Sample records for receiving visual feedback

  1. Marginally perceptible outcome feedback, motor learning and implicit processes.

    PubMed

    Masters, Rich S W; Maxwell, Jon P; Eves, Frank F

    2009-09-01

    Participants struck 500 golf balls to a concealed target. Outcome feedback was presented at the subjective or objective threshold of awareness of each participant or at a supraliminal threshold. Participants who received fully perceptible (supraliminal) feedback learned to strike the ball onto the target, as did participants who received feedback that was only marginally perceptible (subjective threshold). Participants who received feedback that was not perceptible (objective threshold) showed no learning. Upon transfer to a condition in which the target was unconcealed, performance increased in both the subjective and the objective threshold condition, but decreased in the supraliminal condition. In all three conditions, participants reported minimal declarative knowledge of their movements, suggesting that deliberate hypothesis testing about how best to move in order to perform the motor task successfully was disrupted by the impoverished disposition of the visual outcome feedback. It was concluded that sub-optimally perceptible visual feedback evokes implicit processes.

  2. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.

    PubMed

    Leving, Marika T; Vegter, Riemer J K; Hartog, Johanneke; Lamoth, Claudine J C; de Groot, Sonja; van der Woude, Lucas H V

    2015-01-01

    It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability.

  3. Effects of Visual Feedback-Induced Variability on Motor Learning of Handrim Wheelchair Propulsion

    PubMed Central

    Leving, Marika T.; Vegter, Riemer J. K.; Hartog, Johanneke; Lamoth, Claudine J. C.; de Groot, Sonja; van der Woude, Lucas H. V.

    2015-01-01

    Background It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. Methods 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. Results The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. Conclusion These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability. PMID:25992626

  4. Learning feedback and feedforward control in a mirror-reversed visual environment.

    PubMed

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn

    2015-10-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. Copyright © 2015 the American Physiological Society.

  5. Learning feedback and feedforward control in a mirror-reversed visual environment

    PubMed Central

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi

    2015-01-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. PMID:26245313

  6. Randomised crossover trial of rate feedback and force during chest compressions for paediatric cardiopulmonary resuscitation.

    PubMed

    Gregson, Rachael Kathleen; Cole, Tim James; Skellett, Sophie; Bagkeris, Emmanouil; Welsby, Denise; Peters, Mark John

    2017-05-01

    To determine the effect of visual feedback on rate of chest compressions, secondarily relating the forces used. Randomised crossover trial. Tertiary teaching hospital. Fifty trained hospital staff. A thin sensor-mat placed over the manikin's chest measured rate and force. Rescuers applied compressions to the same paediatric manikin for two sessions. During one session they received visual feedback comparing their real-time rate with published guidelines. Primary: compression rate. Secondary: compression and residual forces. Rate of chest compressions (compressions per minute (compressions per minute; cpm)) varied widely (mean (SD) 111 (13), range 89-168), with a fourfold difference in variation during session 1 between those receiving and not receiving feedback (108 (5) vs 120 (20)). The interaction of session by feedback order was highly significant, indicating that this difference in mean rate between sessions was 14 cpm less (95% CI -22 to -5, p=0.002) in those given feedback first compared with those given it second. Compression force (N) varied widely (mean (SD) 306 (94); range 142-769). Those receiving feedback second (as opposed to first) used significantly lower force (adjusted mean difference -80 (95% CI -128 to -32), p=0.002). Mean residual force (18 N, SD 12, range 0-49) was unaffected by the intervention. While visual feedback restricted excessive compression rates to within the prescribed range, applied force remained widely variable. The forces required may differ with growth, but such variation treating one manikin is alarming. Feedback technologies additionally measuring force (effort) could help to standardise and define effective treatments throughout childhood. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Visual force feedback in laparoscopic training.

    PubMed

    Horeman, Tim; Rodrigues, Sharon P; van den Dobbelsteen, John J; Jansen, Frank-Willem; Dankelman, Jenny

    2012-01-01

    To improve endoscopic surgical skills, an increasing number of surgical residents practice on box or virtual reality (VR) trainers. Current training is focused mainly on hand-eye coordination. Training methods that focus on applying the right amount of force are not yet available. The aim of this project is to develop a low-cost training system that measures the interaction force between tissue and instruments and displays a visual representation of the applied forces inside the camera image. This visual representation continuously informs the subject about the magnitude and the direction of applied forces. To show the potential of the developed training system, a pilot study was conducted in which six novices performed a needle-driving task in a box trainer with visual feedback of the force, and six novices performed the same task without visual feedback of the force. All subjects performed the training task five times and were subsequently tested in a post-test without visual feedback. The subjects who received visual feedback during training exerted on average 1.3 N (STD 0.6 N) to drive the needle through the tissue during the post-test. This value was considerably higher for the group that received no feedback (2.6 N, STD 0.9 N). The maximum interaction force during the post-test was noticeably lower for the feedback group (4.1 N, STD 1.1 N) compared with that of the control group (8.0 N, STD 3.3 N). The force-sensing training system provides us with the unique possibility to objectively assess tissue-handling skills in a laboratory setting. The real-time visualization of applied forces during training may facilitate acquisition of tissue-handling skills in complex laparoscopic tasks and could stimulate proficiency gain curves of trainees. However, larger randomized trials that also include other tasks are necessary to determine whether training with visual feedback about forces reduces the interaction force during laparoscopic surgery.

  8. Vibrotactile Feedbacks System for Assisting the Physically Impaired Persons for Easy Navigation

    NASA Astrophysics Data System (ADS)

    Safa, M.; Geetha, G.; Elakkiya, U.; Saranya, D.

    2018-04-01

    NAYAN architecture is for a visually impaired person to help for navigation. As well known, all visually impaired people desperately requires special requirements even to access services like the public transportation. This prototype system is a portable device; it is so easy to carry in any conduction to travel through a familiar and unfamiliar environment. The system consists of GPS receiver and it can get NEMA data through the satellite and it is provided to user's Smartphone through Arduino board. This application uses two vibrotactile feedbacks that will be placed in the left and right shoulder for vibration feedback, which gives information about the current location. The ultrasonic sensor is used for obstacle detection which is found in front of the visually impaired person. The Bluetooth modules connected with Arduino board is to send information to the user's mobile phone which it receives from GPS.

  9. Integrating sentiment analysis and term associations with geo-temporal visualizations on customer feedback streams

    NASA Astrophysics Data System (ADS)

    Hao, Ming; Rohrdantz, Christian; Janetzko, Halldór; Keim, Daniel; Dayal, Umeshwar; Haug, Lars-Erik; Hsu, Mei-Chun

    2012-01-01

    Twitter currently receives over 190 million tweets (small text-based Web posts) and manufacturing companies receive over 10 thousand web product surveys a day, in which people share their thoughts regarding a wide range of products and their features. A large number of tweets and customer surveys include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for determining customer sentiments. To explore high-volume customer feedback streams, we integrate three time series-based visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel idea of term associations that identify attributes, verbs, and adjectives frequently occurring together; and (3) new pixel cell-based sentiment calendars, geo-temporal map visualizations and self-organizing maps to identify co-occurring and influential opinions. We have combined these techniques into a well-fitted solution for an effective analysis of large customer feedback streams such as for movie reviews (e.g., Kung-Fu Panda) or web surveys (buyers).

  10. Reward abundance interferes with error-based learning in a visuomotor adaptation task

    PubMed Central

    Oostwoud Wijdenes, Leonie; Rigterink, Tessa; Overvliet, Krista E.; Smeets, Joeren B. J.

    2018-01-01

    The brain rapidly adapts reaching movements to changing circumstances by using visual feedback about errors. Providing reward in addition to error feedback facilitates the adaptation but the underlying mechanism is unknown. Here, we investigate whether the proportion of trials rewarded (the ‘reward abundance’) influences how much participants adapt to their errors. We used a 3D multi-target pointing task in which reward alone is insufficient for motor adaptation. Participants (N = 423) performed the pointing task with feedback based on a shifted hand-position. On a proportion of trials we gave them rewarding feedback that their hand hit the target. Half of the participants only received this reward feedback. The other half also received feedback about endpoint errors. In different groups, we varied the proportion of trials that was rewarded. As expected, participants who received feedback about their errors did adapt, but participants who only received reward-feedback did not. Critically, participants who received abundant rewards adapted less to their errors than participants who received less reward. Thus, reward abundance negatively influences how much participants learn from their errors. Probably participants used a mechanism that relied more on the reward feedback when the reward was abundant. Because participants could not adapt to the reward, this interfered with adaptation to errors. PMID:29513681

  11. Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells

    PubMed Central

    Martínez-Cañada, Pablo; Halnes, Geir; Fyhn, Marianne

    2018-01-01

    Despite half-a-century of research since the seminal work of Hubel and Wiesel, the role of the dorsal lateral geniculate nucleus (dLGN) in shaping the visual signals is not properly understood. Placed on route from retina to primary visual cortex in the early visual pathway, a striking feature of the dLGN circuit is that both the relay cells (RCs) and interneurons (INs) not only receive feedforward input from retinal ganglion cells, but also a prominent feedback from cells in layer 6 of visual cortex. This feedback has been proposed to affect synchronicity and other temporal properties of the RC firing. It has also been seen to affect spatial properties such as the center-surround antagonism of thalamic receptive fields, i.e., the suppression of the response to very large stimuli compared to smaller, more optimal stimuli. Here we explore the spatial effects of cortical feedback on the RC response by means of a a comprehensive network model with biophysically detailed, single-compartment and multicompartment neuron models of RCs, INs and a population of orientation-selective layer 6 simple cells, consisting of pyramidal cells (PY). We have considered two different arrangements of synaptic feedback from the ON and OFF zones in the visual cortex to the dLGN: phase-reversed (‘push-pull’) and phase-matched (‘push-push’), as well as different spatial extents of the corticothalamic projection pattern. Our simulation results support that a phase-reversed arrangement provides a more effective way for cortical feedback to provide the increased center-surround antagonism seen in experiments both for flashing spots and, even more prominently, for patch gratings. This implies that ON-center RCs receive direct excitation from OFF-dominated cortical cells and indirect inhibitory feedback from ON-dominated cortical cells. The increased center-surround antagonism in the model is accompanied by spatial focusing, i.e., the maximum RC response occurs for smaller stimuli when feedback is present. PMID:29377888

  12. A recurrent neural model for proto-object based contour integration and figure-ground segregation.

    PubMed

    Hu, Brian; Niebur, Ernst

    2017-12-01

    Visual processing of objects makes use of both feedforward and feedback streams of information. However, the nature of feedback signals is largely unknown, as is the identity of the neuronal populations in lower visual areas that receive them. Here, we develop a recurrent neural model to address these questions in the context of contour integration and figure-ground segregation. A key feature of our model is the use of grouping neurons whose activity represents tentative objects ("proto-objects") based on the integration of local feature information. Grouping neurons receive input from an organized set of local feature neurons, and project modulatory feedback to those same neurons. Additionally, inhibition at both the local feature level and the object representation level biases the interpretation of the visual scene in agreement with principles from Gestalt psychology. Our model explains several sets of neurophysiological results (Zhou et al. Journal of Neuroscience, 20(17), 6594-6611 2000; Qiu et al. Nature Neuroscience, 10(11), 1492-1499 2007; Chen et al. Neuron, 82(3), 682-694 2014), and makes testable predictions about the influence of neuronal feedback and attentional selection on neural responses across different visual areas. Our model also provides a framework for understanding how object-based attention is able to select both objects and the features associated with them.

  13. The effects of augmented visual feedback during balance training in Parkinson's disease: study design of a randomized clinical trial.

    PubMed

    van den Heuvel, Maarten R C; van Wegen, Erwin E H; de Goede, Cees J T; Burgers-Bots, Ingrid A L; Beek, Peter J; Daffertshofer, Andreas; Kwakkel, Gert

    2013-10-04

    Patients with Parkinson's disease often suffer from reduced mobility due to impaired postural control. Balance exercises form an integral part of rehabilitative therapy but the effectiveness of existing interventions is limited. Recent technological advances allow for providing enhanced visual feedback in the context of computer games, which provide an attractive alternative to conventional therapy. The objective of this randomized clinical trial is to investigate whether a training program capitalizing on virtual-reality-based visual feedback is more effective than an equally-dosed conventional training in improving standing balance performance in patients with Parkinson's disease. Patients with idiopathic Parkinson's disease will participate in a five-week balance training program comprising ten treatment sessions of 60 minutes each. Participants will be randomly allocated to (1) an experimental group that will receive balance training using augmented visual feedback, or (2) a control group that will receive balance training in accordance with current physical therapy guidelines for Parkinson's disease patients. Training sessions consist of task-specific exercises that are organized as a series of workstations. Assessments will take place before training, at six weeks, and at twelve weeks follow-up. The functional reach test will serve as the primary outcome measure supplemented by comprehensive assessments of functional balance, posturography, and electroencephalography. We hypothesize that balance training based on visual feedback will show greater improvements on standing balance performance than conventional balance training. In addition, we expect that learning new control strategies will be visible in the co-registered posturographic recordings but also through changes in functional connectivity.

  14. Neural mechanisms of limb position estimation in the primate brain.

    PubMed

    Shi, Ying; Buneo, Christopher A

    2011-01-01

    Understanding the neural mechanisms of limb position estimation is important both for comprehending the neural control of goal directed arm movements and for developing neuroprosthetic systems designed to replace lost limb function. Here we examined the role of area 5 of the posterior parietal cortex in estimating limb position based on visual and somatic (proprioceptive, efference copy) signals. Single unit recordings were obtained as monkeys reached to visual targets presented in a semi-immersive virtual reality environment. On half of the trials animals were required to maintain their limb position at these targets while receiving both visual and non-visual feedback of their arm position, while on the other trials visual feedback was withheld. When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons modulated their firing rates based on the presence/absence of visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level.

  15. Effects of kinesthetic and cutaneous stimulation during the learning of a viscous force field.

    PubMed

    Rosati, Giulio; Oscari, Fabio; Pacchierotti, Claudio; Prattichizzo, Domenico

    2014-01-01

    Haptic stimulation can help humans learn perceptual motor skills, but the precise way in which it influences the learning process has not yet been clarified. This study investigates the role of the kinesthetic and cutaneous components of haptic feedback during the learning of a viscous curl field, taking also into account the influence of visual feedback. We present the results of an experiment in which 17 subjects were asked to make reaching movements while grasping a joystick and wearing a pair of cutaneous devices. Each device was able to provide cutaneous contact forces through a moving platform. The subjects received visual feedback about joystick's position. During the experiment, the system delivered a perturbation through (1) full haptic stimulation, (2) kinesthetic stimulation alone, (3) cutaneous stimulation alone, (4) altered visual feedback, or (5) altered visual feedback plus cutaneous stimulation. Conditions 1, 2, and 3 were also tested with the cancellation of the visual feedback of position error. Results indicate that kinesthetic stimuli played a primary role during motor adaptation to the viscous field, which is a fundamental premise to motor learning and rehabilitation. On the other hand, cutaneous stimulation alone appeared not to bring significant direct or adaptation effects, although it helped in reducing direct effects when used in addition to kinesthetic stimulation. The experimental conditions with visual cancellation of position error showed slower adaptation rates, indicating that visual feedback actively contributes to the formation of internal models. However, modest learning effects were detected when the visual information was used to render the viscous field.

  16. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity.

    PubMed

    Takeda, Kenta; Mani, Hiroki; Hasegawa, Naoya; Sato, Yuki; Tanaka, Shintaro; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-07-19

    The benefit of visual feedback of the center of pressure (COP) on quiet standing is still debatable. This study aimed to investigate the adaptation effects of visual feedback training using both the COP and center of gravity (COG) during quiet standing. Thirty-four healthy young adults were divided into three groups randomly (COP + COG, COP, and control groups). A force plate was used to calculate the coordinates of the COP in the anteroposterior (COP AP ) and mediolateral (COP ML ) directions. A motion analysis system was used to calculate the coordinates of the center of mass (COM) in both directions (COM AP and COM ML ). The coordinates of the COG in the AP direction (COG AP ) were obtained from the force plate signals. Augmented visual feedback was presented on a screen in the form of fluctuation circles in the vertical direction that moved upward as the COP AP and/or COG AP moved forward and vice versa. The COP + COG group received the real-time COP AP and COG AP feedback simultaneously, whereas the COP group received the real-time COP AP feedback only. The control group received no visual feedback. In the training session, the COP + COG group was required to maintain an even distance between the COP AP and COG AP and reduce the COG AP fluctuation, whereas the COP group was required to reduce the COP AP fluctuation while standing on a foam pad. In test sessions, participants were instructed to keep their standing posture as quiet as possible on the foam pad before (pre-session) and after (post-session) the training sessions. In the post-session, the velocity and root mean square of COM AP in the COP + COG group were lower than those in the control group. In addition, the absolute value of the sum of the COP - COM distances in the COP + COG group was lower than that in the COP group. Furthermore, positive correlations were found between the COM AP velocity and COP - COM parameters. The results suggest that the novel visual feedback training that incorporates the COP AP -COG AP interaction reduces postural sway better than the training using the COP AP alone during quiet standing. That is, even COP AP fluctuation around the COG AP would be effective in reducing the COM AP velocity.

  17. Patient DF's visual brain in action: Visual feedforward control in visual form agnosia.

    PubMed

    Whitwell, Robert L; Milner, A David; Cavina-Pratesi, Cristiana; Barat, Masihullah; Goodale, Melvyn A

    2015-05-01

    Patient DF, who developed visual form agnosia following ventral-stream damage, is unable to discriminate the width of objects, performing at chance, for example, when asked to open her thumb and forefinger a matching amount. Remarkably, however, DF adjusts her hand aperture to accommodate the width of objects when reaching out to pick them up (grip scaling). While this spared ability to grasp objects is presumed to be mediated by visuomotor modules in her relatively intact dorsal stream, it is possible that it may rely abnormally on online visual or haptic feedback. We report here that DF's grip scaling remained intact when her vision was completely suppressed during grasp movements, and it still dissociated sharply from her poor perceptual estimates of target size. We then tested whether providing trial-by-trial haptic feedback after making such perceptual estimates might improve DF's performance, but found that they remained significantly impaired. In a final experiment, we re-examined whether DF's grip scaling depends on receiving veridical haptic feedback during grasping. In one condition, the haptic feedback was identical to the visual targets. In a second condition, the haptic feedback was of a constant intermediate width while the visual target varied trial by trial. Despite this incongruent feedback, DF still scaled her grip aperture to the visual widths of the target blocks, showing only normal adaptation to the false haptically-experienced width. Taken together, these results strengthen the view that DF's spared grasping relies on a normal mode of dorsal-stream functioning, based chiefly on visual feedforward processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.

    PubMed

    Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R

    2010-04-01

    Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.

  19. Reducing Trunk Compensation in Stroke Survivors: A Randomized Crossover Trial Comparing Visual and Force Feedback Modalities.

    PubMed

    Valdés, Bulmaro Adolfo; Schneider, Andrea Nicole; Van der Loos, H F Machiel

    2017-10-01

    To investigate whether the compensatory trunk movements of stroke survivors observed during reaching tasks can be decreased by force and visual feedback, and to examine whether one of these feedback modalities is more efficacious than the other in reducing this compensatory tendency. Randomized crossover trial. University research laboratory. Community-dwelling older adults (N=15; 5 women; mean age, 64±11y) with hemiplegia from nontraumatic hemorrhagic or ischemic stroke (>3mo poststroke), recruited from stroke recovery groups, the research group's website, and the community. In a single session, participants received augmented feedback about their trunk compensation during a bimanual reaching task. Visual feedback (60 trials) was delivered through a computer monitor, and force feedback (60 trials) was delivered through 2 robotic devices. Primary outcome measure included change in anterior trunk displacement measured by motion tracking camera. Secondary outcomes included trunk rotation, index of curvature (measure of straightness of hands' path toward target), root mean square error of hands' movement (differences between hand position on every iteration of the program), completion time for each trial, and posttest questionnaire to evaluate users' experience and system's usability. Both visual (-45.6% [45.8 SD] change from baseline, P=.004) and force (-41.1% [46.1 SD], P=.004) feedback were effective in reducing trunk compensation. Scores on secondary outcome measures did not improve with either feedback modality. Neither feedback condition was superior. Visual and force feedback show promise as 2 modalities that could be used to decrease trunk compensation in stroke survivors during reaching tasks. It remains to be established which one of these 2 feedback modalities is more efficacious than the other as a cue to reduce compensatory trunk movement. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. A direct comparison of short-term audiomotor and visuomotor memory.

    PubMed

    Ward, Amanda M; Loucks, Torrey M; Ofori, Edward; Sosnoff, Jacob J

    2014-04-01

    Audiomotor and visuomotor short-term memory are required for an important variety of skilled movements but have not been compared in a direct manner previously. Audiomotor memory capacity might be greater to accommodate auditory goals that are less directly related to movement outcome than for visually guided tasks. Subjects produced continuous isometric force with the right index finger under auditory and visual feedback. During the first 10 s of each trial, subjects received continuous auditory or visual feedback. For the following 15 s, feedback was removed but the force had to be maintained accurately. An internal effort condition was included to test memory capacity in the same manner but without external feedback. Similar decay times of ~5-6 s were found for vision and audition but the decay time for internal effort was ~4 s. External feedback thus provides an advantage in maintaining a force level after feedback removal, but may not exclude some contribution from a sense of effort. Short-term memory capacity appears longer than certain previous reports but there may not be strong distinctions in capacity across different sensory modalities, at least for isometric force.

  1. Learned control over spinal nociception in patients with chronic back pain.

    PubMed

    Krafft, S; Göhmann, H-D; Sommer, J; Straube, A; Ruscheweyh, R

    2017-10-01

    Descending pain inhibition suppresses spinal nociception, reducing nociceptive input to the brain. It is modulated by cognitive and emotional processes. In subjects with chronic pain, it is impaired, possibly contributing to pain persistence. A previously developed feedback method trains subjects to activate their descending inhibition. Participants are trained to use cognitive-emotional strategies to reduce their spinal nociception, as quantified by the nociceptive flexor reflex (RIII reflex), under visual feedback about their RIII reflex size. The aim of the present study was to test whether also subjects with chronic back pain can achieve a modulation of their descending pain inhibition under RIII feedback. In total, 33 subjects with chronic back pain received either true (n = 18) or sham RIII feedback (n = 15), 15 healthy control subjects received true RIII feedback. All three groups achieved significant RIII suppression, largest in controls (to 76 ± 26% of baseline), intermediate in chronic back pain subjects receiving true feedback (to 82 ± 13%) and smallest in chronic back pain subjects receiving sham feedback (to 89 ± 14%, all p < 0.05). However, only chronic pain subjects receiving true feedback significantly improved their descending inhibition over the feedback training, quantified by the conditioned pain modulation effect (test pain reduction of baseline before training: to 98 ± 26%, after: to 80 ± 21%, p < 0.01). Our results show that subjects with chronic back pain can achieve a reduction of their spinal nociception and improve their descending pain inhibition under RIII feedback training. Subjects with chronic back pain can learn to control their spinal nociception, quantified by the RIII reflex, when they receive feedback about the RIII reflex. © 2017 European Pain Federation - EFIC®.

  2. Why self-controlled feedback enhances motor learning: Answers from electroencephalography and indices of motivation.

    PubMed

    Grand, Kirk F; Bruzi, Alessandro T; Dyke, Ford B; Godwin, Maurice M; Leiker, Amber M; Thompson, Andrew G; Buchanan, Taylor L; Miller, Matthew W

    2015-10-01

    It was tested whether learners who choose when to receive augmented feedback while practicing a motor skill exhibit enhanced augmented feedback processing and intrinsic motivation, along with superior learning, relative to learners who do not control their feedback. Accordingly, participants were assigned to either self-control (Self) or yoked groups and asked to practice a non-dominant arm beanbag toss. Self participants received augmented feedback at their discretion, whereas Yoked participants were given feedback schedules matched to Self counterparts. Participants' visual feedback was occluded, and when they received augmented feedback, their processing of it was indexed with the electroencephalography-derived feedback-related negativity (FRN). Participants self-reported intrinsic motivation via the Intrinsic Motivation Inventory (IMI) after practice, and completed a retention and transfer test the next day to index learning. Results partially support the hypothesis. Specifically, Self participants reported higher IMI scores, exhibited larger FRNs, and demonstrated better accuracy on the transfer test, but not on the retention test, nor did they exhibit greater consistency on the retention or transfer tests. Additionally, post-hoc multiple regression analysis indicated FRN amplitude predicted transfer test accuracy (accounting for IMI score). Results suggest self-controlled feedback schedules enhance feedback processing, which enhances the transfer of a newly acquired motor skill. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Feedback control of one's own action: Self-other sensory attribution in motor control.

    PubMed

    Asai, Tomohisa

    2015-12-15

    The sense of agency, the subjective experience of controlling one's own action, has an important function in motor control. When we move our own body or even external tools, we attribute that movement to ourselves and utilize that sensory information in order to correct "our own" movement in theory. The dynamic relationship between conscious self-other attribution and feedback control, however, is still unclear. Participants were required to make a sinusoidal reaching movement and received its visual feedback (i.e., cursor). When participants received a fake movement that was spatio-temporally close to their actual movement, illusory self-attribution of the fake movement was observed. In this situation, since participants tried to control the cursor but it was impossible to do so, the movement error was increased (Experiment 1). However, when the visual feedback was reduced to make self-other attribution difficult, there was no further increase in the movement error (Experiment 2). These results indicate that conscious self-other sensory attribution might coordinate sensory input and motor output. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback.

    PubMed

    Kok, Peter; Bains, Lauren J; van Mourik, Tim; Norris, David G; de Lange, Floris P

    2016-02-08

    In addition to bottom-up input, the visual cortex receives large amounts of feedback from other cortical areas [1-3]. One compelling example of feedback activation of early visual neurons in the absence of bottom-up input occurs during the famous Kanizsa illusion, where a triangular shape is perceived, even in regions of the image where there is no bottom-up visual evidence for it. This illusion increases the firing activity of neurons in the primary visual cortex with a receptive field on the illusory contour [4]. Feedback signals are largely segregated from feedforward signals within each cortical area, with feedforward signals arriving in the middle layer, while top-down feedback avoids the middle layers and predominantly targets deep and superficial layers [1, 2, 5, 6]. Therefore, the feedback-mediated activity increase in V1 during the perception of illusory shapes should lead to a specific laminar activity profile that is distinct from the activity elicited by bottom-up stimulation. Here, we used fMRI at high field (7 T) to empirically test this hypothesis, by probing the cortical response to illusory figures in human V1 at different cortical depths [7-14]. We found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers of V1. These results demonstrate the potential for non-invasive recordings of neural activity with laminar specificity in humans and elucidate the role of top-down signals during perceptual processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Independent voluntary correction and savings in locomotor learning.

    PubMed

    Leech, Kristan A; Roemmich, Ryan T

    2018-06-14

    People can acquire new walking patterns in many different ways. For example, we can change our gait voluntarily in response to instruction or adapt by sensing our movement errors. Here we investigated how acquisition of a new walking pattern through simultaneous voluntary correction and adaptive learning affected the resulting motor memory of the learned pattern. We studied adaptation to split-belt treadmill walking with and without visual feedback of stepping patterns. As expected, visual feedback enabled faster acquisition of the new walking pattern. However, upon later re-exposure to the same split-belt perturbation, participants exhibited similar motor memories whether they had learned with or without visual feedback. Participants who received feedback did not re-engage the mechanism used to accelerate initial acquisition of the new walking pattern to similarly accelerate subsequent relearning. These findings reveal that voluntary correction neither benefits nor interferes with the ability to save a new walking pattern over time. © 2018. Published by The Company of Biologists Ltd.

  6. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke

    PubMed Central

    2011-01-01

    Background Practicing arm and gait movements with robotic assistance after neurologic injury can help patients improve their movement ability, but patients sometimes reduce their effort during training in response to the assistance. Reduced effort has been hypothesized to diminish clinical outcomes of robotic training. To better understand patient slacking, we studied the role of visual distraction and auditory feedback in modulating patient effort during a common robot-assisted tracking task. Methods Fourteen participants with chronic left hemiparesis from stroke, five control participants with chronic right hemiparesis and fourteen non-impaired healthy control participants, tracked a visual target with their arms while receiving adaptive assistance from a robotic arm exoskeleton. We compared four practice conditions: the baseline tracking task alone; tracking while also performing a visual distracter task; tracking with the visual distracter and sound feedback; and tracking with sound feedback. For the distracter task, symbols were randomly displayed in the corners of the computer screen, and the participants were instructed to click a mouse button when a target symbol appeared. The sound feedback consisted of a repeating beep, with the frequency of repetition made to increase with increasing tracking error. Results Participants with stroke halved their effort and doubled their tracking error when performing the visual distracter task with their left hemiparetic arm. With sound feedback, however, these participants increased their effort and decreased their tracking error close to their baseline levels, while also performing the distracter task successfully. These effects were significantly smaller for the participants who used their non-paretic arm and for the participants without stroke. Conclusions Visual distraction decreased participants effort during a standard robot-assisted movement training task. This effect was greater for the hemiparetic arm, suggesting that the increased demands associated with controlling an affected arm make the motor system more prone to slack when distracted. Providing an alternate sensory channel for feedback, i.e., auditory feedback of tracking error, enabled the participants to simultaneously perform the tracking task and distracter task effectively. Thus, incorporating real-time auditory feedback of performance errors might improve clinical outcomes of robotic therapy systems. PMID:21513561

  7. Prosody production networks are modulated by sensory cues and social context.

    PubMed

    Klasen, Martin; von Marschall, Clara; Isman, Güldehen; Zvyagintsev, Mikhail; Gur, Ruben C; Mathiak, Klaus

    2018-03-05

    The neurobiology of emotional prosody production is not well investigated. In particular, the effects of cues and social context are not known. The present study sought to differentiate cued from free emotion generation and the effect of social feedback from a human listener. Online speech filtering enabled fMRI during prosodic communication in 30 participants. Emotional vocalizations were a) free, b) auditorily cued, c) visually cued, or d) with interactive feedback. In addition to distributed language networks, cued emotions increased activity in auditory and - in case of visual stimuli - visual cortex. Responses were larger in pSTG at the right hemisphere and the ventral striatum when participants were listened to and received feedback from the experimenter. Sensory, language, and reward networks contributed to prosody production and were modulated by cues and social context. The right pSTG is a central hub for communication in social interactions - in particular for interpersonal evaluation of vocal emotions.

  8. Examining action effects in the execution of a skilled soccer kick by using erroneous feedback.

    PubMed

    Ford, Paul; Hodges, Nicola J; Williams, A Mark

    2007-11-01

    The authors examined the role of action effects (i.e., ball trajectory) during the performance of a soccer kick. Participants were 20 expert players who kicked a ball over a height barrier toward a ground-level target. The authors occluded participants' vision of the ball trajectory after foot-to-ball contact. Participants in a 1st group received erroneous feedback from a video that showed a ball-trajectory apex approximately 75 cm lower than that of their actual kick, although the ball's landing position was unaltered. Participants in a 2nd group received correct video feedback of both the ball trajectory and the landing position. The erroneous-feedback group showed a significant bias toward higher ball trajectories than did the correct-feedback group. The authors conclude that performers at high levels of skill use the visual consequences of the action to plan and execute an action.

  9. Alterations in Neural Control of Constant Isometric Contraction with the Size of Error Feedback

    PubMed Central

    Hwang, Ing-Shiou; Lin, Yen-Ting; Huang, Wei-Min; Yang, Zong-Ru; Hu, Chia-Ling; Chen, Yi-Ching

    2017-01-01

    Discharge patterns from a population of motor units (MUs) were estimated with multi-channel surface electromyogram and signal processing techniques to investigate parametric differences in low-frequency force fluctuations, MU discharges, and force-discharge relation during static force-tracking with varying sizes of execution error presented via visual feedback. Fourteen healthy adults produced isometric force at 10% of maximal voluntary contraction through index abduction under three visual conditions that scaled execution errors with different amplification factors. Error-augmentation feedback that used a high amplification factor (HAF) to potentiate visualized error size resulted in higher sample entropy, mean frequency, ratio of high-frequency components, and spectral dispersion of force fluctuations than those of error-reducing feedback using a low amplification factor (LAF). In the HAF condition, MUs with relatively high recruitment thresholds in the dorsal interosseous muscle exhibited a larger coefficient of variation for inter-spike intervals and a greater spectral peak of the pooled MU coherence at 13–35 Hz than did those in the LAF condition. Manipulation of the size of error feedback altered the force-discharge relation, which was characterized with non-linear approaches such as mutual information and cross sample entropy. The association of force fluctuations and global discharge trace decreased with increasing error amplification factor. Our findings provide direct neurophysiological evidence that favors motor training using error-augmentation feedback. Amplification of the visualized error size of visual feedback could enrich force gradation strategies during static force-tracking, pertaining to selective increases in the discharge variability of higher-threshold MUs that receive greater common oscillatory inputs in the β-band. PMID:28125658

  10. Social Cognition as Reinforcement Learning: Feedback Modulates Emotion Inference.

    PubMed

    Zaki, Jamil; Kallman, Seth; Wimmer, G Elliott; Ochsner, Kevin; Shohamy, Daphna

    2016-09-01

    Neuroscientific studies of social cognition typically employ paradigms in which perceivers draw single-shot inferences about the internal states of strangers. Real-world social inference features much different parameters: People often encounter and learn about particular social targets (e.g., friends) over time and receive feedback about whether their inferences are correct or incorrect. Here, we examined this process and, more broadly, the intersection between social cognition and reinforcement learning. Perceivers were scanned using fMRI while repeatedly encountering three social targets who produced conflicting visual and verbal emotional cues. Perceivers guessed how targets felt and received feedback about whether they had guessed correctly. Visual cues reliably predicted one target's emotion, verbal cues predicted a second target's emotion, and neither reliably predicted the third target's emotion. Perceivers successfully used this information to update their judgments over time. Furthermore, trial-by-trial learning signals-estimated using two reinforcement learning models-tracked activity in ventral striatum and ventromedial pFC, structures associated with reinforcement learning, and regions associated with updating social impressions, including TPJ. These data suggest that learning about others' emotions, like other forms of feedback learning, relies on domain-general reinforcement mechanisms as well as domain-specific social information processing.

  11. Adaptive Locomotor Behavior in Larval Zebrafish

    PubMed Central

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish. PMID:21909325

  12. Adaptive locomotor behavior in larval zebrafish.

    PubMed

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish.

  13. Using real-time ultrasound imaging as adjunct teaching tools to enhance physical therapist students' ability and confidence to perform traction of the knee joint.

    PubMed

    Markowski, Alycia; Watkins, Maureen K; Burnett, Todd; Ho, Melissa; Ling, Michael

    2018-04-01

    Often, physical therapy students struggle with the skill and the confidence to perform manual techniques for musculoskeletal examination. Current teaching methods lack concurrent objective feedback. Real-time ultrasound imaging (RTUI) has the advantage of generating visualization of anatomical structures in real-time in an efficient and safe manner. We hypothesize that the use of RTUI to augment teaching with concurrent objective visual feedback will result in students' improved ability to create a change in joint space when performing a manual knee traction and higher confidence scores. Eighty-six students were randomly allocated to a control or an experimental group. All participants received baseline instructions on how to perform knee traction. The control group received standardized lab instruction (visual, video, and instructor/partner feedback). The experimental group received standardized lab instruction augmented with RTUI feedback. Pre-data and post-data collection consisted of measuring participants' ability to create changes in joint space when performing knee traction, a confidence survey evaluating perceived ability and a reflection paper. Joint space changes between groups were compared using a paired t-test. Surveys were analyzed with descriptive statistics and compared using Wilcoxon Rank Sum and for the reflection papers, themes were identified and descriptive statistics reported. Although there were no statistically significant differences between the control and the experimental group, overall scores improved. Qualitative data suggests students found the use of ultrasound imaging beneficial and would like more exposure. This novel approach to teaching knee traction with RTUI has potential and may be a basis for further studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Real-time evaluation and visualization of learner performance in a mixed-reality environment for clinical breast examination.

    PubMed

    Kotranza, Aaron; Lind, D Scott; Lok, Benjamin

    2012-07-01

    We investigate the efficacy of incorporating real-time feedback of user performance within mixed-reality environments (MREs) for training real-world tasks with tightly coupled cognitive and psychomotor components. This paper presents an approach to providing real-time evaluation and visual feedback of learner performance in an MRE for training clinical breast examination (CBE). In a user study of experienced and novice CBE practitioners (n = 69), novices receiving real-time feedback performed equivalently or better than more experienced practitioners in the completeness and correctness of the exam. A second user study (n = 8) followed novices through repeated practice of CBE in the MRE. Results indicate that skills improvement in the MRE transfers to the real-world task of CBE of human patients. This initial case study demonstrates the efficacy of MREs incorporating real-time feedback for training real-world cognitive-psychomotor tasks.

  15. Effects of Oxytocin and Vasopressin on Preferential Brain Responses to Negative Social Feedback.

    PubMed

    Gozzi, Marta; Dashow, Erica M; Thurm, Audrey; Swedo, Susan E; Zink, Caroline F

    2017-06-01

    Receiving negative social feedback can be detrimental to emotional, cognitive, and physical well-being, and fear of negative social feedback is a prominent feature of mental illnesses that involve social anxiety. A large body of evidence has implicated the neuropeptides oxytocin and vasopressin in the modulation of human neural activity underlying social cognition, including negative emotion processing; however, the influence of oxytocin and vasopressin on neural activity elicited during negative social evaluation remains unknown. Here 21 healthy men underwent functional magnetic resonance imaging in a double-blind, placebo-controlled, crossover design to determine how intranasally administered oxytocin and vasopressin modulated neural activity when receiving negative feedback on task performance from a study investigator. We found that under placebo, a preferential response to negative social feedback compared with positive social feedback was evoked in brain regions putatively involved in theory of mind (temporoparietal junction), pain processing (anterior insula and supplementary motor area), and identification of emotionally important visual cues in social perception (right fusiform). These activations weakened with oxytocin and vasopressin administration such that neural responses to receiving negative social feedback were not significantly greater than positive social feedback. Our results show effects of both oxytocin and vasopressin on the brain network involved in negative social feedback, informing the possible use of a pharmacological approach targeting these regions in multiple disorders with impairments in social information processing.

  16. Dissociating error-based and reinforcement-based loss functions during sensorimotor learning

    PubMed Central

    McGregor, Heather R.; Mohatarem, Ayman

    2017-01-01

    It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback. PMID:28753634

  17. Dissociating error-based and reinforcement-based loss functions during sensorimotor learning.

    PubMed

    Cashaback, Joshua G A; McGregor, Heather R; Mohatarem, Ayman; Gribble, Paul L

    2017-07-01

    It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback.

  18. Problem solving in great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo abelii): the effect of visual feedback.

    PubMed

    Völter, Christoph J; Call, Josep

    2012-09-01

    What kind of information animals use when solving problems is a controversial topic. Previous research suggests that, in some situations, great apes prefer to use causally relevant cues over arbitrary ones. To further examine to what extent great apes are able to use information about causal relations, we presented three different puzzle box problems to the four nonhuman great ape species. Of primary interest here was a comparison between one group of apes that received visual access to the functional mechanisms of the puzzle boxes and one group that did not. Apes' performance in the first two, less complex puzzle boxes revealed that they are able to solve such problems by means of trial-and-error learning, requiring no information about the causal structure of the problem. However, visual inspection of the functional mechanisms of the puzzle boxes reduced the amount of time needed to solve the problems. In the case of the most complex problem, which required the use of a crank, visual feedback about what happened when the handle of the crank was turned was necessary for the apes to solve the task. Once the solution was acquired, however, visual feedback was no longer required. We conclude that visual feedback about the consequences of their actions helps great apes to solve complex problems. As the crank task matches the basic requirements of vertical string pulling in birds, the present results are discussed in light of recent findings with corvids.

  19. Contextual modulation of primary visual cortex by auditory signals.

    PubMed

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  20. Contextual modulation of primary visual cortex by auditory signals

    PubMed Central

    Paton, A. T.

    2017-01-01

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015

  1. Feedback of personal retinal images appears to have a motivational impact in people with non-proliferative diabetic retinopathy and suboptimal HbA1c: findings of a pilot study.

    PubMed

    Rees, G; Lamoureux, E L; Nicolaou, T E; Hodgson, L A B; Weinman, J; Speight, J

    2013-09-01

    To conduct a pilot study to explore the potential impact of visual feedback of personal retinal images on diabetes outcomes. Twenty-five participants with non-proliferative diabetic retinopathy and suboptimal HbA(1c) (> 53 mmol/mol; > 7%) were randomized to receive visual feedback of their own retinal images or to a control group. At baseline and 3-month follow-up, HbA(1c), standard measures of beliefs, diabetes-related distress and self-care activities were assessed. In unadjusted models, relative to controls, the intervention group showed significantly greater improvement in HbA(1c) at 3-month follow-up (-0.6% vs. +0.3%, P < 0.01), as well as enhanced motivation to improve blood glucose management (P < 0.05). This small pilot study provides preliminary evidence that visual feedback of personal retinal images may offer a practical educational strategy for clinicians in eye care services to improve diabetes outcomes in non-target compliant patients. A fully powered randomized controlled trial is required to confirm these findings and determine the optimal use of feedback to produce sustained effects. © 2013 The Authors. Diabetic Medicine © 2013 Diabetes UK.

  2. The Understanding and Interpretation of Innovative Technology-Enabled Multidimensional Physical Activity Feedback in Patients at Risk of Future Chronic Disease

    PubMed Central

    Western, Max J.; Peacock, Oliver J.; Stathi, Afroditi; Thompson, Dylan

    2015-01-01

    Background Innovative physical activity monitoring technology can be used to depict rich visual feedback that encompasses the various aspects of physical activity known to be important for health. However, it is unknown whether patients who are at risk of chronic disease would understand such sophisticated personalised feedback or whether they would find it useful and motivating. The purpose of the present study was to determine whether technology-enabled multidimensional physical activity graphics and visualisations are comprehensible and usable for patients at risk of chronic disease. Method We developed several iterations of graphics depicting minute-by-minute activity patterns and integrated physical activity health targets. Subsequently, patients at moderate/high risk of chronic disease (n=29) and healthcare practitioners (n=15) from South West England underwent full 7-days activity monitoring followed by individual semi-structured interviews in which they were asked to comment on their own personalised visual feedback Framework analysis was used to gauge their interpretation and of personalised feedback, graphics and visualisations. Results We identified two main components focussing on (a) the interpretation of feedback designs and data and (b) the impact of personalised visual physical activity feedback on facilitation of health behaviour change. Participants demonstrated a clear ability to understand the sophisticated personal information plus an enhanced physical activity knowledge. They reported that receiving multidimensional feedback was motivating and could be usefully applied to facilitate their efforts in becoming more physically active. Conclusion Multidimensional physical activity feedback can be made comprehensible, informative and motivational by using appropriate graphics and visualisations. There is an opportunity to exploit the full potential created by technological innovation and provide sophisticated personalised physical activity feedback as an adjunct to support behaviour change. PMID:25938455

  3. Mind the gap! Automated concept map feedback supports students in writing cohesive explanations.

    PubMed

    Lachner, Andreas; Burkhart, Christian; Nückles, Matthias

    2017-03-01

    Many students are challenged with the demand of writing cohesive explanations. To support students in writing cohesive explanations, we developed a computer-based feedback tool that visualizes cohesion deficits of students' explanations in a concept map. We conducted three studies to investigate the effectiveness of such feedback as well as the underlying cognitive processes. In Study 1, we found that the concept map helped students identify potential cohesion gaps in their drafts and plan remedial revisions. In Study 2, students with concept map feedback conducted revisions that resulted in more locally and globally cohesive, and also more comprehensible, explanations than the explanations of students who revised without concept map feedback. In Study 3, we replicated the findings of Study 2 by and large. More importantly, students who had received concept map feedback on a training explanation 1 week later wrote a transfer explanation without feedback that was more cohesive than the explanation of students who had received no feedback on their training explanation. The automated concept map feedback appears to particularly support the evaluation phase of the revision process. Furthermore, the feedback enabled novice writers to acquire sustainable skills in writing cohesive explanations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Effects of mediated social touch on affective experiences and trust.

    PubMed

    Erk, Stefanie M; Toet, Alexander; Van Erp, Jan B F

    2015-01-01

    This study investigated whether communication via mediated hand pressure during a remotely shared experience (watching an amusing video) can (1) enhance recovery from sadness, (2) enhance the affective quality of the experience, and (3) increase trust towards the communication partner. Thereto participants first watched a sad movie clip to elicit sadness, followed by a funny one to stimulate recovery from sadness. While watching the funny clip they signaled a hypothetical fellow participant every time they felt amused. In the experimental condition the participants responded by pressing a hand-held two-way mediated touch device (a Frebble), which also provided haptic feedback via simulated hand squeezes. In the control condition they responded by pressing a button and they received abstract visual feedback. Objective (heart rate, galvanic skin conductance, number and duration of joystick or Frebble presses) and subjective (questionnaires) data were collected to assess the emotional reactions of the participants. The subjective measurements confirmed that the sad movie successfully induced sadness while the funny movie indeed evoked more positive feelings. Although their ranking agreed with the subjective measurements, the physiological measurements confirmed this conclusion only for the funny movie. The results show that recovery from movie induced sadness, the affective experience of the amusing movie, and trust towards the communication partner did not differ between both experimental conditions. Hence, feedback via mediated hand touching did not enhance either of these factors compared to visual feedback. Further analysis of the data showed that participants scoring low on Extraversion (i.e., persons that are more introvert) or low on Touch Receptivity (i.e., persons who do not like to be touched by others) felt better understood by their communication partner when receiving mediated touch feedback instead of visual feedback, while the opposite was found for participants scoring high on these factors. The implications of these results for further research are discussed, and some suggestions for follow-up experiments are presented.

  5. Effects of mediated social touch on affective experiences and trust

    PubMed Central

    Erk, Stefanie M.; Van Erp, Jan B.F.

    2015-01-01

    This study investigated whether communication via mediated hand pressure during a remotely shared experience (watching an amusing video) can (1) enhance recovery from sadness, (2) enhance the affective quality of the experience, and (3) increase trust towards the communication partner. Thereto participants first watched a sad movie clip to elicit sadness, followed by a funny one to stimulate recovery from sadness. While watching the funny clip they signaled a hypothetical fellow participant every time they felt amused. In the experimental condition the participants responded by pressing a hand-held two-way mediated touch device (a Frebble), which also provided haptic feedback via simulated hand squeezes. In the control condition they responded by pressing a button and they received abstract visual feedback. Objective (heart rate, galvanic skin conductance, number and duration of joystick or Frebble presses) and subjective (questionnaires) data were collected to assess the emotional reactions of the participants. The subjective measurements confirmed that the sad movie successfully induced sadness while the funny movie indeed evoked more positive feelings. Although their ranking agreed with the subjective measurements, the physiological measurements confirmed this conclusion only for the funny movie. The results show that recovery from movie induced sadness, the affective experience of the amusing movie, and trust towards the communication partner did not differ between both experimental conditions. Hence, feedback via mediated hand touching did not enhance either of these factors compared to visual feedback. Further analysis of the data showed that participants scoring low on Extraversion (i.e., persons that are more introvert) or low on Touch Receptivity (i.e., persons who do not like to be touched by others) felt better understood by their communication partner when receiving mediated touch feedback instead of visual feedback, while the opposite was found for participants scoring high on these factors. The implications of these results for further research are discussed, and some suggestions for follow-up experiments are presented. PMID:26557429

  6. Is the use of videotape recording superior to verbal feedback alone in the teaching of clinical skills?

    PubMed Central

    2009-01-01

    Background In recent times, medical schools have committed to developing good communication and history taking skills in students. However, there remains an unresolved question as to which constitutes the best educational method. Our study aims to investigate whether the use of videotape recording is superior to verbal feedback alone in the teaching of clinical skills and the role of student self-assessment on history taking and communication skills. Methods A randomized controlled trial was designed. The study was conducted with 52 of the Dokuz Eylul University Faculty of Medicine second year students. All students' performances of communication and history taking skills were assessed twice. Between these assessments, the study group had received both verbal and visual feedback by watching their video recordings on patient interview; the control group received only verbal feedback from the teacher. Results Although the self-assessment of the students did not change significantly, assessors' ratings increased significantly for videotaped interviews at the second time. Conclusions Feedback based on videotaped interviews is superior to the feedback given solely based on the observation of assessors. PMID:20021688

  7. Is the use of videotape recording superior to verbal feedback alone in the teaching of clinical skills?

    PubMed

    Ozcakar, Nilgun; Mevsim, Vildan; Guldal, Dilek; Gunvar, Tolga; Yildirim, Ediz; Sisli, Zafer; Semin, Ilgi

    2009-12-19

    In recent times, medical schools have committed to developing good communication and history taking skills in students. However, there remains an unresolved question as to which constitutes the best educational method. Our study aims to investigate whether the use of videotape recording is superior to verbal feedback alone in the teaching of clinical skills and the role of student self-assessment on history taking and communication skills. A randomized controlled trial was designed. The study was conducted with 52 of the Dokuz Eylul University Faculty of Medicine second year students. All students' performances of communication and history taking skills were assessed twice. Between these assessments, the study group had received both verbal and visual feedback by watching their video recordings on patient interview; the control group received only verbal feedback from the teacher. Although the self-assessment of the students did not change significantly, assessors' ratings increased significantly for videotaped interviews at the second time. Feedback based on videotaped interviews is superior to the feedback given solely based on the observation of assessors.

  8. Effect of feedback mode and task difficulty on quality of timing decisions in a zero-sum game.

    PubMed

    Tikuisis, Peter; Vartanian, Oshin; Mandel, David R

    2014-09-01

    The objective was to investigate the interaction between the mode of performance outcome feedback and task difficulty on timing decisions (i.e., when to act). Feedback is widely acknowledged to affect task performance. However, the extent to which feedback display mode and its impact on timing decisions is moderated by task difficulty remains largely unknown. Participants repeatedly engaged a zero-sum game involving silent duels with a computerized opponent and were given visual performance feedback after each engagement. They were sequentially tested on three different levels of task difficulty (low, intermediate, and high) in counterbalanced order. Half received relatively simple "inside view" binary outcome feedback, and the other half received complex "outside view" hit rate probability feedback. The key dependent variables were response time (i.e., time taken to make a decision) and survival outcome. When task difficulty was low to moderate, participants were more likely to learn and perform better from hit rate probability feedback than binary outcome feedback. However, better performance with hit rate feedback exacted a higher cognitive cost manifested by higher decision response time. The beneficial effect of hit rate probability feedback on timing decisions is partially moderated by task difficulty. Performance feedback mode should be judiciously chosen in relation to task difficulty for optimal performance in tasks involving timing decisions.

  9. The efficacy of VIPP-V parenting training for parents of young children with a visual or visual-and-intellectual disability: a randomized controlled trial.

    PubMed

    Platje, Evelien; Sterkenburg, Paula; Overbeek, Mathile; Kef, Sabina; Schuengel, Carlo

    2018-01-23

    Video-feedback Intervention to promote positive parenting-visual (VIPP-V) or visual-and-intellectual disability is an attachment-based intervention aimed at enhancing sensitive parenting and promoting positive parent-child relationships. A randomized controlled trial was conducted to assess the efficacy of VIPP-V for parents of children aged 1-5 with visual or visual-and-intellectual disabilities. A total of 37 dyads received only care-as-usual (CAU) and 40 received VIPP-V besides CAU. The parents receiving VIPP-V did not show increased parental sensitivity or parent-child interaction quality, however, their parenting self-efficacy increased. Moreover, the increase in parental self-efficacy predicted the increase in parent-child interaction. In conclusion, VIPP-V does not appear to directly improve the quality of contact between parent and child, but does contribute to the self-efficacy of parents to support and to comfort their child. Moreover, as parents experience their parenting as more positive, this may eventually lead to higher sensitive responsiveness and more positive parent-child interactions.

  10. Mirror Visual Feedback Training Improves Intermanual Transfer in a Sport-Specific Task: A Comparison between Different Skill Levels.

    PubMed

    Steinberg, Fabian; Pixa, Nils Henrik; Doppelmayr, Michael

    2016-01-01

    Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research.

  11. Mirror Visual Feedback Training Improves Intermanual Transfer in a Sport-Specific Task: A Comparison between Different Skill Levels

    PubMed Central

    Pixa, Nils Henrik; Doppelmayr, Michael

    2016-01-01

    Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research. PMID:27642526

  12. Voluntarily controlled but not merely observed visual feedback affects postural sway

    PubMed Central

    Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi

    2018-01-01

    Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421

  13. A virtual reality-based method of decreasing transmission time of visual feedback for a tele-operative robotic catheter operating system.

    PubMed

    Guo, Jin; Guo, Shuxiang; Tamiya, Takashi; Hirata, Hideyuki; Ishihara, Hidenori

    2016-03-01

    An Internet-based tele-operative robotic catheter operating system was designed for vascular interventional surgery, to afford unskilled surgeons the opportunity to learn basic catheter/guidewire skills, while allowing experienced physicians to perform surgeries cooperatively. Remote surgical procedures, limited by variable transmission times for visual feedback, have been associated with deterioration in operability and vascular wall damage during surgery. At the patient's location, the catheter shape/position was detected in real time and converted into three-dimensional coordinates in a world coordinate system. At the operation location, the catheter shape was reconstructed in a virtual-reality environment, based on the coordinates received. The data volume reduction significantly reduced visual feedback transmission times. Remote transmission experiments, conducted over inter-country distances, demonstrated the improved performance of the proposed prototype. The maximum error for the catheter shape reconstruction was 0.93 mm and the transmission time was reduced considerably. The results were positive and demonstrate the feasibility of remote surgery using conventional network infrastructures. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Motivation in vigilance - Effects of self-evaluation and experimenter-controlled feedback.

    NASA Technical Reports Server (NTRS)

    Warm, J. S.; Kanfer, F. H.; Kuwada, S.; Clark, J. L.

    1972-01-01

    Vigilance experiments have been performed to study the relative efficiency of feedback operations in enhancing vigilance performance. Two feedback operations were compared - i.e., experimenter-controlled feedback in the form of knowledge of results (KR) regarding response times to signal detections, and subject-controlled feedback in the form of self-evaluation (SE) of response times to signal detections. The subjects responded to the aperiodic offset of a visual signal during a 1-hr vigil. Both feedback operations were found to enhance performance efficiency: subjects in the KR and SE conditions had faster response times than controls receiving no evaluative feedback. Moreover, the data of the KR and SE groups did not differ significantly from each other. The results are discussed in terms of the hypothesis that self-evaluation is a critical factor underlying the incentive value of KR in vigilance tasks.

  15. Biased Feedback in Spatial Recall Yields a Violation of Delta Rule Learning

    PubMed Central

    Lipinski, John; Spencer, John P.; Samuelson, Larissa K.

    2010-01-01

    This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4° towards the vertical axis (Towards condition) or 4° further away from the vertical axis (Away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) in the Away condition produced a stronger experience-dependent change over blocks than in the Towards condition. This violates delta rule learning. Subsequent simulations of the Dynamic Field Theory of spatial cognition provide a theoretically unified account of these results. PMID:20702881

  16. Biased feedback in spatial recall yields a violation of delta rule learning.

    PubMed

    Lipinski, John; Spencer, John P; Samuelson, Larissa K

    2010-08-01

    This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4 degrees toward the vertical axis (toward condition) or 4 degrees farther away from the vertical axis (away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) produced a stronger experience-dependent change over blocks in the away condition than in the toward condition. This violates delta rule learning. Subsequent simulations of the dynamic field theory of spatial cognition provide a theoretically unified account of these results.

  17. Delayed action does not always require the ventral stream: a study on a patient with visual form agnosia.

    PubMed

    Hesse, Constanze; Schenk, Thomas

    2014-05-01

    It has been suggested that while movements directed at visible targets are processed within the dorsal stream, movements executed after delay rely on the visual representations of the ventral stream (Milner & Goodale, 2006). This interpretation is supported by the observation that a patient with ventral stream damage (D.F.) has trouble performing accurate movements after a delay, but performs normally when the target is visible during movement programming. We tested D.F.'s visuomotor performance in a letter-posting task whilst varying the amount of visual feedback available. Additionally, we also varied whether D.F. received tactile feedback at the end of each trial (posting through a letter box vs posting on a screen) and whether environmental cues were available during the delay period (removing the target only vs suppressing vision completely with shutter glasses). We found that in the absence of environmental cues patient D.F. was unaffected by the introduction of delay and performed as accurately as healthy controls. However, when environmental cues and vision of the moving hand were available during and after the delay period, D.F.'s visuomotor performance was impaired. Thus, while healthy controls benefit from the availability of environmental landmarks and/or visual feedback of the moving hand, such cues seem less beneficial to D.F. Taken together our findings suggest that ventral stream damage does not always impact the ability to make delayed movements but compromises the ability to use environmental landmarks and visual feedback efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mastoidectomy simulation with combined visual and haptic feedback.

    PubMed

    Agus, Marco; Giachetti, Andrea; Gobbetti, Enrico; Zanetti, Gianluigi; Zorcolo, Antonio; John, Nigel W; Stone, Robert J

    2002-01-01

    Mastoidectomy is one of the most common surgical procedures relating to the petrous bone. In this paper we describe our preliminary results in the realization of a virtual reality mastoidectomy simulator. Our system is designed to work on patient-specific volumetric object models directly derived from 3D CT and MRI images. The paper summarizes the detailed task analysis performed in order to define the system requirements, introduces the architecture of the prototype simulator, and discusses the initial feedback received from selected end users.

  19. Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex.

    PubMed

    Kok, Peter; de Lange, Floris P

    2014-07-07

    An essential part of visual perception is the grouping of local elements (such as edges and lines) into coherent shapes. Previous studies have shown that this grouping process modulates neural activity in the primary visual cortex (V1) that is signaling the local elements [1-4]. However, the nature of this modulation is controversial. Some studies find that shape perception reduces neural activity in V1 [2, 5, 6], while others report increased V1 activity during shape perception [1, 3, 4, 7-10]. Neurocomputational theories that cast perception as a generative process [11-13] propose that feedback connections carry predictions (i.e., the generative model), while feedforward connections signal the mismatch between top-down predictions and bottom-up inputs. Within this framework, the effect of feedback on early visual cortex may be either enhancing or suppressive, depending on whether the feedback signal is met by congruent bottom-up input. Here, we tested this hypothesis by quantifying the spatial profile of neural activity in V1 during the perception of illusory shapes using population receptive field mapping. We find that shape perception concurrently increases neural activity in regions of V1 that have a receptive field on the shape but do not receive bottom-up input and suppresses activity in regions of V1 that receive bottom-up input that is predicted by the shape. These effects were not modulated by task requirements. Together, these findings suggest that shape perception changes lower-order sensory representations in a highly specific and automatic manner, in line with theories that cast perception in terms of hierarchical generative models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Time to CUSUM: simplified reporting of outcomes in colorectal surgery.

    PubMed

    Bowles, Thomas A; Watters, David A

    2007-07-01

    Surgical audit has added value when outcomes can be compared and individual surgeons receive feedback. It is expected that surgeons compare their results with others in similar local practice, the published work, or peers from a craft group audit. Although feedback and comparison are worthy aims, for many surgeons the standards have not been agreed nor is there a craft group audit. The aim of this paper was to develop a reporting format for surgeons carrying out colorectal surgery in a regional hospital. The performance of 13 individual surgeons was analysed using a comprehensive colorectal audit with more than 600 cases. Feedback included caseload and type. Risk stratification of outcomes included; operation urgency, age and Physiological and Operative Severity Score for enUmeration of Mortality and Morbidity. Outcome measures were anastomotic leaks, end stoma rates, unplanned reoperations and mortality. Visual feedback included cumulative summation graphs for elective leaks, mortality and unplanned reoperations. A single A4 page of an individuals performance could be prepared that allowed comparison to the groups data overall. Alerts were set at 2-5% elective leaks, 4-7.5% mortality and 4-11% unplanned return to theatre. Cumulative summation graphs added to this allowed a visual guide to the key performance indicators. Surgeons need to determine how they will review their individual and collective results. These are equally important to the reported work. Detailed analysis of risk-stratified data should occur. Binary outcomes such as leak, mortality and unplanned reoperations may be followed by cumulative summation graphs. This provides a continually updated method of feedback, enabling immediate visual feedback of a surgeon's performance.

  1. The impact of haptic feedback on students' conceptions of the cell

    NASA Astrophysics Data System (ADS)

    Minogue, James

    2005-07-01

    The purpose of this study was to investigate the efficacy of adding haptic (sense of touch) feedback to computer generated visualizations for use in middle school science instruction. Current technology allows for the simulation of tactile and kinesthetic sensations via haptic devices and a computer interface. This study, conducted with middle school students (n = 80), explored the cognitive and affective impacts of this innovative technology on students' conceptions of the cell and the process of passive transport. A pretest-posttest control group design was used and participants were randomly assigned to one of two treatment groups (n = 40 for each). Both groups experienced the same core computer-mediated instructional program. This Cell Exploration program engaged students in a 3-D immersive environment that allowed them to actively investigate the form and function of a typical animal cell including its major organelles. The program also engaged students in a study of the structure and function of the cell membrane as it pertains to the process of passive transport and the mechanisms behind the membrane's selective permeability. As they conducted their investigations, students in the experimental group received bi-modal visual and haptic (simulated tactile and kinesthetic) feedback whereas the control group students experienced the program with only visual stimuli. A battery of assessments, including objective and open-ended written response items as well as a haptic performance assessment, were used to gather quantitative and qualitative data regarding changes in students' understandings of the cell concepts prior to and following their completion of the instructional program. Additionally, the impact of haptics on the affective domain of students' learning was assessed using a post-experience semi-structured interview and an attitudinal survey. Results showed that students from both conditions (Visual-Only and Visual + Haptic) found the instructional program interesting and engaging. Additionally, the vast majority of the students reported that they learned a lot about and were more interested in the topic due to their participation. Moreover, students who received the bi-modal (Visual + Haptic) feedback indicated that they experienced lower levels of frustration and spatial disorientation as they conducted their investigations when compared to individuals that relied solely on vision. There were no significant differences measured across the treatment groups on the cognitive assessment items. Despite this finding, the study provided valuable insight into the theoretical and practical considerations involved in the development of multimodal instructional programs.

  2. Is sensorimotor BCI performance influenced differently by mono, stereo, or 3-D auditory feedback?

    PubMed

    McCreadie, Karl A; Coyle, Damien H; Prasad, Girijesh

    2014-05-01

    Imagination of movement can be used as a control method for a brain-computer interface (BCI) allowing communication for the physically impaired. Visual feedback within such a closed loop system excludes those with visual problems and hence there is a need for alternative sensory feedback pathways. In the context of substituting the visual channel for the auditory channel, this study aims to add to the limited evidence that it is possible to substitute visual feedback for its auditory equivalent and assess the impact this has on BCI performance. Secondly, the study aims to determine for the first time if the type of auditory feedback method influences motor imagery performance significantly. Auditory feedback is presented using a stepped approach of single (mono), double (stereo), and multiple (vector base amplitude panning as an audio game) loudspeaker arrangements. Visual feedback involves a ball-basket paradigm and a spaceship game. Each session consists of either auditory or visual feedback only with runs of each type of feedback presentation method applied in each session. Results from seven subjects across five sessions of each feedback type (visual, auditory) (10 sessions in total) show that auditory feedback is a suitable substitute for the visual equivalent and that there are no statistical differences in the type of auditory feedback presented across five sessions.

  3. Volitional Control of Heart Rate During Exercise Stress.

    ERIC Educational Resources Information Center

    LeFevers, Victoria A.

    Thirty five volunteer college women were divided into three groups to determine if heart rate could be conditioned instrumentally and lowered during exercise stress on the treadmill. The three groups were a) experimental group I, 15 subjects who received instrumental conditioning with visual feedback; b) instrumental group II, 9 subjects who…

  4. Vibrotactile Feedback for Brain-Computer Interface Operation

    PubMed Central

    Cincotti, Febo; Kauhanen, Laura; Aloise, Fabio; Palomäki, Tapio; Caporusso, Nicholas; Jylänki, Pasi; Mattia, Donatella; Babiloni, Fabio; Vanacker, Gerolf; Nuttin, Marnix; Marciani, Maria Grazia; Millán, José del R.

    2007-01-01

    To be correctly mastered, brain-computer interfaces (BCIs) need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury), we compared vibrotactile and visual feedback, addressing: (I) the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II) the compatibility of this form of feedback in presence of a visual distracter; (III) the performance in presence of a complex visual task on the same (visual) or different (tactile) sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users. PMID:18354734

  5. Feature-Specific Organization of Feedback Pathways in Mouse Visual Cortex.

    PubMed

    Huh, Carey Y L; Peach, John P; Bennett, Corbett; Vega, Roxana M; Hestrin, Shaul

    2018-01-08

    Higher and lower cortical areas in the visual hierarchy are reciprocally connected [1]. Although much is known about how feedforward pathways shape receptive field properties of visual neurons, relatively little is known about the role of feedback pathways in visual processing. Feedback pathways are thought to carry top-down signals, including information about context (e.g., figure-ground segmentation and surround suppression) [2-5], and feedback has been demonstrated to sharpen orientation tuning of neurons in the primary visual cortex (V1) [6, 7]. However, the response characteristics of feedback neurons themselves and how feedback shapes V1 neurons' tuning for other features, such as spatial frequency (SF), remain largely unknown. Here, using a retrograde virus, targeted electrophysiological recordings, and optogenetic manipulations, we show that putatively feedback neurons in layer 5 (hereafter "L5 feedback") in higher visual areas, AL (anterolateral area) and PM (posteromedial area), display distinct visual properties in awake head-fixed mice. AL L5 feedback neurons prefer significantly lower SF (mean: 0.04 cycles per degree [cpd]) compared to PM L5 feedback neurons (0.15 cpd). Importantly, silencing AL L5 feedback reduced visual responses of V1 neurons preferring low SF (mean change in firing rate: -8.0%), whereas silencing PM L5 feedback suppressed responses of high-SF-preferring V1 neurons (-20.4%). These findings suggest that feedback connections from higher visual areas convey distinctly tuned visual inputs to V1 that serve to boost V1 neurons' responses to SF. Such like-to-like functional organization may represent an important feature of feedback pathways in sensory systems and in the nervous system in general. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of aging on pointing movements under restricted visual feedback conditions.

    PubMed

    Zhang, Liancun; Yang, Jiajia; Inai, Yoshinobu; Huang, Qiang; Wu, Jinglong

    2015-04-01

    The goal of this study was to investigate the effects of aging on pointing movements under restricted visual feedback of hand movement and target location. Fifteen young subjects and fifteen elderly subjects performed pointing movements under four restricted visual feedback conditions that included full visual feedback of hand movement and target location (FV), no visual feedback of hand movement and target location condition (NV), no visual feedback of hand movement (NM) and no visual feedback of target location (NT). This study suggested that Fitts' law applied for pointing movements of the elderly adults under different visual restriction conditions. Moreover, significant main effect of aging on movement times has been found in all four tasks. The peripheral and central changes may be the key factors for these different characteristics. Furthermore, no significant main effects of age on the mean accuracy rate under condition of restricted visual feedback were found. The present study suggested that the elderly subjects made a very similar use of the available sensory information as young subjects under restricted visual feedback conditions. In addition, during the pointing movement, information about the hand's movement was more useful than information about the target location for young and elderly subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effects of Visual Feedback Distortion on Gait Adaptation: Comparison of Implicit Visual Distortion Versus Conscious Modulation on Retention of Motor Learning.

    PubMed

    Kim, Seung-Jae; Ogilvie, Mitchell; Shimabukuro, Nathan; Stewart, Trevor; Shin, Joon-Ho

    2015-09-01

    Visual feedback can be used during gait rehabilitation to improve the efficacy of training. We presented a paradigm called visual feedback distortion; the visual representation of step length was manipulated during treadmill walking. Our prior work demonstrated that an implicit distortion of visual feedback of step length entails an unintentional adaptive process in the subjects' spatial gait pattern. Here, we investigated whether the implicit visual feedback distortion, versus conscious correction, promotes efficient locomotor adaptation that relates to greater retention of a task. Thirteen healthy subjects were studied under two conditions: (1) we implicitly distorted the visual representation of their gait symmetry over 14 min, and (2) with help of visual feedback, subjects were told to walk on the treadmill with the intent of attaining the gait asymmetry observed during the first implicit trial. After adaptation, the visual feedback was removed while subjects continued walking normally. Over this 6-min period, retention of preserved asymmetric pattern was assessed. We found that there was a greater retention rate during the implicit distortion trial than that of the visually guided conscious modulation trial. This study highlights the important role of implicit learning in the context of gait rehabilitation by demonstrating that training with implicit visual feedback distortion may produce longer lasting effects. This suggests that using visual feedback distortion could improve the effectiveness of treadmill rehabilitation processes by influencing the retention of motor skills.

  8. The use of real-time ultrasound imaging for biofeedback of lumbar multifidus muscle contraction in healthy subjects.

    PubMed

    Van, Khai; Hides, Julie A; Richardson, Carolyn A

    2006-12-01

    Randomized controlled trial. To determine if the provision of visual biofeedback using real-time ultrasound imaging enhances the ability to activate the multifidus muscle. Increasingly clinicians are using real-time ultrasound as a form of biofeedback when re-educating muscle activation. The effectiveness of this form of biofeedback for the multifidus muscle has not been reported. Healthy subjects were randomly divided into groups that received different forms of biofeedback. All subjects received clinical instruction on how to activate the multifidus muscle isometrically prior to testing and verbal feedback regarding the amount of multifidus contraction, which occurred during 10 repetitions (acquisition phase). In addition, 1 group received visual biofeedback (watched the multifidus muscle contract) using real-time ultrasound imaging. All subjects were reassessed a week later (retention phase). Subjects from both groups improved their voluntary contraction of the multifidus muscle in the acquisition phase (P<.001) and the ability to recruit the multifidus muscle differed between groups (P<.05), with subjects in the group that received visual ultrasound biofeedback achieving greater improvements. In addition, the group that received visual ultrasound biofeedback retained their improvement in performance from week 1 to week 2 (P>.90), whereas the performance of the other group decreased (P<.05). Real-time ultrasound imaging can be used to provide visual biofeedback and improve performance and retention in the ability to activate the multifidus muscle in healthy subjects.

  9. Speed but not amplitude of visual feedback exacerbates force variability in older adults.

    PubMed

    Kim, Changki; Yacoubi, Basma; Christou, Evangelos A

    2018-06-23

    Magnification of visual feedback (VF) impairs force control in older adults. In this study, we aimed to determine whether the age-associated increase in force variability with magnification of visual feedback is a consequence of increased amplitude or speed of visual feedback. Seventeen young and 18 older adults performed a constant isometric force task with the index finger at 5% of MVC. We manipulated the vertical (force gain) and horizontal (time gain) aspect of the visual feedback so participants performed the task with the following VF conditions: (1) high amplitude-fast speed; (2) low amplitude-slow speed; (3) high amplitude-slow speed. Changing the visual feedback from low amplitude-slow speed to high amplitude-fast speed increased force variability in older adults but decreased it in young adults (P < 0.01). Changing the visual feedback from low amplitude-slow speed to high amplitude-slow speed did not alter force variability in older adults (P > 0.2), but decreased it in young adults (P < 0.01). Changing the visual feedback from high amplitude-slow speed to high amplitude-fast speed increased force variability in older adults (P < 0.01) but did not alter force variability in young adults (P > 0.2). In summary, increased force variability in older adults with magnification of visual feedback was evident only when the speed of visual feedback increased. Thus, we conclude that in older adults deficits in the rate of processing visual information and not deficits in the processing of more visual information impair force control.

  10. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    PubMed

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  11. Behavioral and neural effects of congruency of visual feedback during short-term motor learning.

    PubMed

    Ossmy, Ori; Mukamel, Roy

    2018-05-15

    Visual feedback can facilitate or interfere with movement execution. Here, we describe behavioral and neural mechanisms by which the congruency of visual feedback during physical practice of a motor skill modulates subsequent performance gains. 18 healthy subjects learned to execute rapid sequences of right hand finger movements during fMRI scans either with or without visual feedback. Feedback consisted of a real-time, movement-based display of virtual hands that was either congruent (right virtual hand movement), or incongruent (left virtual hand movement yoked to the executing right hand). At the group level, right hand performance gains following training with congruent visual feedback were significantly higher relative to training without visual feedback. Conversely, performance gains following training with incongruent visual feedback were significantly lower. Interestingly, across individual subjects these opposite effects correlated. Activation in the Supplementary Motor Area (SMA) during training corresponded to individual differences in subsequent performance gains. Furthermore, functional coupling of SMA with visual cortices predicted individual differences in behavior. Our results demonstrate that some individuals are more sensitive than others to congruency of visual feedback during short-term motor learning and that neural activation in SMA correlates with such inter-individual differences. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Earthdata Search Summer ESIP Usability Workshop

    NASA Technical Reports Server (NTRS)

    Reese, Mark; Sirato, Jeff

    2017-01-01

    The Earthdata Search Client has undergone multiple rounds of usability testing during 2017 and the user feedback received has resulted in an enhanced user interface. This session will showcase the new Earthdata Search Client user interface and provide hands-on experience for participants to learn how to search, visualize and download data in the desired format.

  13. Seeing the hand while reaching speeds up on-line responses to a sudden change in target position

    PubMed Central

    Reichenbach, Alexandra; Thielscher, Axel; Peer, Angelika; Bülthoff, Heinrich H; Bresciani, Jean-Pierre

    2009-01-01

    Goal-directed movements are executed under the permanent supervision of the central nervous system, which continuously processes sensory afferents and triggers on-line corrections if movement accuracy seems to be compromised. For arm reaching movements, visual information about the hand plays an important role in this supervision, notably improving reaching accuracy. Here, we tested whether visual feedback of the hand affects the latency of on-line responses to an external perturbation when reaching for a visual target. Two types of perturbation were used: visual perturbation consisted in changing the spatial location of the target and kinesthetic perturbation in applying a force step to the reaching arm. For both types of perturbation, the hand trajectory and the electromyographic (EMG) activity of shoulder muscles were analysed to assess whether visual feedback of the hand speeds up on-line corrections. Without visual feedback of the hand, on-line responses to visual perturbation exhibited the longest latency. This latency was reduced by about 10% when visual feedback of the hand was provided. On the other hand, the latency of on-line responses to kinesthetic perturbation was independent of the availability of visual feedback of the hand. In a control experiment, we tested the effect of visual feedback of the hand on visual and kinesthetic two-choice reaction times – for which coordinate transformation is not critical. Two-choice reaction times were never facilitated by visual feedback of the hand. Taken together, our results suggest that visual feedback of the hand speeds up on-line corrections when the position of the visual target with respect to the body must be re-computed during movement execution. This facilitation probably results from the possibility to map hand- and target-related information in a common visual reference frame. PMID:19675067

  14. Monitoring and control of amygdala neurofeedback involves distributed information processing in the human brain.

    PubMed

    Paret, Christian; Zähringer, Jenny; Ruf, Matthias; Gerchen, Martin Fungisai; Mall, Stephanie; Hendler, Talma; Schmahl, Christian; Ende, Gabriele

    2018-03-30

    Brain-computer interfaces provide conscious access to neural activity by means of brain-derived feedback ("neurofeedback"). An individual's abilities to monitor and control feedback are two necessary processes for effective neurofeedback therapy, yet their underlying functional neuroanatomy is still being debated. In this study, healthy subjects received visual feedback from their amygdala response to negative pictures. Activation and functional connectivity were analyzed to disentangle the role of brain regions in different processes. Feedback monitoring was mapped to the thalamus, ventromedial prefrontal cortex (vmPFC), ventral striatum (VS), and rostral PFC. The VS responded to feedback corresponding to instructions while rPFC activity differentiated between conditions and predicted amygdala regulation. Control involved the lateral PFC, anterior cingulate, and insula. Monitoring and control activity overlapped in the VS and thalamus. Extending current neural models of neurofeedback, this study introduces monitoring and control of feedback as anatomically dissociated processes, and suggests their important role in voluntary neuromodulation. © 2018 Wiley Periodicals, Inc.

  15. Incorporation of feedback during beat synchronization is an index of neural maturation and reading skills.

    PubMed

    Woodruff Carr, Kali; Fitzroy, Ahren B; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2017-01-01

    Speech communication involves integration and coordination of sensory perception and motor production, requiring precise temporal coupling. Beat synchronization, the coordination of movement with a pacing sound, can be used as an index of this sensorimotor timing. We assessed adolescents' synchronization and capacity to correct asynchronies when given online visual feedback. Variability of synchronization while receiving feedback predicted phonological memory and reading sub-skills, as well as maturation of cortical auditory processing; less variable synchronization during the presence of feedback tracked with maturation of cortical processing of sound onsets and resting gamma activity. We suggest the ability to incorporate feedback during synchronization is an index of intentional, multimodal timing-based integration in the maturing adolescent brain. Precision of temporal coding across modalities is important for speech processing and literacy skills that rely on dynamic interactions with sound. Synchronization employing feedback may prove useful as a remedial strategy for individuals who struggle with timing-based language learning impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The effect of multimodal and enriched feedback on SMR-BCI performance.

    PubMed

    Sollfrank, T; Ramsay, A; Perdikis, S; Williamson, J; Murray-Smith, R; Leeb, R; Millán, J D R; Kübler, A

    2016-01-01

    This study investigated the effect of multimodal (visual and auditory) continuous feedback with information about the uncertainty of the input signal on motor imagery based BCI performance. A liquid floating through a visualization of a funnel (funnel feedback) provided enriched visual or enriched multimodal feedback. In a between subject design 30 healthy SMR-BCI naive participants were provided with either conventional bar feedback (CB), or visual funnel feedback (UF), or multimodal (visual and auditory) funnel feedback (MF). Subjects were required to imagine left and right hand movement and were trained to control the SMR based BCI for five sessions on separate days. Feedback accuracy varied largely between participants. The MF feedback lead to a significantly better performance in session 1 as compared to the CB feedback and could significantly enhance motivation and minimize frustration in BCI use across the five training sessions. The present study demonstrates that the BCI funnel feedback allows participants to modulate sensorimotor EEG rhythms. Participants were able to control the BCI with the funnel feedback with better performance during the initial session and less frustration compared to the CB feedback. The multimodal funnel feedback provides an alternative to the conventional cursorbar feedback for training subjects to modulate their sensorimotor rhythms. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Walking Speed Influences the Effects of Implicit Visual Feedback Distortion on Modulation of Gait Symmetry

    PubMed Central

    Maestas, Gabrielle; Hu, Jiyao; Trevino, Jessica; Chunduru, Pranathi; Kim, Seung-Jae; Lee, Hyunglae

    2018-01-01

    The use of visual feedback in gait rehabilitation has been suggested to promote recovery of locomotor function by incorporating interactive visual components. Our prior work demonstrated that visual feedback distortion of changes in step length symmetry entails an implicit or unconscious adaptive process in the subjects’ spatial gait patterns. We investigated whether the effect of the implicit visual feedback distortion would persist at three different walking speeds (slow, self-preferred and fast speeds) and how different walking speeds would affect the amount of adaption. In the visual feedback distortion paradigm, visual vertical bars portraying subjects’ step lengths were distorted so that subjects perceived their step lengths to be asymmetric during testing. Measuring the adjustments in step length during the experiment showed that healthy subjects made spontaneous modulations away from actual symmetry in response to the implicit visual distortion, no matter the walking speed. In all walking scenarios, the effects of implicit distortion became more significant at higher distortion levels. In addition, the amount of adaptation induced by the visual distortion was significantly greater during walking at preferred or slow speed than at the fast speed. These findings indicate that although a link exists between supraspinal function through visual system and human locomotion, sensory feedback control for locomotion is speed-dependent. Ultimately, our results support the concept that implicit visual feedback can act as a dominant form of feedback in gait modulation, regardless of speed. PMID:29632481

  18. A 2D virtual reality system for visual goal-driven navigation in zebrafish larvae

    PubMed Central

    Jouary, Adrien; Haudrechy, Mathieu; Candelier, Raphaël; Sumbre, German

    2016-01-01

    Animals continuously rely on sensory feedback to adjust motor commands. In order to study the role of visual feedback in goal-driven navigation, we developed a 2D visual virtual reality system for zebrafish larvae. The visual feedback can be set to be similar to what the animal experiences in natural conditions. Alternatively, modification of the visual feedback can be used to study how the brain adapts to perturbations. For this purpose, we first generated a library of free-swimming behaviors from which we learned the relationship between the trajectory of the larva and the shape of its tail. Then, we used this technique to infer the intended displacements of head-fixed larvae, and updated the visual environment accordingly. Under these conditions, larvae were capable of aligning and swimming in the direction of a whole-field moving stimulus and produced the fine changes in orientation and position required to capture virtual prey. We demonstrate the sensitivity of larvae to visual feedback by updating the visual world in real-time or only at the end of the discrete swimming episodes. This visual feedback perturbation caused impaired performance of prey-capture behavior, suggesting that larvae rely on continuous visual feedback during swimming. PMID:27659496

  19. Does visual feedback during walking result in similar improvements in trunk control for young and older healthy adults?

    PubMed

    Anson, Eric; Rosenberg, Russell; Agada, Peter; Kiemel, Tim; Jeka, John

    2013-11-26

    Most current applications of visual feedback to improve postural control are limited to a fixed base of support and produce mixed results regarding improved postural control and transfer to functional tasks. Currently there are few options available to provide visual feedback regarding trunk motion while walking. We have developed a low cost platform to provide visual feedback of trunk motion during walking. Here we investigated whether augmented visual position feedback would reduce trunk movement variability in both young and older healthy adults. The subjects who participated were 10 young and 10 older adults. Subjects walked on a treadmill under conditions of visual position feedback and no feedback. The visual feedback consisted of anterior-posterior (AP) and medial-lateral (ML) position of the subject's trunk during treadmill walking. Fourier transforms of the AP and ML trunk kinematics were used to calculate power spectral densities which were integrated as frequency bins "below the gait cycle" and "gait cycle and above" for analysis purposes. Visual feedback reduced movement power at very low frequencies for lumbar and neck translation but not trunk angle in both age groups. At very low frequencies of body movement, older adults had equivalent levels of movement variability with feedback as young adults without feedback. Lower variability was specific to translational (not angular) trunk movement. Visual feedback did not affect any of the measured lower extremity gait pattern characteristics of either group, suggesting that changes were not invoked by a different gait pattern. Reduced translational variability while walking on the treadmill reflects more precise control maintaining a central position on the treadmill. Such feedback may provide an important technique to augment rehabilitation to minimize body translation while walking. Individuals with poor balance during walking may benefit from this type of training to enhance path consistency during over-ground locomotion.

  20. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    PubMed

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  1. Computerized visual feedback: an adjunct to robotic-assisted gait training.

    PubMed

    Banz, Raphael; Bolliger, Marc; Colombo, Gery; Dietz, Volker; Lünenburger, Lars

    2008-10-01

    Robotic devices for walking rehabilitation allow new possibilities for providing performance-related information to patients during gait training. Based on motor learning principles, augmented feedback during robotic-assisted gait training might improve the rehabilitation process used to regain walking function. This report presents a method to provide visual feedback implemented in a driven gait orthosis (DGO). The purpose of the study was to compare the immediate effect on motor output in subjects during robotic-assisted gait training when they used computerized visual feedback and when they followed verbal instructions of a physical therapist. Twelve people with neurological gait disorders due to incomplete spinal cord injury participated. Subjects were instructed to walk within the DGO in 2 different conditions. They were asked to increase their motor output by following the instructions of a therapist and by observing visual feedback. In addition, the subjects' opinions about using visual feedback were investigated by a questionnaire. Computerized visual feedback and verbal instructions by the therapist were observed to result in a similar change in motor output in subjects when walking within the DGO. Subjects reported that they were more motivated and concentrated on their movements when using computerized visual feedback compared with when no form of feedback was provided. Computerized visual feedback is a valuable adjunct to robotic-assisted gait training. It represents a relevant tool to increase patients' motor output, involvement, and motivation during gait training, similar to verbal instructions by a therapist.

  2. Novel virtual reality system integrating online self-face viewing and mirror visual feedback for stroke rehabilitation: rationale and feasibility.

    PubMed

    Shiri, Shimon; Feintuch, Uri; Lorber-Haddad, Adi; Moreh, Elior; Twito, Dvora; Tuchner-Arieli, Maya; Meiner, Zeev

    2012-01-01

    To introduce the rationale of a novel virtual reality system based on self-face viewing and mirror visual feedback, and to examine its feasibility as a rehabilitation tool for poststroke patients. A novel motion capture virtual reality system integrating online self-face viewing and mirror visual feedback has been developed for stroke rehabilitation.The system allows the replacement of the impaired arm by a virtual arm. Upon making small movements of the paretic arm, patients view themselves virtually performing healthy full-range movements. A sample of 6 patients in the acute poststroke phase received the virtual reality treatment concomitantly with conservative rehabilitation treatment. Feasibility was assessed during 10 sessions for each participant. All participants succeeded in operating the system, demonstrating its feasibility in terms of adherence and improvement in task performance. Patients' performance within the virtual environment and a set of clinical-functional measures recorded before the virtual reality treatment, at 1 week, and after 3 months indicated neurological status and general functioning improvement. These preliminary results indicate that this newly developed virtual reality system is safe and feasible. Future randomized controlled studies are required to assess whether this system has beneficial effects in terms of enhancing upper limb function and quality of life in poststroke patients.

  3. Eye movements in interception with delayed visual feedback.

    PubMed

    Cámara, Clara; de la Malla, Cristina; López-Moliner, Joan; Brenner, Eli

    2018-07-01

    The increased reliance on electronic devices such as smartphones in our everyday life exposes us to various delays between our actions and their consequences. Whereas it is known that people can adapt to such delays, the mechanisms underlying such adaptation remain unclear. To better understand these mechanisms, the current study explored the role of eye movements in interception with delayed visual feedback. In two experiments, eye movements were recorded as participants tried to intercept a moving target with their unseen finger while receiving delayed visual feedback about their own movement. In Experiment 1, the target randomly moved in one of two different directions at one of two different velocities. The delay between the participant's finger movement and movement of the cursor that provided feedback about the finger movements was gradually increased. Despite the delay, participants followed the target with their gaze. They were quite successful at hitting the target with the cursor. Thus, they moved their finger to a position that was ahead of where they were looking. Removing the feedback showed that participants had adapted to the delay. In Experiment 2, the target always moved in the same direction and at the same velocity, while the cursor's delay varied across trials. Participants still always directed their gaze at the target. They adjusted their movement to the delay on each trial, often succeeding to intercept the target with the cursor. Since their gaze was always directed at the target, and they could not know the delay until the cursor started moving, participants must have been using peripheral vision of the delayed cursor to guide it to the target. Thus, people deal with delays by directing their gaze at the target and using both experience from previous trials (Experiment 1) and peripheral visual information (Experiment 2) to guide their finger in a way that will make the cursor hit the target.

  4. Brain negativity as an indicator of predictive error processing: the contribution of visual action effect monitoring.

    PubMed

    Joch, Michael; Hegele, Mathias; Maurer, Heiko; Müller, Hermann; Maurer, Lisa Katharina

    2017-07-01

    The error (related) negativity (Ne/ERN) is an event-related potential in the electroencephalogram (EEG) correlating with error processing. Its conditions of appearance before terminal external error information suggest that the Ne/ERN is indicative of predictive processes in the evaluation of errors. The aim of the present study was to specifically examine the Ne/ERN in a complex motor task and to particularly rule out other explaining sources of the Ne/ERN aside from error prediction processes. To this end, we focused on the dependency of the Ne/ERN on visual monitoring about the action outcome after movement termination but before result feedback (action effect monitoring). Participants performed a semi-virtual throwing task by using a manipulandum to throw a virtual ball displayed on a computer screen to hit a target object. Visual feedback about the ball flying to the target was masked to prevent action effect monitoring. Participants received a static feedback about the action outcome (850 ms) after each trial. We found a significant negative deflection in the average EEG curves of the error trials peaking at ~250 ms after ball release, i.e., before error feedback. Furthermore, this Ne/ERN signal did not depend on visual ball-flight monitoring after release. We conclude that the Ne/ERN has the potential to indicate error prediction in motor tasks and that it exists even in the absence of action effect monitoring. NEW & NOTEWORTHY In this study, we are separating different kinds of possible contributors to an electroencephalogram (EEG) error correlate (Ne/ERN) in a throwing task. We tested the influence of action effect monitoring on the Ne/ERN amplitude in the EEG. We used a task that allows us to restrict movement correction and action effect monitoring and to control the onset of result feedback. We ascribe the Ne/ERN to predictive error processing where a conscious feeling of failure is not a prerequisite. Copyright © 2017 the American Physiological Society.

  5. Real-time feedback on nonverbal clinical communication. Theoretical framework and clinician acceptance of ambient visual design.

    PubMed

    Hartzler, A L; Patel, R A; Czerwinski, M; Pratt, W; Roseway, A; Chandrasekaran, N; Back, A

    2014-01-01

    This article is part of the focus theme of Methods of Information in Medicine on "Pervasive Intelligent Technologies for Health". Effective nonverbal communication between patients and clinicians fosters both the delivery of empathic patient-centered care and positive patient outcomes. Although nonverbal skill training is a recognized need, few efforts to enhance patient-clinician communication provide visual feedback on nonverbal aspects of the clinical encounter. We describe a novel approach that uses social signal processing technology (SSP) to capture nonverbal cues in real time and to display ambient visual feedback on control and affiliation--two primary, yet distinct dimensions of interpersonal nonverbal communication. To examine the design and clinician acceptance of ambient visual feedback on nonverbal communication, we 1) formulated a model of relational communication to ground SSP and 2) conducted a formative user study using mixed methods to explore the design of visual feedback. Based on a model of relational communication, we reviewed interpersonal communication research to map nonverbal cues to signals of affiliation and control evidenced in patient-clinician interaction. Corresponding with our formulation of this theoretical framework, we designed ambient real-time visualizations that reflect variations of affiliation and control. To explore clinicians' acceptance of this visual feedback, we conducted a lab study using the Wizard-of-Oz technique to simulate system use with 16 healthcare professionals. We followed up with seven of those participants through interviews to iterate on the design with a revised visualization that addressed emergent design considerations. Ambient visual feedback on non- verbal communication provides a theoretically grounded and acceptable way to provide clinicians with awareness of their nonverbal communication style. We provide implications for the design of such visual feedback that encourages empathic patient-centered communication and include considerations of metaphor, color, size, position, and timing of feedback. Ambient visual feedback from SSP holds promise as an acceptable means for facilitating empathic patient-centered nonverbal communication.

  6. The Effects of Self-Generated Synchronous and Asynchronous Visual Speech Feedback on Overt Stuttering Frequency

    ERIC Educational Resources Information Center

    Snyder, Gregory J.; Hough, Monica Strauss; Blanchet, Paul; Ivy, Lennette J.; Waddell, Dwight

    2009-01-01

    Purpose: Relatively recent research documents that visual choral speech, which represents an externally generated form of synchronous visual speech feedback, significantly enhanced fluency in those who stutter. As a consequence, it was hypothesized that self-generated synchronous and asynchronous visual speech feedback would likewise enhance…

  7. Role of Visual Feedback Treatment for Defective /s/ Sounds in Patients with Cleft Palate.

    ERIC Educational Resources Information Center

    Michi, Ken-ichi; And Others

    1993-01-01

    Six patients with cleft palate were provided treatment using either visual feedback for tongue placement and frication or no visual feedback. Results indicated the feedback was especially useful in the treatment of defective /s/ sounds in the patients who exhibited abnormal posterior tongue posturing during dental or alveolar sounds. (Author/DB)

  8. Stimulus-dependent modulation of visual neglect in a touch-screen cancellation task.

    PubMed

    Keller, Ingo; Volkening, Katharina; Garbacenkaite, Ruta

    2015-05-01

    Patients with left-sided neglect frequently show omissions and repetitive behavior on cancellation tests. Using a touch-screen-based cancellation task, we tested how visual feedback and distracters influence the number of omissions and perseverations. Eighteen patients with left-sided visual neglect and 18 healthy controls performed four different cancellation tasks on an iPad touch screen: no feedback (the display did not change during the task), visual feedback (touched targets changed their color from black to green), visual feedback with distracters (20 distracters were evenly embedded in the display; detected targets changed their color from black to green), vanishing targets (touched targets disappeared from the screen). Except for the condition with vanishing targets, neglect patients had significantly more omissions and perseverations than healthy controls in the remaining three subtests. Both conditions providing feedback by changing the target color showed the highest number of omissions. Erasure of targets nearly diminished omissions completely. The highest rate of perseverations was observed in the no-feedback condition. The implementation of distracters led to a moderate number of perseverations. Visual feedback without distracters and vanishing targets abolished perseverations nearly completely. Visual feedback and the presence of distracters aggravated hemispatial neglect. This finding is compatible with impaired disengagement from the ipsilesional side as an important factor of visual neglect. Improvement of cancellation behavior with vanishing targets could have therapeutic implications. (c) 2015 APA, all rights reserved).

  9. Multimodal Excitatory Interfaces with Automatic Content Classification

    NASA Astrophysics Data System (ADS)

    Williamson, John; Murray-Smith, Roderick

    We describe a non-visual interface for displaying data on mobile devices, based around active exploration: devices are shaken, revealing the contents rattling around inside. This combines sample-based contact sonification with event playback vibrotactile feedback for a rich and compelling display which produces an illusion much like balls rattling inside a box. Motion is sensed from accelerometers, directly linking the motions of the user to the feedback they receive in a tightly closed loop. The resulting interface requires no visual attention and can be operated blindly with a single hand: it is reactive rather than disruptive. This interaction style is applied to the display of an SMS inbox. We use language models to extract salient features from text messages automatically. The output of this classification process controls the timbre and physical dynamics of the simulated objects. The interface gives a rapid semantic overview of the contents of an inbox, without compromising privacy or interrupting the user.

  10. Ultrasound as visual feedback in speech habilitation: exploring consultative use in rural British Columbia, Canada.

    PubMed

    Bernhardt, May B; Bacsfalvi, Penelope; Adler-Bock, Marcy; Shimizu, Reiko; Cheney, Audrey; Giesbrecht, Nathan; O'connell, Maureen; Sirianni, Jason; Radanov, Bosko

    2008-02-01

    Ultrasound has shown promise as a visual feedback tool in speech therapy. Rural clients, however, often have minimal access to new technologies. The purpose of the current study was to evaluate consultative treatment using ultrasound in rural communities. Two speech-language pathologists (SLPs) trained in ultrasound use provided consultation with ultrasound in rural British Columbia to 13 school-aged children with residual speech impairments. Local SLPs provided treatment without ultrasound before and after the consultation. Speech samples were transcribed phonetically by independent trained listeners. Eleven children showed greater gains in production of the principal target /[image omitted]/ after the ultrasound consultation. Four of the seven participants who received more consultation time with ultrasound showed greatest improvement. Individual client factors also affected outcomes. The current study was a quasi-experimental clinic-based study. Larger, controlled experimental studies are needed to provide ultimate evaluation of the consultative use of ultrasound in speech therapy.

  11. Combined mirror visual and auditory feedback therapy for upper limb phantom pain: a case report

    PubMed Central

    2011-01-01

    Introduction Phantom limb sensation and phantom limb pain is a very common issue after amputations. In recent years there has been accumulating data implicating 'mirror visual feedback' or 'mirror therapy' as helpful in the treatment of phantom limb sensation and phantom limb pain. Case presentation We present the case of a 24-year-old Caucasian man, a left upper limb amputee, treated with mirror visual feedback combined with auditory feedback with improved pain relief. Conclusion This case may suggest that auditory feedback might enhance the effectiveness of mirror visual feedback and serve as a valuable addition to the complex multi-sensory processing of body perception in patients who are amputees. PMID:21272334

  12. Developmental remodeling of corticocortical feedback circuits in ferret visual cortex

    PubMed Central

    Khalil, Reem; Levitt, Jonathan B.

    2014-01-01

    Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from four to ten weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1, and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at four weeks postnatal, the retinotopic arrangement of feedback appears essentially adultlike; however, Suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also find significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18 which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. PMID:24665018

  13. Developmental remodeling of corticocortical feedback circuits in ferret visual cortex.

    PubMed

    Khalil, Reem; Levitt, Jonathan B

    2014-10-01

    Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from 4-10 weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1 and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at 4 weeks postnatal, the retinotopic arrangement of feedback appears essentially adult-like; however, suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also found significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18, which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. © 2014 Wiley Periodicals, Inc.

  14. Variable force and visual feedback effects on teleoperator man/machine performance

    NASA Technical Reports Server (NTRS)

    Massimino, Michael J.; Sheridan, Thomas B.

    1989-01-01

    An experimental study was conducted to determine the effects of various forms of visual and force feedback on human performance for several telemanipulation tasks. Experiments were conducted with varying frame rates and subtended visual angles, with and without force feedback.

  15. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model

    PubMed Central

    Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation. PMID:28248996

  16. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.

    PubMed

    Li, Min; Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.

  17. Learning a visuomotor rotation: simultaneous visual and proprioceptive information is crucial for visuomotor remapping.

    PubMed

    Shabbott, Britne A; Sainburg, Robert L

    2010-05-01

    Visuomotor adaptation is mediated by errors between intended and sensory-detected arm positions. However, it is not clear whether visual-based errors that are shown during the course of motion lead to qualitatively different or more efficient adaptation than errors shown after movement. For instance, continuous visual feedback mediates online error corrections, which may facilitate or inhibit the adaptation process. We addressed this question by manipulating the timing of visual error information and task instructions during a visuomotor adaptation task. Subjects were exposed to a visuomotor rotation, during which they received continuous visual feedback (CF) of hand position with instructions to correct or not correct online errors, or knowledge-of-results (KR), provided as a static hand-path at the end of each trial. Our results showed that all groups improved performance with practice, and that online error corrections were inconsequential to the adaptation process. However, in contrast to the CF groups, the KR group showed relatively small reductions in mean error with practice, increased inter-trial variability during rotation exposure, and more limited generalization across target distances and workspace. Further, although the KR group showed improved performance with practice, after-effects were minimal when the rotation was removed. These findings suggest that simultaneous visual and proprioceptive information is critical in altering neural representations of visuomotor maps, although delayed error information may elicit compensatory strategies to offset perturbations.

  18. Interaction between postural asymmetry and visual feedback effects in undisturbed upright stance control in healthy adults.

    PubMed

    Rougier, Patrice R; Boudrahem, Samir

    2017-09-01

    The technique of additional visual feedback has been shown to significantly decrease the center of pressure (CP) displacements of a standing subject. Body-weight asymmetry is known to increase postural instability due to difficulties in coordinating the reaction forces exerted under each foot and is often a cardinal feature of various neurological and traumatic diseases. To examine the possible interactions between additional visual feedback and body-weight asymmetry effects, healthy adults were recruited in a protocol with and without additional visual feedback, with different levels of body-weight asymmetry. CP displacements under each foot were recorded and used to compute the resultant CP displacements (CP Res ) and to estimate vertically projected center of gravity (CG v ) and CP Res -CG v displacements. Overall, six conditions were randomly proposed combining two factors: asymmetry with three BW percentage distributions (50/50, 35/65 and 20/80; left/right leg) and feedback (with or without additional VFB). The additional visual feedback technique principally reduces CG v displacements, whereas asymmetry increases CP Res -CG v displacements along the mediolateral axis. Some effects on plantar CP displacements were also observed, but only under the unloaded foot. Interestingly, no interaction between additional visual feedback and body-weight asymmetry was reported. These results suggest that the various postural effects that ensue from manipulating additional visual feedback parameters, shown previously in healthy subjects in various studies, could also apply independently of the level of asymmetry. Visual feedback effects could be observed in patients presenting weight-bearing asymmetries. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. The role of visual and direct force feedback in robotics-assisted mitral valve annuloplasty.

    PubMed

    Currie, Maria E; Talasaz, Ali; Rayman, Reiza; Chu, Michael W A; Kiaii, Bob; Peters, Terry; Trejos, Ana Luisa; Patel, Rajni

    2017-09-01

    The objective of this work was to determine the effect of both direct force feedback and visual force feedback on the amount of force applied to mitral valve tissue during ex vivo robotics-assisted mitral valve annuloplasty. A force feedback-enabled master-slave surgical system was developed to provide both visual and direct force feedback during robotics-assisted cardiac surgery. This system measured the amount of force applied by novice and expert surgeons to cardiac tissue during ex vivo mitral valve annuloplasty repair. The addition of visual (2.16 ± 1.67), direct (1.62 ± 0.86), or both visual and direct force feedback (2.15 ± 1.08) resulted in lower mean maximum force applied to mitral valve tissue while suturing compared with no force feedback (3.34 ± 1.93 N; P < 0.05). To achieve better control of interaction forces on cardiac tissue during robotics-assisted mitral valve annuloplasty suturing, force feedback may be required. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Complex inhibitory microcircuitry regulates retinal signaling near visual threshold

    PubMed Central

    Grimes, William N.; Zhang, Jun; Tian, Hua; Graydon, Cole W.; Hoon, Mrinalini; Rieke, Fred

    2015-01-01

    Neuronal microcircuits, small, localized signaling motifs involving two or more neurons, underlie signal processing and computation in the brain. Compartmentalized signaling within a neuron may enable it to participate in multiple, independent microcircuits. Each A17 amacrine cell in the mammalian retina contains within its dendrites hundreds of synaptic feedback microcircuits that operate independently to modulate feedforward signaling in the inner retina. Each of these microcircuits comprises a small (<1 μm) synaptic varicosity that typically receives one excitatory synapse from a presynaptic rod bipolar cell (RBC) and returns two reciprocal inhibitory synapses back onto the same RBC terminal. Feedback inhibition from the A17 sculpts the feedforward signal from the RBC to the AII, a critical component of the circuitry mediating night vision. Here, we show that the two inhibitory synapses from the A17 to the RBC express kinetically distinct populations of GABA receptors: rapidly activating GABAARs are enriched at one synapse while more slowly activating GABACRs are enriched at the other. Anatomical and electrophysiological data suggest that macromolecular complexes of voltage-gated (Cav) channels and Ca2+-activated K+ channels help to regulate GABA release from A17 varicosities and limit GABACR activation under certain conditions. Finally, we find that selective elimination of A17-mediated feedback inhibition reduces the signal to noise ratio of responses to dim flashes recorded in the feedforward pathway (i.e., the AII amacrine cell). We conclude that A17-mediated feedback inhibition improves the signal to noise ratio of RBC-AII transmission near visual threshold, thereby improving visual sensitivity at night. PMID:25972578

  1. Confocal laser feedback tomography for skin cancer detection

    PubMed Central

    Mowla, Alireza; Du, Benjamin Wensheng; Taimre, Thomas; Bertling, Karl; Wilson, Stephen; Soyer, H. Peter; Rakić, Aleksandar D.

    2017-01-01

    Tomographic imaging of soft tissue such as skin has a potential role in cancer detection. The penetration of infrared wavelengths makes a confocal approach based on laser feedback interferometry feasible. We present a compact system using a semiconductor laser as both transmitter and receiver. Numerical and physical models based on the known optical properties of keratinocyte cancers were developed. We validated the technique on three phantoms containing macro-structural changes in optical properties. Experimental results were in agreement with numerical simulations and structural changes were evident which would permit discrimination of healthy tissue and tumour. Furthermore, cancer type discrimination was also able to be visualized using this imaging technique. PMID:28966845

  2. Confocal laser feedback tomography for skin cancer detection.

    PubMed

    Mowla, Alireza; Du, Benjamin Wensheng; Taimre, Thomas; Bertling, Karl; Wilson, Stephen; Soyer, H Peter; Rakić, Aleksandar D

    2017-09-01

    Tomographic imaging of soft tissue such as skin has a potential role in cancer detection. The penetration of infrared wavelengths makes a confocal approach based on laser feedback interferometry feasible. We present a compact system using a semiconductor laser as both transmitter and receiver. Numerical and physical models based on the known optical properties of keratinocyte cancers were developed. We validated the technique on three phantoms containing macro-structural changes in optical properties. Experimental results were in agreement with numerical simulations and structural changes were evident which would permit discrimination of healthy tissue and tumour. Furthermore, cancer type discrimination was also able to be visualized using this imaging technique.

  3. The Influence of Restricted Visual Feedback on Dribbling Performance in Youth Soccer Players.

    PubMed

    Fransen, Job; Lovell, Thomas W J; Bennett, Kyle J M; Deprez, Dieter; Deconinck, Frederik J A; Lenoir, Matthieu; Coutts, Aaron J

    2017-04-01

    The aim of the current study was to examine the influence of restricted visual feedback using stroboscopic eyewear on the dribbling performance of youth soccer players. Three dribble test conditions were used in a within-subjects design to measure the effect of restricted visual feedback on soccer dribbling performance in 189 youth soccer players (age: 10-18 y) classified as fast, average or slow dribblers. The results showed that limiting visual feedback increased dribble test times across all abilities. Furthermore, the largest performance decrement between stroboscopic and full vision conditions was in fast dribblers, showing that fast dribblers were most affected by reduced visual information. This may be due to a greater dependency on visual feedback at increased speeds, which may limit the ability to maintain continuous control of the ball. These findings may have important implications for the development of soccer dribbling ability.

  4. Dynamic reweighting of three modalities for sensor fusion.

    PubMed

    Hwang, Sungjae; Agada, Peter; Kiemel, Tim; Jeka, John J

    2014-01-01

    We simultaneously perturbed visual, vestibular and proprioceptive modalities to understand how sensory feedback is re-weighted so that overall feedback remains suited to stabilizing upright stance. Ten healthy young subjects received an 80 Hz vibratory stimulus to their bilateral Achilles tendons (stimulus turns on-off at 0.28 Hz), a ± 1 mA binaural monopolar galvanic vestibular stimulus at 0.36 Hz, and a visual stimulus at 0.2 Hz during standing. The visual stimulus was presented at different amplitudes (0.2, 0.8 deg rotation about ankle axis) to measure: the change in gain (weighting) to vision, an intramodal effect; and a change in gain to vibration and galvanic vestibular stimulation, both intermodal effects. The results showed a clear intramodal visual effect, indicating a de-emphasis on vision when the amplitude of visual stimulus increased. At the same time, an intermodal visual-proprioceptive reweighting effect was observed with the addition of vibration, which is thought to change proprioceptive inputs at the ankles, forcing the nervous system to rely more on vision and vestibular modalities. Similar intermodal effects for visual-vestibular reweighting were observed, suggesting that vestibular information is not a "fixed" reference, but is dynamically adjusted in the sensor fusion process. This is the first time, to our knowledge, that the interplay between the three primary modalities for postural control has been clearly delineated, illustrating a central process that fuses these modalities for accurate estimates of self-motion.

  5. Visual and somatic sensory feedback of brain activity for intuitive surgical robot manipulation.

    PubMed

    Miura, Satoshi; Matsumoto, Yuya; Kobayashi, Yo; Kawamura, Kazuya; Nakashima, Yasutaka; Fujie, Masakatsu G

    2015-01-01

    This paper presents a method to evaluate the hand-eye coordination of the master-slave surgical robot by measuring the activation of the intraparietal sulcus in users brain activity during controlling virtual manipulation. The objective is to examine the changes in activity of the intraparietal sulcus when the user's visual or somatic feedback is passed through or intercepted. The hypothesis is that the intraparietal sulcus activates significantly when both the visual and somatic sense pass feedback, but deactivates when either visual or somatic is intercepted. The brain activity of three subjects was measured by the functional near-infrared spectroscopic-topography brain imaging while they used a hand controller to move a virtual arm of a surgical simulator. The experiment was performed several times with three conditions: (i) the user controlled the virtual arm naturally under both visual and somatic feedback passed, (ii) the user moved with closed eyes under only somatic feedback passed, (iii) the user only gazed at the screen under only visual feedback passed. Brain activity showed significantly better control of the virtual arm naturally (p<;0.05) when compared with moving with closed eyes or only gazing among all participants. In conclusion, the brain can activate according to visual and somatic sensory feedback agreement.

  6. Funny money: the attentional role of monetary feedback detached from expected value.

    PubMed

    Roper, Zachary J J; Vecera, Shaun P

    2016-10-01

    Stimuli associated with monetary reward can become powerful cues that effectively capture visual attention. We examined whether such value-driven attentional capture can be induced with monetary feedback in the absence of an expected cash payout. To this end, we implemented images of U.S. dollar bills as reward feedback. Participants knew in advance that they would not receive any money based on their performance. Our reward stimuli-$5 and $20 bill images-were thus dissociated from any practical utility. Strikingly, we observed a reliable attentional capture effect for the mere images of bills. Moreover, this finding generalized to Monopoly money. In two control experiments, we found no evidence in favor of nominal or symbolic monetary value. Hence, we claim that bill images are special monetary representations, such that there are strong associations between the defining visual features of bills and reward, probably due to a lifelong learning history. Together, we show that the motivation to earn cash plays a minor role when it comes to monetary rewards, while bill-defining visual features seem to be sufficient. These findings have the potential to influence human factor applications, such as gamification, and can be extended to novel value systems, such as the electronic cash Bitcoin being developed for use in mobile banking. Finally, our procedure represents a proof of concept on how images of money can be used to conserve expenditures in the experimental context.

  7. The Edison Responsive Environment Learning System, or the Talking Typewriter Developed by Thomas A. Edison Laboratory, a Subsidiary of McGraw Edison Company.

    ERIC Educational Resources Information Center

    Sanderson, Barbara A.; Kratochvil, Daniel W.

    The "Talking Typewriter" is a computerized electric typewriter with visual and audio capabilities. It was designed to create an environment where learning to read would be a successful, enjoyable experience for the student by allowing him to explore, discover relationships, to progress at his own speed, and to receive feedback. This…

  8. Short-term balance training with computer-based feedback in children with cerebral palsy: A feasibility and pilot randomized trial.

    PubMed

    Saxena, Shikha; Rao, Bhamini K; Senthil, Kumaran D

    2017-04-01

    To assess the feasibility of using short-term balance training with computer-based visual feedback (BTVF) and its effect on standing balance in children with bilateral spastic cerebral palsy (BSCP). Out of the fourteen children with BSCP (mean age = 10.31 years), seven children received four sessions of BTVF (two such sessions/day, each session = 15 min) in comparison to the control group that received standard care. Feasibility was measured as percentages of recruitment, retention and safety and balance was measured using a posturography machine as sway velocity (m/s) and velocity moment (m/s 2 ) during quiet standing. No serious adverse events occurred in either group. There were no differences in the retention percentages and in any clinical outcome measure between both groups. Use of BTVF is feasible in children with BSCP but further investigation is required to estimate a dose-effect relationship.

  9. Autogenic-feedback training: A preventive method for space adaptation syndrome

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Sharp, Joseph C.; Toscano, William B.; Kamiya, Joe; Miller, Neal E.

    1987-01-01

    The progress made to date on the reduction of data for Spacelab 3 Shuttle experiment, No. 3AFT23 is reported. Four astronauts participated as subjects in this experiment. Crewmen A and B served as treatment subjects (i.e., received preflight training for control of their own motion sickness symptoms) and Crewmen C and D served as control (i.e., did not receive training). A preliminary evaluation of Autogenic Feedback Training (AFT) was made from visual inspections of graphs that were generated from the preflight and inflight and inflight physiological data which included: (1) Baseline rotating chair tests for all crewmen; (2) Posttraining rotating chair tests of treatment groups subjects; (3) Preflight data from Joint Integrated Simulations for all crewmen; and (4) Flight data for all crewmen during mission days 0 through 4, and mission day 6 for treatment subjects only. A summary of the findings suggested by these data is outlined.

  10. Adaptation of handwriting size under distorted visual feedback in patients with Parkinson's disease and elderly and young controls

    PubMed Central

    Teulings, H; Contreras-Vidal, J; Stelmach, G; Adler, C

    2002-01-01

    Objective: The ability to use visual feedback to control handwriting size was compared in patients with Parkinson's disease (PD), elderly people, and young adults to better understand factors playing a part in parkinsonian micrographia. Methods: The participants wrote sequences of eight cursive l loops with visual target sizes of 0.5 and 2 cm on a flat panel display digitiser which both recorded and displayed the pen movements. In the pre-exposure and postexposure conditions, the display digitiser showed the actual pen trace in real time and real size. In the distortion exposure conditions, the gain of the vertical dimension of the visual feedback was either reduced to 70% or enlarged to 140%. Results: The young controls showed a gradual visuomotor adaptation that compensated for the visual feedback distortions during the exposure conditions. They also showed significant after effects during the postexposure conditions. The elderly controls marginally corrected for the size distortions and showed small after effects. The patients with PD, however, showed no trial by trial adaptations or after effects but instead, a progressive amplification of the distortion effect in each individual trial. Conclusion: The young controls used visual feedback to update their visuomotor map. The elderly controls seemed to make little use of visual feedback. The patients with Parkinson's disease rely on the visual feedback of previous or of ongoing strokes to programme subsequent strokes. This recursive feedback may play a part in the progressive reductions in handwriting size found in parkinsonian micrographia. PMID:11861687

  11. Effects of interactive visual feedback training on post-stroke pusher syndrome: a pilot randomized controlled study.

    PubMed

    Yang, Yea-Ru; Chen, Yi-Hua; Chang, Heng-Chih; Chan, Rai-Chi; Wei, Shun-Hwa; Wang, Ray-Yau

    2015-10-01

    We investigated the effects of a computer-generated interactive visual feedback training program on the recovery from pusher syndrome in stroke patients. Assessor-blinded, pilot randomized controlled study. A total of 12 stroke patients with pusher syndrome were randomly assigned to either the experimental group (N = 7, computer-generated interactive visual feedback training) or control group (N = 5, mirror visual feedback training). The scale for contraversive pushing for severity of pusher syndrome, the Berg Balance Scale for balance performance, and the Fugl-Meyer assessment scale for motor control were the outcome measures. Patients were assessed pre- and posttraining. A comparison of pre- and posttraining assessment results revealed that both training programs led to the following significant changes: decreased severity of pusher syndrome scores (decreases of 4.0 ± 1.1 and 1.4 ± 1.0 in the experimental and control groups, respectively); improved balance scores (increases of 14.7 ± 4.3 and 7.2 ± 1.6 in the experimental and control groups, respectively); and higher scores for lower extremity motor control (increases of 8.4 ± 2.2 and 5.6 ± 3.3 in the experimental and control groups, respectively). Furthermore, the computer-generated interactive visual feedback training program produced significantly better outcomes in the improvement of pusher syndrome (p < 0.01) and balance (p < 0.05) compared with the mirror visual feedback training program. Although both training programs were beneficial, the computer-generated interactive visual feedback training program more effectively aided recovery from pusher syndrome compared with mirror visual feedback training. © The Author(s) 2014.

  12. Effect of Animated Graphic Annotations and Immediate Visual Feedback in Aiding Japanese Pronunciation Learning: A Comparative Study

    ERIC Educational Resources Information Center

    Hew, Soon-Hin; Ohki, Mitsuru

    2004-01-01

    This study examines the effectiveness of imagery and electronic visual feedback in facilitating students' acquisition of Japanese pronunciation skills. The independent variables, animated graphic annotation (AGA) and immediate visual feedback (IVF) were integrated into a Japanese computer-assisted language learning (JCALL) program focused on the…

  13. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke.

    PubMed

    Chow, John W; Stokic, Dobrivoje S

    2018-03-01

    We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.

  14. The role of shared visual information for joint action coordination.

    PubMed

    Vesper, Cordula; Schmitz, Laura; Safra, Lou; Sebanz, Natalie; Knoblich, Günther

    2016-08-01

    Previous research has identified a number of coordination processes that enable people to perform joint actions. But what determines which coordination processes joint action partners rely on in a given situation? The present study tested whether varying the shared visual information available to co-actors can trigger a shift in coordination processes. Pairs of participants performed a movement task that required them to synchronously arrive at a target from separate starting locations. When participants in a pair received only auditory feedback about the time their partner reached the target they held their movement duration constant to facilitate coordination. When they received additional visual information about each other's movements they switched to a fundamentally different coordination process, exaggerating the curvature of their movements to communicate their arrival time. These findings indicate that the availability of shared perceptual information is a major factor in determining how individuals coordinate their actions to obtain joint outcomes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning.

    PubMed

    Sigrist, Roland; Rauter, Georg; Marchal-Crespo, Laura; Riener, Robert; Wolf, Peter

    2015-03-01

    Concurrent augmented feedback has been shown to be less effective for learning simple motor tasks than for complex tasks. However, as mostly artificial tasks have been investigated, transfer of results to tasks in sports and rehabilitation remains unknown. Therefore, in this study, the effect of different concurrent feedback was evaluated in trunk-arm rowing. It was then investigated whether multimodal audiovisual and visuohaptic feedback are more effective for learning than visual feedback only. Naïve subjects (N = 24) trained in three groups on a highly realistic virtual reality-based rowing simulator. In the visual feedback group, the subject's oar was superimposed to the target oar, which continuously became more transparent when the deviation between the oars decreased. Moreover, a trace of the subject's trajectory emerged if deviations exceeded a threshold. The audiovisual feedback group trained with oar movement sonification in addition to visual feedback to facilitate learning of the velocity profile. In the visuohaptic group, the oar movement was inhibited by path deviation-dependent braking forces to enhance learning of spatial aspects. All groups significantly decreased the spatial error (tendency in visual group) and velocity error from baseline to the retention tests. Audiovisual feedback fostered learning of the velocity profile significantly more than visuohaptic feedback. The study revealed that well-designed concurrent feedback fosters complex task learning, especially if the advantages of different modalities are exploited. Further studies should analyze the impact of within-feedback design parameters and the transferability of the results to other tasks in sports and rehabilitation.

  16. Visually induced analgesia during massage treatment in chronic back pain patients.

    PubMed

    Löffler, A; Trojan, J; Zieglgänsberger, W; Diers, M

    2017-11-01

    Previous findings suggest that watching sites of experimental and chronic pain can exert an analgesic effect. Our present study investigates whether watching one's back during massage increases the analgesic effect of this treatment in chronic back pain patients. Twenty patients with chronic back pain were treated with a conventional massage therapy. During this treatment, patients received a real-time video feedback of their own back. Watching a neutral object, a video of another person of the same sex being massaged, a picture of the own back, and keeping one's eyes closed were used as controls. These conditions were presented in randomized order on five separate days. All conditions yielded significant decreases in habitual pain intensity. The effect of real-time video feedback of the own back on massage treatment was the strongest and differed significantly from the effect of watching a neutral object, but not from the other control conditions, which may have induced slight effects of their own. Repeated real-time video feedback may be useful during massage treatment of chronic pain. This study shows that inducing visual induced analgesia during massage treatment can be helpful in alleviating chronic pain. © 2017 European Pain Federation - EFIC®.

  17. Delayed visual feedback affects both manual tracking and grip force control when transporting a handheld object.

    PubMed

    Sarlegna, Fabrice R; Baud-Bovy, Gabriel; Danion, Frédéric

    2010-08-01

    When we manipulate an object, grip force is adjusted in anticipation of the mechanical consequences of hand motion (i.e., load force) to prevent the object from slipping. This predictive behavior is assumed to rely on an internal representation of the object dynamic properties, which would be elaborated via visual information before the object is grasped and via somatosensory feedback once the object is grasped. Here we examined this view by investigating the effect of delayed visual feedback during dextrous object manipulation. Adult participants manually tracked a sinusoidal target by oscillating a handheld object whose current position was displayed as a cursor on a screen along with the visual target. A delay was introduced between actual object displacement and cursor motion. This delay was linearly increased (from 0 to 300 ms) and decreased within 2-min trials. As previously reported, delayed visual feedback altered performance in manual tracking. Importantly, although the physical properties of the object remained unchanged, delayed visual feedback altered the timing of grip force relative to load force by about 50 ms. Additional experiments showed that this effect was not due to task complexity nor to manual tracking. A model inspired by the behavior of mass-spring systems suggests that delayed visual feedback may have biased the representation of object dynamics. Overall, our findings support the idea that visual feedback of object motion can influence the predictive control of grip force even when the object is grasped.

  18. A software module for implementing auditory and visual feedback on a video-based eye tracking system

    NASA Astrophysics Data System (ADS)

    Rosanlall, Bharat; Gertner, Izidor; Geri, George A.; Arrington, Karl F.

    2016-05-01

    We describe here the design and implementation of a software module that provides both auditory and visual feedback of the eye position measured by a commercially available eye tracking system. The present audio-visual feedback module (AVFM) serves as an extension to the Arrington Research ViewPoint EyeTracker, but it can be easily modified for use with other similar systems. Two modes of audio feedback and one mode of visual feedback are provided in reference to a circular area-of-interest (AOI). Auditory feedback can be either a click tone emitted when the user's gaze point enters or leaves the AOI, or a sinusoidal waveform with frequency inversely proportional to the distance from the gaze point to the center of the AOI. Visual feedback is in the form of a small circular light patch that is presented whenever the gaze-point is within the AOI. The AVFM processes data that are sent to a dynamic-link library by the EyeTracker. The AVFM's multithreaded implementation also allows real-time data collection (1 kHz sampling rate) and graphics processing that allow display of the current/past gaze-points as well as the AOI. The feedback provided by the AVFM described here has applications in military target acquisition and personnel training, as well as in visual experimentation, clinical research, marketing research, and sports training.

  19. The effectiveness of VIPP-V parenting training for parents of young children with a visual or visual-and-intellectual disability: study protocol of a multicenter randomized controlled trial.

    PubMed

    Overbeek, Mathilde M; Sterkenburg, Paula S; Kef, Sabina; Schuengel, Carlo

    2015-09-09

    Visual or visual-and-intellectual disabilities of children make daily interactions more difficult for their parents and may impact the quality of the parent-child relationship. To support these parents, an existing intervention (Video-feedback Intervention to promote Positive Parenting; VIPP; Juffer F, Bakermans-Kranenburg MJ, van IJzendoorn MH, 2008. Promoting positive parenting; an attachment-based intervention. Mahwah, NJ: Lawrence Erlbaum Associates; 2008) was adapted for use with parents of children with a visual or visual-and-intellectual disability (VIPP-V). This attachment-based intervention was hypothesized to support parents' interpretation and understanding of the behavior of their child with a visual or visual-and-intellectual disability and respond to their child's signals in a sensitive way to improve parent-child interaction quality. A randomized controlled trial (RCT) will be conducted to assess the effectiveness of the adapted intervention VIPP-V (Video-feedback Intervention to promote Positive Parenting in parents of children with Visual or visual-and-intellectual disabilities). Parent-child dyads will be randomized into two groups: 50 dyads will receive VIPP-V in combination with care-as-usual and 50 dyads will receive care-as-usual. Families with a child (1-5 years of age) with a visual or visual-and-intellectual disability will be recruited for participation in the study. Primary outcome measures are parental sensitivity and the quality of parent-child interaction. Secondary outcome measures are parental self-efficacy, and parenting stress. To assess feasibility of implementation of the intervention the experiences of early intervention workers with regard to using VIPP-V are assessed. Moderator variables are the child's developmental age, working alliance between parent and VIPP-V intervention worker and empathy of the VIPP-V intervention worker. Data will be collected approximately one week before the intervention starts (T1), one week (T2) and three months (T3) after the intervention. Parent-child dyads in the care-as-usual-only condition will be assessed at the same time points. Both intention-to-treat and completer analyses will be performed. Descriptive findings in pilot cases suggest benefits from VIPP-V, and compatibility with existing services for parents of children with a visual or visual-and-intellectual disability. The current study will provide insight into the effectiveness of this intervention for parents of children with a visual or visual-and-intellectual disability, and, if the intervention is effective, prepare the field for broad-scale implementation. Nederlands Trial Register NTR4306 (registered 5 December 2013).

  20. A tactual display aid for primary flight training

    NASA Technical Reports Server (NTRS)

    Gilson, R. D.

    1979-01-01

    A means of flight instruction is discussed. In addition to verbal assistance, control feedback was continously presented via a nonvisual means utilizing touch. A kinesthetic-tactile (KT) display was used as a readout and tracking device for a computer generated signal of desired angle of attack during the approach and landing. Airspeed and glide path information was presented via KT or visual heads up display techniques. Performance with the heads up display of pitch information was shown to be significantly better than performance with the KT pitch display. Testing without the displays showed that novice pilots who had received tactile pitch error information performed both pitch and throttle control tasks significantly better than those who had received the same information from the visual heads up display of pitch during the test series of approaches to landing.

  1. Effects of Real-Time Visual Feedback on Pre-Service Teachers' Singing

    ERIC Educational Resources Information Center

    Leong, S.; Cheng, L.

    2014-01-01

    This pilot study focuses on the use real-time visual feedback technology (VFT) in vocal training. The empirical research has two aims: to ascertain the effectiveness of the real-time visual feedback software "Sing & See" in the vocal training of pre-service music teachers and the teachers' perspective on their experience with…

  2. Use of visual CO2 feedback as a retrofit solution for improving classroom air quality.

    PubMed

    Wargocki, P; Da Silva, N A F

    2015-02-01

    Carbon dioxide (CO2 ) sensors that provide a visual indication were installed in classrooms during normal school operation. During 2-week periods, teachers and students were instructed to open the windows in response to the visual CO2 feedback in 1 week and open them, as they would normally do, without visual feedback, in the other week. In the heating season, two pairs of classrooms were monitored, one pair naturally and the other pair mechanically ventilated. In the cooling season, two pairs of naturally ventilated classrooms were monitored, one pair with split cooling in operation and the other pair with no cooling. Classrooms were matched by grade. Providing visual CO2 feedback reduced CO2 levels, as more windows were opened in this condition. This increased energy use for heating and reduced the cooling requirement in summertime. Split cooling reduced the frequency of window opening only when no visual CO2 feedback was present. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Handrim wheelchair propulsion training effect on overground propulsion using biomechanical real-time visual feedback.

    PubMed

    Rice, Ian M; Pohlig, Ryan T; Gallagher, Jerri D; Boninger, Michael L

    2013-02-01

    To compare the effects of 2 manual wheelchair propulsion training programs on handrim kinetics, contact angle, and stroke frequency collected during overground propulsion. Randomized controlled trial comparing handrim kinetics between 3 groups: a control group that received no training, an instruction-only group that reviewed a multimedia presentation, and a feedback group that reviewed the multimedia presentation and real-time visual feedback. Research laboratory. Full-time manual wheelchair users (N=27) with spinal cord injury living in the Pittsburgh area. Propulsion training was given 3 times over 3 weeks, and data were collected at baseline, immediately after training, and at 3 months. Contact angle, stroke frequency, peak resultant force, and peak rate of rise of resultant force. Both feedback and instruction-only groups improved their propulsion biomechanics across all surfaces (carpet, tile, and ramp) at both target and self-selected speeds compared with the control group. While controlling for velocity, both intervention groups showed long-term reductions in the peak rate or rise of resultant force, stroke frequency, and increased contact angle. Long-term wheelchair users in both intervention groups significantly improved many aspects of their propulsion technique immediately after training and 3 months from baseline. Furthermore, training with a low-cost instructional video and slide presentation was an effective training tool alone. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Neural Substrates of Visual Spatial Coding and Visual Feedback Control for Hand Movements in Allocentric and Target-Directed Tasks

    PubMed Central

    Thaler, Lore; Goodale, Melvyn A.

    2011-01-01

    Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal–occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of movements. PMID:21941474

  5. Reducing failures of working memory with performance feedback.

    PubMed

    Adam, Kirsten C S; Vogel, Edward K

    2016-10-01

    Fluctuations in attentional control can lead to failures of working memory (WM), in which the subject is no better than chance at reporting items from a recent display. In three experiments, we used a whole-report measure of visual WM to examine the impact of feedback on the rate of failures. In each experiment, subjects remembered an array of colored items across a blank delay, and then reported the identity of items using a whole-report procedure. In Experiment 1, we gave subjects simple feedback about the number of items they correctly identified at the end of each trial. In Experiment 2, we gave subjects additional information about the cumulative number of items correctly identified within each block. Finally, in Experiment 3, we gave subjects weighted feedback in which poor trials resulted in lost points and consistent successful performance received "streak" points. Surprisingly, simple feedback (Exp. 1) was ineffective at improving average performance or decreasing the rate of poor-performance trials. Simple cumulative feedback (Exp. 2) modestly decreased poor-performance trials (by 7 %). Weighted feedback produced the greatest benefits, decreasing the frequency of poor-performance trials by 28 % relative to baseline performance. This set of results demonstrates the usefulness of whole-report WM measures for investigating the effects of feedback on WM performance. Further, we showed that only a feedback structure that specifically discouraged lapses using negative feedback led to large reductions in WM failures.

  6. A study on haptic collaborative game in shared virtual environment

    NASA Astrophysics Data System (ADS)

    Lu, Keke; Liu, Guanyang; Liu, Lingzhi

    2013-03-01

    A study on collaborative game in shared virtual environment with haptic feedback over computer networks is introduced in this paper. A collaborative task was used where the players located at remote sites and played the game together. The player can feel visual and haptic feedback in virtual environment compared to traditional networked multiplayer games. The experiment was desired in two conditions: visual feedback only and visual-haptic feedback. The goal of the experiment is to assess the impact of force feedback on collaborative task performance. Results indicate that haptic feedback is beneficial for performance enhancement for collaborative game in shared virtual environment. The outcomes of this research can have a powerful impact on the networked computer games.

  7. Effects of Varied Enhancement Strategies (Chunking, Feedback, Gaming) in Complementing Animated Instruction in Facilitating Different Types of Learning Objectives

    ERIC Educational Resources Information Center

    Munyofu, Mine

    2008-01-01

    The purpose of this study was to examine the instructional effectiveness of different levels of chunking (simple visual/text and complex visual/text), different forms of feedback (item-by-item feedback, end-of-test feedback and no feedback), and use of instructional gaming (game and no game) in complementing animated programmed instruction on a…

  8. Improving Written Communication Through Minimal Feedback

    PubMed Central

    Traxler, Matthew J.; Gernsbacher, Morton Ann

    2014-01-01

    We propose that writers must form accurate representations of how their readers will interpret their texts to convey their ideas successfully. In two experiments, we investigated whether getting feedback from their readers helps writers form better representations of how their texts are interpreted. In our first experiment, one group of subjects (writers) wrote descriptions of a set of geometric figures; another group of subjects (readers) read those descriptions and used them to select the figures from sets of similar looking distractor figures. Half the writers received feedback on how well their readers selected the figures, and half the writers did not receive this feedback. Those writers who received feedback improved their descriptions more than those writers who did not receive feedback. In our second experiment, half the writers received two treatments of feedback on their descriptions of one set of figures, whereas the other half of the writers did not receive feedback. Then, all the writers described a new set of figures. Those writers who had previously received feedback wrote better new descriptions than did those writers who had never received feedback. We concluded that feedback – even this minimal form of feedback – helps writers to envision how readers interpret their texts. PMID:25520535

  9. The Effects of Mirror Feedback during Target Directed Movements on Ipsilateral Corticospinal Excitability

    PubMed Central

    Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei V.; Tunik, Eugene

    2017-01-01

    Mirror visual feedback (MVF) training is a promising technique to promote activation in the lesioned hemisphere following stroke, and aid recovery. However, current outcomes of MVF training are mixed, in part, due to variability in the task undertaken during MVF. The present study investigated the hypothesis that movements directed toward visual targets may enhance MVF modulation of motor cortex (M1) excitability ipsilateral to the trained hand compared to movements without visual targets. Ten healthy subjects participated in a 2 × 2 factorial design in which feedback (veridical, mirror) and presence of a visual target (target present, target absent) for a right index-finger flexion task were systematically manipulated in a virtual environment. To measure M1 excitability, transcranial magnetic stimulation (TMS) was applied to the hemisphere ipsilateral to the trained hand to elicit motor evoked potentials (MEPs) in the untrained first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles at rest prior to and following each of four 2-min blocks of 30 movements (B1–B4). Targeted movement kinematics without visual feedback was measured before and after training to assess learning and transfer. FDI MEPs were decreased in B1 and B2 when movements were made with veridical feedback and visual targets were absent. FDI MEPs were decreased in B2 and B3 when movements were made with mirror feedback and visual targets were absent. FDI MEPs were increased in B3 when movements were made with mirror feedback and visual targets were present. Significant MEP changes were not present for the uninvolved ADM, suggesting a task-specific effect. Analysis of kinematics revealed learning occurred in visual target-directed conditions, but transfer was not sensitive to mirror feedback. Results are discussed with respect to current theoretical mechanisms underlying MVF-induced changes in ipsilateral excitability. PMID:28553218

  10. Effect of visuomotor-map uncertainty on visuomotor adaptation.

    PubMed

    Saijo, Naoki; Gomi, Hiroaki

    2012-03-01

    Vision and proprioception contribute to generating hand movement. If a conflict between the visual and proprioceptive feedback of hand position is given, reaching movement is disturbed initially but recovers after training. Although previous studies have predominantly investigated the adaptive change in the motor output, it is unclear whether the contributions of visual and proprioceptive feedback controls to the reaching movement are modified by visuomotor adaptation. To investigate this, we focused on the change in proprioceptive feedback control associated with visuomotor adaptation. After the adaptation to gradually introduce visuomotor rotation, the hand reached the shifted position of the visual target to move the cursor to the visual target correctly. When the cursor feedback was occasionally eliminated (probe trial), the end point of the hand movement was biased in the visual-target direction, while the movement was initiated in the adapted direction, suggesting the incomplete adaptation of proprioceptive feedback control. Moreover, after the learning of uncertain visuomotor rotation, in which the rotation angle was randomly fluctuated on a trial-by-trial basis, the end-point bias in the probe trial increased, but the initial movement direction was not affected, suggesting a reduction in the adaptation level of proprioceptive feedback control. These results suggest that the change in the relative contribution of visual and proprioceptive feedback controls to the reaching movement in response to the visuomotor-map uncertainty is involved in visuomotor adaptation, whereas feedforward control might adapt in a manner different from that of the feedback control.

  11. Formative evaluation of the feedback component of Children's and Adolescents' Nutrition Assessment and Advice on the Web (CANAA-W) among parents of schoolchildren.

    PubMed

    Vereecken, Carine; Covents, Marc; Maes, Lea; Moyson, Tinneke

    2013-01-01

    The aim of the paper is to describe the formative evaluation of the feedback component of an online nutrition tailoring instrument, the Children's and Adolescents' Nutrition Assessment and Advice on the Web (CANAA-W), among parents of schoolchildren. Parents of pre-primary and primary-school children recorded their child's food intake over 3 d with CANAA-W and completed the evaluation questionnaire online. A subsample participated in focus group discussions. Parents completed CANAA-W at home. Forty-six parents completed the evaluation questionnaire. Seventeen parents participated in three focus group discussions. Parents were enthusiastic: the majority (81 % or more) found the advice comprehensible, interesting, logical, useful, believable, well formulated, correct, personal, relevant, complete, attractive, containing enough and not too much information; they indicated that it is helpful to improve their children's eating habits and that they intend to use it. The qualitative analyses revealed that the respondents appreciated the confrontation with their child's diet and the visualization (i.e. traffic light colours, pictograms, food models, diagrams). The length of the feedback was rather a drawback, but it was useful nevertheless. CANAA-W was well received by the parents; the scores on the feasibility questionnaire were high and the qualitative analyses showed that the confrontation with their child's diet, and attractive visualization of the most relevant feedback linked to more elaborated optional feedback, were well appreciated. The major challenge will be to convince parents who are less interested in food habits and less computer-literate to participate in this type of study.

  12. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation

    PubMed Central

    Anthony Eikema, Diderik Jan A.; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A.; Scott-Pandorf, Melissa M.; Bloomberg, Jacob J.; Mukherjee, Mukul

    2015-01-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, is believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study we therefore investigated the effect of optic flow on tactile stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices, and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetry were similar in the two groups, suggesting that temporal parameters are not modified by optic flow. However, whereas the TC group displayed significant stance time asymmetries during the post-treadmill session, such aftereffects were absent in the VRT group. The results indicated that the enhanced transfer resulting from exposure to plantar cutaneous vibration during adaptation was alleviated by optic flow information. The presence of visual self-motion information may have reduced proprioceptive gain during learning. Thus, during overground walking, the learned proprioceptive split-belt pattern is more rapidly overridden by visual input due to its increased relative gain. The results suggest that when visual stimulation is provided during adaptive training, the system acquires the novel movement dynamics while maintaining the ability to flexibly adapt to different environments. PMID:26525712

  13. Visual Reliance for Balance Control in Older Adults Persists When Visual Information Is Disrupted by Artificial Feedback Delays

    PubMed Central

    Balasubramaniam, Ramesh

    2014-01-01

    Sensory information from our eyes, skin and muscles helps guide and correct balance. Less appreciated, however, is that delays in the transmission of sensory information between our eyes, limbs and central nervous system can exceed several 10s of milliseconds. Investigating how these time-delayed sensory signals influence balance control is central to understanding the postural system. Here, we investigate how delayed visual feedback and cognitive performance influence postural control in healthy young and older adults. The task required that participants position their center of pressure (COP) in a fixed target as accurately as possible without visual feedback about their COP location (eyes-open balance), or with artificial time delays imposed on visual COP feedback. On selected trials, the participants also performed a silent arithmetic task (cognitive dual task). We separated COP time series into distinct frequency components using low and high-pass filtering routines. Visual feedback delays affected low frequency postural corrections in young and older adults, with larger increases in postural sway noted for the group of older adults. In comparison, cognitive performance reduced the variability of rapid center of pressure displacements in young adults, but did not alter postural sway in the group of older adults. Our results demonstrate that older adults prioritize vision to control posture. This visual reliance persists even when feedback about the task is delayed by several hundreds of milliseconds. PMID:24614576

  14. Unipedal balance in healthy adults: effect of visual environments yielding decreased lateral velocity feedback.

    PubMed

    Deyer, T W; Ashton-Miller, J A

    1999-09-01

    To test the (null) hypotheses that the reliability of unipedal balance is unaffected by the attenuation of visual velocity feedback and that, relative to baseline performance, deterioration of balance success rates from attenuated visual velocity feedback will not differ between groups of young men and older women, and the presence (or absence) of a vertical foreground object will not affect balance success rates. Single blind, single case study. University research laboratory. Two volunteer samples: 26 healthy young men (mean age, 20.0yrs; SD, 1.6); 23 healthy older women (mean age, 64.9 yrs; SD, 7.8). Normalized success rates in unipedal balance task. Subjects were asked to transfer to and maintain unipedal stance for 5 seconds in a task near the limit of their balance capabilities. Subjects completed 64 trials: 54 trials of three experimental visual scenes in blocked randomized sequences of 18 trials and 10 trials in a normal visual environment. The experimental scenes included two that provided strong velocity/weak position feedback, one of which had a vertical foreground object (SVWP+) and one without (SVWP-), and one scene providing weak velocity/strong position (WVSP) feedback. Subjects' success rates in the experimental environments were normalized by the success rate in the normal environment in order to allow comparisons between subjects using a mixed model repeated measures analysis of variance. The normalized success rate was significantly greater in SVWP+ than in WVSP (p = .0001) and SVWP- (p = .013). Visual feedback significantly affected the normalized unipedal balance success rates (p = .001); neither the group effect nor the group X visual environment interaction was significant (p = .9362 and p = .5634, respectively). Normalized success rates did not differ significantly between the young men and older women in any visual environment. Near the limit of the young men's or older women's balance capability, the reliability of transfer to unipedal balance was adversely affected by visual environments offering attenuated visual velocity feedback cues and those devoid of vertical foreground objects.

  15. Lingual electrotactile stimulation as an alternative sensory feedback pathway for brain-computer interface applications

    NASA Astrophysics Data System (ADS)

    Wilson, J. Adam; Walton, Léo M.; Tyler, Mitch; Williams, Justin

    2012-08-01

    This article describes a new method of providing feedback during a brain-computer interface movement task using a non-invasive, high-resolution electrotactile vision substitution system. We compared the accuracy and movement times during a center-out cursor movement task, and found that the task performance with tactile feedback was comparable to visual feedback for 11 participants. These subjects were able to modulate the chosen BCI EEG features during both feedback modalities, indicating that the type of feedback chosen does not matter provided that the task information is clearly conveyed through the chosen medium. In addition, we tested a blind subject with the tactile feedback system, and found that the training time, accuracy, and movement times were indistinguishable from results obtained from subjects using visual feedback. We believe that BCI systems with alternative feedback pathways should be explored, allowing individuals with severe motor disabilities and accompanying reduced visual and sensory capabilities to effectively use a BCI.

  16. Visual Feedback of the Non-Moving Limb Improves Active Joint-Position Sense of the Impaired Limb in Spastic Hemiparetic Cerebral Palsy

    ERIC Educational Resources Information Center

    Smorenburg, Ana R. P.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.

    2011-01-01

    This study examined the active joint-position sense in children with Spastic Hemiparetic Cerebral Palsy (SHCP) and the effect of static visual feedback and static mirror visual feedback, of the non-moving limb, on the joint-position sense. Participants were asked to match the position of one upper limb with that of the contralateral limb. The task…

  17. Watch what you type: the role of visual feedback from the screen and hands in skilled typewriting.

    PubMed

    Snyder, Kristy M; Logan, Gordon D; Yamaguchi, Motonori

    2015-01-01

    Skilled typing is controlled by two hierarchically structured processing loops (Logan & Crump, 2011): The outer loop, which produces words, commands the inner loop, which produces keystrokes. Here, we assessed the interplay between the two loops by investigating how visual feedback from the screen (responses either were or were not echoed on the screen) and the hands (the hands either were or were not covered with a box) influences the control of skilled typing. Our results indicated, first, that the reaction time of the first keystroke was longer when responses were not echoed than when they were. Also, the interkeystroke interval (IKSI) was longer when the hands were covered than when they were visible, and the IKSI for responses that were not echoed was longer when explicit error monitoring was required (Exp. 2) than when it was not required (Exp. 1). Finally, explicit error monitoring was more accurate when response echoes were present than when they were absent, and implicit error monitoring (i.e., posterror slowing) was not influenced by visual feedback from the screen or the hands. These findings suggest that the outer loop adjusts the inner-loop timing parameters to compensate for reductions in visual feedback. We suggest that these adjustments are preemptive control strategies designed to execute keystrokes more cautiously when visual feedback from the hands is absent, to generate more cautious motor programs when visual feedback from the screen is absent, and to enable enough time for the outer loop to monitor keystrokes when visual feedback from the screen is absent and explicit error reports are required.

  18. Visual feedback-related changes in ipsilateral cortical excitability during unimanual movement: Implications for mirror therapy.

    PubMed

    Reissig, Paola; Garry, Michael I; Summers, Jeffery J; Hinder, Mark R

    2014-01-01

    Provision of a mirror image of a hand undertaking a motor task (i.e., mirror therapy) elicits behavioural improvements in the inactive hand. A greater understanding of the neural mechanisms underpinning this phenomenon is required to maximise its potential for rehabilitation across the lifespan, e.g., following hemiparesis or unilateral weakness. Young and older participants performed unilateral finger abductions with no visual feedback, with feedback of the active or passive hands, or with a mirror image of the active hand. Transcranial magnetic stimulation was used to assess feedback-related changes in two neurophysiological measures thought to be involved in inter-manual transfer of skill, namely corticospinal excitability (CSE) and intracortical inhibition (SICI) in the passive hemisphere. Task performance led to CSE increases, accompanied by decreases of SICI, in all visual feedback conditions relative to rest. However, the changes due to mirror feedback were not significantly different to those observed in the other (more standard) visual conditions. Accordingly, the unimanual motor action itself, rather than modifications in visual feedback, appears more instrumental in driving changes in CSE and SICI. Therefore, changes in CSE and SICI are unlikely to underpin the behavioural benefits of mirror therapy. We discuss implications for rehabilitation and directions of future research.

  19. Information and reward in voluntary heart rate control.

    PubMed

    Bouchard, M A; Granger, L

    1980-10-01

    Two studies are reported which examined the relative effects of the pressence and absence of monetary incentives and instructions in a heart rate (HR) regulation task. Twelve male undergraduates were offered seven sessions of feedback assisted voluntary HR control training. In Experiment 1 six S s attempted to increase their HR with the aid of a "success," or positive binary visual signal. In Experiment 2 six S s were instructed to decrease their HR and were assisted by a "failure," or negative binary visual signal. In both studies the presence or absence of E's specific instructions to control HR was systematically varied from sessions 4 to 7. S s were paid on only half of the feedback trials of each session. These variables were thus systematically varied in a within-subject design. The main results suggest that (a) the instructions and monetary incentives significantly facilitated HR acceleration while showing no effects on HR deceleration; (b) in the no-instructions, no-incentive condition, HR control was minimal. The general hypothesis that Estes' interpretation of information and reward apply to human voluntary HR control received some support. It would appear that contrary to a traditional view, the exteroceptive feedback per se does not necessarily act as a reinforcer of the behavior, as witnessed for instance in the no-instructions, no-incentive conditions.

  20. Cortical feedback signals generalise across different spatial frequencies of feedforward inputs.

    PubMed

    Revina, Yulia; Petro, Lucy S; Muckli, Lars

    2017-09-22

    Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Distinct roles of the cortical layers of area V1 in figure-ground segregation.

    PubMed

    Self, Matthew W; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R

    2013-11-04

    What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward, horizontal, and feedback processes at different time points. These different connection types have different patterns of laminar terminations in V1 and can therefore be distinguished with laminar recordings. We found that the visual response started 40 ms after stimulus presentation in layers 4 and 6, which are targets of feedforward connections from the lateral geniculate nucleus and distribute activity to the other layers. Boundary detection started shortly after the visual response. In this phase, boundaries of the figure induced synaptic currents and stronger neuronal responses in upper layer 4 and the superficial layers ~70 ms after stimulus onset, consistent with the hypothesis that they are detected by horizontal connections. In the next phase, ~30 ms later, synaptic inputs arrived in layers 1, 2, and 5 that receive feedback from higher visual areas, which caused the filling in of the representation of the entire figure with enhanced neuronal activity. The present results reveal unique contributions of the different cortical layers to the formation of a visual percept. This new blueprint of laminar processing may generalize to other tasks and to other areas of the cerebral cortex, where the layers are likely to have roles similar to those in area V1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Effects of visual feedback with a mirror on balance ability in patients with stroke.

    PubMed

    In, Tae-Sung; Cha, Yu-Ri; Jung, Jin-Hwa; Jung, Kyoung-Sim

    2016-01-01

    [Purpose] This study aimed to examine the effects of a visual feedback obtained from a mirror on balance ability during quiet standing in patients with stroke. [Subjects] Fifteen patients with stroke (9 males, 6 females) enrolled in the study. [Methods] Experimental trials (duration, 20s) included three visual conditions (eyes closed, eyes open, and mirror feedback) and two support surface conditions (stable, and unstable). Center of pressure (COP) displacements in the mediolateral and anteroposterior directions were recorded using a force platform. [Results] No effect of condition was observed along all directions on the stable surface. An effect of condition was observed on the unstable surface, with a smaller mediolateral COP distance in the mirror feedback as compared to the other two conditions. Similar results were observed for the COP speed. [Conclusion] Visual feedback from a mirror is beneficial for improving balance ability during quiet standing on an unstable surface in patients with stroke.

  3. Real-time computer-based visual feedback improves visual acuity in downbeat nystagmus - a pilot study.

    PubMed

    Teufel, Julian; Bardins, S; Spiegel, Rainer; Kremmyda, O; Schneider, E; Strupp, M; Kalla, R

    2016-01-04

    Patients with downbeat nystagmus syndrome suffer from oscillopsia, which leads to an unstable visual perception and therefore impaired visual acuity. The aim of this study was to use real-time computer-based visual feedback to compensate for the destabilizing slow phase eye movements. The patients were sitting in front of a computer screen with the head fixed on a chin rest. The eye movements were recorded by an eye tracking system (EyeSeeCam®). We tested the visual acuity with a fixed Landolt C (static) and during real-time feedback driven condition (dynamic) in gaze straight ahead and (20°) sideward gaze. In the dynamic condition, the Landolt C moved according to the slow phase eye velocity of the downbeat nystagmus. The Shapiro-Wilk test was used to test for normal distribution and one-way ANOVA for comparison. Ten patients with downbeat nystagmus were included in the study. Median age was 76 years and the median duration of symptoms was 6.3 years (SD +/- 3.1y). The mean slow phase velocity was moderate during gaze straight ahead (1.44°/s, SD +/- 1.18°/s) and increased significantly in sideward gaze (mean left 3.36°/s; right 3.58°/s). In gaze straight ahead, we found no difference between the static and feedback driven condition. In sideward gaze, visual acuity improved in five out of ten subjects during the feedback-driven condition (p = 0.043). This study provides proof of concept that non-invasive real-time computer-based visual feedback compensates for the SPV in DBN. Therefore, real-time visual feedback may be a promising aid for patients suffering from oscillopsia and impaired text reading on screen. Recent technological advances in the area of virtual reality displays might soon render this approach feasible in fully mobile settings.

  4. The absence or temporal offset of visual feedback does not influence adaptation to novel movement dynamics.

    PubMed

    McKenna, Erin; Bray, Laurence C Jayet; Zhou, Weiwei; Joiner, Wilsaan M

    2017-10-01

    Delays in transmitting and processing sensory information require correctly associating delayed feedback to issued motor commands for accurate error compensation. The flexibility of this alignment between motor signals and feedback has been demonstrated for movement recalibration to visual manipulations, but the alignment dependence for adapting movement dynamics is largely unknown. Here we examined the effect of visual feedback manipulations on force-field adaptation. Three subject groups used a manipulandum while experiencing a lag in the corresponding cursor motion (0, 75, or 150 ms). When the offset was applied at the start of the session (continuous condition), adaptation was not significantly different between groups. However, these similarities may be due to acclimation to the offset before motor adaptation. We tested additional subjects who experienced the same delays concurrent with the introduction of the perturbation (abrupt condition). In this case adaptation was statistically indistinguishable from the continuous condition, indicating that acclimation to feedback delay was not a factor. In addition, end-point errors were not significantly different across the delay or onset conditions, but end-point correction (e.g., deceleration duration) was influenced by the temporal offset. As an additional control, we tested a group of subjects who performed without visual feedback and found comparable movement adaptation results. These results suggest that visual feedback manipulation (absence or temporal misalignment) does not affect adaptation to novel dynamics, independent of both acclimation and perceptual awareness. These findings could have implications for modeling how the motor system adjusts to errors despite concurrent delays in sensory feedback information. NEW & NOTEWORTHY A temporal offset between movement and distorted visual feedback (e.g., visuomotor rotation) influences the subsequent motor recalibration, but the effects of this offset for altered movement dynamics are largely unknown. Here we examined the influence of 1 ) delayed and 2 ) removed visual feedback on the adaptation to novel movement dynamics. These results contribute to understanding of the control strategies that compensate for movement errors when there is a temporal separation between motion state and sensory information. Copyright © 2017 the American Physiological Society.

  5. Upper extremity rehabilitation of stroke: facilitation of corticospinal excitability using virtual mirror paradigm.

    PubMed

    Kang, Youn Joo; Park, Hae Kyung; Kim, Hyun Jung; Lim, Taeo; Ku, Jeonghun; Cho, Sangwoo; Kim, Sun I; Park, Eun Sook

    2012-10-04

    Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described. We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror. Moreover, we attempted to delineate the role of visual modulation within the virtual environment that affected corticospinal excitability in healthy subjects and stroke patients. A total of 18 healthy subjects and 18 hemiplegic patients were enrolled into the study. Motor evoked potential (MEP)s from transcranial magnetic stimulation were recorded in the flexor carpi radialis of the non-dominant or affected upper extremity using three different conditions: (A) relaxation; (B) real mirror; and (C) virtual mirror. Moreover, we compared the MEPs from the virtual mirror paradigm using continuous visual feedback or intermittent visual feedback. The rates of amplitude increment and latency decrement of MEPs in both groups were higher during the virtual mirror task than during the real mirror. In healthy subjects and stroke patients, the virtual mirror task with intermittent visual feedback significantly facilitated corticospinal excitability of MEPs compared with continuous visual feedback. Corticospinal excitability was facilitated to a greater extent in the virtual mirror paradigm than in the real mirror and in intermittent visual feedback than in the continuous visual feedback, in both groups. This provides neurophysiological evidence supporting the application of the virtual mirror paradigm using various visual modulation technologies to upper extremity rehabilitation in stroke patients.

  6. Upper extremity rehabilitation of stroke: Facilitation of corticospinal excitability using virtual mirror paradigm

    PubMed Central

    2012-01-01

    Background Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described. Objectives We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror. Moreover, we attempted to delineate the role of visual modulation within the virtual environment that affected corticospinal excitability in healthy subjects and stroke patients. Methods A total of 18 healthy subjects and 18 hemiplegic patients were enrolled into the study. Motor evoked potential (MEP)s from transcranial magnetic stimulation were recorded in the flexor carpi radialis of the non-dominant or affected upper extremity using three different conditions: (A) relaxation; (B) real mirror; and (C) virtual mirror. Moreover, we compared the MEPs from the virtual mirror paradigm using continuous visual feedback or intermittent visual feedback. Results The rates of amplitude increment and latency decrement of MEPs in both groups were higher during the virtual mirror task than during the real mirror. In healthy subjects and stroke patients, the virtual mirror task with intermittent visual feedback significantly facilitated corticospinal excitability of MEPs compared with continuous visual feedback. Conclusion Corticospinal excitability was facilitated to a greater extent in the virtual mirror paradigm than in the real mirror and in intermittent visual feedback than in the continuous visual feedback, in both groups. This provides neurophysiological evidence supporting the application of the virtual mirror paradigm using various visual modulation technologies to upper extremity rehabilitation in stroke patients. PMID:23035951

  7. Effects of Vibrotactile Feedback on Human Learning of Arm Motions

    PubMed Central

    Bark, Karlin; Hyman, Emily; Tan, Frank; Cha, Elizabeth; Jax, Steven A.; Buxbaum, Laurel J.; Kuchenbecker, Katherine J.

    2015-01-01

    Tactile cues generated from lightweight, wearable actuators can help users learn new motions by providing immediate feedback on when and how to correct their movements. We present a vibrotactile motion guidance system that measures arm motions and provides vibration feedback when the user deviates from a desired trajectory. A study was conducted to test the effects of vibrotactile guidance on a subject’s ability to learn arm motions. Twenty-six subjects learned motions of varying difficulty with both visual (V), and visual and vibrotactile (VVT) feedback over the course of four days of training. After four days of rest, subjects returned to perform the motions from memory with no feedback. We found that augmenting visual feedback with vibrotactile feedback helped subjects reduce the root mean square (rms) angle error of their limb significantly while they were learning the motions, particularly for 1DOF motions. Analysis of the retention data showed no significant difference in rms angle errors between feedback conditions. PMID:25486644

  8. Color Processing in the Early Visual System of Drosophila.

    PubMed

    Schnaitmann, Christopher; Haikala, Väinö; Abraham, Eva; Oberhauser, Vitus; Thestrup, Thomas; Griesbeck, Oliver; Reiff, Dierk F

    2018-01-11

    Color vision extracts spectral information by comparing signals from photoreceptors with different visual pigments. Such comparisons are encoded by color-opponent neurons that are excited at one wavelength and inhibited at another. Here, we examine the circuit implementation of color-opponent processing in the Drosophila visual system by combining two-photon calcium imaging with genetic dissection of visual circuits. We report that color-opponent processing of UV short /blue and UV long /green is already implemented in R7/R8 inner photoreceptor terminals of "pale" and "yellow" ommatidia, respectively. R7 and R8 photoreceptors of the same type of ommatidia mutually inhibit each other directly via HisCl1 histamine receptors and receive additional feedback inhibition that requires the second histamine receptor Ort. Color-opponent processing at the first visual synapse represents an unexpected commonality between Drosophila and vertebrates; however, the differences in the molecular and cellular implementation suggest that the same principles evolved independently. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Corticothalamic feedback enhances stimulus response precision in the visual system

    PubMed Central

    Andolina, Ian M.; Jones, Helen E.; Wang, Wei; Sillito, Adam M.

    2007-01-01

    There is a tightly coupled bidirectional interaction between visual cortex and visual thalamus [lateral geniculate nucleus (LGN)]. Using drifting sinusoidal grating stimuli, we compared the response of cells in the LGN with and without feedback from the visual cortex. Raster plots revealed a striking difference in the response pattern of cells with and without feedback. This difference was reflected in the results from computing vector sum plots and the ratio of zero harmonic to the fundamental harmonic of the fast Fourier transform (FFT) for these responses. The variability of responses assessed by using the Fano factor was also different for the two groups, with the cells without feedback showing higher variability. We examined the covariance of these measures between pairs of simultaneously recorded cells with and without feedback, and they were much more strongly positively correlated with feedback. We constructed orientation tuning curves from the central 5 ms in the raw cross-correlograms of the outputs of pairs of LGN cells, and these curves revealed much sharper tuning with feedback. We discuss the significance of these data for cortical function and suggest that the precision in stimulus-linked firing in the LGN appears as an emergent factor from the corticothalamic interaction. PMID:17237220

  10. Stability of hand force production. I. Hand level control variables and multifinger synergies.

    PubMed

    Reschechtko, Sasha; Latash, Mark L

    2017-12-01

    We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to explore synergies stabilizing the hand action in accurate four-finger pressing tasks. In particular, we tested a hypothesis on two classes of synergies, those among the four fingers and those within a pair of control variables, stabilizing hand action under visual feedback and disappearing without visual feedback. Subjects performed four-finger total force and moment production tasks under visual feedback; the feedback was later partially or completely removed. The "inverse piano" device was used to lift and lower the fingers smoothly at the beginning and at the end of each trial. These data were used to compute pairs of hypothetical control variables. Intertrial analysis of variance within the finger force space was used to quantify multifinger synergies stabilizing both force and moment. A data permutation method was used to quantify synergies among control variables. Under visual feedback, synergies in the spaces of finger forces and hypothetical control variables were found to stabilize total force. Without visual feedback, the subjects showed a force drift to lower magnitudes and a moment drift toward pronation. This was accompanied by disappearance of the four-finger synergies and strong attenuation of the control variable synergies. The indexes of the two types of synergies correlated with each other. The findings are interpreted within the scheme with multiple levels of abundant variables. NEW & NOTEWORTHY We extended the idea of hierarchical control with referent spatial coordinates for the effectors and explored two types of synergies stabilizing multifinger force production tasks. We observed synergies among finger forces and synergies between hypothetical control variables that stabilized performance under visual feedback but failed to stabilize it after visual feedback had been removed. Indexes of two types of synergies correlated with each other. The data suggest the existence of multiple mechanisms stabilizing motor actions. Copyright © 2017 the American Physiological Society.

  11. A Comparison of Chest Compression Quality Delivered During On-Scene and Ground Transport Cardiopulmonary Resuscitation

    PubMed Central

    Russi, Christopher S.; Myers, Lucas A.; Kolb, Logan J.; Lohse, Christine M.; Hess, Erik P.; White, Roger D.

    2016-01-01

    Introduction American Heart Association (AHA) guidelines recommend cardiopulmonary resuscitation (CPR) chest compressions 1.5 to 2 inches (3.75–5 cm) deep at 100 to 120 per minute. Recent studies demonstrated that manual CPR by emergency medical services (EMS) personnel is substandard. We hypothesized that transport CPR quality is significantly worse than on-scene CPR quality. Methods We analyzed adult patients receiving on-scene and transport chest compressions from nine EMS sites across Minnesota and Wisconsin from May 2008 to July 2010. Two periods were analyzed: before and after visual feedback. CPR data were collected and exported with the Zoll M series monitor and a sternally placed accelerometer measuring chest compression rate and depth. We compared compression data with 2010 AHA guidelines and Zoll RescueNet Code Review software. CPR depth and rate were “above (deep),” “in,” or “below (shallow)” the target range according to AHA guidelines. We paired on-scene and transport data for each patient; paired proportions were compared with the nonparametric Wilcoxon signed rank test. Results In the pre-feedback period, we analyzed 105 of 140 paired cases (75.0%); in the post-feedback period, 35 of 140 paired cases (25.0%) were analyzed. The proportion of correct depths during on-scene compressions (median, 41.9%; interquartile range [IQR], 16.1–73.1) was higher compared to the paired transport proportion (median, 8.7%; IQR, 2.7–48.9). Proportions of on-scene median correct rates and transport median correct depths did not improve in the post-feedback period. Conclusion Transport chest compressions are significantly worse than on-scene compressions. Implementation of visual real-time feedback did not affect performance. PMID:27625733

  12. Stereoscopic visualization and haptic technology used to create a virtual environment for remote surgery - biomed 2011.

    PubMed

    Bornhoft, J M; Strabala, K W; Wortman, T D; Lehman, A C; Oleynikov, D; Farritor, S M

    2011-01-01

    The objective of this research is to study the effectiveness of using a stereoscopic visualization system for performing remote surgery. The use of stereoscopic vision has become common with the advent of the da Vinci® system (Intuitive, Sunnyvale CA). This system creates a virtual environment that consists of a 3-D display for visual feedback and haptic tactile feedback, together providing an intuitive environment for remote surgical applications. This study will use simple in vivo robotic surgical devices and compare the performance of surgeons using the stereoscopic interfacing system to the performance of surgeons using one dimensional monitors. The stereoscopic viewing system consists of two cameras, two monitors, and four mirrors. The cameras are mounted to a multi-functional miniature in vivo robot; and mimic the depth perception of the actual human eyes. This is done by placing the cameras at a calculated angle and distance apart. Live video streams from the left and right cameras are displayed on the left and right monitors, respectively. A system of angled mirrors allows the left and right eyes to see the video stream from the left and right monitor, respectively, creating the illusion of depth. The haptic interface consists of two PHANTOM Omni® (SensAble, Woburn Ma) controllers. These controllers measure the position and orientation of a pen-like end effector with three degrees of freedom. As the surgeon uses this interface, they see a 3-D image and feel force feedback for collision and workspace limits. The stereoscopic viewing system has been used in several surgical training tests and shows a potential improvement in depth perception and 3-D vision. The haptic system accurately gives force feedback that aids in surgery. Both have been used in non-survival animal surgeries, and have successfully been used in suturing and gallbladder removal. Bench top experiments using the interfacing system have also been conducted. A group of participants completed two different surgical training tasks using both a two dimensional visual system and the stereoscopic visual system. Results suggest that the stereoscopic visual system decreased the amount of time taken to complete the tasks. All participants also reported that the stereoscopic system was easier to utilize than the two dimensional system. Haptic controllers combined with stereoscopic vision provides for a more intuitive virtual environment. This system provides the surgeon with 3-D vision, depth perception, and the ability to receive feedback through forces applied in the haptic controller while performing surgery. These capabilities potentially enable the performance of more complex surgeries with a higher level of precision.

  13. Facilitating the Feedback Process on a Clinical Clerkship Using a Smartphone Application.

    PubMed

    Joshi, Aditya; Generalla, Jenilee; Thompson, Britta; Haidet, Paul

    2017-10-01

    This pilot study evaluated the effects of a smartphone-triggered method of feedback delivery on students' perceptions of the feedback process. An interactive electronic feedback form was made available to students through a smartphone app. Students were asked to evaluate various aspects of the feedback process. Responses from a previous year served as control. In the first three quarters of academic year 2014-2015 (pre-implementation), only 65% of responders reported receiving oral feedback and 40% reported receiving written feedback. During the pilot phase (transition), these increased to 80% for both forms. Following full implementation in academic year 2015-2016 (post-implementation), 97% reported receiving oral feedback, and 92% reported receiving written feedback. A statistically significant difference was noted pre- to post-implementation for both oral and written feedback (p < 0.01). A significant increase from pre-implementation to transition was noted for written feedback (p < 0.01) and from transition to post-implementation for oral feedback (p < 0.01). Ninety-one and 94% of responders reported ease of access and timeliness of the feedback, 75% perceived the quality of the feedback to be good to excellent; 64% felt receiving feedback via the app improved their performance; 69% indicated the feedback method as better compared to other methods. Students acknowledged the facilitation of conversation with supervisors and the convenience of receiving feedback, as well as the promptness with which feedback was provided. The use of a drop-down menu was thought to limit the scope of conversation. These data point to the effectiveness of this method to cue supervisors to provide feedback to students.

  14. Dissociable contributions of motor-execution and action-observation to intramanual transfer.

    PubMed

    Hayes, Spencer J; Elliott, Digby; Andrew, Matthew; Roberts, James W; Bennett, Simon J

    2012-09-01

    We examined the hypothesis that different processes and representations are associated with the learning of a movement sequence through motor-execution and action-observation. Following a pre-test in which participants attempted to achieve an absolute, and relative, time goal in a sequential goal-directed aiming movement, participants received either physical or observational practice with feedback. Post-test performance indicated that motor-execution and action-observation participants learned equally well. Participants then transferred to conditions where the gain between the limb movements and their visual consequences were manipulated. Under both bigger and smaller transfer conditions, motor-execution and action-observation participants exhibited similar intramanual transfer of absolute timing. However, participants in the action-observation group exhibited superior transfer of relative timing than the motor-execution group. These findings suggest that learning via action-observation is underpinned by a visual-spatial representation, while learning via motor-execution depends more on specific force-time planning (feed forward) and afferent processing associated with sensorimotor feedback. These behavioural effects are discussed with reference to neural processes associated with striatum, cerebellum and motor cortical regions (pre-motor cortex; SMA; pre-SMA).

  15. Probing feedforward and feedback contributions to awareness with visual masking and transcranial magnetic stimulation.

    PubMed

    Tapia, Evelina; Beck, Diane M

    2014-01-01

    A number of influential theories posit that visual awareness relies not only on the initial, stimulus-driven (i.e., feedforward) sweep of activation but also on recurrent feedback activity within and between brain regions. These theories of awareness draw heavily on data from masking paradigms in which visibility of one stimulus is reduced due to the presence of another stimulus. More recently transcranial magnetic stimulation (TMS) has been used to study the temporal dynamics of visual awareness. TMS over occipital cortex affects performance on visual tasks at distinct time points and in a manner that is comparable to visual masking. We draw parallels between these two methods and examine evidence for the neural mechanisms by which visual masking and TMS suppress stimulus visibility. Specifically, both methods have been proposed to affect feedforward as well as feedback signals when applied at distinct time windows relative to stimulus onset and as a result modify visual awareness. Most recent empirical evidence, moreover, suggests that while visual masking and TMS impact stimulus visibility comparably, the processes these methods affect may not be as similar as previously thought. In addition to reviewing both masking and TMS studies that examine feedforward and feedback processes in vision, we raise questions to guide future studies and further probe the necessary conditions for visual awareness.

  16. Cyber integrated MEMS microhand for biological applications

    NASA Astrophysics Data System (ADS)

    Weissman, Adam; Frazier, Athena; Pepen, Michael; Lu, Yen-Wen; Yang, Shanchieh Jay

    2009-05-01

    Anthropomorphous robotic hands at microscales have been developed to receive information and perform tasks for biological applications. To emulate a human hand's dexterity, the microhand requires a master-slave interface with a wearable controller, force sensors, and perception displays for tele-manipulation. Recognizing the constraints and complexity imposed in developing feedback interface during miniaturization, this project address the need by creating an integrated cyber environment incorporating sensors with a microhand, haptic/visual display, and object model, to emulates human hands' psychophysical perception at microscale.

  17. Calibration of visually guided reaching is driven by error-corrective learning and internal dynamics.

    PubMed

    Cheng, Sen; Sabes, Philip N

    2007-04-01

    The sensorimotor calibration of visually guided reaching changes on a trial-to-trial basis in response to random shifts in the visual feedback of the hand. We show that a simple linear dynamical system is sufficient to model the dynamics of this adaptive process. In this model, an internal variable represents the current state of sensorimotor calibration. Changes in this state are driven by error feedback signals, which consist of the visually perceived reach error, the artificial shift in visual feedback, or both. Subjects correct for > or =20% of the error observed on each movement, despite being unaware of the visual shift. The state of adaptation is also driven by internal dynamics, consisting of a decay back to a baseline state and a "state noise" process. State noise includes any source of variability that directly affects the state of adaptation, such as variability in sensory feedback processing, the computations that drive learning, or the maintenance of the state. This noise is accumulated in the state across trials, creating temporal correlations in the sequence of reach errors. These correlations allow us to distinguish state noise from sensorimotor performance noise, which arises independently on each trial from random fluctuations in the sensorimotor pathway. We show that these two noise sources contribute comparably to the overall magnitude of movement variability. Finally, the dynamics of adaptation measured with random feedback shifts generalizes to the case of constant feedback shifts, allowing for a direct comparison of our results with more traditional blocked-exposure experiments.

  18. Visual crowding illustrates the inadequacy of local vs. global and feedforward vs. feedback distinctions in modeling visual perception

    PubMed Central

    Clarke, Aaron M.; Herzog, Michael H.; Francis, Gregory

    2014-01-01

    Experimentalists tend to classify models of visual perception as being either local or global, and involving either feedforward or feedback processing. We argue that these distinctions are not as helpful as they might appear, and we illustrate these issues by analyzing models of visual crowding as an example. Recent studies have argued that crowding cannot be explained by purely local processing, but that instead, global factors such as perceptual grouping are crucial. Theories of perceptual grouping, in turn, often invoke feedback connections as a way to account for their global properties. We examined three types of crowding models that are representative of global processing models, and two of which employ feedback processing: a model based on Fourier filtering, a feedback neural network, and a specific feedback neural architecture that explicitly models perceptual grouping. Simulations demonstrate that crucial empirical findings are not accounted for by any of the models. We conclude that empirical investigations that reject a local or feedforward architecture offer almost no constraints for model construction, as there are an uncountable number of global and feedback systems. We propose that the identification of a system as being local or global and feedforward or feedback is less important than the identification of a system's computational details. Only the latter information can provide constraints on model development and promote quantitative explanations of complex phenomena. PMID:25374554

  19. Hierarchical representation of shapes in visual cortex—from localized features to figural shape segregation

    PubMed Central

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228

  20. Hierarchical representation of shapes in visual cortex-from localized features to figural shape segregation.

    PubMed

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.

  1. Visual Feedback Dominates the Sense of Agency for Brain-Machine Actions

    PubMed Central

    Evans, Nathan; Gale, Steven; Schurger, Aaron; Blanke, Olaf

    2015-01-01

    Recent advances in neuroscience and engineering have led to the development of technologies that permit the control of external devices through real-time decoding of brain activity (brain-machine interfaces; BMI). Though the feeling of controlling bodily movements (sense of agency; SOA) has been well studied and a number of well-defined sensorimotor and cognitive mechanisms have been put forth, very little is known about the SOA for BMI-actions. Using an on-line BMI, and verifying that our subjects achieved a reasonable level of control, we sought to describe the SOA for BMI-mediated actions. Our results demonstrate that discrepancies between decoded neural activity and its resultant real-time sensory feedback are associated with a decrease in the SOA, similar to SOA mechanisms proposed for bodily actions. However, if the feedback discrepancy serves to correct a poorly controlled BMI-action, then the SOA can be high and can increase with increasing discrepancy, demonstrating the dominance of visual feedback on the SOA. Taken together, our results suggest that bodily and BMI-actions rely on common mechanisms of sensorimotor integration for agency judgments, but that visual feedback dominates the SOA in the absence of overt bodily movements or proprioceptive feedback, however erroneous the visual feedback may be. PMID:26066840

  2. Brain Activation in Response to Personalized Behavioral and Physiological Feedback From Self-Monitoring Technology: Pilot Study

    PubMed Central

    Morgan, Paul S; Sherar, Lauren B; Kingsnorth, Andrew P; Magistro, Daniele; Esliger, Dale W

    2017-01-01

    Background The recent surge in commercially available wearable technology has allowed real-time self-monitoring of behavior (eg, physical activity) and physiology (eg, glucose levels). However, there is limited neuroimaging work (ie, functional magnetic resonance imaging [fMRI]) to identify how people’s brains respond to receiving this personalized health feedback and how this impacts subsequent behavior. Objective Identify regions of the brain activated and examine associations between activation and behavior. Methods This was a pilot study to assess physical activity, sedentary time, and glucose levels over 14 days in 33 adults (aged 30 to 60 years). Extracted accelerometry, inclinometry, and interstitial glucose data informed the construction of personalized feedback messages (eg, average number of steps per day). These messages were subsequently presented visually to participants during fMRI. Participant physical activity levels and sedentary time were assessed again for 8 days following exposure to this personalized feedback. Results Independent tests identified significant activations within the prefrontal cortex in response to glucose feedback compared with behavioral feedback (P<.001). Reductions in mean sedentary time (589.0 vs 560.0 minutes per day, P=.014) were observed. Activation in the subgyral area had a moderate correlation with minutes of moderate-to-vigorous physical activity (r=0.392, P=.043). Conclusion Presenting personalized glucose feedback resulted in significantly more brain activation when compared with behavior. Participants reduced time spent sedentary at follow-up. Research on deploying behavioral and physiological feedback warrants further investigation. PMID:29117928

  3. Visuomotor adaptation needs a validation of prediction error by feedback error

    PubMed Central

    Gaveau, Valérie; Prablanc, Claude; Laurent, Damien; Rossetti, Yves; Priot, Anne-Emmanuelle

    2014-01-01

    The processes underlying short-term plasticity induced by visuomotor adaptation to a shifted visual field are still debated. Two main sources of error can induce motor adaptation: reaching feedback errors, which correspond to visually perceived discrepancies between hand and target positions, and errors between predicted and actual visual reafferences of the moving hand. These two sources of error are closely intertwined and difficult to disentangle, as both the target and the reaching limb are simultaneously visible. Accordingly, the goal of the present study was to clarify the relative contributions of these two types of errors during a pointing task under prism-displaced vision. In “terminal feedback error” condition, viewing of their hand by subjects was allowed only at movement end, simultaneously with viewing of the target. In “movement prediction error” condition, viewing of the hand was limited to movement duration, in the absence of any visual target, and error signals arose solely from comparisons between predicted and actual reafferences of the hand. In order to prevent intentional corrections of errors, a subthreshold, progressive stepwise increase in prism deviation was used, so that subjects remained unaware of the visual deviation applied in both conditions. An adaptive aftereffect was observed in the “terminal feedback error” condition only. As far as subjects remained unaware of the optical deviation and self-assigned pointing errors, prediction error alone was insufficient to induce adaptation. These results indicate a critical role of hand-to-target feedback error signals in visuomotor adaptation; consistent with recent neurophysiological findings, they suggest that a combination of feedback and prediction error signals is necessary for eliciting aftereffects. They also suggest that feedback error updates the prediction of reafferences when a visual perturbation is introduced gradually and cognitive factors are eliminated or strongly attenuated. PMID:25408644

  4. Modeling trial by trial and block feedback in perceptual learning

    PubMed Central

    Liu, Jiajuan; Dosher, Barbara; Lu, Zhong-Lin

    2014-01-01

    Feedback has been shown to play a complex role in visual perceptual learning. It is necessary for performance improvement in some conditions while not others. Different forms of feedback, such as trial-by-trial feedback or block feedback, may both facilitate learning, but with different mechanisms. False feedback can abolish learning. We account for all these results with the Augmented Hebbian Reweight Model (AHRM). Specifically, three major factors in the model advance performance improvement: the external trial-by-trial feedback when available, the self-generated output as an internal feedback when no external feedback is available, and the adaptive criterion control based on the block feedback. Through simulating a comprehensive feedback study (Herzog & Fahle 1997, Vision Research, 37 (15), 2133–2141), we show that the model predictions account for the pattern of learning in seven major feedback conditions. The AHRM can fully explain the complex empirical results on the role of feedback in visual perceptual learning. PMID:24423783

  5. Shaping with Visual Feedback and Token Reinforcement: Effects on Voice Volume Changes in Mentally Retarded Adults.

    ERIC Educational Resources Information Center

    Bieber, Carrie; Gurski, John C.

    In an attempt to confirm earlier results with a group of mentally retarded females, 12 mentally retarded institutionalized adults (8 male, 4 female) were trained to either reduce (Loud group) or increase (Soft group) their voice volumes with a combination of visual feedback and token reinforcement. The feedback unit provided a binary light on-off…

  6. Effect of Training Japanese L1 Speakers in the Production of American English /r/ Using Spectrographic Visual Feedback

    ERIC Educational Resources Information Center

    Patten, Iomi; Edmonds, Lisa A.

    2015-01-01

    The present study examines the effects of training native Japanese speakers in the production of American /r/ using spectrographic visual feedback. Within a modified single-subject design, two native Japanese participants produced single words containing /r/ in a variety of positions while viewing live spectrographic feedback with the aim of…

  7. Relationship between Counseling Students' Childhood Memories and Current Negative Self-Evaluations When Receiving Corrective Feedback

    ERIC Educational Resources Information Center

    Stroud, Daniel; Olguin, David; Marley, Scott

    2016-01-01

    This article entails a study focused on the relationship between counseling students' negative childhood memories of receiving corrective feedback and current negative self-evaluations when receiving similar feedback in counselor education programs. Participants (N = 186) completed the Corrective Feedback Instrument-Revised (CFI-R; Hulse-Killacky…

  8. fMRI characterisation of widespread brain networks relevant for behavioural variability in fine hand motor control with and without visual feedback.

    PubMed

    Mayhew, Stephen D; Porcaro, Camillo; Tecchio, Franca; Bagshaw, Andrew P

    2017-03-01

    A bilateral visuo-parietal-motor network is responsible for fine control of hand movements. However, the sub-regions which are devoted to maintenance of contraction stability and how these processes fluctuate with trial-quality of task execution and in the presence/absence of visual feedback remains unclear. We addressed this by integrating behavioural and fMRI measurements during right-hand isometric compression of a compliant rubber bulb, at 10% and 30% of maximum voluntary contraction, both with and without visual feedback of the applied force. We quantified single-trial behavioural performance during 1) the whole task period and 2) stable contraction maintenance, and regressed these metrics against the fMRI data to identify the brain activity most relevant to trial-by-trial fluctuations in performance during specific task phases. fMRI-behaviour correlations in a bilateral network of visual, premotor, primary motor, parietal and inferior frontal cortical regions emerged during performance of the entire feedback task, but only in premotor, parietal cortex and thalamus during the stable contraction period. The trials with the best task performance showed increased bilaterality and amplitude of fMRI responses. With feedback, stronger BOLD-behaviour coupling was found during 10% compared to 30% contractions. Only a small subset of regions in this network were weakly correlated with behaviour without feedback, despite wider network activated during this task than in the presence of feedback. These findings reflect a more focused network strongly coupled to behavioural fluctuations when providing visual feedback, whereas without it the task recruited widespread brain activity almost uncoupled from behavioural performance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The Role of Direct and Visual Force Feedback in Suturing Using a 7-DOF Dual-Arm Teleoperated System.

    PubMed

    Talasaz, Ali; Trejos, Ana Luisa; Patel, Rajni V

    2017-01-01

    The lack of haptic feedback in robotics-assisted surgery can result in tissue damage or accidental tool-tissue hits. This paper focuses on exploring the effect of haptic feedback via direct force reflection and visual presentation of force magnitudes on performance during suturing in robotics-assisted minimally invasive surgery (RAMIS). For this purpose, a haptics-enabled dual-arm master-slave teleoperation system capable of measuring tool-tissue interaction forces in all seven Degrees-of-Freedom (DOFs) was used. Two suturing tasks, tissue puncturing and knot-tightening, were chosen to assess user skills when suturing on phantom tissue. Sixteen subjects participated in the trials and their performance was evaluated from various points of view: force consistency, number of accidental hits with tissue, amount of tissue damage, quality of the suture knot, and the time required to accomplish the task. According to the results, visual force feedback was not very useful during the tissue puncturing task as different users needed different amounts of force depending on the penetration of the needle into the tissue. Direct force feedback, however, was more useful for this task to apply less force and to minimize the amount of damage to the tissue. Statistical results also reveal that both visual and direct force feedback were required for effective knot tightening: direct force feedback could reduce the number of accidental hits with the tissue and also the amount of tissue damage, while visual force feedback could help to securely tighten the suture knots and maintain force consistency among different trials/users. These results provide evidence of the importance of 7-DOF force reflection when performing complex tasks in a RAMIS setting.

  10. Improving lower limb weight distribution asymmetry during the squat using Nintendo Wii Balance Boards and real-time feedback.

    PubMed

    McGough, Rian; Paterson, Kade; Bradshaw, Elizabeth J; Bryant, Adam L; Clark, Ross A

    2012-01-01

    Weight-bearing asymmetry (WBA) may be detrimental to performance and could increase the risk of injury; however, detecting and reducing it is difficult in a field setting. This study assessed whether a portable and simple-to-use system designed with multiple Nintendo Wii Balance Boards (NWBBs) and customized software can be used to evaluate and improve WBA. Fifteen elite Australian Rules Footballers and 32 age-matched, untrained participants were tested for measures of WBA while squatting. The NWBB and customized software provided real-time visual feedback of WBA during half of the trials. Outcome measures included the mean mass difference (MMD) between limbs, interlimb symmetry index (SI), and percentage of time spent favoring a single limb (TFSL). Significant reductions in MMD (p = 0.028) and SI (p = 0.007) with visual feedback were observed for the entire group data. Subgroup analysis revealed significant reductions in MMD (p = 0.047) and SI (p = 0.026) with visual feedback in the untrained sample; however, the reductions in the trained sample were nonsignificant. The trained group showed significantly less WBA for TFSL under both visual conditions (no feedback: p = 0.015, feedback: p = 0.017). Correlation analysis revealed that participants with high levels of WBA had the greatest response to feedback (p < 0.001, ρ = 0.557). In conclusion, WBA exists in healthy untrained adults, and these asymmetries can be reduced using real-time visual feedback provided by an NWBB-based system. Healthy, well-trained professional athletes do not possess the same magnitude of WBA. Inexpensive, portable, and widely available gaming technology may be used to evaluate and improve WBA in clinical and sporting settings.

  11. Mirror Visual Feedback Induces Lower Neuromuscular Activity in Children with Spastic Hemiparetic Cerebral Palsy

    ERIC Educational Resources Information Center

    Feltham, Max G.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.

    2010-01-01

    The study examined the effects of mirror feedback information on neuromuscular activation during bimanual coordination in eight children with spastic hemiparetic cerebral palsy (SHCP) and a matched control group. The "mirror box" creates a visual illusion, which gives rise to a visual perception of a zero lag, symmetric movement between the two…

  12. Probing feedforward and feedback contributions to awareness with visual masking and transcranial magnetic stimulation

    PubMed Central

    Tapia, Evelina; Beck, Diane M.

    2014-01-01

    A number of influential theories posit that visual awareness relies not only on the initial, stimulus-driven (i.e., feedforward) sweep of activation but also on recurrent feedback activity within and between brain regions. These theories of awareness draw heavily on data from masking paradigms in which visibility of one stimulus is reduced due to the presence of another stimulus. More recently transcranial magnetic stimulation (TMS) has been used to study the temporal dynamics of visual awareness. TMS over occipital cortex affects performance on visual tasks at distinct time points and in a manner that is comparable to visual masking. We draw parallels between these two methods and examine evidence for the neural mechanisms by which visual masking and TMS suppress stimulus visibility. Specifically, both methods have been proposed to affect feedforward as well as feedback signals when applied at distinct time windows relative to stimulus onset and as a result modify visual awareness. Most recent empirical evidence, moreover, suggests that while visual masking and TMS impact stimulus visibility comparably, the processes these methods affect may not be as similar as previously thought. In addition to reviewing both masking and TMS studies that examine feedforward and feedback processes in vision, we raise questions to guide future studies and further probe the necessary conditions for visual awareness. PMID:25374548

  13. A real-time articulatory visual feedback approach with target presentation for second language pronunciation learning.

    PubMed

    Suemitsu, Atsuo; Dang, Jianwu; Ito, Takayuki; Tiede, Mark

    2015-10-01

    Articulatory information can support learning or remediating pronunciation of a second language (L2). This paper describes an electromagnetic articulometer-based visual-feedback approach using an articulatory target presented in real-time to facilitate L2 pronunciation learning. This approach trains learners to adjust articulatory positions to match targets for a L2 vowel estimated from productions of vowels that overlap in both L1 and L2. Training of Japanese learners for the American English vowel /æ/ that included visual training improved its pronunciation regardless of whether audio training was also included. Articulatory visual feedback is shown to be an effective method for facilitating L2 pronunciation learning.

  14. Effect of Real-Time Feedback on Screw Placement Into Synthetic Cancellous Bone.

    PubMed

    Gustafson, Peter A; Geeslin, Andrew G; Prior, David M; Chess, Joseph L

    2016-08-01

    The objective of this study is to evaluate whether real-time torque feedback may reduce the occurrence of stripping when inserting nonlocking screws through fracture plates into synthetic cancellous bone. Five attending orthopaedic surgeons and 5 senior level orthopaedic residents inserted 8 screws in each phase. In phase I, screws were inserted without feedback simulating conventional techniques. In phase II, screws were driven with visual torque feedback. In phase III, screws were again inserted with conventional techniques. Comparison of these 3 phases with respect to screw insertion torque, surgeon rank, and perception of stripping was used to establish the effects of feedback. Seventy-three of 239 screws resulted in stripping. During the first phase, no feedback was provided and the overall strip rate was 41.8%; this decreased to 15% with visual feedback (P < 0.001) and returned to 35% when repeated without feedback. With feedback, a lower average torque was applied over a narrower torque distribution. Residents stripped 40.8% of screws compared with 20.2% for attending surgeons. Surgeons were poor at perceiving whether they stripped. Prevention and identification of stripping is influenced by surgeon perception of tactile sensation. This is significantly improved with utilization of real-time visual feedback of a torque versus roll curve. This concept of real-time feedback seems beneficial toward performance in synthetic cancellous bone and may lead to improved fixation in cancellous bone in a surgical setting.

  15. Interactive Problem Solving Tutorials Through Visual Programming

    NASA Astrophysics Data System (ADS)

    Undreiu, Lucian; Schuster, David; Undreiu, Adriana

    2008-10-01

    We have used LabVIEW visual programming to build an interactive tutorial to promote conceptual understanding in physics problem solving. This programming environment is able to offer a web-accessible problem solving experience that enables students to work at their own pace and receive feedback. Intuitive graphical symbols, modular structures and the ability to create templates are just a few of the advantages this software has to offer. The architecture of an application can be designed in a way that allows instructors with little knowledge of LabVIEW to easily personalize it. Both the physics solution and the interactive pedagogy can be visually programmed in LabVIEW. Our physics pedagogy approach is that of cognitive apprenticeship, in that the tutorial guides students to develop conceptual understanding and physical insight into phenomena, rather than purely formula-based solutions. We demonstrate how this model is reflected in the design and programming of the interactive tutorials.

  16. Reproducibility of The Abdominal and Chest Wall Position by Voluntary Breath-Hold Technique Using a Laser-Based Monitoring and Visual Feedback System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Katsumasa; Shioyama, Yoshiyuki; Nomoto, Satoru

    2007-05-01

    Purpose: The voluntary breath-hold (BH) technique is a simple method to control the respiration-related motion of a tumor during irradiation. However, the abdominal and chest wall position may not be accurately reproduced using the BH technique. The purpose of this study was to examine whether visual feedback can reduce the fluctuation in wall motion during BH using a new respiratory monitoring device. Methods and Materials: We developed a laser-based BH monitoring and visual feedback system. For this study, five healthy volunteers were enrolled. The volunteers, practicing abdominal breathing, performed shallow end-expiration BH (SEBH), shallow end-inspiration BH (SIBH), and deep end-inspirationmore » BH (DIBH) with or without visual feedback. The abdominal and chest wall positions were measured at 80-ms intervals during BHs. Results: The fluctuation in the chest wall position was smaller than that of the abdominal wall position. The reproducibility of the wall position was improved by visual feedback. With a monitoring device, visual feedback reduced the mean deviation of the abdominal wall from 2.1 {+-} 1.3 mm to 1.5 {+-} 0.5 mm, 2.5 {+-} 1.9 mm to 1.1 {+-} 0.4 mm, and 6.6 {+-} 2.4 mm to 2.6 {+-} 1.4 mm in SEBH, SIBH, and DIBH, respectively. Conclusions: Volunteers can perform the BH maneuver in a highly reproducible fashion when informed about the position of the wall, although in the case of DIBH, the deviation in the wall position remained substantial.« less

  17. Memory-guided force control in healthy younger and older adults.

    PubMed

    Neely, Kristina A; Samimy, Shaadee; Blouch, Samantha L; Wang, Peiyuan; Chennavasin, Amanda; Diaz, Michele T; Dennis, Nancy A

    2017-08-01

    Successful performance of a memory-guided motor task requires participants to store and then recall an accurate representation of the motor goal. Further, participants must monitor motor output to make adjustments in the absence of visual feedback. The goal of this study was to examine memory-guided grip force in healthy younger and older adults and compare it to performance on behavioral tasks of working memory. Previous work demonstrates that healthy adults decrease force output as a function of time when visual feedback is not available. We hypothesized that older adults would decrease force output at a faster rate than younger adults, due to age-related deficits in working memory. Two groups of participants, younger adults (YA: N = 32, mean age 21.5 years) and older adults (OA: N = 33, mean age 69.3 years), completed four 20-s trials of isometric force with their index finger and thumb, equal to 25% of their maximum voluntary contraction. In the full-vision condition, visual feedback was available for the duration of the trial. In the no vision condition, visual feedback was removed for the last 12 s of each trial. Participants were asked to maintain constant force output in the absence of visual feedback. Participants also completed tasks of word recall and recognition and visuospatial working memory. Counter to our predictions, when visual feedback was removed, younger adults decreased force at a faster rate compared to older adults and the rate of decay was not associated with behavioral performance on tests of working memory.

  18. Stimulus change as a factor in response maintenance with free food available.

    PubMed Central

    Osborne, S R; Shelby, M

    1975-01-01

    Rats bar pressed for food on a reinforcement schedule in which every response was reinforced, even though a dish of pellets was present. Initially, auditory and visual stimuli accompanied response-produced food presentation. With stimulus feedback as an added consequence of bar pressing, responding was maintained in the presence of free food; without stimulus feedback, responding decreased to a low level. Auditory feedback maintained slightly more responding than did visual feedback, and both together maintained more responding than did either separately. Almost no responding occurred when the only consequence of bar pressing was stimulus feedback. The data indicated conditioned and sensory reinforcement effects of response-produced stimulus feedback. PMID:1202121

  19. Good vibrations: tactile feedback in support of attention allocation and human-automation coordination in event-driven domains.

    PubMed

    Sklar, A E; Sarter, N B

    1999-12-01

    Observed breakdowns in human-machine communication can be explained, in part, by the nature of current automation feedback, which relies heavily on focal visual attention. Such feedback is not well suited for capturing attention in case of unexpected changes and events or for supporting the parallel processing of large amounts of data in complex domains. As suggested by multiple-resource theory, one possible solution to this problem is to distribute information across various sensory modalities. A simulator study was conducted to compare the effectiveness of visual, tactile, and redundant visual and tactile cues for indicating unexpected changes in the status of an automated cockpit system. Both tactile conditions resulted in higher detection rates for, and faster response times to, uncommanded mode transitions. Tactile feedback did not interfere with, nor was its effectiveness affected by, the performance of concurrent visual tasks. The observed improvement in task-sharing performance indicates that the introduction of tactile feedback is a promising avenue toward better supporting human-machine communication in event-driven, information-rich domains.

  20. Game-Based Augmented Visual Feedback for Enlarging Speech Movements in Parkinson's Disease.

    PubMed

    Yunusova, Yana; Kearney, Elaine; Kulkarni, Madhura; Haworth, Brandon; Baljko, Melanie; Faloutsos, Petros

    2017-06-22

    The purpose of this pilot study was to demonstrate the effect of augmented visual feedback on acquisition and short-term retention of a relatively simple instruction to increase movement amplitude during speaking tasks in patients with dysarthria due to Parkinson's disease (PD). Nine patients diagnosed with PD, hypokinetic dysarthria, and impaired speech intelligibility participated in a training program aimed at increasing the size of their articulatory (tongue) movements during sentences. Two sessions were conducted: a baseline and training session, followed by a retention session 48 hr later. At baseline, sentences were produced at normal, loud, and clear speaking conditions. Game-based visual feedback regarding the size of the articulatory working space (AWS) was presented during training. Eight of nine participants benefited from training, increasing their sentence AWS to a greater degree following feedback as compared with the baseline loud and clear conditions. The majority of participants were able to demonstrate the learned skill at the retention session. This study demonstrated the feasibility of augmented visual feedback via articulatory kinematics for training movement enlargement in patients with hypokinesia due to PD. https://doi.org/10.23641/asha.5116840.

  1. Spike synchrony reveals emergence of proto-objects in visual cortex.

    PubMed

    Martin, Anne B; von der Heydt, Rüdiger

    2015-04-29

    Neurons at early stages of the visual cortex signal elemental features, such as pieces of contour, but how these signals are organized into perceptual objects is unclear. Theories have proposed that spiking synchrony between these neurons encodes how features are grouped (binding-by-synchrony), but recent studies did not find the predicted increase in synchrony with binding. Here we propose that features are grouped to "proto-objects" by intrinsic feedback circuits that enhance the responses of the participating feature neurons. This hypothesis predicts synchrony exclusively between feature neurons that receive feedback from the same grouping circuit. We recorded from neurons in macaque visual cortex and used border-ownership selectivity, an intrinsic property of the neurons, to infer whether or not two neurons are part of the same grouping circuit. We found that binding produced synchrony between same-circuit neurons, but not between other pairs of neurons, as predicted by the grouping hypothesis. In a selective attention task, synchrony emerged with ignored as well as attended objects, and higher synchrony was associated with faster behavioral responses, as would be expected from early grouping mechanisms that provide the structure for object-based processing. Thus, synchrony could be produced by automatic activation of intrinsic grouping circuits. However, the binding-related elevation of synchrony was weak compared with its random fluctuations, arguing against synchrony as a code for binding. In contrast, feedback grouping circuits encode binding by modulating the response strength of related feature neurons. Thus, our results suggest a novel coding mechanism that might underlie the proto-objects of perception. Copyright © 2015 the authors 0270-6474/15/356860-11$15.00/0.

  2. A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure.

    PubMed

    Miconi, Thomas; VanRullen, Rufin

    2016-02-01

    Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modulation targets higher levels of the visual system (such as V4 or MT) rather than input areas (such as V1). Here we propose a simple mechanism that explains how a top-down attentional modulation, falling on higher visual areas, can produce the observed effects of attention on neural responses. Our model requires only the existence of modulatory feedback connections between areas, and short-range lateral inhibition within each area. Feedback connections redistribute the top-down modulation to lower areas, which in turn alters the inputs of other higher-area cells, including those that did not receive the initial modulation. This produces firing rate modulations and receptive field shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce competitive effects that are automatically scaled to receptive field size in any given area. Our model reproduces the observed attentional effects on response rates (response gain, input gain, biased competition automatically scaled to receptive field size) and receptive field structure (shifts and resizing of receptive fields both spatially and in complex feature space), without modifying model parameters. Our model also makes the novel prediction that attentional effects on response curves should shift from response gain to contrast gain as the spatial focus of attention drifts away from the studied cell.

  3. Embodied neurofeedback with an anthropomorphic robotic hand

    PubMed Central

    Braun, Niclas; Emkes, Reiner; Thorne, Jeremy D.; Debener, Stefan

    2016-01-01

    Neurofeedback-guided motor imagery training (NF-MIT) has been suggested as a promising therapy for stroke-induced motor impairment. Whereas much NF-MIT research has aimed at signal processing optimization, the type of sensory feedback given to the participant has received less attention. Often the feedback signal is highly abstract and not inherently coupled to the mental act performed. In this study, we asked whether an embodied feedback signal is more efficient for neurofeedback operation than a non-embodiable feedback signal. Inspired by the rubber hand illusion, demonstrating that an artificial hand can be incorporated into one’s own body scheme, we used an anthropomorphic robotic hand to visually guide the participants’ motor imagery act and to deliver neurofeedback. Using two experimental manipulations, we investigated how a participant’s neurofeedback performance and subjective experience were influenced by the embodiability of the robotic hand, and by the neurofeedback signal’s validity. As pertains to embodiment, we found a promoting effect of robotic-hand embodiment in subjective, behavioral, electrophysiological and electrodermal measures. Regarding neurofeedback signal validity, we found some differences between real and sham neurofeedback in terms of subjective and electrodermal measures, but not in terms of behavioral and electrophysiological measures. This study motivates the further development of embodied feedback signals for NF-MIT. PMID:27869190

  4. In Sync: The Effect of Physiology Feedback on the Match between Heart Rate and Self-Reported Stress.

    PubMed

    van Dijk, Elisabeth T; Westerink, Joyce H D M; Beute, Femke; IJsselsteijn, Wijnand A

    2015-01-01

    Over the past years self-tracking of physiological parameters has become increasingly common: more and more people are keeping track of aspects of their physiological state (e.g., heart rate, blood sugar, and blood pressure). To shed light on the possible effects of self-tracking of physiology, a study was conducted to test whether physiology feedback has acute effects on self-reported stress and the extent to which self-reported stress corresponds to physiological stress. In this study, participants executed several short tasks, while they were either shown visual feedback about their heart rate or not. Results show that self-reported stress is more in sync with heart rate for participants who received physiology feedback. Interactions between two personality factors (neuroticism and anxiety sensitivity) and feedback on the level of self-reported stress were found, indicating that while physiology feedback may be beneficial for individuals high in neuroticism, it may be detrimental for those high in anxiety sensitivity. Additional work is needed to establish how the results of this study may extend beyond immediate effects in a controlled lab setting, but our results do provide a first indication of how self-tracking of physiology may lead to better body awareness and how personality characteristics can help us predict which individuals are most likely to benefit from self-tracking of physiology.

  5. In Sync: The Effect of Physiology Feedback on the Match between Heart Rate and Self-Reported Stress

    PubMed Central

    van Dijk, Elisabeth T.; Westerink, Joyce H. D. M.; Beute, Femke; IJsselsteijn, Wijnand A.

    2015-01-01

    Over the past years self-tracking of physiological parameters has become increasingly common: more and more people are keeping track of aspects of their physiological state (e.g., heart rate, blood sugar, and blood pressure). To shed light on the possible effects of self-tracking of physiology, a study was conducted to test whether physiology feedback has acute effects on self-reported stress and the extent to which self-reported stress corresponds to physiological stress. In this study, participants executed several short tasks, while they were either shown visual feedback about their heart rate or not. Results show that self-reported stress is more in sync with heart rate for participants who received physiology feedback. Interactions between two personality factors (neuroticism and anxiety sensitivity) and feedback on the level of self-reported stress were found, indicating that while physiology feedback may be beneficial for individuals high in neuroticism, it may be detrimental for those high in anxiety sensitivity. Additional work is needed to establish how the results of this study may extend beyond immediate effects in a controlled lab setting, but our results do provide a first indication of how self-tracking of physiology may lead to better body awareness and how personality characteristics can help us predict which individuals are most likely to benefit from self-tracking of physiology. PMID:26146611

  6. Effect of Concurrent Visual Feedback Frequency on Postural Control Learning in Adolescents.

    PubMed

    Marco-Ahulló, Adrià; Sánchez-Tormo, Alexis; García-Pérez, José A; Villarrasa-Sapiña, Israel; González, Luis M; García-Massó, Xavier

    2018-04-13

    The purpose was to find better augmented visual feedback frequency (100% or 67%) for learning a balance task in adolescents. Thirty subjects were divided randomly into a control group, and 100% and 67% feedback groups. The three groups performed pretest (3 trials), practice (12 trials), posttest (3 trials) and retention (3 trials, 24 hours later). The reduced feedback group showed lower RMS in the posttest than in the pretest (p = 0.04). The control and reduced feedback groups showed significant lower median frequency in the posttest than in the pretest (p < 0.05). Both feedback groups showed lower values in retention than in the pretest (p < 0.05). Even when the effect of feedback frequency could not be detected in motor learning, 67% of the feedback was recommended for motor adaptation.

  7. How Do Batters Use Visual, Auditory, and Tactile Information about the Success of a Baseball Swing?

    ERIC Educational Resources Information Center

    Gray, Rob

    2009-01-01

    Bat/ball contact produces visual (the ball leaving the bat), auditory (the "crack" of the bat), and tactile (bat vibration) feedback about the success of the swing. We used a batting simulation to investigate how college baseball players use visual, tactile, and auditory feedback. In Experiment 1, swing accuracy (i.e., the lateral separation…

  8. Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1

    PubMed Central

    Dagnino, Bruno; Gariel-Mathis, Marie-Alice

    2014-01-01

    Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. PMID:25392172

  9. Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1.

    PubMed

    Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R

    2015-02-01

    Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. Copyright © 2015 the American Physiological Society.

  10. Investigating Saudi Learners' Preferences for Giving and Receiving Macro and/or Micro Level Peer Feedback on Their Writing

    ERIC Educational Resources Information Center

    Alnasser, Suliman Mohammed; Alyousef, Hesham Suleiman

    2015-01-01

    Several studies have addressed the subject of the preferences of L2 student-writers for receiving teacher feedback (FB) on macro level features (feedback related to meaning) and micro level features (feedback related to surface level issues); however, none of these have investigated their preferences when it comes to giving and receiving peer…

  11. Consistency of handwriting movements in dementia of the Alzheimer's type: a comparison with Huntington's and Parkinson's diseases.

    PubMed

    Slavin, M J; Phillips, J G; Bradshaw, J L; Hall, K A; Presnell, I

    1999-01-01

    Patients with dementia of the Alzheimer's type (DAT) and their matched controls wrote, on a computer graphics tablet, 4 consecutive, cursive letter 'l's, with varying levels of visual feedback: noninking pen and blank paper so that only the hand movements could be seen, noninking pen and lined paper to constrain their writing, goggles to occlude the lower visual field and eliminate all relevant visual feedback, and inking pen with full vision. The kinematic measures of stroke length, duration, and peak velocity were expressed in terms of consistency via a signal-to-noise ratio (M value of each parameter divided by its SD). Irrespective of medication or severity, DAT patients had writing strokes of significantly less consistent lengths than controls', and were disproportionately impaired by reduced visual feedback. Again irrespective of medication or severity, patients' strokes were of significantly less consistent duration, and significantly less consistent peak velocity than controls', independent of feedback conditions. Patients, unlike controls, frequently perseverated, producing more than 4 'l's, or multiple sets of responses, which was not differentially affected by level of visual feedback. The more variable performance of patients supports a degradation of the base motor program, and resembles that of Huntington's rather than Parkinson's disease patients. It may indeed reflect frontal rather than basal ganglia dysfunction.

  12. Positive and negative feedback learning and associated dopamine and serotonin transporter binding after methamphetamine.

    PubMed

    Stolyarova, Alexandra; O'Dell, Steve J; Marshall, John F; Izquierdo, Alicia

    2014-09-01

    Learning from mistakes and prospectively adjusting behavior in response to reward feedback is an important facet of performance monitoring. Dopamine (DA) pathways play an important role in feedback learning and a growing literature has also emerged on the importance of serotonin (5HT) in reward learning, particularly during punishment or reward omission (negative feedback). Cognitive impairments resulting from psychostimulant exposure may arise from altered patterns in feedback learning, which in turn may be modulated by DA and 5HT transmission. We analyzed long-term, off-drug changes in learning from positive and negative feedback and associated striatal DA transporter (DAT) and frontocortical 5HT transporter (SERT) binding in rats pretreated with methamphetamine (mAMPH). Specifically, we assessed the reversal phase of pairwise visual discrimination learning in rats receiving single dose- (mAMPHsingle) vs. escalating-dose exposure (mAMPHescal). Using fine-grained trial-by-trial analyses, we found increased sensitivity to and reliance on positive feedback in mAMPH-pretreated animals, with the mAMPHsingle group showing more pronounced use of this type of feedback. In contrast, overall negative feedback sensitivity was not altered following any mAMPH treatment. In addition to validating the enduring effects of mAMPH on early reversal learning, we found more consecutive error commissions before the first correct response in mAMPH-pretreated rats. This behavioral rigidity was negatively correlated with subregional frontocortical SERT whereas positive feedback sensitivity negatively correlated with striatal DAT binding. These results provide new evidence for the overlapping, yet dissociable roles of DA and 5HT systems in overcoming perseveration and in learning new reward rules. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The Use of Visual Feedback During Signing: Evidence From Signers With Impaired Vision

    PubMed Central

    Korpics, Franco; Petronio, Karen

    2009-01-01

    The role of visual feedback during the production of American Sign Language was investigated by comparing the size of signing space during conversations and narrative monologues for normally sighted signers, signers with tunnel vision due to Usher syndrome, and functionally blind signers. The interlocutor for all groups was a normally sighted deaf person. Signers with tunnel vision produced a greater proportion of signs near the face than blind and normally sighted signers, who did not differ from each other. Both groups of visually impaired signers produced signs within a smaller signing space for conversations than for monologues, but we hypothesize that they did so for different reasons. Signers with tunnel vision may align their signing space with that of their interlocutor. In contrast, blind signers may enhance proprioceptive feedback by producing signs within an enlarged signing space for monologues, which do not require switching between tactile and visual signing. Overall, we hypothesize that signers use visual feedback to phonetically calibrate the dimensions of signing space, rather than to monitor language output. PMID:18495656

  14. The use of visual feedback during signing: evidence from signers with impaired vision.

    PubMed

    Emmorey, Karen; Korpics, Franco; Petronio, Karen

    2009-01-01

    The role of visual feedback during the production of American Sign Language was investigated by comparing the size of signing space during conversations and narrative monologues for normally sighted signers, signers with tunnel vision due to Usher syndrome, and functionally blind signers. The interlocutor for all groups was a normally sighted deaf person. Signers with tunnel vision produced a greater proportion of signs near the face than blind and normally sighted signers, who did not differ from each other. Both groups of visually impaired signers produced signs within a smaller signing space for conversations than for monologues, but we hypothesize that they did so for different reasons. Signers with tunnel vision may align their signing space with that of their interlocutor. In contrast, blind signers may enhance proprioceptive feedback by producing signs within an enlarged signing space for monologues, which do not require switching between tactile and visual signing. Overall, we hypothesize that signers use visual feedback to phonetically calibrate the dimensions of signing space, rather than to monitor language output.

  15. Proprioceptive feedback determines visuomotor gain in Drosophila

    PubMed Central

    Bartussek, Jan; Lehmann, Fritz-Olaf

    2016-01-01

    Multisensory integration is a prerequisite for effective locomotor control in most animals. Especially, the impressive aerial performance of insects relies on rapid and precise integration of multiple sensory modalities that provide feedback on different time scales. In flies, continuous visual signalling from the compound eyes is fused with phasic proprioceptive feedback to ensure precise neural activation of wing steering muscles (WSM) within narrow temporal phase bands of the stroke cycle. This phase-locked activation relies on mechanoreceptors distributed over wings and gyroscopic halteres. Here we investigate visual steering performance of tethered flying fruit flies with reduced haltere and wing feedback signalling. Using a flight simulator, we evaluated visual object fixation behaviour, optomotor altitude control and saccadic escape reflexes. The behavioural assays show an antagonistic effect of wing and haltere signalling on visuomotor gain during flight. Compared with controls, suppression of haltere feedback attenuates while suppression of wing feedback enhances the animal’s wing steering range. Our results suggest that the generation of motor commands owing to visual perception is dynamically controlled by proprioception. We outline a potential physiological mechanism based on the biomechanical properties of WSM and sensory integration processes at the level of motoneurons. Collectively, the findings contribute to our general understanding how moving animals integrate sensory information with dynamically changing temporal structure. PMID:26909184

  16. Spatiotemporal dynamics of brain activity during the transition from visually guided to memory-guided force control

    PubMed Central

    Poon, Cynthia; Chin-Cottongim, Lisa G.; Coombes, Stephen A.; Corcos, Daniel M.

    2012-01-01

    It is well established that the prefrontal cortex is involved during memory-guided tasks whereas visually guided tasks are controlled in part by a frontal-parietal network. However, the nature of the transition from visually guided to memory-guided force control is not as well established. As such, this study examines the spatiotemporal pattern of brain activity that occurs during the transition from visually guided to memory-guided force control. We measured 128-channel scalp electroencephalography (EEG) in healthy individuals while they performed a grip force task. After visual feedback was removed, the first significant change in event-related activity occurred in the left central region by 300 ms, followed by changes in prefrontal cortex by 400 ms. Low-resolution electromagnetic tomography (LORETA) was used to localize the strongest activity to the left ventral premotor cortex and ventral prefrontal cortex. A second experiment altered visual feedback gain but did not require memory. In contrast to memory-guided force control, altering visual feedback gain did not lead to early changes in the left central and midline prefrontal regions. Decreasing the spatial amplitude of visual feedback did lead to changes in the midline central region by 300 ms, followed by changes in occipital activity by 400 ms. The findings show that subjects rely on sensorimotor memory processes involving left ventral premotor cortex and ventral prefrontal cortex after the immediate transition from visually guided to memory-guided force control. PMID:22696535

  17. The quality of visual information about the lower extremities influences visuomotor coordination during virtual obstacle negotiation.

    PubMed

    Kim, Aram; Kretch, Kari S; Zhou, Zixuan; Finley, James M

    2018-05-09

    Successful negotiation of obstacles during walking relies on the integration of visual information about the environment with ongoing locomotor commands. When information about the body and environment are removed through occlusion of the lower visual field, individuals increase downward head pitch angle, reduce foot placement precision, and increase safety margins during crossing. However, whether these effects are mediated by loss of visual information about the lower extremities, the obstacle, or both remains to be seen. Here, we used a fully immersive, virtual obstacle negotiation task to investigate how visual information about the lower extremities is integrated with information about the environment to facilitate skillful obstacle negotiation. Participants stepped over virtual obstacles while walking on a treadmill with one of three types of visual feedback about the lower extremities: no feedback, end-point feedback, or a link-segment model. We found that absence of visual information about the lower extremities led to an increase in the variability of leading foot placement after crossing. The presence of a visual representation of the lower extremities promoted greater downward head pitch angle during the approach to and subsequent crossing of an obstacle. In addition, having greater downward head pitch was associated with closer placement of the trailing foot to the obstacle, further placement of the leading foot after the obstacle, and higher trailing foot clearance. These results demonstrate that the fidelity of visual information about the lower extremities influences both feed-forward and feedback aspects of visuomotor coordination during obstacle negotiation.

  18. Edge smoothing for real-time simulation of a polygon face object system as viewed by a moving observer

    NASA Technical Reports Server (NTRS)

    Lotz, Robert W. (Inventor); Westerman, David J. (Inventor)

    1980-01-01

    The visual system within an aircraft flight simulation system receives flight data and terrain data which is formated into a buffer memory. The image data is forwarded to an image processor which translates the image data into face vertex vectors Vf, defining the position relationship between the vertices of each terrain object and the aircraft. The image processor then rotates, clips, and projects the image data into two-dimensional display vectors (Vd). A display generator receives the Vd faces, and other image data to provide analog inputs to CRT devices which provide the window displays for the simulated aircraft. The video signal to the CRT devices passes through an edge smoothing device which prolongs the rise time (and fall time) of the video data inversely as the slope of the edge being smoothed. An operational amplifier within the edge smoothing device has a plurality of independently selectable feedback capacitors each having a different value. The values of the capacitors form a series which doubles as a power of two. Each feedback capacitor has a fast switch responsive to the corresponding bit of a digital binary control word for selecting (1) or not selecting (0) that capacitor. The control word is determined by the slope of each edge. The resulting actual feedback capacitance for each edge is the sum of all the selected capacitors and is directly proportional to the value of the binary control word. The output rise time (or fall time) is a function of the feedback capacitance, and is controlled by the slope through the binary control word.

  19. Real-time visual biofeedback during weight bearing improves therapy compliance in patients following lower extremity fractures.

    PubMed

    Raaben, Marco; Holtslag, Herman R; Leenen, Luke P H; Augustine, Robin; Blokhuis, Taco J

    2018-01-01

    Individuals with lower extremity fractures are often instructed on how much weight to bear on the affected extremity. Previous studies have shown limited therapy compliance in weight bearing during rehabilitation. In this study we investigated the effect of real-time visual biofeedback on weight bearing in individuals with lower extremity fractures in two conditions: full weight bearing and touch-down weight bearing. 11 participants with full weight bearing and 12 participants with touch-down weight bearing after lower extremity fractures have been measured with an ambulatory biofeedback system. The participants first walked 15m and the biofeedback system was only used to register the weight bearing. The same protocol was then repeated with real-time visual feedback during weight bearing. The participants could thereby adapt their loading to the desired level and improve therapy compliance. In participants with full weight bearing, real-time visual biofeedback resulted in a significant increase in loading from 50.9±7.51% bodyweight (BW) without feedback to 63.2±6.74%BW with feedback (P=0.0016). In participants with touch-down weight bearing, the exerted lower extremity load decreased from 16.7±9.77kg without feedback to 10.27±4.56kg with feedback (P=0.0718). More important, the variance between individual steps significantly decreased after feedback (P=0.018). Ambulatory monitoring weight bearing after lower extremity fractures showed that therapy compliance is low, both in full and touch-down weight bearing. Real-time visual biofeedback resulted in significantly higher peak loads in full weight bearing and increased accuracy of individual steps in touch-down weight bearing. Real-time visual biofeedback therefore results in improved therapy compliance after lower extremity fractures. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A Proposed Conceptual Framework and Investigation of Upward Feedback Receptivity in Medical Education.

    PubMed

    Kost, Amanda; Combs, Heidi; Smith, Sherilyn; Klein, Eileen; Kritek, Patricia; Robins, Lynne; Cianciolo, Anna T; Butani, Lavjay; Gigante, Joseph; Ramani, Subha

    2015-01-01

    WGEA 2015 CONFERENCE ABSTRACT (EDITED). Faculty Perceptions of Receiving Feedback From Third-Year Clerkship Students. Amanda Kost, Heidi Combs, Sherilyn Smith, Eileen Klein, Patricia Kritek, and Lynne Robins. PHENOMENON: In addition to giving feedback to 3rd-year clerkship students, some clerkship instructors receive feedback, requested or spontaneous, from students prior to the clerkship's end. The concept of bidirectional feedback is appealing as a means of fostering a culture of respectful communication and improvement. However, little is known about how teachers perceive this feedback in practice or how it impacts the learning environment. We performed 24 semistructured 30-minute interviews with 3 to 7 attending physician faculty members each in Pediatrics, Internal Medicine, Family Medicine, Surgery, Psychiatry, and Obstetrics and Gynecology who taught in 3rd-year required clerkships during the 2012-2013 academic year. Questions probed teachers' experience with and attitudes toward receiving student feedback. Prompts were used to elicit stories and obtain participant demographics. Interviews were audio-recorded, transcribed, and entered into Dedoose for qualitative analysis. Researchers read transcripts holistically for meaning, designed a coding template, and then independently coded each transcript. A constant comparative approach and regular meetings were used to ensure consistent coding between research team members. Participants ranged in age from 37 to 74, with 5 to 35 years of teaching experience. Seventy-one percent were male, and 83% identified as White. In our preliminary analysis, our informants reported a range of experience in receiving student feedback prior to the end of a clerkship, varying from no experience to having developed mechanisms to regularly request specific feedback about their programs. Most expressed openness to actively soliciting and receiving student feedback on their teaching during the clerkship although many questioned whether this process was feasible. Actual responses to receiving student feedback were mixed. Some reported having received feedback that motivated change, and others rejected the feedback they received on the grounds that it lacked validity or was inappropriate. Others expressed uncertainty about how they would react to student feedback. Faculty expressed a preference for receiving feedback about behaviors and items that were within their control. INSIGHTS: These findings suggest there is opportunity to pilot implementation of a structured student feedback mechanism, separate from teacher evaluations, in selected 3rd-year clerkships. Materials should developed to help faculty solicit, understand, and respond to student feedback and to help students frame and provide the kinds of feedback to teachers that will lead to suggested improvements. Both these endeavors have the potential to improve the clinical learning environment during 3rd-year clerkships through the cultivation of respectful communication and the encouragement of improvement in teaching efforts.

  1. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model.

    PubMed

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M; Latash, Mark L

    2017-05-14

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1Hz, paced by an auditory metronome. One - Force task - required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task - Share task - required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model

    PubMed Central

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M.; Latash, Mark L.

    2017-01-01

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1 Hz, paced by an auditory metronome. One – Force task – required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task – Share task – required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. PMID:28344070

  3. The effect of haptic guidance and visual feedback on learning a complex tennis task.

    PubMed

    Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert

    2013-11-01

    While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on motor learning of time-critical tasks.

  4. Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity.

    PubMed

    Loria, Tristan; de Grosbois, John; Tremblay, Luc

    2016-09-01

    At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study sought to test whether visual and auditory cues are optimally integrated at that specific kinematic marker when it is the critical part of the trajectory. Participants performed an upper-limb movement in which they were required to reach their peak limb velocity when the right index finger intersected a virtual target (i.e., a flinging movement). Brief auditory, visual, or audiovisual feedback (i.e., 20 ms in duration) was provided to participants at peak limb velocity. Performance was assessed primarily through the resultant position of peak limb velocity and the variability of that position. Relative to when no feedback was provided, auditory feedback significantly reduced the resultant endpoint variability of the finger position at peak limb velocity. However, no such reductions were found for the visual or audiovisual feedback conditions. Further, providing both auditory and visual cues concurrently also failed to yield the theoretically predicted improvements in endpoint variability. Overall, the central nervous system can make significant use of an auditory cue but may not optimally integrate a visual and auditory cue at peak limb velocity, when peak velocity is the critical part of the trajectory.

  5. Bimanual Coordination Learning with Different Augmented Feedback Modalities and Information Types

    PubMed Central

    Chiou, Shiau-Chuen; Chang, Erik Chihhung

    2016-01-01

    Previous studies have shown that bimanual coordination learning is more resistant to the removal of augmented feedback when acquired with auditory than with visual channel. However, it is unclear whether this differential “guidance effect” between feedback modalities is due to enhanced sensorimotor integration via the non-dominant auditory channel or strengthened linkage to kinesthetic information under rhythmic input. The current study aimed to examine how modalities (visual vs. auditory) and information types (continuous visuospatial vs. discrete rhythmic) of concurrent augmented feedback influence bimanual coordination learning. Participants either learned a 90°-out-of-phase pattern for three consecutive days with Lissajous feedback indicating the integrated position of both arms, or with visual or auditory rhythmic feedback reflecting the relative timing of the movement. The results showed diverse performance change after practice when the feedback was removed between Lissajous and the other two rhythmic groups, indicating that the guidance effect may be modulated by the type of information provided during practice. Moreover, significant performance improvement in the dual-task condition where the irregular rhythm counting task was applied as a secondary task also suggested that lower involvement of conscious control may result in better performance in bimanual coordination. PMID:26895286

  6. Bimanual Coordination Learning with Different Augmented Feedback Modalities and Information Types.

    PubMed

    Chiou, Shiau-Chuen; Chang, Erik Chihhung

    2016-01-01

    Previous studies have shown that bimanual coordination learning is more resistant to the removal of augmented feedback when acquired with auditory than with visual channel. However, it is unclear whether this differential "guidance effect" between feedback modalities is due to enhanced sensorimotor integration via the non-dominant auditory channel or strengthened linkage to kinesthetic information under rhythmic input. The current study aimed to examine how modalities (visual vs. auditory) and information types (continuous visuospatial vs. discrete rhythmic) of concurrent augmented feedback influence bimanual coordination learning. Participants either learned a 90°-out-of-phase pattern for three consecutive days with Lissajous feedback indicating the integrated position of both arms, or with visual or auditory rhythmic feedback reflecting the relative timing of the movement. The results showed diverse performance change after practice when the feedback was removed between Lissajous and the other two rhythmic groups, indicating that the guidance effect may be modulated by the type of information provided during practice. Moreover, significant performance improvement in the dual-task condition where the irregular rhythm counting task was applied as a secondary task also suggested that lower involvement of conscious control may result in better performance in bimanual coordination.

  7. The persistence of a visual dominance effect in a telemanipulator task: A comparison between visual and electrotactile feedback

    NASA Technical Reports Server (NTRS)

    Gaillard, J. P.

    1981-01-01

    The possibility to use an electrotactile stimulation in teleoperation and to observe the interpretation of such information as a feedback to the operator was investigated. It is proposed that visual feedback is more informative than an electrotactile one; and that complex electrotactile feedback slows down both the motor decision and motor response processes, is processed as an all or nothing signal, and bypasses the receptive structure and accesses directly in a working memory where information is sequentially processed and where memory is limited in treatment capacity. The electrotactile stimulation is used as an alerting signal. It is suggested that the visual dominance effect is the result of the advantage of both a transfer function and a sensory memory register where information is pretreated and memorized for a short time. It is found that dividing attention has an effect on the acquisition of the information but not on the subsequent decision processes.

  8. SnapShot: Visualization to Propel Ice Hockey Analytics.

    PubMed

    Pileggi, H; Stolper, C D; Boyle, J M; Stasko, J T

    2012-12-01

    Sports analysts live in a world of dynamic games flattened into tables of numbers, divorced from the rinks, pitches, and courts where they were generated. Currently, these professional analysts use R, Stata, SAS, and other statistical software packages for uncovering insights from game data. Quantitative sports consultants seek a competitive advantage both for their clients and for themselves as analytics becomes increasingly valued by teams, clubs, and squads. In order for the information visualization community to support the members of this blossoming industry, it must recognize where and how visualization can enhance the existing analytical workflow. In this paper, we identify three primary stages of today's sports analyst's routine where visualization can be beneficially integrated: 1) exploring a dataspace; 2) sharing hypotheses with internal colleagues; and 3) communicating findings to stakeholders.Working closely with professional ice hockey analysts, we designed and built SnapShot, a system to integrate visualization into the hockey intelligence gathering process. SnapShot employs a variety of information visualization techniques to display shot data, yet given the importance of a specific hockey statistic, shot length, we introduce a technique, the radial heat map. Through a user study, we received encouraging feedback from several professional analysts, both independent consultants and professional team personnel.

  9. Anatomy and physiology of the afferent visual system.

    PubMed

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Effects of continuous visual feedback during sitting balance training in chronic stroke survivors.

    PubMed

    Pellegrino, Laura; Giannoni, Psiche; Marinelli, Lucio; Casadio, Maura

    2017-10-16

    Postural control deficits are common in stroke survivors and often the rehabilitation programs include balance training based on visual feedback to improve the control of body position or of the voluntary shift of body weight in space. In the present work, a group of chronic stroke survivors, while sitting on a force plate, exercised the ability to control their Center of Pressure with a training based on continuous visual feedback. The goal of this study was to test if and to what extent chronic stroke survivors were able to learn the task and transfer the learned ability to a condition without visual feedback and to directions and displacement amplitudes different from those experienced during training. Eleven chronic stroke survivors (5 Male - 6 Female, age: 59.72 ± 12.84 years) participated in this study. Subjects were seated on a stool positioned on top of a custom-built force platform. Their Center of Pressure positions were mapped to the coordinate of a cursor on a computer monitor. During training, the cursor position was always displayed and the subjects were to reach targets by shifting their Center of Pressure by moving their trunk. Pre and post-training subjects were required to reach without visual feedback of the cursor the training targets as well as other targets positioned in different directions and displacement amplitudes. During training, most stroke survivors were able to perform the required task and to improve their performance in terms of duration, smoothness, and movement extent, although not in terms of movement direction. However, when we removed the visual feedback, most of them had no improvement with respect to their pre-training performance. This study suggests that postural training based exclusively on continuous visual feedback can provide limited benefits for stroke survivors, if administered alone. However, the positive gains observed during training justify the integration of this technology-based protocol in a well-structured and personalized physiotherapy training, where the combination of the two approaches may lead to functional recovery.

  11. Fitts' Law in the Control of Isometric Grip Force With Naturalistic Targets.

    PubMed

    Thumser, Zachary C; Slifkin, Andrew B; Beckler, Dylan T; Marasco, Paul D

    2018-01-01

    Fitts' law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts' law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts' law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts' law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts' law (average r 2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized force meter. In sum, population means were well-described by Fitts' law for explicit targets with vision ( r 2 = 0.96) and implicit targets ( r 2 = 0.89), but not as well-described for explicit targets without vision ( r 2 = 0.54). Implicit targets should provide a realistic see-object-squeeze-object test using Fitts' law to quantify the relative speed-accuracy relationship of any given grasper.

  12. Similar brain networks for detecting visuo-motor and visuo-proprioceptive synchrony.

    PubMed

    Balslev, Daniela; Nielsen, Finn A; Lund, Torben E; Law, Ian; Paulson, Olaf B

    2006-05-15

    The ability to recognize feedback from own movement as opposed to the movement of someone else is important for motor control and social interaction. The neural processes involved in feedback recognition are incompletely understood. Two competing hypotheses have been proposed: the stimulus is compared with either (a) the proprioceptive feedback or with (b) the motor command and if they match, then the external stimulus is identified as feedback. Hypothesis (a) predicts that the neural mechanisms or brain areas involved in distinguishing self from other during passive and active movement are similar, whereas hypothesis (b) predicts that they are different. In this fMRI study, healthy subjects saw visual cursor movement that was either synchronous or asynchronous with their active or passive finger movements. The aim was to identify the brain areas where the neural activity depended on whether the visual stimulus was feedback from own movement and to contrast the functional activation maps for active and passive movement. We found activity increases in the right temporoparietal cortex in the condition with asynchronous relative to synchronous visual feedback from both active and passive movements. However, no statistically significant difference was found between these sets of activated areas when the active and passive movement conditions were compared. With a posterior probability of 0.95, no brain voxel had a contrast effect above 0.11% of the whole-brain mean signal. These results do not support the hypothesis that recognition of visual feedback during active and passive movement relies on different brain areas.

  13. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework

    PubMed Central

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811

  14. A unified framework for image retrieval using keyword and visual features.

    PubMed

    Jing, Feng; Li, Mingling; Zhang, Hong-Jiang; Zhang, Bo

    2005-07-01

    In this paper, a unified image retrieval framework based on both keyword annotations and visual features is proposed. In this framework, a set of statistical models are built based on visual features of a small set of manually labeled images to represent semantic concepts and used to propagate keywords to other unlabeled images. These models are updated periodically when more images implicitly labeled by users become available through relevance feedback. In this sense, the keyword models serve the function of accumulation and memorization of knowledge learned from user-provided relevance feedback. Furthermore, two sets of effective and efficient similarity measures and relevance feedback schemes are proposed for query by keyword scenario and query by image example scenario, respectively. Keyword models are combined with visual features in these schemes. In particular, a new, entropy-based active learning strategy is introduced to improve the efficiency of relevance feedback for query by keyword. Furthermore, a new algorithm is proposed to estimate the keyword features of the search concept for query by image example. It is shown to be more appropriate than two existing relevance feedback algorithms. Experimental results demonstrate the effectiveness of the proposed framework.

  15. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    PubMed

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  16. Visual feedback in stuttering therapy

    NASA Astrophysics Data System (ADS)

    Smolka, Elzbieta

    1997-02-01

    The aim of this paper is to present the results concerning the influence of visual echo and reverberation on the speech process of stutterers. Visual stimuli along with the influence of acoustic and visual-acoustic stimuli have been compared. Following this the methods of implementing visual feedback with the aid of electroluminescent diodes directed by speech signals have been presented. The concept of a computerized visual echo based on the acoustic recognition of Polish syllabic vowels has been also presented. All the research nd trials carried out at our center, aside from cognitive aims, generally aim at the development of new speech correctors to be utilized in stuttering therapy.

  17. Ultra-Rapid serial visual presentation reveals dynamics of feedforward and feedback processes in the ventral visual pathway.

    PubMed

    Mohsenzadeh, Yalda; Qin, Sheng; Cichy, Radoslaw M; Pantazis, Dimitrios

    2018-06-21

    Human visual recognition activates a dense network of overlapping feedforward and recurrent neuronal processes, making it hard to disentangle processing in the feedforward from the feedback direction. Here, we used ultra-rapid serial visual presentation to suppress sustained activity that blurs the boundaries of processing steps, enabling us to resolve two distinct stages of processing with MEG multivariate pattern classification. The first processing stage was the rapid activation cascade of the bottom-up sweep, which terminated early as visual stimuli were presented at progressively faster rates. The second stage was the emergence of categorical information with peak latency that shifted later in time with progressively faster stimulus presentations, indexing time-consuming recurrent processing. Using MEG-fMRI fusion with representational similarity, we localized recurrent signals in early visual cortex. Together, our findings segregated an initial bottom-up sweep from subsequent feedback processing, and revealed the neural signature of increased recurrent processing demands for challenging viewing conditions. © 2018, Mohsenzadeh et al.

  18. Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex.

    PubMed

    Gonchar, Yuri; Burkhalter, Andreas

    2003-11-26

    Processing of visual information is performed in different cortical areas that are interconnected by feedforward (FF) and feedback (FB) pathways. Although FF and FB inputs are excitatory, their influences on pyramidal neurons also depend on the outputs of GABAergic neurons, which receive FF and FB inputs. Rat visual cortex contains at least three different families of GABAergic neurons that express parvalbumin (PV), calretinin (CR), and somatostatin (SOM) (Gonchar and Burkhalter, 1997). To examine whether pathway-specific inhibition (Shao and Burkhalter, 1996) is attributable to distinct connections with GABAergic neurons, we traced FF and FB inputs to PV, CR, and SOM neurons in layers 1-2/3 of area 17 and the secondary lateromedial area in rat visual cortex. We found that in layer 2/3 maximally 2% of FF and FB inputs go to CR and SOM neurons. This contrasts with 12-13% of FF and FB inputs onto layer 2/3 PV neurons. Unlike inputs to layer 2/3, connections to layer 1, which contains CR but lacks SOM and PV somata, are pathway-specific: 21% of FB inputs go to CR neurons, whereas FF inputs to layer 1 and its CR neurons are absent. These findings suggest that FF and FB influences on layer 2/3 pyramidal neurons mainly involve disynaptic connections via PV neurons that control the spike outputs to axons and proximal dendrites. Unlike FF input, FB input in addition makes a disynaptic link via CR neurons, which may influence the excitability of distal pyramidal cell dendrites in layer 1.

  19. Visualizing Syllables: Real-Time Computerized Feedback within a Speech-Language Intervention

    ERIC Educational Resources Information Center

    DeThorne, Laura; Aparicio Betancourt, Mariana; Karahalios, Karrie; Halle, Jim; Bogue, Ellen

    2015-01-01

    Computerized technologies now offer unprecedented opportunities to provide real-time visual feedback to facilitate children's speech-language development. We employed a mixed-method design to examine the effectiveness of two speech-language interventions aimed at facilitating children's multisyllabic productions: one incorporated a novel…

  20. The Inversion of Sensory Processing by Feedback Pathways: A Model of Visual Cognitive Functions.

    ERIC Educational Resources Information Center

    Harth, E.; And Others

    1987-01-01

    Explains the hierarchic structure of the mammalian visual system. Proposes a model in which feedback pathways serve to modify sensory stimuli in ways that enhance and complete sensory input patterns. Investigates the functioning of the system through computer simulations. (ML)

  1. Learning to See: Enhancing Student Learning through Videotaped Feedback

    ERIC Educational Resources Information Center

    Yakura, Elaine K.

    2009-01-01

    Feedback is crucial to developing skills, but meaningful feedback is difficult to provide. Classroom videotaping can provide effective feedback on student performance, but for video feedback to be most helpful, students must develop a type of "visual intelligence"--analytical skills that increase critical thinking and self-awareness. The author…

  2. SU-E-J-196: Implementation of An In-House Visual Feedback System for Motion Management During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, V; James, J; Wang, B

    Purpose: To describe an in-house video goggle feedback system for motion management during simulation and treatment of radiation therapy patients. Methods: This video goggle system works by splitting and amplifying the video output signal directly from the Varian Real-Time Position Management (RPM) workstation or TrueBeam imaging workstation into two signals using a Distribution Amplifier. The first signal S[1] gets reconnected back to the monitor. The second signal S[2] gets connected to the input of a Video Scaler. The S[2] signal can be scaled, cropped and panned in real time to display only the relevant information to the patient. The outputmore » signal from the Video Scaler gets connected to an HDMI Extender Transmitter via a DVI-D to HDMI converter cable. The S[2] signal can be transported from the HDMI Extender Transmitter to the HDMI Extender Receiver located inside the treatment room via a Cat5e/6 cable. Inside the treatment room, the HDMI Extender Receiver is permanently mounted on the wall near the conduit where the Cat5e/6 cable is located. An HDMI cable is used to connect from the output of the HDMI Receiver to the video goggles. Results: This video goggle feedback system is currently being used at two institutions. At one institution, the system was just recently implemented for simulation and treatments on two breath-hold gated patients with 8+ total fractions over a two month period. At the other institution, the system was used to treat 100+ breath-hold gated patients on three Varian TrueBeam linacs and has been operational for twelve months. The average time to prepare the video goggle system for treatment is less than 1 minute. Conclusion: The video goggle system provides an efficient and reliable method to set up a video feedback signal for radiotherapy patients with motion management.« less

  3. Multivariable manual control with simultaneous visual and auditory presentation of information. [for improved compensatory tracking performance of human operator

    NASA Technical Reports Server (NTRS)

    Uhlemann, H.; Geiser, G.

    1975-01-01

    Multivariable manual compensatory tracking experiments were carried out in order to determine typical strategies of the human operator and conditions for improvement of his performance if one of the visual displays of the tracking errors is supplemented by an auditory feedback. Because the tracking error of the system which is only visually displayed is found to decrease, but not in general that of the auditorally supported system, it was concluded that the auditory feedback unloads the visual system of the operator who can then concentrate on the remaining exclusively visual displays.

  4. Reward Selectively Modulates the Lingering Neural Representation of Recently Attended Objects in Natural Scenes.

    PubMed

    Hickey, Clayton; Peelen, Marius V

    2017-08-02

    Theories of reinforcement learning and approach behavior suggest that reward can increase the perceptual salience of environmental stimuli, ensuring that potential predictors of outcome are noticed in the future. However, outcome commonly follows visual processing of the environment, occurring even when potential reward cues have long disappeared. How can reward feedback retroactively cause now-absent stimuli to become attention-drawing in the future? One possibility is that reward and attention interact to prime lingering visual representations of attended stimuli that sustain through the interval separating stimulus and outcome. Here, we test this idea using multivariate pattern analysis of fMRI data collected from male and female humans. While in the scanner, participants searched for examples of target categories in briefly presented pictures of cityscapes and landscapes. Correct task performance was followed by reward feedback that could randomly have either high or low magnitude. Analysis showed that high-magnitude reward feedback boosted the lingering representation of target categories while reducing the representation of nontarget categories. The magnitude of this effect in each participant predicted the behavioral impact of reward on search performance in subsequent trials. Other analyses show that sensitivity to reward-as expressed in a personality questionnaire and in reactivity to reward feedback in the dopaminergic midbrain-predicted reward-elicited variance in lingering target and nontarget representations. Credit for rewarding outcome thus appears to be assigned to the target representation, causing the visual system to become sensitized for similar objects in the future. SIGNIFICANCE STATEMENT How do reward-predictive visual stimuli become salient and attention-drawing? In the real world, reward cues precede outcome and reward is commonly received long after potential predictors have disappeared. How can the representation of environmental stimuli be affected by outcome that occurs later in time? Here, we show that reward acts on lingering representations of environmental stimuli that sustain through the interval between stimulus and outcome. Using naturalistic scene stimuli and multivariate pattern analysis of fMRI data, we show that reward boosts the representation of attended objects and reduces the representation of unattended objects. This interaction of attention and reward processing acts to prime vision for stimuli that may serve to predict outcome. Copyright © 2017 the authors 0270-6474/17/377297-08$15.00/0.

  5. A real-time plantar pressure feedback device for foot unloading.

    PubMed

    Femery, Virginie G; Moretto, Pierre G; Hespel, Jean-Michel G; Thévenon, André; Lensel, Ghislaine

    2004-10-01

    To develop and test a plantar pressure control device that provides both visual and auditory feedback and is suitable for correcting plantar pressure distribution patterns in persons susceptible to neuropathic foot ulceration. Pilot test. Sports medicine laboratory in a university in France. One healthy man in his mid thirties. Not applicable. Main outcome measures A device was developed based on real-time feedback, incorporating an acoustic alarm and visual signals, adjusted to a specific pressure load. Plantar pressure measured during walking, at 6 sensor locations over 27 steps under 2 different conditions: (1) natural and (2) unloaded in response to device feedback. The subject was able to modify his gait in response to the auditory and visual signals. He did not compensate for the decrease of peak pressure under the first metarsal by increasing the duration of the load shift under this area. Gait pattern modification centered on a mediolateral load shift. The auditory signal provided a warning system alerting the user to potentially harmful plantar pressures. The visual signal warned of the degree of pressure. People who have lost nociceptive perception, as in cases of diabetic neuropathy, may be able to change their walking pattern in response to the feedback provided by this device. The visual may have diagnostic value in determining plantar pressures in such patients. This pilot test indicates that further studies are warranted.

  6. Explicit knowledge about the availability of visual feedback affects grasping with the left but not the right hand.

    PubMed

    Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A

    2014-01-01

    Previous research (Whitwell et al. in Exp Brain Res 188:603-611, 2008; Whitwell and Goodale in Exp Brain Res 194:619-629, 2009) has shown that trial history, but not anticipatory knowledge about the presence or absence of visual feedback on an upcoming trial, plays a vital role in determining how that feedback is exploited when grasping with the right hand. Nothing is known about how the non-dominant left hand behaves under the same feedback regimens. In present study, therefore, we compared peak grip aperture (PGA) for left- and right-hand grasps executed with and without visual feedback (i.e., closed- vs. open-loop conditions) in right-handed individuals under three different trial schedules: the feedback conditions were blocked separately, they were randomly interleaved, or they were alternated. When feedback conditions were blocked, the PGA was much larger for open-loop trials as compared to closed-loop trials, although this difference was more pronounced for right-hand grasps than left-hand grasps. Like Whitwell et al., we found that mixing open- and closed-loop trials together, compared to blocking them separately, homogenized the PGA for open- and closed-loop grasping in the right hand (i.e., the PGAs became smaller on open-loop trials and larger on closed-loop trials). In addition, the PGAs for right-hand grasps were entirely determined by trial history and not by knowledge of whether or not visual feedback would be available on an upcoming trial. In contrast to grasps made with the right hand, grasps made by the left hand were affected both by trial history and by anticipatory knowledge of the upcoming visual feedback condition. But these effects were observed only on closed-loop trials, i.e., the PGAs of grasps made with the left hand on closed-loop trials were smaller when participants could anticipate the availability of feedback on an upcoming trial (alternating trials) than when they could not (randomized trials). In contrast, grasps made with the left hand on open-loop trials exhibited the same large PGAs under all feedback schedules: blocked, random, or alternating. In other words, there was no evidence for homogenization. Taken together, these results suggest that in addition to the real-time demands of the task, such as the target's size and position and the availability of visual feedback, the initial (i.e., pre-movement) programming of right-hand grasping relies on what happened on the previous trial, whereas the programming of left-hand grasping is more cognitively supervised and exploits explicit information about trial order to prepare for an upcoming trial.

  7. Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: recalibrating or learning de novo?

    PubMed

    Telgen, Sebastian; Parvin, Darius; Diedrichsen, Jörn

    2014-10-08

    Motor learning tasks are often classified into adaptation tasks, which involve the recalibration of an existing control policy (the mapping that determines both feedforward and feedback commands), and skill-learning tasks, requiring the acquisition of new control policies. We show here that this distinction also applies to two different visuomotor transformations during reaching in humans: Mirror-reversal (left-right reversal over a mid-sagittal axis) of visual feedback versus rotation of visual feedback around the movement origin. During mirror-reversal learning, correct movement initiation (feedforward commands) and online corrections (feedback responses) were only generated at longer latencies. The earliest responses were directed into a nonmirrored direction, even after two training sessions. In contrast, for visual rotation learning, no dependency of directional error on reaction time emerged, and fast feedback responses to visual displacements of the cursor were immediately adapted. These results suggest that the motor system acquires a new control policy for mirror reversal, which initially requires extra processing time, while it recalibrates an existing control policy for visual rotations, exploiting established fast computational processes. Importantly, memory for visual rotation decayed between sessions, whereas memory for mirror reversals showed offline gains, leading to better performance at the beginning of the second session than in the end of the first. With shifts in time-accuracy tradeoff and offline gains, mirror-reversal learning shares common features with other skill-learning tasks. We suggest that different neuronal mechanisms underlie the recalibration of an existing versus acquisition of a new control policy and that offline gains between sessions are a characteristic of latter. Copyright © 2014 the authors 0270-6474/14/3413768-12$15.00/0.

  8. Self-Management of Patient Body Position, Pose, and Motion Using Wide-Field, Real-Time Optical Measurement Feedback: Results of a Volunteer Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhurst, James M.; Price, Gareth J., E-mail: gareth.price@christie.nhs.uk; Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester

    2013-12-01

    Purpose: We present the results of a clinical feasibility study, performed in 10 healthy volunteers undergoing a simulated treatment over 3 sessions, to investigate the use of a wide-field visual feedback technique intended to help patients control their pose while reducing motion during radiation therapy treatment. Methods and Materials: An optical surface sensor is used to capture wide-area measurements of a subject's body surface with visualizations of these data displayed back to them in real time. In this study we hypothesize that this active feedback mechanism will enable patients to control their motion and help them maintain their setup posemore » and position. A capability hierarchy of 3 different level-of-detail abstractions of the measured surface data is systematically compared. Results: Use of the device enabled volunteers to increase their conformance to a reference surface, as measured by decreased variability across their body surfaces. The use of visual feedback also enabled volunteers to reduce their respiratory motion amplitude to 1.7 ± 0.6 mm compared with 2.7 ± 1.4 mm without visual feedback. Conclusions: The use of live feedback of their optically measured body surfaces enabled a set of volunteers to better manage their pose and motion when compared with free breathing. The method is suitable to be taken forward to patient studies.« less

  9. Effects of acoustic feedback training in elite-standard Para-Rowing.

    PubMed

    Schaffert, Nina; Mattes, Klaus

    2015-01-01

    Assessment and feedback devices have been regularly used in technique training in high-performance sports. Biomechanical analysis is mainly visually based and so can exclude athletes with visual impairments. The aim of this study was to examine the effects of auditory feedback on mean boat speed during on-water training of visually impaired athletes. The German National Para-Rowing team (six athletes, mean ± s, age 34.8 ± 10.6 years, body mass 76.5 ± 13.5 kg, stature 179.3 ± 8.6 cm) participated in the study. Kinematics included boat acceleration and distance travelled, collected with Sofirow at two intensities of training. The boat acceleration-time traces were converted online into acoustic feedback and presented via speakers during rowing (sections with and without alternately). Repeated-measures within-participant factorial ANOVA showed greater boat speed with acoustic feedback than baseline (0.08 ± 0.01 m·s(-1)). The time structure of rowing cycles was improved (extended time of positive acceleration). Questioning of athletes showed acoustic feedback to be a supportive training aid as it provided important functional information about the boat motion independent of vision. It gave access for visually impaired athletes to biomechanical analysis via auditory information. The concept for adaptive athletes has been successfully integrated into the preparation for the Para-Rowing World Championships and Paralympics.

  10. Feedforward and Feedback Motor Control Abnormalities Implicate Cerebellar Dysfunctions in Autism Spectrum Disorder

    PubMed Central

    Mohanty, Suman; Greene, Rachel K.; Cook, Edwin H.; Vaillancourt, David E.; Sweeney, John A.

    2015-01-01

    Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. PMID:25653359

  11. Social feedback processing from early to late adolescence: influence of sex, age, and attachment style

    PubMed Central

    Vrtička, Pascal; Sander, David; Anderson, Brittany; Badoud, Deborah; Eliez, Stephan; Debbané, Martin

    2014-01-01

    Objective The establishment of an accurate understanding of one's social context is a central developmental task during adolescence. A critical component of such development is to learn how to integrate the objective evaluation of one's behavior with the social response to the latter—here referred to as social feedback processing. Case report We measured brain activity by means of fMRI in 33 healthy adolescents (12–19 years old, 14 females). Participants played a difficult perceptual game with integrated verbal and visual feedback. Verbal feedback provided the participants with objective performance evaluation (won vs. lost). Visual feedback consisted of either smiling or angry faces, representing positive or negative social evaluations. Together, the combination of verbal and visual feedback gave rise to congruent versus incongruent social feedback combinations. In addition to assessing sex differences, we further tested for the effects of age and attachment style on social feedback processing. Results revealed that brain activity during social feedback processing was significantly modulated by sex, age, and attachment style in prefrontal cortical areas, ventral anterior cingulate cortex, anterior insula, caudate, and amygdala/hippocampus. We found indication for heightened activity during incongruent social feedback processing in females, older participants, and individuals with an anxious attachment style. Conversely, we observed stronger activity during processing of congruent social feedback in males and participants with an avoidant attachment style. Conclusion Our findings not only extend knowledge on the typical development of socio-emotional brain function during adolescence, but also provide first clues on how attachment insecurities, and particularly attachment avoidance, could interfere with the latter mechanisms. PMID:25328847

  12. Mobile in vivo camera robots provide sole visual feedback for abdominal exploration and cholecystectomy.

    PubMed

    Rentschler, M E; Dumpert, J; Platt, S R; Ahmed, S I; Farritor, S M; Oleynikov, D

    2006-01-01

    The use of small incisions in laparoscopy reduces patient trauma, but also limits the surgeon's ability to view and touch the surgical environment directly. These limitations generally restrict the application of laparoscopy to procedures less complex than those performed during open surgery. Although current robot-assisted laparoscopy improves the surgeon's ability to manipulate and visualize the target organs, the instruments and cameras remain fundamentally constrained by the entry incisions. This limits tool tip orientation and optimal camera placement. The current work focuses on developing a new miniature mobile in vivo adjustable-focus camera robot to provide sole visual feedback to surgeons during laparoscopic surgery. A miniature mobile camera robot was inserted through a trocar into the insufflated abdominal cavity of an anesthetized pig. The mobile robot allowed the surgeon to explore the abdominal cavity remotely and view trocar and tool insertion and placement without entry incision constraints. The surgeon then performed a cholecystectomy using the robot camera alone for visual feedback. This successful trial has demonstrated that miniature in vivo mobile robots can provide surgeons with sufficient visual feedback to perform common procedures while reducing patient trauma.

  13. Making Judgements: Investigating the Process of Composing and Receiving Peer Feedback

    ERIC Educational Resources Information Center

    McConlogue, Teresa

    2015-01-01

    Recent studies have argued that tutor feedback is failing to support students' progression. The potential for peer feedback, i.e. feedback composed by peer assessors, to support learning has been under researched. The aim of this paper was to explore a case study of a peer assessor composing and receiving peer feedback. The paper reports a case…

  14. Improving Student Performance Using Nudge Analytics

    ERIC Educational Resources Information Center

    Feild, Jacqueline

    2015-01-01

    Providing students with continuous and personalized feedback on their performance is an important part of encouraging self regulated learning. As part of our higher education platform, we built a set of data visualizations to provide feedback to students on their assignment performance. These visualizations give students information about how they…

  15. Simple Versus Elaborate Feedback in a Nursing Science Course

    NASA Astrophysics Data System (ADS)

    Elder, Betty L.; Brooks, David W.

    2008-08-01

    Feedback techniques, including computer-assisted feedback, have had mixed results in improving student learning outcomes. This project addresses the effect of type of feedback, simple or elaborate, for both short-term comprehension and long-term outcomes. A sample of 75 graduate nursing students was given a total of ten examinations. Four examinations provided tutorials in which the students received one of two types of feedback, simple or elaborate. Five examinations provided tutorials with no feedback. A comprehensive final examination compared initial content and final scores. This study found no significant differences between the types of feedback the students received. The mean scores were significantly higher on the four examinations where the students received feedback than on the five examinations with no feedback on tutorials. The comparison between the individual examinations and the similar content portion of the final examination indicated a significant drop in each of the four examinations where feedback was given and a significant improvement in four of the five examinations where no feedback was given.

  16. Brain-actuated gait trainer with visual and proprioceptive feedback

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Weihai; Lee, Kyuhwa; Chavarriaga, Ricardo; Bouri, Mohamed; Pei, Zhongcai; Millán, José del R.

    2017-10-01

    Objective. Brain-machine interfaces (BMIs) have been proposed in closed-loop applications for neuromodulation and neurorehabilitation. This study describes the impact of different feedback modalities on the performance of an EEG-based BMI that decodes motor imagery (MI) of leg flexion and extension. Approach. We executed experiments in a lower-limb gait trainer (the legoPress) where nine able-bodied subjects participated in three consecutive sessions based on a crossover design. A random forest classifier was trained from the offline session and tested online with visual and proprioceptive feedback, respectively. Post-hoc classification was conducted to assess the impact of feedback modalities and learning effect (an improvement over time) on the simulated trial-based performance. Finally, we performed feature analysis to investigate the discriminant power and brain pattern modulations across the subjects. Main results. (i) For real-time classification, the average accuracy was 62.33 +/- 4.95 % and 63.89 +/- 6.41 % for the two online sessions. The results were significantly higher than chance level, demonstrating the feasibility to distinguish between MI of leg extension and flexion. (ii) For post-hoc classification, the performance with proprioceptive feedback (69.45 +/- 9.95 %) was significantly better than with visual feedback (62.89 +/- 9.20 %), while there was no significant learning effect. (iii) We reported individual discriminate features and brain patterns associated to each feedback modality, which exhibited differences between the two modalities although no general conclusion can be drawn. Significance. The study reported a closed-loop brain-controlled gait trainer, as a proof of concept for neurorehabilitation devices. We reported the feasibility of decoding lower-limb movement in an intuitive and natural way. As far as we know, this is the first online study discussing the role of feedback modalities in lower-limb MI decoding. Our results suggest that proprioceptive feedback has an advantage over visual feedback, which could be used to improve robot-assisted strategies for motor training and functional recovery.

  17. Brain-actuated gait trainer with visual and proprioceptive feedback.

    PubMed

    Liu, Dong; Chen, Weihai; Lee, Kyuhwa; Chavarriaga, Ricardo; Bouri, Mohamed; Pei, Zhongcai; Del R Millán, José

    2017-10-01

    Brain-machine interfaces (BMIs) have been proposed in closed-loop applications for neuromodulation and neurorehabilitation. This study describes the impact of different feedback modalities on the performance of an EEG-based BMI that decodes motor imagery (MI) of leg flexion and extension. We executed experiments in a lower-limb gait trainer (the legoPress) where nine able-bodied subjects participated in three consecutive sessions based on a crossover design. A random forest classifier was trained from the offline session and tested online with visual and proprioceptive feedback, respectively. Post-hoc classification was conducted to assess the impact of feedback modalities and learning effect (an improvement over time) on the simulated trial-based performance. Finally, we performed feature analysis to investigate the discriminant power and brain pattern modulations across the subjects. (i) For real-time classification, the average accuracy was [Formula: see text]% and [Formula: see text]% for the two online sessions. The results were significantly higher than chance level, demonstrating the feasibility to distinguish between MI of leg extension and flexion. (ii) For post-hoc classification, the performance with proprioceptive feedback ([Formula: see text]%) was significantly better than with visual feedback ([Formula: see text]%), while there was no significant learning effect. (iii) We reported individual discriminate features and brain patterns associated to each feedback modality, which exhibited differences between the two modalities although no general conclusion can be drawn. The study reported a closed-loop brain-controlled gait trainer, as a proof of concept for neurorehabilitation devices. We reported the feasibility of decoding lower-limb movement in an intuitive and natural way. As far as we know, this is the first online study discussing the role of feedback modalities in lower-limb MI decoding. Our results suggest that proprioceptive feedback has an advantage over visual feedback, which could be used to improve robot-assisted strategies for motor training and functional recovery.

  18. Feedback Dependence Among Low Confidence Preadolescent Boys and Girls.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Corbin, Charles B.

    1988-01-01

    Investigation of differences between male and female students' reactions to receiving or not receiving performance feedback indicated that both sexes showed lower self-confidence when they did not receive feedback and that lack of self-confidence impaired the performance of males more than females. Participants were 111 fifth- and sixth-grade…

  19. Evaluating Preference for Graphic Feedback on Correct versus Incorrect Performance

    ERIC Educational Resources Information Center

    Sigurdsson, Sigurdur O.; Ring, Brandon M.

    2013-01-01

    The current study evaluated preferences of undergraduate students for graphic feedback on percentage of incorrect performance versus feedback on percentage of correct performance. A total of 108 participants were enrolled in the study and received graphic feedback on performance on 12 online quizzes. One half of participants received graphic…

  20. Feedback in Teacher Education: Mentor Discourse and Intern Perceptions

    ERIC Educational Resources Information Center

    Le, Phuong Thi Anh; Vasquez, Camilla

    2011-01-01

    Giving and receiving feedback are essential activities in student teaching. This paper explores the strategies that mentors adopted in giving post-observation feedback to the interns in Teaching English to Speakers of Other Languages (TESOL) and these teaching interns' perceptions of the feedback they received. The discourse analysis of six…

  1. Towards a Teleoperated Needle Driver Robot with Haptic Feedback for RFA of Breast Tumors under Continuous MRI1

    PubMed Central

    Kokes, Rebecca; Lister, Kevin; Gullapalli, Rao; Zhang, Bao; MacMillan, Alan; Richard, Howard; Desai, Jaydev P.

    2009-01-01

    Objective The purpose of this paper is to explore the feasibility of developing a MRI-compatible needle driver system for radiofrequency ablation (RFA) of breast tumors under continuous MRI imaging while being teleoperated by a haptic feedback device from outside the scanning room. The developed needle driver prototype was designed and tested for both tumor targeting capability as well as RFA. Methods The single degree-of-freedom (DOF) prototype was interfaced with a PHANToM haptic device controlled from outside the scanning room. Experiments were performed to demonstrate MRI-compatibility and position control accuracy with hydraulic actuation, along with an experiment to determine the PHANToM’s ability to guide the RFA tool to a tumor nodule within a phantom breast tissue model while continuously imaging within the MRI and receiving force feedback from the RFA tool. Results Hydraulic actuation is shown to be a feasible actuation technique for operation in an MRI environment. The design is MRI-compatible in all aspects except for force sensing in the directions perpendicular to the direction of motion. Experiments confirm that the user is able to detect healthy vs. cancerous tissue in a phantom model when provided with both visual (imaging) feedback and haptic feedback. Conclusion The teleoperated 1-DOF needle driver system presented in this paper demonstrates the feasibility of implementing a MRI-compatible robot for RFA of breast tumors with haptic feedback capability. PMID:19303805

  2. mHealth to Train Community Health Nurses in Visual Inspection With Acetic Acid for Cervical Cancer Screening in Ghana.

    PubMed

    Asgary, Ramin; Adongo, Philip Baba; Nwameme, Adanna; Cole, Helen V S; Maya, Ernest; Liu, Mengling; Yeates, Karen; Adanu, Richard; Ogedegbe, Olugbenga

    2016-07-01

    There is a shortage of trained health care personnel for cervical cancer screening in low-/middle-income countries. We evaluated the feasibility and limited efficacy of a smartphone-based training of community health nurses in visual inspection of the cervix under acetic acid (VIA). During April to July 2015 in urban Ghana, we designed and developed a study to determine the feasibility and efficacy of an mHealth-supported training of community health nurses (CHNs, n = 15) to perform VIA and to use smartphone images to obtain expert feedback on their diagnoses within 24 hours and to improve VIA skills retention. The CHNs completed a 2-week on-site introductory training in VIA performance and interpretation, followed by an ongoing 3-month text messaging-supported VIA training by an expert VIA reviewer. Community health nurses screened 169 women at their respective community health centers while receiving real-time feedback from the reviewer. The total agreement rate between all VIA diagnoses made by all CHNs and the expert reviewer was 95%. The mean (SD) rate of agreement between each CHN and the expert reviewer was 89.6% (12.8%). The agreement rates for positive and negative cases were 61.5% and 98.0%, respectively. Cohen κ statistic was 0.67 (95% CI = 0.45-0.88). Around 7.7% of women tested VIA positive and received cryotherapy or further services. Our findings demonstrate the feasibility and efficacy of mHealth-supported VIA training of CHNs and have the potential to improve cervical cancer screening coverage in Ghana.

  3. Using Screencasts to Enhance Assessment Feedback: Students' Perceptions and Preferences

    ERIC Educational Resources Information Center

    Marriott, Pru; Teoh, Lim Keong

    2012-01-01

    In the UK, assessment and feedback have been regularly highlighted by the National Student Survey as critical aspects that require improvement. An innovative approach to delivering feedback that has proved successful in non-business-related disciplines is the delivery of audio and visual feedback using screencast technology. The feedback on…

  4. Feedback on Teaching from Observations of Teaching: What Do Administrators Say and What Do Teachers Think about It?

    ERIC Educational Resources Information Center

    Khachatryan, Edit

    2015-01-01

    Teachers crave yet rarely receive qualitative performance feedback. Though student feedback has been studied, we know little about what kinds of feedback are useful to teachers for improving practice. This study begins to address the need in research on the nature of feedback teachers receive from classroom observations as well as on how teachers…

  5. Spontaneous eye movements in goldfish: oculomotor integrator performance, plasticity, and dependence on visual feedback.

    PubMed

    Mensh, B D; Aksay, E; Lee, D D; Seung, H S; Tank, D W

    2004-03-01

    To quantify performance of the goldfish oculomotor neural integrator and determine its dependence on visual feedback, we measured the relationship between eye drift-velocity and position during spontaneous gaze fixations in the light and in the dark. In the light, drift-velocities were typically less than 1 deg/s, similar to those observed in humans. During brief periods in darkness, drift-velocities were only slightly larger, but showed greater variance. One hour in darkness degraded fixation-holding performance. These findings suggest that while visual feedback is not essential for online fixation stability, it may be used to tune the mechanism of persistent neural activity in the oculomotor integrator.

  6. Methods and apparatus for graphical display and editing of flight plans

    NASA Technical Reports Server (NTRS)

    Gibbs, Michael J. (Inventor); Adams, Jr., Mike B. (Inventor); Chase, Karl L. (Inventor); Lewis, Daniel E. (Inventor); McCrobie, Daniel E. (Inventor); Omen, Debi Van (Inventor)

    2002-01-01

    Systems and methods are provided for an integrated graphical user interface which facilitates the display and editing of aircraft flight-plan data. A user (e.g., a pilot) located within the aircraft provides input to a processor through a cursor control device and receives visual feedback via a display produced by a monitor. The display includes various graphical elements associated with the lateral position, vertical position, flight-plan and/or other indicia of the aircraft's operational state as determined from avionics data and/or various data sources. Through use of the cursor control device, the user may modify the flight-plan and/or other such indicia graphically in accordance with feedback provided by the display. In one embodiment, the display includes a lateral view, a vertical profile view, and a hot-map view configured to simplify the display and editing of the aircraft's flight-plan data.

  7. Visuomotor adaptability in older adults with mild cognitive decline.

    PubMed

    Schaffert, Jeffrey; Lee, Chi-Mei; Neill, Rebecca; Bo, Jin

    2017-02-01

    The current study examined the augmentation of error feedback on visuomotor adaptability in older adults with varying degrees of cognitive decline (assessed by the Montreal Cognitive Assessment; MoCA). Twenty-three participants performed a center-out computerized visuomotor adaptation task when the visual feedback of their hand movement error was presented in a regular (ratio=1:1) or enhanced (ratio=1:2) error feedback schedule. Results showed that older adults with lower scores on the MoCA had less adaptability than those with higher MoCA scores during the regular feedback schedule. However, participants demonstrated similar adaptability during the enhanced feedback schedule, regardless of their cognitive ability. Furthermore, individuals with lower MoCA scores showed larger after-effects in spatial control during the enhanced schedule compared to the regular schedule, whereas individuals with higher MoCA scores displayed the opposite pattern. Additional neuro-cognitive assessments revealed that spatial working memory and processing speed were positively related to motor adaptability during the regular scheduled but negatively related to adaptability during the enhanced schedule. We argue that individuals with mild cognitive decline employed different adaptation strategies when encountering enhanced visual feedback, suggesting older adults with mild cognitive impairment (MCI) may benefit from enhanced visual error feedback during sensorimotor adaptation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Sensor-Based Interactive Balance Training with Visual Joint Movement Feedback for Improving Postural Stability in Diabetics with Peripheral Neuropathy: A Randomized Controlled Trial.

    PubMed

    Grewal, Gurtej Singh; Schwenk, Michael; Lee-Eng, Jacqueline; Parvaneh, Saman; Bharara, Manish; Menzies, Robert A; Talal, Talal K; Armstrong, David G; Najafi, Bijan

    2015-01-01

    Individuals with diabetic peripheral neuropathy (DPN) have deficits in sensory and motor skills leading to inadequate proprioceptive feedback, impaired postural balance and higher fall risk. This study investigated the effect of sensor-based interactive balance training on postural stability and daily physical activity in older adults with diabetes. Thirty-nine older adults with DPN were enrolled (age 63.7 ± 8.2 years, BMI 30.6 ± 6, 54% females) and randomized to either an intervention (IG) or a control (CG) group. The IG received sensor-based interactive exercise training tailored for people with diabetes (twice a week for 4 weeks). The exercises focused on shifting weight and crossing virtual obstacles. Body-worn sensors were implemented to acquire kinematic data and provide real-time joint visual feedback during the training. Outcome measurements included changes in center of mass (CoM) sway, ankle and hip joint sway measured during a balance test while the eyes were open and closed at baseline and after the intervention. Daily physical activities were also measured during a 48-hour period at baseline and at follow-up. Analysis of covariance was performed for the post-training outcome comparison. Compared with the CG, the patients in the IG showed a significantly reduced CoM sway (58.31%; p = 0.009), ankle sway (62.7%; p = 0.008) and hip joint sway (72.4%; p = 0.017) during the balance test with open eyes. The ankle sway was also significantly reduced in the IG group (58.8%; p = 0.037) during measurements while the eyes were closed. The number of steps walked showed a substantial but nonsignificant increase (+27.68%; p = 0.064) in the IG following training. The results of this randomized controlled trial demonstrate that people with DPN can significantly improve their postural balance with diabetes-specific, tailored, sensor-based exercise training. The results promote the use of wearable technology in exercise training; however, future studies comparing this technology with commercially available systems are required to evaluate the benefit of interactive visual joint movement feedback. © 2015 S. Karger AG, Basel.

  9. Improving training of laparoscopic tissue manipulation skills using various visual force feedback types.

    PubMed

    Smit, Daan; Spruit, Edward; Dankelman, Jenny; Tuijthof, Gabrielle; Hamming, Jaap; Horeman, Tim

    2017-01-01

    Visual force feedback allows trainees to learn laparoscopic tissue manipulation skills. The aim of this experimental study was to find the most efficient visual force feedback method to acquire these skills. Retention and transfer validity to an untrained task were assessed. Medical students without prior experience in laparoscopy were randomized in three groups: Constant Force Feedback (CFF) (N = 17), Bandwidth Force Feedback (BFF) (N = 16) and Fade-in Force Feedback (N = 18). All participants performed a pretest, training, post-test and follow-up test. The study involved two dissimilar tissue manipulation tasks, one for training and one to assess transferability. Participants performed six trials of the training task. A force platform was used to record several force parameters. A paired-sample t test showed overall lower force parameter outcomes in the post-test compared to the pretest (p < .001). A week later, the force parameter outcomes were still significantly lower than found in the pretest (p < .005). Participants also performed the transfer task in the post-test (p < .02) and follow-up (p < .05) test with lower force parameter outcomes compared to the pretest. A one-way MANOVA indicated that in the post-test the CFF group applied 50 % less Mean Absolute Nonzero Force (p = .005) than the BFF group. All visual force feedback methods showed to be effective in decreasing tissue manipulation force as no major differences were found between groups in the post and follow-up trials. The BFF method is preferred for it respects individual progress and minimizes distraction.

  10. Neural networks supporting switching, hypothesis testing, and rule application

    PubMed Central

    Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S.; Seger, Carol A.

    2015-01-01

    We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example “choose the blue letter.” Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. PMID:26197092

  11. Neural networks supporting switching, hypothesis testing, and rule application.

    PubMed

    Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S; Seger, Carol A

    2015-10-01

    We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example "choose the blue letter". Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Progress Feedback Effects on Students' Writing Mastery Goal, Self-Efficacy Beliefs, and Performance

    ERIC Educational Resources Information Center

    Duijnhouwer, Hendrien; Prins, Frans J.; Stokking, Karel M.

    2010-01-01

    The effects of progress feedback on university students' writing mastery goal, self-efficacy beliefs, and writing performance were examined in this experiment. Students in the experimental condition (n = 42) received progress feedback on their writing assignment, whereas students in the control condition (n = 44) received feedback without progress…

  13. Stop Sabotaging Feedback

    ERIC Educational Resources Information Center

    Stone, Douglas; David-Lang, Jenn

    2017-01-01

    School leaders need to be able to give and receive feedback--to give it skillfully to teachers, and to receive it skillfully from, well, everyone. Most educators agree that feedback can be necessary and helpful--yet the unending cascade of new directives governing feedback often feel like a waste of time. In this article, the authors offer…

  14. Designing between Pedagogies and Cultures: Audio-Visual Chinese Language Resources for Australian Schools

    ERIC Educational Resources Information Center

    Yuan, Yifeng; Shen, Huizhong

    2016-01-01

    This design-based study examines the creation and development of audio-visual Chinese language teaching and learning materials for Australian schools by incorporating users' feedback and content writers' input that emerged in the designing process. Data were collected from workshop feedback of two groups of Chinese-language teachers from primary…

  15. Using Real-Time Visual Feedback to Improve Posture at Computer Workstations

    ERIC Educational Resources Information Center

    Sigurdsson, Sigurdur O.; Austin, John

    2008-01-01

    The purpose of the current study was to examine the effects of a multicomponent intervention that included discrimination training, real-time visual feedback, and self-monitoring on postural behavior at a computer workstation in a simulated office environment. Using a nonconcurrent multiple baseline design across 8 participants, the study assessed…

  16. Facilitating Learning from Animated Instruction: Effectiveness of Questions and Feedback as Attention-Directing Strategies

    ERIC Educational Resources Information Center

    Lin, Huifen

    2011-01-01

    The purpose of this study was to investigate the relative effectiveness of different types of visuals (static and animated) and instructional strategies (no strategy, questions, and questions plus feedback) used to complement visualized materials on students' learning of different educational objectives in a computer-based instructional (CBI)…

  17. Effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability.

    PubMed

    Nam, Seung-Min; Kim, Kyoung; Lee, Do Youn

    2018-01-01

    [Purpose] This study examined the effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability. [Subjects and Methods] Twenty eight adults with functional ankle instability, divided randomly into an experimental group, which performed visual feedback balance training for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Bio rescue was used for balance ability. It measured limit of stability at one minute. For ankle instability was measured using Cumberland ankle instability tool (CAIT). This measure was performed before and after the experiments in each group. [Results] The experimental group had significant increase in the Limit of Stability and CAIT score. The control group had significant increase in CAIT score. While the Limit of Stability increased without significance. [Conclusion] In conclusion, visual feedback balance training can be recommended as a treatment method for patients with functional ankle instability.

  18. Cheating following success and failure in heavy and moderate social drinkers.

    PubMed

    Corcoran, K J; Hankey, J

    1989-07-01

    Two groups of American undergraduates (moderate and heavy social drinkers) completed a matrix task and received either positive or negative feedback on their performance. Following this they were given a maze task, which was designed so that cheating could be detected. Heavy drinkers cheated more than moderate drinkers under success conditions (positive feedback). Heavy drinkers who received positive feedback also cheated more than heavy drinkers who received negative feedback. The results are interpreted in terms of self-handicapping theory.

  19. Perception of CPR quality: Influence of CPR feedback, Just-in-Time CPR training and provider role.

    PubMed

    Cheng, Adam; Overly, Frank; Kessler, David; Nadkarni, Vinay M; Lin, Yiqun; Doan, Quynh; Duff, Jonathan P; Tofil, Nancy M; Bhanji, Farhan; Adler, Mark; Charnovich, Alex; Hunt, Elizabeth A; Brown, Linda L

    2015-02-01

    Many healthcare providers rely on visual perception to guide cardiopulmonary resuscitation (CPR), but little is known about the accuracy of provider perceptions of CPR quality. We aimed to describe the difference between perceived versus measured CPR quality, and to determine the impact of provider role, real-time visual CPR feedback and Just-in-Time (JIT) CPR training on provider perceptions. We conducted secondary analyses of data collected from a prospective, multicenter, randomized trial of 324 healthcare providers who participated in a simulated cardiac arrest scenario between July 2012 and April 2014. Participants were randomized to one of four permutations of: JIT CPR training and real-time visual CPR feedback. We calculated the difference between perceived and measured quality of CPR and reported the proportion of subjects accurately estimating the quality of CPR within each study arm. Participants overestimated achieving adequate chest compression depth (mean difference range: 16.1-60.6%) and rate (range: 0.2-51%), and underestimated chest compression fraction (0.2-2.9%) across all arms. Compared to no intervention, the use of real-time feedback and JIT CPR training (alone or in combination) improved perception of depth (p<0.001). Accurate estimation of CPR quality was poor for chest compression depth (0-13%), rate (5-46%) and chest compression fraction (60-63%). Perception of depth is more accurate in CPR providers versus team leaders (27.8% vs. 7.4%; p=0.043) when using real-time feedback. Healthcare providers' visual perception of CPR quality is poor. Perceptions of CPR depth are improved by using real-time visual feedback and with prior JIT CPR training. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.

    PubMed

    Batcho, C S; Gagné, M; Bouyer, L J; Roy, J S; Mercier, C

    2016-11-19

    When subjects learn a novel motor task, several sources of feedback (proprioceptive, visual or auditory) contribute to the performance. Over the past few years, several studies have investigated the role of visual feedback in motor learning, yet evidence remains conflicting. The aim of this study was therefore to investigate the role of online visual feedback (VFb) on the acquisition and retention stages of motor learning associated with training in a reaching task. Thirty healthy subjects made ballistic reaching movements with their dominant arm toward two targets, on 2 consecutive days using a robotized exoskeleton (KINARM). They were randomly assigned to a group with (VFb) or without (NoVFb) VFb of index position during movement. On day 1, the task was performed before (baseline) and during the application of a velocity-dependent resistive force field (adaptation). To assess retention, participants repeated the task with the force field on day 2. Motor learning was characterized by: (1) the final endpoint error (movement accuracy) and (2) the initial angle (iANG) of deviation (motor planning). Even though both groups showed motor adaptation, the NoVFb-group exhibited slower learning and higher final endpoint error than the VFb-group. In some condition, subjects trained without visual feedback used more curved initial trajectories to anticipate for the perturbation. This observation suggests that learning to reach targets in a velocity-dependent resistive force field is possible even when feedback is limited. However, the absence of VFb leads to different strategies that were only apparent when reaching toward the most challenging target. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Does Grading Undermine Feedback? the Influence of Grades on the Effectiveness of Corrective Feedback on L2 Writing

    ERIC Educational Resources Information Center

    Dlaska, Andrea; Krekeler, Christian

    2017-01-01

    It has been questioned whether students notice, act upon and, ultimately, learn from feedback if feedback about a task is received in conjunction with grades. If grades undermine feedback, it could be argued that it is a waste of teachers' time to add comments to students' written work if the students also receive grades. With reference to SLA…

  2. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    PubMed Central

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10–12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant’s MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642

  3. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.

    PubMed

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.

  4. The integration of temporally shifted visual feedback in a synchronization task: The role of perceptual stability in a visuo-proprioceptive conflict situation.

    PubMed

    Ceux, Tanja; Montagne, Gilles; Buekers, Martinus J

    2010-12-01

    The present study examined whether the beneficial role of coherently grouped visual motion structures for performing complex (interlimb) coordination patterns can be generalized to synchronization behavior in a visuo-proprioceptive conflict situation. To achieve this goal, 17 participants had to synchronize a self-moved circle, representing the arm movement, with a visual target signal corresponding to five temporally shifted visual feedback conditions (0%, 25%, 50%, 75%, and 100% of the target cycle duration) in three synchronization modes (in-phase, anti-phase, and intermediate). The results showed that the perception of a newly generated perceptual Gestalt between the visual feedback of the arm and the target signal facilitated the synchronization performance in the preferred in-phase synchronization mode in contrast to the less stable anti-phase and intermediate mode. Our findings suggest that the complexity of the synchronization mode defines to what extent the visual and/or proprioceptive information source affects the synchronization performance in the present unimanual synchronization task. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Analysis of Feedback in after Action Reviews

    DTIC Science & Technology

    1987-06-01

    CONNTSM Page INTRODUCTIUN . . . . . . . . . . . . . . . . . . . A Perspective on Feedback. . ....... • • ..... • 1 Overviev of %,•urrent Research...part of their training program . The AAR is in marked contrast to the critique method of feedback which is often used in military training. The AAR...feedback is task-inherent feedback. Task-inherent feedback refers to human-machine interacting systems, e.g., computers , where in a visual tracking task

  6. The interaction of respiration and visual feedback on the control of force and neural activation of the agonist muscle

    PubMed Central

    Baweja, Harsimran S.; Patel, Bhavini K.; Neto, Osmar P.; Christou, Evangelos A.

    2011-01-01

    The purpose of this study was to compare force variability and the neural activation of the agonist muscle during constant isometric contractions at different force levels when the amplitude of respiration and visual feedback were varied. Twenty young adults (20–32 years, 10 men and 10 women) were instructed to accurately match a target force at 15 and 50% of their maximal voluntary contraction (MVC) with abduction of the index finger while controlling their respiration at different amplitudes (85, 100 and 125% normal) in the presence and absence of visual feedback. Each trial lasted 22 s and visual feedback was removed from 8–12 to 16–20 s. Each subject performed 3 trials with each respiratory condition at each force level. Force variability was quantified as the standard deviation of the detrended force data. The neural activation of the first dorsal interosseus (FDI) was measured with bipolar surface electrodes placed distal to the innervation zone. Relative to normal respiration, force variability increased significantly only during high-amplitude respiration (~63%). The increase in force variability from normal- to high-amplitude respiration was strongly associated with amplified force oscillations from 0–3 Hz (R2 ranged from .68 – .84; p < .001). Furthermore, the increase in force variability was exacerbated in the presence of visual feedback at 50% MVC (vision vs. no-vision: .97 vs. .87 N) and was strongly associated with amplified force oscillations from 0–1 Hz (R2 = .82) and weakly associated with greater power from 12–30 Hz (R2 = .24) in the EMG of the agonist muscle. Our findings demonstrate that high-amplitude respiration and visual feedback of force interact and amplify force variability in young adults during moderate levels of effort. PMID:21546109

  7. Prior history of FDI muscle contraction: different effect on MEP amplitude and muscle activity.

    PubMed

    Talis, V L; Kazennikov, O V; Castellote, J M; Grishin, A A; Ioffe, M E

    2014-03-01

    Motor evoked potentials (MEPs) in the right first dorsal interosseous (FDI) muscle elicited by transcranial magnetic stimulation of left motor cortex were assessed in ten healthy subjects during maintenance of a fixed FDI contraction level. Subjects maintained an integrated EMG (IEMG) level with visual feedback and reproduced this level by memory afterwards in the following tasks: stationary FDI muscle contraction at the level of 40 ± 5 % of its maximum voluntary contraction (MVC; 40 % task), at the level of 20 ± 5 % MVC (20 % task), and also when 20 % MVC was preceded by either no contraction (0-20 task), by stronger muscle contraction (40-20 task) or by no contraction with a previous strong contraction (40-0-20 task). The results show that the IEMG level was within the prescribed limits when 20 and 40 % stationary tasks were executed with and without visual feedback. In 0-20, 40-20, and 40-0-20 tasks, 20 % IEMG level was precisely controlled in the presence of visual feedback, but without visual feedback the IEMG and force during 20 % IEMG maintenance were significantly higher in the 40-0-20 task than those in 0-20 and 40-20 tasks. That is, without visual feedback, there were significant variations in muscle activity due to different prehistory of contraction. In stationary tasks, MEP amplitudes in 40 % task were higher than in 20 % task. MEPs did not differ significantly during maintenance of the 20 % level in tasks with different prehistory of muscle contraction with and without visual feedback. Thus, in spite of variations in muscle background activity due to different prehistory of contraction MEPs did not vary significantly. This dissociation suggests that the voluntary maintenance of IEMG level is determined not only by cortical mechanisms, as reflected by corticospinal excitability, but also by lower levels of CNS, where afferent signals and influences from other brain structures and spinal cord are convergent.

  8. Electrical coupling between A17 cells enhances reciprocal inhibitory feedback to rod bipolar cells.

    PubMed

    Elgueta, Claudio; Leroy, Felix; Vielma, Alex H; Schmachtenberg, Oliver; Palacios, Adrian G

    2018-02-15

    A17 amacrine cells are an important part of the scotopic pathway. Their synaptic varicosities receive glutamatergic inputs from rod bipolar cells (RBC) and release GABA onto the same RBC terminal, forming a reciprocal feedback that shapes RBC depolarization. Here, using patch-clamp recordings, we characterized electrical coupling between A17 cells of the rat retina and report the presence of strongly interconnected and non-coupled A17 cells. In coupled A17 cells, evoked currents preferentially flow out of the cell through GJs and cross-synchronization of presynaptic signals in a pair of A17 cells is correlated to their coupling degree. Moreover, we demonstrate that stimulation of one A17 cell can induce electrical and calcium transients in neighboring A17 cells, thus confirming a functional flow of information through electrical synapses in the A17 coupled network. Finally, blocking GJs caused a strong decrease in the amplitude of the inhibitory feedback onto RBCs. We therefore propose that electrical coupling between A17 cells enhances feedback onto RBCs by synchronizing and facilitating GABA release from inhibitory varicosities surrounding each RBC axon terminal. GJs between A17 cells are therefore critical in shaping the visual flow through the scotopic pathway.

  9. Effects of generic versus non-generic feedback on motor learning in children.

    PubMed

    Chiviacowsky, Suzete; Drews, Ricardo

    2014-01-01

    Non-generic feedback refers to a specific event and implies that performance is malleable, while generic feedback implies that task performance reflects an inherent ability. The present study examined the influences of generic versus non-generic feedback on motor performance and learning in 10-year-old children. In the first experiment, using soccer ball kicking at a target as a task, providing participants with generic feedback resulted in worse performance than providing non-generic feedback, after both groups received negative feedback. The second experiment measured more permanent effects. Results of a retention test, performed one day after practicing a throwing task, showed that participants who received non-generic feedback during practice outperformed the generic feedback group, after receiving a negative feedback statement. The findings demonstrate the importance of the wording of feedback. Even though different positive feedback statements may not have an immediate influence on performance, they can affect performance, and presumably individuals' motivation, when performance is (purportedly) poor. Feedback implying that performance is malleable, rather than due to an inherent ability, seems to have the potential to inoculate learners against setbacks--a situation frequently encountered in the context of motor performance and learning.

  10. Effects of Generic versus Non-Generic Feedback on Motor Learning in Children

    PubMed Central

    Chiviacowsky, Suzete; Drews, Ricardo

    2014-01-01

    Non-generic feedback refers to a specific event and implies that performance is malleable, while generic feedback implies that task performance reflects an inherent ability. The present study examined the influences of generic versus non-generic feedback on motor performance and learning in 10-year-old children. In the first experiment, using soccer ball kicking at a target as a task, providing participants with generic feedback resulted in worse performance than providing non-generic feedback, after both groups received negative feedback. The second experiment measured more permanent effects. Results of a retention test, performed one day after practicing a throwing task, showed that participants who received non-generic feedback during practice outperformed the generic feedback group, after receiving a negative feedback statement. The findings demonstrate the importance of the wording of feedback. Even though different positive feedback statements may not have an immediate influence on performance, they can affect performance, and presumably individuals' motivation, when performance is (purportedly) poor. Feedback implying that performance is malleable, rather than due to an inherent ability, seems to have the potential to inoculate learners against setbacks – a situation frequently encountered in the context of motor performance and learning. PMID:24523947

  11. Fitts’ Law in the Control of Isometric Grip Force With Naturalistic Targets

    PubMed Central

    Thumser, Zachary C.; Slifkin, Andrew B.; Beckler, Dylan T.; Marasco, Paul D.

    2018-01-01

    Fitts’ law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts’ law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts’ law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts’ law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts’ law (average r2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized force meter. In sum, population means were well-described by Fitts’ law for explicit targets with vision (r2 = 0.96) and implicit targets (r2 = 0.89), but not as well-described for explicit targets without vision (r2 = 0.54). Implicit targets should provide a realistic see-object-squeeze-object test using Fitts’ law to quantify the relative speed-accuracy relationship of any given grasper. PMID:29773999

  12. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder.

    PubMed

    Mosconi, Matthew W; Mohanty, Suman; Greene, Rachel K; Cook, Edwin H; Vaillancourt, David E; Sweeney, John A

    2015-02-04

    Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. Copyright © 2015 the authors 0270-6474/15/352015-11$15.00/0.

  13. Specific interpretation of augmented feedback changes motor performance and cortical processing.

    PubMed

    Lauber, Benedikt; Keller, Martin; Leukel, Christian; Gollhofer, Albert; Taube, Wolfgang

    2013-05-01

    It is well established that the presence of external feedback, also termed augmented feedback, can be used to improve performance of a motor task. The present study aimed to elucidate whether differential interpretation of the external feedback signal influences the time to task failure of a sustained submaximal contraction and modulates motor cortical activity. In Experiment 1, subjects had to maintain a submaximal contraction (30% of maximum force) performed with their thumb and index finger. Half of the tested subjects were always provided with feedback about joint position (pF-group), whereas the other half of the subjects were always provided with feedback about force (fF-group). Subjects in the pF-group were led to belief in half of their trials that they would receive feedback about the applied force, and subjects in the fF-group to receive feedback about the position. In both groups (fF and pF), the time to task failure was increased when subjects thought to receive feedback about the force. In Experiment 2, subthreshold transcranial magnetic stimulation was applied over the right motor cortex and revealed an increased motor cortical activity when subjects thought to receive feedback about the joint position. The results showed that the interpretation of feedback influences motor behavior and alters motor cortical activity. The current results support previous studies suggesting a distinct neural control of force and position.

  14. Audio Feedback: Richer Language but No Measurable Impact on Student Performance

    ERIC Educational Resources Information Center

    Chalmers, Charlotte; MacCallum, Janis; Mowat, Elaine; Fulton, Norma

    2014-01-01

    Audio feedback has been shown to be popular and well received by students. However, there is little published work to indicate how effective audio feedback is in improving student performance. Sixty students from a first year science degree agreed to take part in the study; thirty were randomly assigned to receive written feedback on coursework,…

  15. Effectively Feeding Forward from One Written Assessment Task to the Next

    ERIC Educational Resources Information Center

    Vardi, Iris

    2013-01-01

    Most studies into lecturers' written feedback focus on the types of feedback found to be effective when students have the opportunity to act on that feedback, revise their written assignment and improve the mark they receive. But often students do not have this opportunity. Typically, they receive a mark and feedback on an assignment that they…

  16. Learning new vocabulary in German: the effects of inferring word meanings, type of feedback, and time of test.

    PubMed

    Carpenter, Shana K; Sachs, Riebana E; Martin, Beth; Schmidt, Kristian; Looft, Ruxandra

    2012-02-01

    In the present study, introductory-level German students read a simplified story and learned the meanings of new German words by reading English translations in marginal glosses versus trying to infer (i.e., guess) their translations. Students who inferred translations were given feedback in English or in German, or no feedback at all. Although immediate retention of new vocabulary was better for students who used marginal glosses, students who inferred word meanings and then received English feedback forgot fewer translations over time. Plausible but inaccurate inferences (i.e., those that made sense in the context) were more likely to be corrected by students who received English feedback as compared with German feedback, providing support for the beneficial effects of mediating information. Implausible inaccurate inferences, however, were more likely to be corrected on the delayed vocabulary test by students who received German feedback as compared with English feedback, possibly because of the additional contextual support provided by German feedback.

  17. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors.

    PubMed

    Liu, Ying; Hu, Huijing; Jones, Jeffery A; Guo, Zhiqiang; Li, Weifeng; Chen, Xi; Liu, Peng; Liu, Hanjun

    2015-08-01

    Speakers rapidly adjust their ongoing vocal productions to compensate for errors they hear in their auditory feedback. It is currently unclear what role attention plays in these vocal compensations. This event-related potential (ERP) study examined the influence of selective and divided attention on the vocal and cortical responses to pitch errors heard in auditory feedback regarding ongoing vocalisations. During the production of a sustained vowel, participants briefly heard their vocal pitch shifted up two semitones while they actively attended to auditory or visual events (selective attention), or both auditory and visual events (divided attention), or were not told to attend to either modality (control condition). The behavioral results showed that attending to the pitch perturbations elicited larger vocal compensations than attending to the visual stimuli. Moreover, ERPs were likewise sensitive to the attentional manipulations: P2 responses to pitch perturbations were larger when participants attended to the auditory stimuli compared to when they attended to the visual stimuli, and compared to when they were not explicitly told to attend to either the visual or auditory stimuli. By contrast, dividing attention between the auditory and visual modalities caused suppressed P2 responses relative to all the other conditions and caused enhanced N1 responses relative to the control condition. These findings provide strong evidence for the influence of attention on the mechanisms underlying the auditory-vocal integration in the processing of pitch feedback errors. In addition, selective attention and divided attention appear to modulate the neurobehavioral processing of pitch feedback errors in different ways. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Ten tips for receiving feedback effectively in clinical practice

    PubMed Central

    Algiraigri, Ali H.

    2014-01-01

    Background Despite being recognized as a fundamental part of the educational process and emphasized for several decades in medical education, the influence of the feedback process is still suboptimal. This may not be surprising, because the focus is primarily centered on only one half of the process – the teachers. The learners are the targets of the feedback process and improvement needs to be shifted. Learners need to be empowered with the skills needed to receive and utilize feedback and compensate for less than ideal feedback delivery due to the busy clinical environment. Methods Based on the available feedback literature and clinical experience regarding feedback, the author developed 10 tips to empower learners with the necessary skills to seek, receive, and handle feedback effectively, regardless of how it is delivered. Although, most of the tips are directed at the individual clinical trainee, this model can be utilized by clinical educators involved in learner development and serve as a framework for educational workshops or curriculum. Results Ten practical tips are identified that specifically address the learner's role in the feedback process. These tips not only help the learner to ask, receive, and handle the feedback, but will also ease the process for the teachers. Collectively, these tips help to overcome most, if not all, of the barriers to feedback and bridge the gaps in busy clinical practices. Conclusions Feedback is a crucial element in the educational process and it is shown that we are still behind in the optimal use of it; thus, learners need to be taught how to better receive and utilize feedback. The focus in medical education needs to balance the two sides of the feedback process. It is time now to invest on the learner's development of skills that can be utilized in a busy day-to-day clinical practice. PMID:25079664

  19. Pre-Feedback Risk Expectancies and Reception of Low-Risk Health Feedback: Absolute and Comparative Lack of Reassurance.

    PubMed

    Gamp, Martina; Renner, Britta

    2016-11-01

    Personalised health-risk assessment is one of the most common components of health promotion programs. Previous research on responses to health risk feedback has commonly focused on the reception of bad news (high-risk feedback). The reception of low-risk feedback has been comparably neglected since it is assumed that good news is reassuring and readily received. However, field studies suggest mixed responses to low-risk health feedback. Accordingly, we examine whether pre-feedback risk expectancies can mitigate the reassuring effects of good news. In two studies (N = 187, N = 565), after assessing pre-feedback risk expectancies, participants received low-risk personalised feedback about their own risk of developing (the fictitious) Tucson Chronic Fatigue Syndrome (TCFS). Study 2 also included peer TCFS risk status feedback. Afterwards, self- and peer-related risk perception for TCFS was assessed. In both studies, participants who expected to be at high risk but received good news (unexpected low-risk feedback) showed absolute lack of reassurance. Specifically, they felt at significantly greater TCFS risk than participants who received expected good news. Moreover, the unexpected low-risk group even believed that their risk was as high as (Study 1) or higher (Study 2) than that of their peers (comparative lack of reassurance). Results support the notion that high pre-feedback risk expectancies can mitigate absolute and comparative reassuring effects of good news. © 2016 The International Association of Applied Psychology.

  20. Visual information transfer. 1: Assessment of specific information needs. 2: The effects of degraded motion feedback. 3: Parameters of appropriate instrument scanning behavior

    NASA Technical Reports Server (NTRS)

    Comstock, J. R., Jr.; Kirby, R. H.; Coates, G. D.

    1984-01-01

    Pilot and flight crew assessment of visually displayed information is examined as well as the effects of degraded and uncorrected motion feedback, and instrument scanning efficiency by the pilot. Computerized flight simulation and appropriate physiological measurements are used to collect data for standardization.

  1. The Use of Visual Feedback during Signing: Evidence from Signers with Impaired Vision

    ERIC Educational Resources Information Center

    Emmorey, Karen; Korpics, Franco; Petronio, Karen

    2009-01-01

    The role of visual feedback during the production of American Sign Language was investigated by comparing the size of signing space during conversations and narrative monologues for normally sighted signers, signers with tunnel vision due to Usher syndrome, and functionally blind signers. The interlocutor for all groups was a normally sighted deaf…

  2. The Effects of Task Clarification, Visual Prompts, and Graphic Feedback on Customer Greeting and Up-Selling in a Restaurant

    ERIC Educational Resources Information Center

    Squires, James; Wilder, David A.; Fixsen, Amanda; Hess, Erica; Rost, Kristen; Curran, Ryan; Zonneveld, Kimberly

    2007-01-01

    An intervention consisting of task clarification, visual prompts, and graphic feedback was evaluated to increase customer greeting and up-selling in a restaurant. A combination multiple baseline and reversal design was used to evaluate intervention effects. Although all interventions improved performance over baseline, the delivery of graphic…

  3. Ultrasound as Visual Feedback in Speech Habilitation: Exploring Consultative Use in Rural British Columbia, Canada

    ERIC Educational Resources Information Center

    Bernhardt, B. May; Bacsfalvi, Penelope; Adler-Bock, Marcy; Shimizu, Reiko; Cheney, Audrey; Giesbrecht, Nathan; O'Connell, Maureen; Sirianni, Jason; Radanov, Bosko

    2008-01-01

    Ultrasound has shown promise as a visual feedback tool in speech therapy. Rural clients, however, often have minimal access to new technologies. The purpose of the current study was to evaluate consultative treatment using ultrasound in rural communities. Two speech-language pathologists (SLPs) trained in ultrasound use provided consultation with…

  4. Error correcting mechanisms during antisaccades: contribution of online control during primary saccades and offline control via secondary saccades.

    PubMed

    Bedi, Harleen; Goltz, Herbert C; Wong, Agnes M F; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa

    2013-01-01

    Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary "corrective" saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task.

  5. Error Correcting Mechanisms during Antisaccades: Contribution of Online Control during Primary Saccades and Offline Control via Secondary Saccades

    PubMed Central

    Bedi, Harleen; Goltz, Herbert C.; Wong, Agnes M. F.; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa

    2013-01-01

    Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary “corrective” saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task. PMID:23936308

  6. Visual feedback attenuates mean concentric barbell velocity loss, and improves motivation, competitiveness, and perceived workload in male adolescent athletes.

    PubMed

    Weakley, Jonathon Js; Wilson, Kyle M; Till, Kevin; Read, Dale B; Darrall-Jones, Joshua; Roe, Gregory; Phibbs, Padraic J; Jones, Ben

    2017-07-12

    It is unknown whether instantaneous visual feedback of resistance training outcomes can enhance barbell velocity in younger athletes. Therefore, the purpose of this study was to quantify the effects of visual feedback on mean concentric barbell velocity in the back squat, and to identify changes in motivation, competitiveness, and perceived workload. In a randomised-crossover design (Feedback vs. Control) feedback of mean concentric barbell velocity was or was not provided throughout a set of 10 repetitions in the barbell back squat. Magnitude-based inferences were used to assess changes between conditions, with almost certainly greater differences in mean concentric velocity between the Feedback (0.70 ±0.04 m·s) and Control (0.65 ±0.05 m·s) observed. Additionally, individual repetition mean concentric velocity ranged from possibly (repetition number two: 0.79 ±0.04 vs. 0.78 ±0.04 m·s) to almost certainly (repetition number 10: 0.58 ±0.05 vs. 0.49 ±0.05 m·s) greater when provided feedback, while almost certain differences were observed in motivation, competitiveness, and perceived workload, respectively. Providing adolescent male athletes with visual kinematic information while completing resistance training is beneficial for the maintenance of barbell velocity during a training set, potentially enhancing physical performance. Moreover, these improvements were observed alongside increases in motivation, competitiveness and perceived workload providing insight into the underlying mechanisms responsible for the performance gains observed. Given the observed maintenance of barbell velocity during a training set, practitioners can use this technique to manipulate training outcomes during resistance training.

  7. A survey of telerobotic surface finishing

    NASA Astrophysics Data System (ADS)

    Höglund, Thomas; Alander, Jarmo; Mantere, Timo

    2018-05-01

    This is a survey of research published on the subjects of telerobotics, haptic feedback, and mixed reality applied to surface finishing. The survey especially focuses on how visuo-haptic feedback can be used to improve a grinding process using a remote manipulator or robot. The benefits of teleoperation and reasons for using haptic feedback are presented. The use of genetic algorithms for optimizing haptic sensing is briefly discussed. Ways of augmenting the operator's vision are described. Visual feedback can be used to find defects and analyze the quality of the surface resulting from the surface finishing process. Visual cues can also be used to aid a human operator in manipulating a robot precisely and avoiding collisions.

  8. Real-Time Performance Feedback for the Manual Control of Spacecraft

    NASA Astrophysics Data System (ADS)

    Karasinski, John Austin

    Real-time performance metrics were developed to quantify workload, situational awareness, and manual task performance for use as visual feedback to pilots of aerospace vehicles. Results from prior lunar lander experiments with variable levels of automation were replicated and extended to provide insights for the development of real-time metrics. Increased levels of automation resulted in increased flight performance, lower workload, and increased situational awareness. Automated Speech Recognition (ASR) was employed to detect verbal callouts as a limited measure of subjects' situational awareness. A one-dimensional manual tracking task and simple instructor-model visual feedback scheme was developed. This feedback was indicated to the operator by changing the color of a guidance element on the primary flight display, similar to how a flight instructor points out elements of a display to a student pilot. Experiments showed that for this low-complexity task, visual feedback did not change subject performance, but did increase the subjects' measured workload. Insights gained from these experiments were applied to a Simplified Aid for EVA Rescue (SAFER) inspection task. The effects of variations of an instructor-model performance-feedback strategy on human performance in a novel SAFER inspection task were investigated. Real-time feedback was found to have a statistically significant effect of improving subject performance and decreasing workload in this complicated four degree of freedom manual control task with two secondary tasks.

  9. Individuals with autism spectrum disorder show abnormalities during initial and subsequent phases of precision gripping

    PubMed Central

    Magnon, Grant C.; White, Stormi P.; Greene, Rachel K.; Vaillancourt, David E.

    2014-01-01

    Sensorimotor impairments are common in autism spectrum disorder (ASD), but they are not well understood. Here we examined force control during initial pulses and the subsequent rise, sustained, and relaxation phases of precision gripping in 34 individuals with ASD and 25 healthy control subjects. Participants pressed on opposing load cells with their thumb and index finger while receiving visual feedback regarding their performance. They completed 2- and 8-s trials during which they pressed at 15%, 45%, or 85% of their maximum force. Initial pulses guided by feedforward control mechanisms, sustained force output controlled by visual feedback processes, and force relaxation rates all were examined. Control subjects favored an initial pulse strategy characterized by a rapid increase in and then relaxation of force when the target force was low (Type 1). When the target force level or duration of trials was increased, control subjects transitioned to a strategy in which they more gradually increased their force, paused, and then increased their force again. Individuals with ASD showed a more persistent bias toward the Type 1 strategy at higher force levels and during longer trials, and their initial force output was less accurate than that of control subjects. Patients showed increased force variability compared with control subjects when attempting to sustain a constant force level. During the relaxation phase, they showed reduced rates of force decrease. These findings suggest that both feedforward and feedback motor control mechanisms are compromised in ASD and these deficits may contribute to the dyspraxia and sensorimotor abnormalities often seen in this disorder. PMID:25552638

  10. Effect of 3basic life support training programs in future primary school teachers. A quasi-experimental design.

    PubMed

    Navarro-Patón, R; Freire-Tellado, M; Basanta-Camiño, S; Barcala-Furelos, R; Arufe-Giraldez, V; Rodriguez-Fernández, J E

    2018-05-01

    To evaluate the learning of basic life support (BLS) measures on the part of laypersons after 3different teaching programs. A quasi-experimental before-after study involving a non-probabilistic sample without a control group was carried out. Primary school teacher students from the University of Santiago (Spain). A total of 124 students (68.8% women and 31.2% men) aged 20-39 years (M=22.23; SD=3.79), with no previous knowledge of BLS, were studied. Three teaching programs were used: a traditional course, an audio-visual approach and feedback devices. Chest compressions as sole cardiopulmonary resuscitation skill evaluation: average compression depth, compression rate, chest recoil percentage and percentage of correct compressions. Automated external defibrillator: time needed to apply a shock before and after the course. There were significant differences in the results obtained after 2minutes of chest compressions, depending on the training program received, with feedback devices having a clear advantage referred to average compression depth (p<0.001), compression rate (p<0.001), chest recoil percentage (p<0.001) and percentage of correct compressions (p<0.001). Regarding automated external defibrillator, statistically significant differences were found in T after (p=0.025). The teaching course using feedback devices obtained the best results in terms of the quality of chest compressions, followed by the traditional course and audio-visual approach. These favorable results were present in both men and women. All 3teaching methods reached the goal of reducing defibrillation time. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  11. Formative assessment based on an audit and feedback improves nuchal translucency ultrasound image quality.

    PubMed

    Chalouhi, Gihad E; Salomon, Laurent J; Fontanges, Marianne; Althuser, Marc; Haddad, Georges; Scemama, Olivier; Chabot, Jean-Michel; Duyme, Michel; Fries, Nicolas

    2013-09-01

    The purpose of this work was to study the impact of an audit and feedback on the quality of routine first-trimester nuchal transparency ultrasound images. Eighty-eight sonographers were each sent 2 different series of 30 consecutive nuchal translucency images at a mean interval of 3 months to a dedicated, protected server for remote double-blind independent analysis based on the new Collège Français d'Echographie Foetale/Centre National de la Recherche Scientifique image-scoring method (https://www.cfef.org/evaluation/ISMCFEFCNRS.pdf). The sonographers were classified as low (score below the median) or high (score above the median) scorers for each series. Before their second evaluation, 73 of the 88 sonographers received a feedback report on their first series of images, whereas the other 15 participants received no feedback. The baseline characteristics of the participants who did and did not receive feedback were comparable. Participants who received feedback increased their average score significantly, from a mean ± SD of 11.1 ± 1.3 to 13.4 ± 1.4 among low scorers (P < .00001) and from 15.1 ± 1.2 to 16.0 ± 1.4 among high scorers (P < .001), whereas no significant change was seen among participants who received no feedback (low scorers, 10.9 ± 1.5 to 12.1 ± 2.0; P = .11; high scorers, 14.7 ± 1.3 to 14.6 ± 1.3; P = .99). The proportion of satisfactory images increased by 48% among low scorers who received feedback. Formative assessment based on a moderately intensive audit and feedback is feasible and effective for improving the quality of routine first-trimester nuchal transparency ultrasound images.

  12. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion

    PubMed Central

    Smith, Ross T.; Hunter, Estin V.; Davis, Miles G.; Sterling, Michele; Moseley, G. Lorimer

    2017-01-01

    Background Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can’t be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. Method In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%–200%—the Motor Offset Visual Illusion (MoOVi)—thus simulating more or less movement than that actually occurring. At 50o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360o immersive virtual reality with and without three-dimensional properties, was also investigated. Results Perception of head movement was dependent on visual-kinaesthetic feedback (p = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Discussion Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here has clear potential for assessment and therapy of people with spinal pain. PMID:28243537

  13. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion.

    PubMed

    Harvie, Daniel S; Smith, Ross T; Hunter, Estin V; Davis, Miles G; Sterling, Michele; Moseley, G Lorimer

    2017-01-01

    Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can't be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50 o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%-200%-the Motor Offset Visual Illusion (MoOVi)-thus simulating more or less movement than that actually occurring. At 50 o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360 o immersive virtual reality with and without three-dimensional properties, was also investigated. Perception of head movement was dependent on visual-kinaesthetic feedback ( p  = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here has clear potential for assessment and therapy of people with spinal pain.

  14. Intermittent compared to continuous real-time fMRI neurofeedback boosts control over amygdala activation.

    PubMed

    Hellrung, Lydia; Dietrich, Anja; Hollmann, Maurice; Pleger, Burkhard; Kalberlah, Christian; Roggenhofer, Elisabeth; Villringer, Arno; Horstmann, Annette

    2018-02-01

    Real-time fMRI neurofeedback is a feasible tool to learn the volitional regulation of brain activity. So far, most studies provide continuous feedback information that is presented upon every volume acquisition. Although this maximizes the temporal resolution of feedback information, it may be accompanied by some disadvantages. Participants can be distracted from the regulation task due to (1) the intrinsic delay of the hemodynamic response and associated feedback and (2) limited cognitive resources available to simultaneously evaluate feedback information and stay engaged with the task. Here, we systematically investigate differences between groups presented with different variants of feedback (continuous vs. intermittent) and a control group receiving no feedback on their ability to regulate amygdala activity using positive memories and feelings. In contrast to the feedback groups, no learning effect was observed in the group without any feedback presentation. The group receiving intermittent feedback exhibited better amygdala regulation performance when compared with the group receiving continuous feedback. Behavioural measurements show that these effects were reflected in differences in task engagement. Overall, we not only demonstrate that the presentation of feedback is a prerequisite to learn volitional control of amygdala activity but also that intermittent feedback is superior to continuous feedback presentation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Feedback in a clinical setting: A way forward to enhance student's learning through constructive feedback.

    PubMed

    Sultan, Amber Shamim; Mateen Khan, Muhammad Arif

    2017-07-01

    Feedback is considered as a dynamic process in which information about the observed performance is used to promote the desirable behaviour and correct the negative ones. The importance of feedback is widely acknowledged, but still there seems to be inconsistency in the amount, type and timing of feedback received from the clinical faculty. No significant effort has been put forward from the educator end to empower the learners with the skills of receiving and using the feedback effectively. Some institutions conduct faculty development workshops and courses to facilitate the clinicians on how best to deliver constructive feedback to the learners. Despite of all these struggles learners are not fully satisfied with the quality of feedback received from their busy clinicians. The aim of this paper is to highlight what actually feedback is, type and structure of feedback, the essential components of a constructive feedback, benefits of providing feedback, barriers affecting the provision of timely feedback and different models used for providing feedback. The ultimate purpose of this paper is to provide sufficient information to the clinical directors that there is a need to establish a robust system for giving feedback to learners and to inform all the clinical educators with the skills required to provide constructive feedback to their learners. For the literature review, we had used the key words glossary as: Feedback, constructive feedback, barriers to feedback, principles of constructive feedback, Models of feedback, reflection, self-assessment and clinical practice etc. The data bases for the search include: Cardiff University library catalogue, Pub Med, Google Scholar, Web of Knowledge and Science direct.

  16. Return of spontaneous circulation and long-term survival according to feedback provided by automated external defibrillators.

    PubMed

    Agerskov, M; Hansen, M B; Nielsen, A M; Møller, T P; Wissenberg, M; Rasmussen, L S

    2017-11-01

    We aimed to investigate the effect of automated external defibrillator (AED) feedback mechanisms on survival in out-of-hospital cardiac arrest (OHCA) victims. In addition, we investigated converting rates in patients with shockable rhythms according to AED shock waveforms and energy levels. We collected data on OHCA occurring between 2011 and 2014 in the Capital Region of Denmark where an AED was applied prior to ambulance arrival. Patient data were obtained from the Danish Cardiac Arrest Registry and medical records. AED data were retrieved from the Emergency Medical Dispatch Centre (EMDC) and information on feedback mechanisms, energy waveform and energy level was downloaded from the applied AEDs. A total of 196 OHCAs had an AED applied prior to ambulance arrival; 62 of these (32%) provided audio visual (AV) feedback while no feedback was provided in 134 (68%). We found no difference in return of spontaneous circulation (ROSC) at hospital arrival according to AV-feedback; 34 (55%, 95% confidence interval (CI) [13-67]) vs. 72 (54%, 95% CI [45-62]), P = 1 (odds ratio (OR) 1.1, 95% CI [0.6-1.9]) or 30-day survival; 24 (39%, 95% CI [28-51]) vs. 53 (40%, 95% CI [32-49]), P = 0.88 (OR 1.1 (95% CI [0.6-2.0])). Moreover, we found no difference in converting rates among patients with initial shockable rhythm receiving one or more shocks according to AED energy waveform and energy level. No difference in survival after OHCA according to AED feedback mechanisms, nor any difference in converting rates according to AED waveform or energy levels was detected. © 2017 The Authors. Acta Anaesthesiologica Scandinavica published by John Wiley & Sons Ltd on behalf of Acta Anaesthesiologica Scandinavica Foundation.

  17. Updating Target Location at the End of an Orienting Saccade Affects the Characteristics of Simple Point-to-Point Movements

    ERIC Educational Resources Information Center

    Desmurget, Michel; Turner, Robert S.; Prablanc, Claude; Russo, Gary S.; Alexander, Garret E.; Grafton, Scott T.

    2005-01-01

    Six results are reported. (a) Reaching accuracy increases when visual capture of the target is allowed (e.g., target on vs. target off at saccade onset). (b) Whatever the visual condition, trajectories diverge only after peak acceleration, suggesting that accuracy is improved through feedback mechanisms. (c) Feedback corrections are smoothly…

  18. Encouraging Electricity Savings in a University Residential Hall through a Combination of Feedback, Visual Prompts, and Incentives

    ERIC Educational Resources Information Center

    Bekker, Marthinus J.; Cumming, Tania D.; Osborne, Nikola K. P.; Bruining, Angela M.; McClean, Julia I.; Leland, Louis S., Jr.

    2010-01-01

    This experiment investigated the combined use of visual prompts, daily feedback, and rewards to reduce electricity consumption in a university residential hall. After a 17-day baseline period, the experimental intervention was introduced in the intervention hall, and no change was made in the control hall. Energy usage decreased in the…

  19. THE EFFECT OF VISUAL FEEDBACK ON PRONUNCIATION IN FOREIGN LANGUAGE LEARNING. TERMINATION OF RESEARCH REPORT.

    ERIC Educational Resources Information Center

    JENSON, PAUL G.; WESTERMEIER, FRANZ X.

    A RESEARCH PROJECT USING THE OSCILLOSCOPE TO DETERMINE VISUAL FEEDBACK IN THE TEACHING OF FOREIGN LANGUAGE PRONUNCIATION WAS TERMINATED BECAUSE OF TECHNICAL DIFFICULTIES THAT COULD NOT BE RESOLVED WITH THE EQUIPMENT AVAILABLE. FAILURE IS ATTRIBUTED TO SUCH FACTORS AS (1) THE SPEECH SOUND WAVES SOUND THE SAME THOUGH THEIR WAVE SHAPES DIFFER, (2)…

  20. The Impact of Feedback on Self-Rated Driving Ability and Driving Self-Regulation among Older Adults

    ERIC Educational Resources Information Center

    Ackerman, Michelle L.; Crowe, Michael; Vance, David E.; Wadley, Virginia G.; Owsley, Cynthia; Ball, Karlene K.

    2011-01-01

    In 129 community-dwelling older adults, feedback regarding qualification for an insurance discount (based on a visual speed of processing test; Useful Field of View) was examined as a prospective predictor of change in self-reported driving ability, driving avoidance, and driving exposure over 3 months, along with physical, visual, health, and…

  1. Ultrasound visual feedback treatment and practice variability for residual speech sound errors

    PubMed Central

    Preston, Jonathan L.; McCabe, Patricia; Rivera-Campos, Ahmed; Whittle, Jessica L.; Landry, Erik; Maas, Edwin

    2014-01-01

    Purpose The goals were to (1) test the efficacy of a motor-learning based treatment that includes ultrasound visual feedback for individuals with residual speech sound errors, and (2) explore whether the addition of prosodic cueing facilitates speech sound learning. Method A multiple baseline single subject design was used, replicated across 8 participants. For each participant, one sound context was treated with ultrasound plus prosodic cueing for 7 sessions, and another sound context was treated with ultrasound but without prosodic cueing for 7 sessions. Sessions included ultrasound visual feedback as well as non-ultrasound treatment. Word-level probes assessing untreated words were used to evaluate retention and generalization. Results For most participants, increases in accuracy of target sound contexts at the word level were observed with the treatment program regardless of whether prosodic cueing was included. Generalization between onset singletons and clusters was observed, as well as generalization to sentence-level accuracy. There was evidence of retention during post-treatment probes, including at a two-month follow-up. Conclusions A motor-based treatment program that includes ultrasound visual feedback can facilitate learning of speech sounds in individuals with residual speech sound errors. PMID:25087938

  2. Prism adaptation in virtual and natural contexts: Evidence for a flexible adaptive process.

    PubMed

    Veilleux, Louis-Nicolas; Proteau, Luc

    2015-01-01

    Prism exposure when aiming at a visual target in a virtual condition (e.g., when the hand is represented by a video representation) produces no or only small adaptations (after-effects), whereas prism exposure in a natural condition produces large after-effects. Some researchers suggested that this difference may arise from distinct adaptive processes, but other studies suggested a unique process. The present study reconciled these conflicting interpretations. Forty participants were divided into two groups: One group used visual feedback of their hand (natural context), and the other group used computer-generated representational feedback (virtual context). Visual feedback during adaptation was concurrent or terminal. All participants underwent laterally displacing prism perturbation. The results showed that the after-effects were twice as large in the "natural context" than in the "virtual context". No significant differences were observed between the concurrent and terminal feedback conditions. The after-effects generalized to untested targets and workspace. These results suggest that prism adaptation in virtual and natural contexts involves the same process. The smaller after-effects in the virtual context suggest that the depth of adaptation is a function of the degree of convergence between the proprioceptive and visual information that arises from the hand.

  3. Semi-Immersive Virtual Turbine Engine Simulation System

    NASA Astrophysics Data System (ADS)

    Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea

    2018-05-01

    The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.

  4. Cortical excitability correlates with the event-related desynchronization during brain-computer interface control

    NASA Astrophysics Data System (ADS)

    Daly, Ian; Blanchard, Caroline; Holmes, Nicholas P.

    2018-04-01

    Objective. Brain-computer interfaces (BCIs) based on motor control have been suggested as tools for stroke rehabilitation. Some initial successes have been achieved with this approach, however the mechanism by which they work is not yet fully understood. One possible part of this mechanism is a, previously suggested, relationship between the strength of the event-related desynchronization (ERD), a neural correlate of motor imagination and execution, and corticospinal excitability. Additionally, a key component of BCIs used in neurorehabilitation is the provision of visual feedback to positively reinforce attempts at motor control. However, the ability of visual feedback of the ERD to modulate the activity in the motor system has not been fully explored. Approach. We investigate these relationships via transcranial magnetic stimulation delivered at different moments in the ongoing ERD related to hand contraction and relaxation during BCI control of a visual feedback bar. Main results. We identify a significant relationship between ERD strength and corticospinal excitability, and find that our visual feedback does not affect corticospinal excitability. Significance. Our results imply that efforts to promote functional recovery in stroke by targeting increases in corticospinal excitability may be aided by accounting for the time course of the ERD.

  5. Use of Visual and Proprioceptive Feedback to Improve Gait Speed and Spatiotemporal Symmetry Following Chronic Stroke: A Case Series

    PubMed Central

    Feasel, Jeff; Wentz, Erin; Brooks, Frederick P.; Whitton, Mary C.

    2012-01-01

    Background and Purpose Persistent deficits in gait speed and spatiotemporal symmetry are prevalent following stroke and can limit the achievement of community mobility goals. Rehabilitation can improve gait speed, but has shown limited ability to improve spatiotemporal symmetry. The incorporation of combined visual and proprioceptive feedback regarding spatiotemporal symmetry has the potential to be effective at improving gait. Case Description A 60-year-old man (18 months poststroke) and a 53-year-old woman (21 months poststroke) each participated in gait training to improve gait speed and spatiotemporal symmetry. Each patient performed 18 sessions (6 weeks) of combined treadmill-based gait training followed by overground practice. To assist with relearning spatiotemporal symmetry, treadmill-based training for both patients was augmented with continuous, real-time visual and proprioceptive feedback from an immersive virtual environment and a dual belt treadmill, respectively. Outcomes Both patients improved gait speed (patient 1: 0.35 m/s improvement; patient 2: 0.26 m/s improvement) and spatiotemporal symmetry. Patient 1, who trained with step-length symmetry feedback, improved his step-length symmetry ratio, but not his stance-time symmetry ratio. Patient 2, who trained with stance-time symmetry feedback, improved her stance-time symmetry ratio. She had no step-length asymmetry before training. Discussion Both patients made improvements in gait speed and spatiotemporal symmetry that exceeded those reported in the literature. Further work is needed to ascertain the role of combined visual and proprioceptive feedback for improving gait speed and spatiotemporal symmetry after chronic stroke. PMID:22228605

  6. Direction of Magnetoencephalography Sources Associated with Feedback and Feedforward Contributions in a Visual Object Recognition Task

    PubMed Central

    Ahlfors, Seppo P.; Jones, Stephanie R.; Ahveninen, Jyrki; Hämäläinen, Matti S.; Belliveau, John W.; Bar, Moshe

    2014-01-01

    Identifying inter-area communication in terms of the hierarchical organization of functional brain areas is of considerable interest in human neuroimaging. Previous studies have suggested that the direction of magneto- and electroencephalography (MEG, EEG) source currents depends on the layer-specific input patterns into a cortical area. We examined the direction in MEG source currents in a visual object recognition experiment in which there were specific expectations of activation in the fusiform region being driven by either feedforward or feedback inputs. The source for the early non-specific visual evoked response, presumably corresponding to feedforward driven activity, pointed outward, i.e., away from the white matter. In contrast, the source for the later, object-recognition related signals, expected to be driven by feedback inputs, pointed inward, toward the white matter. Associating specific features of the MEG/EEG source waveforms to feedforward and feedback inputs could provide unique information about the activation patterns within hierarchically organized cortical areas. PMID:25445356

  7. Learning receptive fields using predictive feedback.

    PubMed

    Jehee, Janneke F M; Rothkopf, Constantin; Beck, Jeffrey M; Ballard, Dana H

    2006-01-01

    Previously, it was suggested that feedback connections from higher- to lower-level areas carry predictions of lower-level neural activities, whereas feedforward connections carry the residual error between the predictions and the actual lower-level activities [Rao, R.P.N., Ballard, D.H., 1999. Nature Neuroscience 2, 79-87.]. A computational model implementing the hypothesis learned simple cell receptive fields when exposed to natural images. Here, we use predictive feedback to explain tuning properties in medial superior temporal area (MST). We implement the hypothesis using a new, biologically plausible, algorithm based on matching pursuit, which retains all the features of the previous implementation, including its ability to efficiently encode input. When presented with natural images, the model developed receptive field properties as found in primary visual cortex. In addition, when exposed to visual motion input resulting from movements through space, the model learned receptive field properties resembling those in MST. These results corroborate the idea that predictive feedback is a general principle used by the visual system to efficiently encode natural input.

  8. Distinct Feedforward and Feedback Effects of Microstimulation in Visual Cortex Reveal Neural Mechanisms of Texture Segregation.

    PubMed

    Klink, P Christiaan; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R

    2017-07-05

    The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Comparing the accuracy of performing digital and paper checklists using a feedback package during normal workload conditions in simulated flight

    NASA Astrophysics Data System (ADS)

    Rantz, William Gene

    This study examined whether pilots completed airplane digital or paper checklists more accurately when they received post-flight graphic and verbal feedback. Participants were 6 college student pilots with instrument rating. The task consisted of flying flight patterns using a Frasca 241 Flight Training Device which emulates a Cirrus SR20 aircraft. The main dependent variable was the number of checklist items completed correctly per flight. An alternating treatment, multiple baseline design across pairs with reversal, was used. During baseline, the average percent of correctly completed items per flight varied considerably across participants, ranging from 13% to 57% for traditional paper checklists and ranging from 11% to 67% for digital checklists. Checklist performance increased to an average of 90% for paper checklist and an average of 89% for digital checklists after participants were given feedback and praise, and continued to improve to an average of nearly 100% for paper checklists and an average of 99% for digital checklists after the feedback and praise were removed. A slight decrement in performance was observed during a post-experiment probe between 60--90 days. Visual inspection and statistical analysis of the data suggest that paper checklist accuracy does not differ significantly from digital checklist accuracy. The results suggest that graphic feedback and praise can be used to increase the extent to which pilots use both digital and paper checklists accurately during normal workload conditions.

  10. Effects of Continuous Kinaesthetic Feedback Based on Tendon Vibration on Motor Imagery BCI Performance.

    PubMed

    Barsotti, Michele; Leonardis, Daniele; Vanello, Nicola; Bergamasco, Massimo; Frisoli, Antonio

    2018-01-01

    Feedback plays a crucial role for using brain computer interface systems. This paper proposes the use of vibration-evoked kinaesthetic illusions as part of a novel multisensory feedback for a motor imagery (MI)-based BCI and investigates its contributions in terms of BCI performance and electroencephalographic (EEG) correlates. sixteen subjects performed two different right arm MI-BCI sessions: with the visual feedback only and with both visual and vibration-evoked kinaesthetic feedback, conveyed by the stimulation of the biceps brachi tendon. In both conditions, the sensory feedback was driven by the MI-BCI. The rich and more natural multisensory feedback was expected to facilitate the execution of MI, and thus to improve the performance of the BCI. The EEG correlates of the proposed feedback were also investigated with and without the performing of MI. the contribution of vibration-evoked kinaesthetic feedback led to statistically higher BCI performance (Anova, F (1,14) = 18.1, p < .01) and more stable EEG event-related-desynchronization. Obtained results suggest promising application of the proposed method in neuro-rehabilitation scenarios: the advantage of an improved usability could make the MI-BCIs more applicable for those patients having difficulties in performing kinaesthetic imagery.

  11. Visual-perceptual-kinesthetic inputs on influencing writing performances in children with handwriting difficulties.

    PubMed

    Tse, Linda F L; Thanapalan, Kannan C; Chan, Chetwyn C H

    2014-02-01

    This study investigated the role of visual-perceptual input in writing Chinese characters among senior school-aged children who had handwriting difficulties (CHD). The participants were 27 CHD (9-11 years old) and 61 normally developed control. There were three writing conditions: copying, and dictations with or without visual feedback. The motor-free subtests of the Developmental Test of Visual Perception (DTVP-2) were conducted. The CHD group showed significantly slower mean speeds of character production and less legibility of produced characters than the control group in all writing conditions (ps<0.001). There were significant deteriorations in legibility from copying to dictation without visual feedback. Nevertheless, the Group by Condition interaction effect was not statistically significant. Only position in space of DTVP-2 was significantly correlated with the legibility among CHD (r=-0.62, p=0.001). Poor legibility seems to be related to the less-intact spatial representation of the characters in working memory, which can be rectified by viewing the characters during writing. Visual feedback regarding one's own actions in writing can also improve legibility of characters among these children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Perceptual learning increases the strength of the earliest signals in visual cortex.

    PubMed

    Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A

    2010-11-10

    Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.

  13. Altered visual strategies and attention are related to increased force fluctuations during a pinch grip task in older adults.

    PubMed

    Keenan, Kevin G; Huddleston, Wendy E; Ernest, Bradley E

    2017-11-01

    The purpose of the study was to determine the visual strategies used by older adults during a pinch grip task and to assess the relations between visual strategy, deficits in attention, and increased force fluctuations in older adults. Eye movements of 23 older adults (>65 yr) were monitored during a low-force pinch grip task while subjects viewed three common visual feedback displays. Performance on the Grooved Pegboard test and an attention task (which required no concurrent hand movements) was also measured. Visual strategies varied across subjects and depended on the type of visual feedback provided to the subjects. First, while viewing a high-gain compensatory feedback display (horizontal bar moving up and down with force), 9 of 23 older subjects adopted a strategy of performing saccades during the task, which resulted in 2.5 times greater force fluctuations in those that exhibited saccades compared with those who maintained fixation near the target line. Second, during pursuit feedback displays (force trace moving left to right across screen and up and down with force), all subjects exhibited multiple saccades, and increased force fluctuations were associated ( r s = 0.6; P = 0.002) with fewer saccades during the pursuit task. Also, decreased low-frequency (<4 Hz) force fluctuations and Grooved Pegboard times were significantly related ( P = 0.033 and P = 0.005, respectively) with higher (i.e., better) attention z scores. Comparison of these results with our previously published results in young subjects indicates that saccadic eye movements and attention are related to force control in older adults. NEW & NOTEWORTHY The significant contributions of the study are the addition of eye movement data and an attention task to explain differences in hand motor control across different visual displays in older adults. Older participants used different visual strategies across varying feedback displays, and saccadic eye movements were related with motor performance. In addition, those older individuals with deficits in attention had impaired motor performance on two different hand motor control tasks, including the Grooved Pegboard test. Copyright © 2017 the American Physiological Society.

  14. Exploring Elementary Student Perceptions of Writing Feedback

    ERIC Educational Resources Information Center

    Marrs, Sarah; Zumbrunn, Sharon; McBride, Caitlin; Stringer, J. K.

    2016-01-01

    The purpose of this descriptive qualitative investigation was to explore elementary students' (N = 867) perceptions of the feedback they receive on their writing. After responding to the closed-ended question, "Do you like to receive feedback about your writing?" students were branched to the appropriate follow-up open-ended question,…

  15. Reflection: A Link between Receiving and Using Assessment Feedback

    ERIC Educational Resources Information Center

    Sargeant, Joan M.; Mann, Karen V.; van der Vleuten, Cees P.; Metsemakers, Job F.

    2009-01-01

    Problem statement and background: Feedback is essential to learning and practice improvement, yet challenging both to provide and receive. The purpose of this paper was to explore reflective processes which physicians described as they considered their assessment feedback and the perceived utility of that reflective process. Methods: This is a…

  16. Manipulating the fidelity of lower extremity visual feedback to identify obstacle negotiation strategies in immersive virtual reality.

    PubMed

    Kim, Aram; Zhou, Zixuan; Kretch, Kari S; Finley, James M

    2017-07-01

    The ability to successfully navigate obstacles in our environment requires integration of visual information about the environment with estimates of our body's state. Previous studies have used partial occlusion of the visual field to explore how information about the body and impending obstacles are integrated to mediate a successful clearance strategy. However, because these manipulations often remove information about both the body and obstacle, it remains to be seen how information about the lower extremities alone is utilized during obstacle crossing. Here, we used an immersive virtual reality (VR) interface to explore how visual feedback of the lower extremities influences obstacle crossing performance. Participants wore a head-mounted display while walking on treadmill and were instructed to step over obstacles in a virtual corridor in four different feedback trials. The trials involved: (1) No visual feedback of the lower extremities, (2) an endpoint-only model, (3) a link-segment model, and (4) a volumetric multi-segment model. We found that the volumetric model improved success rate, placed their trailing foot before crossing and leading foot after crossing more consistently, and placed their leading foot closer to the obstacle after crossing compared to no model. This knowledge is critical for the design of obstacle negotiation tasks in immersive virtual environments as it may provide information about the fidelity necessary to reproduce ecologically valid practice environments.

  17. Promoting Increased Pitch Variation in Oral Presentations with Transient Visual Feedback

    ERIC Educational Resources Information Center

    Hincks, Rebecca; Edlund, Jens

    2009-01-01

    This paper investigates learner response to a novel kind of intonation feedback generated from speech analysis. Instead of displays of pitch curves, our feedback is flashing lights that show how much pitch variation the speaker has produced. The variable used to generate the feedback is the standard deviation of fundamental frequency as measured…

  18. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.

    PubMed

    Witteveen, Heidi J B; Rietman, Hans S; Veltink, Peter H

    2015-06-01

    User feedback about grasping force and hand aperture is very important in object handling with myoelectric forearm prostheses but is lacking in current prostheses. Vibrotactile feedback increases the performance of healthy subjects in virtual grasping tasks, but no extensive validation on potential users has been performed. Investigate the performance of upper-limb loss subjects in grasping tasks with vibrotactile stimulation, providing hand aperture, and grasping force feedback. Cross-over trial. A total of 10 subjects with upper-limb loss performed virtual grasping tasks while perceiving vibrotactile feedback. Hand aperture feedback was provided through an array of coin motors and grasping force feedback through a single miniature stimulator or an array of coin motors. Objects with varying sizes and weights had to be grasped by a virtual hand. Percentages correctly applied hand apertures and correct grasping force levels were all higher for the vibrotactile feedback condition compared to the no-feedback condition. With visual feedback, the results were always better compared to the vibrotactile feedback condition. Task durations were comparable for all feedback conditions. Vibrotactile grasping force and hand aperture feedback improves grasping performance of subjects with upper-limb loss. However, it should be investigated whether this is of additional value in daily-life tasks. This study is a first step toward the implementation of sensory vibrotactile feedback for users of myoelectric forearm prostheses. Grasping force feedback is crucial for optimal object handling, and hand aperture feedback is essential for reduction of required visual attention. Grasping performance with feedback is evaluated for the potential users. © The International Society for Prosthetics and Orthotics 2014.

  19. Man-systems evaluation of moving base vehicle simulation motion cues. [human acceleration perception involving visual feedback

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M.; Brye, R. G.

    1974-01-01

    A motion cue investigation program is reported that deals with human factor aspects of high fidelity vehicle simulation. General data on non-visual motion thresholds and specific threshold values are established for use as washout parameters in vehicle simulation. A general purpose similator is used to test the contradictory cue hypothesis that acceleration sensitivity is reduced during a vehicle control task involving visual feedback. The simulator provides varying acceleration levels. The method of forced choice is based on the theory of signal detect ability.

  20. A systematic review: the influence of real time feedback on wheelchair propulsion biomechanics.

    PubMed

    Symonds, Andrew; Barbareschi, Giulia; Taylor, Stephen; Holloway, Catherine

    2018-01-01

    Clinical guidelines recommend that, in order to minimize upper limb injury risk, wheelchair users adopt a semi-circular pattern with a slow cadence and a large push arc. To examine whether real time feedback can be used to influence manual wheelchair propulsion biomechanics. Clinical trials and case series comparing the use of real time feedback against no feedback were included. A general review was performed and methodological quality assessed by two independent practitioners using the Downs and Black checklist. The review was completed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines. Six papers met the inclusion criteria. Selected studies involved 123 participants and analysed the effect of visual and, in one case, haptic feedback. Across the studies it was shown that participants were able to achieve significant changes in propulsion biomechanics, when provided with real time feedback. However, the effect of targeting a single propulsion variable might lead to unwanted alterations in other parameters. Methodological assessment identified weaknesses in external validity. Visual feedback could be used to consistently increase push arc and decrease push rate, and may be the best focus for feedback training. Further investigation is required to assess such intervention during outdoor propulsion. Implications for Rehabilitation Upper limb pain and injuries are common secondary disorders that negatively affect wheelchair users' physical activity and quality of life. Clinical guidelines suggest that manual wheelchair users should aim to propel with a semi-circular pattern with low a push rate and large push arc in the range in order to minimise upper limbs' loading. Real time visual and haptic feedback are effective tools for improving propulsion biomechanics in both complete novices and experienced manual wheelchair users.

  1. A review of haptic simulator for oral and maxillofacial surgery based on virtual reality.

    PubMed

    Chen, Xiaojun; Hu, Junlei

    2018-06-01

    Traditional medical training in oral and maxillofacial surgery (OMFS) may be limited by its low efficiency and high price due to the shortage of cadaver resources. With the combination of visual rendering and feedback force, surgery simulators become increasingly popular in hospitals and medical schools as an alternative to the traditional training. Areas covered: The major goal of this review is to provide a comprehensive reference source of current and future developments of haptic OMFS simulators based on virtual reality (VR) for relevant researchers. Expert commentary: Visual rendering, haptic rendering, tissue deformation, and evaluation are key components of haptic surgery simulator based on VR. Compared with traditional medical training, virtual and tactical fusion of virtual environment in surgery simulator enables considerably vivid sensation, and the operators have more opportunities to practice surgical skills and receive objective evaluation as reference.

  2. A Photo Storm Report Mobile Application, Processing/Distribution System, and AWIPS-II Display Concept

    NASA Astrophysics Data System (ADS)

    Longmore, S. P.; Bikos, D.; Szoke, E.; Miller, S. D.; Brummer, R.; Lindsey, D. T.; Hillger, D.

    2014-12-01

    The increasing use of mobile phones equipped with digital cameras and the ability to post images and information to the Internet in real-time has significantly improved the ability to report events almost instantaneously. In the context of severe weather reports, a representative digital image conveys significantly more information than a simple text or phone relayed report to a weather forecaster issuing severe weather warnings. It also allows the forecaster to reasonably discern the validity and quality of a storm report. Posting geo-located, time stamped storm report photographs utilizing a mobile phone application to NWS social media weather forecast office pages has generated recent positive feedback from forecasters. Building upon this feedback, this discussion advances the concept, development, and implementation of a formalized Photo Storm Report (PSR) mobile application, processing and distribution system and Advanced Weather Interactive Processing System II (AWIPS-II) plug-in display software.The PSR system would be composed of three core components: i) a mobile phone application, ii) a processing and distribution software and hardware system, and iii) AWIPS-II data, exchange and visualization plug-in software. i) The mobile phone application would allow web-registered users to send geo-location, view direction, and time stamped PSRs along with severe weather type and comments to the processing and distribution servers. ii) The servers would receive PSRs, convert images and information to NWS network bandwidth manageable sizes in an AWIPS-II data format, distribute them on the NWS data communications network, and archive the original PSRs for possible future research datasets. iii) The AWIPS-II data and exchange plug-ins would archive PSRs, and the visualization plug-in would display PSR locations, times and directions by hour, similar to surface observations. Hovering on individual PSRs would reveal photo thumbnails and clicking on them would display the full resolution photograph.Here, we present initial NWS forecaster feedback received from social media posted PSRs, motivating the possible advantages of PSRs within AWIPS-II, the details of developing and implementing a PSR system, and possible future applications beyond severe weather reports and AWIPS-II.

  3. A Randomized Control Trial of Cardiopulmonary Feedback Devices and Their Impact on Infant Chest Compression Quality: A Simulation Study.

    PubMed

    Austin, Andrea L; Spalding, Carmen N; Landa, Katrina N; Myer, Brian R; Donald, Cure; Smith, Jason E; Platt, Gerald; King, Heather C

    2017-10-27

    In effort to improve chest compression quality among health care providers, numerous feedback devices have been developed. Few studies, however, have focused on the use of cardiopulmonary resuscitation feedback devices for infants and children. This study evaluated the quality of chest compressions with standard team-leader coaching, a metronome (MetroTimer by ONYX Apps), and visual feedback (SkillGuide Cardiopulmonary Feedback Device) during simulated infant cardiopulmonary resuscitation. Seventy voluntary health care providers who had recently completed Pediatric Advanced Life Support or Basic Life Support courses were randomized to perform simulated infant cardiopulmonary resuscitation into 1 of 3 groups: team-leader coaching alone (control), coaching plus metronome, or coaching plus SkillGuide for 2 minutes continuously. Rate, depth, and frequency of complete recoil during cardiopulmonary resuscitation were recorded by the Laerdal SimPad device for each participant. American Heart Association-approved compression techniques were randomized to either 2-finger or encircling thumbs. The metronome was associated with more ideal compression rate than visual feedback or coaching alone (104/min vs 112/min and 113/min; P = 0.003, 0.019). Visual feedback was associated with more ideal depth than auditory (41 mm vs 38.9; P = 0.03). There were no significant differences in complete recoil between groups. Secondary outcomes of compression technique revealed a difference of 1 mm. Subgroup analysis of male versus female showed no difference in mean number of compressions (221.76 vs 219.79; P = 0.72), mean compression depth (40.47 vs 39.25; P = 0.09), or rate of complete release (70.27% vs 64.96%; P = 0.54). In the adult literature, feedback devices often show an increase in quality of chest compressions. Although more studies are needed, this study did not demonstrate a clinically significant improvement in chest compressions with the addition of a metronome or visual feedback device, no clinically significant difference in Pediatric Advanced Life Support-approved compression technique, and no difference between compression quality between genders.

  4. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.

    PubMed

    Prasad, M S Raghu; Manivannan, Muniyandi; Manoharan, Govindan; Chandramohan, S M

    2016-01-01

    Most of the commercially available virtual reality-based laparoscopic simulators do not effectively evaluate combined psychomotor and force-based laparoscopic skills. Consequently, the lack of training on these critical skills leads to intraoperative errors. To assess the effectiveness of the novel virtual reality-based simulator, this study analyzed the combined psychomotor (i.e., motion or movement) and force skills of residents and expert surgeons. The study also examined the effectiveness of real-time visual force feedback and tool motion during training. Bimanual fundamental (i.e., probing, pulling, sweeping, grasping, and twisting) and complex tasks (i.e., tissue dissection) were evaluated. In both tasks, visual feedback on applied force and tool motion were provided. The skills of the participants while performing the early tasks were assessed with and without visual feedback. Participants performed 5 repetitions of fundamental and complex tasks. Reaction force and instrument acceleration were used as metrics. Surgical Gastroenterology, Government Stanley Medical College and Hospital; Institute of Surgical Gastroenterology, Madras Medical College and Rajiv Gandhi Government General Hospital. Residents (N = 25; postgraduates and surgeons with <2 years of laparoscopic surgery) and expert surgeons (N = 25; surgeons with >4 and ≤10 years of laparoscopic surgery). Residents applied large forces compared with expert surgeons and performed abrupt tool movements (p < 0.001). However, visual + haptic feedback improved the performance of residents (p < 0.001). In complex tasks, visual + haptic feedback did not influence the applied force of expert surgeons, but influenced their tool motion (p < 0.001). Furthermore, in complex tissue sweeping task, expert surgeons applied more force, but were within the tissue damage limits. In both groups, exertion of large forces and abrupt tool motion were observed during grasping, probing or pulling, and tissue sweeping maneuvers (p < 0.001). Modern day curriculum-based training should evaluate the skills of residents with robust force and psychomotor-based exercises for proficient laparoscopy. Visual feedback on force and motion during training has the potential to enhance the learning curve of residents. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  5. Combined contributions of feedforward and feedback inputs to bottom-up attention

    PubMed Central

    Khorsand, Peyman; Moore, Tirin; Soltani, Alireza

    2015-01-01

    In order to deal with a large amount of information carried by visual inputs entering the brain at any given point in time, the brain swiftly uses the same inputs to enhance processing in one part of visual field at the expense of the others. These processes, collectively called bottom-up attentional selection, are assumed to solely rely on feedforward processing of the external inputs, as it is implied by the nomenclature. Nevertheless, evidence from recent experimental and modeling studies points to the role of feedback in bottom-up attention. Here, we review behavioral and neural evidence that feedback inputs are important for the formation of signals that could guide attentional selection based on exogenous inputs. Moreover, we review results from a modeling study elucidating mechanisms underlying the emergence of these signals in successive layers of neural populations and how they depend on feedback from higher visual areas. We use these results to interpret and discuss more recent findings that can further unravel feedforward and feedback neural mechanisms underlying bottom-up attention. We argue that while it is descriptively useful to separate feedforward and feedback processes underlying bottom-up attention, these processes cannot be mechanistically separated into two successive stages as they occur at almost the same time and affect neural activity within the same brain areas using similar neural mechanisms. Therefore, understanding the interaction and integration of feedforward and feedback inputs is crucial for better understanding of bottom-up attention. PMID:25784883

  6. Attainment and retention of force moderation following laparoscopic resection training with visual force feedback.

    PubMed

    Hernandez, Rafael; Onar-Thomas, Arzu; Travascio, Francesco; Asfour, Shihab

    2017-11-01

    Laparoscopic training with visual force feedback can lead to immediate improvements in force moderation. However, the long-term retention of this kind of learning and its potential decay are yet unclear. A laparoscopic resection task and force sensing apparatus were designed to assess the benefits of visual force feedback training. Twenty-two male university students with no previous experience in laparoscopy underwent relevant FLS proficiency training. Participants were randomly assigned to either a control or treatment group. Both groups trained on the task for 2 weeks as follows: initial baseline, sixteen training trials, and post-test immediately after. The treatment group had visual force feedback during training, whereas the control group did not. Participants then performed four weekly test trials to assess long-term retention of training. Outcomes recorded were maximum pulling and pushing forces, completion time, and rated task difficulty. Extreme maximum pulling force values were tapered throughout both the training and retention periods. Average maximum pushing forces were significantly lowered towards the end of training and during retention period. No significant decay of applied force learning was found during the 4-week retention period. Completion time and rated task difficulty were higher during training, but results indicate that the difference eventually fades during the retention period. Significant differences in aptitude across participants were found. Visual force feedback training improves on certain aspects of force moderation in a laparoscopic resection task. Results suggest that with enough training there is no significant decay of learning within the first month of the retention period. It is essential to account for differences in aptitude between individuals in this type of longitudinal research. This study shows how an inexpensive force measuring system can be used with an FLS Trainer System after some retrofitting. Surgical instructors can develop their own tasks and adjust force feedback levels accordingly.

  7. The benefits of computer-generated feedback for mathematics problem solving.

    PubMed

    Fyfe, Emily R; Rittle-Johnson, Bethany

    2016-07-01

    The goal of the current research was to better understand when and why feedback has positive effects on learning and to identify features of feedback that may improve its efficacy. In a randomized experiment, second-grade children received instruction on a correct problem-solving strategy and then solved a set of relevant problems. Children were assigned to receive no feedback, immediate feedback, or summative feedback from the computer. On a posttest the following day, feedback resulted in higher scores relative to no feedback for children who started with low prior knowledge. Immediate feedback was particularly effective, facilitating mastery of the material for children with both low and high prior knowledge. Results suggest that minimal computer-generated feedback can be a powerful form of guidance during problem solving. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Multisource feedback to graduate nurses: a multimethod study.

    PubMed

    McPhee, Samantha; Phillips, Nicole M; Ockerby, Cherene; Hutchinson, Alison M

    2017-11-01

    (1) To explore graduate nurses' perceptions of the influence of multisource feedback on their performance and (2) to explore perceptions of Clinical Nurse Educators involved in providing feedback regarding feasibility and benefit of the approach. Graduate registered nurses are expected to provide high-quality care for patients in demanding and unpredictable clinical environments. Receiving feedback is essential to their development. Performance appraisals are a common method used to provide feedback and typically involve a single source of feedback. Alternatively, multisource feedback allows the learner to gain insight into performance from a variety of perspectives. This study explores multisource feedback in an Australian setting within the graduate nurse context. Multimethod study. Eleven graduates were given structured performance feedback from four raters: Nurse Unit Manager, Clinical Nurse Educator, preceptor and a self-appraisal. Thirteen graduates received standard single-rater appraisals. Data regarding perceptions of feedback for both groups were obtained using a questionnaire. Semistructured interviews were conducted with nurses who received multisource feedback and the educators. In total, 94% (n = 15) of survey respondents perceived feedback was important during the graduate year. Four themes emerged from interviews: informal feedback, appropriateness of raters, elements of delivery and creating an appraisal process that is 'more real'. Multisource feedback was perceived as more beneficial compared to single-rater feedback. Educators saw value in multisource feedback; however, perceived barriers were engaging raters and collating feedback. Some evidence exists to indicate that feedback from multiple sources is valued by graduates. Further research in a larger sample and with more experienced nurses is required. Evidence resulting from this study indicates that multisource feedback is valued by both graduates and educators and informs graduates' development and transition into the role. Thus, a multisource approach to feedback for graduate nurses should be considered. © 2016 John Wiley & Sons Ltd.

  9. Visual Feedback of Tongue Movement for Novel Speech Sound Learning

    PubMed Central

    Katz, William F.; Mehta, Sonya

    2015-01-01

    Pronunciation training studies have yielded important information concerning the processing of audiovisual (AV) information. Second language (L2) learners show increased reliance on bottom-up, multimodal input for speech perception (compared to monolingual individuals). However, little is known about the role of viewing one's own speech articulation processes during speech training. The current study investigated whether real-time, visual feedback for tongue movement can improve a speaker's learning of non-native speech sounds. An interactive 3D tongue visualization system based on electromagnetic articulography (EMA) was used in a speech training experiment. Native speakers of American English produced a novel speech sound (/ɖ/; a voiced, coronal, palatal stop) before, during, and after trials in which they viewed their own speech movements using the 3D model. Talkers' productions were evaluated using kinematic (tongue-tip spatial positioning) and acoustic (burst spectra) measures. The results indicated a rapid gain in accuracy associated with visual feedback training. The findings are discussed with respect to neural models for multimodal speech processing. PMID:26635571

  10. Selective visual scaling of time-scale processes facilitates broadband learning of isometric force frequency tracking.

    PubMed

    King, Adam C; Newell, Karl M

    2015-10-01

    The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.

  11. The effect of feedback-assisted reduction in heart rate reactivity on videogame performance.

    PubMed

    Larkin, K T; Manuck, S B; Kasprowicz, A L

    1990-12-01

    In 67 male volunteers, we examined the reduction of cardiovascular responsivity to a psychomotor challenge (videogame) achieved by use of heart rate (HR) feedback and effects of these procedures on concomitant behavioral performance. Each subject participated in a pretraining assessment of his cardiovascular responses to the videogame, a training condition, and a posttraining assessment identical to the initial evaluation. During training, subjects were assigned to one of four conditions: (a) a habituation control group receiving no instructions to alter HR (HC); (b) an instructions-only control group receiving instructions to maintain a low or unchanged HR during videogame presentations (IC); (c) a feedback group receiving instructions to reduce HR using ongoing HR feedback (FB-); or (d) a feedback group receiving instructions to lower HR and given HR feedback plus a score contingency in which total game score was jointly determined by subjects' game performance and success at HR control (FB+). Subjects receiving feedback (FB+, FB-) exhibited greater reductions in HR response to the videogame in the posttraining assessment than control (HC, IC) subjects; FB+ subjects showed greater HR reductions than subjects in any other group. FB+ and FB- subjects showed a lower SBP at posttraining relative to the two control groups, but no reduction in task-induced blood pressure reactivity. There were no group differences in videogame performance, either before or following training.

  12. History effects in visual search for monsters: search times, choice biases, and liking.

    PubMed

    Chetverikov, Andrey; Kristjansson, Árni

    2015-02-01

    Repeating targets and distractors on consecutive visual search trials facilitates search performance, whereas switching targets and distractors harms search. In addition, search repetition leads to biases in free choice tasks, in that previously attended targets are more likely to be chosen than distractors. Another line of research has shown that attended items receive high liking ratings, whereas ignored distractors are rated negatively. Potential relations between the three effects are unclear, however. Here we simultaneously measured repetition benefits and switching costs for search times, choice biases, and liking ratings in color singleton visual search for "monster" shapes. We showed that if expectations from search repetition are violated, targets are liked to be less attended than otherwise. Choice biases were, on the other hand, affected by distractor repetition, but not by target/distractor switches. Target repetition speeded search times but had little influence on choice or liking. Our findings suggest that choice biases reflect distractor inhibition, and liking reflects the conflict associated with attending to previously inhibited stimuli, while speeded search follows both target and distractor repetition. Our results support the newly proposed affective-feedback-of-hypothesis-testing account of cognition, and additionally, shed new light on the priming of visual search.

  13. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields

    PubMed Central

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-01-01

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931

  14. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields.

    PubMed

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-09-06

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.

  15. Survey of Residents' Attitudes and Awareness Toward Teaching and Student Feedback

    PubMed Central

    Tuck, Keiran K.; Murchison, Charles; Flores, Christine; Kraakevik, Jeff

    2014-01-01

    Background Teaching medical students is an important component of residency; however, little is known about student feedback regarding resident teaching skills. Objective We sought to explore resident awareness of medical student feedback mechanisms and how feedback is obtained, and also identified attitudes about teaching more commonly found in residents who seek feedback. Methods We surveyed all resident physicians at a university-affiliated academic health center about awareness of student feedback regarding their teaching abilities, and their attitudes related to teaching that may impact whether residents seek feedback. Results Of 605 residents, 335 (55%) responded, with 72% (242 of 335) noting they did not formally review student feedback of their teaching with their advisor during regularly scheduled meetings, 42% (140 of 332) reporting they did not know of any formal feedback mechanisms, and 28.4% (95 of 334) reporting they had not received feedback from students in any format. Although only a quarter of residents solicit feedback always or often, more than half would like feedback always or often. Reported barriers to feedback included student apprehension, time constraints, and lack of a formal system. A majority of residents had positive attitudes toward teaching and felt that student feedback would help teaching ability and medical proficiency. Conclusions A large percentage of residents at 1 teaching institution reported not receiving feedback from students on their teaching abilities. Residents who did receive feedback were more likely to have actively solicited it. Overall, residents believe that this feedback from students would benefit their clinical and teaching performance. PMID:26140121

  16. Hebbian learning in a model with dynamic rate-coded neurons: an alternative to the generative model approach for learning receptive fields from natural scenes.

    PubMed

    Hamker, Fred H; Wiltschut, Jan

    2007-09-01

    Most computational models of coding are based on a generative model according to which the feedback signal aims to reconstruct the visual scene as close as possible. We here explore an alternative model of feedback. It is derived from studies of attention and thus, probably more flexible with respect to attentive processing in higher brain areas. According to this model, feedback implements a gain increase of the feedforward signal. We use a dynamic model with presynaptic inhibition and Hebbian learning to simultaneously learn feedforward and feedback weights. The weights converge to localized, oriented, and bandpass filters similar as the ones found in V1. Due to presynaptic inhibition the model predicts the organization of receptive fields within the feedforward pathway, whereas feedback primarily serves to tune early visual processing according to the needs of the task.

  17. Altered figure-ground perception in monkeys with an extra-striate lesion.

    PubMed

    Supèr, Hans; Lamme, Victor A F

    2007-11-05

    The visual system binds and segments the elements of an image into coherent objects and their surroundings. Recent findings demonstrate that primary visual cortex is involved in this process of figure-ground organization. In the primary visual cortex the late part of a neural response to a stimulus correlates with figure-ground segregation and perception. Such a late onset indicates an involvement of feedback projections from higher visual areas. To investigate the possible role of feedback in figure-ground perception we removed dorsal extra-striate areas of the monkey visual cortex. The findings show that figure-ground perception is reduced when the figure is presented in the lesioned hemifield and perception is normal when the figure appeared in the intact hemifield. In conclusion, our observations show the importance for recurrent processing in visual perception.

  18. Eye-Hand Synergy and Intermittent Behaviors during Target-Directed Tracking with Visual and Non-visual Information

    PubMed Central

    Huang, Chien-Ting; Hwang, Ing-Shiou

    2012-01-01

    Visual feedback and non-visual information play different roles in tracking of an external target. This study explored the respective roles of the visual and non-visual information in eleven healthy volunteers who coupled the manual cursor to a rhythmically moving target of 0.5 Hz under three sensorimotor conditions: eye-alone tracking (EA), eye-hand tracking with visual feedback of manual outputs (EH tracking), and the same tracking without such feedback (EHM tracking). Tracking error, kinematic variables, and movement intermittency (saccade and speed pulse) were contrasted among tracking conditions. The results showed that EHM tracking exhibited larger pursuit gain, less tracking error, and less movement intermittency for the ocular plant than EA tracking. With the vision of manual cursor, EH tracking achieved superior tracking congruency of the ocular and manual effectors with smaller movement intermittency than EHM tracking, except that the rate precision of manual action was similar for both types of tracking. The present study demonstrated that visibility of manual consequences altered mutual relationships between movement intermittency and tracking error. The speed pulse metrics of manual output were linked to ocular tracking error, and saccade events were time-locked to the positional error of manual tracking during EH tracking. In conclusion, peripheral non-visual information is critical to smooth pursuit characteristics and rate control of rhythmic manual tracking. Visual information adds to eye-hand synchrony, underlying improved amplitude control and elaborate error interpretation during oculo-manual tracking. PMID:23236498

  19. The impact of inverted text on visual word processing: An fMRI study.

    PubMed

    Sussman, Bethany L; Reddigari, Samir; Newman, Sharlene D

    2018-06-01

    Visual word recognition has been studied for decades. One question that has received limited attention is how different text presentation orientations disrupt word recognition. By examining how word recognition processes may be disrupted by different text orientations it is hoped that new insights can be gained concerning the process. Here, we examined the impact of rotating and inverting text on the neural network responsible for visual word recognition focusing primarily on a region of the occipto-temporal cortex referred to as the visual word form area (VWFA). A lexical decision task was employed in which words and pseudowords were presented in one of three orientations (upright, rotated or inverted). The results demonstrate that inversion caused the greatest disruption of visual word recognition processes. Both rotated and inverted text elicited increased activation in spatial attention regions within the right parietal cortex. However, inverted text recruited phonological and articulatory processing regions within the left inferior frontal and left inferior parietal cortices. Finally, the VWFA was found to not behave similarly to the fusiform face area in that unusual text orientations resulted in increased activation and not decreased activation. It is hypothesized here that the VWFA activation is modulated by feedback from linguistic processes. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Improved contour detection model with spatial summation properties based on nonclassical receptive field

    NASA Astrophysics Data System (ADS)

    Lin, Chuan; Xu, Guili; Cao, Yijun; Liang, Chenghua; Li, Ya

    2016-07-01

    The responses of cortical neurons to a stimulus in a classical receptive field (CRF) can be modulated by stimulating the non-CRF (nCRF) of neurons in the primary visual cortex (V1). In the very early stages (at around 40 ms), a neuron in V1 exhibits strong responses to a small set of stimuli. Later, however (after 100 ms), the neurons in V1 become sensitive to the scene's global organization. As per these visual cortical mechanisms, a contour detection model based on the spatial summation properties is proposed. Unlike in previous studies, the responses of the nCRF to the higher visual cortex that results in the inhibition of the neuronal responses in the primary visual cortex by the feedback pathway are considered. In this model, the individual neurons in V1 receive global information from the higher visual cortex to participate in the inhibition process. Computationally, global Gabor energy features are involved, leading to the more coherent physiological characteristics of the nCRF. We conducted an experiment where we compared our model with those proposed by other researchers. Our model explains the role of the mutual inhibition of neurons in V1, together with an approach for object recognition in machine vision.

  1. Impact of Digital Tooth Preparation Evaluation Technology on Preclinical Dental Students' Technical and Self-Evaluation Skills.

    PubMed

    Gratton, David G; Kwon, So Ran; Blanchette, Derek; Aquilino, Steven A

    2016-01-01

    The aim of this study was to evaluate the effect of digital tooth preparation imaging and evaluation technology on dental students' technical abilities, self-evaluation skills, and the assessment of their simulated clinical work. A total of 80 second-year students at one U.S. dental school were assigned to one of three groups: control (n=40), E4D Compare (n=20), and Sirona prepCheck (n=20). Students in the control group were taught by traditional teaching methodologies, and the technology-assisted groups received both traditional training and supplementary feedback from the corresponding digital system. Three outcomes were measured: faculty technical score, self-evaluation score, and E4D Compare scores at 0.30 mm tolerance. Correlations were determined between the groups' scores from visual assessment and self-evaluation and between the visual assessment and digital scores. The results showed that the visual assessment and self-evaluation scores did not differ among groups (p>0.05). Overall, correlations between visual and digital assessment scores were modest though statistically significant (5% level of significance). These results suggest that the use of digital tooth preparation evaluation technology did not impact the students' prosthodontic technical and self-evaluation skills. Visual scores given by faculty and digital assessment scores correlated moderately in only two instances.

  2. Performance drifts in two-finger cyclical force production tasks performed by one and two actors.

    PubMed

    Hasanbarani, Fariba; Reschechtko, Sasha; Latash, Mark L

    2018-03-01

    We explored changes in the cyclical two-finger force performance task caused by turning visual feedback off performed either by the index and middle fingers of the dominant hand or by two index fingers of two persons. Based on an earlier study, we expected drifts in finger force amplitude and midpoint without a drift in relative phase. The subjects performed two rhythmical tasks at 1 Hz while paced by an auditory metronome. One of the tasks required cyclical changes in total force magnitude without changes in the sharing of the force between the two fingers. The other task required cyclical changes in the force sharing without changing total force magnitude. Subjects were provided with visual feedback, which showed total force magnitude and force sharing via cursor motion along the vertical and horizontal axes, respectively. Further, visual feedback was turned off, first on the variable that was not required to change and then on both variables. Turning visual feedback off led to a mean force drift toward lower magnitudes while force amplitude increased. There was a consistent drift in the relative phase in the one-hand task with the index finger leading the middle finger. No consistent relative phase drift was seen in the two-person tasks. The shape of the force cycle changed without visual feedback reflected in the lower similarity to a perfect cosine shape and in the higher time spent at lower force magnitudes. The data confirm findings of earlier studies regarding force amplitude and midpoint changes, but falsify predictions of an earlier proposed model with respect to the relative phase changes. We discuss factors that could contribute to the observed relative phase drift in the one-hand tasks including the leader-follower pattern generalized for two-effector tasks performed by one person.

  3. The effect of step stool use and provider height on CPR quality during pediatric cardiac arrest: A simulation-based multicentre study.

    PubMed

    Cheng, Adam; Lin, Yiqun; Nadkarni, Vinay; Wan, Brandi; Duff, Jonathan; Brown, Linda; Bhanji, Farhan; Kessler, David; Tofil, Nancy; Hecker, Kent; Hunt, Elizabeth A

    2018-01-01

    We aimed to explore whether a) step stool use is associated with improved cardiopulmonary resuscitation (CPR) quality; b) provider adjusted height is associated with improved CPR quality; and if associations exist, c) determine whether just-in-time (JIT) CPR training and/or CPR visual feedback attenuates the effect of height and/or step stool use on CPR quality. We analysed data from a trial of simulated cardiac arrests with three study arms: No intervention; CPR visual feedback; and JIT CPR training. Step stool use was voluntary. We explored the association between 1) step stool use and CPR quality, and 2) provider adjusted height and CPR quality. Adjusted height was defined as provider height + 23 cm (if step stool was used). Below-average height participants were ≤ gender-specific average height; the remainder were above average height. We assessed for interaction between study arm and both adjusted height and step stool use. One hundred twenty-four subjects participated; 1,230 30-second epochs of CPR were analysed. Step stool use was associated with improved compression depth in below-average (female, p=0.007; male, p<0.001) and above-average (female, p=0.001; male, p<0.001) height providers. There is an association between adjusted height and compression depth (p<0.001). Visual feedback attenuated the effect of height (p=0.025) on compression depth; JIT training did not (p=0.918). Visual feedback and JIT training attenuated the effect of step stool use (p<0.001) on compression depth. Step stool use is associated with improved compression depth regardless of height. Increased provider height is associated with improved compression depth, with visual feedback attenuating the effects of height and step stool use.

  4. Effects of Visual Feedback and Memory on Unintentional Drifts in Performance During Finger Pressing Tasks

    PubMed Central

    Solnik, Stanislaw; Qiao, Mu; Latash, Mark L.

    2017-01-01

    This study tested two hypotheses on the nature of unintentional force drifts elicited by removing visual feedback during accurate force production tasks. The role of working memory (memory hypothesis) was explored in tasks with continuous force production, intermittent force production, and rest intervals over the same time interval. The assumption of unintentional drifts in referent coordinate for the fingertips was tested using manipulations of visual feedback: Young healthy subjects performed accurate steady-state force production tasks by pressing with the two index fingers on individual force sensors with visual feedback on the total force, sharing ratio, both, or none. Predictions based on the memory hypothesis have been falsified. In particular, we observed consistent force drifts to lower force values during continuous force production trials only. No force drift or drifts to higher forces were observed during intermittent force production trials and following rest intervals. The hypotheses based on the idea of drifts in referent finger coordinates have been confirmed. In particular, we observed superposition of two drift processes: A drift of total force to lower magnitudes and a drift of the sharing ratio to 50:50. When visual feedback on total force only was provided, the two finger forces showed drifts in opposite directions. We interpret the findings as evidence for the control of motor actions with changes in referent coordinates for participating effectors. Unintentional drifts in performance are viewed as natural relaxation processes in the involved systems; their typical time reflects stability in the direction of the drift. The magnitude of the drift was higher in the right (dominant) hand, which is consistent with the dynamic dominance hypothesis. PMID:28168396

  5. Principals' Reactions to Feedback Received by School Inspection: A Longitudinal Study

    ERIC Educational Resources Information Center

    Behnke, Kristin; Steins, Gisela

    2017-01-01

    This article presents the results of a follow-up study on the attitudes of German principals towards receiving feedback from school inspections. In a first study, we explored the attitudes of 50 principals towards feedback from school inspections [Quality Analysis (QA) in North Rhine-Westphalia] before school inspections took place at these…

  6. Effects of Person- and Process-Focused Feedback on Prosocial Behavior in Middle Childhood

    PubMed Central

    Dunsmore, Julie C.

    2014-01-01

    Effects of person- and process-focused feedback, parental lay theories, and prosocial self-concept on children’s prosocial behavior were investigated with 143 9- and 10-year-old children who participated in a single session. Parents reported entity (person-focused) and incremental (process-focused) beliefs related to prosocial behavior. Children completed measures of prosocial self-concept, then participated in a virtual online chat with child actors who asked for help with service projects. After completing the chat, children could assist with the service projects. In the first cohort, children were randomly assigned to receive person-focused, process-focused, or control feedback about sympathy. In the second cohort, with newly-recruited families, children received no feedback. When given process-focused feedback, children spent less time spent helping and worked on fewer service projects. When given no feedback, children spent less time helping when parents held incremental (process-focused) beliefs. Children with higher prosocial self-concept who received no feedback worked on more service projects. PMID:25684859

  7. Seeing the Errors You Feel Enhances Locomotor Performance but Not Learning.

    PubMed

    Roemmich, Ryan T; Long, Andrew W; Bastian, Amy J

    2016-10-24

    In human motor learning, it is thought that the more information we have about our errors, the faster we learn. Here, we show that additional error information can lead to improved motor performance without any concomitant improvement in learning. We studied split-belt treadmill walking that drives people to learn a new gait pattern using sensory prediction errors detected by proprioceptive feedback. When we also provided visual error feedback, participants acquired the new walking pattern far more rapidly and showed accelerated restoration of the normal walking pattern during washout. However, when the visual error feedback was removed during either learning or washout, errors reappeared with performance immediately returning to the level expected based on proprioceptive learning alone. These findings support a model with two mechanisms: a dual-rate adaptation process that learns invariantly from sensory prediction error detected by proprioception and a visual-feedback-dependent process that monitors learning and corrects residual errors but shows no learning itself. We show that our voluntary correction model accurately predicted behavior in multiple situations where visual feedback was used to change acquisition of new walking patterns while the underlying learning was unaffected. The computational and behavioral framework proposed here suggests that parallel learning and error correction systems allow us to rapidly satisfy task demands without necessarily committing to learning, as the relative permanence of learning may be inappropriate or inefficient when facing environments that are liable to change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    PubMed

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  9. Design and test of a Microsoft Kinect-based system for delivering adaptive visual feedback to stroke patients during training of upper limb movement.

    PubMed

    Simonsen, Daniel; Popovic, Mirjana B; Spaich, Erika G; Andersen, Ole Kæseler

    2017-11-01

    The present paper describes the design and test of a low-cost Microsoft Kinect-based system for delivering adaptive visual feedback to stroke patients during the execution of an upper limb exercise. Eleven sub-acute stroke patients with varying degrees of upper limb function were recruited. Each subject participated in a control session (repeated twice) and a feedback session (repeated twice). In each session, the subjects were presented with a rectangular pattern displayed on a vertical mounted monitor embedded in the table in front of the patient. The subjects were asked to move a marker inside the rectangular pattern by using their most affected hand. During the feedback session, the thickness of the rectangular pattern was changed according to the performance of the subject, and the color of the marker changed according to its position, thereby guiding the subject's movements. In the control session, the thickness of the rectangular pattern and the color of the marker did not change. The results showed that the movement similarity and smoothness was higher in the feedback session than in the control session while the duration of the movement was longer. The present study showed that adaptive visual feedback delivered by use of the Kinect sensor can increase the similarity and smoothness of upper limb movement in stroke patients.

  10. Use of Accelerometer-Based Feedback of Walking Activity for Appraising Progress With Walking-Related Goals in Inpatient Stroke Rehabilitation: A Randomized Controlled Trial.

    PubMed

    Mansfield, Avril; Wong, Jennifer S; Bryce, Jessica; Brunton, Karen; Inness, Elizabeth L; Knorr, Svetlana; Jones, Simon; Taati, Babak; McIlroy, William E

    2015-10-01

    Regaining independent ambulation is important to those with stroke. Increased walking practice during "down time" in rehabilitation could improve walking function for individuals with stroke. To determine the effect of providing physiotherapists with accelerometer-based feedback on patient activity and walking-related goals during inpatient stroke rehabilitation. Participants with stroke wore accelerometers around both ankles every weekday during inpatient rehabilitation. Participants were randomly assigned to receive daily feedback about walking activity via their physiotherapists (n = 29) or to receive no feedback (n = 28). Changes in measures of daily walking (walking time, number of steps, average cadence, longest bout duration, and number of "long" walking bouts) and changes in gait control and function assessed in-laboratory were compared between groups. There was no significant increase in walking time, number of steps, longest bout duration, or number of long walking bouts for the feedback group compared with the control group (P values > .20). However, individuals who received feedback significantly increased cadence of daily walking more than the control group (P = .013). From the in-laboratory gait assessment, individuals who received feedback had a greater increase in walking speed and decrease in step time variability than the control group (P values < .030). Feedback did not increase the amount of walking completed by individuals with stroke. However, there was a significant increase in cadence, indicating that intensity of daily walking was greater for those who received feedback than the control group. Additionally, more intense daily walking activity appeared to translate to greater improvements in walking speed. © The Author(s) 2015.

  11. Self-esteem Modulates Medial Prefrontal Cortical Responses to Evaluative Social Feedback

    PubMed Central

    Kelley, William M.; Heatherton, Todd F.

    2010-01-01

    Self-esteem is a facet of personality that influences perception of social standing and modulates the salience of social acceptance and rejection. As such, self-esteem may bias neural responses to positive and negative social feedback across individuals. During functional magnetic resonance imaging scanning, participants (n = 42) engaged in a social evaluation task whereby they ostensibly received feedback from peers indicating they were liked or disliked. Results demonstrated that individuals with low self-esteem believed that they received less positive feedback from others and showed enhanced activity to positive versus negative social feedback in the ventral anterior cingulate cortex/medial prefrontal cortex (vACC/mPFC). By contrast, vACC/mPFC activity was insensitive to positive versus negative feedback in individuals with high self-esteem, and these individuals consistently overestimated the amount of positive feedback received from peers. Voxelwise analyses supported these findings; lower self-esteem predicted a linear increase in vACC/mPFC response to positive versus negative social feedback. Taken together, the present findings propose a functional role for the vACC/mPFC in representing the salience of social feedback and shaping perceptions of relative social standing. PMID:20351022

  12. [Nursing Experience of Using Mirror Visual Feedback for a Schizophrenia Patient With Visual Hallucinations].

    PubMed

    Lan, Shu-Ling; Chen, Yu-Chi; Chang, Hsiu-Ju

    2018-06-01

    The aim of this paper was to describe the nursing application of mirror visual feedback in a patient suffering from long-term visual hallucinations. The intervention period was from May 15th to October 19th, 2015. Using the five facets of psychiatric nursing assessment, several health problems were observed, including disturbed sensory perceptions (prominent visual hallucinations) and poor self-care (e.g. limited abilities to self-bathe and put on clothing). Furthermore, "caregiver role strain" due to the related intense care burden was noted. After building up a therapeutic interpersonal relationship, the technique of brain plasticity and mirror visual feedback were performed using multiple nursing care methods in order to help the patient suppress her visual hallucinations by enhancing a different visual stimulus. We also taught her how to cope with visual hallucinations in a proper manner. The frequency and content of visual hallucinations were recorded to evaluate the effects of management. The therapeutic plan was formulated together with the patient in order to boost her self-confidence, and a behavior contract was implemented in order to improve her personal hygiene. In addition, psychoeducation on disease-related topics was provided to the patient's family, and they were encouraged to attend relevant therapeutic activities. As a result, her family became less passive and negative and more engaged in and positive about her future. The crisis of "caregiver role strain" was successfully resolved. The current experience is hoped to serve as a model for enhancing communication and cooperation between family and staff in similar medical settings.

  13. Ultrasound visual feedback in articulation therapy following partial glossectomy.

    PubMed

    Blyth, Katrina M; Mccabe, Patricia; Madill, Catherine; Ballard, Kirrie J

    2016-01-01

    Disordered speech is common following treatment for tongue cancer, however there is insufficient high quality evidence to guide clinical decision making about treatment. This study investigated use of ultrasound tongue imaging as a visual feedback tool to guide tongue placement during articulation therapy with two participants following partial glossectomy. A Phase I multiple baseline design across behaviors was used to investigate therapeutic effect of ultrasound visual feedback during speech rehabilitation. Percent consonants correct and speech intelligibility at sentence level were used to measure acquisition, generalization and maintenance of speech skills for treated and untreated related phonemes, while unrelated phonemes were tested to demonstrate experimental control. Swallowing and oromotor measures were also taken to monitor change. Sentence intelligibility was not a sensitive measure of speech change, but both participants demonstrated significant change in percent consonants correct for treated phonemes. One participant also demonstrated generalization to non-treated phonemes. Control phonemes along with swallow and oromotor measures remained stable throughout the study. This study establishes therapeutic benefit of ultrasound visual feedback in speech rehabilitation following partial glossectomy. Readers will be able to explain why and how tongue cancer surgery impacts on articulation precision. Readers will also be able to explain the acquisition, generalization and maintenance effects in the study. Copyright © 2016. Published by Elsevier Inc.

  14. Short Term Motor-Skill Acquisition Improves with Size of Self-Controlled Virtual Hands

    PubMed Central

    Ossmy, Ori; Mukamel, Roy

    2017-01-01

    Visual feedback in general, and from the body in particular, is known to influence the performance of motor skills in humans. However, it is unclear how the acquisition of motor skills depends on specific visual feedback parameters such as the size of performing effector. Here, 21 healthy subjects physically trained to perform sequences of finger movements with their right hand. Through the use of 3D Virtual Reality devices, visual feedback during training consisted of virtual hands presented on the screen, tracking subject’s hand movements in real time. Importantly, the setup allowed us to manipulate the size of the displayed virtual hands across experimental conditions. We found that performance gains increase with the size of virtual hands. In contrast, when subjects trained by mere observation (i.e., in the absence of physical movement), manipulating the size of the virtual hand did not significantly affect subsequent performance gains. These results demonstrate that when it comes to short-term motor skill learning, the size of visual feedback matters. Furthermore, these results suggest that highest performance gains in individual subjects are achieved when the size of the virtual hand matches their real hand size. These results may have implications for optimizing motor training schemes. PMID:28056023

  15. Immediate detailed feedback to test-enhanced learning: an effective online educational tool.

    PubMed

    Wojcikowski, Ken; Kirk, Leslie

    2013-11-01

    Test-enhanced learning has gained popularity because it is an effective way to increase retention of knowledge; provided the student receives the correct answer soon after the test is taken. To determine whether detailed feedback provided to test-enhanced learning questions is an effective online educational tool for improving performance on complex biomedical information exams. A series of online multiple choice tests were developed to test knowledge of biomedical information that students were expected to know after each patient-case. Following submission of the student answers, one cohort (n = 52) received answers only while the following year, a second cohort (n = 51) received the answers with detailed feedback explaining why each answer was correct or incorrect. Students in both groups progressed through the series of online tests with little assessor intervention. Students receiving the answers along with the explanations within their feedback performed significantly better in the final biomedical information exam than those students receiving correct answers only. This pilot study found that the detailed feedback to test-enhanced learning questions is an important online learning tool. The increase in student performance in the complex biomedical information exam in this study suggests that detailed feedback should be investigated not only for increasing knowledge, but also be investigated for its effect on retention and application of knowledge.

  16. XCluSim: a visual analytics tool for interactively comparing multiple clustering results of bioinformatics data

    PubMed Central

    2015-01-01

    Background Though cluster analysis has become a routine analytic task for bioinformatics research, it is still arduous for researchers to assess the quality of a clustering result. To select the best clustering method and its parameters for a dataset, researchers have to run multiple clustering algorithms and compare them. However, such a comparison task with multiple clustering results is cognitively demanding and laborious. Results In this paper, we present XCluSim, a visual analytics tool that enables users to interactively compare multiple clustering results based on the Visual Information Seeking Mantra. We build a taxonomy for categorizing existing techniques of clustering results visualization in terms of the Gestalt principles of grouping. Using the taxonomy, we choose the most appropriate interactive visualizations for presenting individual clustering results from different types of clustering algorithms. The efficacy of XCluSim is shown through case studies with a bioinformatician. Conclusions Compared to other relevant tools, XCluSim enables users to compare multiple clustering results in a more scalable manner. Moreover, XCluSim supports diverse clustering algorithms and dedicated visualizations and interactions for different types of clustering results, allowing more effective exploration of details on demand. Through case studies with a bioinformatics researcher, we received positive feedback on the functionalities of XCluSim, including its ability to help identify stably clustered items across multiple clustering results. PMID:26328893

  17. Effect of biased feedback on motor imagery learning in BCI-teleoperation system.

    PubMed

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2014-01-01

    Feedback design is an important issue in motor imagery BCI systems. Regardless, to date it has not been reported how feedback presentation can optimize co-adaptation between a human brain and such systems. This paper assesses the effect of realistic visual feedback on users' BCI performance and motor imagery skills. We previously developed a tele-operation system for a pair of humanlike robotic hands and showed that BCI control of such hands along with first-person perspective visual feedback of movements can arouse a sense of embodiment in the operators. In the first stage of this study, we found that the intensity of this ownership illusion was associated with feedback presentation and subjects' performance during BCI motion control. In the second stage, we probed the effect of positive and negative feedback bias on subjects' BCI performance and motor imagery skills. Although the subject specific classifier, which was set up at the beginning of experiment, detected no significant change in the subjects' online performance, evaluation of brain activity patterns revealed that subjects' self-regulation of motor imagery features improved due to a positive bias of feedback and a possible occurrence of ownership illusion. Our findings suggest that in general training protocols for BCIs, manipulation of feedback can play an important role in the optimization of subjects' motor imagery skills.

  18. Coherence of structural visual cues and pictorial gravity paves the way for interceptive actions.

    PubMed

    Zago, Myrka; La Scaleia, Barbara; Miller, William L; Lacquaniti, Francesco

    2011-09-20

    Dealing with upside-down objects is difficult and takes time. Among the cues that are critical for defining object orientation, the visible influence of gravity on the object's motion has received limited attention. Here, we manipulated the alignment of visible gravity and structural visual cues between each other and relative to the orientation of the observer and physical gravity. Participants pressed a button triggering a hitter to intercept a target accelerated by a virtual gravity. A factorial design assessed the effects of scene orientation (normal or inverted) and target gravity (normal or inverted). We found that interception was significantly more successful when scene direction was concordant with target gravity direction, irrespective of whether both were upright or inverted. This was so independent of the hitter type and when performance feedback to the participants was either available (Experiment 1) or unavailable (Experiment 2). These results show that the combined influence of visible gravity and structural visual cues can outweigh both physical gravity and viewer-centered cues, leading to rely instead on the congruence of the apparent physical forces acting on people and objects in the scene.

  19. A Robot Hand Testbed Designed for Enhancing Embodiment and Functional Neurorehabilitation of Body Schema in Subjects with Upper Limb Impairment or Loss

    PubMed Central

    Hellman, Randall B.; Chang, Eric; Tanner, Justin; Helms Tillery, Stephen I.; Santos, Veronica J.

    2015-01-01

    Many upper limb amputees experience an incessant, post-amputation “phantom limb pain” and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech “rubber hand” illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the “BairClaw” presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger–object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden. PMID:25745391

  20. A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss.

    PubMed

    Hellman, Randall B; Chang, Eric; Tanner, Justin; Helms Tillery, Stephen I; Santos, Veronica J

    2015-01-01

    Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech "rubber hand" illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the "BairClaw" presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden.

  1. OpinionSeer: interactive visualization of hotel customer feedback.

    PubMed

    Wu, Yingcai; Wei, Furu; Liu, Shixia; Au, Norman; Cui, Weiwei; Zhou, Hong; Qu, Huamin

    2010-01-01

    The rapid development of Web technology has resulted in an increasing number of hotel customers sharing their opinions on the hotel services. Effective visual analysis of online customer opinions is needed, as it has a significant impact on building a successful business. In this paper, we present OpinionSeer, an interactive visualization system that could visually analyze a large collection of online hotel customer reviews. The system is built on a new visualization-centric opinion mining technique that considers uncertainty for faithfully modeling and analyzing customer opinions. A new visual representation is developed to convey customer opinions by augmenting well-established scatterplots and radial visualization. To provide multiple-level exploration, we introduce subjective logic to handle and organize subjective opinions with degrees of uncertainty. Several case studies illustrate the effectiveness and usefulness of OpinionSeer on analyzing relationships among multiple data dimensions and comparing opinions of different groups. Aside from data on hotel customer feedback, OpinionSeer could also be applied to visually analyze customer opinions on other products or services.

  2. Questionnaires as Interventions: Can Taking a Survey Increase Teachers' Openness to Student Feedback Surveys?

    ERIC Educational Resources Information Center

    Gehlbach, Hunter; Robinson, Carly D.; Finefter-Rosenbluh, Ilana; Benshoof, Chris; Schneider, Jack

    2018-01-01

    Administrators often struggle in getting teachers to trust their school's evaluation practices--a necessity if teachers are to learn from the feedback they receive. We attempted to bolster teachers' support for receiving evaluative feedback from a particularly controversial source: student-perception surveys. For our intervention, we took one of…

  3. Training students with patient actors improves communication: a pilot study.

    PubMed

    Anderson, Heather A; Young, Jack; Marrelli, Danica; Black, Rudolph; Lambreghts, Kimberly; Twa, Michael D

    2014-01-01

    Effective patient communication is correlated with better health outcomes and patient satisfaction, but is challenging to train, particularly with difficult clinical scenarios such as loss of sight. In this pilot study, we evaluated the use of simulated patient encounters with actors to train optometric students. Students were recorded during encounters with actors and assigned to an enrichment group performing five interactions with instructor feedback (n = 6) or a no-enrichment group performing two interactions without feedback (n = 4). Student performance on first and last encounters was scored with (1) subjective rating of performance change using a visual analog scale (anchors: much worse/much better), (2) yes/no response: Would you recommend this doctor to a friend/relative?, and (3) average score on questions from the American Board of Internal Medicine (ABIM) assessment of doctor communication skills. Three clinical instructors, masked to student group assignments and the order of patient encounters they viewed, provided scores in addition to self-evaluation by students and patient-actors. Using the visual analog scale, students who received enrichment were rated more improved than the no-enrichment group by masked examiners (+18 vs. -11% p = 0.04) and self-evaluation (+79 vs. +27% p = 0.009), but not by actors (+31 vs. +43%). The proportion of students recommended significantly increased following enrichment for masked examiners (61% vs. 94%; p < 0.001), but not actors (100 vs. 83%). Average ABIM assessment scores were not significantly different by any rating group: masked instructors, actors, or self-ratings. The findings of this study suggest five simulated patient encounters with feedback result in measurable improvement in student-patient communication skills as rated by masked examiners.

  4. Expectancy Effects on Self-Reported Attention-Deficit/Hyperactivity Disorder Symptoms in Simulated Neurofeedback: A Pilot Study.

    PubMed

    Lee, Grace J; Suhr, Julie A

    2018-03-31

    Expectancy is a psychological factor that can impact treatment effectiveness. Research on neurofeedback for attention-deficit/hyperactivity disorder (ADHD) suggests expectancy may contribute to treatment outcomes, though evidence for expectancy as an explanatory factor is sparse. This pilot study investigated the effects of expectancies on self-reported ADHD symptoms in simulated neurofeedback. Forty-six adults who were concerned that they had ADHD expected to receive active neurofeedback, but were randomly assigned to receive a placebo with false feedback indicating attentive (positive false feedback) or inattentive (negative false feedback) states. Effects of the expectancy manipulation were measured on an ADHD self-report scale. Large expectancy effects were found, such that individuals who received positive false feedback reported significant decreases in ADHD symptoms, whereas individuals who received negative false feedback reported significant increases in ADHD symptoms. Findings suggest that expectancy should be considered as an explanatory mechanism for ADHD symptom change in response to neurofeedback.

  5. Influencing care in acute myocardial infarction: a randomized trial comparing 2 types of intervention.

    PubMed

    Sauaia, A; Ralston, D; Schluter, W W; Marciniak, T A; Havranek, E P; Dunn, T R

    2000-01-01

    The purpose of this study was to evaluate performance feedback delivered by on-site presentations compared to mailed feedback on improving acute myocardial infarction (AMI) care. We used a randomized trial including 18 hospitals nested within the Cooperative Cardiovascular Project. Patients comprised AMI Medicare patients admitted before (n = 929, 1994 and 1995) and after intervention (n = 438, 1996). Control hospitals received written feedback by mail. The experimental intervention group received a presentation led by a cardiologist and a quality improvement specialist. We assessed the proportion of patients receiving appropriate AMI care before and after the intervention. Both univariate and multivariate analyses demonstrated no effect of the intervention in increasing the proportion of patients who received reperfusion, aspirin, beta-blockers, or angiotensin-converting enzyme inhibitors. On-site feedback presentations were not associated with a larger improvement in AMI care compared to the mailed feedback. Other interventions, such as opinion leaders and patient-directed interventions, may be necessary in order to improve the care of AMI patients.

  6. Technology-Based Feedback and Its Efficacy in Improving Gait Parameters in Patients with Abnormal Gait: A Systematic Review

    PubMed Central

    Chamorro-Moriana, Gema; Moreno, Antonio José

    2018-01-01

    This systematic review synthesized and analyzed clinical findings related to the effectiveness of innovative technological feedback for tackling functional gait recovery. An electronic search of PUBMED, PEDro, WOS, CINAHL, and DIALNET was conducted from January 2011 to December 2016. The main inclusion criteria were: patients with modified or abnormal gait; application of technology-based feedback to deal with functional recovery of gait; any comparison between different kinds of feedback applied by means of technology, or any comparison between technological and non-technological feedback; and randomized controlled trials. Twenty papers were included. The populations were neurological patients (75%), orthopedic and healthy subjects. All participants were adults, bar one. Four studies used exoskeletons, 6 load platforms and 5 pressure sensors. The breakdown of the type of feedback used was as follows: 60% visual, 40% acoustic and 15% haptic. 55% used terminal feedback versus 65% simultaneous feedback. Prescriptive feedback was used in 60% of cases, while 50% used descriptive feedback. 62.5% and 58.33% of the trials showed a significant effect in improving step length and speed, respectively. Efficacy in improving other gait parameters such as balance or range of movement is observed in more than 75% of the studies with significant outcomes. Conclusion: Treatments based on feedback using innovative technology in patients with abnormal gait are mostly effective in improving gait parameters and therefore useful for the functional recovery of patients. The most frequently highlighted types of feedback were immediate visual feedback followed by terminal and immediate acoustic feedback. PMID:29316645

  7. Technology-Based Feedback and Its Efficacy in Improving Gait Parameters in Patients with Abnormal Gait: A Systematic Review.

    PubMed

    Chamorro-Moriana, Gema; Moreno, Antonio José; Sevillano, José Luis

    2018-01-06

    This systematic review synthesized and analyzed clinical findings related to the effectiveness of innovative technological feedback for tackling functional gait recovery. An electronic search of PUBMED, PEDro, WOS, CINAHL, and DIALNET was conducted from January 2011 to December 2016. The main inclusion criteria were: patients with modified or abnormal gait; application of technology-based feedback to deal with functional recovery of gait; any comparison between different kinds of feedback applied by means of technology, or any comparison between technological and non-technological feedback; and randomized controlled trials. Twenty papers were included. The populations were neurological patients (75%), orthopedic and healthy subjects. All participants were adults, bar one. Four studies used exoskeletons, 6 load platforms and 5 pressure sensors. The breakdown of the type of feedback used was as follows: 60% visual, 40% acoustic and 15% haptic. 55% used terminal feedback versus 65% simultaneous feedback. Prescriptive feedback was used in 60% of cases, while 50% used descriptive feedback. 62.5% and 58.33% of the trials showed a significant effect in improving step length and speed, respectively. Efficacy in improving other gait parameters such as balance or range of movement is observed in more than 75% of the studies with significant outcomes. Treatments based on feedback using innovative technology in patients with abnormal gait are mostly effective in improving gait parameters and therefore useful for the functional recovery of patients. The most frequently highlighted types of feedback were immediate visual feedback followed by terminal and immediate acoustic feedback.

  8. Firing-rate based network modeling of the dLGN circuit: Effects of cortical feedback on spatiotemporal response properties of relay cells.

    PubMed

    Mobarhan, Milad Hobbi; Halnes, Geir; Martínez-Cañada, Pablo; Hafting, Torkel; Fyhn, Marianne; Einevoll, Gaute T

    2018-05-01

    Visually evoked signals in the retina pass through the dorsal geniculate nucleus (dLGN) on the way to the visual cortex. This is however not a simple feedforward flow of information: there is a significant feedback from cortical cells back to both relay cells and interneurons in the dLGN. Despite four decades of experimental and theoretical studies, the functional role of this feedback is still debated. Here we use a firing-rate model, the extended difference-of-Gaussians (eDOG) model, to explore cortical feedback effects on visual responses of dLGN relay cells. For this model the responses are found by direct evaluation of two- or three-dimensional integrals allowing for fast and comprehensive studies of putative effects of different candidate organizations of the cortical feedback. Our analysis identifies a special mixed configuration of excitatory and inhibitory cortical feedback which seems to best account for available experimental data. This configuration consists of (i) a slow (long-delay) and spatially widespread inhibitory feedback, combined with (ii) a fast (short-delayed) and spatially narrow excitatory feedback, where (iii) the excitatory/inhibitory ON-ON connections are accompanied respectively by inhibitory/excitatory OFF-ON connections, i.e. following a phase-reversed arrangement. The recent development of optogenetic and pharmacogenetic methods has provided new tools for more precise manipulation and investigation of the thalamocortical circuit, in particular for mice. Such data will expectedly allow the eDOG model to be better constrained by data from specific animal model systems than has been possible until now for cat. We have therefore made the Python tool pyLGN which allows for easy adaptation of the eDOG model to new situations.

  9. Investigations of the pathogenesis of acquired pendular nystagmus

    NASA Technical Reports Server (NTRS)

    Averbuch-Heller, L.; Zivotofsky, A. Z.; Das, V. E.; DiScenna, A. O.; Leigh, R. J.

    1995-01-01

    We investigated the pathogenesis of acquired pendular nystagmus (APN) in six patients, three of whom had multiple sclerosis. First, we tested the hypothesis that the oscillations of APN are due to a delay in visual feedback secondary, for example, to demyelination of the optic nerves. We manipulated the latency to onset of visually guided eye movements using an electronic technique that induces sinusoidal oscillations in normal subjects. This manipulation did not change the characteristics of the APN, but did superimpose lower-frequency oscillations similar to those induced in normal subjects. These results are consistent with current models for smooth (non-saccadic) eye movements, which predict that prolongation of visual feedback could not account for the high-frequency oscillations that often characterize APN. Secondly, we attempted to determine whether an increase in the gain of the visually-enhanced vestibulo-ocular reflex (VOR), produced by viewing a near target, was accompanied by a commensurate increase in the amplitude of APN. Increases in horizontal or vertical VOR gain during near viewing occurred in four patients, but only two of them showed a parallel increase in APN amplitude. On the other hand, APN amplitude decreased during viewing of the near target in the two patients who showed no change in VOR gain. Taken together, these data suggest that neither delayed visual feedback nor a disorder of central vestibular mechanisms is primarily responsible for APN. More likely, these ocular oscillations are produced by abnormalities of internal feedback circuits, such as the reciprocal connections between brainstem nuclei and cerebellum.

  10. Binocular and Monocular Depth Cues in Online Feedback Control of 3-D Pointing Movement

    PubMed Central

    Hu, Bo; Knill, David C.

    2012-01-01

    Previous work has shown that humans continuously use visual feedback of the hand to control goal-directed movements online. In most studies, visual error signals were predominantly in the image plane and thus were available in an observer’s retinal image. We investigate how humans use visual feedback about finger depth provided by binocular and monocular depth cues to control pointing movements. When binocularly viewing a scene in which the hand movement was made in free space, subjects were about 60 ms slower in responding to perturbations in depth than in the image plane. When monocularly viewing a scene designed to maximize the available monocular cues to finger depth (motion, changing size and cast shadows), subjects showed no response to perturbations in depth. Thus, binocular cues from the finger are critical to effective online control of hand movements in depth. An optimal feedback controller that takes into account of the low peripheral stereoacuity and inherent ambiguity in cast shadows can explain the difference in response time in the binocular conditions and lack of response in monocular conditions. PMID:21724567

  11. Suspicion of Motives Predicts Minorities' Responses to Positive Feedback in Interracial Interactions.

    PubMed

    Major, Brenda; Kunstman, Jonathan W; Malta, Brenna D; Sawyer, Pamela J; Townsend, Sarah S M; Mendes, Wendy Berry

    2016-01-01

    Strong social and legal norms in the United States discourage the overt expression of bias against ethnic and racial minorities, increasing the attributional ambiguity of Whites' positive behavior to ethnic minorities. Minorities who suspect that Whites' positive overtures toward minorities are motivated more by their fear of appearing racist than by egalitarian attitudes may regard positive feedback they receive from Whites as disingenuous. This may lead them to react to such feedback with feelings of uncertainty and threat. Three studies examined how suspicion of motives relates to ethnic minorities' responses to receiving positive feedback from a White peer or same-ethnicity peer (Experiment 1), to receiving feedback from a White peer that was positive or negative (Experiment 2), and to receiving positive feedback from a White peer who did or did not know their ethnicity (Experiment 3). As predicted, the more suspicious Latinas were of Whites' motives for behaving positively toward minorities in general, the more they regarded positive feedback from a White peer who knew their ethnicity as disingenuous and the more they reacted with cardiovascular reactivity characteristic of threat/avoidance, increased feelings of stress, heightened uncertainty, and decreased self-esteem. We discuss the implications for intergroup interactions of perceptions of Whites' motives for nonprejudiced behavior.

  12. Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution.

    PubMed

    Chen, Xiao; Liao, JianQiao; Wu, Weijiong; Zhang, Wei

    2017-01-01

    Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees' perceived insider status (PIS), as a kind of employee-organization relationship, could also influence employees' reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper.

  13. Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution

    PubMed Central

    Chen, Xiao; Liao, JianQiao; Wu, Weijiong; Zhang, Wei

    2017-01-01

    Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees’ perceived insider status (PIS), as a kind of employee-organization relationship, could also influence employees’ reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper. PMID:28507527

  14. Evaluation of Augmented Reality Feedback in Surgical Training Environment.

    PubMed

    Zahiri, Mohsen; Nelson, Carl A; Oleynikov, Dmitry; Siu, Ka-Chun

    2018-02-01

    Providing computer-based laparoscopic surgical training has several advantages that enhance the training process. Self-evaluation and real-time performance feedback are 2 of these advantages, which avoid dependency of trainees on expert feedback. The goal of this study was to investigate the use of a visual time indicator as real-time feedback correlated with the laparoscopic surgical training. Twenty novices participated in this study working with (and without) different presentations of time indicators. They performed a standard peg transfer task, and their completion times and muscle activity were recorded and compared. Also of interest was whether the use of this type of feedback induced any side effect in terms of motivation or muscle fatigue. Of the 20 participants, 15 (75%) preferred using a time indicator in the training process rather than having no feedback. However, time to task completion showed no significant difference in performance with the time indicator; furthermore, no significant differences in muscle activity or muscle fatigue were detected with/without time feedback. The absence of significant difference between task performance with/without time feedback shows that using visual real-time feedback can be included in surgical training based on user preference. Trainees may benefit from this type of feedback in the form of increased motivation. The extent to which this can influence training frequency leading to performance improvement is a question for further study.

  15. EMG Versus Torque Control of Human-Machine Systems: Equalizing Control Signal Variability Does not Equalize Error or Uncertainty.

    PubMed

    Johnson, Reva E; Kording, Konrad P; Hargrove, Levi J; Sensinger, Jonathon W

    2017-06-01

    In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.

  16. Internal Medicine Residents' Perspectives on Receiving Feedback in Milestone Format

    PubMed Central

    Angus, Steven; Moriarty, John; Nardino, Robert J.; Chmielewski, Amy; Rosenblum, Michael J.

    2015-01-01

    Background In contrast to historical feedback, which was vague or provided residents' numerical scores without clear meaning, milestone-based feedback is focused on specific knowledge, skills, and behaviors that define developmental trajectory. It was anticipated that residents would welcome the more specific and actionable feedback provided by the milestone framework, but this has not been studied. Objective We assessed internal medicine (IM) residents' perceptions of receiving feedback in the milestone framework, particularly assessing perception of the utility of milestone-based feedback compared to non–milestone-based feedback. Methods We surveyed a total of 510 IM residents from 7 institutions. Survey questions assessed resident perception of milestone feedback in identifying strengths, weaknesses, and trajectory of professional development. Postgraduate years 2 and 3 (PGY-2 and PGY-3) residents were asked to compare milestones with prior methods of feedback. Results Of 510 residents, 356 (69.8%) responded. Slightly less than half of the residents found milestone-based feedback “extremely useful” or “very useful” in identifying strengths (44%), weaknesses (43%), specific areas for improvement (45%), and appropriate education progress (48%). Few residents found such feedback “not very useful” or “not at all useful” in these domains. A total of 51% of PGY-2 and PGY-3 residents agreed that receiving milestone-based feedback was more helpful than previous forms of feedback. Conclusions IM residents are aware of the concepts of milestones, and half of the residents surveyed found milestone feedback more helpful than previous forms of feedback. More work needs to be done to understand how milestone-based feedback could be delivered more effectively to enhance resident development. PMID:26221438

  17. Benchmarking Distance Control and Virtual Drilling for Lateral Skull Base Surgery.

    PubMed

    Voormolen, Eduard H J; Diederen, Sander; van Stralen, Marijn; Woerdeman, Peter A; Noordmans, Herke Jan; Viergever, Max A; Regli, Luca; Robe, Pierre A; Berkelbach van der Sprenkel, Jan Willem

    2018-01-01

    Novel audiovisual feedback methods were developed to improve image guidance during skull base surgery by providing audiovisual warnings when the drill tip enters a protective perimeter set at a distance around anatomic structures ("distance control") and visualizing bone drilling ("virtual drilling"). To benchmark the drill damage risk reduction provided by distance control, to quantify the accuracy of virtual drilling, and to investigate whether the proposed feedback methods are clinically feasible. In a simulated surgical scenario using human cadavers, 12 unexperienced users (medical students) drilled 12 mastoidectomies. Users were divided into a control group using standard image guidance and 3 groups using distance control with protective perimeters of 1, 2, or 3 mm. Damage to critical structures (sigmoid sinus, semicircular canals, facial nerve) was assessed. Neurosurgeons performed another 6 mastoidectomy/trans-labyrinthine and retro-labyrinthine approaches. Virtual errors as compared with real postoperative drill cavities were calculated. In a clinical setting, 3 patients received lateral skull base surgery with the proposed feedback methods. Users drilling with distance control protective perimeters of 3 mm did not damage structures, whereas the groups using smaller protective perimeters and the control group injured structures. Virtual drilling maximum cavity underestimations and overestimations were 2.8 ± 0.1 and 3.3 ± 0.4 mm, respectively. Feedback methods functioned properly in the clinical setting. Distance control reduced the risks of drill damage proportional to the protective perimeter distance. Errors in virtual drilling reflect spatial errors of the image guidance system. These feedback methods are clinically feasible. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Skill learning from kinesthetic feedback.

    PubMed

    Pinzon, David; Vega, Roberto; Sanchez, Yerly Paola; Zheng, Bin

    2017-10-01

    It is important for a surgeon to perform surgical tasks under appropriate guidance from visual and kinesthetic feedback. However, our knowledge on kinesthetic (muscle) memory and its role in learning motor skills remains elementary. To discover the effect of exclusive kinesthetic training on kinesthetic memory in both performance and learning. In Phase 1, a total of twenty participants duplicated five 2 dimensional movements of increasing complexity via passive kinesthetic guidance, without visual or auditory stimuli. Five participants were asked to repeat the task in the Phase 2 over a period of three weeks, for a total of nine sessions. Subjects accurately recalled movement direction using kinesthetic memory, but recalling movement length was less precise. Over the nine training sessions, error occurrence dropped after the sixth session. Muscle memory constructs the foundation for kinesthetic training. Knowledge gained helps surgeons learn skills from kinesthetic information in the condition where visual feedback is limited. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Visual feedback training using WII Fit improves balance in Parkinson's disease.

    PubMed

    Zalecki, Tomasz; Gorecka-Mazur, Agnieszka; Pietraszko, Wojciech; Surowka, Artur D; Novak, Pawel; Moskala, Marek; Krygowska-Wajs, Anna

    2013-01-01

    Postural instability including imbalance is the most disabling long term problem in Parkinson's disease (PD) that does not respond to pharmacotherapy. This study aimed at investigating the effectiveness of a novel visual-feedback training method, using Wii Fit balance board in improving balance in patients with PD. Twenty four patients with moderate PD were included in the study which comprised of a 6-week home-based balance training program using Nintendo Wii Fit and balance board. The PD patients significantly improved their results in Berg Balance Scale, Tinnet's Performance-Oriented Mobility Assessment, Timed Up-and-Go, Sit-to-stand test, 10-Meter Walk test and Activities-specific Balance Confidence scale at the end of the programme. This study suggests that visual feedback training using Wii-Fit with balance board could improve dynamic and functional balance as well as motor disability in PD patients.

  20. Adaptive strategies of remote systems operators exposed to perturbed camera-viewing conditions

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Manahan, Meera K.; Bierschwale, John M.; Sampaio, Carlos E.; Legendre, A. J.

    1991-01-01

    This report describes a preliminary investigation of the use of perturbed visual feedback during the performance of simulated space-based remote manipulation tasks. The primary objective of this NASA evaluation was to determine to what extent operators exhibit adaptive strategies which allow them to perform these specific types of remote manipulation tasks more efficiently while exposed to perturbed visual feedback. A secondary objective of this evaluation was to establish a set of preliminary guidelines for enhancing remote manipulation performance and reducing the adverse effects. These objectives were accomplished by studying the remote manipulator performance of test subjects exposed to various perturbed camera-viewing conditions while performing a simulated space-based remote manipulation task. Statistical analysis of performance and subjective data revealed that remote manipulation performance was adversely affected by the use of perturbed visual feedback and performance tended to improve with successive trials in most perturbed viewing conditions.

  1. On the Adaptation of Pelvic Motion by Applying 3-dimensional Guidance Forces Using TPAD.

    PubMed

    Kang, Jiyeon; Vashista, Vineet; Agrawal, Sunil K

    2017-09-01

    Pelvic movement is important to human locomotion as the center of mass is located near the center of pelvis. Lateral pelvic motion plays a crucial role to shift the center of mass on the stance leg, while swinging the other leg and keeping the body balanced. In addition, vertical pelvic movement helps to reduce metabolic energy expenditure by exchanging potential and kinetic energy during the gait cycle. However, patient groups with cerebral palsy or stroke have excessive pelvic motion that leads to high energy expenditure. In addition, they have higher chances of falls as the center ofmass could deviate outside the base of support. In this paper, a novel control method is suggested using tethered pelvic assist device (TPAD) to teach subjects to walk with a specified target pelvic trajectory while walking on a treadmill. In this method, a force field is applied to the pelvis to guide it to move on a target trajectory and correctional forces are applied, if the pelvis motion has excessive deviations from the target trajectory. Three different experimentswith healthy subjects were conducted to teach them to walk on a new target pelvic trajectory with the presented control method. For all three experiments, the baseline trajectory of the pelvis was experimentally determined for each participating subject. To design a target pelvic trajectory which is different from the baseline, Experiment I scaled up the lateral component of the baseline pelvic trajectory, while Experiment II scaled down the lateral component of the baseline trajectory. For both Experiments I and II, the controller generated a 2-D force field in the transverse plane to provide the guidance force. In this paper, seven subjects were recruited for each experiment who walked on the treadmill with suggested control methods and visual feedback of their pelvic trajectory. The results show that the subjects were able to learn the target pelvic trajectory in each experiment and also retained the training effects after the completion of the experiment. In Experiment III, both lateral and vertical components of the pelvic trajectory were scaled down from the baseline trajectory. The force field was extended to three dimensions in order to correct the vertical pelvic movement as well. Three subgroups (force feedback alone, visual feedback alone, and both force and visual feedback) were recruited to understand the effects of force feedback and visual feedback alone to distinguish the results from Experiments I and II. The results showthat a trainingmethod that combines visual and force feedback is superior to the training methods with visual or force feedback alone. We believe that the present control strategy holds potential in training and correcting abnormal pelvic movements in different patient populations.

  2. The role of constructive feedback in patient safety and continuous quality improvement.

    PubMed

    Altmiller, Gerry

    2012-09-01

    Constructive feedback is essential for personal and professional growth. It is an integral part of continuous quality improvement and essential in maintaining patient safety in the clinical environment. The perception of feedback can interfere with professionals giving and receiving feedback, which can have negative consequences on patient outcomes. Delivering and receiving feedback effectively are learned skills that should be introduced early in prelicensure education. Faculty have the opportunity to influence the perception of feedback to be viewed as an opportunity so that students can learn to appreciate its value in maintaining patient safety and high-quality care in clinical practice. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Removing own-limb visual input using mixed reality (MR) produces a "telescoping" illusion in healthy individuals.

    PubMed

    Thøgersen, Mikkel; Hansen, John; Arendt-Nielsen, Lars; Flor, Herta; Petrini, Laura

    2018-07-16

    The purpose of the present study was to assess changes in body perception when visual feedback was removed from the hand and arm with the purpose of resembling the visual deprivation arising from amputation. The illusion was created by removing the visual feedback from the participants' own left forearm using a mixed reality (MR) and green screen environment. Thirty healthy persons (15 female) participated in the study. Each subject experienced two MR conditions, one with and one without visual feedback from the left hand, and a baseline condition with normal vision of the limb (no MR). Body perception was assessed using proprioceptive drift, questionnaires on body perception, and thermal sensitivity measures (cold, warm, heat pain and cold pain detection thresholds). The proprioceptive drift showed a significant shift of the tip of the index finger (p<0.001) towards the elbow in the illusion condition (mean drift: -3.71 cm). Self-report showed a significant decrease in ownership (p<0.001), shift in perceptual distortions, (e.g. "It feels as if my lower arm has become shorter") (p=0.025), and changes in sensations of the hand (tingling, tickling) (p=0.025). A significant decrease was also observed in cold detection threshold (p<0.001), i.e. the detection threshold was cooler than for the control conditions. The proprioceptive drift together with the self-reported questionnaire showed that the participants felt a proximal retraction of their limb, resembling the telescoping experienced by phantom limb patients. The study highlights the influence of missing visual feedback and its possible contribution to phantom limb phenomena. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Investigating the impact of automated feedback on students' scientific argumentation

    NASA Astrophysics Data System (ADS)

    Zhu, Mengxiao; Lee, Hee-Sun; Wang, Ting; Liu, Ou Lydia; Belur, Vinetha; Pallant, Amy

    2017-08-01

    This study investigates the role of automated scoring and feedback in supporting students' construction of written scientific arguments while learning about factors that affect climate change in the classroom. The automated scoring and feedback technology was integrated into an online module. Students' written scientific argumentation occurred when they responded to structured argumentation prompts. After submitting the open-ended responses, students received scores generated by a scoring engine and written feedback associated with the scores in real-time. Using the log data that recorded argumentation scores as well as argument submission and revisions activities, we answer three research questions. First, how students behaved after receiving the feedback; second, whether and how students' revisions improved their argumentation scores; and third, did item difficulties shift with the availability of the automated feedback. Results showed that the majority of students (77%) made revisions after receiving the feedback, and students with higher initial scores were more likely to revise their responses. Students who revised had significantly higher final scores than those who did not, and each revision was associated with an average increase of 0.55 on the final scores. Analysis on item difficulty shifts showed that written scientific argumentation became easier after students used the automated feedback.

  5. A Randomized Trial Comparing Classical Participatory Design to VandAID, an Interactive CrowdSourcing Platform to Facilitate User-centered Design.

    PubMed

    Dufendach, Kevin R; Koch, Sabine; Unertl, Kim M; Lehmann, Christoph U

    2017-10-26

    Early involvement of stakeholders in the design of medical software is particularly important due to the need to incorporate complex knowledge and actions associated with clinical work. Standard user-centered design methods include focus groups and participatory design sessions with individual stakeholders, which generally limit user involvement to a small number of individuals due to the significant time investments from designers and end users. The goal of this project was to reduce the effort for end users to participate in co-design of a software user interface by developing an interactive web-based crowdsourcing platform. In a randomized trial, we compared a new web-based crowdsourcing platform to standard participatory design sessions. We developed an interactive, modular platform that allows responsive remote customization and design feedback on a visual user interface based on user preferences. The responsive canvas is a dynamic HTML template that responds in real time to user preference selections. Upon completion, the design team can view the user's interface creations through an administrator portal and download the structured selections through a REDCap interface. We have created a software platform that allows users to customize a user interface and see the results of that customization in real time, receiving immediate feedback on the impact of their design choices. Neonatal clinicians used the new platform to successfully design and customize a neonatal handoff tool. They received no specific instruction and yet were able to use the software easily and reported high usability. VandAID, a new web-based crowdsourcing platform, can involve multiple users in user-centered design simultaneously and provides means of obtaining design feedback remotely. The software can provide design feedback at any stage in the design process, but it will be of greatest utility for specifying user requirements and evaluating iterative designs with multiple options.

  6. Dormitory Residents Reduce Electricity Consumption when Exposed to Real-Time Visual Feedback and Incentives

    ERIC Educational Resources Information Center

    Petersen, John E.; Shunturov, Vladislav; Janda, Kathryn; Platt, Gavin; Weinberger, Kate

    2007-01-01

    Purpose: In residential buildings, personal choices influence electricity and water consumption. Prior studies indicate that information feedback can stimulate resource conservation. College dormitories provide an excellent venue for controlled study of the effects of feedback. The goal of this study is to assess how different resolutions of…

  7. Responsibility-Sharing in the Giving and Receiving of Assessment Feedback

    PubMed Central

    Nash, Robert A.; Winstone, Naomi E.

    2017-01-01

    Many argue that effective learning requires students to take a substantial share of responsibility for their academic development, complementing the responsibilities taken by their educators. Yet this notion of responsibility-sharing receives minimal discussion in the context of assessment feedback, where responsibility for enhancing learning is often framed as lying principally with educators. Developing discussion on this issue is critical: many barriers can prevent students from engaging meaningfully with feedback, but neither educators nor students are fully empowered to remove these barriers without collaboration. In this discussion paper we argue that a culture of responsibility-sharing in the giving and receiving of feedback is essential, both for ensuring that feedback genuinely benefits students by virtue of their skilled and proactive engagement, and also for ensuring the sustainability of educators' effective feedback practices. We propose some assumptions that should underpin such a culture, and we consider the practicalities of engendering this cultural shift within modern higher education. PMID:28932202

  8. Ask and you shall receive: desire and receipt of feedback via Facebook predicts disordered eating concerns.

    PubMed

    Hummel, Alexandra C; Smith, April R

    2015-05-01

    The current study examined whether certain types of Facebook content (i.e., status updates, comments) relate to eating concerns and attitudes. We examined the effects of seeking and receiving negative feedback via Facebook on disordered eating concerns in a sample of 185 undergraduate students followed for approximately 4 weeks. Results indicated that individuals with a negative feedback seeking style who received a high number of comments on Facebook were more likely to report disordered eating attitudes four weeks later. Additionally, individuals who received extremely negative comments in response to their personally revealing status updates were more likely to report disordered eating concerns four weeks later. Results of the current study provide preliminary evidence that seeking and receiving negative feedback via social networking sites can increase risk for disordered eating attitudes, and suggest that reducing maladaptive social networking usage may be an important target for prevention and intervention efforts aimed at reducing disordered eating attitudes. © 2014 Wiley Periodicals, Inc.

  9. Motion video compression system with neural network having winner-take-all function

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi (Inventor); Sheu, Bing J. (Inventor)

    1997-01-01

    A motion video data system includes a compression system, including an image compressor, an image decompressor correlative to the image compressor having an input connected to an output of the image compressor, a feedback summing node having one input connected to an output of the image decompressor, a picture memory having an input connected to an output of the feedback summing node, apparatus for comparing an image stored in the picture memory with a received input image and deducing therefrom pixels having differences between the stored image and the received image and for retrieving from the picture memory a partial image including the pixels only and applying the partial image to another input of the feedback summing node, whereby to produce at the output of the feedback summing node an updated decompressed image, a subtraction node having one input connected to received the received image and another input connected to receive the partial image so as to generate a difference image, the image compressor having an input connected to receive the difference image whereby to produce a compressed difference image at the output of the image compressor.

  10. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study.

    PubMed

    Gonzalez, Jose; Soma, Hirokazu; Sekine, Masashi; Yu, Wenwei

    2012-06-09

    Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues) have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user's mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. 10 male subjects (26+/-years old), participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF), Visual Feedback only control (VF), and Audiovisual Feedback control (AVF). For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject's EEG, ECG, electro-dermal activity (EDA), and respiration rate were measured. The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback). Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. The performance improvements when using auditory cues, along with vision (multimodal feedback), can be attributed to a reduced attentional demand during the task, which can be attributed to a visual "pop-out" or enhance effect. Also, the NASA TLX, the EEG's Alpha and Beta band, and the Heart Rate could be used to further evaluate sensory feedback systems in prosthetic applications.

  11. Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study.

    PubMed

    Saleh, Soha; Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei; Tunik, Eugene

    2017-01-01

    Mirror visual feedback (MVF) is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical) or opposite (mirror) hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional) action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with non-invasive brain stimulation as a means of potentiating the effects of mirror training.

  12. The effect of force feedback on student reasoning about gravity, mass, force and motion

    NASA Astrophysics Data System (ADS)

    Bussell, Linda

    The purpose of this study was to examine whether force feedback within a computer simulation had an effect on reasoning by fifth grade students about gravity, mass, force, and motion, concepts which can be difficult for learners to grasp. Few studies have been done on cognitive learning and haptic feedback, particularly with young learners, but there is an extensive base of literature on children's conceptions of science and a number of studies focus specifically on children's conceptions of force and motion. This case study used a computer-based paddleball simulation with guided inquiry as the primary stimulus. Within the simulation, the learner could adjust the mass of the ball and the gravitational force. The experimental group used the simulation with visual and force feedback; the control group used the simulation with visual feedback but without force feedback. The proposition was that there would be differences in reasoning between the experimental and control groups, with force feedback being helpful with concepts that are more obvious when felt. Participants were 34 fifth-grade students from three schools. Students completed a modal (visual, auditory, and haptic) learning preference assessment and a pretest. The sessions, including participant experimentation and interviews, were audio recorded and observed. The interviews were followed by a written posttest. These data were analyzed to determine whether there were differences based on treatment, learning style, demographics, prior gaming experience, force feedback experience, or prior knowledge. Work with the simulation, regardless of group, was found to increase students' understanding of key concepts. The experimental group appeared to benefit from the supplementary help that force feedback provided. Those in the experimental group scored higher on the posttest than those in the control group. The greatest difference between mean group scores was on a question concerning the effects of increased gravitational force.

  13. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback.

    PubMed

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A

    2014-10-01

    Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide 'tactile' sensation to a non-human primate. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.

  14. Programming of left hand exploits task set but that of right hand depends on recent history.

    PubMed

    Tang, Rixin; Zhu, Hong

    2017-07-01

    There are many differences between the left hand and the right hand. But it is not clear if there is a difference in programming between left hand and right hand when the hands perform the same movement. In current study, we carried out two experiments to investigate whether the programming of two hands was equivalent or they exploited different strategies. In the first experiment, participants were required to use one hand to grasp an object with visual feedback or to point to the center of one object without visual feedback on alternate trials, or to grasp an object without visual feedback and to point the center of one object with visual feedback on alternating trials. They then performed the tasks with the other hand. The result was that previous pointing task affected current grasping when it was performed by the left hand, but not the right hand. In experiment 2, we studied if the programming of the left (or right) hand would be affected by the pointing task performed on the previous trial not only by the same hand, but also by the right (or left) hand. Participants pointed and grasped the objects alternately with two hands. The result was similar with Experiment 1, i.e., left-hand grasping was affected by right-hand pointing, whereas right-hand grasping was immune from the interference from left hand. Taken together, the results suggest that when open- and closed-loop trials are interleaved, motor programming of grasping with the right hand was affected by the nature of the online feedback on the previous trial only if it was a grasping trial, suggesting that the trial-to-trial transfer depends on sensorimotor memory and not on task set. In contrast, motor programming of grasping with the left hand can use information about the nature of the online feedback on the previous trial to specify the parameters of the movement, even when the type of movement that occurred was quite different (i.e., pointing) and was performed with the right hand. This suggests that trial-to-trial transfer with the left hand depends on some sort of carry-over of task set for dealing with the availability of visual feedback.

  15. False feedback and beliefs influence name recall in younger and older adults.

    PubMed

    Strickland-Hughes, Carla M; West, Robin Lea; Smith, Kimberly A; Ebner, Natalie C

    2017-09-01

    Feedback is an important self-regulatory process that affects task effort and subsequent performance. Benefits of positive feedback for list recall have been explored in research on goals and feedback, but the effect of negative feedback on memory has rarely been studied. The current research extends knowledge of memory and feedback effects by investigating face-name association memory and by examining the potential mediation of feedback effects, in younger and older adults, through self-evaluative beliefs. Beliefs were assessed before and after name recognition and name recall testing. Repeated presentation of false positive feedback was compared to false negative feedback and a no feedback condition. Results showed that memory self-efficacy declined over time for participants in the negative and no feedback conditions but was sustained for those receiving positive feedback. Furthermore, participants who received negative feedback felt older after testing than before testing. For name recall, the positive feedback group outperformed the negative feedback and no feedback groups combined, with no age interactions. The observed feedback-related effects on memory were fully mediated by changes in memory self-efficacy. These findings advance our understanding of how beliefs are related to feedback in memory and inform future studies examining the importance of self-regulation in memory.

  16. Feedback Providing Improvement Strategies and Reflection on Feedback Use: Effects on Students' Writing Motivation, Process, and Performance

    ERIC Educational Resources Information Center

    Duijnhouwer, Hendrien; Prins, Frans J.; Stokking, Karel M.

    2012-01-01

    This study investigated the effects of feedback providing improvement strategies and a reflection assignment on students' writing motivation, process, and performance. Students in the experimental feedback condition (n = 41) received feedback including improvement strategies, whereas students in the control feedback condition (n = 41) received…

  17. Brain-computer interface: changes in performance using virtual reality techniques.

    PubMed

    Ron-Angevin, Ricardo; Díaz-Estrella, Antonio

    2009-01-09

    The ability to control electroencephalographic (EEG) signals when different mental tasks are carried out would provide a method of communication for people with serious motor function problems. This system is known as a brain-computer interface (BCI). Due to the difficulty of controlling one's own EEG signals, a suitable training protocol is required to motivate subjects, as it is necessary to provide some type of visual feedback allowing subjects to see their progress. Conventional systems of feedback are based on simple visual presentations, such as a horizontal bar extension. However, virtual reality is a powerful tool with graphical possibilities to improve BCI-feedback presentation. The objective of the study is to explore the advantages of the use of feedback based on virtual reality techniques compared to conventional systems of feedback. Sixteen untrained subjects, divided into two groups, participated in the experiment. A group of subjects was trained using a BCI system, which uses conventional feedback (bar extension), and another group was trained using a BCI system, which submits subjects to a more familiar environment, such as controlling a car to avoid obstacles. The obtained results suggest that EEG behaviour can be modified via feedback presentation. Significant differences in classification error rates between both interfaces were obtained during the feedback period, confirming that an interface based on virtual reality techniques can improve the feedback control, specifically for untrained subjects.

  18. Model depicting aspects of audit and feedback that impact physicians' acceptance of clinical performance feedback.

    PubMed

    Payne, Velma L; Hysong, Sylvia J

    2016-07-13

    Audit and feedback (A&F) is a strategy that has been used in various disciplines for performance and quality improvement. There is limited research regarding medical professionals' acceptance of clinical-performance feedback and whether feedback impacts clinical practice. The objectives of our research were to (1) investigate aspects of A&F that impact physicians' acceptance of performance feedback; (2) determine actions physicians take when receiving feedback; and (3) determine if feedback impacts physicians' patient-management behavior. In this qualitative study, we employed grounded theory methods to perform a secondary analysis of semi-structured interviews with 12 VA primary care physicians. We analyzed a subset of interview questions from the primary study, which aimed to determine how providers of high, low and moderately performing VA medical centers use performance feedback to maintain and improve quality of care, and determine perceived utility of performance feedback. Based on the themes emergent from our analysis and their observed relationships, we developed a model depicting aspects of the A&F process that impact feedback acceptance and physicians' patient-management behavior. The model is comprised of three core components - Reaction, Action and Impact - and depicts elements associated with feedback recipients' reaction to feedback, action taken when feedback is received, and physicians modifying their patient-management behavior. Feedback characteristics, the environment, external locus-of-control components, core values, emotion and the assessment process induce or deter reaction, action and impact. Feedback characteristics (content and timeliness), and the procedural justice of the assessment process (unjust penalties) impact feedback acceptance. External locus-of-control elements (financial incentives, competition), the environment (patient volume, time constraints) and emotion impact patient-management behavior. Receiving feedback generated intense emotion within physicians. The underlying source of the emotion was the assessment process, not the feedback. The emotional response impacted acceptance, impelled action or inaction, and impacted patient-management behavior. Emotion intensity was associated with type of action taken (defensive, proactive, retroactive). Feedback acceptance and impact have as much to do with the performance assessment process as it does the feedback. In order to enhance feedback acceptance and the impact of feedback, developers of clinical performance systems and feedback interventions should consider multiple design elements.

  19. In Flight Evaluation of Active Inceptor Force-Feel Characteristics and Handling Qualities

    DTIC Science & Technology

    2012-05-01

    DEGRADED ACCEPTABLE Mitchell Aponso (1995) Watson Schroeder (1990) 0.75 lb/in 2.3 lb/in2.9 lb/in5.9 lb/in Side Stk - lon Side Stk - lat Center Stk Figure...vestibular feedback ( and respectively), and the visual error compensation ( ). A key feature of this approach is the modeling of proprioceptive...and vestibular feedback, and is the proportional component of the visual compensation strategy. At its core the fundamental concept of the HQSF

  20. Memory-guided force output is associated with self-reported ADHD symptoms in young adults.

    PubMed

    Neely, Kristina A; Chennavasin, Amanda P; Yoder, Arie; Williams, Genevieve K R; Loken, Eric; Huang-Pollock, Cynthia L

    2016-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed mental health disorder in childhood and persists into adulthood in up to 65 % of cases. ADHD is associated with adverse outcomes such as the ability to gain and maintain employment and is associated with an increased risk for substance abuse obesity workplace injuries and traffic accidents A majority of diagnosed children have motor deficits; however, few studies have examined motor deficits in young adults. This study provides a novel examination of visuomotor control of grip force in young adults with and without ADHD. Participants were instructed to maintain force production over a 20-second trial with and without real-time visual feedback about their performance. The results demonstrated that when visual feedback was available, adults with ADHD produced slightly higher grip force than controls. However, when visual feedback was removed, adults with ADHD had a faster rate of decay of force, which was associated with ADHD symptom severity and trait impulsivity. These findings suggest that there may be important differences in the way that adults with ADHD integrate visual feedback during continuous motor tasks. These may account for some of the motor impairments reported in children with ADHD. These deficits could result from (1) dysfunctional sensory motor integration and/or (2) deficits in short-term visuomotor memory.

  1. Processing speed in recurrent visual networks correlates with general intelligence.

    PubMed

    Jolij, Jacob; Huisman, Danielle; Scholte, Steven; Hamel, Ronald; Kemner, Chantal; Lamme, Victor A F

    2007-01-08

    Studies on the neural basis of general fluid intelligence strongly suggest that a smarter brain processes information faster. Different brain areas, however, are interconnected by both feedforward and feedback projections. Whether both types of connections or only one of the two types are faster in smarter brains remains unclear. Here we show, by measuring visual evoked potentials during a texture discrimination task, that general fluid intelligence shows a strong correlation with processing speed in recurrent visual networks, while there is no correlation with speed of feedforward connections. The hypothesis that a smarter brain runs faster may need to be refined: a smarter brain's feedback connections run faster.

  2. Does feedback matter? Practice-based learning for medical students after a multi-institutional clinical performance examination.

    PubMed

    Srinivasan, Malathi; Hauer, Karen E; Der-Martirosian, Claudia; Wilkes, Michael; Gesundheit, Neil

    2007-09-01

    Achieving competence in 'practice-based learning' implies that doctors can accurately self- assess their clinical skills to identify behaviours that need improvement. This study examines the impact of receiving feedback via performance benchmarks on medical students' self-assessment after a clinical performance examination (CPX). The authors developed a practice-based learning exercise at 3 institutions following a required 8-station CPX for medical students at the end of Year 3. Standardised patients (SPs) scored students after each station using checklists developed by experts. Students assessed their own performance immediately after the CPX (Phase 1). One month later, students watched their videotaped performance and reassessed (Phase 2). Some students received performance benchmarks (their scores, plus normative class data) before the video review. Pearson's correlations between self-ratings and SP ratings were calculated for overall performance and specific skill areas (history taking, physical examination, doctor-patient communication) for Phase 1 and Phase 2. The 2 correlations were then compared for each student group (i.e. those who received and those who did not receive feedback). A total of 280 students completed both study phases. Mean CPX scores ranged from 51% to 71% of items correct overall and for each skill area. Phase 1 self-assessment correlated weakly with SP ratings of student performance (r = 0.01-0.16). Without feedback, Phase 2 correlations remained weak (r = 0.13-0.18; n = 109). With feedback, Phase 2 correlations improved significantly (r = 0.26-0.47; n = 171). Low-performing students showed the greatest improvement after receiving feedback. The accuracy of student self-assessment was poor after a CPX, but improved significantly with performance feedback (scores and benchmarks). Videotape review alone (without feedback) did not improve self-assessment accuracy. Practice-based learning exercises that incorporate feedback to medical students hold promise to improve self-assessment skills.

  3. A haptics-assisted cranio-maxillofacial surgery planning system for restoring skeletal anatomy in complex trauma cases.

    PubMed

    Olsson, Pontus; Nysjö, Fredrik; Hirsch, Jan-Michaél; Carlbom, Ingrid B

    2013-11-01

       Cranio-maxillofacial (CMF) surgery to restore normal skeletal anatomy in patients with serious trauma to the face can be both complex and time-consuming. But it is generally accepted that careful pre-operative planning leads to a better outcome with a higher degree of function and reduced morbidity in addition to reduced time in the operating room. However, today's surgery planning systems are primitive, relying mostly on the user's ability to plan complex tasks with a two-dimensional graphical interface.    A system for planning the restoration of skeletal anatomy in facial trauma patients using a virtual model derived from patient-specific CT data. The system combines stereo visualization with six degrees-of-freedom, high-fidelity haptic feedback that enables analysis, planning, and preoperative testing of alternative solutions for restoring bone fragments to their proper positions. The stereo display provides accurate visual spatial perception, and the haptics system provides intuitive haptic feedback when bone fragments are in contact as well as six degrees-of-freedom attraction forces for precise bone fragment alignment.    A senior surgeon without prior experience of the system received 45 min of system training. Following the training session, he completed a virtual reconstruction in 22 min of a complex mandibular fracture with an adequately reduced result.    Preliminary testing with one surgeon indicates that our surgery planning system, which combines stereo visualization with sophisticated haptics, has the potential to become a powerful tool for CMF surgery planning. With little training, it allows a surgeon to complete a complex plan in a short amount of time.

  4. Error amplification to promote motor learning and motivation in therapy robotics.

    PubMed

    Shirzad, Navid; Van der Loos, H F Machiel

    2012-01-01

    To study the effects of different feedback error amplification methods on a subject's upper-limb motor learning and affect during a point-to-point reaching exercise, we developed a real-time controller for a robotic manipulandum. The reaching environment was visually distorted by implementing a thirty degrees rotation between the coordinate systems of the robot's end-effector and the visual display. Feedback error amplification was provided to subjects as they trained to learn reaching within the visually rotated environment. Error amplification was provided either visually or through both haptic and visual means, each method with two different amplification gains. Subjects' performance (i.e., trajectory error) and self-reports to a questionnaire were used to study the speed and amount of adaptation promoted by each error amplification method and subjects' emotional changes. We found that providing haptic and visual feedback promotes faster adaptation to the distortion and increases subjects' satisfaction with the task, leading to a higher level of attentiveness during the exercise. This finding can be used to design a novel exercise regimen, where alternating between error amplification methods is used to both increase a subject's motor learning and maintain a minimum level of motivational engagement in the exercise. In future experiments, we will test whether such exercise methods will lead to a faster learning time and greater motivation to pursue a therapy exercise regimen.

  5. Reliability and relative weighting of visual and nonvisual information for perceiving direction of self-motion during walking

    PubMed Central

    Saunders, Jeffrey A.

    2014-01-01

    Direction of self-motion during walking is indicated by multiple cues, including optic flow, nonvisual sensory cues, and motor prediction. I measured the reliability of perceived heading from visual and nonvisual cues during walking, and whether cues are weighted in an optimal manner. I used a heading alignment task to measure perceived heading during walking. Observers walked toward a target in a virtual environment with and without global optic flow. The target was simulated to be infinitely far away, so that it did not provide direct feedback about direction of self-motion. Variability in heading direction was low even without optic flow, with average RMS error of 2.4°. Global optic flow reduced variability to 1.9°–2.1°, depending on the structure of the environment. The small amount of variance reduction was consistent with optimal use of visual information. The relative contribution of visual and nonvisual information was also measured using cue conflict conditions. Optic flow specified a conflicting heading direction (±5°), and bias in walking direction was used to infer relative weighting. Visual feedback influenced heading direction by 16%–34% depending on scene structure, with more effect with dense motion parallax. The weighting of visual feedback was close to the predictions of an optimal integration model given the observed variability measures. PMID:24648194

  6. Sensor-based balance training with motion feedback in people with mild cognitive impairment.

    PubMed

    Schwenk, Michael; Sabbagh, Marwan; Lin, Ivy; Morgan, Pharah; Grewal, Gurtej S; Mohler, Jane; Coon, David W; Najafi, Bijan

    2016-01-01

    Some individuals with mild cognitive impairment (MCI) experience not only cognitive deficits but also a decline in motor function, including postural balance. This pilot study sought to estimate the feasibility, user experience, and effects of a novel sensor-based balance training program. Patients with amnestic MCI (mean age 78.2 yr) were randomized to an intervention group (IG, n = 12) or control group (CG, n = 10). The IG underwent balance training (4 wk, twice a week) that included weight shifting and virtual obstacle crossing. Real-time visual/audio lower-limb motion feedback was provided from wearable sensors. The CG received no training. User experience was measured by a questionnaire. Postintervention effects on balance (center of mass sway during standing with eyes open [EO] and eyes closed), gait (speed, variability), cognition, and fear of falling were measured. Eleven participants (92%) completed the training and expressed fun, safety, and helpfulness of sensor feedback. Sway (EO, p = 0.04) and fear of falling (p = 0.02) were reduced in the IG compared to the CG. Changes in other measures were nonsignificant. Results suggest that the sensor-based training paradigm is well accepted in the target population and beneficial for improving postural control. Future studies should evaluate the added value of the sensor-based training compared to traditional training.

  7. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.

    PubMed

    De Nunzio, Alessandro Marco; Dosen, Strahinja; Lemling, Sabrina; Markovic, Marko; Schweisfurth, Meike Annika; Ge, Nan; Graimann, Bernhard; Falla, Deborah; Farina, Dario

    2017-08-01

    Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not be modulated as it depends on the intrinsic myoelectric variability. They were also able to maintain the feedforward command even after the feedback was removed, demonstrating thereby a stable learning, but the retention depended on the level of the target force. This is an important insight into the role of feedback as an instrument for learning of anticipatory prosthesis force control.

  8. Corticocortical feedback increases the spatial extent of normalization.

    PubMed

    Nassi, Jonathan J; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a "normalization pool." Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing.

  9. Corticocortical feedback increases the spatial extent of normalization

    PubMed Central

    Nassi, Jonathan J.; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T.

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a “normalization pool.” Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing. PMID:24910596

  10. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly.

    PubMed

    Chen, Yi-Ching; Lin, Linda L; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations [Formula: see text], short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13-35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  11. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    PubMed Central

    Chen, Yi-Ching; Lin, Linda L.; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization. PMID:29167637

  12. The Sense of Agency Is More Sensitive to Manipulations of Outcome than Movement-Related Feedback Irrespective of Sensory Modality

    PubMed Central

    David, Nicole; Skoruppa, Stefan; Gulberti, Alessandro

    2016-01-01

    The sense of agency describes the ability to experience oneself as the agent of one's own actions. Previous studies of the sense of agency manipulated the predicted sensory feedback related either to movement execution or to the movement’s outcome, for example by delaying the movement of a virtual hand or the onset of a tone that resulted from a button press. Such temporal sensorimotor discrepancies reduce the sense of agency. It remains unclear whether movement-related feedback is processed differently than outcome-related feedback in terms of agency experience, especially if these types of feedback differ with respect to sensory modality. We employed a mixed-reality setup, in which participants tracked their finger movements by means of a virtual hand. They performed a single tap, which elicited a sound. The temporal contingency between the participants’ finger movements and (i) the movement of the virtual hand or (ii) the expected auditory outcome was systematically varied. In a visual control experiment, the tap elicited a visual outcome. For each feedback type and participant, changes in the sense of agency were quantified using a forced-choice paradigm and the Method of Constant Stimuli. Participants were more sensitive to delays of outcome than to delays of movement execution. This effect was very similar for visual or auditory outcome delays. Our results indicate different contributions of movement- versus outcome-related sensory feedback to the sense of agency, irrespective of the modality of the outcome. We propose that this differential sensitivity reflects the behavioral importance of assessing authorship of the outcome of an action. PMID:27536948

  13. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a “natural” grasping task induces pantomime-like grasps

    PubMed Central

    Whitwell, Robert L.; Ganel, Tzvi; Byrne, Caitlin M.; Goodale, Melvyn A.

    2015-01-01

    Investigators study the kinematics of grasping movements (prehension) under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. “Natural” prehensile acts are directed at the goal object and are executed using real-time vision. Typically, they also entail the use of tactile, proprioceptive, and kinesthetic sources of haptic feedback about the object (“haptics-based object information”) once contact with the object has been made. Natural and simulated (pantomimed) forms of prehension are thought to recruit different cortical structures: patient DF, who has visual form agnosia following bilateral damage to her temporal-occipital cortex, loses her ability to scale her grasp aperture to the size of targets (“grip scaling”) when her prehensile movements are based on a memory of a target previewed 2 s before the cue to respond or when her grasps are directed towards a visible virtual target but she is denied haptics-based information about the target. In the first of two experiments, we show that when DF performs real-time pantomimed grasps towards a 7.5 cm displaced imagined copy of a visible object such that her fingers make contact with the surface of the table, her grip scaling is in fact quite normal. This finding suggests that real-time vision and terminal tactile feedback are sufficient to preserve DF’s grip scaling slopes. In the second experiment, we examined an “unnatural” grasping task variant in which a tangible target (along with any proxy such as the surface of the table) is denied (i.e., no terminal tactile feedback). To do this, we used a mirror-apparatus to present virtual targets with and without a spatially coincident copy for the participants to grasp. We compared the grasp kinematics from trials with and without terminal tactile feedback to a real-time-pantomimed grasping task (one without tactile feedback) in which participants visualized a copy of the visible target as instructed in our laboratory in the past. Compared to natural grasps, removing tactile feedback increased RT, slowed the velocity of the reach, reduced in-flight grip aperture, increased the slopes relating grip aperture to target width, and reduced the final grip aperture (FGA). All of these effects were also observed in the real time-pantomime grasping task. These effects seem to be independent of those that arise from using the mirror in general as we also compared grasps directed towards virtual targets to those directed at real ones viewed directly through a pane of glass. These comparisons showed that the grasps directed at virtual targets increased grip aperture, slowed the velocity of the reach, and reduced the slopes relating grip aperture to the widths of the target. Thus, using the mirror has real consequences on grasp kinematics, reflecting the importance of task-relevant sources of online visual information for the programming and updating of natural prehensile movements. Taken together, these results provide compelling support for the view that removing terminal tactile feedback, even when the grasps are target-directed, induces a switch from real-time visual control towards one that depends more on visual perception and cognitive supervision. Providing terminal tactile feedback and real-time visual information can evidently keep the dorsal visuomotor system operating normally for prehensile acts. PMID:25999834

  14. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.

    PubMed

    Whitwell, Robert L; Ganel, Tzvi; Byrne, Caitlin M; Goodale, Melvyn A

    2015-01-01

    Investigators study the kinematics of grasping movements (prehension) under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. "Natural" prehensile acts are directed at the goal object and are executed using real-time vision. Typically, they also entail the use of tactile, proprioceptive, and kinesthetic sources of haptic feedback about the object ("haptics-based object information") once contact with the object has been made. Natural and simulated (pantomimed) forms of prehension are thought to recruit different cortical structures: patient DF, who has visual form agnosia following bilateral damage to her temporal-occipital cortex, loses her ability to scale her grasp aperture to the size of targets ("grip scaling") when her prehensile movements are based on a memory of a target previewed 2 s before the cue to respond or when her grasps are directed towards a visible virtual target but she is denied haptics-based information about the target. In the first of two experiments, we show that when DF performs real-time pantomimed grasps towards a 7.5 cm displaced imagined copy of a visible object such that her fingers make contact with the surface of the table, her grip scaling is in fact quite normal. This finding suggests that real-time vision and terminal tactile feedback are sufficient to preserve DF's grip scaling slopes. In the second experiment, we examined an "unnatural" grasping task variant in which a tangible target (along with any proxy such as the surface of the table) is denied (i.e., no terminal tactile feedback). To do this, we used a mirror-apparatus to present virtual targets with and without a spatially coincident copy for the participants to grasp. We compared the grasp kinematics from trials with and without terminal tactile feedback to a real-time-pantomimed grasping task (one without tactile feedback) in which participants visualized a copy of the visible target as instructed in our laboratory in the past. Compared to natural grasps, removing tactile feedback increased RT, slowed the velocity of the reach, reduced in-flight grip aperture, increased the slopes relating grip aperture to target width, and reduced the final grip aperture (FGA). All of these effects were also observed in the real time-pantomime grasping task. These effects seem to be independent of those that arise from using the mirror in general as we also compared grasps directed towards virtual targets to those directed at real ones viewed directly through a pane of glass. These comparisons showed that the grasps directed at virtual targets increased grip aperture, slowed the velocity of the reach, and reduced the slopes relating grip aperture to the widths of the target. Thus, using the mirror has real consequences on grasp kinematics, reflecting the importance of task-relevant sources of online visual information for the programming and updating of natural prehensile movements. Taken together, these results provide compelling support for the view that removing terminal tactile feedback, even when the grasps are target-directed, induces a switch from real-time visual control towards one that depends more on visual perception and cognitive supervision. Providing terminal tactile feedback and real-time visual information can evidently keep the dorsal visuomotor system operating normally for prehensile acts.

  15. Burnout: Job Resources and Job Demands Associated With Low Personal Accomplishment in United States Radiology Residents.

    PubMed

    Guenette, Jeffrey P; Smith, Stacy E

    2018-06-01

    We aimed to identify job resources and job demands associated with measures of personal accomplishment (PA) in radiology residents in the United States. A 34-item online survey was administered between May and June 2017 to U.S. radiology residents and included the 8 Likert-type PA questions from the Maslach Burnout Inventory-Human Services Survey, 19 visual analog scale job demands-resources questions, and 7 demographic questions. Multiple linear regression was calculated to predict PA based on job demands-resources. Effects of binomial demographic factors on PA scores were compared with independent-samples t tests. Effects of categorical demographic factors on PA scores were compared with one-way between-subjects analysis of variance tests. A linear regression was calculated to evaluate the relationship of age on PA scores. "The skills and knowledge that I am building are important and helpful to society" (P = 2 × 10 -16 ), "I have good social support from my co-residents" (P = 4 × 10 -5 ), and "I regularly receive adequate constructive feedback" (P = 4 × 10 -6 ) all positively correlated with PA. PA scores were significantly lower for individuals who were single vs those married or partnered (P = .01). Radiology residents score higher in the PA domain of burnout when they receive adequate constructive feedback, have good co-resident social support, and feel that the skills and knowledge they are building are important to society. Improving constructive feedback mechanisms, enabling resident-only social time, and supporting opportunities that reinforce the importance of their contributions may therefore improve radiology residents' sense of PA. Copyright © 2018. Published by Elsevier Inc.

  16. Orientation-selective Responses in the Mouse Lateral Geniculate Nucleus

    PubMed Central

    Zhao, Xinyu; Chen, Hui; Liu, Xiaorong

    2013-01-01

    The dorsal lateral geniculate nucleus (dLGN) receives visual information from the retina and transmits it to the cortex. In this study, we made extracellular recordings in the dLGN of both anesthetized and awake mice, and found that a surprisingly high proportion of cells were selective for stimulus orientation. The orientation selectivity of dLGN cells was unchanged after silencing the visual cortex pharmacologically, indicating that it is not due to cortical feedback. The orientation tuning of some dLGN cells correlated with their elongated receptive fields, while in others orientation selectivity was observed despite the fact that their receptive fields were circular, suggesting that their retinal input might already be orientation selective. Consistently, we revealed orientation/axis-selective ganglion cells in the mouse retina using multielectrode arrays in an in vitro preparation. Furthermore, the orientation tuning of dLGN cells was largely maintained at different stimulus contrasts, which could be sufficiently explained by a simple linear feedforward model. We also compared the degree of orientation selectivity in different visual structures under the same recording condition. Compared with the dLGN, orientation selectivity is greatly improved in the visual cortex, but is similar in the superior colliculus, another major retinal target. Together, our results demonstrate prominent orientation selectivity in the mouse dLGN, which may potentially contribute to visual processing in the cortex. PMID:23904611

  17. Three nested randomized controlled trials of peer-only or multiple stakeholder group feedback within Delphi surveys during core outcome and information set development.

    PubMed

    Brookes, Sara T; Macefield, Rhiannon C; Williamson, Paula R; McNair, Angus G; Potter, Shelley; Blencowe, Natalie S; Strong, Sean; Blazeby, Jane M

    2016-08-17

    Methods for developing a core outcome or information set require involvement of key stakeholders to prioritise many items and achieve agreement as to the core set. The Delphi technique requires participants to rate the importance of items in sequential questionnaires (or rounds) with feedback provided in each subsequent round such that participants are able to consider the views of others. This study examines the impact of receiving feedback from different stakeholder groups, on the subsequent rating of items and the level of agreement between stakeholders. Randomized controlled trials were nested within the development of three core sets each including a Delphi process with two rounds of questionnaires, completed by patients and health professionals. Participants rated items from 1 (not essential) to 9 (absolutely essential). For round 2, participants were randomized to receive feedback from their peer stakeholder group only (peer) or both stakeholder groups separately (multiple). Decisions as to which items to retain following each round were determined by pre-specified criteria. Whilst type of feedback did not impact on the percentage of items for which a participant subsequently changed their rating, or the magnitude of change, it did impact on items retained at the end of round 2. Each core set contained discordant items retained by one feedback group but not the other (3-22 % discordant items). Consensus between patients and professionals in items to retain was greater amongst those receiving multiple group feedback in each core set (65-82 % agreement for peer-only feedback versus 74-94 % for multiple feedback). In addition, differences in round 2 scores were smaller between stakeholder groups receiving multiple feedback than between those receiving peer group feedback only. Variability in item scores across stakeholders was reduced following any feedback but this reduction was consistently greater amongst the multiple feedback group. In the development of a core outcome or information set, providing feedback within Delphi questionnaires from all stakeholder groups separately may influence the final core set and improve consensus between the groups. Further work is needed to better understand how participants rate and re-rate items within a Delphi process. The three randomized controlled trials reported here were each nested within the development of a core information or outcome set to investigate processes in core outcome and information set development. Outcomes were not health-related and therefore trial registration was not applicable.

  18. The Impact of Different Visual Feedbacks in User Training on Motor Imagery Control in BCI.

    PubMed

    Zapała, Dariusz; Francuz, Piotr; Zapała, Ewelina; Kopiś, Natalia; Wierzgała, Piotr; Augustynowicz, Paweł; Majkowski, Andrzej; Kołodziej, Marcin

    2018-03-01

    The challenges of research into brain-computer interfaces (BCI) include significant individual differences in learning pace and in the effective operation of BCI devices. The use of neurofeedback training is a popular method of improving the effectiveness BCI operation. The purpose of the present study was to determine to what extent it is possible to improve the effectiveness of operation of sensorimotor rhythm-based brain-computer interfaces (SMR-BCI) by supplementing user training with elements modifying the characteristics of visual feedback. Four experimental groups had training designed to reinforce BCI control by: visual feedback in the form of dummy faces expressing emotions (Group 1); flashing the principal elements of visual feedback (Group 2) and giving both visual feedbacks in one condition (Group 3). The fourth group participated in training with no modifications (Group 4). Training consisted of a series of trials where the subjects directed a ball into a basket located to the right or left side of the screen. In Group 1 a schematic image a face, placed on the controlled object, showed various emotions, depending on the accuracy of control. In Group 2, the cue and targets were flashed with different frequency (4 Hz) than the remaining elements visible on the monitor. Both modifications were also used simultaneously in Group 3. SMR activity during the task was recorded before and after the training. In Group 3 there was a significant improvement in SMR control, compared to subjects in Group 2 and 4 (control). Differences between subjects in Groups 1, 2 and 4 (control) were insignificant. This means that relatively small changes in the training procedure may significantly impact the effectiveness of BCI control. Analysis of behavioural data acquired from all participants at training showed greater effectiveness in directing the object towards the right side of the screen. Subjects with the greatest improvement in SMR control showed a significantly lower difference in the accuracy of rightward and leftward movement than others.

  19. Age-Specific Effects of Mirror-Muscle Activity on Cross-Limb Adaptations Under Mirror and Non-Mirror Visual Feedback Conditions.

    PubMed

    Reissig, Paola; Stöckel, Tino; Garry, Michael I; Summers, Jeffery J; Hinder, Mark R

    2015-01-01

    Cross-limb transfer (CLT) describes the observation of bilateral performance gains due to unilateral motor practice. Previous research has suggested that CLT may be reduced, or absent, in older adults, possibly due to age-related structural and functional brain changes. Based on research showing increases in CLT due to the provision of mirror visual feedback (MVF) during task execution in young adults, our study aimed to investigate whether MVF can facilitate CLT in older adults, who are known to be more reliant on visual feedback for accurate motor performance. Participants (N = 53) engaged in a short-term training regime (300 movements) involving a ballistic finger task using their dominant hand, while being provided with either visual feedback of their active limb, or a mirror reflection of their active limb (superimposed over the quiescent limb). Performance in both limbs was examined before, during and following the unilateral training. Furthermore, we measured corticospinal excitability (using TMS) at these time points, and assessed muscle activity bilaterally during the task via EMG; these parameters were used to investigate the mechanisms mediating and predicting CLT. Training resulted in significant bilateral performance gains that did not differ as a result of age or visual feedback (both p > 0.1). Training also elicited bilateral increases in corticospinal excitability (p < 0.05). For younger adults, CLT was significantly predicted by performance gains in the trained hand (β = 0.47), whereas for older adults it was significantly predicted by mirror activity in the untrained hand during training (β = 0.60). The present study suggests that older adults are capable of exhibiting CLT to a similar degree to younger adults. The prominent role of mirror activity in the untrained hand for CLT in older adults indicates that bilateral cortical activity during unilateral motor tasks is a compensatory mechanism. In this particular task, MVF did not facilitate the extent of CLT.

  20. The role of automated feedback in training and retaining biological recorders for citizen science.

    PubMed

    van der Wal, René; Sharma, Nirwan; Mellish, Chris; Robinson, Annie; Siddharthan, Advaith

    2016-06-01

    The rapid rise of citizen science, with lay people forming often extensive biodiversity sensor networks, is seen as a solution to the mismatch between data demand and supply while simultaneously engaging citizens with environmental topics. However, citizen science recording schemes require careful consideration of how to motivate, train, and retain volunteers. We evaluated a novel computing science framework that allowed for the automated generation of feedback to citizen scientists using natural language generation (NLG) technology. We worked with a photo-based citizen science program in which users also volunteer species identification aided by an online key. Feedback is provided after photo (and identification) submission and is aimed to improve volunteer species identification skills and to enhance volunteer experience and retention. To assess the utility of NLG feedback, we conducted two experiments with novices to assess short-term (single session) and longer-term (5 sessions in 2 months) learning, respectively. Participants identified a specimen in a series of photos. One group received only the correct answer after each identification, and the other group received the correct answer and NLG feedback explaining reasons for misidentification and highlighting key features that facilitate correct identification. We then developed an identification training tool with NLG feedback as part of the citizen science program BeeWatch and analyzed learning by users. Finally, we implemented NLG feedback in the live program and evaluated this by randomly allocating all BeeWatch users to treatment groups that received different types of feedback upon identification submission. After 6 months separate surveys were sent out to assess whether views on the citizen science program and its feedback differed among the groups. Identification accuracy and retention of novices were higher for those who received automated feedback than for those who received only confirmation of the correct identification without explanation. The value of NLG feedback in the live program, captured through questionnaires and evaluation of the online photo-based training tool, likewise showed that the automated generation of informative feedback fostered learning and volunteer engagement and thus paves the way for productive and long-lived citizen science projects. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  1. Cortical potentials evoked by confirming and disconfirming feedback following an auditory discrimination.

    NASA Technical Reports Server (NTRS)

    Squires, K. C.; Hillyard, S. A.; Lindsay, P. H.

    1973-01-01

    Vertex potentials elicited by visual feedback signals following an auditory intensity discrimination have been studied with eight subjects. Feedback signals which confirmed the prior sensory decision elicited small P3s, while disconfirming feedback elicited P3s that were larger. On the average, the latency of P3 was also found to increase with increasing disparity between the judgment and the feedback information. These effects were part of an overall dichotomy in wave shape following confirming vs disconfirming feedback. These findings are incorporated in a general model of the role of P3 in perceptual decision making.

  2. Patient and Partner Feedback Reports to Improve Statin Medication Adherence: A Randomized Control Trial.

    PubMed

    Reddy, Ashok; Huseman, Tiffany L; Canamucio, Anne; Marcus, Steven C; Asch, David A; Volpp, Kevin; Long, Judith A

    2017-03-01

    Simple nudges such as reminders and feedback reports to either a patient or a partner may facilitate improved medication adherence. To test the impact of a pill bottle used to monitor adherence, deliver a daily alarm, and generate weekly medication adherence feedback reports on statin adherence. Three-month, three-arm randomized clinical trial (ClinicalTrials.gov identifier: NCT02480530). One hundred and twenty-six veterans with known coronary artery disease and poor adherence (medication possession ratio <80 %). Patients were randomized to one of three groups: (1) a control group (n = 36) that received a pill-monitoring device with no alarms or feedback; (2) an individual feedback group (n = 36) that received a daily alarm and a weekly medication adherence feedback report; and (3) a partner feedback group (n = 54) that received an alarm and a weekly feedback report that was shared with a friend, family member, or a peer. The intervention continued for 3 months, and participants were followed for an additional 3 months after the intervention period. Adherence as measured by pill bottle. Secondary outcomes included change in LDL (mg/dl), patient activation, and social support. During the 3-month intervention period, medication adherence was higher in both feedback arms than in the control arm (individual feedback group 89 %, partner feedback group 86 %, control group 67 %; p < 0.001 and = 0.001). At 6 months, there was no difference in medication adherence between either of the feedback groups and the control (individual feedback 60 %, partner feedback 52 %, control group 54 %; p = 0.75 and 0.97). Daily alarms combined with individual or partner feedback reports improved statin medication adherence. While neither an individual feedback nor partner feedback strategy created a sustainable medication adherence habit, the intervention itself is relatively easy to implement and low cost.

  3. Understanding Surgical Resident and Fellow Perspectives on Their Operative Performance Feedback Needs: A Qualitative Study.

    PubMed

    Bello, Ricardo J; Sarmiento, Samuel; Meyer, Meredith L; Rosson, Gedge D; Cooney, Damon S; Lifchez, Scott D; Cooney, Carisa M

    2018-04-20

    Operative performance feedback is essential for surgical training. We aimed to understand surgical trainees' views on their operative performance feedback needs and to characterize feedback to elucidate factors affecting its value from the resident perspective. Using a qualitative research approach, 2 research fellows conducted semistructured, one-on-one interviews with surgical trainees. We analyzed recurring themes generated during interviews related to feedback characteristics, as well as the extent to which performance rating tools can help meet trainees' operative feedback needs. Departments or divisions of general or plastic surgery at 9 US academic institutions. Surgical residents and clinical fellows in general or plastic surgery. We conducted 30 interviews with 9 junior residents, 14 senior residents, and 7 clinical fellows. Eighteen (60%) participants were in plastic and 12 (40%) were in general surgery. Twenty-four participants (80%) reported feedback as very or extremely important during surgical training. All trainees stated that verbal, face-to-face feedback is the most valuable, especially if occurring during (92%) or immediately after (65%) cases. Of those trainees using performance rating tools (74%), most (57%) expressed positive views about them but wanted the tools to complement and not replace verbal feedback in surgical education. Trainees value feedback more if received within 1 week or the case. Verbal, face-to-face feedback is very or extremely important to surgical trainees. Residents and fellows prefer to receive feedback during or immediately after a case and continue to value feedback if received within 1 week of the event. Performance rating tools can be useful for providing formative feedback and documentation but should not replace verbal, face-to-face feedback. Considering trainee views on feedback may help reduce perceived gaps in feedback demand-versus-supply in surgical training, which may be essential to overcoming current challenges in surgical education. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  4. Exploring Occupational Therapy Students' Meaning of Feedback during Fieldwork Experiences

    ERIC Educational Resources Information Center

    Rathgeber, Karen Lynne

    2014-01-01

    Researchers have revealed that students' confidence and performance improve after they receive feedback from clinical supervisors regarding the delivery of quality patient care. Multiple studies of feedback have focused on the provision and acceptance of feedback; however, it was not known if or how students internalized feedback to promote…

  5. Feedback on Feedback Practice: Perceptions of Students and Academics

    ERIC Educational Resources Information Center

    Mulliner, Emma; Tucker, Matthew

    2017-01-01

    While feedback is widely considered central to student learning, students across the higher education sector commonly report dissatisfaction with the feedback they receive. In contrast, academics often feel they provide quality and informative feedback. This article explores and compares the perceptions of students and academics with regard to…

  6. Understanding the Influence of Emotions and Reflection upon Multi-Source Feedback Acceptance and Use

    ERIC Educational Resources Information Center

    Sargeant, Joan; Mann, Karen; Sinclair, Douglas; Van der Vleuten, Cees; Metsemakers, Job

    2008-01-01

    Introduction: Receiving negative performance feedback can elicit negative emotional reactions which can interfere with feedback acceptance and use. This study investigated emotional responses of family physicians' participating in a multi-source feedback (MSF) program, sources of these emotions, and their influence upon feedback acceptance and…

  7. The Effects of Objective Feedback on Performance when Individuals Receive Fixed and Individual Incentive Pay

    ERIC Educational Resources Information Center

    Johnson, Douglas A.; Dickinson, Alyce M.; Huitema, Bradley E.

    2008-01-01

    We examined whether objective feedback would enhance performance when individuals were paid monetary incentives. A two-by-two factorial design was used, with 123 college students assigned to incentive pay without feedback, incentive pay with feedback, fixed pay without feedback, or fixed pay with feedback. Participants attended six sessions and…

  8. An evaluation of end-point trajectory planning during skilled kicking.

    PubMed

    Ford, Paul; Hodges, Nicola J; Mark Williams, A

    2009-01-01

    There is evidence that actions are planned by anticipation of their external effects, with the strength of this effect being dependent on the amount of prior practice. In Experiment 1, skilled soccer players performed a kicking task under four conditions: planning in terms of an external action effect (i.e., ball trajectory) or in terms of body movements, either with or without visual error feedback. When feedback was withheld, a ball focus resulted in more accurate outcomes than a body focus. When visual feedback was allowed, there was no difference between these two conditions. In Experiment 2, both skilled and novice soccer players were tested with the addition of a control condition and in the absence of visual feedback. For both groups there was evidence that a ball focus was more beneficial for performance than a body focus, particularly in terms of movement kinematics where correlations across the joints were generally higher for body rather than ball planning. Most skilled participants reported that ball planning felt more normal than body planning. These experiments provide some evidence that actions are planned in terms of their external action effects, supporting the common-coding hypothesis of action planning.

  9. The results of a survey highlighting issues with feedback on medical training in the United Kingdom and how a Smartphone App could provide a solution.

    PubMed

    Gray, Thomas G; Hood, Gill; Farrell, Tom

    2015-11-06

    Feedback drives learning in medical education. Healthcare Supervision Logbook (HSL) is a Smartphone App developed at Sheffield Teaching Hospitals for providing feedback on medical training, from both a trainee's and a supervisor's perspective. In order to establish a mandate for the role of HSL in clinical practice, a large survey was carried out. Two surveys (one for doctors undertaking specialty training and a second for consultants supervising their training) were designed. The survey for doctors-in-training was distributed to all specialty trainees in the South and West localities of the Health Education Yorkshire and the Humber UK region. The survey for supervisors was distributed to all consultants involved in educational and clinical supervision of specialty trainees at Sheffield Teaching Hospitals. The results confirm that specialty trainees provide feedback on their training infrequently-66 % do so only annually. 96 % of the specialty trainees owned a Smartphone and 45 % said that they would be willing to use a Smartphone App to provide daily feedback on the clinical and educational supervision they receive. Consultant supervisors do not receive regular feedback on the educational and clinical supervision they provide to trainees-56 % said they never received such feedback and 33 % said it was only on an annual basis. 86 % of consultants surveyed owned a Smartphone and 41 % said they would be willing to use a Smartphone App to provide feedback on the performance of trainees they were supervising. Feedback on medical training is recorded by specialty trainees infrequently and consultants providing educational and clinical supervision often do not receive any feedback on their performance in this area. HSL is a simple, quick and efficient way to collect and collate feedback on medical training to improve this situation. Good support and education needs to be provided when implementing this new technology.

  10. Judgments of learning are significantly higher following feedback on relatively good versus relatively poor trials despite no actual learning differences.

    PubMed

    Carter, Michael J; Smith, Victoria; Ste-Marie, Diane M

    2016-02-01

    Studies have consistently shown that prospective metacognitive judgments of learning are often inaccurate because humans mistakenly interpret current performance levels as valid indices of learning. These metacognitive discrepancies are strongly related to conditions of practice. Here, we examined how the type of feedback (after good versus poor trials) received during practice and awareness (aware versus unaware) of this manipulation affected judgments of learning and actual learning. After each six-trial block, participants received feedback on their three best trials or three worst trials and half of the participants were made explicitly aware of the type of feedback they received while the other half were unaware. Judgments of learning were made at the end of each six-trial block and before the 24-h retention test. Results indicated no motor performance differences between groups in practice or retention; however, receiving feedback on relatively good compared to relatively poor trials resulted in significantly higher judgments of learning in practice and retention, irrespective of awareness. These results suggest that KR on relatively good versus relatively poor trials can have dissociable effects on judgments of learning in the absence of actual learning differences, even when participants are made aware of their feedback manipulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    PubMed Central

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2015-01-01

    Present day cortical brain machine interfaces (BMI) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available (for review see Robles-De-La-Torre, 2006). To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation (ICMS) to provide ‘tactile’ sensation to a non-human primate (NHP). Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area (AIP), the parietal reach region (PRR) and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. PMID:25242377

  12. Randomized crossover trial of a pressure sensing visual feedback system to improve mask fitting in noninvasive ventilation.

    PubMed

    Brill, Anne-Kathrin; Moghal, Mohammad; Morrell, Mary J; Simonds, Anita K

    2017-10-01

    A good mask fit, avoiding air leaks and pressure effects on the skin are key elements for a successful noninvasive ventilation (NIV). However, delivering practical training for NIV is challenging, and it takes time to build experience and competency. This study investigated whether a pressure sensing system with real-time visual feedback improved mask fitting. During an NIV training session, 30 healthcare professionals (14 trained in mask fitting and 16 untrained) performed two mask fittings on the same healthy volunteer in a randomized order: one using standard mask-fitting procedures and one with additional visual feedback on mask pressure on the nasal bridge. Participants were required to achieve a mask fit with low mask pressure and minimal air leak (<10 L/min). Pressure exerted on the nasal bridge, perceived comfort of mask fit and staff- confidence were measured. Compared with standard mask fitting, a lower pressure was exerted on the nasal bridge using the feedback system (71.1 ± 17.6 mm Hg vs 63.2 ± 14.6 mm Hg, P < 0.001). Both untrained and trained healthcare professionals were able to reduce the pressure on the nasal bridge (74.5 ± 21.2 mm Hg vs 66.1 ± 17.4 mm Hg, P = 0.023 and 67 ± 12.1 mm Hg vs 60 ± 10.6 mm Hg, P = 0.002, respectively) using the feedback system and self-rated confidence increased in the untrained group. Real-time visual feedback using pressure sensing technology supported healthcare professionals during mask-fitting training, resulted in a lower pressure on the skin and better mask fit for the volunteer, with increased staff confidence. © 2017 Asian Pacific Society of Respirology.

  13. Simulation Pedagogy With Nurse Practitioner Students: Impact of Receiving Immediate Individualized Faculty Feedback.

    PubMed

    Grossman, Sheila; Conelius, Jaclyn

    2015-01-01

    Family nurse practitioner (FNP) students must achieve basic competency in managing patients' primary care needs across the lifespan. Students in the FNP program have simulations integrated throughout their clinical theory courses to increase practice time with various patient cases. Students who received individualized faculty feedback immediately after self-evaluation of simulation performance showed statistically significantly increased knowledge (as evidenced by higher grades in course examinations and preceptor evaluations) than a control group of students who received feedback in a group class via a rubric grading guide 2-4 weeks after all students completed their individual simulations.

  14. Results of a multicentre randomised controlled trial of statistical process control charts and structured diagnostic tools to reduce ward-acquired meticillin-resistant Staphylococcus aureus: the CHART Project.

    PubMed

    Curran, E; Harper, P; Loveday, H; Gilmour, H; Jones, S; Benneyan, J; Hood, J; Pratt, R

    2008-10-01

    Statistical process control (SPC) charts have previously been advocated for infection control quality improvement. To determine their effectiveness, a multicentre randomised controlled trial was undertaken to explore whether monthly SPC feedback from infection control nurses (ICNs) to healthcare workers of ward-acquired meticillin-resistant Staphylococcus aureus (WA-MRSA) colonisation or infection rates would produce any reductions in incidence. Seventy-five wards in 24 hospitals in the UK were randomised into three arms: (1) wards receiving SPC chart feedback; (2) wards receiving SPC chart feedback in conjunction with structured diagnostic tools; and (3) control wards receiving neither type of feedback. Twenty-five months of pre-intervention WA-MRSA data were compared with 24 months of post-intervention data. Statistically significant and sustained decreases in WA-MRSA rates were identified in all three arms (P<0.001; P=0.015; P<0.001). The mean percentage reduction was 32.3% for wards receiving SPC feedback, 19.6% for wards receiving SPC and diagnostic feedback, and 23.1% for control wards, but with no significant difference between the control and intervention arms (P=0.23). There were significantly more post-intervention 'out-of-control' episodes (P=0.021) in the control arm (averages of 0.60, 0.28, and 0.28 for Control, SPC and SPC+Tools wards, respectively). Participants identified SPC charts as an effective communication tool and valuable for disseminating WA-MRSA data.

  15. Unsteady steady-states: Central causes of unintentional force drift

    PubMed Central

    Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2016-01-01

    We applied the theory of synergies to analyze the processes that lead to unintentional decline in isometric fingertip force when visual feedback of the produced force is removed. We tracked the changes in hypothetical control variables involved in single fingertip force production based on the equilibrium-point hypothesis, namely, the fingertip referent coordinate (RFT) and its apparent stiffness (CFT). The system's state is defined by a point in the {RFT; CFT} space. We tested the hypothesis that, after visual feedback removal, this point (1) moves along directions leading to drop in the output fingertip force, and (2) has even greater motion along directions that leaves the force unchanged. Subjects produced a prescribed fingertip force using visual feedback, and attempted to maintain this force for 15 s after the feedback was removed. We used the “inverse piano” apparatus to apply small and smooth positional perturbations to fingers at various times after visual feedback removal. The time courses of RFT and CFT showed that force drop was mostly due to a drift in RFT towards the actual fingertip position. Three analysis techniques, namely, hyperbolic regression, surrogate data analysis, and computation of motor-equivalent and non-motor-equivalent motions, suggested strong co-variation in RFT and CFT stabilizing the force magnitude. Finally, the changes in the two hypothetical control variables {RFT; CFT} relative to their average trends also displayed covariation. On the whole the findings suggest that unintentional force drop is associated with (a) a slow drift of the referent coordinate that pulls the system towards a low-energy state, and (b) a faster synergic motion of RFT and CFT that tends to stabilize the output fingertip force about the slowly-drifting equilibrium point. PMID:27540726

  16. Unsteady steady-states: central causes of unintentional force drift.

    PubMed

    Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M; Latash, Mark L

    2016-12-01

    We applied the theory of synergies to analyze the processes that lead to unintentional decline in isometric fingertip force when visual feedback of the produced force is removed. We tracked the changes in hypothetical control variables involved in single fingertip force production based on the equilibrium-point hypothesis, namely the fingertip referent coordinate (R FT ) and its apparent stiffness (C FT ). The system's state is defined by a point in the {R FT ; C FT } space. We tested the hypothesis that, after visual feedback removal, this point (1) moves along directions leading to drop in the output fingertip force, and (2) has even greater motion along directions that leaves the force unchanged. Subjects produced a prescribed fingertip force using visual feedback and attempted to maintain this force for 15 s after the feedback was removed. We used the "inverse piano" apparatus to apply small and smooth positional perturbations to fingers at various times after visual feedback removal. The time courses of R FT and C FT showed that force drop was mostly due to a drift in R FT toward the actual fingertip position. Three analysis techniques, namely hyperbolic regression, surrogate data analysis, and computation of motor-equivalent and non-motor-equivalent motions, suggested strong covariation in R FT and C FT stabilizing the force magnitude. Finally, the changes in the two hypothetical control variables {R FT ; C FT } relative to their average trends also displayed covariation. On the whole, the findings suggest that unintentional force drop is associated with (a) a slow drift of the referent coordinate that pulls the system toward a low-energy state and (b) a faster synergic motion of R FT and C FT that tends to stabilize the output fingertip force about the slowly drifting equilibrium point.

  17. Computer-aided training sensorimotor cortex functions in humans before the upper limb transplantation using virtual reality and sensory feedback.

    PubMed

    Kurzynski, Marek; Jaskolska, Anna; Marusiak, Jaroslaw; Wolczowski, Andrzej; Bierut, Przemyslaw; Szumowski, Lukasz; Witkowski, Jerzy; Kisiel-Sajewicz, Katarzyna

    2017-08-01

    One of the biggest problems of upper limb transplantation is lack of certainty as to whether a patient will be able to control voluntary movements of transplanted hands. Based on findings of the recent research on brain cortex plasticity, a premise can be drawn that mental training supported with visual and sensory feedback can cause structural and functional reorganization of the sensorimotor cortex, which leads to recovery of function associated with the control of movements performed by the upper limbs. In this study, authors - based on the above observations - propose the computer-aided training (CAT) system, which generating visual and sensory stimuli, should enhance the effectiveness of mental training applied to humans before upper limb transplantation. The basis for the concept of computer-aided training system is a virtual hand whose reaching and grasping movements the trained patient can observe on the VR headset screen (visual feedback) and whose contact with virtual objects the patient can feel as a touch (sensory feedback). The computer training system is composed of three main components: (1) the system generating 3D virtual world in which the patient sees the virtual limb from the perspective as if it were his/her own hand; (2) sensory feedback transforming information about the interaction of the virtual hand with the grasped object into mechanical vibration; (3) the therapist's panel for controlling the training course. Results of the case study demonstrate that mental training supported with visual and sensory stimuli generated by the computer system leads to a beneficial change of the brain activity related to motor control of the reaching in the patient with bilateral upper limb congenital transverse deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The use of real-time ultrasound feedback in teaching abdominal hollowing exercises to healthy subjects.

    PubMed

    Henry, Sharon M; Westervelt, Karen C

    2005-06-01

    Randomized controlled trial. To determine if supplementing typical clinical instruction with real-time ultrasound feedback facilitates performance and retention of the abdominal hollowing exercise (AHE). Increasingly clinicians are using real-time ultrasound imaging as a form of feedback when teaching patients trunk stabilization exercises; however, there has been no justification for this practice. Forty-eight subjects were divided randomly into 3 groups that received different types of feedback: group 1 received minimal verbal feedback, group 2 received verbal and palpatory feedback, and group 3 received real-time ultrasound, verbal, and palpatory feedback. If the subject performed 3 consecutive correct AHEs during the initial session, she/he returned for a retention test. The performance of 3 consecutive, correct AHEs was the criterion measure; the number of trials to criterion was also recorded during the initial and retention test sessions. The ability to perform the AHE differed among groups (P<.001). During the initial session, 12.5% of subjects in group 1, 50.0% of subjects in group 2, and 87.5% of subjects in group 3 were able to perform 3 consecutive AHEs. Group 3 subjects achieved the criterion in fewer trials than the other 2 groups (P = .0006). No differences among groups were found for the retention testing; however, low power due to fewer subjects precluded a strong interpretation of this finding. Real-time ultrasound feedback can decrease the number of trials needed to consistently perform the AHE; however, the data are inconclusive with regard to retention of this skill.

  19. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas

    PubMed Central

    Michalareas, Georgios; Vezoli, Julien; van Pelt, Stan; Schoffelen, Jan-Mathijs; Kennedy, Henry; Fries, Pascal

    2016-01-01

    Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral and dorsal stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. PMID:26777277

  20. The effect of video-assisted oral feedback versus oral feedback on surgical communicative competences in undergraduate training.

    PubMed

    Ruesseler, M; Sterz, J; Bender, B; Hoefer, S; Walcher, F

    2017-08-01

    Feedback can significantly improve future performance. Reviewing one's performance by video is discussed as useful adjunct to debriefing, particularly for non-technical skills. Communicative competencies are an essential part of daily clinical practice; thus should be taught and assessed during undergraduate training. The aim of this study was to compare the educational value of video-assisted feedback versus oral feedback in communicative competencies in the surgical context. Fourth-year medical students completed a 210-min training unit of 'taking patient's history and obtaining informed consents prior to surgery' using role plays. Oral feedback was received directly thereafter using agenda-led, outcome-based guidelines (ALOBA). In the study group, the role plays were video-taped and reviewed thereafter. Afterwards, students completed two OSCE stations, where they were assessed regarding their communicative competencies and the content of the clinical scenario. One-hundred students (49 receiving video-assisted feedback, 51 oral) participated in the study. Those receiving video-assisted feedback performed significantly better in overall score in both OSCE stations (p < 0.001), in all five assessed communicative competencies at taking patient history (p = 0.029 or better), and in 2 of 5 items at obtaining informed consent (p = 0.008, <0.001). The educational effect size for both tasks was large. Using our methodology, video-assisted feedback offered a significant educational benefit over oral feedback alone during a simulated patient encounter in a surgical context.

  1. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.

    PubMed

    Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A

    2015-05-01

    Goal-directed movements, such as reaching out to grasp an object, are necessarily constrained by the spatial properties of the target such as its size, shape, and position. For example, during a reach-to-grasp movement, the peak width of the aperture formed by the thumb and fingers in flight (peak grip aperture, PGA) is linearly related to the target's size. Suppressing vision throughout the movement (visual open loop) has a small though significant effect on this relationship. Visual open loop conditions also produce a large increase in the PGA compared to when vision is available throughout the movement (visual closed loop). Curiously, this differential effect of the availability of visual feedback is influenced by the presentation order: the difference in PGA between closed- and open-loop trials is smaller when these trials are intermixed (an effect we have called 'homogenization'). Thus, grasping movements are affected not only by the availability of visual feedback (closed loop or open loop) but also by what happened on the previous trial. It is not clear, however, whether this carry-over effect is mediated through motor (or sensorimotor) memory or through the interference of different task sets for closed-loop and open-loop feedback that determine when the movements are fully specified. We reasoned that sensorimotor memory, but not a task set for closed and open loop feedback, would be specific to the type of response. We tested this prediction in a condition in which pointing to targets was alternated with grasping those same targets. Critically, in this condition, when pointing was performed in open loop, grasping was always performed in closed loop (and vice versa). Despite the fact that closed- and open-loop trials were alternating in this condition, we found no evidence for homogenization of the PGA. Homogenization did occur, however, in a follow-up experiment in which grasping movements and visual feedback were alternated between the left and the right hand, indicating that sensorimotor (or motor) memory can operate both within and between hands when the response type is kept the same. In a final experiment, we ruled out the possibility that simply alternating the hand used to perform the grasp interferes with motor or sensorimotor memory. We did this by showing that when the hand was alternated within a block of exclusively closed- or open-loop trials, homogenization of the PGA did not occur. Taken together, the results suggest that (1) interference from simply switching between task sets for closed or open-loop feedback or from switching between the hands cannot account homogenization in the PGA and that (2) the programming and execution of grasps can borrow not only from grasping movements executed in the past by the same hand, but also from grasping movements executed with the other hand. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Children's feedback preferences in response to an experimentally manipulated peer evaluation outcome: the role of depressive symptoms.

    PubMed

    Reijntjes, Albert; Dekovic, Maja; Vermande, Marjolijn; Telch, Michael J

    2007-06-01

    The present study examined the linkage between pre-adolescent children's depressive symptoms and their preferences for receiving positive vs. negative feedback subsequent to being faced with an experimentally manipulated peer evaluation outcome in real time. Participants (n = 142) ages 10 to 13, played a computer contest based on the television show Survivor and were randomized to either a peer rejection (i.e., receiving the lowest total 'likeability' score from a group of peer-judges), a peer success (i.e., receiving the highest score), or a control peer evaluation condition. Children's self-reported feedback preferences were then assessed. Results revealed that participants assigned to the negative evaluation outcome, relative to either the success or the control outcome, showed a significantly higher subsequent preference for negatively tuned feedback. Contrary to previous work and predictions derived from self-verification theory, children higher in depressive symptoms were only more likely to prefer negative feedback in response to the negative peer evaluation outcome. These effects for depression were not accounted for by either state mood at baseline or mood change in response to the feedback manipulation.

  3. A New Visual Stimulation Program for Improving Visual Acuity in Children with Visual Impairment: A Pilot Study.

    PubMed

    Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin

    2016-01-01

    The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = -2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = -1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders.

  4. A New Visual Stimulation Program for Improving Visual Acuity in Children with Visual Impairment: A Pilot Study

    PubMed Central

    Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin

    2016-01-01

    The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = –2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = –1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders. PMID:27148014

  5. Training Peer-Feedback Skills on Geometric Construction Tasks: Role of Domain Knowledge and Peer-Feedback Levels

    ERIC Educational Resources Information Center

    Alqassab, Maryam; Strijbos, Jan-Willem; Ufer, Stefan

    2018-01-01

    Peer feedback is widely used to train assessment skills and to support collaborative learning of various learning tasks, but research on peer feedback in the domain of mathematics is limited. Although domain knowledge seems to be a prerequisite for peer-feedback provision, it only recently received attention in the peer-feedback literature. In…

  6. Investigating the Effects of Multimodal Feedback through Tracking State in Pen-Based Interfaces

    ERIC Educational Resources Information Center

    Sun, Minghui; Ren, Xiangshi

    2011-01-01

    A tracking state increases the bandwidth of pen-based interfaces. However, this state is difficult to detect with default visual feedback. This paper reports on two experiments that are designed to evaluate multimodal feedback for pointing tasks (both 1D and 2D) in tracking state. In 1D pointing experiments, results show that there is a…

  7. Exploring Formative Feedback on Textual Assignments with the Help of Automatically Created Visual Representations

    ERIC Educational Resources Information Center

    Berlanga, A. J.; van Rosmalen, P.; Boshuizen, H. P. A.; Sloep, P. B.

    2012-01-01

    Learners, particularly lifelong learners, often find it difficult to determine the scope of their expertise. Formative feedback could help them do so. To use this feedback productively, it is essential to then suggest to them the remedial actions they need to overcome the gaps in their knowledge. This paper presents the design considerations of a…

  8. Effect of visual and tactile feedback on kinematic synergies in the grasping hand.

    PubMed

    Patel, Vrajeshri; Burns, Martin; Vinjamuri, Ramana

    2016-08-01

    The human hand uses a combination of feedforward and feedback mechanisms to accomplish high degree of freedom in grasp control efficiently. In this study, we used a synergy-based control model to determine the effect of sensory feedback on kinematic synergies in the grasping hand. Ten subjects performed two types of grasps: one that included feedback (real) and one without feedback (memory-guided), at two different speeds (rapid and natural). Kinematic synergies were extracted from rapid real and rapid memory-guided grasps using principal component analysis. Synergies extracted from memory-guided grasps revealed greater preservation of natural inter-finger relationships than those found in corresponding synergies extracted from real grasps. Reconstruction of natural real and natural memory-guided grasps was used to test performance and generalizability of synergies. A temporal analysis of reconstruction patterns revealed the differing contribution of individual synergies in real grasps versus memory-guided grasps. Finally, the results showed that memory-guided synergies could not reconstruct real grasps as accurately as real synergies could reconstruct memory-guided grasps. These results demonstrate how visual and tactile feedback affects a closed-loop synergy-based motor control system.

  9. Student and Instructor Perceptions of Feedback in Asynchronous Online Learning: A Mixed-Methods Study

    ERIC Educational Resources Information Center

    Conrad, Susan

    2016-01-01

    Research about online learning suggests that instructor feedback is essential for student learning, especially when the feedback is personalized, specific, and timely. Feedback enhances instructor presence in online learning and has been shown to positively affect student outcomes. However, even with the technical ability to receive feedback at…

  10. Uncovering Embedded Face Threat Mitigation in Landscape Architecture Critique Feedback

    ERIC Educational Resources Information Center

    Housley Gaffney, Amy L.

    2015-01-01

    Receiving public feedback on academic work may threaten students' face, particularly when such feedback is critical. One way that feedback may be cushioned is through face-threat mitigation techniques. I analyzed the use of such techniques in the feedback given by faculty and professionals to landscape architecture students as preparation for…

  11. Students' Attitudes to and Usage of Academic Feedback Provided via Audio Files

    ERIC Educational Resources Information Center

    Merry, Stephen; Orsmond, Paul

    2008-01-01

    This study explores students' attitudes to the provision of formative feedback on academic work using audio files together with the ways in which students implement such feedback within their learning. Fifteen students received audio file feedback on written work and were subsequently interviewed regarding their utilisation of that feedback within…

  12. Using Video Technology to Enable Student Voice in Assessment Feedback

    ERIC Educational Resources Information Center

    Van der Kleij, Fabienne; Adie, Lenore; Cumming, Joy

    2017-01-01

    Students' voices have been remarkably absent in feedback research, yet research shows that the way students engage with feedback significantly impacts on its effect on learning. Feedback research has mainly focused on aspects of the feedback message between a sender and receiver, with little consideration of the positioning of students in this…

  13. Rethinking Feedback Practices in Higher Education: A Peer Review Perspective

    ERIC Educational Resources Information Center

    Nicol, David; Thomson, Avril; Breslin, Caroline

    2014-01-01

    Peer review is a reciprocal process whereby students produce feedback reviews on the work of peers and receive feedback reviews from peers on their own work. Prior research has primarily examined the learning benefits that result from the receipt of feedback reviews, with few studies specifically exploring the merits of producing feedback reviews…

  14. A Longitudinal, Quantitative Study of Student Attitudes towards Audio Feedback for Assessment

    ERIC Educational Resources Information Center

    Parkes, Mitchell; Fletcher, Peter

    2017-01-01

    This paper reports on the findings of a three-year longitudinal study investigating the experiences of postgraduate level students who were provided with audio feedback for their assessment. Results indicated that students positively received audio feedback. Overall, students indicated a preference for audio feedback over written feedback. No…

  15. Implicit learning of sequential bias in a guessing task: failure to demonstrate effects of dopamine administration and paranormal belief.

    PubMed

    Palmer, John; Mohr, Christine; Krummenacher, Peter; Brugger, Peter

    2007-06-01

    Previous research suggests that implicit sequence learning (ISL) is superior for believers in the paranormal and individuals with increased cerebral dopamine. Thirty-five healthy participants performed feedback-guided anticipations of four arrow directions. A 100-trial random sequence preceded two 100-trial biased sequences in which visual targets (arrows) on trial t tended to be displaced 90 degrees clockwise (CW) or counter-clockwise (CCW) from those on t - 1. ISL was defined as a positive change during the course of the biased run in the difference between pro-bias and counter-bias responses. It was hypothesized that this difference would be greater for believers in the paranormal than for skeptics, for those who received dopamine than for those who received placebo, and for believers who received dopamine than for the other groups. None of the hypotheses were supported by the data. It is suggested that a simple binary guessing task with a focus on prediction accuracy during early trials should be considered for future explorations.

  16. Performance feedback, self-esteem, and cardiovascular adaptation to recurring stressors.

    PubMed

    Brown, Eoin G; Creaven, Ann-Marie

    2017-05-01

    This study sought to examine the effects of performance feedback and individual differences in self-esteem on cardiovascular habituation to repeat stress exposure. Sixty-six university students (n = 39 female) completed a self-esteem measure and completed a cardiovascular stress-testing protocol involving repeated exposure to a mental arithmetic task. Cardiovascular functioning was sampled across four phases: resting baseline, initial stress exposure, a recovery period, and repeated stress exposure. Participants were randomly assigned to receive fictional positive feedback, negative feedback, or no feedback following the recovery period. Negative feedback was associated with a sensitized blood pressure response to a second exposure of the stress task. Positive feedback was associated with decreased cardiovascular and psychological responses to a second exposure. Self-esteem was also found to predict reactivity and this interacted with the type of feedback received. These findings suggest that negative performance feedback sensitizes cardiovascular reactivity to stress, whereas positive performance feedback increases both cardiovascular and psychological habituation to repeat exposure to stressors. Furthermore, an individual's self-esteem also appears to influence this process.

  17. Efficient receiver tuning using differential evolution strategies

    NASA Astrophysics Data System (ADS)

    Wheeler, Caleb H.; Toland, Trevor G.

    2016-08-01

    Differential evolution (DE) is a powerful and computationally inexpensive optimization strategy that can be used to search an entire parameter space or to converge quickly on a solution. The Kilopixel Array Pathfinder Project (KAPPa) is a heterodyne receiver system delivering 5 GHz of instantaneous bandwidth in the tuning range of 645-695 GHz. The fully automated KAPPa receiver test system finds optimal receiver tuning using performance feedback and DE. We present an adaptation of DE for use in rapid receiver characterization. The KAPPa DE algorithm is written in Python 2.7 and is fully integrated with the KAPPa instrument control, data processing, and visualization code. KAPPa develops the technologies needed to realize heterodyne focal plane arrays containing 1000 pixels. Finding optimal receiver tuning by investigating large parameter spaces is one of many challenges facing the characterization phase of KAPPa. This is a difficult task via by-hand techniques. Characterizing or tuning in an automated fashion without need for human intervention is desirable for future large scale arrays. While many optimization strategies exist, DE is ideal for time and performance constraints because it can be set to converge to a solution rapidly with minimal computational overhead. We discuss how DE is utilized in the KAPPa system and discuss its performance and look toward the future of 1000 pixel array receivers and consider how the KAPPa DE system might be applied.

  18. The mechanisms of feature inheritance as predicted by a systems-level model of visual attention and decision making.

    PubMed

    Hamker, Fred H

    2008-07-15

    Feature inheritance provides evidence that properties of an invisible target stimulus can be attached to a following mask. We apply a systemslevel model of attention and decision making to explore the influence of memory and feedback connections in feature inheritance. We find that the presence of feedback loops alone is sufficient to account for feature inheritance. Although our simulations do not cover all experimental variations and focus only on the general principle, our result appears of specific interest since the model was designed for a completely different purpose than to explain feature inheritance. We suggest that feedback is an important property in visual perception and provide a description of its mechanism and its role in perception.

  19. Coding the presence of visual objects in a recurrent neural network of visual cortex.

    PubMed

    Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard

    2007-01-01

    Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.

  20. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot

    PubMed Central

    Tidoni, Emmanuele; Gergondet, Pierre; Kheddar, Abderrahmane; Aglioti, Salvatore M.

    2014-01-01

    Advancement in brain computer interfaces (BCI) technology allows people to actively interact in the world through surrogates. Controlling real humanoid robots using BCI as intuitively as we control our body represents a challenge for current research in robotics and neuroscience. In order to successfully interact with the environment the brain integrates multiple sensory cues to form a coherent representation of the world. Cognitive neuroscience studies demonstrate that multisensory integration may imply a gain with respect to a single modality and ultimately improve the overall sensorimotor performance. For example, reactivity to simultaneous visual and auditory stimuli may be higher than to the sum of the same stimuli delivered in isolation or in temporal sequence. Yet, knowledge about whether audio-visual integration may improve the control of a surrogate is meager. To explore this issue, we provided human footstep sounds as audio feedback to BCI users while controlling a humanoid robot. Participants were asked to steer their robot surrogate and perform a pick-and-place task through BCI-SSVEPs. We found that audio-visual synchrony between footsteps sound and actual humanoid's walk reduces the time required for steering the robot. Thus, auditory feedback congruent with the humanoid actions may improve motor decisions of the BCI's user and help in the feeling of control over it. Our results shed light on the possibility to increase robot's control through the combination of multisensory feedback to a BCI user. PMID:24987350

  1. The effects of aging on the asymmetry of inter-limb transfer in a visuomotor task.

    PubMed

    Pan, Zhujun; Van Gemmert, Arend W A

    2013-09-01

    The direction of the asymmetry of inter-limb transfer has been suggested to identify the specialization of each hemisphere when performing a motor task. In an earlier study, we showed that trajectory information is only transferred from the right to the left hand, while final movement outcome-associated parameters transferred in both directions when right-hand-dominant individuals perform a motor task with visual distorted feedback. In the current study, we try to replicate this finding in young adults and test whether the asymmetry of inter-limb transfer in visuomotor task reduces in older adults, suggesting that hemispheric lateralization reduces with age. Young and older adults (all right-hand-dominant) performed a multidirectional point-to-point drawing task in which the visual feedback was rotated and the gain was increased. Half of the participants in each age group trained with the right hand and the other half trained with the left hand. Performances of both hands with non-distorted and distorted visual feedback were collected from all participants before and after the training session. The results showed that the pattern of inter-limb transfer was similar between young and older adults, i.e., inter-limb transfer is asymmetric for initial direction and symmetric for movement time and trajectory length. The results suggest that older adults retain the specialized functions of the non-dominant (right) hemisphere allowing them to program movement direction of a graphic aiming task when visual feedback is distorted.

  2. Adaptive learning in a compartmental model of visual cortex—how feedback enables stable category learning and refinement

    PubMed Central

    Layher, Georg; Schrodt, Fabian; Butz, Martin V.; Neumann, Heiko

    2014-01-01

    The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, both of which are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in computational neuroscience. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of additional (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the proposed combination of an associative memory with a modulatory feedback integration successfully establishes category and subcategory representations. PMID:25538637

  3. Differential effects of absent visual feedback control on gait variability during different locomotion speeds.

    PubMed

    Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K

    2013-01-01

    Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.

  4. Interactive balance training integrating sensor-based visual feedback of movement performance: a pilot study in older adults.

    PubMed

    Schwenk, Michael; Grewal, Gurtej S; Honarvar, Bahareh; Schwenk, Stefanie; Mohler, Jane; Khalsa, Dharma S; Najafi, Bijan

    2014-12-13

    Wearable sensor technology can accurately measure body motion and provide incentive feedback during exercising. The aim of this pilot study was to evaluate the effectiveness and user experience of a balance training program in older adults integrating data from wearable sensors into a human-computer interface designed for interactive training. Senior living community residents (mean age 84.6) with confirmed fall risk were randomized to an intervention (IG, n = 17) or control group (CG, n = 16). The IG underwent 4 weeks (twice a week) of balance training including weight shifting and virtual obstacle crossing tasks with visual/auditory real-time joint movement feedback using wearable sensors. The CG received no intervention. Outcome measures included changes in center of mass (CoM) sway, ankle and hip joint sway measured during eyes open (EO) and eyes closed (EC) balance test at baseline and post-intervention. Ankle-hip postural coordination was quantified by a reciprocal compensatory index (RCI). Physical performance was quantified by the Alternate-Step-Test (AST), Timed-up-and-go (TUG), and gait assessment. User experience was measured by a standardized questionnaire. After the intervention sway of CoM, hip, and ankle were reduced in the IG compared to the CG during both EO and EC condition (p = .007-.042). Improvement was obtained for AST (p = .037), TUG (p = .024), fast gait speed (p = . 010), but not normal gait speed (p = .264). Effect sizes were moderate for all outcomes. RCI did not change significantly. Users expressed a positive training experience including fun, safety, and helpfulness of sensor-feedback. Results of this proof-of-concept study suggest that older adults at risk of falling can benefit from the balance training program. Study findings may help to inform future exercise interventions integrating wearable sensors for guided game-based training in home- and community environments. Future studies should evaluate the added value of the proposed sensor-based training paradigm compared to traditional balance training programs and commercial exergames. http://www.clinicaltrials.govNCT02043834.

  5. Improving motor performance without training: the effect of combining mirror visual feedback with transcranial direct current stimulation.

    PubMed

    von Rein, Erik; Hoff, Maike; Kaminski, Elisabeth; Sehm, Bernhard; Steele, Christopher J; Villringer, Arno; Ragert, Patrick

    2015-04-01

    Mirror visual feedback (MVF) during motor training has been shown to improve motor performance of the untrained hand. Here we thought to determine if MVF-induced performance improvements of the left hand can be augmented by upregulating plasticity in right primary motor cortex (M1) by means of anodal transcranial direct current stimulation (a-tDCS) while subjects trained with the right hand. Participants performed a ball-rotation task with either their left (untrained) or right (trained) hand on two consecutive days (days 1 and 2). During training with the right hand, MVF was provided concurrent with two tDCS conditions: group 1 received a-tDCS over right M1 (n = 10), whereas group 2 received sham tDCS (s-tDCS, n = 10). On day 2, performance was reevaluated under the same experimental conditions compared with day 1 but without tDCS. While baseline performance of the left hand (day 1) was not different between groups, a-tDCS exhibited stronger MVF-induced performance improvements compared with s-tDCS. Similar results were observed for day 2 (without tDCS application). A control experiment (n = 8) with a-tDCS over right M1 as outlined above but without MVF revealed that left hand improvement was significantly less pronounced than that induced by combined a-tDCS and MVF. Based on these results, we provide novel evidence that upregulating activity in the untrained M1 by means of a-tDCS is capable of augmenting MVF-induced performance improvements in young normal volunteers. Our findings suggest that concurrent MVF and tDCS might have synergistic and additive effects on motor performance of the untrained hand, a result of relevance for clinical approaches in neurorehabilitation and/or exercise science. Copyright © 2015 the American Physiological Society.

  6. Self-esteem threat combined with exposure to thin media images leads to body image compensatory self-enhancement.

    PubMed

    Jarry, Josée L; Kossert, Amy L

    2007-03-01

    This study examined the effect of a self-esteem threat combined with exposure to thin images on body image (BI) satisfaction and investment. Female participants (N=94) received a self-esteem threat consisting of false failure feedback or received false success feedback on an intellectual task allegedly highly predictive of academic and professional success. They then viewed media images featuring thin models or products. After viewing thin models, women who had received failure feedback declared themselves more satisfied about their appearance and less invested in it than did women who had received success feedback. These results suggest that exposure to the thin ideal may inspire women experiencing self-esteem threats to use appearance as an alternative source of worth, thus maintaining their global esteem through BI compensatory self-enhancement. Potential long-term implications of this strategy, such as a paradoxical increase in BI investment and the development of eating pathology, are discussed.

  7. Detecting delay in visual feedback of an action as a monitor of self recognition.

    PubMed

    Hoover, Adria E N; Harris, Laurence R

    2012-10-01

    How do we distinguish "self" from "other"? The correlation between willing an action and seeing it occur is an important cue. We exploited the fact that this correlation needs to occur within a restricted temporal window in order to obtain a quantitative assessment of when a body part is identified as "self". We measured the threshold and sensitivity (d') for detecting a delay between movements of the finger (of both the dominant and non-dominant hands) and visual feedback as seen from four visual perspectives (the natural view, and mirror-reversed and/or inverted views). Each trial consisted of one presentation with minimum delay and another with a delay of between 33 and 150 ms. Participants indicated which presentation contained the delayed view. We varied the amount of efference copy available for this task by comparing performances for discrete movements and continuous movements. Discrete movements are associated with a stronger efference copy. Sensitivity to detect asynchrony between visual and proprioceptive information was significantly higher when movements were viewed from a "plausible" self perspective compared with when the view was reversed or inverted. Further, we found differences in performance between dominant and non-dominant hand finger movements across the continuous and single movements. Performance varied with the viewpoint from which the visual feedback was presented and on the efferent component such that optimal performance was obtained when the presentation was in the normal natural orientation and clear efferent information was available. Variations in sensitivity to visual/non-visual temporal incongruence with the viewpoint in which a movement is seen may help determine the arrangement of the underlying visual representation of the body.

  8. Feedback and its effectiveness in a computer-aided personalized system of instruction course.

    PubMed Central

    Martin, Toby L; Pear, Joseph J; Martin, Garry L

    2002-01-01

    In a computer-managed version of Keller's personalized system of instruction, students received frequent feedback from more advanced students within the course. Overall accuracy of student-provided feedback was 87%, and students complied with 61% of the feedback. PMID:12555917

  9. Multimodal representation of limb endpoint position in the posterior parietal cortex.

    PubMed

    Shi, Ying; Apker, Gregory; Buneo, Christopher A

    2013-04-01

    Understanding the neural representation of limb position is important for comprehending the control of limb movements and the maintenance of body schema, as well as for the development of neuroprosthetic systems designed to replace lost limb function. Multiple subcortical and cortical areas contribute to this representation, but its multimodal basis has largely been ignored. Regarding the parietal cortex, previous results suggest that visual information about arm position is not strongly represented in area 5, although these results were obtained under conditions in which animals were not using their arms to interact with objects in their environment, which could have affected the relative weighting of relevant sensory signals. Here we examined the multimodal basis of limb position in the superior parietal lobule (SPL) as monkeys reached to and actively maintained their arm position at multiple locations in a frontal plane. On half of the trials both visual and nonvisual feedback of the endpoint of the arm were available, while on the other trials visual feedback was withheld. Many neurons were tuned to arm position, while a smaller number were modulated by the presence/absence of visual feedback. Visual modulation generally took the form of a decrease in both firing rate and variability with limb vision and was associated with more accurate decoding of position at the population level under these conditions. These findings support a multimodal representation of limb endpoint position in the SPL but suggest that visual signals are relatively weakly represented in this area, and only at the population level.

  10. Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions.

    PubMed

    Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V

    2017-07-05

    Neural circuits must transform new inputs into outputs without prematurely affecting downstream circuits while still maintaining other ongoing communication with these targets. We investigated how this isolation is achieved in the motor cortex when macaques received visual feedback signaling a movement perturbation. To overcome limitations in estimating the mapping from cortex to arm movements, we also conducted brain-machine interface (BMI) experiments where we could definitively identify neural firing patterns as output-null or output-potent. This revealed that perturbation-evoked responses were initially restricted to output-null patterns that cancelled out at the neural population code readout and only later entered output-potent neural dimensions. This mechanism was facilitated by the circuit's large null space and its ability to strongly modulate output-potent dimensions when generating corrective movements. These results show that the nervous system can temporarily isolate portions of a circuit's activity from its downstream targets by restricting this activity to the circuit's output-null neural dimensions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Strength and coherence of binocular rivalry depends on shared stimulus complexity.

    PubMed

    Alais, David; Melcher, David

    2007-01-01

    Presenting incompatible images to the eyes results in alternations of conscious perception, a phenomenon known as binocular rivalry. We examined rivalry using either simple stimuli (oriented gratings) or coherent visual objects (faces, houses etc). Two rivalry characteristics were measured: Depth of rivalry suppression and coherence of alternations. Rivalry between coherent visual objects exhibits deep suppression and coherent rivalry, whereas rivalry between gratings exhibits shallow suppression and piecemeal rivalry. Interestingly, rivalry between a simple and a complex stimulus displays the same characteristics (shallow and piecemeal) as rivalry between two simple stimuli. Thus, complex stimuli fail to rival globally unless the fellow stimulus is also global. We also conducted a face adaptation experiment. Adaptation to rivaling faces improved subsequent face discrimination (as expected), but adaptation to a rivaling face/grating pair did not. To explain this, we suggest rivalry must be an early and local process (at least initially), instigated by the failure of binocular fusion, which can then become globally organized by feedback from higher-level areas when both rivalry stimuli are global, so that rivalry tends to oscillate coherently. These globally assembled images then flow through object processing areas, with the dominant image gaining in relative strength in a form of 'biased competition', therefore accounting for the deeper suppression of global images. In contrast, when only one eye receives a global image, local piecemeal suppression from the fellow eye overrides the organizing effects of global feedback to prevent coherent image formation. This indicates the primacy of local over global processes in rivalry.

  12. Developing a Musical Vocabulary to Communicate, Perceive and Analyze Space Physics Data

    NASA Astrophysics Data System (ADS)

    Quinn, M. S.

    2008-12-01

    "Light Runners" is a touring E/PO program that provides unprecedented access to STEREO space mission imagery data to the blind and visually handicapped, as well as sighted populations across the country. The program builds on the successful implementation of the innovative science museum exhibit "Walk on the Sun", developed under NASA Ideas Grant ID05-049. The exhibit uses advanced sonification methods to present image pixel data as highly differentiated music, and visually tracks the explorer's physical movements to select those pixels. Musical feedback is generated in real-time based on selections of subsets of the image by the explorer's hands, arms and body movements. Initial indications suggest people not only enjoy the musical effects produced as they explore the imagery using their body movements, spending an average of 2 minutes on the exhibit, but also use the feedback to analyze and compare subsequent images. Blind students, for example, who spent 1 ½ to 3 hours on the exhibit, have reported being able to scan images of the Sun, find its edges and hot spots and control the playback and rewind of movies of the images as they explore imagery from up to 8 cameras on board each spacecraft. Explorers have access to over a million images, comprising more than a years worth of data from the mission and kept up to date as new images are received. The musical sonification vocabulary for this project is compared to two other space physics sonification projects.

  13. Primary or secondary tasks? Dual-task interference between cyclist hazard perception and cadence control using cross-modal sensory aids with rider assistance bike computers.

    PubMed

    Yang, Chao-Yang; Wu, Cheng-Tse

    2017-03-01

    This research investigated the risks involved in bicycle riding while using various sensory modalities to deliver training information. To understand the risks associated with using bike computers, this study evaluated hazard perception performance through lab-based simulations of authentic riding conditions. Analysing hazard sensitivity (d') of signal detection theory, the rider's response time, and eye glances provided insights into the risks of using bike computers. In this study, 30 participants were tested with eight hazard perception tasks while they maintained a cadence of 60 ± 5 RPM and used bike computers with different sensory displays, namely visual, auditory, and tactile feedback signals. The results indicated that synchronously using different sense organs to receive cadence feedback significantly affects hazard perception performance; direct visual information leads to the worst rider distraction, with a mean sensitivity to hazards (d') of -1.03. For systems with multiple interacting sensory aids, auditory aids were found to result in the greatest reduction in sensitivity to hazards (d' mean = -0.57), whereas tactile sensory aids reduced the degree of rider distraction (d' mean = -0.23). Our work complements existing work in this domain by advancing the understanding of how to design devices that deliver information subtly, thereby preventing disruption of a rider's perception of road hazards. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study

    PubMed Central

    2012-01-01

    Background Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues) have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user’s mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. Methods 10 male subjects (26+/-years old), participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF), Visual Feedback only control (VF), and Audiovisual Feedback control (AVF). For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject’s EEG, ECG, electro-dermal activity (EDA), and respiration rate were measured. Results The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback). Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. Conclusions The performance improvements when using auditory cues, along with vision (multimodal feedback), can be attributed to a reduced attentional demand during the task, which can be attributed to a visual “pop-out” or enhance effect. Also, the NASA TLX, the EEG’s Alpha and Beta band, and the Heart Rate could be used to further evaluate sensory feedback systems in prosthetic applications. PMID:22682425

  15. Effect of an auditory feedback substitution, tactilo-kinesthetic, or visual feedback on kinematics of pouring water from kettle into cup.

    PubMed

    Portnoy, Sigal; Halaby, Orli; Dekel-Chen, Dotan; Dierick, Frédéric

    2015-11-01

    Pouring hot water from a kettle into a cup may prove a hazardous task, especially for the elderly or the visually-impaired. Individuals with deteriorating eyesight may endanger their hands by performing this task with both hands, relaying on tactilo-kinesthetic feedback (TKF). Auditory feedback (AF) may allow them to perform the task singlehandedly, thereby reducing the risk for injury. However since relying on an AF is not intuitive and requires practice, we aimed to determine if AF supplied during the task of pouring water can be used naturally as visual feedback (VF) following practice. For this purpose, we quantified, in young healthy sighted subjects (n = 20), the performance and kinematics of pouring water in the presence of three isolated feedbacks: visual, tactilo-kinesthetic, or auditory. There were no significant differences between the weights of spilled water in the AF condition compared to the TKF condition in the first, fifth or thirteenth trials. The subjectively-reported difficulty levels of using the TKF and the AF were significantly reduced between the first and thirteenth trials for both TKF (p = 0.01) and AF (p = 0.001). Trunk rotation during the first trial using the TKF was significantly lower than the trunk rotation while using VF. Also, shoulder adduction during the first trial using the TKF was significantly higher than the shoulder adduction while using the VF. During the AF trials, the median travel distance of the tip of the kettle was significantly reduced in the first trials so that in the thirtieth trial it did not differ significantly from the median travel distance during the thirtieth trial using TKF and VF. The maximal velocity of the tip of the kettle was constant for each of the feedback conditions but was higher in 10 cm s(-1) using VF than TKF, which was higher in 10 cm s(-1) from using AF. The smoothness of movement of the TKF and AF conditions, expressed by the normalized jerk score (NJSM), was one and two orders of magnitude higher from the VF, respectively. The median NJSM then decreased significantly by the fifth trial. Monitoring in-house activity via motion capture and classification of movements, i.e. liquid pouring, can assist with daily activities via AF. As a built-in feature in a smart home, this task-specific AF may prevent burn injuries of the visually-impaired. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Responding Effectively to Composition Students: Comparing Student Perceptions of Written and Audio Feedback

    ERIC Educational Resources Information Center

    Bilbro, J.; Iluzada, C.; Clark, D. E.

    2013-01-01

    The authors compared student perceptions of audio and written feedback in order to assess what types of students may benefit from receiving audio feedback on their essays rather than written feedback. Many instructors previously have reported the advantages they see in audio feedback, but little quantitative research has been done on how the…

  17. Does Constructive Performance Feedback Improve Citizenship Intentions and Job Satisfaction? The Roles of Perceived Opportunities for Advancement, Respect, and Mood

    ERIC Educational Resources Information Center

    Sommer, Kristin L.; Kulkarni, Mukta

    2012-01-01

    Organizational experts have long touted the importance of delivering negative performance feedback in a manner that enhances employee receptivity to feedback, yet the broader impacts of constructive feedback have received relatively little attention. The present investigation explored the impact of constructive, critical feedback on organizational…

  18. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis.

    PubMed

    Schiefer, Matthew; Tan, Daniel; Sidek, Steven M; Tyler, Dustin J

    2016-02-01

    Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject's sense of embodiment with a survey and his self-confidence. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.

  19. Effects of speech and print feedback on spelling performance of a child with cerebral palsy using a speech generating device.

    PubMed

    Raghavendra, Parimala; Oaten, Rebecca

    2007-09-01

    The aim of the study was to investigate the effectiveness of three feedback conditions, using a speech-generating device, on spelling performance of Tom, an 11-year-old boy with cerebral palsy and complex communication needs. Tom was taught to spell 12 words under three feedback conditions. In the SPEECH condition, he received only speech feedback from the device and in the PRINT condition he received only the orthographic feedback on the display of the device. In the SPEECH-PRINT condition, Tom received both speech output and orthographic feedback. An adapted alternating treatment design was used to investigate the effects of the three-feedback conditions. To strengthen the reliability and increase the internal validity of the findings, an intrasubject direct replication was carried out using the same procedure, but teaching 12 different spelling words to Tom. Tom reached criterion with the PRINT feedback condition first, followed by SPEECH and SPEECH-PRINT conditions simultaneously for the first 12 words, and the same order for the second set of 12 words. Overall, the PRINT condition was most efficient for Tom. The results are discussed in terms of evidence for learning style preferences within spelling instruction for a child with complex communication needs. Furthermore, the implications for targeting intervention to optimise spelling achievement amongst this group are considered.

  20. The effect of concurrent bandwidth feedback on learning the lane-keeping task in a driving simulator.

    PubMed

    de Groot, Stefan; de Winter, Joost C F; López García, José Manuel; Mulder, Max; Wieringa, Peter A

    2011-02-01

    The aim of this study was to investigate whether concurrent bandwidth feedback improves learning of the lane-keeping task in a driving simulator. Previous research suggests that bandwidth feedback improves learning and that off-target feedback is superior to on-target feedback. This study aimed to extend these findings for the lane-keeping task. Participants without a driver's license drove five 8-min lane-keeping sessions in a driver training simulator: three practice sessions, an immediate retention session, and a delayed retention session I day later. There were four experimental groups (n=15 per group): (a) on-target, receiving seat vibrations when the center of the car was within 0.5 m of the lane center; (b) off-target, receiving seat vibrations when the center of the car was more than 0.5 m away from the lane center; (c) control, receiving no vibrations; and (d) realistic, receiving seat vibrations depending on engine speed. During retention, all groups were provided with the realistic vibrations. During practice, on-target and off-target groups had better lane-keeping performance than the nonaugmented groups, but this difference diminished in the retention phase. Furthermore, during late practice and retention, the off-target group outperformed the on-target group.The off-target group had a higher rate of steering reversal and higher steering entropy than the nonaugmented groups, whereas no clear group differences were found regarding mean speed, mental workload, or self-reported measures. Off-target feedback is superior to on-target feedback for learning the lane-keeping task. This research provides knowledge to researchers and designers of training systems about the value of feedback in simulator-based training of vehicular control.

  1. Saliency affects feedforward more than feedback processing in early visual cortex.

    PubMed

    Emmanouil, Tatiana Aloi; Avigan, Philip; Persuh, Marjan; Ro, Tony

    2013-07-01

    Early visual cortex activity is influenced by both bottom-up and top-down factors. To investigate the influences of bottom-up (saliency) and top-down (task) factors on different stages of visual processing, we used transcranial magnetic stimulation (TMS) of areas V1/V2 to induce visual suppression at varying temporal intervals. Subjects were asked to detect and discriminate the color or the orientation of briefly-presented small lines that varied on color saliency based on color contrast with the surround. Regardless of task, color saliency modulated the magnitude of TMS-induced visual suppression, especially at earlier temporal processing intervals that reflect the feedforward stage of visual processing in V1/V2. In a second experiment we found that our color saliency effects were also influenced by an inherent advantage of the color red relative to other hues and that color discrimination difficulty did not affect visual suppression. These results support the notion that early visual processing is stimulus driven and that feedforward and feedback processing encode different types of information about visual scenes. They further suggest that certain hues can be prioritized over others within our visual systems by being more robustly represented during early temporal processing intervals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Visualizing Without Vision at the Microscale: Students With Visual Impairments Explore Cells With Touch

    NASA Astrophysics Data System (ADS)

    Jones, M. Gail; Minogue, James; Oppewal, Tom; Cook, Michelle P.; Broadwell, Bethany

    2006-12-01

    Science instruction is typically highly dependent on visual representations of scientific concepts that are communicated through textbooks, teacher presentations, and computer-based multimedia materials. Little is known about how students with visual impairments access and interpret these types of visually-dependent instructional materials. This study explored the efficacy of new haptic (simulated tactile feedback and kinesthetics) instructional technology for teaching cell morphology and function to middle and high school students with visual impairments. The study examined students' prior experiences learning about the cell and cell functions in classroom instruction, as well as how haptic feedback technology impacted students' awareness of the 3-D nature of an animal cell, the morphology and function of cell organelles, and students' interest in the haptic technology as an instructional tool. Twenty-one students with visual impairment participated in the study. Students explored a tactile model of the cell with a haptic point probe that allowed them to feel the cell and its organelles. Results showed that students made significant gains in their ability to identify cell organelles and found the technology to be highly interesting as an instructional tool. The need for additional adaptive technology for students with visual impairments is discussed.

  3. Effects of video-feedback on the communication, clinical competence and motivational interviewing skills of practice nurses: a pre-test posttest control group study.

    PubMed

    Noordman, Janneke; van der Weijden, Trudy; van Dulmen, Sandra

    2014-10-01

    To examine the effects of individual video-feedback on the generic communication skills, clinical competence (i.e. adherence to practice guidelines) and motivational interviewing skills of experienced practice nurses working in primary care. Continuing professional education may be necessary to refresh and reflect on the communication and motivational interviewing skills of experienced primary care practice nurses. A video-feedback method was designed to improve these skills. Pre-test/posttest control group design. Seventeen Dutch practice nurses and 325 patients participated between June 2010-June 2011. Nurse-patient consultations were videotaped at two moments (T0 and T1), with an interval of 3-6 months. The videotaped consultations were rated using two protocols: the Maastrichtse Anamnese en Advies Scorelijst met globale items (MAAS-global) and the Behaviour Change Counselling Index. Before the recordings, nurses were allocated to a control or video-feedback group. Nurses allocated to the video-feedback group received video-feedback between T0 and T1. Data were analysed using multilevel linear or logistic regression. Nurses who received video-feedback appeared to pay significantly more attention to patients' request for help, their physical examination and gave significantly more understandable information. With respect to motivational interviewing, nurses who received video-feedback appeared to pay more attention to 'agenda setting and permission seeking' during their consultations. Video-feedback is a potentially effective method to improve practice nurses' generic communication skills. Although a single video-feedback session does not seem sufficient to increase all motivational interviewing skills, significant improvement in some specific skills was found. Nurses' clinical competences were not altered after feedback due to already high standards. © 2014 John Wiley & Sons Ltd.

  4. A neural model of the temporal dynamics of figure-ground segregation in motion perception.

    PubMed

    Raudies, Florian; Neumann, Heiko

    2010-03-01

    How does the visual system manage to segment a visual scene into surfaces and objects and manage to attend to a target object? Based on psychological and physiological investigations, it has been proposed that the perceptual organization and segmentation of a scene is achieved by the processing at different levels of the visual cortical hierarchy. According to this, motion onset detection, motion-defined shape segregation, and target selection are accomplished by processes which bind together simple features into fragments of increasingly complex configurations at different levels in the processing hierarchy. As an alternative to this hierarchical processing hypothesis, it has been proposed that the processing stages for feature detection and segregation are reflected in different temporal episodes in the response patterns of individual neurons. Such temporal epochs have been observed in the activation pattern of neurons as low as in area V1. Here, we present a neural network model of motion detection, figure-ground segregation and attentive selection which explains these response patterns in an unifying framework. Based on known principles of functional architecture of the visual cortex, we propose that initial motion and motion boundaries are detected at different and hierarchically organized stages in the dorsal pathway. Visual shapes that are defined by boundaries, which were generated from juxtaposed opponent motions, are represented at different stages in the ventral pathway. Model areas in the different pathways interact through feedforward and modulating feedback, while mutual interactions enable the communication between motion and form representations. Selective attention is devoted to shape representations by sending modulating feedback signals from higher levels (working memory) to intermediate levels to enhance their responses. Areas in the motion and form pathway are coupled through top-down feedback with V1 cells at the bottom end of the hierarchy. We propose that the different temporal episodes in the response pattern of V1 cells, as recorded in recent experiments, reflect the strength of modulating feedback signals. This feedback results from the consolidated shape representations from coherent motion patterns and the attentive modulation of responses along the cortical hierarchy. The model makes testable predictions concerning the duration and delay of the temporal episodes of V1 cell responses as well as their response variations that were caused by modulating feedback signals. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Predictive Coding in Area V4: Dynamic Shape Discrimination under Partial Occlusion

    PubMed Central

    Choi, Hannah; Pasupathy, Anitha; Shea-Brown, Eric

    2018-01-01

    The primate visual system has an exquisite ability to discriminate partially occluded shapes. Recent electrophysiological recordings suggest that response dynamics in intermediate visual cortical area V4, shaped by feedback from prefrontal cortex (PFC), may play a key role. To probe the algorithms that may underlie these findings, we build and test a model of V4 and PFC interactions based on a hierarchical predictive coding framework. We propose that probabilistic inference occurs in two steps. Initially, V4 responses are driven solely by bottom-up sensory input and are thus strongly influenced by the level of occlusion. After a delay, V4 responses combine both feedforward input and feedback signals from the PFC; the latter reflect predictions made by PFC about the visual stimulus underlying V4 activity. We find that this model captures key features of V4 and PFC dynamics observed in experiments. Specifically, PFC responses are strongest for occluded stimuli and delayed responses in V4 are less sensitive to occlusion, supporting our hypothesis that the feedback signals from PFC underlie robust discrimination of occluded shapes. Thus, our study proposes that area V4 and PFC participate in hierarchical inference, with feedback signals encoding top-down predictions about occluded shapes. PMID:29566355

  6. Learning of Temporal and Spatial Movement Aspects: A Comparison of Four Types of Haptic Control and Concurrent Visual Feedback.

    PubMed

    Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter

    2015-01-01

    In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.

  7. Space-time adaptive decision feedback neural receivers with data selection for high-data-rate users in DS-CDMA systems.

    PubMed

    de Lamare, Rodrigo C; Sampaio-Neto, Raimundo

    2008-11-01

    A space-time adaptive decision feedback (DF) receiver using recurrent neural networks (RNNs) is proposed for joint equalization and interference suppression in direct-sequence code-division multiple-access (DS-CDMA) systems equipped with antenna arrays. The proposed receiver structure employs dynamically driven RNNs in the feedforward section for equalization and multiaccess interference (MAI) suppression and a finite impulse response (FIR) linear filter in the feedback section for performing interference cancellation. A data selective gradient algorithm, based upon the set-membership (SM) design framework, is proposed for the estimation of the coefficients of RNN structures and is applied to the estimation of the parameters of the proposed neural receiver structure. Simulation results show that the proposed techniques achieve significant performance gains over existing schemes.

  8. Normative Feedback Effects on Learning a Timing Task

    ERIC Educational Resources Information Center

    Wulf, Gabriele; Chiviacowsky, Suzete; Lewthwaite, Rebecca

    2010-01-01

    This study investigated the influence of normative feedback on learning a sequential timing task. In addition to feedback about their performance per trial, two groups of participants received bogus normative feedback about a peer group's average block-to-block improvement after each block of 10 trials. Scores indicated either greater (better…

  9. Accounting Students' Feedback on Feedback in Australian Universities: They're Less than Impressed

    ERIC Educational Resources Information Center

    Watty, Kim; de Lange, Paul; Carr, Rodney; O'Connell, Brendan; Howieson, Bryan; Jacobsen, Ben

    2013-01-01

    Undergraduate accounting students in Australian universities are dissatisfied with the feedback that they currently receive. Recent evidence from the Course Experience Questionnaire (CEQ, a national survey of Australian university graduates) suggests that the accounting discipline ranks poorly on assessment feedback when compared to other…

  10. Learner Perceptions of Online Peer Pronunciation Feedback through P-Check

    ERIC Educational Resources Information Center

    Yonesaka, Suzanne M.

    2017-01-01

    Receiving adequate pronunciation feedback is an ongoing challenge for L2 learners. Although instructors are the most important source of corrective pronunciation feedback (Szpyra, 2014; Timson, 2007), L2 learners can also benefit from peer pronunciation feedback (Lord, 2008; Kim & Yoon, 2014; Roccamo, 2015). This paper examines Japanese…

  11. Keeping the Destination in Mind

    ERIC Educational Resources Information Center

    Lalor, Angela Di Michele

    2012-01-01

    The feedback process in school--and its effect on learners--resembles a global positioning system (GPS). When students receive clear, high-quality feedback that is tied to learning targets, student learning moves forward. When they are deprived of feedback or given feedback that is barely connected to learning targets, students get frustrated,…

  12. Cost Analysis, Evaluation and Feedback. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains four papers from a symposium on cost analysis, evaluation, and feedback in human resource development. "Training Evaluation with 360-Degree Feedback" (Froukje A. Jellema) reports on a quasi-experimental study that examined the effectiveness of 360-degree feedback in evaluating the training received by nurses in a…

  13. Online Assessment Feedback: Competitive, Individualistic, or? Preferred Form!

    ERIC Educational Resources Information Center

    Bower, Matt

    2005-01-01

    This study investigated the "the effects of receiving the preferred form of online assessment feedback upon middle school mathematics students." Students completed a Web-based quadratics equations learning module followed by a randomly generated online quiz that they could practise as often as they liked. The effect of receiving their preferred…

  14. Children’s Feedback Preferences in Response to an Experimentally Manipulated Peer Evaluation Outcome: The Role of Depressive Symptoms

    PubMed Central

    Dekovic, Maja; Vermande, Marjolijn; Telch, Michael J.

    2007-01-01

    The present study examined the linkage between pre-adolescent children’s depressive symptoms and their preferences for receiving positive vs. negative feedback subsequent to being faced with an experimentally manipulated peer evaluation outcome in real time. Participants (n = 142) ages 10 to 13, played a computer contest based on the television show Survivor and were randomized to either a peer rejection (i.e., receiving the lowest total ‘likeability’ score from a group of peer-judges), a peer success (i.e., receiving the highest score), or a control peer evaluation condition. Children’s self-reported feedback preferences were then assessed. Results revealed that participants assigned to the negative evaluation outcome, relative to either the success or the control outcome, showed a significantly higher subsequent preference for negatively tuned feedback. Contrary to previous work and predictions derived from self-verification theory, children higher in depressive symptoms were only more likely to prefer negative feedback in response to the negative peer evaluation outcome. These effects for depression were not accounted for by either state mood at baseline or mood change in response to the feedback manipulation. PMID:17279340

  15. Audio versus Written Feedback: Exploring Learners' Preference and the Impact of Feedback Format on Students' Academic Performance

    ERIC Educational Resources Information Center

    Morris, Cecile; Chikwa, Gladson

    2016-01-01

    Very little is known about the impact of the different types of feedback on students' academic performance. This article explores students' preference in the use of audio and written feedback and how each type of feedback received by students impacts their academic performance in subsequent assignments. The study involved 68 students who were…

  16. Corrective Feedback, Learner Uptake, and Feedback Perception in a Chinese as a Foreign Language Classroom

    ERIC Educational Resources Information Center

    Fu, Tingfeng; Nassaji, Hossein

    2016-01-01

    The role of corrective feedback in second language classrooms has received considerable research attention in the past few decades. However, most of this research has been conducted in English-teaching settings, either ESL or EFL. This study examined teacher feedback, learner uptake as well as learner and teacher perception of feedback in an adult…

  17. Social anxiety and the ironic effects of positive interviewer feedback.

    PubMed

    Budnick, Christopher J; Kowal, Marta; Santuzzi, Alecia M

    2015-01-01

    Positive interviewer feedback should encourage positive experiences and outcomes for interviewees. Yet, positive feedback is inconsistent with socially anxious interviewees' negative self-views. Socially anxious interviewees might experience increased self-focus while attempting to reconcile the inconsistency between their self-perceptions and that feedback. This could interfere with successful interview performance. This study used a 3 (feedback: positive, negative, no) × 2 (social anxiety: high, low) between-subjects design. Undergraduate students (N = 88) completed a measure of dispositional social anxiety. They then engaged in a simulated interview with a White confederate trained to adhere to a standardized script. Interviewees received positive, negative, or no interviewer feedback. Each interview was video recorded to code anxiety displays, impression management tactics, and interview success. Following positive feedback, socially anxious interviewees displayed more anxiety, less assertiveness, and received lower success ratings. Among anxious interviewees, increased self-focus provided an indirect path between positive feedback and lower success. Consistent with self-verification theory, anxious interviewees had poorer interview performance following positive feedback that contradicted their negative self-views. Thus, socially anxious interviewees might be at a disadvantage when interviewing, especially following positive feedback. Implications for interviewees and interviewers are discussed.

  18. Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.

    PubMed

    Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard

    2018-01-01

    The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.

  19. A Portable Sensory Augmentation Device for Balance Rehabilitation Using Fingertip Skin Stretch Feedback.

    PubMed

    Pan, Yi-Tsen; Yoon, Han U; Hur, P

    2017-01-01

    Neurological disorders are the leading causes of poor balance. Previous studies have shown that biofeedback can compensate for weak or missing sensory information in people with sensory deficits. These biofeedback inputs can be easily recognized and converted into proper information by the central nervous system (CNS), which integrates the appropriate sensorimotor information and stabilizes the human posture. In this study, we proposed a form of cutaneous feedback which stretches the fingertip pad with a rotational contactor, so-called skin stretch. Skin stretch at a fingertip pad can be simply perceived and its small contact area makes it favored for small wearable devices. Taking advantage of skin stretch feedback, we developed a portable sensory augmentation device (SAD) for rehabilitation of balance. SAD was designed to provide postural sway information through additional skin stretch feedback. To demonstrate the feasibility of the SAD, quiet standing on a force plate was evaluated while sensory deficits were simulated. Fifteen healthy young adults were asked to stand quietly under six sensory conditions: three levels of sensory deficits (normal, visual deficit, and visual + vestibular deficits) combined with and without augmented sensation provided by SAD. The results showed that augmented sensation via skin stretch feedback helped subjects correct their posture and balance, especially as the deficit level of sensory feedback increased. These findings demonstrate the potential use of skin stretch feedback in balance rehabilitation.

  20. Virtual reality and exercise: behavioral and psychological effects of visual feedback.

    PubMed

    Mestre, Daniel R; Ewald, Marine; Maiano, Christophe

    2011-01-01

    We herein report an experimental study examining the potential positive effects of Virtual Reality (VR) feedback during an indoor bicycling exercise. Using a regular bike coupled to a VR system, we compared conditions of no VR feedback, VR feedback and VR feedback with the presence of a virtual coach, acting as a pacer. In VR feedback conditions, we observed a decreased level of perceived exertion and an increased level of enjoyment of physical activity, when compared to a regular exercise situation (no VR feedback). We also observed a shift in the subjects' attentional focus, from association (in the absence of VR feedback) to dissociation (in VR feedback conditions). Moreover, the presence of a virtual coach in the VR environment triggered a systematic regulation of the (virtual) displacement speed, whose relationship with perceived enjoyment and exertion require further work.

Top