bringing opportunities to engage broad student populations, including both in-classroom and remote, on-line participants, in scientific practice. Phase 1, completed in the summer of 2015, was a needs assessment, consisting of a survey and interviews with students in oceanography classes at the Scripps Institution of Oceanography and Palomar Community College; a document review of course syllabi and primary textbooks used in current college marine science courses across the country; and interviews and a national survey of marine science faculty. We will present the results of this work, and will discuss new curriculum materials that are being classroom tested in the fall of 2015.

  17. Optical superheterodyne receiver.

    PubMed

    Lucy, R F; Lang, K; Peters, C J; Duval, K

    1967-08-01

    Optical communications experiments at 6328 A, comparing the fading characteristics of coherent and noncoherent optical detection, have been performed over a 1-km real atmospheric path in different weather conditions. The results show that fading is less severe for noncoherent detection and that the fading characteristic for both types vary significantly with weather conditions. In addition, the similarity of optical FM to rf FM is demonstrated. The measurements were performed using a remote laser transmitter and an optical superheterodyne receiver operating simultaneously in both a coherent and noncoherent detection mode. The receiver, tunable over a frequency range of 1 GHz at the IF difference frequency of 30 MHz, has automatic frequency control and also uses a precision angle tracking servo to maintain receiver spatial alignment with a remote transmitter. The angle and frequency tracking capability permit operation between moving transmitter and receiver terminals.

  18. Technology Advances at the NRAO Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Lockman, Felix James

    2015-08-01

    The 100 meter diameter Green Bank Telescope, with its large frequency coverage, great sensitivity, all-sky tracking, and location at a protected, radio-quiet site, offers a unique platform for technological advances in astronomical instrumentation that can yield an immediate scientific payoff.MUSTANG-1.5 is a feedhorn-coupled bolometer array for 3mm that has recently been installed on the telescope. It has 64 pixels (expandable to 223) and offers sensitivity to angular scales from 9" to more than 3' over a band from 75 GHz to 105 GHz. Its capabilities for science at 3mm are complimentary to, and in some cases superior to, those offered by ALMA. MUSTANG-1.5 is a collaboration between UPenn., NIST, NRAO, and other institutions.ARGUS is a 16-pixel focal plane array for millimeter spectroscopy that will be in use on the GBT in 2015. The array architecture is designed as a scalable technology pathfinder for larger arrays, but by itself it will provide major capabilities for spectroscopy from 75-107 GHz with 8" angular resolution over a wide field-of-view. It is a collaboration between Stanford Univ., Caltech, JPL, Univ. Maryland, Univ. Miami, and NRAO.FLAG is a prototype phased array receiver operating at 21cm wavelength that is under development for the GBT. It will produce multiple beams over a wide field of view with a sensitivity competitive with that of single-pixel receivers, allowing rapid astronomical surveys. FLAG is a collaboration between BYU, WVU, and NRAO.Also under development is a mm-wave phased array receiver for the GBT, designed to operate near 90 GHz as a prototype for very large format phased array receivers in the 3mm band. It is a collaboration between UMass and BYU.VEGAS is the new spectrometer for the GBT, offering multiple configurations well matched to GBT receivers from 1 to 100 GHz and suitable for use with focal plane arrays. It is a collaboration between UCal (Berkeley) and NRAO.The new receivers and spectrometers create extremely big data sets during both observation and later processing. Studies are under way at the GBT of data-streaming methodologies and pipeline processing techniques to meet the challenges posed by this new generation of instrumentation.

  19. Effect of internal versus external focus of attention on implicit motor learning in children with developmental coordination disorder.

    PubMed

    Jarus, Tal; Ghanouni, Parisa; Abel, Rachel L; Fomenoff, Shelby L; Lundberg, Jocelyn; Davidson, Stephanie; Caswell, Sarah; Bickerton, Laura; Zwicker, Jill G

    2015-02-01

    Children with developmental coordination disorder (DCD) struggle to learn new motor skills. It is unknown whether children with DCD learn motor skills more effectively with an external focus of attention (focusing on impact of movement on the environment) or an internal focus of attention (focusing on one's body movements) during implicit (unconscious) and explicit (conscious) motor learning. This paper aims to determine the trends of implicit motor learning in children with DCD, and how focus of attention influences motor learning in children with DCD in comparison with typically developing children. 25 children, aged 8-12, with (n=12) and without (n=13) DCD were randomly assigned to receive instructions that focused attention externally or internally while completing a computer tracking task during acquisition, retention, and transfer phases. The motor task involved tracking both repeated and random patterns, with the repeated pattern indicative of implicit learning. Children with DCD scored lower on the motor task in all three phases of the study, demonstrating poorer implicit learning. Furthermore, graphical data showed that for the children with DCD, there was no apparent difference between internal and external focus of attention during retention and transfer, while there was an advantage to the external focus of attention group for typically developing children. Children with DCD demonstrate less accuracy than typically developing children in learning a motor task. Also, the effect of focus of attention on motor performance is different in children with DCD versus their typically developing counterparts during the three phases of motor learning. Results may inform clinicians how to facilitate motor learning in children with DCD by incorporating explicit learning with either internal or external focus of attention within interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Triphasic contrast enhanced CT simulation with bolus tracking for pancreas SBRT target delineation.

    PubMed

    Godfrey, Devon J; Patel, Bhavik N; Adamson, Justus D; Subashi, Ergys; Salama, Joseph K; Palta, Manisha

    Bolus-tracked multiphasic contrast computed tomography (CT) is often used in diagnostic radiology to enhance the visibility of pancreas tumors, but is uncommon in radiation therapy pancreas CT simulation, and its impact on gross tumor volume (GTV) delineation is unknown. This study evaluates the lesion conspicuity and consistency of pancreas stereotactic body radiation therapy (SBRT) GTVs contoured in the different contrast phases of triphasic CT simulation scans. Triphasic, bolus-tracked planning CT simulation scans of 10 consecutive pancreas SBRT patients were acquired, yielding images of the pancreas during the late arterial (LA), portal venous (PV), and either the early arterial or delayed phase. GTVs were contoured on each phase by a gastrointestinal-specialized radiation oncologist and reviewed by a fellowship-trained abdominal radiologist who specializes in pancreatic imaging. The volumes of the registered GTVs, their overlap ratio, and the 3-dimensional margin expansions necessary for each GTV to fully encompass GTVs from the other phases were calculated. The contrast difference between tumor and normal pancreas was measured, and 2 radiation oncologists rank-ordered the phases according to their value for the lesion-contouring task. Tumor-to-pancreas enhancement was on average much larger for the LA and PV than the delayed phase or early arterial phases; the LA and PV phases were also consistently preferred by the radiation oncologists. Enhancement differences among the phases resulted in highly variable GTV volumes with no observed trends. Overlap ratios ranged from 18% to 75% across all 3 phases, improving to 43% to 91% when considering only the preferred LA and PV phases. GTV expansions necessary to encompass all GTVs ranged from 0.3 to 1.8 cm for all 3 phases, improving slightly to 0.1 to 1.4 cm when considering just the LA and PV phases. For pancreas SBRT, we recommend combining the GTVs from a multiphasic CT simulation with bolus-tracking, including, at a minimum, a Boolean "OR" of the LA and PV phases. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  1. A sun-tracking environmental chamber for the outdoor quantification of CPV modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faiman, David, E-mail: faiman@bgu.ac.il; Melnichak, Vladimir, E-mail: faiman@bgu.ac.il; Bokobza, Dov, E-mail: faiman@bgu.ac.il

    2014-09-26

    The paper describes a sun-tracking environmental chamber and its associated fast electronics, devised for the accurate outdoor characterization of CPV cells, receivers, mono-modules, and modules. Some typical measurement results are presented.

  2. Spatial feature tracking impedence sensor using multiple electric fields

    DOEpatents

    Novak, J.L.

    1998-08-11

    Linear and other features on a workpiece are tracked by measuring the fields generated between electrodes arrayed in pairs. One electrode in each pair operates as a transmitter and the other as a receiver, and both electrodes in a pair are arrayed on a carrier. By combining and subtracting fields between electrodes in one pair and between a transmitting electrode in one pair and a receiving electrode in another pair, information describing the location and orientation of the sensor relative to the workpiece in up to six degrees of freedom may be obtained. Typical applications will measure capacitance, but other impedance components may be measured as well. The sensor is designed to track a linear feature axis or a protrusion or pocket in a workpiece. Seams and ridges can be tracked by this non-contact sensor. The sensor output is useful for robotic applications. 10 figs.

  3. Precise tracking of remote sensing satellites with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P.; Wu, Sien-Chong; Wu, Jiun-Tsong; Thornton, Catherine L.

    1990-01-01

    The Global Positioning System (GPS) can be applied in a number of ways to track remote sensing satellites at altitudes below 3000 km with accuracies of better than 10 cm. All techniques use a precise global network of GPS ground receivers operating in concert with a receiver aboard the user satellite, and all estimate the user orbit, GPS orbits, and selected ground locations simultaneously. The GPS orbit solutions are always dynamic, relying on the laws of motion, while the user orbit solution can range from purely dynamic to purely kinematic (geometric). Two variations show considerable promise. The first one features an optimal synthesis of dynamics and kinematics in the user solution, while the second introduces a novel gravity model adjustment technique to exploit data from repeat ground tracks. These techniques, to be demonstrated on the Topex/Poseidon mission in 1992, will offer subdecimeter tracking accuracy for dynamically unpredictable satellites down to the lowest orbital altitudes.

  4. Theory and design of line-to-point focus solar concentrators with tracking secondary optics.

    PubMed

    Cooper, Thomas; Ambrosetti, Gianluca; Pedretti, Andrea; Steinfeld, Aldo

    2013-12-10

    The two-stage line-to-point focus solar concentrator with tracking secondary optics is introduced. Its design aims to reduce the cost per m(2) of collecting aperture by maintaining a one-axis tracking trough as the primary concentrator, while allowing the thermodynamic limit of concentration in 2D of 215× to be significantly surpassed by the implementation of a tracking secondary stage. The limits of overall geometric concentration are found to exceed 4000× when hollow secondary concentrators are used, and 6000× when the receiver is immersed in a dielectric material of refractive index n=1.5. Three exemplary collectors, with geometric concentrations in the range of 500-1500× are explored and their geometric performance is ascertained by Monte Carlo ray-tracing. The proposed solar concentrator design is well-suited for large-scale applications with discrete, flat receivers requiring concentration ratios in the range 500-2000×.

  5. Spatial feature tracking impedence sensor using multiple electric fields

    DOEpatents

    Novak, James L.

    1998-01-01

    Linear and other features on a workpiece are tracked by measuring the fields generated between electrodes arrayed in pairs. One electrode in each pair operates as a transmitter and the other as a receiver, and both electrodes in a pair are arrayed on a carrier. By combining and subtracting fields between electrodes in one pair and between a transmitting electrode in one pair and a receiving electrode in another pair, information describing the location and orientation of the sensor relative to the workpiece in up to six degrees of freedom may be obtained. Typical applications will measure capacitance, but other impedance components may be measured as well. The sensor is designed to track a linear feature axis or a protrusion or pocket in a workpiece. Seams and ridges can be tracked by this non-contact sensor. The sensor output is useful for robotic applications.

  6. DoE Phase II SBIR: Spectrally-Assisted Vehicle Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villeneuve, Pierre V.

    2013-02-28

    The goal of this Phase II SBIR is to develop a prototype software package to demonstrate spectrally-aided vehicle tracking performance. The primary application is to demonstrate improved target vehicle tracking performance in complex environments where traditional spatial tracker systems may show reduced performance. Example scenarios in Figure 1 include a) the target vehicle obscured by a large structure for an extended period of time, or b), the target engaging in extreme maneuvers amongst other civilian vehicles. The target information derived from spatial processing is unable to differentiate between the green versus the red vehicle. Spectral signature exploitation enables comparison ofmore » new candidate targets with existing track signatures. The ambiguity in this confusing scenario is resolved by folding spectral analysis results into each target nomination and association processes. Figure 3 shows a number of example spectral signatures from a variety of natural and man-made materials. The work performed over the two-year effort was divided into three general areas: algorithm refinement, software prototype development, and prototype performance demonstration. The tasks performed under this Phase II to accomplish the program goals were as follows: 1. Acquire relevant vehicle target datasets to support prototype. 2. Refine algorithms for target spectral feature exploitation. 3. Implement a prototype multi-hypothesis target tracking software package. 4. Demonstrate and quantify tracking performance using relevant data.« less

  7. Telemetry Tracking & Control (TT&C) - First TDRSS, then Commercial GEO & Big LEO and Now Through LEO

    NASA Technical Reports Server (NTRS)

    Morgan, Dwayne R.; Streich, Ron G.; Bull, Barton; Grant, Chuck; Power, Edward I. (Technical Monitor)

    2001-01-01

    The advent of low earth orbit (LEO) commercial communication satellites provides an opportunity to dramatically reduce Telemetry, Tracking and Control (TT&C) costs of launch vehicles, Unpiloted Aerial Vehicles (UAVs), Research Balloons and spacecraft by reducing or eliminating ground infrastructure. Personnel from the Goddard Space Flight Center's Wallops Flight Facility (GSFC\\WFF) have successfully used commercial Geostationary Earth Orbit (GEO) and Big LEO communications satellites for Long Duration Balloon Flight TT&C. The Flight Modem is a GSFC\\WFF Advanced Range Technology initiative (ARTI) designed to streamline TT&C capability in the user community of these scientific data gathering platforms at low cost. Making use of existing LEO satellites and adapting and ruggedized commercially available components; two-way, over the horizon communications may be established with these vehicles at great savings due to reduced infrastructure. Initially planned as a means for permitting GPS data for tracking and recovery of sounding rocket and balloon payloads, expectations are that the bandwidth can soon be expanded to allow more comprehensive data transfer. The system architecture which integrates antennas, GPS receiver, commercial satellite packet data modem and a single board computer with custom software is described and technical challenges are discussed along with the plan for their resolution. A three-phase testing and development plan is outlined and the current results are reported. Results and status of ongoing flight tests on aircraft and sounding rockets are reported. Future applications on these platforms and the potential for satellite support are discussed along with an analysis of cost effectiveness of this method vs. other tracking and data transmission schemes.

  8. The Influence of the North Atlantic Oscillation on Tropospheric Distributions of Ozone and Carbon Monoxide.

    NASA Astrophysics Data System (ADS)

    Knowland, K. E.; Doherty, R. M.; Hodges, K.

    2015-12-01

    The influence of the North Atlantic Oscillation (NAO) on the tropospheric distributions of ozone (O3) and carbon monoxide (CO) has been quantified. The Monitoring Atmospheric Composition and Climate (MACC) Reanalysis, a combined meteorology and composition dataset for the period 2003-2012 (Innes et al., 2013), is used to investigate the composition of the troposphere and lower stratosphere in relation to the location of the storm track as well as other meteorological parameters over the North Atlantic associated with the different NAO phases. Cyclone tracks in the MACC Reanalysis compare well to the cyclone tracks in the widely-used ERA-Interim Reanalysis for the same 10-year period (cyclone tracking performed using the tracking algorithm of Hodges (1995, 1999)), as both are based on the European Centre for Medium-Range Weather Forecasts' (ECMWF) Integrated Forecast System (IFS). A seasonal analysis is performed whereby the MACC reanalysis meteorological fields, O3 and CO mixing ratios are weighted by the monthly NAO index values. The location of the main storm track, which tilts towards high latitudes (toward the Arctic) during positive NAO phases to a more zonal location in the mid-latitudes (toward Europe) during negative NAO phases, impacts the location of both horizontal and vertical transport across the North Atlantic and into the Arctic. During positive NAO seasons, the persistence of cyclones over the North Atlantic coupled with a stronger Azores High promotes strong horizontal transport across the North Atlantic throughout the troposphere. In all seasons, significantly more intense cyclones occur at higher latitudes (north of ~50°C) during the positive phase of the NAO and in the southern mid-latitudes during the negative NAO phase. This impacts the location of stratospheric intrusions within the descending dry airstream behind the associated cold front of the extratropical cyclone and the venting of low-level pollution up into the free troposphere within the warm conveyor belt airstream which rises ahead of the cold front.

  9. Automated Target Acquisition, Recognition and Tracking (ATTRACT). Phase 1

    NASA Technical Reports Server (NTRS)

    Abdallah, Mahmoud A.

    1995-01-01

    The primary objective of phase 1 of this research project is to conduct multidisciplinary research that will contribute to fundamental scientific knowledge in several of the USAF critical technology areas. Specifically, neural networks, signal processing techniques, and electro-optic capabilities are utilized to solve problems associated with automated target acquisition, recognition, and tracking. To accomplish the stated objective, several tasks have been identified and were executed.

  10. The CryoSat Interferometer after 6 years in orbit: calibration and achievable performance

    NASA Astrophysics Data System (ADS)

    Scagliola, Michele; Fornari, Marco; De Bartolomei, Maurizio; Bouffard, Jerome; Parrinello, Tommaso

    2016-04-01

    The main payload of CryoSat is a Ku-band pulse width limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter). When commanded in SARIn (synthetic aperture radar interferometry) mode, through coherent along-track processing of the returns received from two antennas, the interferometric phase related to the first arrival of the echo is used to retrieve the angle of arrival of the scattering in the across-track direction. In fact, the across-track echo direction can be derived by exploiting the precise knowledge of the baseline vector (i.e. the vector between the two antennas centers of phase) and simple geometry. The end-to-end calibration strategy for the CryoSat interferometer consists on in-orbit calibration campaigns following the approach described in [1]. From the beginning of the CryoSat mission, about once a year the interferometer calibration campaigns have been periodically performed by rolling left and right the spacecraft of about ±0.4 deg. This abstract is aimed at presenting our analysis of the calibration parameters and of the achievable performance of the CryoSat interferometer over the 6 years of mission. Additionally, some further studies have been performed to assess the accuracy of the roll angle computed on ground as function of the aberration (the apparent displacement of a celestial object from its true position, caused by the relative motion of the observer and the object) correction applied to the attitude quaternions, provided by the Star Tracker mounted on-board. In fact, being the roll information crucial to obtain an accurate estimate of the angle of arrival, the data from interferometer calibration campaigns have been used to verify how the application of the aberration correction affects the roll information and, in turns, the measured angle of arrival. [1] Galin, N.; Wingham, D.J.; Cullen, R.; Fornari, M.; Smith, W.H.F.; Abdalla, S., "Calibration of the CryoSat-2 Interferometer and Measurement of Across-Track Ocean Slope," in Geoscience and Remote Sensing, IEEE Transactions on , vol.51, no.1, pp.57-72, Jan. 2013

  11. Fish Swimming into the Ocean: How Tracking Relates to Students' Self-Beliefs and School Disengagement at the End of Schooling

    ERIC Educational Resources Information Center

    Dumont, Hanna; Protsch, Paula; Jansen, Malte; Becker, Michael

    2017-01-01

    In this study, we analyzed how secondary school tracking relates to students' self-beliefs (i.e., their academic self-concepts in different domains and their beliefs regarding their labor market chances) and school disengagement during a time period that has received little attention in educational psychological research on tracking: when students…

  12. X-ray phase contrast tomography by tracking near field speckle

    PubMed Central

    Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal

    2015-01-01

    X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue. PMID:25735237

  13. Numerical simulation of phase transition problems with explicit interface tracking

    DOE PAGES

    Hu, Yijing; Shi, Qiangqiang; de Almeida, Valmor F.; ...

    2015-12-19

    Phase change is ubiquitous in nature and industrial processes. Started from the Stefan problem, it is a topic with a long history in applied mathematics and sciences and continues to generate outstanding mathematical problems. For instance, the explicit tracking of the Gibbs dividing surface between phases is still a grand challenge. Our work has been motivated by such challenge and here we report on progress made in solving the governing equations of continuum transport in the presence of a moving interface by the front tracking method. The most pressing issue is the accounting of topological changes suffered by the interfacemore » between phases wherein break up and/or merge takes place. The underlying physics of topological changes require the incorporation of space-time subscales not at reach at the moment. Therefore we use heuristic geometrical arguments to reconnect phases in space. This heuristic approach provides new insight in various applications and it is extensible to include subscale physics and chemistry in the future. We demonstrate the method on applications such as simulating freezing, melting, dissolution, and precipitation. The later examples also include the coupling of the phase transition solution with the Navier-Stokes equations for the effect of flow convection.« less

  14. An Iterative Information-Reduced Quadriphase-Shift-Keyed Carrier Synchronization Scheme Using Decision Feedback for Low Signal-to-Noise Ratio Applications

    NASA Technical Reports Server (NTRS)

    Simon, M.; Tkacenko, A.

    2006-01-01

    In a previous publication [1], an iterative closed-loop carrier synchronization scheme for binary phase-shift keyed (BPSK) modulation was proposed that was based on feeding back data decisions to the input of the loop, the purpose being to remove the modulation prior to carrier synchronization as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. The idea there was that, with sufficient independence between the received data and the decisions on it that are fed back (as would occur in an error-correction coding environment with sufficient decoding delay), a pure tone in the presence of noise would ultimately be produced (after sufficient iteration and low enough error probability) and thus could be tracked without any squaring loss. This article demonstrates that, with some modification, the same idea of iterative information reduction through decision feedback can be applied to quadrature phase-shift keyed (QPSK) modulation, something that was mentioned in the previous publication but never pursued.

  15. Registration of clinical volumes to beams-eye-view images for real-time tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, Jonathan H.; Rottmann, Joerg; Lewis, John H.

    2014-12-15

    Purpose: The authors combine the registration of 2D beam’s eye view (BEV) images and 3D planning computed tomography (CT) images, with relative, markerless tumor tracking to provide automatic absolute tracking of physician defined volumes such as the gross tumor volume (GTV). Methods: During treatment of lung SBRT cases, BEV images were continuously acquired with an electronic portal imaging device (EPID) operating in cine mode. For absolute registration of physician-defined volumes, an intensity based 2D/3D registration to the planning CT was performed using the end-of-exhale (EoE) phase of the four dimensional computed tomography (4DCT). The volume was converted from Hounsfield unitsmore » into electron density by a calibration curve and digitally reconstructed radiographs (DRRs) were generated for each beam geometry. Using normalized cross correlation between the DRR and an EoE BEV image, the best in-plane rigid transformation was found. The transformation was applied to physician-defined contours in the planning CT, mapping them into the EPID image domain. A robust multiregion method of relative markerless lung tumor tracking quantified deviations from the EoE position. Results: The success of 2D/3D registration was demonstrated at the EoE breathing phase. By registering at this phase and then employing a separate technique for relative tracking, the authors are able to successfully track target volumes in the BEV images throughout the entire treatment delivery. Conclusions: Through the combination of EPID/4DCT registration and relative tracking, a necessary step toward the clinical implementation of BEV tracking has been completed. The knowledge of tumor volumes relative to the treatment field is important for future applications like real-time motion management, adaptive radiotherapy, and delivered dose calculations.« less

  16. Guidance of Nonlinear Nonminimum-Phase Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1996-01-01

    The research work has advanced the inversion-based guidance theory for: systems with non-hyperbolic internal dynamics; systems with parameter jumps; and systems where a redesign of the output trajectory is desired. A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics was developed. This approach integrated stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics was used (a) to remove non-hyperbolicity which is an obstruction to applying stable inversion techniques and (b) to reduce large preactuation times needed to apply stable inversion for near non-hyperbolic cases. The method was applied to an example helicopter hover control problem with near non-hyperbolic internal dynamics for illustrating the trade-off between exact tracking and reduction of preactuation time. Future work will extend these results to guidance of nonlinear non-hyperbolic systems. The exact output tracking problem for systems with parameter jumps was considered. Necessary and sufficient conditions were derived for the elimination of switching-introduced output transient. While previous works had studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches), such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is also applicable to nonminimum-phase systems and leads to bounded but possibly non-causal solutions. In addition, for the case when the reference trajectories are generated by an exosystem, we developed an exact-tracking controller which could be written in a feedback form. As in standard regulator theory, we also obtained a linear map from the states of the exosystem to the desired system state, which was defined via a matrix differential equation.

  17. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    NASA Technical Reports Server (NTRS)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    This paper describes the development as well as the on-ground and the in-flight evaluation of a low cost Global Positioning System (GPS) system for real-time tracking of sounding rockets. The flight unit comprises a modified ORION GPS receiver and a newly designed switchable antenna system composed of a helical antenna in the rocket tip and a dual-blade antenna combination attached to the body of the service module. Aside from the flight hardware a PC based terminal program has been developed to monitor the GPS data and graphically displays the rocket's path during the flight. In addition an Instantaneous Impact Point (IIP) prediction is performed based on the received position and velocity information. In preparation for ESA's Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, Kiruna, on 19 Feb. 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. In addition to the ORION receiver, an Ashtech G12 HDMA receiver and a BAE (Canadian Marconi) Allstar receiver, both connected to a wrap-around antenna, have been flown on the same rocket as part of an independent experiment provided by the Goddard Space Flight Center. This allows an in-depth verification and trade-off of different receiver and antenna concepts.

  18. Managing piezoelectric sensor jitter: kinematic position tracking applications

    NASA Astrophysics Data System (ADS)

    Khomo, Malome T.

    2016-02-01

    Piezo-acoustic distance tracking sensors have challenges of reporting true distance readings. Challenges include directional anisotropy signal loss in transmission power and in receiver sensitivity, distance-related attenuation of signal and the phase shifts that result in jittery values, some preceding, and others succeeding the expected distance readings. There also exist signal time losses arising from dead time associated with processor latency, with carrier signal pulse length and with voltage rise-time delays in pulse detection. Together these factors cause distance under-reporting, and more critically, makes each reported value uncertain, which is unacceptable in distance-critical applications. Piezo-inertial accelerometers have equivalent if not more severe challenges in tri-axial configurations, for instance where a rotational tilt may happen under linear accelerative force. In the absence of tensor component adaptation to change of orientation, signal is lost until the next axial sensor detects it. Study paper focusses on piezo-acoustic transducers UCD1007 and 400SR160 (40kHz), used in a face-to-face configuration over a 600mm range. Within that range 10 successive phase shift wave fronts were identified, but it took 15 reconstructed wave fronts to uniquely identify a continuous end-to-end jitter-free and slippage-free kinematic data stream from the jittery sensor data. The additional 5 degrees of freedom were consumed by the 5-stage filter applied. The technique has remarkable combinatorial and projective geometry implications for digital sensor design. It is possible for the procedure to be applicable in 3-axis accelerometers and adapted into firmware for truly kinematic device driver interfaces so long as the reporting rates are matched with the user interface refresh rates. It is shown that acoustic transducer sensors require phase loop locking for kinematic continuity whereas gravimetric accelerometers demand better measurement time consistence in sensor values for induced kinematic phase locking.

  19. Analog track angle error displays improve simulated GPS approach performance

    DOT National Transportation Integrated Search

    1996-01-01

    Pilots flying non-precision instrument approaches traditionally rely on a course deviation indicator (CDI) analog display of cross track error (XTE) information. THe new generation of GPS based area navigation (RNAV) receivers can also compute accura...

  20. GPS-based system for satellite tracking and geodesy

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy I.; Thornton, Catherine L.

    1989-01-01

    High-performance receivers and data processing systems developed for GPS are reviewed. The GPS Inferred Positioning System (GIPSY) and the Orbiter Analysis and Simulation Software (OASIS) are described. The OASIS software is used to assess GPS system performance using GIPSY for data processing. Consideration is given to parameter estimation for multiday arcs, orbit repeatability, orbit prediction, daily baseline repeatability, agreement with VLBI, and ambiguity resolution. Also, the dual-frequency Rogue receiver, which can track up to eight GPS satellites simultaneously, is discussed.

  1. Automated Identification of the Heart Wall Throughout the Entire Cardiac Cycle Using Optimal Cardiac Phase for Extracted Features

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2011-07-01

    In most methods for evaluation of cardiac function based on echocardiography, the heart wall is currently identified manually by an operator. However, this task is very time-consuming and suffers from inter- and intraobserver variability. The present paper proposes a method that uses multiple features of ultrasonic echo signals for automated identification of the heart wall region throughout an entire cardiac cycle. In addition, the optimal cardiac phase to select a frame of interest, i.e., the frame for the initiation of tracking, was determined. The heart wall region at the frame of interest in this cardiac phase was identified by the expectation-maximization (EM) algorithm, and heart wall regions in the following frames were identified by tracking each point classified in the initial frame as the heart wall region using the phased tracking method. The results for two subjects indicate the feasibility of the proposed method in the longitudinal axis view of the heart.

  2. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 1. Cloud tracking and phase space description: CENTER OF GRAVITY VERSUS WATER MASS 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan

    We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3D cloud tracking algorithm and results are presented in the phase- space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projectedmore » on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.« less

  3. Evaluation of the transverse oscillation technique for cardiac phased-array imaging: A theoretical study

    PubMed Central

    Bottenus, Nick; D’hooge, Jan; Trahey, Gregg E.

    2017-01-01

    The transverse oscillation (TO) technique can improve the estimation of tissue motion perpendicular to the ultrasound beam direction. TOs can be introduced using plane wave (PW) insonification and bi-lobed Gaussian apodisation (BA) on receive (abbreviated as PWTO). Furthermore, the TO frequency can be doubled after a heterodyning demodulation process is performed (abbreviated as PWTO*). This study is concerned with identifying the limitations of the PWTO technique in the specific context of myocardial deformation imaging with phased arrays and investigating the conditions in which it remains advantageous over traditional focused (FOC) beamforming. For this purpose, several tissue phantoms were simulated using Field II, undergoing a wide range of displacement magnitudes and modes (lateral, axial and rotational motion). The Cramer-Rao lower bound (CRLB) was used to optimize TO beamforming parameters and theoretically predict the fundamental tracking performance limits associated with the FOC, PWTO and PWTO* beamforming scenarios. This framework was extended to also predict performance for BA functions which are windowed by the physical aperture of the transducer, leading to higher lateral oscillations. It was found that windowed BA functions resulted in lower jitter errors compared to tradional BA functions. PWTO* outperformed FOC at all investigated SNR levels but only up to a certain displacement, with the advantage rapidly decreasing when SNR increased. These results suggest that PWTO* improves lateral tracking performance, but only when inter-frame displacements remain relatively low. The study concludes by translating these findings to a clinical environment by suggesting optimal scanner settings. PMID:27810806

  4. NASA's next generation all-digital deep space network breadboard receiver

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami

    1993-01-01

    This paper describes the breadboard advanced receiver (ARX) that is currently being built for future use in NASA's deep space network (DSN). This receiver has unique requirements in having to operate with very weak signals from deep space probes and provide high quality telemetry and tracking data. The hybrid analog/digital receiver performs multiple functions including carrier, subcarrier and symbol synchronization. Tracking can be achieved for either residual, suppressed or hybrid carriers and for both sinusoidal and square wave subcarriers. System requirements are specified and a functional description of the ARX is presented. The various digital signal processing algorithms used are also discussed and illustrated with block diagrams. Other functions such as time tagged Doppler extraction and monitor/control are also discussed including acquisition algorithms and lock detection schemes.

  5. Near-optimal strategies for sub-decimeter satellite tracking with GPS

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P.; Wu, Sien-Chong; Wu, Jiun-Tsong

    1986-01-01

    Decimeter tracking of low Earth orbiters using differential Global Positioning System (GPS) techniques is discussed. A precisely known global network of GPS ground receivers and a receiver aboard the user satellite are needed, and all techniques simultaneously estimate the user and GPS satellite orbits. Strategies include a purely geometric, a fully dynamic, and a hybrid strategy. The last combines dynamic GPS solutions with a geometric user solution. Two powerful extensions of the hybrid strategy show the most promise. The first uses an optimized synthesis of dynamics and geometry in the user solution, while the second uses a gravity adjustment method to exploit data from repeat ground tracks. These techniques promise to deliver subdecimeter accuracy down to the lowest satellite altitudes.

  6. Satellite tracking of manta rays highlights challenges to their conservation.

    PubMed

    Graham, Rachel T; Witt, Matthew J; Castellanos, Dan W; Remolina, Francisco; Maxwell, Sara; Godley, Brendan J; Hawkes, Lucy A

    2012-01-01

    We describe the real-time movements of the last of the marine mega-vertebrate taxa to be satellite tracked - the giant manta ray (or devil fish, Manta birostris), the world's largest ray at over 6 m disc width. Almost nothing is known about manta ray movements and their environmental preferences, making them one of the least understood of the marine mega-vertebrates. Red listed by the International Union for the Conservation of Nature as 'Vulnerable' to extinction, manta rays are known to be subject to direct and incidental capture and some populations are declining. Satellite-tracked manta rays associated with seasonal upwelling events and thermal fronts off the Yucatan peninsula, Mexico, and made short-range shuttling movements, foraging along and between them. The majority of locations were received from waters shallower than 50 m deep, representing thermally dynamic and productive waters. Manta rays remained in the Mexican Exclusive Economic Zone for the duration of tracking but only 12% of tracking locations were received from within Marine Protected Areas (MPAs). Our results on the spatio-temporal distribution of these enigmatic rays highlight opportunities and challenges to management efforts.

  7. Finite Difference modeling of VLF Propagation in the Earth-Ionosphere Waveguide

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Wallace, T.; Turbe, M.

    2016-12-01

    Very-low-frequency (VLF, 3—30 kHz) waves can propagate efficiently in the waveguide formed by the Earth and the D-region ionosphere. vVariation in the signals monitored by a stationary receiver can be attributed to variations in the lower ionosphere. As such, these signals are used to monitor the D-region ionosphere in daytime and nighttime. However, the use of VLF transmitter signals to quantitatively diagnose the D-region ionosphere is complicated by i) the propagation of many modes in the waveguide, and their interference, and ii) the effect of the ionosphere along the entire path on the receiver signal at a single location. In this paper, we compare the modeled phase and amplitude of VLF signals using three methods: a Finite-Difference Time-Domain (FDTD) model, a Finite-Difference Frequency-Domain (FDFD) model, and the Long-Wave Prediction Capability (LWPC) model, which has been the method de rigueur since the 1970s. While LWPC solves mode propagation and coupling in the anisotropic waveguide, the FD methods directly solve for electric and magnetic fields from Maxwell's equations on a finite-difference grid. Thus, FD methods provide greater freedom to vary the physical inputs of the model, limited only by the spatial resolution, but at the expense of computation time. We compare the simulated amplitude and phase of these models by running them with identical physical inputs. In this work we compare both i) the absolute amplitude and phase trends as a function of distance, and ii) the magnitude of amplitude and phase variations for given ionosphere changes. Modeling results show that FDTD and FDFD simulations track the amplitude and phase as a function of distance very closely when compared to LWPC. Phase drift due to numerical dispersion is observed at large distances, of a few tens of degrees per 1000 km. These phase drifts increase quadratically with frequency, as expected from numerical dispersion in FD methods. In fact, the phase drift can be mostly removed by applying a simple Richardson extrapolation. After extrapolating, FDTD and LWPC differences can be mapped to a phase velocity difference of <0.07%. When we compare phase changes due to ionospheric variations (Figure 1), we find that all three models show similar magnitudes of phase changes, to within 20%, and similar trends with frequency.­­­

  8. TH-AB-BRA-08: Simulated Tumor Tracking in An MRI Linac for Lung Tumor Lesions Using the Monaco Treatment Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ward, S; Kim, A; McCann, C

    2016-06-15

    Purpose: To simulate tumor tracking in an Elekta MRI-linac (MRL) and to compare this tracking method with our current ITV approach in terms of OAR sparing for lung cancer patients. Methods: Five SABR-NSCLC patients with central lung tumors were selected for reasons of potential enhancement of tumor-tissue delineation using MRI. The Monaco TPS was used to compare the current clinical ITV approach to a simulated, novel tracking method which used a 7MV MRL beam in the presence of an orthogonal 1.5 T magnetic field (4D-MRL method). In the simulated tracking scenario, achieved using the virtual couch shift (VCS), the PTVmore » was defined using an isotropic 5mm margin applied to the GTV of each phase, as acquired from an 8-phase amplitude-binned 4DCT. These VCS plans were optimized and weighted on each phase. The dose weighting was performed using the patient-specific breathing traces. The doses were accumulated on the inhale phase. The two methods were compared by assessing the OAR DVHs. Results: The 4D-MRL method resulted in a reduced target volume (by an average of 29% over all patients). The benefits of using an MRL tracking system depended on the tumor motion amplitude and the relative OAR motion (ROM) to the target. The reduction in mean doses to parallel organs was up to 3 Gy for the heart and 2.1 Gy for the lung. The reductions in maximum doses to serial organs were up to 9.4 Gy, 5.6 Gy, and 8.7 Gy for the esophagus, spinal cord, and the trachea, respectively. Serial organs benefited from MRL tracking when the ROM was ≥ 0.3 cm despite small tumor motion amplitude in some cases. Conclusions: This work demonstrated the potential benefit for an MRL tracking system to spare OARs in SABR-NSCLC patients with central tumors. The benefits are embodied in the target volume reduction. This project was made possible with the financial support of Elekta.« less

  9. Automated real-time needle-guide tracking for fast 3-T MR-guided transrectal prostate biopsy: a feasibility study.

    PubMed

    Zamecnik, Patrik; Schouten, Martijn G; Krafft, Axel J; Maier, Florian; Schlemmer, Heinz-Peter; Barentsz, Jelle O; Bock, Michael; Fütterer, Jurgen J

    2014-12-01

    To assess the feasibility of automatic needle-guide tracking by using a real-time phase-only cross correlation ( POCC phase-only cross correlation ) algorithm-based sequence for transrectal 3-T in-bore magnetic resonance (MR)-guided prostate biopsies. This study was approved by the ethics review board, and written informed consent was obtained from all patients. Eleven patients with a prostate-specific antigen level of at least 4 ng/mL (4 μg/L) and at least one transrectal ultrasonography-guided biopsy session with negative findings were enrolled. Regions suspicious for cancer were identified on 3-T multiparametric MR images. During a subsequent MR-guided biopsy, the regions suspicious for cancer were reidentified and targeted by using the POCC phase-only cross correlation -based tracking sequence. Besides testing a general technical feasibility of the biopsy procedure by using the POCC phase-only cross correlation -based tracking sequence, the procedure times were measured, and a pathologic analysis of the biopsy cores was performed. Thirty-eight core samples were obtained from 25 regions suspicious for cancer. It was technically feasible to perform the POCC phase-only cross correlation -based biopsies in all regions suspicious for cancer in each patient, with adequate biopsy samples obtained with each biopsy attempt. The median size of the region suspicious for cancer was 8 mm (range, 4-13 mm). In each region suspicious for cancer (median number per patient, two; range, 1-4), a median of one core sample per region was obtained (range, 1-3). The median time for guidance per target was 1.5 minutes (range, 0.7-5 minutes). Nineteen of 38 core biopsy samples contained cancer. This study shows that it is feasible to perform transrectal 3-T MR-guided biopsies by using a POCC phase-only cross correlation algorithm-based real-time tracking sequence. © RSNA, 2014.

  10. The Simpsons program 6-D phase space tracking with acceleration

    NASA Astrophysics Data System (ADS)

    Machida, S.

    1993-12-01

    A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.

  11. Pilot performance and workload using simulated GPS track angle error displays

    DOT National Transportation Integrated Search

    1995-01-01

    The effect on simulated GPS instrument approach performance and workload resulting from the addition of Track Angle Error (TAE) information to cockpit RNAV receiver displays in explicit analog form was studied experimentally (S display formats, 6 pil...

  12. A Microwave Interferometer on an Air Track.

    ERIC Educational Resources Information Center

    Polley, J. Patrick

    1993-01-01

    Uses an air track and microwave transmitters and receivers to make a Michelson interferometer. Includes three experiments: (1) measuring the wavelength of microwaves, (2) measuring the wavelength of microwaves by using the Doppler Effect, and (3) measuring the Doppler shift. (MVL)

  13. CTRANS: A Monte Carlo program for radiative transfer in plane parallel atmospheres with imbedded finite clouds: Development, testing and user's guide

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The program called CTRANS is described which was designed to perform radiative transfer computations in an atmosphere with horizontal inhomogeneities (clouds). Since the atmosphere-ground system was to be richly detailed, the Monte Carlo method was employed. This means that results are obtained through direct modeling of the physical process of radiative transport. The effects of atmopheric or ground albedo pattern detail are essentially built up from their impact upon the transport of individual photons. The CTRANS program actually tracks the photons backwards through the atmosphere, initiating them at a receiver and following them backwards along their path to the Sun. The pattern of incident photons generated through backwards tracking automatically reflects the importance to the receiver of each region of the sky. Further, through backwards tracking, the impact of the finite field of view of the receiver and variations in its response over the field of view can be directly simulated.

  14. A theory of phase singularities for image representation and its applications to object tracking and image matching.

    PubMed

    Qiao, Yu; Wang, Wei; Minematsu, Nobuaki; Liu, Jianzhuang; Takeda, Mitsuo; Tang, Xiaoou

    2009-10-01

    This paper studies phase singularities (PSs) for image representation. We show that PSs calculated with Laguerre-Gauss filters contain important information and provide a useful tool for image analysis. PSs are invariant to image translation and rotation. We introduce several invariant features to characterize the core structures around PSs and analyze the stability of PSs to noise addition and scale change. We also study the characteristics of PSs in a scale space, which lead to a method to select key scales along phase singularity curves. We demonstrate two applications of PSs: object tracking and image matching. In object tracking, we use the iterative closest point algorithm to determine the correspondences of PSs between two adjacent frames. The use of PSs allows us to precisely determine the motions of tracked objects. In image matching, we combine PSs and scale-invariant feature transform (SIFT) descriptor to deal with the variations between two images and examine the proposed method on a benchmark database. The results indicate that our method can find more correct matching pairs with higher repeatability rates than some well-known methods.

  15. Time Delay Mechanical-noise Cancellation (TDMC) to Provide Order of Magnitude Improvements in Radio Science Observations

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Babuscia, A.; Lazio, J.; Asmar, S.

    2017-12-01

    Many Radio Science investigations, including the determinations of planetary masses, measurements of planetary atmospheres, studies of the solar wind, and solar system tests of relativistic gravity, rely heavily on precision Doppler tracking. Recent and currently proposed missions such as VERITAS, Bepi Colombo, Juno have shown that the largest error source in the precision Doppler tracking data is noise in the Doppler system. This noise is attributed to un-modeled motions of the ground antenna's phase center and is commonly referred to as "antenna mechanical noise." Attempting to reduce this mechanical noise has proven difficult since the deep space communications antennas utilize large steel structures that are already optimized for mechanical stability. Armstrong et al. (2008) have demonstrated the Time Delay Mechanical-noise Cancellation (TDMC) concept using Goldstone DSN antennas (70 m & 34 m) and the Cassinispacecraft to show that the mechanical noise of the 70 m antenna could be suppressed when two-way Doppler tracking from the 70 m antenna and the receive-only Doppler data from the smaller, stiffer 34 m antenna were combined with suitable delays. The proof-of-concept confirmed that the mechanical noise in the final Doppler observable was reduced to that of the stiffer, more stable antenna. Caltech's Owens Valley Radio Observatory (OVRO) near Bishop, CA now has six 10.4 m diameter antennas, a consequence of the closure of Combined Array for Research in Millimeter Astronomy (CARMA). In principle, a 10 m antenna can lead to an order-of-magnitude improvement for the mechanical noise correction, as the smaller dish offers better mechanical stability compared to a DSN 34-m antenna. These antennas also have existing Ka-band receiving systems, and preliminary discussions with the OVRO staff suggest that much of the existing signal path could be used for Radio Science observations.

  16. Solid state laser communications in space (SOLACOS) high data rate satellite communication system verification program

    NASA Astrophysics Data System (ADS)

    Pribil, Klaus; Flemmig, Joerg

    1994-09-01

    This paper gives an overview on the current development status of the SOLACOS program and presents the highlights of the program. SOLACOS (Solid State Laser Communications in Space) is the national German program to develop a high performance laser communication system for high data rate transmission between LEO and GEO satellites (Inter Orbit Link, IOL). Two experimental demonstrator terminals are designed and developed in the SOLACOS program. The main development objectives are the Pointing Acquisition and Tracking subsystem (PAT) and the high data rate communication system. All key subsystems and components are straightway developed to be upgraded in follow- on projects to full space qualification. The main design objective for the system is a high degree of modularity which allows to easily upgrade the system with new upcoming technologies. Therefore, all main subsystems are interconnected via fibers to ease replacement of subsystems. The system implements an asymmetric data link with a 650 MBit/s return channel and a 10 MBit/s forward channel. The 650 MBit/s channel is based on a diode pumped Nd:YAG, Integrated Optics Modulator and uses the syncbit transmission scheme. In the syncbit system synchronization information which is necessary to maintain phase lock of the local oscillator of the coherent receiver is transmitted time multiplexed into the data stream. The PAT system comprises two beam detection sensors and three beam steering elements. For initial acquisition and tracking of the remote satellite a high speed CCD camera with an integrated image processing unit, the Acquisition and Tracking Sensor (ATS) is used. In the tacking mode the beam position is sensed via the Fibernutator sensor which is also used to couple the incoming signal into the receiver fiber. Incoming and outgoing beams are routed through the telescopes which are positioned with a 2 axis gimbal mechanism and a high speed beam steering mirror. The PAT system is controlled by a digital signal processor. For beam control advanced PAT algorithms are under development.

  17. Impact of GPS antenna phase center and code residual variation maps on orbit and baseline determination of GRACE

    NASA Astrophysics Data System (ADS)

    Mao, X.; Visser, P. N. A. M.; van den IJssel, J.

    2017-06-01

    Precision Orbit Determination (POD) is a prerequisite for the success of many Low Earth Orbiting (LEO) satellite missions. With high-quality, dual-frequency Global Positioning System (GPS) receivers, typically precisions of the order of a few cm are possible for single-satellite POD, and of a few mm for relative POD of formation flying spacecraft with baselines up to hundreds of km. To achieve the best precision, the use of Phase Center Variation (PCV) maps is indispensable. For LEO GPS receivers, often a-priori PCV maps are obtained by a pre-launch ground campaign, which is not able to represent the real space-borne environment of satellites. Therefore, in-flight calibration of the GPS antenna is more widely conducted. This paper shows that a further improvement is possible by including the so-called Code Residual Variation (CRV) maps in absolute/undifferenced and relative/Double-differenced (DD) POD schemes. Orbit solutions are produced for the GRACE satellite formation for a four months test period (August-November, 2014), demonstrating enhanced orbit precision after first using the in-flight PCV maps and a further improvement after including the CRV maps. The application of antenna maps leads to a better consistency with independent Satellite Laser Ranging (SLR) and K-band Ranging (KBR) low-low Satellite-to-Satellite Tracking (ll-SST) observations. The inclusion of the CRV maps results also in a much better consistency between reduced-dynamic and kinematic orbit solutions for especially the cross-track direction. The improvements are largest for GRACE-B, where a cross-talk between the GPS main antenna and the occultation antenna yields higher systematic observation residuals. For high-precision relative POD which necessitates DD carrier-phase ambiguity fixing, in principle frequency-dependent PCV maps would be required. To this aim, use is made of an Extended Kalman Filter (EKF) that is capable of optimizing relative spacecraft dynamics and iteratively fixing the DD carrier-phase ambiguities. It is found that PCV maps significantly improve the baseline solution. CRV maps slightly enhance the baseline precision, more significantly they lead to a much better initialization of the ambiguity fixing. The GRACE single-satellite orbit solutions compare to within a few cm 3-dimensionally with state-of-the-art external orbit solutions and SLR observations, whereas for the baseline a consistency of better than 0.7 mm with KBR observations is achieved.

  18. Sensing device and method for measuring emission time delay during irradiation of targeted samples utilizing variable phase tracking

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2006-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  19. A compact presentation of DSN array telemetry performance

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1982-01-01

    The telemetry performance of an arrayed receiver system, including radio losses, is often given by a family of curves giving bit error rate vs bit SNR, with tracking loop SNR at one receiver held constant along each curve. This study shows how to process this information into a more compact, useful format in which the minimal total signal power and optimal carrier suppression, for a given fixed bit error rate, are plotted vs data rate. Examples for baseband-only combining are given. When appropriate dimensionless variables are used for plotting, receiver arrays with different numbers of antennas and different threshold tracking loop bandwidths look much alike, and a universal curve for optimal carrier suppression emerges.

  20. Exact-Output Tracking Theory for Systems with Parameter Jumps

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh; Paden, Brad; Rossi, Carlo

    1996-01-01

    In this paper we consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to nonminimum-phase systems and obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exo-system, then we develop an exact-tracking controller in a feedback form. As in standard regulator theory, we obtain a linear map from the states of the exo-system to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.

  1. Exact-Output Tracking Theory for Systems with Parameter Jumps

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh; Paden, Brad; Rossi, Carlo

    1997-01-01

    We consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to non-minimum-phase systems and it obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exosystem, then we develop an exact-tracking controller in a feed-back form. As in standard regulator theory, we obtain a linear map from the states of the exosystem to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.

  2. Electromagnetic-Guided MLC Tracking Radiation Therapy for Prostate Cancer Patients: Prospective Clinical Trial Results.

    PubMed

    Keall, Paul J; Colvill, Emma; O'Brien, Ricky; Caillet, Vincent; Eade, Thomas; Kneebone, Andrew; Hruby, George; Poulsen, Per R; Zwan, Benjamin; Greer, Peter B; Booth, Jeremy

    2018-06-01

    To report on the primary and secondary outcomes of a prospective clinical trial of electromagnetic-guided multileaf collimator (MLC) tracking radiation therapy for prostate cancer. Twenty-eight men with prostate cancer were treated with electromagnetic-guided MLC tracking with volumetric modulated arc therapy. A total of 858 fractions were delivered, with the dose per fraction ranging from 2 to 13.75 Gy. The primary outcome was feasibility, with success determined if >95% of fractions were successfully delivered. The secondary outcomes were (1) the improvement in beam-target geometric alignment, (2) the improvement in dosimetric coverage of the prostate and avoidance of critical structures, and (3) no acute grade ≥3 genitourinary or gastrointestinal toxicity. All 858 planned fractions were successfully delivered with MLC tracking, demonstrating the primary outcome of feasibility (P < .001). MLC tracking improved the beam-target geometric alignment from 1.4 to 0.90 mm (root-mean-square error). MLC tracking improved the dosimetric coverage of the prostate and reduced the daily variation in dose to critical structures. No acute grade ≥3 genitourinary or gastrointestinal toxicity was observed. Electromagnetic-guided MLC tracking radiation therapy for prostate cancer is feasible. The patients received improved geometric targeting and delivered dose distributions that were closer to those planned than they would have received without electromagnetic-guided MLC tracking. No significant acute toxicity was observed. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Improved Use of Satellite Imagery to Forecast Hurricanes

    NASA Technical Reports Server (NTRS)

    Louis, Jean-Francois

    2001-01-01

    This project tested a novel method that uses satellite imagery to correct phase errors in the initial state for numerical weather prediction, applied to hurricane forecasts. The system was tested on hurricanes Guillermo (1997), Felicia (1997) and Iniki (1992). We compared the performance of the system with and without phase correction to a procedure that uses bogus data in the initial state, similar to current operational procedures. The phase correction keeps the hurricane on track in the analysis and is far superior to a system without phase correction. Compared to operational procedure, phase correction generates somewhat worse 3-day forecast of the hurricane track, but better forecast of intensity. It is believed that the phase correction module would work best in the context of 4-dimensional variational data assimilation. Very little modification to 4DVar would be required.

  4. Kalman Orbit Optimized Loop Tracking

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  5. Chemical vapor deposition for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1980-01-01

    Chemical vapor deposition for automatic processing of integrated circuits including the wafer carrier and loading from a receiving air track into automatic furnaces and unloading on to a sending air track is discussed. Passivation using electron beam deposited quartz is also considered.

  6. Tracking Data Acquisition System (TDAS) for the 1990's. Volume 6: TDAS navigation system architecture

    NASA Technical Reports Server (NTRS)

    Elrod, B. D.; Jacobsen, A.; Cook, R. A.; Singh, R. N. P.

    1983-01-01

    One-way range and Doppler methods for providing user orbit and time determination are examined. Forward link beacon tracking, with on-board processing of independent navigation signals broadcast continuously by TDAS spacecraft; forward link scheduled tracking; with on-board processing of navigation data received during scheduled TDAS forward link service intervals; and return link scheduled tracking; with ground-based processing of user generated navigation data during scheduled TDAS return link service intervals are discussed. A system level definition and requirements assessment for each alternative, an evaluation of potential navigation performance and comparison with TDAS mission model requirements is included. TDAS satellite tracking is also addressed for two alternatives: BRTS and VLBI tracking.

  7. Optical superheterodyne receiver uses laser for local oscillator

    NASA Technical Reports Server (NTRS)

    Lucy, R. F.

    1966-01-01

    Optical superheterodyne receiver uses a laser coupled to a frequency translator to supply both the incident signal and local oscillator signal and thus permit reception of amplitude modulated video bandwidth signals through the atmosphere. This receiver is useful in scientific propagation experiments, tracking experiments, and communication experiments.

  8. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR TRACKING SYSTEM (UA-D-28.0)

    EPA Science Inventory

    The NHEXAS Arizona project designed a system that tracks what occurs to a sample and provides the status of that sample at any given time. In essence, the tracking system provides an electronic chain of custody record for each sample as it moves through the project. This is ach...

  9. The efficacy and resource utilization of remifentanil and fentanyl in fast-track coronary artery bypass graft surgery: a prospective randomized, double-blinded controlled, multi-center trial.

    PubMed

    Cheng, D C; Newman, M F; Duke, P; Wong, D T; Finegan, B; Howie, M; Fitch, J; Bowdle, T A; Hogue, C; Hillel, Z; Pierce, E; Bukenya, D

    2001-05-01

    We compared (a) the perioperative complications; (b) times to eligibility for, and actual time of the following: extubation, less intense monitoring, intensive care unit (ICU), and hospital discharge; and (c) resource utilization of nursing ratio for patients receiving either a typical fentanyl/isoflurane/propofol regimen or a remifentanil/isoflurane/propofol regimen for fast-track cardiac anesthesia in 304 adults by using a prospective randomized, double-blinded, double-dummy trial. There were no differences in demographic data, or perioperative mortality and morbidity between the two study groups. The mini-mental status examination at postoperative Days 1 to 3 were similar between the two groups. The eligible and actual times for extubation, less intense monitoring, ICU discharge, and hospital discharge were not significantly different. Further analyses revealed no differences in times for extubation and resource utilization after stratification by preoperative risk scores, age, and country. The nurse/patient ratio was similar between the remifentanil/isoflurane/propofol and fentanyl/isoflu-rane/propofol groups during the initial ICU phase and less intense monitoring phase. Increasing preoperative risk scores and older age (>70 yr) were associated with longer times until extubation (eligible), ICU discharge (eligible and actual), and hospital discharge (eligible and actual). Times until extubation (eligible and actual) and less intense monitoring (eligible) were significantly shorter in Canadian patients than United States' patients. However, there was no difference in hospital length of stay in Canadian and United States' patients. We conclude that both anesthesia techniques permit early and similar times until tracheal extubation, less intense monitoring, ICU and hospital discharge, and reduced resource utilization after coronary artery bypass graft surgery. An ultra-short opioid technique was compared with a standard fast-track small-dose opioid technique in coronary artery bypass graft patients in a prospective randomized, double-blinded controlled study. The postoperative recovery and resource utilization, including stratification of preoperative risk score, age, and country, were analyzed.

  10. Tracking performance and cycle slipping in the all-digital symbol synchronizer loop of the block 5 receiver

    NASA Astrophysics Data System (ADS)

    Aung, M.

    1992-11-01

    Computer simulated noise performance of the symbol synchronizer loop (SSL) in the Block 5 receiver is compared with the theoretical noise performance. Good agreement is seen at the higher loop SNR's (SNR(sub L)'s), with gradual degradation as the SNR(sub L) is decreased. For the different cases simulated, cycle slipping is observed (within the simulation time of 10(exp 4) seconds) at SNR(sub L)'s below different thresholds, ranging from 6 to 8.5 dB, comparable to that of a classical phase-locked loop. An important point, however, is that to achieve the desired loop SNR above the seemingly low threshold to avoid cycle slipping, a large data-to-loop-noise power ratio, P(sub D)/(N(sub 0)B(sub L)), is necessary (at least 13 dB larger than the desired SNR(sub L) in the optimum case and larger otherwise). This is due to the large squaring loss (greater than or equal to 13 dB) inherent in the SSL. For the special case of symbol rates approximately equaling the loop update rate, a more accurate equivalent model accounting for an extra loop update period delay (characteristic of the SSL phase detector design) is derived. This model results in a more accurate estimation of the noise-equivalent bandwidth of the loop.

  11. Tracking performance and cycle slipping in the all-digital symbol synchronizer loop of the block 5 receiver

    NASA Technical Reports Server (NTRS)

    Aung, M.

    1992-01-01

    Computer simulated noise performance of the symbol synchronizer loop (SSL) in the Block 5 receiver is compared with the theoretical noise performance. Good agreement is seen at the higher loop SNR's (SNR(sub L)'s), with gradual degradation as the SNR(sub L) is decreased. For the different cases simulated, cycle slipping is observed (within the simulation time of 10(exp 4) seconds) at SNR(sub L)'s below different thresholds, ranging from 6 to 8.5 dB, comparable to that of a classical phase-locked loop. An important point, however, is that to achieve the desired loop SNR above the seemingly low threshold to avoid cycle slipping, a large data-to-loop-noise power ratio, P(sub D)/(N(sub 0)B(sub L)), is necessary (at least 13 dB larger than the desired SNR(sub L) in the optimum case and larger otherwise). This is due to the large squaring loss (greater than or equal to 13 dB) inherent in the SSL. For the special case of symbol rates approximately equaling the loop update rate, a more accurate equivalent model accounting for an extra loop update period delay (characteristic of the SSL phase detector design) is derived. This model results in a more accurate estimation of the noise-equivalent bandwidth of the loop.

  12. Steady-state phase error for a phase-locked loop subjected to periodic Doppler inputs

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.; Win, M. Z.

    1991-01-01

    The performance of a carrier phase locked loop (PLL) driven by a periodic Doppler input is studied. By expanding the Doppler input into a Fourier series and applying the linearized PLL approximations, it is easy to show that, for periodic frequency disturbances, the resulting steady state phase error is also periodic. Compared to the method of expanding frequency excursion into a power series, the Fourier expansion method can be used to predict the maximum phase error excursion for a periodic Doppler input. For systems with a large Doppler rate fluctuation, such as an optical transponder aboard an Earth orbiting spacecraft, the method can be applied to test whether a lower order tracking loop can provide satisfactory tracking and thereby save the effect of a higher order loop design.

  13. Shear wave arrival time estimates correlate with local speckle pattern.

    PubMed

    Mcaleavey, Stephen A; Osapoetra, Laurentius O; Langdon, Jonathan

    2015-12-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 μm to 20 μm simulated) compared with the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared with the variation with axial position/ local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture.

  14. Shear Wave Arrival Time Estimates Correlate with Local Speckle Pattern

    PubMed Central

    McAleavey, Stephen A.; Osapoetra, Laurentius O.; Langdon, Jonathan

    2016-01-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r>0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate – a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true – highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (−20 μm to 20 μm simulated) compared to the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared to the variation with axial position/local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture. PMID:26670847

  15. Dynamic tracking down-conversion signal processing method based on reference signal for grating heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Yan, Shuhua; Zhou, Weihong; Gu, Chenhui

    2012-08-01

    Traditional displacement measurement systems by grating, which purely make use of fringe intensity to implement fringe count and subdivision, have rigid demands for signal quality and measurement condition, so they are not easy to realize measurement with nanometer precision. Displacement measurement with the dual-wavelength and single-grating design takes advantage of the single grating diffraction theory and the heterodyne interference theory, solving quite well the contradiction between large range and high precision in grating displacement measurement. To obtain nanometer resolution and nanometer precision, high-power subdivision of interference fringes must be realized accurately. A dynamic tracking down-conversion signal processing method based on the reference signal is proposed. Accordingly, a digital phase measurement module to realize high-power subdivision on field programmable gate array (FPGA) was designed, as well as a dynamic tracking down-conversion module using phase-locked loop (PLL). Experiments validated that a carrier signal after down-conversion can constantly maintain close to 100 kHz, and the phase-measurement resolution and phase precision are more than 0.05 and 0.2 deg, respectively. The displacement resolution and the displacement precision, corresponding to the phase results, are 0.139 and 0.556 nm, respectively.

  16. Preliminary Results of the GPS Flight Experiment on the High Earth Orbit AMSAT-OSCAR 40 Spacecraft

    NASA Technical Reports Server (NTRS)

    Moreau, Michael C.; Bauer, Frank H.; Carpenter, J. Russell; Davis, Edward P.; Davis, George W.; Jackson, Larry A.

    2002-01-01

    The GPS flight experiment on the High Earth Orbit (HEO) AMSAT-OSCAR 40 (AO-40) spacecraft was activated for a period of approximately six weeks between 25 September and 2 November, 2001, and the initial results have exciting implications for using GPS as a low-cost orbit determination sensor for future HEO missions. AO-40, an amateur radio satellite launched November 16, 2000, is currently in a low inclination, 1000 by 58,800 km altitude orbit. Although the GPS receiver was not initialized in any way, it regularly returned GPS observations from points all around the orbit. Raw signal to noise levels as high as 9 AMUs (Trimble Amplitude Measurement Units) or approximately 48 dB-Hz have been recorded at apogee, when the spacecraft was close to 60,000 km in altitude. On several occasions when the receiver was below the GPS constellation (below 20,000 krn altitude), observations were reported for GPS satellites tracked through side lobe transmissions. Although the receiver has not returned any point solutions, there has been at least one occasion when four satellites were tracked simultaneously, and this short arc of data was used to compute point solutions after the fact. These results are encouraging, especially considering the spacecraft is currently in a spin-stabilized attitude mode that narrows the effective field of view of the receiving antennas and adversely affects GPS tracking. Already AO-40 has demonstrated the feasibility of recording GPS observations in HEO using an unaided receiver. Furthermore, it is providing important information about the characteristics of GPS signals received by a spacecraft in a HEO, which has long been of interest to many in the GPS community. Based on the data returned so far, the tracking performance is expected to improve when the spacecraft is transitioned to a three axis stabilized, nadir pointing attitude in Summer, 2002.

  17. The Extended-Image Tracking Technique Based on the Maximum Likelihood Estimation

    NASA Technical Reports Server (NTRS)

    Tsou, Haiping; Yan, Tsun-Yee

    2000-01-01

    This paper describes an extended-image tracking technique based on the maximum likelihood estimation. The target image is assume to have a known profile covering more than one element of a focal plane detector array. It is assumed that the relative position between the imager and the target is changing with time and the received target image has each of its pixels disturbed by an independent additive white Gaussian noise. When a rotation-invariant movement between imager and target is considered, the maximum likelihood based image tracking technique described in this paper is a closed-loop structure capable of providing iterative update of the movement estimate by calculating the loop feedback signals from a weighted correlation between the currently received target image and the previously estimated reference image in the transform domain. The movement estimate is then used to direct the imager to closely follow the moving target. This image tracking technique has many potential applications, including free-space optical communications and astronomy where accurate and stabilized optical pointing is essential.

  18. LEA Detection and Tracking Method for Color-Independent Visual-MIMO

    PubMed Central

    Kim, Jai-Eun; Kim, Ji-Won; Kim, Ki-Doo

    2016-01-01

    Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO) technique is deteriorated by light emitting array (LEA) detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI) in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER) performance improvement. PMID:27384563

  19. LEA Detection and Tracking Method for Color-Independent Visual-MIMO.

    PubMed

    Kim, Jai-Eun; Kim, Ji-Won; Kim, Ki-Doo

    2016-07-02

    Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO) technique is deteriorated by light emitting array (LEA) detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI) in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER) performance improvement.

  20. Free Motion Scanning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sword, Charles K.

    The present invention relates to an ultrasonic scanner and method for the imaging of a part surface, the scanner comprising: a probe assembly spaced apart from the surface including at least two tracking signals for emitting electromagnetic radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of said waves to be reflected from the surface, at least one detector for receiving the electromagnetic radiation wherein the detector is positioned to receive said radiation from the tracking signals, an analyzing means for recognizing a three-dimensional location of the tracking signals basedmore » on said emitted electromagnetic radiation, a differential conversion means for generating an output signal representative of the waveform of the reflected waves, and a means for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe-over a complex part surface in an arbitrary scanning pattern.« less

  1. Free motion scanning system

    DOEpatents

    Sword, Charles K.

    2000-01-01

    The present invention relates to an ultrasonic scanner system and method for the imaging of a part system, the scanner comprising: a probe assembly spaced apart from the surface of the part including at least two tracking signals for emitting radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of the waves to be reflected from the part, at least one detector for receiving the radiation wherein the detector is positioned to receive the radiation from the tracking signals, an analyzer for recognizing a three-dimensional location of the tracking signals based on the emitted radiation, a differential converter for generating an output signal representative of the waveform of the reflected waves, and a device such as a computer for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe over a complex part surface in an arbitrary scanning pattern.

  2. Laronidase.

    PubMed

    2002-01-01

    BioMarin Pharmaceutical is developing laronidase, recombinant alpha-L-iduronidase enzyme replacement therapy for the treatment of mucopolysaccharidosis I (MPS-I) [the most severe form of this is called Hurler syndrome]. The company has received US and European orphan drug designation for the enzyme and has fast-track review status with the FDA. In 1998, BioMarin Pharmaceutical and Genzyme General formed a joint venture for development and marketing of laronidase. A Phase I trial in 10 patients with a range of disease severity of MPS-I required for US and European filing was completed at the Harbor-UCLA Medical Center in California. This open label trial involved weekly infusions with laronidase. The two-year follow-up data revealed sustained and, in certain parameters, improved clinical results recorded at the end of 1 year of therapy. BioMarin and Genzyme General have completed a pivotal, Phase III trial in the centres in the USA, Canada and Europe, including patients with Hurler-Scheie and Scheie syndromes. In a multicentre, double-blind, placebo-controlled study, all 45 patients with MPS-I have received at least their initial weekly infusion of laronidase. Patients are being evaluated over a 6-month period. BioMarin Pharmaceutical and Genzyme General have filed on 15 April 2002 the first portion of a 'rolling' BLA with the US FDA for use of laronidase in the treatment of MPS-I. The companies are planning to complete the BLA filing in Q3 2002. The application will include 6-month data from the ongoing open-label Phase III extension study and also the 6-month data from the placebo-controlled part of the Phase III study. In the open-label extension study, patients from both the treatment and placebo arms of the Phase III trial received weekly infusions of laronidase for at least 6 months. The response from the US FDA is anticipated during the H1 of 2003. Both companies plan to initiate two new clinical trials in patients with MPS-I. One study will enrol patients with MPS-I under 5 years old. Another study will investigate laronidase in patients with advanced clinical symptoms of MPS-I. Additionally, patients from the ongoing Phase III study will continue to receive treatment with laronidase. On 1 March 2002, BioMarin and Genzyme filed a marketing approval application with European regulatory authorities for AldurazymeOE for the treatment of MPS-I. Mucopolysaccharidosis I is a rare autosomal recessive lysosomal storage disorder caused by alpha-L-iduronidase deficiency. Its manifestations in children can include growth and developmental delay, enlargement of spleen and liver, skeletal deformity, cardiac and pulmonary impairment, vision or hearing loss and mental dysfunction. At present, bone marrow transplantation is the only available treatment.

  3. Acquisition and Tracking Behavior of Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Viterbi, A. J.

    1958-01-01

    Phase-locked or APC loops have found increasing applications in recent years as tracking filters, synchronizing devices, and narrowband FM discriminators. Considerable work has been performed to determine the noise-squelching properties of the loop when it is operating in or near phase lock and is functioning as a linear coherent detector. However, insufficient consideration has been devoted to the non-linear behavior of the loop when it is out of lock and in the process of pulling in. Experimental evidence has indicated that there is a strong tendency for phase-locked loops to achieve lock under most circumstances. However, the analysis which has appeared in the literature iis limited to the acquisition of a constant frequency reference signal with only one phase-locked loop filter configuration. This work represents an investigation of frequency acquisition properties of phase-locked loops for a variety of reference-signal behavior and loop configurations

  4. Rapid, High-Throughput Tracking of Bacterial Motility in 3D via Phase-Contrast Holographic Video Microscopy

    PubMed Central

    Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck

    2015-01-01

    Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336

  5. Investigation on microfluidic particles manipulation by holographic 3D tracking strategies

    NASA Astrophysics Data System (ADS)

    Cacace, Teresa; Paturzo, Melania; Memmolo, Pasquale; Vassalli, Massimo; Fraldi, Massimiliano; Mensitieri, Giuseppe; Ferraro, Pietro

    2017-06-01

    We demonstrate a 3D holographic tracking method to investigate particles motion in a microfluidic channel while unperturbed while inducing their migration through microfluidic manipulation. Digital holography (DH) in microscopy is a full-field, label-free imaging technique able to provide quantitative phase-contrast. The employed 3D tracking method is articulated in steps. First, the displacements along the optical axis are assessed by numerical refocusing criteria. In particular, an automatic refocusing method to recover the particles axial position is implemented employing a contrast-based refocusing criterion. Then, the transverse position of the in-focus object is evaluated through quantitative phase map segmentation methods and centroid-based 2D tracking strategy. The introduction of DH is thus suggested as a powerful approach for control of particles and biological samples manipulation, as well as a possible aid to precise design and implementation of advanced lab-on-chip microfluidic devices.

  6. Implementation of a web-based medication tracking system in a large academic medical center.

    PubMed

    Calabrese, Sam V; Williams, Jonathan P

    2012-10-01

    Pharmacy workflow efficiencies achieved through the use of an electronic medication-tracking system are described. Medication dispensing turnaround times at the inpatient pharmacy of a large hospital were evaluated before and after transition from manual medication tracking to a Web-based tracking process involving sequential bar-code scanning and real-time monitoring of medication status. The transition was carried out in three phases: (1) a workflow analysis, including the identification of optimal points for medication scanning with hand-held wireless devices, (2) the phased implementation of an automated solution and associated hardware at a central dispensing pharmacy and three satellite locations, and (3) postimplementation data collection to evaluate the impact of the new tracking system and areas for improvement. Relative to the manual tracking method, electronic medication tracking allowed the capture of far more data points, enabling the pharmacy team to delineate the time required for each step of the medication dispensing process and to identify the steps most likely to involve delays. A comparison of baseline and postimplementation data showed substantial reductions in overall medication turnaround times with the use of the Web-based tracking system (time reductions of 45% and 22% at the central and satellite sites, respectively). In addition to more accurate projections and documentation of turnaround times, the Web-based tracking system has facilitated quality-improvement initiatives. Implementation of an electronic tracking system for monitoring the delivery of medications provided a comprehensive mechanism for calculating turnaround times and allowed the pharmacy to identify bottlenecks within the medication distribution system. Altering processes removed these bottlenecks and decreased delivery turnaround times.

  7. Motor Practice Effects and Sensorimotor Integration in Adults who Stutter: Evidence from Visuomotor Tracking Performance

    PubMed Central

    Tumanova, Victoria; Zebrowski, Patricia M.; Goodman, Shawn S.; Arenas, Richard M.

    2015-01-01

    Purpose The purpose of this study was to utilize a visuomotor tracking task, with both the jaw and hand, to add to the literature regarding non-speech motor practice and sensorimotor integration (outside of auditory-motor integration domain) in adults who do (PWS) and do not (PWNS) stutter. Method Participants were 15 PWS (14 males, mean age = 27.0) and 15 PWNS (14 males, mean age = 27.2). Participants tracked both predictable and unpredictable moving targets separately with their jaw and their dominant hand, and accuracy was assessed by calculating phase and amplitude difference between the participant and the target. Motor practice effect was examined by comparing group performance over consecutive tracking trials of predictable conditions as well as within the first trial of same conditions. Results Results showed that compared to PWNS, PWS were not significantly different in matching either the phase (timing) or the amplitude of the target in both jaw and hand tracking of predictable and unpredictable targets. Further, there were no significant between-group differences in motor practice effects for either jaw or hand tracking. Both groups showed improved tracking accuracy within and between the trials. Conclusion Our findings revealed no statistically significant differences in non-speech motor practice effects and integration of sensorimotor feedback between PWS and PWNS, at least in the context of the visuomotor tracking tasks employed in the study. In general, both talker groups exhibited practice effects (i.e., increased accuracy over time) within and between tracking trials during both jaw and hand tracking. Implications for these results are discussed. PMID:25990027

  8. 75 FR 49017 - America's Marine Highway Grant Notice of Funding Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... provide public benefit by transporting passengers and/or freight (container or wheeled) in support of all... infrastructure (wharves, docks, terminals, paving, etc.), --Cargo, passenger and/or vessel handling equipment... and keeping track of entities receiving Federal funds. The identifier is used for tracking purposes...

  9. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62...

  10. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62...

  11. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62...

  12. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62...

  13. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62...

  14. Long distance tracking of birds

    NASA Technical Reports Server (NTRS)

    Cochran, W. W.

    1972-01-01

    The application of radio telemetry techniques to the long distance tracking of birds is discussed. The types of equipment developed and methods for attachment to a bird are described. The operating range of the radio transmitter receiver system is examined, and methods for acquiring and analyzing the data are explained.

  15. Modified timing module for Loran-C receiver

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.

    1983-01-01

    Full hardware documentation is provided for the circuit card implementing the Loran-C timing loop, and the receiver event-mark and re-track functions. This documentation is to be combined with overall receiver drawings to form the as-built record for this device. Computer software to support this module is integrated with the remainder of the receiver software, in the LORPROM program.

  16. Tracking heat flux sensors for concentrating solar applications

    DOEpatents

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  17. Digital data detection and synchronization

    NASA Technical Reports Server (NTRS)

    Noack, T. L.; Morris, J. F.

    1973-01-01

    The primary accomplishments have been in the analysis and simulation of receivers and bit synchronizers. It has been discovered that tracking rate effects play, a rather fundamental role in both receiver and synchronizer performance, but that data relating to recorder time-base-error, for the proper characterization of this phenomenon, is in rather short supply. It is possible to obtain operationally useful tape recorder time-base-error data from high signal-to-noise ratio tapes using synchronizers with relatively wideband tracking loops. Low signal-to-noise ratio tapes examined in the same way would not be synchronizable. Additional areas of interest covered are receiver false lock, cycle slipping, and other unusual phenomena, which have been described to some extent in this and earlier reports and simulated during the study.

  18. Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets

    NASA Technical Reports Server (NTRS)

    Moller, Delwyn K.; Sadowy, Gregory A.; Rignot, Eric J.; Madsen, Soren N.

    2007-01-01

    A report discusses Ka-band (35-GHz) radar for mapping the surface topography of glaciers and ice sheets at high spatial resolution and high vertical accuracy, independent of cloud cover, with a swath-width of 70 km. The system is a single- pass, single-platform interferometric synthetic aperture radar (InSAR) with an 8-mm wavelength, which minimizes snow penetration while remaining relatively impervious to atmospheric attenuation. As exhibited by the lower frequency SRTM (Shuttle Radar Topography Mission) AirSAR and GeoSAR systems, an InSAR measures topography using two antennas separated by a baseline in the cross-track direction, to view the same region on the ground. The interferometric combination of data received allows the system to resolve the pathlength difference from the illuminated area to the antennas to a fraction of a wavelength. From the interferometric phase, the height of the target area can be estimated. This means an InSAR system is capable of providing not only the position of each image point in along-track and slant range as with a traditional SAR but also the height of that point through interferometry. Although the evolution of InSAR to a millimeter-wave center frequency maximizes the interferometric accuracy from a given baseline length, the high frequency also creates a fundamental problem of swath coverage versus signal-to-noise ratio. While the length of SAR antennas is typically fixed by mass and stowage or deployment constraints, the width is constrained by the desired illuminated swath width. As the across-track beam width which sets the swath size is proportional to the wavelength, a fixed swath size equates to a smaller antenna as the frequency is increased. This loss of antenna size reduces the two-way antenna gain to the second power, drastically reducing the signal-to-noise ratio of the SAR system. This fundamental constraint of high-frequency SAR systems is addressed by applying digital beam-forming (DBF) techniques to synthesize multiple simultaneous receive beams in elevation while maintaining a broad transmit illumination. Through this technique, a high antenna gain on receive is preserved, thereby reducing the required transmit power and thus enabling high-frequency SARs and high-precision InSAR from a single spacecraft.

  19. Geocenter Coordinates from a Combined Processing of LEO and Ground-based GPS Observations

    NASA Astrophysics Data System (ADS)

    Männel, Benjamin; Rothacher, Markus

    2017-04-01

    The GPS observations provided by the global IGS (International GNSS Service) tracking network play an important role for the realization of a unique terrestrial reference frame that is accurate enough to allow the monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board Low Earth Orbiters (LEO) might help to further improve the realization of the terrestrial reference frame and the estimation of the geocenter coordinates, GPS satellite orbits and Earth rotation parameters (ERP). To assess the scope of improvement, we processed a network of 50 globally distributed and stable IGS-stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of three years (2010-2012). To ensure fully consistent solutions the zero-difference phase observations of the ground stations and LEOs were processed in a common least-square adjustment, estimating GPS orbits, LEO orbits, station coordinates, ERPs, site-specific tropospheric delays, satellite and receiver clocks and ambiguities. We present the significant impact of the individual LEOs and a combination of all four LEOs on geocenter coordinates derived by using a translational approach (also called network shift approach). In addition, we present geocenter coordinates derived from the same set of GPS observations by using a unified approach. This approach combines the translational and the degree-one approach by estimating translations and surface deformations simultaneously. Based on comparisons against each other and against geocenter time series derived by other techniques the effect of the selected approach is assessed.

  20. Randomized comparison of surgical stress and the nutritional status between laparoscopy-assisted and open distal gastrectomy for gastric cancer.

    PubMed

    Aoyama, Toru; Yoshikawa, Takaki; Hayashi, Tsutomu; Hasegawa, Shinichi; Tsuchida, Kazuhito; Yamada, Takanobu; Cho, Haruhiko; Ogata, Takashi; Fujikawa, Hirohito; Yukawa, Norio; Oshima, Takashi; Rino, Yasushi; Masuda, Munetaka

    2014-06-01

    Laparoscopy-assisted distal gastrectomy (LADG) for gastric cancer may prevent the development of an impaired nutritional status due to reduced surgical stress compared with open distal gastrectomy (ODG). This study was performed as an exploratory analysis of a phase III trial comparing LADG and ODG for stage I gastric cancer during the period between May and December of 2011. All patients received the same perioperative care via fast-track surgery. The level of surgical stress was evaluated based on the white blood cell count and the interleukin-6 (IL-6) level. The nutritional status was measured according to the total body weight, amount of lean body mass, lymphocyte count, and prealbumin level. Twenty-six patients were randomized to receive ODG (13 patients) or LADG (13 patients). The baseline characteristics and surgical outcomes were similar between the two groups. The median IL-6 level increased from 0.8 to 36.3 pg/dl in the ODG group and from 1.5 to 53.3 pg/dl in the LADG group. The median amount of lean body mass decreased from 48.3 to 46.8 kg in the ODG group and from 46.6 to 46.0 kg in the LADG group. There are no significant differences between two groups. The level of surgical stress and the nutritional status were found to be similar between the ODG and LADG groups in a randomized comparison using the same perioperative care of fast-track surgery.

  1. Satellite Tracking of Manta Rays Highlights Challenges to Their Conservation

    PubMed Central

    Graham, Rachel T.; Witt, Matthew J.; Castellanos, Dan W.; Remolina, Francisco; Maxwell, Sara; Godley, Brendan J.; Hawkes, Lucy A.

    2012-01-01

    We describe the real-time movements of the last of the marine mega-vertebrate taxa to be satellite tracked – the giant manta ray (or devil fish, Manta birostris), the world's largest ray at over 6 m disc width. Almost nothing is known about manta ray movements and their environmental preferences, making them one of the least understood of the marine mega-vertebrates. Red listed by the International Union for the Conservation of Nature as ‘Vulnerable’ to extinction, manta rays are known to be subject to direct and incidental capture and some populations are declining. Satellite-tracked manta rays associated with seasonal upwelling events and thermal fronts off the Yucatan peninsula, Mexico, and made short-range shuttling movements, foraging along and between them. The majority of locations were received from waters shallower than 50 m deep, representing thermally dynamic and productive waters. Manta rays remained in the Mexican Exclusive Economic Zone for the duration of tracking but only 12% of tracking locations were received from within Marine Protected Areas (MPAs). Our results on the spatio-temporal distribution of these enigmatic rays highlight opportunities and challenges to management efforts. PMID:22590622

  2. The attribution of incentive salience to Pavlovian alcohol cues: a shift from goal-tracking to sign-tracking.

    PubMed

    Srey, Chandra S; Maddux, Jean-Marie N; Chaudhri, Nadia

    2015-01-01

    Environmental stimuli that are reliably paired with alcohol may acquire incentive salience, a property that can operate in the use and abuse of alcohol. Here we investigated the incentive salience of Pavlovian alcohol cues using a preclinical animal model. Male, Long-Evans rats (Harlan) with unrestricted access to food and water were acclimated to drinking 15% ethanol (v/v) in their home-cages. Rats then received Pavlovian autoshaping training in which the 10 s presentation of a retractable lever served as the conditioned stimulus (CS) and 15% ethanol served as the unconditioned stimulus (US) (0.2 ml/CS; 12 CS presentations/session; 27 sessions). Next, in an operant test of conditioned reinforcement, nose pokes into an active aperture delivered presentations of the lever-CS, whereas nose pokes into an inactive aperture had no consequences. Across initial autoshaping sessions, goal-tracking behavior, as measured by entries into the fluid port where ethanol was delivered, developed rapidly. However, with extended training goal-tracking diminished, and sign-tracking responses, as measured by lever-CS activations, emerged. Control rats that received explicitly unpaired CS and US presentations did not show goal-tracking or sign-tracking responses. In the test for conditioned reinforcement, rats with CS-US pairings during autoshaping training made more active relative to inactive nose pokes, whereas rats in the unpaired control group did not. Moreover, active nose pokes were positively correlated with sign-tracking behavior during autoshaping. Extended training may produce a shift in the learned properties of Pavlovian alcohol cues, such that after initially predicting alcohol availability they acquire robust incentive salience.

  3. SU-E-T-562: Motion Tracking Optimization for Conformal Arc Radiotherapy Plans: A QUASAR Phantom Based Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Z; Wang, I; Yao, R

    Purpose: This study is to use plan parameters optimization (Dose rate, collimator angle, couch angle, initial starting phase) to improve the performance of conformal arc radiotherapy plans with motion tracking by increasing the plan performance score (PPS). Methods: Two types of 3D conformal arc plans were created based on QUASAR respiratory motion phantom with spherical and cylindrical targets. Sinusoidal model was applied to the MLC leaves to generate motion tracking plans. A MATLAB program was developed to calculate PPS of each plan (ranges from 0–1) and optimize plan parameters. We first selected the dose rate for motion tracking plans andmore » then used simulated annealing algorithm to search for the combination of the other parameters that resulted in the plan of the maximal PPS. The optimized motion tracking plan was delivered by Varian Truebeam Linac. In-room cameras and stopwatch were used for starting phase selection and synchronization between phantom motion and plan delivery. Gaf-EBT2 dosimetry films were used to measure the dose delivered to the target in QUASAR phantom. Dose profiles and Truebeam trajectory log files were used for plan delivery performance evaluation. Results: For spherical target, the maximal PPS (PPSsph) of the optimized plan was 0.79: (Dose rate: 500MU/min, Collimator: 90°, Couch: +10°, starting phase: 0.83π). For cylindrical target, the maximal PPScyl was 0.75 (Dose rate: 300MU/min, Collimator: 87°, starting phase: 0.97π) with couch at 0°. Differences of dose profiles between motion tracking plans (with the maximal and the minimal PPS) and 3D conformal plans were as follows: PPSsph=0.79: %ΔFWHM: 8.9%, %Dmax: 3.1%; PPSsph=0.52: %ΔFWHM: 10.4%, %Dmax: 6.1%. PPScyl=0.75: %ΔFWHM: 4.7%, %Dmax: 3.6%; PPScyl=0.42: %ΔFWHM: 12.5%, %Dmax: 9.6%. Conclusion: By achieving high plan performance score through parameters optimization, we can improve target dose conformity of motion tracking plan by decreasing total MLC leaf travel distance and leaf speed.« less

  4. Feasibility Activities Completed for the Direct Data Distribution (D(sup )3) Experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.

    2000-01-01

    The Direct Data Distribution (D(sup 3)) project being designed at the NASA Glenn Research Center at Lewis Field will demonstrate a high-performance communications system that transmits information at up to 1.2 gigabits per second (Gbps) from an advanced technology payload carried by the space shuttles in low Earth orbit to small (0.9-m) autonomously tracking terminals on the Earth. The flight communications package features a solid-state, phased-array antenna operating in the commercial K-band frequency that electronically steers two independently controlled downlink beams toward low-cost tracking ground terminals. The array enables agile, vibration-free beam steering at reduced size and weight with increased reliability over traditional mechanically steered reflectors. The flight experiment will also demonstrate efficient digital modulation technology that allows transmission of substantially increased amounts of latency-tolerant data (up to 72 Gb of data per minute of contact time) with very high quality (10(exp -11) bit error rate). D(sup 3) enables transmission from low-Earth-orbit science spacecraft, the shuttles, or the International Space Station directly to NASA field centers and principle investigator sites, or directly into the commercial terrestrial telecommunications network for remote distribution and archive. The ground terminal features a cryocooled receiver for ultralow noise and a reduced antenna aperture as well as open-loop tracking for unattended operations. The D(sup 3) technology validation and service demonstration will help to facilitate NASA's transition from using Government-owned communications assets to using commercially provided services.

  5. The Missile Defense Agency's space tracking and surveillance system

    NASA Astrophysics Data System (ADS)

    Watson, John; Zondervan, Keith

    2008-10-01

    The Ballistic Missile Defense System (BMDS) is a layered system incorporating elements in space. In addition to missile warning systems at geosynchronous altitudes, an operational BMDS will include a low Earth orbit (LEO) system-the Space Tracking and Surveillance System (STSS). It will use infrared sensing technologies synergistically with the Space Based Infrared Systems (SBIRS) and will provide a seamless adjunct to radars and sensors on the ground and in airborne platforms. STSS is being designed for a future operational capability to defend against evolving threats. STSS development is divided into phases, commencing with a two-satellite demonstration constellation scheduled for launch in 2008. The demonstration satellites will conduct a menu of tests and experiments to prove the system concept, including the ground segment. They will have limited operational capability within the integrated BMDS. Data from the demonstration satellites will be received and processed by the Missile Defense Space Experiment Center (MDSEC), a part of the Missile Defense Integration and Operations Center (MDIOC). MDA launched in 2007 into LEO a satellite (NFIRE) designed to make near-field multispectral measurements of boosting targets and to demonstrate laser communication, the latter in conjunction with the German satellite TerraSAR-X. The gimbaled, lightweight laser terminal has demonstrated on orbit a 5.5 gbps rate in both directions. The filter passbands of NFIRE are similar to the STSS demonstrator track sensor. While providing useful phenomenology during its time on orbit, NFIRE will also serve as a pathfinder in the development of STSS operations procedures.

  6. Refinement of Earth's gravity field with Topex GPS measurements

    NASA Technical Reports Server (NTRS)

    Wu, Sien-Chong; Wu, Jiun-Tsong

    1989-01-01

    The NASA Ocean Topography Experiment satellite TOPEX will carry a microwave altimeter accurate to a few centimeters for the measurement of ocean height. The capability can be fully exploited only if TOPEX altitude can be independently determined to 15 cm or better. This in turn requires an accurate gravity model. The gravity will be tuned with selected nine 10-day arcs of laser ranging, which will be the baseline tracking data type, collected in the first six months of TOPEX flight. TOPEX will also carry onboard an experimental Global Positioning System (GPS) flight receiver capable of simultaneously observing six GPS satellites above its horizon to demonstrate the capability of GPS carrier phase and P-code pseudorange for precise determination of the TOPEX orbit. It was found that subdecimeter orbit accuracy can be achieved with a mere two-hour arc of GPS tracking data, provided that simultaneous measurements are also made at six of more ground tracking sites. The precision GPS data from TOPEX are also valuable for refining the gravity model. An efficient technique is presented for gravity tuning using GPS measurements. Unlike conventional global gravity tuning, this technique solves for far fewer gravity parameters in each filter run. These gravity parameters yield local gravity anomalies which can later be combined with the solutions over other parts of the earth to generate a global gravity map. No supercomputing power will be needed for such combining. The approaches used in this study are described and preliminary results of a covariance analysis presented.

  7. Signal and array processing techniques for RFID readers

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Amin, Moeness; Zhang, Yimin

    2006-05-01

    Radio Frequency Identification (RFID) has recently attracted much attention in both the technical and business communities. It has found wide applications in, for example, toll collection, supply-chain management, access control, localization tracking, real-time monitoring, and object identification. Situations may arise where the movement directions of the tagged RFID items through a portal is of interest and must be determined. Doppler estimation may prove complicated or impractical to perform by RFID readers. Several alternative approaches, including the use of an array of sensors with arbitrary geometry, can be applied. In this paper, we consider direction-of-arrival (DOA) estimation techniques for application to near-field narrowband RFID problems. Particularly, we examine the use of a pair of RFID antennas to track moving RFID tagged items through a portal. With two antennas, the near-field DOA estimation problem can be simplified to a far-field problem, yielding a simple way for identifying the direction of the tag movement, where only one parameter, the angle, needs to be considered. In this case, tracking of the moving direction of the tag simply amounts to computing the spatial cross-correlation between the data samples received at the two antennas. It is pointed out that the radiation patterns of the reader and tag antennas, particularly their phase characteristics, have a significant effect on the performance of DOA estimation. Indoor experiments are conducted in the Radar Imaging and RFID Labs at Villanova University for validating the proposed technique for target movement direction estimations.

  8. Holographic microscopy for 3D tracking of bacteria

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Cho, Yong Bin; El-Kholy, Marwan; Bedrossian, Manuel; Rider, Stephanie; Lindensmith, Christian; Wallace, J. Kent

    2016-03-01

    Understanding when, how, and if bacteria swim is key to understanding critical ecological and biological processes, from carbon cycling to infection. Imaging motility by traditional light microscopy is limited by focus depth, requiring cells to be constrained in z. Holographic microscopy offers an instantaneous 3D snapshot of a large sample volume, and is therefore ideal in principle for quantifying unconstrained bacterial motility. However, resolving and tracking individual cells is difficult due to the low amplitude and phase contrast of the cells; the index of refraction of typical bacteria differs from that of water only at the second decimal place. In this work we present a combination of optical and sample-handling approaches to facilitating bacterial tracking by holographic phase imaging. The first is the design of the microscope, which is an off-axis design with the optics along a common path, which minimizes alignment issues while providing all of the advantages of off-axis holography. Second, we use anti-reflective coated etalon glass in the design of sample chambers, which reduce internal reflections. Improvement seen with the antireflective coating is seen primarily in phase imaging, and its quantification is presented here. Finally, dyes may be used to increase phase contrast according to the Kramers-Kronig relations. Results using three test strains are presented, illustrating the different types of bacterial motility characterized by an enteric organism (Escherichia coli), an environmental organism (Bacillus subtilis), and a marine organism (Vibrio alginolyticus). Data processing steps to increase the quality of the phase images and facilitate tracking are also discussed.

  9. Absentee Ballot Track, Receive, and Confirm Act

    THOMAS, 111th Congress

    Rep. Davis, Susan A. [D-CA-53

    2009-05-20

    Senate - 08/03/2009 Received in the Senate and Read twice and referred to the Committee on Rules and Administration. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  10. Design and test of a system for tracking referrals.

    PubMed

    Bauman, K E; Coulter, M

    1976-01-01

    Many health and welfare programs are based on a model in which services needed by consumers are identified by one agency with referral to others for provision of services. The referring agency often does not know whether the services recommended are received, yet it is assumed that receipt of those services by their clients is essential to achievement of program goals. A procedure was devised for tracking families evaluated by North Carolina's State-supported developmental evaluation centers (DECs), agencies that reflect this model. The multidisciplinary evaluation teams of these centers serve children and their families of all income levels. The developmental evaluation family tracking system is a method for determining if recommended services are received, the reasons why they are not, and whether the family desires additional help from the center or othersources. The system was piloted in the Greensboro DEC with a selected group of 67 families. Parents were contacted, mostly by telephone, at 6 months and 18 months following evaluation. Tracking forms were completed for 61 families. Professional staff spent only 2.7% of their working hours during a 3-month period on direct tracking activities and other tasks in behalf of the consumers contacted. The cost was $7.15 per case for immediate tracking and $14.49 if additional activities generated by the tracking contact were included. The system, which provides the information necessary for achieving program goals, was implemented for all 11 DECs in North Carolina in 1976.

  11. Multi-ball and one-ball geolocation and location verification

    NASA Astrophysics Data System (ADS)

    Nelson, D. J.; Townsend, J. L.

    2017-05-01

    We present analysis methods that may be used to geolocate emitters using one or more moving receivers. While some of the methods we present may apply to a broader class of signals, our primary interest is locating and tracking ships from short pulsed transmissions, such as the maritime Automatic Identification System (AIS.) The AIS signal is difficult to process and track since the pulse duration is only 25 milliseconds, and the pulses may only be transmitted every six to ten seconds. Several fundamental problems are addressed, including demodulation of AIS/GMSK signals, verification of the emitter location, accurate frequency and delay estimation and identification of pulse trains from the same emitter. In particular, we present several new correlation methods, including cross-cross correlation that greatly improves correlation accuracy over conventional methods and cross- TDOA and cross-FDOA functions that make it possible to estimate time and frequency delay without the need of computing a two dimensional cross-ambiguity surface. By isolating pulses from the same emitter and accurately tracking the received signal frequency, we are able to accurately estimate the emitter location from the received Doppler characteristics.

  12. Clinician-Educator Tracks for Residents: Three Pilot Programs

    ERIC Educational Resources Information Center

    Jibson, Michael D.; Hilty, Donald M.; Arlinghaus, Kimberly; Ball, Valdesha L.; McCarthy, Tracy; Seritan, Andreea L.; Servis, Mark E.

    2010-01-01

    Objective: Over the past 30 years, clinician-educators have become a prominent component of medical school faculties, yet few of these individuals received formal training for this role and their professional development lags behind other faculty. This article reviews three residency tracks designed to build skills in teaching, curriculum…

  13. 21 CFR 821.30 - Tracking obligations of persons other than device manufacturers: distributor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... name, address, telephone number, and social security number (if available) of the patient receiving the...; (ii) The name, address, telephone number, and social security number (if available) of the patient... the manufacturer of the tracked device for audit upon written request by an authorized representative...

  14. 21 CFR 821.30 - Tracking obligations of persons other than device manufacturers: distributor requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... name, address, telephone number, and social security number (if available) of the patient receiving the...; (ii) The name, address, telephone number, and social security number (if available) of the patient... the manufacturer of the tracked device for audit upon written request by an authorized representative...

  15. Paul Coverdell National Acute Stroke Registry Surveillance - four states, 2005-2007.

    PubMed

    George, Mary G; Tong, Xin; McGruder, Henraya; Yoon, Paula; Rosamond, Wayne; Winquist, Andrea; Hinchey, Judith; Wall, Hilary K; Pandey, Dilip K

    2009-11-06

    Each year, approximately 795,000 persons in the United States experience a new or recurrent stroke. Data from the prototype phase (2001-2004) of the Paul Coverdell National Acute Stroke Registry (PCNASR) suggested that numerous acute stroke patients did not receive treatment according to established guidelines. This report summarizes PCNASR data collected during 2005-2007 from Georgia, Illinois, Massachusetts, and North Carolina, the first states to have PCNASRs implemented in and led by state health departments. PCNASR was established by CDC in 2001 to track and improve the quality of hospital-based acute stroke care. The prototype phase (2001-2004) registries were led by CDC-funded clinical investigators in academic and medical institutions, whereas the full implementation of the 2005-2007 statewide registries was led by CDC-funded state health departments. Health departments in each state recruit hospitals to collect data. To be included in PCNASR, patients must be aged >or=18 years and have a clinical diagnosis of acute ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, or transient ischemic attack (TIA) or an International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) code indicative of a stroke or TIA. Data for patients who are already hospitalized at the time of stroke are not included. The following 10 performance measures of care, based on established guidelines for care of acute stroke patients, were developed by CDC in partnership with neurologists who specialize in stroke care: 1) received deep venous thrombosis prophylaxis, 2) received antithrombotic therapy at discharge, 3) received anticoagulation therapy for atrial fibrillation, 4) received tissue plasminogen activator (among eligible patients), 5) received antithrombotic therapy within 48 hours of admission or by the end of the second hospital day, 6) received lipid level testing, 7) received dysphagia screening, 8) received stroke education, 9) received smoking cessation counseling, and 10) received assessment for rehabilitation services. Adherence to these performance measures of care was calculated using predefined inclusion and exclusion criteria. A total of 195 hospitals from Georgia, Illinois, Massachusetts, and North Carolina contributed data to PCNASR during 2005-2007, representing 56,969 patients. Approximately half (53.3%) the cases of stroke in the registry occurred among females. A total of 2.5% of cases were among Hispanics; however, the proportion varied significantly by state. Cases among black patients ranged from 5.6% in Massachusetts to 35.8% in Georgia. The age at which patients experienced stroke varied significantly by state. On average, patients were oldest in Massachusetts (median age: 77 years) and youngest in Georgia (median age: 67 years). Overall, the clinical diagnosis for registry stroke cases was hemorrhagic stroke (13.8% of cases), ischemic stroke (56.2%), ill-defined stroke (i.e., medical record did not specify ischemic or hemorrhagic stroke; 7.3%), and TIA (21.6%). A total of 18.5% of patients with stroke symptoms arrived at the hospital within 2 hours of symptom onset; however, the time from onset of symptoms to hospital arrival was not recorded or was not known for the majority (57.8%) of patients. Of the 56,969 patients, 47.6% were transported by emergency medical services (EMS) from the scene of symptom onset, 11.1% were transferred by EMS from another hospital, and 39.4% used private or other transportation. Adherence to acute stroke care measures defined by PCNASR were as follows: received antithrombotic therapy at discharge (97.6%), received antithrombotic therapy within 48 hours of admission or by the end of the second hospital day (94.6%), assessed for rehabilitation services (90.1%), received deep venous thrombosis prophylaxis (85.5%), received anticoagulation therapy for atrial fibrillation (82.5%), received smoking cessation counseling (78.6%), received lipid level testing (69.9%), received stroke education (58.8%), received dysphagia screening (56.7%), and received tissue plasminogen activator (among eligible patients) (39.8%). Between 2001-2004 (prototype phase) and 2005-2007 (implementation by state health departments), substantial improvement occurred in dysphagia screening, lipid testing, smoking cessation counseling, and antithrombotic therapy prescribed at discharge. These initial improvements indicate that a surveillance system to track and improve the quality of hospital-based stroke care can be led successfully by state health departments, although further evaluations over time are needed. Despite these improvements, additional increases are needed in adherence to these and other performance measures. Nearly 40% of stroke patients did not use EMS services for transport to hospitals, and no change occurred in the proportion of patients who arrived at the hospital in time to receive thrombolytic therapy for ischemic stroke. Patients who are not promptly transported to hospitals after symptom onset are ineligible for thrombolytic therapy and other timely interventions for acute stroke. Results from PCNASR indicate the need for additional public health measures to inform the public of the need for timely activation of EMS services for signs and symptoms of stroke. In addition, low rates of adherence to certain measures of stroke care underscore the need for continuing coordinated programs to improve stroke quality of care. Additional analyses are needed to assess improvements in adherence to guidelines over time.

  16. Analysis of HY2A precise orbit determination using DORIS

    NASA Astrophysics Data System (ADS)

    Gao, Fan; Peng, Bibo; Zhang, Yu; Evariste, Ngatchou Heutchi; Liu, Jihua; Wang, Xiaohui; Zhong, Min; Lin, Mingsen; Wang, Nazi; Chen, Runjing; Xu, Houze

    2015-03-01

    HY2A is the first Chinese marine dynamic environment satellite. The payloads include a radar altimeter to measure the sea surface height in combination with a high precision orbit to be determined from tracking data. Onboard satellite tracking includes GPS, SLR, and the DORIS DGXX receiver which delivers phase and pseudo-range measurements. CNES releases raw phase and pseudo-range measurements with RINEX DORIS 3.0 format and pre-processed Doppler range-rate with DORIS 2.2 data format. However, the VMSI software package developed by Van Martin Systems, Inc which is used to estimate HY2A DORIS orbits can only process Doppler range-rate but not the DORIS phase data which are available with much shorter latency. We have proposed a method of constructing the phase increment data, which are similar to range-rate data, from RINEX DORIS 3.0 phase data. We compute the HY2A orbits from June, 2013 to August, 2013 using the POD strategy described in this paper based on DORIS 2.2 range-rate data and our reconstructed phase increment data. The estimated orbits are evaluated by comparing with the CNES precise orbits and SLR residuals. Our DORIS-only orbits agree with the precise GPS + SLR + DORIS CNES orbits radially at 1-cm and about 3-cm in the other two directions. SLR test with the 50° cutoff elevation shows that the CNES orbit can achieve about 1.1-cm accuracy in radial direction and our DORIS-only POD solutions are slightly worse. In addition, other HY2A DORIS POD concerns are discussed in this paper. Firstly, we discuss the frequency offset values provided with the RINEX data and find that orbit accuracy for the case when the frequency offset is applied is worse than when it is not applied. Secondly, HY2A DORIS antenna z-offsets are estimated using two kinds of measurements from June, 2013 to August, 2013. The results show that the measurement errors contribute a total of about 2-cm difference of estimated z-offset. Finally, we estimate HY2A orbits selecting 3 days with severe geomagnetic storm activity and SLR residuals suggest that estimating a drag coefficient every 6 h without any constraint is sufficient for maintaining orbit accuracy.

  17. Design of a hybrid receiver for the OLYMPUS spacecraft beacons

    NASA Technical Reports Server (NTRS)

    Sweeney, D. G.; Mckeeman, J. C.

    1990-01-01

    The theory and design of a hybrid analogue/digital receiver which acquires and monitors the OLYMPUS satellite beacons is presented. The analogue portion of this receiver uses a frequency locked loop for signal tracking. A digital sampling detector operating at IF is used to obtain the I and Q outputs.

  18. Underwater Acoustic Transponders Tracking While Mapping With A Multibeam Echo-Sounder

    NASA Astrophysics Data System (ADS)

    de Moustier, C. P.; Franzheim, A.; Testa, W.; Burns, J. M.; Foy, R.

    2010-12-01

    A 160 kHz multibeam echo-sounder was used to interrogate and receive the replies from custom-built miniature underwater acoustic transponders attached to the carapace of king crabs in Womens Bay, Alaska. This new application of multibeam echo-sounders combines acoustic tracking and mapping, thus providing environmental context to the tracking information. Each transponder replies with its own coded sequence that stands out from other echoes received by the sonar. Range and bearing of the replies from multiple transponders can be obtained in a single sonar ping. The king crab experiment was done in 25-35 m of water depth, and the system was successfully tested without animals at 190 m depth. Work supported by NOAA's Undersea Research Program Grant G4768, with field work support from NOAA-NMFS/AFSC/RACE and Electronic Navigation Ltd.

  19. The 'Brick Wall' radio loss approximation and the performance of strong channel codes for deep space applications at high data rates

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin

    2001-01-01

    In order to evaluate performance of strong channel codes in presence of imperfect carrier phase tracking for residual carrier BPSK modulation in this paper an approximate 'brick wall' model is developed which is independent of the channel code type for high data rates. It is shown that this approximation is reasonably accurate (less than 0.7dB for low FERs for (1784,1/6) code and less than 0.35dB for low FERs for (5920,1/6) code). Based on the approximation's accuracy, it is concluded that the effects of imperfect carrier tracking are more or less independent of the channel code type for strong channel codes. Therefore, the advantage that one strong channel code has over another with perfect carrier tracking translates to nearly the same advantage under imperfect carrier tracking conditions. This will allow the link designers to incorporate projected channel code performance of strong channel codes into their design tables without worrying about their behavior in the face of imperfect carrier phase tracking.

  20. Evaluation of the Transverse Oscillation Technique for Cardiac Phased Array Imaging: A Theoretical Study.

    PubMed

    Heyde, Brecht; Bottenus, Nick; D'hooge, Jan; Trahey, Gregg E

    2017-02-01

    The transverse oscillation (TO) technique can improve the estimation of tissue motion perpendicular to the ultrasound beam direction. TOs can be introduced using plane wave (PW) insonification and bilobed Gaussian apodization (BA) on receive (abbreviated as PWTO). Furthermore, the TO frequency of PWTO can be doubled after a heterodyning demodulation process is performed (abbreviated as PWTO*). This paper is concerned with identifying the limitations of the PWTO technique in the specific context of myocardial deformation imaging with phased arrays and investigating the conditions in which it remains advantageous over traditional focused (FOC) beamforming. For this purpose, several tissue phantoms were simulated using Field II, undergoing a wide range of displacement magnitudes and modes (lateral, axial, and rotational motions). The Cramer-Rao lower bound was used to optimize TO beamforming parameters and theoretically predict the fundamental tracking performance limits associated with the FOC, PWTO, and PWTO* beamforming scenarios. This framework was extended to also predict the performance for BA functions that are windowed by the physical aperture of the transducer, leading to higher lateral oscillations. It was found that windowed BA functions resulted in lower jitter errors compared with traditional BA functions. PWTO* outperformed FOC at all investigated signal-to-noise ratio (SNR) levels but only up to a certain displacement, with the advantage rapidly decreasing when the SNR increased. These results suggest that PWTO* improves lateral tracking performance, but only when interframe displacements remain relatively low. This paper concludes by translating these findings into a clinical environment by suggesting optimal scanner settings.

  1. Distributed micro-radar system for detection and tracking of low-profile, low-altitude targets

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-05-01

    Proposed airborne surveillance radar system can detect, locate, track, and classify low-profile, low-altitude targets: from traditional fixed and rotary wing aircraft to non-traditional targets like unmanned aircraft systems (drones) and even small projectiles. Distributed micro-radar system is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. To extend high frequency limit and provide high sensitivity over the broadband of frequencies, multiple angularly spaced directional antennas are coupled with front end circuits and separately connected to a direction finder processor by a digital interface. Integration of antennas with front end circuits allows to exclude waveguide lines which limits system bandwidth and creates frequency dependent phase errors. Digitizing of received signals proximate to antennas allows loose distribution of antennas and dramatically decrease phase errors connected with waveguides. Accuracy of direction finding in proposed micro-radar in this case will be determined by time accuracy of digital processor and sampling frequency. Multi-band, multi-functional antennas can be distributed around the perimeter of a Unmanned Aircraft System (UAS) and connected to the processor by digital interface or can be distributed between swarm/formation of mini/micro UAS and connected wirelessly. Expendable micro-radars can be distributed by perimeter of defense object and create multi-static radar network. Low-profile, lowaltitude, high speed targets, like small projectiles, create a Doppler shift in a narrow frequency band. This signal can be effectively filtrated and detected with high probability. Proposed micro-radar can work in passive, monostatic or bistatic regime.

  2. Algorithm for Aligning an Array of Receiving Radio Antennas

    NASA Technical Reports Server (NTRS)

    Rogstad, David

    2006-01-01

    A digital-signal-processing algorithm (somewhat arbitrarily) called SUMPLE has been devised as a means of aligning the outputs of multiple receiving radio antennas in a large array for the purpose of receiving a weak signal transmitted by a single distant source. As used here, aligning signifies adjusting the delays and phases of the outputs from the various antennas so that their relatively weak replicas of the desired signal can be added coherently to increase the signal-to-noise ratio (SNR) for improved reception, as though one had a single larger antenna. The method was devised to enhance spacecraft-tracking and telemetry operations in NASA's Deep Space Network (DSN); the method could also be useful in such other applications as both satellite and terrestrial radio communications and radio astronomy. Heretofore, most commonly, alignment has been effected by a process that involves correlation of signals in pairs. This approach necessitates the use of a large amount of hardware most notably, the N(N - 1)/2 correlators needed to process signals from all possible pairs of N antennas. Moreover, because the incoming signals typically have low SNRs, the delay and phase adjustments are poorly determined from the pairwise correlations. SUMPLE also involves correlations, but the correlations are not performed in pairs. Instead, in a partly iterative process, each signal is appropriately weighted and then correlated with a composite signal equal to the sum of the other signals (see Figure 1). One benefit of this approach is that only N correlators are needed; in an array of N much greater than 1 antennas, this results in a significant reduction of the amount of hardware. Another benefit is that once the array achieves coherence, the correlation SNR is N - 1 times that of a pair of antennas.

  3. Digital Phase-Locked Loop With Phase And Frequency Feedback

    NASA Technical Reports Server (NTRS)

    Thomas, J. Brooks

    1991-01-01

    Advanced design for digital phase-lock loop (DPLL) allows loop gains higher than those used in other designs. Divided into two major components: counterrotation processor and tracking processor. Notable features include use of both phase and rate-of-change-of-phase feedback instead of frequency feedback alone, normalized sine phase extractor, improved method for extracting measured phase, and improved method for "compressing" output rate.

  4. High Precision Wavelength Monitor for Tunable Laser Systems

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor); Childers, Brooks A. (Inventor)

    2002-01-01

    A solid-state apparatus for tracking the wavelength of a laser emission has a power splitter that divides the laser emission into at least three equal components. Differing phase shifts are detected and processed to track variations of the laser emission.

  5. RELATING AIR QUALITY AND ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

    EPA Science Inventory

    Initiated in February 2004, the Public Health Air Surveillance Evaluation (PHASE) Project is a multi-disciplinary collaboration between the Centers for Disease Control and Prevention (CDC), the U.S Environmental Protection Agency (EPA), and three Environmental Public Health Track...

  6. Triply redundant integrated navigation and asset visibility system

    DOEpatents

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2011-11-29

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  7. Triply redundant integrated navigation and asset visibility system

    DOEpatents

    Smith, Stephen F.; Moore, James A.

    2013-01-22

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  8. ARCA Team Tested Low Power Mode S Receiver on BEXUS 18

    NASA Astrophysics Data System (ADS)

    Haas, S.; Biereigel, S.; Udich, S.; Willenbucher, J.; Zollner, H.

    2015-09-01

    In the modern world, the aircraft is a common way of transportation. With thousands of flights every day, of course, the need for tracking planes, monitoring their position and health status arises. At the moment, most airplanes are only tracked in densely populated areas. The main goal of the experiment was the development, verification and production of a low power Mode S ADS-B receiver by the team. Additionally, the team wanted to show, which advantages an aircraft based ADS-B surveillance system could have, using a stratospheric balloon for demonstration and evaluation.

  9. Quantized Iterative Learning Consensus Tracking of Digital Networks With Limited Information Communication.

    PubMed

    Xiong, Wenjun; Yu, Xinghuo; Chen, Yao; Gao, Jie

    2017-06-01

    This brief investigates the quantized iterative learning problem for digital networks with time-varying topologies. The information is first encoded as symbolic data and then transmitted. After the data are received, a decoder is used by the receiver to get an estimate of the sender's state. Iterative learning quantized communication is considered in the process of encoding and decoding. A sufficient condition is then presented to achieve the consensus tracking problem in a finite interval using the quantized iterative learning controllers. Finally, simulation results are given to illustrate the usefulness of the developed criterion.

  10. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    PubMed

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Two Trackers Are Better than One: Information about the Co-actor's Actions and Performance Scores Contribute to the Collective Benefit in a Joint Visuospatial Task.

    PubMed

    Wahn, Basil; Kingstone, Alan; König, Peter

    2017-01-01

    When humans collaborate, they often distribute task demands in order to reach a higher performance compared to performing the same task alone (i.e., a collective benefit). Here, we tested to what extent receiving information about the actions of a co-actor, performance scores, or receiving both types of information impacts the collective benefit in a collaborative multiple object tracking task. In a between-subject design, pairs of individuals jointly tracked a subset of target objects among several moving distractor objects on a computer screen for a 100 trials. At the end of a trial, pairs received performance scores (Experiment 1), information about their partner's target selections (Experiment 2), or both types of information (Experiment 3). In all experiments, the performance of the pair exceeded the individual performances and the simulated performance of two independent individuals combined. Initially, when receiving both types of information (Experiment 3), pairs achieved the highest performance and divided task demands most efficiently compared to the other two experiments. Over time, performances and the ability to divide task demands for pairs receiving a single type of information converged with those receiving both, suggesting that pairs' coordination strategies become equally effective over time across experiments. However, pairs' performances never reached a theoretical limit of performance in all experiments. For distributing task demands, members of a pair predominantly used a left-right division of labor strategy (i.e., the leftmost targets were tracked by one co-actor while the rightmost targets were tracked by the other co-actor). Overall, findings of the present study suggest that receiving information about actions of a co-actor, performance scores, or receiving both enables pairs to devise effective division of labor strategies in a collaborative visuospatial task. However, when pairs had both types of information available, the formation of division of labor strategies was facilitated, indicating that pairs benefited the most from having both types of information available (i.e., actions about the co-actor and performance scores). Findings are applicable to circumstances in which humans need to perform collaborative visuospatial tasks that are time-critical and/or only allow a very limited exchange of information between co-actors.

  12. Inertial Oscillation of a Vertical Rotating Draft with Application to a Supercell Storm: Video Supplement to NASA-TP-3230

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Stock, Larry V.

    1992-01-01

    In this video (8 min., color, sound, VHS), animation depicts the inertial oscillation of a new mathematical model ('vertical rotating draft') for spinning up a single supercell storm. The oscillation consists of a long quiescent phase when the draft is large in diameter and rotates anticyclonically and a short intense phase when the draft is small and cyclonic. During the intense phase, the rotating draft resembles a supercell. The physical basis for the oscillation is depicted by tracking air parcels in the draft as they move along inertial circles (projected on a horizontal plane), where the horizontal pressure gradient is zero and the Coriolis force balances the centrifugal force. A side view of the oscillation shows that contraction and expansion are linked, respectively, to buoyantly driven compressible downdraft and updraft. An aerial view tracks the draft as it moves above the surface of the Earth and turns to the right during the intense phase. Radar echoes from a supercell storm are superimposed for comparison. The data appear to support only the intense phase. A critical experiment would measure the predominantly downward flow that theoretically occurs before the right turn in a supercell track and causes contraction and spin-up.

  13. Observations of Global and Regional Ionospheric Irregularities and Scintillation Using GNSS Tracking Networks

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Valant-Spaight, Bonnie; Bar-Sever, Yoaz; Romans, Larry J.; Skone, Susan; Sparks, Lawrence; Hall, G. Martin

    2013-01-01

    The rate of TEC index (ROTI) is a measurement that characterizes ionospheric irregularities. It can be obtained from standard GNSS dual-frequency phase data collected using a geodetic type of GNSS receiver. By processing GPS data from ground-based networks of International GNSS Service and Continuously Operating Reference Station (CORS), ROTI maps have been produced to observe global and regional scintillation activities. A major mid-latitude scintillation event in the contiguous United States is reported here that was captured in ROTI maps produced using CORS GPS data collected during a space weather storm. The analyses conducted in this work and previously by another group indicate that ROTI is a good occurrence indicator of both amplitude and phase scintillations of GPS L-band signals, even though the magnitudes of ROTI, S4, and sigma(sub phi) can be different. For example, our analysis indicates that prominent ROTI and the L1 phase scintillation (sigma(sub phi)) are well correlated temporally in the polar region while L1 amplitude scintillation rarely occurs. The differences are partially attributed to physics processes in different latitude regions, such as high-speed plasma convection in the polar region that can suppress the amplitude scintillation. An analysis of the impact of ionospheric scintillation on precise positioning, which requires use of dual-frequency phase data, is also conducted. The results indicate that significant (more than an order of magnitude) positioning errors can occur under phase scintillation conditions.

  14. Bryostatin Effects on Cognitive Function and PKCɛ in Alzheimer's Disease Phase IIa and Expanded Access Trials.

    PubMed

    Nelson, Thomas J; Sun, Miao-Kun; Lim, Chol; Sen, Abhik; Khan, Tapan; Chirila, Florin V; Alkon, Daniel L

    2017-01-01

    Bryostatin 1, a potent activator of protein kinase C epsilon (PKCɛ), has been shown to reverse synaptic loss and facilitate synaptic maturation in animal models of Alzheimer's disease (AD), Fragile X, stroke, and other neurological disorders. In a single-dose (25 μg/m2) randomized double-blind Phase IIa clinical trial, bryostatin levels reached a maximum at 1-2 h after the start of infusion. In close parallel with peak blood levels of bryostatin, an increase of PBMC PKCɛ was measured (p = 0.0185) within 1 h from the onset of infusion. Of 9 patients with a clinical diagnosis of AD, of which 6 received drug and 3 received vehicle within a double-blind protocol, bryostatin increased the Mini-Mental State Examination (MMSE) score by +1.83±0.70 unit at 3 h versus -1.00±1.53 unit for placebo. Bryostatin was well tolerated in these AD patients and no drug-related adverse events were reported. The 25 μg/m2 administered dose was based on prior clinical experience with three Expanded Access advanced AD patients treated with bryostatin, in which return of major functions such as swallowing, vocalization, and word recognition were noted. In one Expanded Access patient trial, elevated PKCɛ levels closely tracked cognitive benefits in the first 24 weeks as measured by MMSE and ADCS-ADL psychometrics. Pre-clinical mouse studies showed effective activation of PKCɛ and increased levels of BDNF and PSD-95. Together, these Phase IIa, Expanded Access, and pre-clinical results provide initial encouragement for bryostatin 1 as a potential treatment for AD.

  15. Optimization of MLS receivers for multipath environments

    NASA Technical Reports Server (NTRS)

    Mcalpine, G. A.; Highfill, J. H., III

    1979-01-01

    The angle tracking problems in microwave landing system receivers along with a receiver design capable of optimal performance in the multipath environments found in air terminal areas were studied. Included were various theoretical and evaluative studies like: (1) signal model development; (2) derivation of optimal receiver structures; and (3) development and use of computer simulations for receiver algorithm evaluation. The development of an experimental receiver for flight testing is presented. An overview of the work and summary of principal results and conclusions are reported.

  16. A Tracking Sun Photometer Without Moving Parts

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.

    2012-01-01

    This innovation is small, lightweight, and consumes very little electricity as it measures the solar energy attenuated by gases and aerosol particles in the atmosphere. A Sun photometer is commonly used on the Earth's surface, as well as on aircraft, to determine the solar energy attenuated by aerosol particles in the atmosphere and their distribution of sizes. This information is used to determine the spatial and temporal distribution of gases and aerosols in the atmosphere, as well as their distribution sizes. The design for this Sun photometer uses a combination of unique optics and a charge coupled device (CCD) array to eliminate moving parts and make the instrument more reliable. It could be selfcalibrating throughout the year. Data products would be down-welling flux, the direct-diffuse flux ratio, column abundance of gas phase constituents, aerosol optical depth at multiple-wavelengths, phase functions, cloud statistics, and an estimate of the representative size of atmospheric particles. These measurements can be used to obtain an estimate of aerosol size distribution, refractive index, and particle shape. Incident light is received at a light-reflecting (inner) surface, which is a truncated paraboloid. Light arriving from a hemispheric field of view (solid angle 2 steradians) enters the reflecting optic at an entrance aperture at, or adjacent to, the focus of the paraboloid, and is captured by the optic. Most of this light is reflected from an inner surface. The light proceeds substantially parallel to the paraboloid axis, and is detected by an array detector located near an exit aperture. Each of the entrance and exit apertures is formed by the intersection of the paraboloid with a plane substantially perpendicular to the paraboloid axis. Incident (non-reflected) light from a source of limited extent (the Sun) illuminates a limited area on the detector array. Both direct and diffuse illumination may be reflected, or not reflected, before being received on the detector array. As the Sun traverses a path in the sky over some time interval, the track of the Sun can be traced on the detector array. A suitably modified Sun photometer might be used to study the dynamics of an environment on another planet or satellite with an atmosphere.

  17. Experimental demonstration of bidirectional up to 40 Gbit/s QPSK coherent free-space optical communication link over ∼1 km

    NASA Astrophysics Data System (ADS)

    Feng, Xianglian; Wu, Zhihang; Wang, Tianshu; Zhang, Peng; Li, Xiaoyan; Jiang, Huilin; Su, Yuwei; He, Hongwei; Wang, Xiaoyan; Gao, Shiming

    2018-03-01

    Advanced multi-level modulation formats have shown their great potential in high-speed and high-spectral-efficiency optical communications. Using quadrature phase-shift keying (QPSK) modulation format for free-space optical (FSO) communication, a bidirectional high-speed FSO transmission link with the bit rates of up to 40 Gbit/s over ∼1 km, between two buildings in the campus of Changchun University of Science and Technology, Changchun, China, is experimentally demonstrated cooperating by capture and tracking systems. The eye-diagrams and constellation diagrams of the transmitted QPSK signals are clearly observed. By comparing the bit error rate (BER) curves before and after transmission, one can find that the receiving powers are both less than -16.5 dBm for the forward and backward transmissions of the bidirectional 20, 30, and 40 Gbit/s FSO links, and their power penalties due to the phase fluctuation of the atmospheric channel are both less than 2.6 dB, at the BER of 3.8 ×10-3.

  18. A demonstration of real-time connected element interferometry for spacecraft navigation

    NASA Technical Reports Server (NTRS)

    Edwards, C.; Rogstad, D.; Fort, D.; White, L.; Iijima, B.

    1992-01-01

    Connected element interferometry is a technique of observing a celestial radio source at two spatially separated antennas, and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. A connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, CA tracking complex is developed. Fiber optic links are used to transmit the data at 112 Mbit/sec to a common site for processing. A real-time correlator to process these data in real-time is implemented. The architecture of the system is described, and observational data is presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline.

  19. The goldstone real-time connected element interferometer

    NASA Technical Reports Server (NTRS)

    Edwards, C., Jr.; Rogstad, D.; Fort, D.; White, L.; Iijima, B.

    1992-01-01

    Connected element interferometry (CEI) is a technique of observing a celestial radio source at two spatially separated antennas and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. This article describes a recently developed connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, California, tracking complex. Fiber-optic links are used to transmit the data to a common site for processing. The system incorporates a real-time correlator to process these data in real time. The architecture of the system is described, and observational data are presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline.

  20. Real-time active MR-tracking of metallic stylets in MR-guided radiation therapy

    PubMed Central

    Wang, Wei; Dumoulin, Charles L.; Viswanathan, Akila N.; Tse, Zion T. H.; Mehrtash, Alireza; Loew, Wolfgang; Norton, Isaiah; Tokuda, Junichi; Seethamraju, Ravi T.; Kapur, Tina; Damato, Antonio L.; Cormack, Robert A.; Schmidt, Ehud J.

    2014-01-01

    Purpose To develop an active MR-tracking system to guide placement of metallic devices for radiation therapy. Methods An actively tracked metallic stylet for brachytherapy was constructed by adding printed-circuit micro-coils to a commercial stylet. The coil design was optimized by electromagnetic simulation, and has a radio-frequency lobe pattern extending ~5 mm beyond the strong B0 inhomogeneity region near the metal surface. An MR-tracking sequence with phase-field dithering was used to overcome residual effects of B0 and B1 inhomogeneities caused by the metal, as well as from inductive coupling to surrounding metallic stylets. The tracking system was integrated with a graphical workstation for real-time visualization. 3T MRI catheter-insertion procedures were tested in phantoms and ex-vivo animal tissue, and then performed in three patients during interstitial brachytherapy. Results The tracking system provided high-resolution (0.6 × 0.6 × 0.6 mm3) and rapid (16 to 40 frames per second, with three to one phase-field dithering directions) catheter localization in phantoms, animals, and three gynecologic cancer patients. Conclusion This is the first demonstration of active tracking of the shaft of metallic stylet in MR-guided brachytherapy. It holds the promise of assisting physicians to achieve better targeting and improving outcomes in interstitial brachytherapy. PMID:24903165

  1. Blue phase-change recording at high data densities and data rates

    NASA Astrophysics Data System (ADS)

    Dekker, Martijn K.; Pfeffer, Nicola; Kuijper, Maarten; Ubbens, Igolt P.; Coene, Wim M. J.; Meinders, E. R.; Borg, Herman J.

    2000-09-01

    For the DVR system with the use of a blue laser diode (wavelength 405 nm) we developed (12 cm) discs with a total capacity of 22.4 GB. The land/groove track pitch is 0.30 micrometers and the channel bit length is 87 nm. The DVR system uses a d equals 1 code. These phase change discs can be recorded at continuous angular velocity at a maximum of 50 Mbps user data rate (including all format and ECC overhead) and meet the system specifications. Fast growth determined phase change materials (FGM) are used for the active layer. In order to apply these FGM discs at small track pitch special attention has been paid to the issue of thermal cross-write. Finally routes towards higher capacities such as advanced bit detection schemes and the use of a smaller track pitch are considered. These show the feasibility in the near future of at least 26.0 GB on a disc for the DVR system with a blue laser diode.

  2. Accuracy improvement in measurement of arterial wall elasticity by applying pulse inversion to phased-tracking method

    NASA Astrophysics Data System (ADS)

    Miyachi, Yukiya; Arakawa, Mototaka; Kanai, Hiroshi

    2018-07-01

    In our studies on ultrasonic elasticity assessment, minute change in the thickness of the arterial wall was measured by the phased-tracking method. However, most images in carotid artery examinations contain multiple-reflection noise, making it difficult to evaluate arterial wall elasticity precisely. In the present study, a modified phased-tracking method using the pulse inversion method was examined to reduce the influence of the multiple-reflection noise. Moreover, aliasing in the harmonic components was corrected by the fundamental components. The conventional and proposed methods were applied to a pulsated tube phantom mimicking the arterial wall. For the conventional method, the elasticity was 298 kPa without multiple-reflection noise and 353 kPa with multiple-reflection noise on the posterior wall. That of the proposed method was 302 kPa without multiple-reflection noise and 297 kPa with multiple-reflection noise on the posterior wall. Therefore, the proposed method was very robust against multiple-reflection noise.

  3. Compaction of Railway Ballast During Tamping Process: a Parametric Study

    NASA Astrophysics Data System (ADS)

    Saussine, G.; Azéma, E.; Perales, R.; Radjaï, F.

    2009-06-01

    We characterize an industrial process currently used on railway track: tamping operation. This process is employed in order to restore the geometry of railway track distorted by train traffics. The main goal is to compact the granular material under the sleepers supporting the railroad squeezing and vibrations. We focus on different phases of the tamping process, namely the penetration of tamping tines into the ballast and squeezing of ballast between tines. Our numerical simulations of three-dimensional discrete polyhedral grains allow us to investigate the influence of vibration frequency on the compaction level at the end of the process, the role of velocity of tamping tines during penetration phase and the mechanism of compaction of a confined granular layer under horizontal vibrations. For each tamping phase, an optimal frequency is proposed, and an analysis of the full process on the samples representing a portion of the railway track enables us to access the influence of various parameters required to optimize the process.

  4. The bistatic radar capabilities of the Medicina radiotelescopes in space debris detection and tracking

    NASA Astrophysics Data System (ADS)

    Montebugnoli, S.; Pupillo, G.; Salerno, E.; Pluchino, S.; di Martino, M.

    2010-03-01

    An accurate measurement of the position and trajectory of the space debris fragments is of primary importance for the characterization of the orbital debris environment. The Medicina Radioastronomical Station is a radio observation facility that is here proposed as receiving part of a ground-based space surveillance system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits). The proposed system consists of two bistatic radars formed by the existing Medicina receiving antennas coupled with appropriate transmitters. This paper focuses on the current features and future technical development of the receiving part of the observational setup. Outlines of possible transmitting systems will also be given together with the evaluation of the observation strategies achievable with the proposed facilities.

  5. Recovery Of Chromium Metal (VI) Using Supported Liquid Membrane (SLM) Method, A study of Influence of NaCl and pH in Receiving Phase on Transport

    NASA Astrophysics Data System (ADS)

    Cholid Djunaidi, Muhammad; Lusiana, Retno A.; Rahayu, Maya D.

    2017-06-01

    Chromium metal(VI) is a valuable metal but in contrary has high toxicity, so the separation and recovery from waste are very important. One method that can be used for the separation and recovery of chromium (VI) is a Supported Liquid Membrane (SLM). SLM system contains of three main components: a supporting membrane, organic solvents and carrier compounds. The supported Membrane used in this research is Polytetrafluoroethylene (PTFE), organic solvent is kerosene, and the carrier compound used is aliquat 336. The supported liquid membrane is placed between two phases, namely, feed phase as the source of analyte (Cr(VI)) and the receiving phase as the result of separation. Feed phase is the electroplating waste which contains of chromium metal with pH variation about 4, 6 and 9. Whereas the receiving phase are the solution of HCl, NaOH, HCl-NaCl and NaOH-NaCl with pH variation about 1, 3, 5 and 7. The efficiency separation is determined by measurement of chromium in the feed and the receiving phase using AAS (Atomic Absorption Spectrophotometry). The experiment results show that transport of Chrom (VI) by Supported Liquid membrane (SLM) is influenced by pH solution in feed phase and receiving phase as well as NaCl in receiving phase. The highest chromium metal is transported from feed phase about 97,78%, whereas in receiving phase shows about 58,09%. The highest chromium metal transport happens on pH 6 in feed phase, pH 7 in receiving phase with the mixture of NaOH and NaCl using carrier compound aliquat 336.

  6. Optical phase conjugation by four-wave mixing in Nd:YAG laser oscillator for optical energy transfer to a remote target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, K., E-mail: k.kawakami@al.t.u-tokyo.ac.jp; Komurasaki, K.; Okamura, H.

    2015-02-28

    A self-starting phase conjugator was designed for optical energy transfer to a remote target. Saturable-gain four-wave mixing in a laser resonator was achieved using a flash-lamp pumped Nd:YAG crystal and phase-conjugate light (PCL) generation were verified. Wavefront correction experimentation revealed that beam wander caused by air turbulence is compensated. Tracking capability was demonstrated in the range of 9 mrad with tracking accuracy of ±0.04 mrad. The maximum field of view was measured to be 4.7°. Dependence of phase-conjugate light energy on reference light energy was investigated. The maximum output of 320 mJ was obtained. The temporal behavior of PCL ismore » discussed based on the four-wave mixing mechanism. Unlike a conventional loop resonator type phase conjugator, this system is applicable for wireless energy transfer to a remote target.« less

  7. Maintenance Decision Support System, Phase III

    DOT National Transportation Integrated Search

    2017-09-01

    The main goal of the project was to address barriers that limit NDOTs ability to implement MDSS and MMS systems. The four project tasks included: Task 1: Develop system for tracking sand and/or deicing material usage: A system that tracks where and w...

  8. CHARACTERIZING AIR QUALITY FOR ENVIRONMENTAL PUBLIC HEALTH TRACKING

    EPA Science Inventory

    This presentation provides a brief summary of EPA's perspective on Environmental Public Health Tracking, the Public Health Air Surveillance Evaluation (PHASE), and EPA's efforts to provide air quality data to three states (Maine, New York, and Wisconsin) that are partners with CD...

  9. U24 : heavy truck rollover characterization (phase C).

    DOT National Transportation Integrated Search

    2010-08-01

    The effect of changes in the suspension of a cargo tank semitrailer on its roll stability was studied in experiments and modeling. Three configurations were considered: a typical design; a design with a wider track; and a design with wider track and ...

  10. "Joined up" Thinking? Unsupported "Fast-Track" Transitions in the Context of Parental Substance Use

    ERIC Educational Resources Information Center

    Wilson, Sarah; Cunningham-Burley, Sarah; Bancroft, Angus; Backett-Milburn, Kathryn

    2008-01-01

    Recent policy responses to the risks entailed in "fast-track" school-work transitions have targeted careleavers and young people identified as "not in education, employment or training" (NEET). However, this approach has been criticised as diverting attention away from the fragile circumstances of others who may receive little…

  11. Space Operations

    DTIC Science & Technology

    2009-01-06

    enabling precise blue force tracking (BFT), enhancing joint force situational awareness, maneuverability, and command and control (C2... spacecraft , transmits the status of those systems to the control segment on the ground, and receives and processes instructions from the control segment...missions include the tracking , telemetry, and control operations of: (1) Ultrahigh frequency (UHF) follow-on satellite system and fleet

  12. Tracking and Inferring Spatial Rotation by Children and Great Apes

    ERIC Educational Resources Information Center

    Okamoto-Barth; Sanae; Call, Josep

    2008-01-01

    Finding hidden objects in space is a fundamental ability that has received considerable research attention from both a developmental and a comparative perspective. Tracking the rotational displacements of containers and hidden objects is a particularly challenging task. This study investigated the ability of 3-, 5-, 7-, and 9-year-old children and…

  13. 12 CFR 792.10 - What will NCUA do with my request?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... identifiable by the Information Center and have already been cleared for public release may qualify for fast... received. (c) The Information Center will make the determination whether a request qualifies for fast track... request has been assigned. If your request has not qualified for fast track processing, you will have an...

  14. 12 CFR 792.10 - What will NCUA do with my request?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... identifiable by the Information Center and have already been cleared for public release may qualify for fast... received. (c) The Information Center will make the determination whether a request qualifies for fast track... request has been assigned. If your request has not qualified for fast track processing, you will have an...

  15. 12 CFR 792.10 - What will NCUA do with my request?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... identifiable by the Information Center and have already been cleared for public release may qualify for fast... received. (c) The Information Center will make the determination whether a request qualifies for fast track... request has been assigned. If your request has not qualified for fast track processing, you will have an...

  16. 12 CFR 792.10 - What will NCUA do with my request?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... identifiable by the Information Center and have already been cleared for public release may qualify for fast... received. (c) The Information Center will make the determination whether a request qualifies for fast track... request has been assigned. If your request has not qualified for fast track processing, you will have an...

  17. 12 CFR 792.10 - What will NCUA do with my request?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... identifiable by the Information Center and have already been cleared for public release may qualify for fast... received. (c) The Information Center will make the determination whether a request qualifies for fast track... request has been assigned. If your request has not qualified for fast track processing, you will have an...

  18. Multi-phase arrival tracking using tetrahedral cells within a 3D layered titled transversely isotropic anisotropic model involving undulating topography and irregular interfaces

    NASA Astrophysics Data System (ADS)

    Li, Xing-Wang; Bai, Chao-Ying; Yue, Xiao-Peng; Greenhalgh, Stewart

    2018-02-01

    To overcome a major problem in current ray tracing methods, which are only capable of tracing first arrivals, and occasionally primary reflections (or mode conversions) in regular cell models, we extend in this paper the multistage triangular shortest-path method (SPM) into 3D titled transversely isotropic (TTI) anisotropic media. The proposed method is capable of tracking multi-phase arrivals composed of any kind of combinations of transmissions, mode conversions and reflections. In model parameterization, five elastic parameters, plus two angles defining the titled axis of symmetry of TTI media are sampled at the primary nodes of the tetrahedral cell, and velocity value at secondary node positions are linked by a tri-linear velocity interpolation function to the primary node velocity value of that of a tetrahedral cell, from which the group velocities of the three wave modes (qP, qSV and qSH) are computed. The multistage triangular SPM is used to track multi-phase arrivals. The uniform anisotropic test indicates that the numerical solution agrees well with the analytic solution, thus verifying the accuracy of the methodology. Several simulations and comparison results for heterogeneous models show that the proposed algorithm is able to efficiently and accurately approximate undulating surface topography and irregular subsurface velocity discontinuities. It is suitable for any combination of multi-phase arrival tracking in arbitrary tilt angle TTI media and can accommodate any magnitude of anisotropy.

  19. Automated cell tracking and analysis in phase-contrast videos (iTrack4U): development of Java software based on combined mean-shift processes.

    PubMed

    Cordelières, Fabrice P; Petit, Valérie; Kumasaka, Mayuko; Debeir, Olivier; Letort, Véronique; Gallagher, Stuart J; Larue, Lionel

    2013-01-01

    Cell migration is a key biological process with a role in both physiological and pathological conditions. Locomotion of cells during embryonic development is essential for their correct positioning in the organism; immune cells have to migrate and circulate in response to injury. Failure of cells to migrate or an inappropriate acquisition of migratory capacities can result in severe defects such as altered pigmentation, skull and limb abnormalities during development, and defective wound repair, immunosuppression or tumor dissemination. The ability to accurately analyze and quantify cell migration is important for our understanding of development, homeostasis and disease. In vitro cell tracking experiments, using primary or established cell cultures, are often used to study migration as cells can quickly and easily be genetically or chemically manipulated. Images of the cells are acquired at regular time intervals over several hours using microscopes equipped with CCD camera. The locations (x,y,t) of each cell on the recorded sequence of frames then need to be tracked. Manual computer-assisted tracking is the traditional method for analyzing the migratory behavior of cells. However, this processing is extremely tedious and time-consuming. Most existing tracking algorithms require experience in programming languages that are unfamiliar to most biologists. We therefore developed an automated cell tracking program, written in Java, which uses a mean-shift algorithm and ImageJ as a library. iTrack4U is a user-friendly software. Compared to manual tracking, it saves considerable amount of time to generate and analyze the variables characterizing cell migration, since they are automatically computed with iTrack4U. Another major interest of iTrack4U is the standardization and the lack of inter-experimenter differences. Finally, iTrack4U is adapted for phase contrast and fluorescent cells.

  20. WE-AB-303-08: Direct Lung Tumor Tracking Using Short Imaging Arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, C; Huang, C; Keall, P

    2015-06-15

    Purpose: Most current tumor tracking technologies rely on implanted markers, which suffer from potential toxicity of marker placement and mis-targeting due to marker migration. Several markerless tracking methods have been proposed: these are either indirect methods or have difficulties tracking lung tumors in most clinical cases due to overlapping anatomies in 2D projection images. We propose a direct lung tumor tracking algorithm robust to overlapping anatomies using short imaging arcs. Methods: The proposed algorithm tracks the tumor based on kV projections acquired within the latest six-degree imaging arc. To account for respiratory motion, an external motion surrogate is used tomore » select projections of the same phase within the latest arc. For each arc, the pre-treatment 4D cone-beam CT (CBCT) with tumor contours are used to estimate and remove the contribution to the integral attenuation from surrounding anatomies. The position of the tumor model extracted from 4D CBCT of the same phase is then optimized to match the processed projections using the conjugate gradient method. The algorithm was retrospectively validated on two kV scans of a lung cancer patient with implanted fiducial markers. This patient was selected as the tumor is attached to the mediastinum, representing a challenging case for markerless tracking methods. The tracking results were converted to expected marker positions and compared with marker trajectories obtained via direct marker segmentation (ground truth). Results: The root-mean-squared-errors of tracking were 0.8 mm and 0.9 mm in the superior-inferior direction for the two scans. Tracking error was found to be below 2 and 3 mm for 90% and 98% of the time, respectively. Conclusions: A direct lung tumor tracking algorithm robust to overlapping anatomies was proposed and validated on two scans of a lung cancer patient. Sub-millimeter tracking accuracy was observed, indicating the potential of this algorithm for real-time guidance applications.« less

  1. Development of a Front Tracking Method for Two-Phase Micromixing of Incompressible Viscous Fluids with Interfacial Tension in Solvent Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yijie; Lim, Hyun-Kyung; de Almeida, Valmor F

    2012-06-01

    This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical developmentmore » and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.« less

  2. Laser heterodyne surface profiler

    DOEpatents

    Sommargren, G.E.

    1980-06-16

    A method and apparatus are disclosed for testing the deviation of the face of an object from a flat smooth surface using a beam of coherent light of two plane-polarized components, one of a frequency constantly greater than the other by a fixed amount to produce a difference frequency with a constant phase to be used as a reference, and splitting the beam into its two components. The separate components are directed onto spaced apart points on the face of the object to be tested for smoothness while the face of the object is rotated on an axis normal to one point, thereby passing the other component over a circular track on the face of the object. The two components are recombined after reflection to produce a reflected frequency difference of a phase proportional to the difference in path length of one component reflected from one point to the other component reflected from the other point. The phase of the reflected frequency difference is compared with the reference phase to produce a signal proportional to the deviation of the height of the surface along the circular track with respect to the fixed point at the center, thereby to produce a signal that is plotted as a profile of the surface along the circular track. The phase detector includes a quarter-wave plate to convert the components of the reference beam into circularly polarized components, a half-wave plate to shift the phase of the circularly polarized components, and a polarizer to produce a signal of a shifted phase for comparison with the phase of the frequency difference of the reflected components detected through a second polarizer. Rotation of the half-wave plate can be used for phase adjustment over a full 360/sup 0/ range.

  3. The attribution of incentive salience to Pavlovian alcohol cues: a shift from goal-tracking to sign-tracking

    PubMed Central

    Srey, Chandra S.; Maddux, Jean-Marie N.; Chaudhri, Nadia

    2015-01-01

    Environmental stimuli that are reliably paired with alcohol may acquire incentive salience, a property that can operate in the use and abuse of alcohol. Here we investigated the incentive salience of Pavlovian alcohol cues using a preclinical animal model. Male, Long-Evans rats (Harlan) with unrestricted access to food and water were acclimated to drinking 15% ethanol (v/v) in their home-cages. Rats then received Pavlovian autoshaping training in which the 10 s presentation of a retractable lever served as the conditioned stimulus (CS) and 15% ethanol served as the unconditioned stimulus (US) (0.2 ml/CS; 12 CS presentations/session; 27 sessions). Next, in an operant test of conditioned reinforcement, nose pokes into an active aperture delivered presentations of the lever-CS, whereas nose pokes into an inactive aperture had no consequences. Across initial autoshaping sessions, goal-tracking behavior, as measured by entries into the fluid port where ethanol was delivered, developed rapidly. However, with extended training goal-tracking diminished, and sign-tracking responses, as measured by lever-CS activations, emerged. Control rats that received explicitly unpaired CS and US presentations did not show goal-tracking or sign-tracking responses. In the test for conditioned reinforcement, rats with CS-US pairings during autoshaping training made more active relative to inactive nose pokes, whereas rats in the unpaired control group did not. Moreover, active nose pokes were positively correlated with sign-tracking behavior during autoshaping. Extended training may produce a shift in the learned properties of Pavlovian alcohol cues, such that after initially predicting alcohol availability they acquire robust incentive salience. PMID:25784867

  4. All-digital phase-lock loops for noise-free signals

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.

    1973-01-01

    Bit-synchronizers utilize all-digital phase-lock loops that are referenced to a high frequency digital clock. Phase-lock loop of first design acquires frequency within nominal range and tracks phase; second design is modified for random binary data by addition of simple transition detector; and third design acquires frequency over wide dynamic range.

  5. Global navigation satellite system receiver for weak signals under all dynamic conditions

    NASA Astrophysics Data System (ADS)

    Ziedan, Nesreen Ibrahim

    The ability of the Global Navigation Satellite System (GNSS) receiver to work under weak signal and various dynamic conditions is required in some applications. For example, to provide a positioning capability in wireless devices, or orbit determination of Geostationary and high Earth orbit satellites. This dissertation develops Global Positioning System (GPS) receiver algorithms for such applications. Fifteen algorithms are developed for the GPS C/A signal. They cover all the receiver main functions, which include acquisition, fine acquisition, bit synchronization, code and carrier tracking, and navigation message decoding. They are integrated together, and they can be used in any software GPS receiver. They also can be modified to fit any other GPS or GNSS signals. The algorithms have new capabilities. The processing and memory requirements are considered in the design to allow the algorithms to fit the limited resources of some applications; they do not require any assisting information. Weak signals can be acquired in the presence of strong interfering signals and under high dynamic conditions. The fine acquisition, bit synchronization, and tracking algorithms are based on the Viterbi algorithm and Extended Kalman filter approaches. The tracking algorithms capabilities increase the time to lose lock. They have the ability to adaptively change the integration length and the code delay separation. More than one code delay separation can be used in the same time. Large tracking errors can be detected and then corrected by a re-initialization and an acquisition-like algorithms. Detecting the navigation message is needed to increase the coherent integration; decoding it is needed to calculate the navigation solution. The decoding algorithm utilizes the message structure to enable its decoding for signals with high Bit Error Rate. The algorithms are demonstrated using simulated GPS C/A code signals, and TCXO clocks. The results have shown the algorithms ability to reliably work with 15 dB-Hz signals and acceleration over 6 g.

  6. Engineering evaluations and studies. Report for IUS studies

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reviews, investigations, and analyses of the Inertial Upper Stage (IUS) Spacecraft Tracking and Data Network (STDN) transponder are reviewed. Carrier lock detector performance for Tracking and Data Relay Satellite System (TDRSS) dual-mode operation is discussed, as is the problem of predicting instantaneous frequency error in the carrier loop. Coastal loop performance analysis is critiqued and the static tracking phase error induced by thermal noise biases is discussed.

  7. Analysis of the Influence of Cracked Sleepers under Static Loading on Ballasted Railway Tracks

    PubMed Central

    Montalbán Domingo, Laura; Zamorano Martín, Clara; Palenzuela Avilés, Cristina; Real Herráiz, Julia I.

    2014-01-01

    The principal causes of cracking in prestressed concrete sleepers are the dynamic loads induced by track irregularities and imperfections in the wheel-rail contact and the in-phase and out-of-phase track resonances. The most affected points are the mid-span and rail-seat sections of the sleepers. Central and rail-seat crack detection require visual inspections, as legislation establishes, and involve sleepers' renewal even though European Normative considers that thicknesses up to 0.5 mm do not imply an inadequate behaviour of the sleepers. For a better understanding of the phenomenon, the finite element method constitutes a useful tool to assess the effects of cracking from the point of view of structural behaviour in railway track structures. This paper intends to study how the cracks at central or rail-seat section in prestressed concrete sleepers influence the track behaviour under static loading. The track model considers three different sleeper models: uncracked, cracked at central section, and cracked at rail-seat section. These models were calibrated and validated using the frequencies of vibration of the first three bending modes obtained from an experimental modal analysis. The results show the insignificant influence of the central cracks and the notable effects of the rail-seat cracks regarding deflections and stresses. PMID:25530998

  8. Modeling and Development of INS-Aided PLLs in a GNSS/INS Deeply-Coupled Hardware Prototype for Dynamic Applications

    PubMed Central

    Zhang, Tisheng; Niu, Xiaoji; Ban, Yalong; Zhang, Hongping; Shi, Chuang; Liu, Jingnan

    2015-01-01

    A GNSS/INS deeply-coupled system can improve the satellite signals tracking performance by INS aiding tracking loops under dynamics. However, there was no literature available on the complete modeling of the INS branch in the INS-aided tracking loop, which caused the lack of a theoretical tool to guide the selections of inertial sensors, parameter optimization and quantitative analysis of INS-aided PLLs. This paper makes an effort on the INS branch in modeling and parameter optimization of phase-locked loops (PLLs) based on the scalar-based GNSS/INS deeply-coupled system. It establishes the transfer function between all known error sources and the PLL tracking error, which can be used to quantitatively evaluate the candidate inertial measurement unit (IMU) affecting the carrier phase tracking error. Based on that, a steady-state error model is proposed to design INS-aided PLLs and to analyze their tracking performance. Based on the modeling and error analysis, an integrated deeply-coupled hardware prototype is developed, with the optimization of the aiding information. Finally, the performance of the INS-aided PLLs designed based on the proposed steady-state error model is evaluated through the simulation and road tests of the hardware prototype. PMID:25569751

  9. Pulse width modulation-based temperature tracking for feedback control of a shape memory alloy actuator.

    PubMed

    Ayvali, Elif; Desai, Jaydev P

    2014-04-01

    This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories.

  10. SCaN Network Ground Station Receiver Performance for Future Service Support

    NASA Technical Reports Server (NTRS)

    Estabrook, Polly; Lee, Dennis; Cheng, Michael; Lau, Chi-Wung

    2012-01-01

    Objectives: Examine the impact of providing the newly standardized CCSDS Low Density Parity Check (LDPC) codes to the SCaN return data service on the SCaN SN and DSN ground stations receivers: SN Current Receiver: Integrated Receiver (IR). DSN Current Receiver: Downlink Telemetry and Tracking (DTT) Receiver. Early Commercial-Off-The-Shelf (COTS) prototype of the SN User Service Subsystem Component Replacement (USS CR) Narrow Band Receiver. Motivate discussion of general issues of ground station hardware design to enable simple and cheap modifications for support of future services.

  11. Availability of anesthetic effect monitoring: utilization, intraoperative management and time to extubation in liver transplantation.

    PubMed

    Schumann, R; Hudcova, J; Bonney, I; Cepeda, M S

    2010-12-01

    Titration of volatile anesthetics to anesthetic effect monitoring using the bispectral index (BIS) has been shown to decrease anesthetic requirements and facilitate recovery from anesthesia unrelated to liver transplantation (OLT). To determine whether availability of such monitoring influences its utilization pattern and affect anesthetic care and outcomes in OLT, we conducted a retrospective analysis in recipients with and without such monitoring. We evaluated annual BIS utilization over a period of 7 years, and compared 41 BIS-monitored patients to 42 controls. All received an isoflurane/air/oxygen and opioid-based anesthetic with planned postoperative ventilation. Data collection included age, body mass index (BMI), gender, Model for End-stage Liver Disease (MELD) score, and time to extubation (TtE). Mean preanhepatic, anhepatic, and postanhepatic end-tidal isoflurane concentrations were compared, as well as BIS values for each phase of OLT using the Kruskal-Wallis and Wilcoxon signed-rank tests, respectively. The use of anesthetic effect monitoring when available increased steadily from 15% of cases in the first year to almost 93% by year 7. There was no significant difference in age, gender, BMI, MELD, or TtE between groups. The BIS group received less inhalational anesthetic during each phase of OLT compared to the control group. However, this difference was statistically significant only during the anhepatic phase (P = .026), and was clinically not impressive. Within the BIS group, the mean BIS value was 38.74 ± 5.25 (mean ± standard deviation), and there was no difference for the BIS value between different transplant phases. Availability of anesthetic effect monitoring as an optional monitoring tool during OLT results in its increasing utilization by anesthesia care teams over time. However, unless integrated into an intraoperative algorithm and an early extubation protocol for fast tracking of OLT recipients, this utilization does not appear to provide a clinical benefit but instead drives cost. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. A study on task difficulty and acceleration stress

    NASA Technical Reports Server (NTRS)

    Repperger, D. W.; Rogers, D. B.

    1981-01-01

    The results of two experiments which relate to task difficulty and the effects of environmental stress on tracking performance are discussed and compared to subjective evaluations. The first experiment involved five different sum of sine tracking tasks which humans tracked both in a static condition and under a 5 Gz acceleration stress condition. The second experiment involved similar environmental stress conditions but in this case the tasks were constructed from deterministic functions with specially designed velocity and acceleration profiles. Phase Plane performance analysis was conducted to study potential measures of workload or tracking difficulty.

  13. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    NASA Technical Reports Server (NTRS)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    In an effort to minimize the need for costly, complex, tracking radars, the German Space Operations Center has set up a research project for GPS based tracking of sounding rockets. As part of this project, a GPS receiver based on commercial technology for terrestrial applications has been modified to allow its use under the highly dynamical conditions of a sounding rocket flight. In addition, new antenna concepts are studied as an alternative to proven but costly wrap-around antennas.

  14. Virulizin.

    PubMed

    2002-01-01

    Virulizin, a biological response modifier, is a mixture of proteins and peptides that have been extracted from bovine reticuloendothelial tissue that activates macrophages. It is being developed by Lorus Therapeutics (formerly Imutec Pharma) for the treatment of various cancers and had completed phase II clinical trials in Canada for the treatment of pancreatic cancer and advanced malignant melanoma. The commencement of phase III clinical trials in Canada, for the treatment of pancreatic cancer, was delayed due to quality control problems with batches of virulizin and all clinical trials of virulizin were suspended as Lorus underwent a major restructuring programme. However, phase I/II clinical trials are now underway again in Canada in HIV-positive patients with Kaposi's sarcoma and for the treatment of pancreatic cancer. A phase I/II clinical trial is also underway in patients with pancreatic cancer in the USA. Lorus announced in June 2000 that it had completed a meta analysis of three phase I/II studies of virulizin that showed the drug increased survival and improved quality of life for pancreatic cancer patients. Based on these positive results, Lorus initiated a phase III trial to be conducted at 40 sites in North America in November 2001. The study aims to enrol 350 patients with advanced pancreatic cancer and will test the effectiveness of virulizin as first- and second-line treatment of pancreatic cancer. The study will compare virulizin + gemcitabine with gemcitabine alone as first-line therapy, while second-line treatment will involve patients who have failed to respond to gemcitabine. Some of these patients will receive virulizin + fluorouracil while another group will receive only fluorouracil. The study is scheduled to complete in 2004 or early 2005. Virulizin received orphan drug status for this indication from the US FDA in February 2001. Lorus received fast track designation from the FDA in June 2002 for virulizin for the treatment of pancreatic cancer. Virulizin is registered for the treatment of malignant melanoma in Mexico and is due to be launched there in 2002. Lorus has entered into an exclusive 7-year distribution agreement with Faulding Canada Inc., giving Faulding (now part of Mayne Group) the right to market and sell virulizin in Mexico for the treatment of melanoma. Lorus will receive royalties from sales of the product and will be responsible for its manufacture. In April 2002, Mayne exercised its option to acquire the distribution rights for virulizin in Brazil. Lorus Therapeutics has signed a collaborative agreement with NaPro BioTherapeutics, USA, to study the efficacy of virulizin in combination with paclitaxel for the treatment of lung adenocarcinoma. Lorus is conducting preclinical studies of virulizin in human breast cancer, lung, ovarian and prostate cancer, and has reported successful activity of the agent in these indications. Lorus was awarded a patent by the US Patent and Trademark Office to protect the only known process used to create virulizin. This patent, in conjunction with the patents issued in Australia, South Africa, New Zealand, Korea and Singapore, broadens and strengthens the protection of Lorus' intellectual property rights regarding the process, composition and use of virulizin.

  15. System and method for tracking a signal source. [employing feedback control

    NASA Technical Reports Server (NTRS)

    Mogavero, L. N.; Johnson, E. G.; Evans, J. M., Jr.; Albus, J. S. (Inventor)

    1978-01-01

    A system for tracking moving signal sources is disclosed which is particularly adaptable for use in tracking stage performers. A miniature transmitter is attached to the person or object to be tracked and emits a detectable signal of a predetermined frequency. A plurality of detectors positioned in a preset pattern sense the signal and supply output information to a phase detector which applies signals representing the angular orientation of the transmitter to a computer. The computer provides command signals to a servo network which drives a device such as a motor driven mirror reflecting the beam of a spotlight, to track the moving transmitter.

  16. Tracking and data system support for the Viking 1975 mission to Mars. Volume 1: Prelaunch planning, implementation, and testing

    NASA Technical Reports Server (NTRS)

    Mudgway, D. J.; Traxler, M. R.

    1977-01-01

    The tracking and data acquisition support for the 1975 Viking Missions to Mars is described. The history of the effort from its inception in late 1968 through the launches of Vikings 1 and 2 from Cape Kennedy in August and September 1975 is given. The Viking mission requirements for tracking and data acquisition support in both the near earth and deep space phases involved multiple radar tracking and telemetry stations, and communications networks together with the global network of tracking stations, communications, and control center. The planning, implementation, testing and management of the program are presented.

  17. SU-G-BRA-07: An Innovative Fiducial-Less Tracking Method for Radiation Treatment of Abdominal Tumors by Diaphragm Disparity Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dick, D; Zhao, W; Wu, X

    2016-06-15

    Purpose: To investigate the feasibility of tracking abdominal tumors without the use of gold fiducial markers Methods: In this simulation study, an abdominal 4DCT dataset, acquired previously and containing 8 phases of the breathing cycle, was used as the testing data. Two sets of DRR images (45 and 135 degrees) were generated for each phase. Three anatomical points along the lung-diaphragm interface on each of the Digital Reconstructed Radiograph(DRR) images were identified by cross-correlation. The gallbladder, which simulates the tumor, was contoured for each phase of the breathing cycle and the corresponding centroid values serve as the measured center ofmore » the tumor. A linear model was created to correlate the diaphragm’s disparity of the three identified anatomical points with the center of the tumor. To verify the established linear model, we sequentially removed one phase of the data (i.e., 3 anatomical points and the corresponding tumor center) and created new linear models with the remaining 7 phases. Then we substituted the eliminated phase data (disparities of the 3 anatomical points) into the corresponding model to compare model-generated tumor center and the measured tumor center. Results: The maximum difference between the modeled and the measured centroid values across the 8 phases were 0.72, 0.29 and 0.30 pixels in the x, y and z directions respectively, which yielded a maximum mean-squared-error value of 0.75 pixels. The outcomes of the verification process, by eliminating each phase, produced mean-squared-errors ranging from 0.41 to 1.28 pixels. Conclusion: Gold fiducial markers, requiring surgical procedures to be implanted, are conventionally used in radiation therapy. The present work shows the feasibility of a fiducial-less tracking method for localizing abdominal tumors. Through developed diaphragm disparity analysis, the established linear model was verified with clinically accepted errors. The tracking method in real time under different radiation therapy platforms will be further investigated.« less

  18. Tracking target objects orbiting earth using satellite-based telescopes

    DOEpatents

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  19. A large-aperture low-cost hydrophone array for tracking whales from small boats.

    PubMed

    Miller, B; Dawson, S

    2009-11-01

    A passive sonar array designed for tracking diving sperm whales in three dimensions from a single small vessel is presented, and the advantages and limitations of operating this array from a 6 m boat are described. The system consists of four free floating buoys, each with a hydrophone, built-in recorder, and global positioning system receiver (GPS), and one vertical stereo hydrophone array deployed from the boat. Array recordings are post-processed onshore to obtain diving profiles of vocalizing sperm whales. Recordings are synchronized using a GPS timing pulse recorded onto each track. Sensitivity analysis based on hyperbolic localization methods is used to obtain probability distributions for the whale's three-dimensional location for vocalizations received by at least four hydrophones. These localizations are compared to those obtained via isodiachronic sequential bound estimation. Results from deployment of the system around a sperm whale in the Kaikoura Canyon in New Zealand are shown.

  20. Maximum-likelihood-based extended-source spatial acquisition and tracking for planetary optical communications

    NASA Astrophysics Data System (ADS)

    Tsou, Haiping; Yan, Tsun-Yee

    1999-04-01

    This paper describes an extended-source spatial acquisition and tracking scheme for planetary optical communications. This scheme uses the Sun-lit Earth image as the beacon signal, which can be computed according to the current Sun-Earth-Probe angle from a pre-stored Earth image or a received snapshot taken by other Earth-orbiting satellite. Onboard the spacecraft, the reference image is correlated in the transform domain with the received image obtained from a detector array, which is assumed to have each of its pixels corrupted by an independent additive white Gaussian noise. The coordinate of the ground station is acquired and tracked, respectively, by an open-loop acquisition algorithm and a closed-loop tracking algorithm derived from the maximum likelihood criterion. As shown in the paper, the optimal spatial acquisition requires solving two nonlinear equations, or iteratively solving their linearized variants, to estimate the coordinate when translation in the relative positions of onboard and ground transceivers is considered. Similar assumption of linearization leads to the closed-loop spatial tracking algorithm in which the loop feedback signals can be derived from the weighted transform-domain correlation. Numerical results using a sample Sun-lit Earth image demonstrate that sub-pixel resolutions can be achieved by this scheme in a high disturbance environment.

Top