Sample records for receiving waters due

  1. Review on the fate of organic micropollutants in wastewater treatment and water reuse with membranes.

    PubMed

    Siegrist, H; Joss, A

    2012-01-01

    A brief review of the fate of micropollutants in membrane-based wastewater treatment due to sorption, stripping, biological degradation/transformation and membrane separation is discussed, to give an overview of these technologies due to the growing importance for water reuse purposes. Compared with conventional activated sludge treatment (CAS) micropollutant removal in membrane bioreactor (MBR) is slightly improved due to complete suspended solids removal and increased sludge age. For discharge to sensitive receiving waters advanced treatment, such as post-ozonation or activated carbon adsorption, is recommended. In water reuse plants nanofiltration (NF) and reverse osmosis (RO) efficiently reject micropollutants due to size exclusions as well as electrostatic and hydrophobic effects reaching potable quality. To remove micropollutants fully, additionally post-ozone or the addition of powdered activated carbon (PAC) have to be applied, which in parallel also reduce NDMA precursors. The concentrate has to be treated if disposed to sensitive receiving waters due to its high micropollutant concentration and ecotoxicity potential. The present review summarizes principles and capabilities for the most important membrane-based applications for wastewater treatment, i.e. porous membranes in MBRs (micro- or ultrafiltration) and dense membrane applications (NF and RO) for water reuse.

  2. Transfer reservoir as a new solution for transfer of stormwater to water receivers

    NASA Astrophysics Data System (ADS)

    Malmur, Robert

    2017-11-01

    With frequent heavy rainfalls in summer in Poland and fast-melting snow in spring leading to flooding of sewage systems (due to excessive filling levels in water receivers or difficulties with temporary retention of the excess stormwater), a variety of systems are being developed to facilitate transfer of the stormwater to water receivers. Outflow of the excess stormwater is usually ensured by the use of gravitational outflow collectors that connect stormwater drains with waterways. The transfer occurs during intensive precipitation, when the excess wastewater overflows through stormwater drains and is transferred directly to water receivers in order to relieve wastewater treatment plants or to minimize diameters of sewers. These systems are useful wherever the filling levels in waterways are not very high or the sewerage system is located relatively high with respect to the water receiver i.e. outflow collector is located on a steep slope. In such cases, the stormwater that flows through a waterway cannot be returned to the outflow collector. If the gravitational flow is impossible e.g. due to the excessive filling level of water receiver, stormwater can be transferred by means of a variety of modern solutions, such as retention and transfer reservoirs. These reservoirs are supposed to ensure partial retention of the excess stormwater and transfer of this water to water receivers, either gravitationally or forced mechanically, depending on the filling level in the waterway. Furthermore, these reservoirs prevent wastewater from being returned to the system during suddenly rising levels. One of the solutions is offered by the reservoir presented in this paper. The transfer reservoir for the stormwater presented in this paper might be successfully used in modernization of current sewage systems, ensuring the reliability of operation and a more effective wastewater transfer than the systems used to date. All the reservoirs of this type are characterized by similar design and function and guarantee that the wastewater might be transferred regardless of the conditions in the water receiver. An essential feature of these reservoirs is the use of the effective method to control suction and pumping units.

  3. 33 CFR 49.10-5 - Payment of moneys due.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Payment of moneys due. 49.10-5... PAYMENT OF AMOUNTS DUE MENTALLY INCOMPETENT COAST GUARD PERSONNEL Reports and Moneys § 49.10-5 Payment of moneys due. Upon the appointment of a trustee or trustees to receive moneys due an incompetent, the...

  4. 33 CFR 49.10-5 - Payment of moneys due.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Payment of moneys due. 49.10-5... PAYMENT OF AMOUNTS DUE MENTALLY INCOMPETENT COAST GUARD PERSONNEL Reports and Moneys § 49.10-5 Payment of moneys due. Upon the appointment of a trustee or trustees to receive moneys due an incompetent, the...

  5. 33 CFR 49.10-5 - Payment of moneys due.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Payment of moneys due. 49.10-5... PAYMENT OF AMOUNTS DUE MENTALLY INCOMPETENT COAST GUARD PERSONNEL Reports and Moneys § 49.10-5 Payment of moneys due. Upon the appointment of a trustee or trustees to receive moneys due an incompetent, the...

  6. 33 CFR 49.10-5 - Payment of moneys due.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Payment of moneys due. 49.10-5... PAYMENT OF AMOUNTS DUE MENTALLY INCOMPETENT COAST GUARD PERSONNEL Reports and Moneys § 49.10-5 Payment of moneys due. Upon the appointment of a trustee or trustees to receive moneys due an incompetent, the...

  7. 33 CFR 49.10-5 - Payment of moneys due.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Payment of moneys due. 49.10-5... PAYMENT OF AMOUNTS DUE MENTALLY INCOMPETENT COAST GUARD PERSONNEL Reports and Moneys § 49.10-5 Payment of moneys due. Upon the appointment of a trustee or trustees to receive moneys due an incompetent, the...

  8. Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution

    PubMed Central

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-01-01

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing cosntitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control. PMID:23202881

  9. Snowmelt runoff: a new focus of urban nonpoint source pollution.

    PubMed

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-11-30

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing constitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control.

  10. Evaluation of Renal Oxygenation Level Changes after Water Loading Using Susceptibility-Weighted Imaging and T2* Mapping.

    PubMed

    Ding, Jiule; Xing, Wei; Wu, Dongmei; Chen, Jie; Pan, Liang; Sun, Jun; Xing, Shijun; Dai, Yongming

    2015-01-01

    To assess the feasibility of susceptibility-weighted imaging (SWI) while monitoring changes in renal oxygenation level after water loading. Thirty-two volunteers (age, 28.0 ± 2.2 years) were enrolled in this study. SWI and multi-echo gradient echo sequence-based T2(*) mapping were used to cover the kidney before and after water loading. Cortical and medullary parameters were measured using small regions of interest, and their relative changes due to water loading were calculated based on baseline and post-water loading data. An intraclass correlation coefficient analysis was used to assess inter-observer reliability of each parameter. A receiver operating characteristic curve analysis was conducted to compare the performance of the two methods for detecting renal oxygenation changes due to water loading. Both medullary phase and medullary T2(*) values increased after water loading (p < 0.001), although poor correlations were found between the phase changes and the T2(*) changes (p > 0.05). Interobserver reliability was excellent for the T2(*) values, good for SWI cortical phase values, and moderate for the SWI medullary phase values. The area under receiver operating characteristic curve of the SWI medullary phase values was 0.85 and was not different from the medullary T2(*) value (0.84). Susceptibility-weighted imaging enabled monitoring changes in the oxygenation level in the medulla after water loading, and may allow comparable feasibility to detect renal oxygenation level changes due to water loading compared with that of T2(*) mapping.

  11. 18 CFR 367.1420 - Account 142, Customer accounts receivable.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 142, Customer... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1420 Account 142, Customer accounts receivable. (a) This account must include amounts due from customers for service, and for...

  12. Inferring Large-Scale Terrestrial Water Storage Through GRACE and GPS Data Fusion in Cloud Computing Environments

    NASA Astrophysics Data System (ADS)

    Rude, C. M.; Li, J. D.; Gowanlock, M.; Herring, T.; Pankratius, V.

    2016-12-01

    Surface subsidence due to depletion of groundwater can lead to permanent compaction of aquifers and damaged infrastructure. However, studies of such effects on a large scale are challenging and compute intensive because they involve fusing a variety of data sets beyond direct measurements from groundwater wells, such as gravity change measurements from the Gravity Recovery and Climate Experiment (GRACE) or surface displacements measured by GPS receivers. Our work therefore leverages Amazon cloud computing to enable these types of analyses spanning the entire continental US. Changes in groundwater storage are inferred from surface displacements measured by GPS receivers stationed throughout the country. Receivers located on bedrock are anti-correlated with changes in water levels from elastic deformation due to loading, while stations on aquifers correlate with groundwater changes due to poroelastic expansion and compaction. Correlating linearly detrended equivalent water thickness measurements from GRACE with linearly detrended and Kalman filtered vertical displacements of GPS stations located throughout the United States helps compensate for the spatial and temporal limitations of GRACE. Our results show that the majority of GPS stations are negatively correlated with GRACE in a statistically relevant way, as most GPS stations are located on bedrock in order to provide stable reference locations and measure geophysical processes such as tectonic deformations. Additionally, stations located on the Central Valley California aquifer show statistically significant positive correlations. Through the identification of positive and negative correlations, deformation phenomena can be classified as loading or poroelastic expansion due to changes in groundwater. This method facilitates further studies of terrestrial water storage on a global scale. This work is supported by NASA AIST-NNX15AG84G (PI: V. Pankratius) and Amazon.

  13. The causes and circumstances of drinking water incidents impact consumer behaviour: Comparison of a routine versus a natural disaster incident.

    PubMed

    Rundblad, Gabriella; Knapton, Olivia; Hunter, Paul R

    2014-11-18

    When public health is endangered, the general public can only protect themselves if timely messages are received and understood. Previous research has shown that the cause of threats to public health can affect risk perception and behaviours. This study compares compliance to public health advice and consumer behaviour during two "Boil Water" notices issued in the UK due to a routine incident versus a natural disaster incident. A postal questionnaire was sent to 1000 randomly selected households issued a routine "Boil Water" notice. Findings were then compared to a previous study that explored drinking water behaviour during a "Boil Water" notice issued after serious floods. Consumers affected by the routine incident showed a significant preference for official water company information, whereas consumers affected by the natural disaster preferred local information sources. Confusion over which notice was in place was found for both incidents. Non-compliance was significantly higher for the natural disaster (48.3%) than the routine incident (35.4%). For the routine incident, compliance with advice on drinking as well as preparing/cooking food and brushing teeth was positively associated with receiving advice from the local radio, while the opposite was true for those receiving advice from the water company/leaflet through the post; we suggest this may largely be due to confusion over needing boiled tap water for brushing teeth. No associations were found for demographic factors. We conclude that information dissemination plans should be tailored to the circumstances under which the advice is issued. Water companies should seek to educate the general public about water notices and which actions are safe and unsafe during which notice, as well as construct and disseminate clearer advice on brushing teeth and preparing/cooking food.

  14. DETERMINATION OF SYNTHETIC MUSK COMPOUNDS IN MUNICIPAL WASTEWATER AND ESTIMATING BIOTA EXPOSURE IN THE RECEIVING WATERS

    EPA Science Inventory

    Synthetic musk compounds are consumer chemicals manufactured as fragrance materials and consumed in very large quantities worldwide. Due to their high usage and release, they have become ubiquitous in the environment. The U.S. EPA (Las Vegas) developed surface water monitoring me...

  15. LEVELS OF SYNTHETIC MUSKS COMPOUNDS IN MUNICIPAL WASTEWATER FOR ESTIMATING BIOTA EXPOSURE IN RECEIVING WATERS

    EPA Science Inventory

    Synthetic musk compounds are consumer chemicals manufactured as fragrance materials and consumed in very large quantities worldwide. Due to their high use and release, they have become ubiquitous in the environment. We analyzed water samples from the confluence of three municipal...

  16. 43 CFR 426.6 - Leasing and full-cost pricing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... payments due the United States. (6) In determining full-cost charges, the following factors will be...-cost entitlement for limited recipients that did not receive irrigation water on or prior to October 1... appropriate full-cost rate for irrigation water delivered to acreage that equals the amount of leased land...

  17. 43 CFR 426.6 - Leasing and full-cost pricing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... payments due the United States. (6) In determining full-cost charges, the following factors will be...-cost entitlement for limited recipients that did not receive irrigation water on or prior to October 1... appropriate full-cost rate for irrigation water delivered to acreage that equals the amount of leased land...

  18. 43 CFR 426.6 - Leasing and full-cost pricing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... payments due the United States. (6) In determining full-cost charges, the following factors will be...-cost entitlement for limited recipients that did not receive irrigation water on or prior to October 1... appropriate full-cost rate for irrigation water delivered to acreage that equals the amount of leased land...

  19. 43 CFR 426.6 - Leasing and full-cost pricing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... payments due the United States. (6) In determining full-cost charges, the following factors will be...-cost entitlement for limited recipients that did not receive irrigation water on or prior to October 1... appropriate full-cost rate for irrigation water delivered to acreage that equals the amount of leased land...

  20. Atmospheric transmission loss in mirror-to-tower slant ranges due to water vapor

    NASA Astrophysics Data System (ADS)

    Gueymard, Christian A.; López, Gabriel; Rapp-Arrarás, Igor

    2017-06-01

    Considering CSP systems of the central tower-receiver type, this study investigates the specific effect of water vapor absorption on the total atmospheric transmission losses that impact direct irradiance along the slant path between a distant mirror and the receiver on the tower. Spectral and broadband calculations of total atmospheric attenuation are made for various water vapor conditions (from dry to humid) with both the rigorous MODTRAN code and the simpler and faster SMARTS code. The use of the latter is made indirectly possible through the "fictitious sun" concept. The MODTRAN and SMARTS results compare reasonably well under the present conditions, which closely echo the conditions used in previous studies, thus allowing instructive comparisons that will be reported later. To study the vertical profile of water vapor between surface and a height of 300 m, the columnar precipitable water at ≈5 m resolution has been derived from special high-resolution radiosonde soundings carried out twice daily at two arid sites. This analysis shows that the desired precipitable water at the receiver level can be simply extrapolated from that at the mirror level if the water vapor scale height is known. The latter is shown to significantly vary on a daily basis at the two sounding sites, with a median of 2.74 km. The exact value of this scale height conditions the transmission loss due to water vapor, but in any case this loss is found relatively small in comparison with other sources of attenuation, even when considering long slant paths under humid conditions. This unexpected finding is explained by the saturation effect that characterizes water vapor absorption.

  1. Acoustic MIMO communications in a very shallow water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuehai; Cao, Xiuling; Tong, Feng

    2015-12-01

    Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.

  2. Modeling and Circumventing the Effect of Sediments and Water Column on Receiver Functions

    NASA Astrophysics Data System (ADS)

    Audet, P.

    2017-12-01

    Teleseismic P-wave receiver functions are routinely used to resolve crust and mantle structure in various geologic settings. Receiver functions are approximations to the Earth's Green's functions and are composed of various scattered phase arrivals, depending on the complexity of the underlying Earth structure. For simple structure, the dominant arrivals (converted and back-scattered P-to-S phases) are well separated in time and can be reliably used in estimating crustal velocity structure. In the presence of sedimentary layers, strong reverberations typically produce high-amplitude oscillations that contaminate the early part of the wave train and receiver functions can be difficult to interpret in terms of underlying structure. The effect of a water column also limits the interpretability of under-water receiver functions due to the additional acoustic wave propagating within the water column that can contaminate structural arrivals. We perform numerical modeling of teleseismic Green's functions and receiver functions using a reflectivity technique for a range of Earth models that include thin sedimentary layers and overlying water column. These modeling results indicate that, as expected, receiver functions are difficult to interpret in the presence of sediments, but the contaminating effect of the water column is dependent on the thickness of the water layer. To circumvent these effects and recover source-side structure, we propose using an approach based on transfer function modeling that bypasses receiver functions altogether and estimates crustal properties directly from the waveforms (Frederiksen and Delayney, 2015). Using this approach, reasonable assumptions about the properties of the sedimentary layer can be included in forward calculations of the Green's functions that are convolved with radial waveforms to predict vertical waveforms. Exploration of model space using Monte Carlo-style search and least-square waveform misfits can be performed to estimate any model parameter of interest, including those of the sedimentary or water layer. We show how this method can be applied to OBS data using broadband stations from the Cascadia Initiative to recover oceanic plate structure.

  3. Assessing Receiving Water Quality Impacts due to Flow Path Alteration in Residential Catchments, using the Stormwater and Wastewater Management Model

    NASA Astrophysics Data System (ADS)

    Wolosoff, S. E.; Duncan, J.; Endreny, T.

    2001-05-01

    The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.

  4. A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation.

    PubMed

    Foroutan, Masumeh; Fatemi, S Mahmood; Esmaeilian, Farshad

    2017-02-01

    During the past decade, the research on fluids in nanoconfined geometries has received considerable attention as a consequence of their wide applications in different fields. Several nanoconfined systems such as water and ionic liquids, together with an equally impressive array of nanoconfining media such as carbon nanotube, graphene and graphene oxide have received increasingly growing interest in the past years. Water is the first system that has been reviewed in this article, due to its important role in transport phenomena in environmental sciences. Water is often considered as a highly nanoconfined system, due to its reduction to a few layers of water molecules between the extended surface of large macromolecules. The second system discussed here is ionic liquids, which have been widely studied in the modern green chemistry movement. Considering the great importance of ionic liquids in industry, and also their oil/water counterpart, nanoconfined ionic liquid system has become an important area of research with many fascinating applications. Furthermore, the method of molecular dynamics simulation is one of the major tools in the theoretical study of water and ionic liquids in nanoconfinement, which increasingly has been joined with experimental procedures. In this way, the choice of water and ionic liquids in nanoconfinement is justified by applying molecular dynamics simulation approaches in this review article.

  5. The Causes and Circumstances of Drinking Water Incidents Impact Consumer Behaviour: Comparison of a Routine versus a Natural Disaster Incident

    PubMed Central

    Rundblad, Gabriella; Knapton, Olivia; Hunter, Paul R.

    2014-01-01

    When public health is endangered, the general public can only protect themselves if timely messages are received and understood. Previous research has shown that the cause of threats to public health can affect risk perception and behaviours. This study compares compliance to public health advice and consumer behaviour during two “Boil Water” notices issued in the UK due to a routine incident versus a natural disaster incident. A postal questionnaire was sent to 1000 randomly selected households issued a routine “Boil Water” notice. Findings were then compared to a previous study that explored drinking water behaviour during a “Boil Water” notice issued after serious floods. Consumers affected by the routine incident showed a significant preference for official water company information, whereas consumers affected by the natural disaster preferred local information sources. Confusion over which notice was in place was found for both incidents. Non-compliance was significantly higher for the natural disaster (48.3%) than the routine incident (35.4%). For the routine incident, compliance with advice on drinking as well as preparing/cooking food and brushing teeth was positively associated with receiving advice from the local radio, while the opposite was true for those receiving advice from the water company/leaflet through the post; we suggest this may largely be due to confusion over needing boiled tap water for brushing teeth. No associations were found for demographic factors. We conclude that information dissemination plans should be tailored to the circumstances under which the advice is issued. Water companies should seek to educate the general public about water notices and which actions are safe and unsafe during which notice, as well as construct and disseminate clearer advice on brushing teeth and preparing/cooking food. PMID:25411725

  6. Interaction effects between sender and receiver processes in indirect transmission of Campylobacter jejuni between broilers.

    PubMed

    van Bunnik, Bram A D; Hagenaars, Thomas J; Bolder, Nico M; Nodelijk, Gonnie; de Jong, Mart C M

    2012-07-25

    Infectious diseases in plants, animals and humans are often transmitted indirectly between hosts (or between groups of hosts), i.e. via some route through the environment instead of via direct contacts between these hosts. Here we study indirect transmission experimentally, using transmission of Campylobacter jejuni (C. jejuni) between spatially separated broilers as a model system. We distinguish three stages in the process of indirect transmission; (1) an infectious "sender" excretes the agent, after which (2) the agent is transported via some route to a susceptible "receiver", and subsequently (3) the receiver becomes colonised by the agent. The role of the sender and receiver side (stage 1 and stage 3) was studied here by using acidification of the drinking water as a modulation mechanism. In the experiment one control group and three treatment groups were monitored for the presence of C. jejuni by taking daily cloacal swabs. The three treatments consisted of acidification of the drinking water of the inoculated animals (the senders), acidification of the drinking water of the susceptible animals (the receivers) or acidification of the drinking water of both inoculated and susceptible animals. In the control group 12 animals got colonised out of a possible 40, in each treatment groups 3 animals out of a possible 40 were found colonised with C. jejuni. The results of the experiments show a significant decrease in transmission rate (β) between the control groups and treatment groups (p < 0.01 for all groups) but not between different treatments; there is a significant negative interaction effect when both the sender and the receiver group receive acidified drinking water (p = 0.01). This negative interaction effect could be due to selection of bacteria already at the sender side thereby diminishing the effect of acidification at the receiver side.

  7. 77 FR 20572 - Airworthiness Directives; BAE Systems (Operations) Limited Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... at the water trap/air drier unit of the forward discharge valve due to corrosion. This proposed AD... failure of the fuselage skin, leading to a possible sudden loss of cabin pressure. DATES: We must receive... surface anomalies (bulges and/or dents) of the fuselage skin at the water trap/air drier unit of the...

  8. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    NASA Astrophysics Data System (ADS)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  9. Changes in tear volume and ocular symptoms of patients receiving oral anticancer drug S-1.

    PubMed

    Kuriki, Reiko; Hata, Tsuyoshi; Nakayama, Kinuyo; Ito, Yuichi; Misawa, Kazunari; Ito, Seiji; Tatematsu, Michiko; Kaneda, Norio

    2018-01-01

    Most eye disorders are not fatal but may deteriorate the quality of life of a patient. The eye disorder that is most frequently reported in the cancer chemotherapy is associated with the combination of tegafur/gimeracil/potassium oxonate (S-1). However, preventive methods or treatment methods for the eye disorder have not yet been established. This study aimed to determine changes in tear volume and subjective ocular symptoms during the treatment period in patients receiving S-1 monotherapy for early detection of adverse effects in the eye and establishment of its treatment methods. This study included eleven patients receiving S-1 monotherapy as a postoperative adjuvant chemotherapy for gastric cancer. Six subjective ocular symptoms including watering eyes were evaluated and changes in tear volume measured by the Schirmer's test in patients receiving S-1 during the treatment period. In the present study, the patients were divided into "no watering eyes" (patients not experienced watering eyes) group and "watering eyes" (patients experienced watering eyes even once) group. Six out of eleven patients developed watering eyes after receiving S-1 monotherapy. Among these, the earliest onset occurred on the 2nd week after oral administration. Watering eyes and eye discharge were highly related in patients having a trouble in daily life due to the decreased QOL. Changes in tear volume in the "watering eyes" group significantly increased compared to the "no watering eyes" group during the treatment period, especially when the patients had no subjective symptom of the increased tear volume. It is essential to prevent eye disorders including watering eyes as an adverse effect of S-1 administration. The present study recommends that the tear volume should be periodically measured using Schirmer's test, and the patient should be interviewed regarding the subjective ocular symptoms for the early detection of watering eyes caused by S-1 administration. If the tear volume can not be measured periodically, medical staffs should pay attention to the patient with eye discharge.

  10. Stormwater runoff water quality evaluation and management program for hazardous chemical sites: Development issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.F.; Jones-Lee, A.

    1998-12-31

    The deficiencies in the typical stormwater runoff water quality monitoring from hazardous chemical sites and an alternative approach (Evaluation Monitoring) for monitoring that shifts the monitoring program from periodic sampling and analysis of stormwater runoff for a suite of chemical parameters to examining the receiving waters to determine what, if any, water quality use impairments are occurring due to the runoff-associated constituents is presented in this paper. Rather than measuring potentially toxic constituents such as heavy metals in runoff, the monitoring program determines whether there is aquatic life toxicity in the receiving waters associated with the stormwater runoff. If toxicitymore » is found, its cause is determined and the source of the constituents causing the toxicity is identified through forensic analysis. Based on this information, site-specific, technically valid stormwater runoff management programs can be developed that will control real water quality impacts caused by stormwater runoff-associated constituents.« less

  11. Experimental Studies on the Effect of Enhanced Thermal Conductivity of SiC+Water Nanofluid in the Performance of Small Scale Solar Parabolic Dish Receiver

    NASA Astrophysics Data System (ADS)

    Rajendran, D. R.; Sundaram, E. Ganapathy; Jawahar, P.

    In this experimental study, exergy efficiencies of water and SiC+water nanofluid, prepared from 50nm particle size and 1% of volume fraction were compared based on the effect of thermal conductivities by a dish reflector receiver system. The average temperature difference between the receiver walls and heat transfer fluids have been studied to understand the thermal performance of the system with respect to the important properties of thermal conductivities and specific heat capacities. The enhanced thermal conductivity of 0.800115W/mK with the Keff/Kb ratio of 1.1759 was determined by the Koo and Kleinstreuer correlation which is considering both the Maxwell correlation and Brownian motion. The attained higher average exergy efficiencies for water and SiC+water nanofluid are 21.08% and 37.06.%, respectively with the enhanced nanofluid exergy efficiency of 75.80% than that of water at the flow rate of 0.5lpm. The result also shows that the system with SiC+water nanofluid produced higher exergy efficiency, because the rates of energy and exergy carried by the nanofluid are 0.2378kW and 0.7593kW higher than that of water for all the flow rates except at 0.2lpm, due to the enhanced thermal conductivity of the nanofluid.

  12. Perfluorinated Compounds in Fish from U.S. Urban Rivers and the Great Lakes

    EPA Science Inventory

    Perfluorinated compounds (PFCs) have recently received scientific and regulatory attention due to their broad environmental distribution, persistence, bioaccumulative potential, and toxicity. Some studies suggest that the consumption of fish from contaminated waters may be a maj...

  13. Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice.

    PubMed

    Gu, Yeunhwa; Huang, Chien-Sheng; Inoue, Tota; Yamashita, Takenori; Ishida, Torao; Kang, Ki-Mun; Nakao, Atsunori

    2010-05-01

    Hydrogen has been reported to have neuron protective effects due to its antioxidant properties, but the effects of hydrogen on cognitive impairment due to senescence-related brain alterations and the underlying mechanisms have not been characterized. In this study, we investigated the efficacies of drinking hydrogen water for prevention of spatial memory decline and age-related brain alterations using senescence-accelerated prone mouse 8 (SAMP8), which exhibits early aging syndromes including declining learning ability and memory. However, treatment with hydrogen water for 30 days prevented age-related declines in cognitive ability seen in SAMP8 as assessed by a water maze test and was associated with increased brain serotonin levels and elevated serum antioxidant activity. In addition, drinking hydrogen water for 18 weeks inhibited neurodegeneration in hippocampus, while marked loss of neurons was noted in control, aged brains of mice receiving regular water. On the basis of our results, hydrogen water merits further investigation for possible therapeutic/preventative use for age-related cognitive disorders.

  14. The importance of ligand speciation in environmental research: a case study.

    PubMed

    Sillanpää, M; Orama, M; Rämö, J; Oikari, A

    2001-02-21

    The speciations of EDTA and DTPA in process, waste and river waters are modelled and simulated, specifically to the mode of occurrence in the pulp and paper mill effluents and subsequently in receiving waters. Due to relatively short residence times in bleaching process and waste water treatment and slow exchange kinetics, it is expected that the thermodynamic equilibrium is not necessarily reached. Therefore, the initial speciation plays a key role. As such, the simulations have been extended to the process waters of the pulp and paper industry taking into account estimated average conditions. The results reveal that the main species are; Mn and Ca complexes of EDTA and DTPA in pulp mill process waters; Fe(III) and Mn complexes of EDTA and DTPA in waste waters; Fe(III) and Zn complexes of EDTA and DTPA in receiving waters. It is also shown how the increasing concentration of complexing agents effects the speciation. Alkaline earth metal chelation plays a significant role in the speciation of EDTA and DTPA when there is a noticeable molar excess of complexing agents compared with transition metals.

  15. A study of electric field components in shallow water and water half-space models in seabed logging

    NASA Astrophysics Data System (ADS)

    Rostami, Amir; Soleimani, Hassan; Yahya, Noorhana; Nyamasvisva, Tadiwa Elisha; Rauf, Muhammad

    2016-11-01

    Seabed logging (SBL) is an electromagnetic (EM) method to detect hydrocarbon (HC) laid beneath the seafloor, which is a development of marine controlled source electromagnetic (CSEM) method. CSEM is a method to show resistivity log of geological layers, transmitting ultra-low frequency EM wave. In SBL a net of receivers, placed on the seafloor, detect reflected and refracted EM wave by layers with different resistivity. Contrast of electrical resistivity of layers impacts on amplitude and phase of the EM wave response. The most indispensable concern in SBL is to detect guided wave via high resistive layer under the seafloor that can be an HC reservoir. Guided wave by HC creates a remarkable difference in received signal when HC reservoir does not exist. While the major contribution of received EM wave in large offset, especially in shallow water environment, is airwave, which is refracted by sea surface due to extremely high resistivity of atmosphere, airwave can affect received guided wave, dramatically. Our objective for this work is to compare HC delineation of tangential and normal components of electric field in shallow water area, using finite element method simulation. Will be reported that, in shallow water environment, minor contribution of air wave in normal component of E field (Ey) versus its major contribution in the tangential component (Ex), causes a considerable contrast on HC delineation of Ey for deeply buried reservoirs (more than 3000 m), while Ex is unable to show different contrasts of received data for with and without HC media at the same condition.

  16. Climate change impacts on thermoelectric-power generation in the United States

    NASA Astrophysics Data System (ADS)

    Liu, L.

    2015-12-01

    Thermoelectric-power generation accounts for more than 70% of the total electricity generation in the United States, which requires large amounts of water for cooling purposes. Water withdrawals for thermoelectric-power generation accounted for 45% of total water use in the United States in 2010. Across the country, water demand from power plants is increasing due to pressures from growing populations and other needs, and is straining existing water resources. Moreover, temperature exceedance in receiving waters has increasingly caused power plants shut downs across parts of the country. Thermoelectric power is vulnerable to climate change owing to the combined effects of lower summer river flows and higher receiving water temperatures. In addition, the efficiency of production is reduced as air temperature rises, which propagates to more unfulfilled power demand during peak seasons. Therefore, a holistic modeling framework of water-energy-climate for the contiguous U.S. is presented here to quantify thermal output from power plants and estimate water use and energy production fluctuations due to ambient climate as well as environmental regulations. The model is calibrated on a plant-by-plant basis for year 2010 and 2011 using the available power plant inventory from the Energy Information Administration (EIA). Simulations were carried out for years 2012 and 2013, and results show moderate improvements in capturing thermal output variabilities after calibration. Future power plant operations under scenarios featuring different climate and regulatory settings were investigated. Results demonstrate the interplay among water, energy and climate, and that future changes in climate and socioeconomics significantly affect power plant operations, which may provide insights to climate change mitigation considerations and energy decisions.

  17. Reconnaissance of selected PPCP compounds in Costa Rican surface waters.

    PubMed

    Spongberg, Alison L; Witter, Jason D; Acuña, Jenaro; Vargas, José; Murillo, Manuel; Umaña, Gerardo; Gómez, Eddy; Perez, Greivin

    2011-12-15

    Eighty-six water samples were collected in early 2009 from Costa Rican surface water and coastal locations for the analysis of 34 pharmaceutical and personal care product compounds (PPCPs). Sampling sites included areas receiving treated and untreated wastewaters, and urban and rural runoff. PPCPs were analyzed using a combination of solid phase extraction and liquid chromatography tandem mass spectrometry. The five most frequently detected compounds were doxycycline (77%), sulfadimethoxine (43%), salicylic acid (41%), triclosan (34%) and caffeine (29%). Caffeine had the maximum concentration of 1.1 mg L(-1), possibly due to coffee bean production facilities upstream. Other compounds found in high concentrations include: doxycycline (74 μg L(-1)), ibuprofen (37 μg L(-1)), gemfibrozil (17 μg L(-1)), acetominophen (13 μg L(-1)) and ketoprofen (10 μg L(-1)). The wastewater effluent collected from an oxidation pond had similar detection and concentrations of compounds compared to other studies reported in the literature. Waters receiving runoff from a nearby hospital showed higher concentrations than other areas for many PPCPs. Both caffeine and carbamazepine were found in low frequency compared to other studies, likely due to enhanced degradation and low usage, respectively. Overall concentrations of PPCPs in surface waters of Costa Rica are inline with currently reported occurrence data from around the world, with the exception of doxycycline. Published by Elsevier Ltd.

  18. Effect of treated wastewater application on soil water repellency of sandy soil with olive trees and grass cover

    NASA Astrophysics Data System (ADS)

    Diamantis, V.; Ziogas, A.; Giougis, J.; Pliakas, F.; Diamantis, I.

    2009-04-01

    Soil water repellency has received significant attention due to water scarcity and increasing demand of irrigation water worldwide. The objective of this study was to examine the effects of treated wastewater application on soil water repellency of a repellent sandy soil with olive trees and grass cover. Secondary effluent from a municipal wastewater treatment plant was applied directly on the field on a 4×2 m plot. Freshwater and a mixture of freshwater:wastewater (1:1) were used in subsequent plots for comparison. A total of 62 water applications were performed between March 2006 and July 2008. The soil receiving the mixture of freshwater:wastewater exhibited the highest wettability. The soil water repellency after the first year of wastewater application decreased in the respective plot compared with the soil under natural conditions. The higher values of the WDPT were determined on the freshwater irrigated plot. The field-moist samples on all plots revealed high wettability because the moisture content of the soil was maintained above the critical soil water content. The results of this study reveal that short-term application of treated municipal wastewater does not induce soil water repellency.

  19. Laboratory studies of near-grazing impulsive sound propagating over rough water.

    PubMed

    Qin, Qin; Lukaschuk, Sergei; Attenborough, Keith

    2008-08-01

    Acoustic impulses due to an electrical spark source (main acoustic energy near 15 kHz) have been measured after propagating near to the water surface in a shallow container resting on a vibrating platform. Control of the platform vibration enabled control of water wave amplitudes. Analysis of the results reveals systematic variations in the received acoustic waveforms as the mean trough-to-crest water wave amplitude is increased up to 7 mm. The amplitudes of the peaks corresponding to specular reflections are reduced and the variability in the tails of the waveforms is increased.

  20. Sediment nitrification and denitrification rates in a Lake Superior estuary

    EPA Science Inventory

    Microbially-mediated nitrogen (N) cycling in aquatic sediments has been recognized as an ecosystem service due to mitigation of N-transport to receiving waters. In 2011 and 2012, we compared nitrification (NIT), unamended (DeNIT) and amended (DEA) denitrification rates among spat...

  1. Nonwoven greige cotton for wound healing and hygienic product applications

    USDA-ARS?s Scientific Manuscript database

    The potential to use greige (non-bleached) cotton in nonwoven absorbent products has received increased attention. This is due to innovations in cotton cleaning and nonwoven hydroentanglement processes that open and expose the hydrophilic cellulosic component of greige cotton fiber to water absorpt...

  2. Interaction effects between sender and receiver processes in indirect transmission of Campylobacter jejuni between broilers

    PubMed Central

    2012-01-01

    Background Infectious diseases in plants, animals and humans are often transmitted indirectly between hosts (or between groups of hosts), i.e. via some route through the environment instead of via direct contacts between these hosts. Here we study indirect transmission experimentally, using transmission of Campylobacter jejuni (C. jejuni) between spatially separated broilers as a model system. We distinguish three stages in the process of indirect transmission; (1) an infectious “sender” excretes the agent, after which (2) the agent is transported via some route to a susceptible “receiver”, and subsequently (3) the receiver becomes colonised by the agent. The role of the sender and receiver side (stage 1 and stage 3) was studied here by using acidification of the drinking water as a modulation mechanism. Results In the experiment one control group and three treatment groups were monitored for the presence of C. jejuni by taking daily cloacal swabs. The three treatments consisted of acidification of the drinking water of the inoculated animals (the senders), acidification of the drinking water of the susceptible animals (the receivers) or acidification of the drinking water of both inoculated and susceptible animals. In the control group 12 animals got colonised out of a possible 40, in each treatment groups 3 animals out of a possible 40 were found colonised with C. jejuni. Conclusions The results of the experiments show a significant decrease in transmission rate (β) between the control groups and treatment groups (p < 0.01 for all groups) but not between different treatments; there is a significant negative interaction effect when both the sender and the receiver group receive acidified drinking water (p = 0.01). This negative interaction effect could be due to selection of bacteria already at the sender side thereby diminishing the effect of acidification at the receiver side. PMID:22831274

  3. Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review.

    PubMed

    Nidheesh, Puthiya Veetil

    2017-12-01

    Advanced oxidation processes (AOPs) received much attention in the field of water and wastewater treatment due to its ability to mineralize persistent organic pollutants from water medium. The addition of graphene-based materials increased the efficiency of all AOPs significantly. The present review analyzes the performance of graphene-based materials that supported AOPs in detail. Recent developments in this field are highlighted. A special focus has been awarded for the performance enhancement mechanism of AOPs in the presence of graphene-based materials.

  4. Water-level fluctuation in wetlands as a function of landscape condition in the prairie pothole region

    USGS Publications Warehouse

    Euliss, Ned H.; Mushet, David M.

    1996-01-01

    We evaluated water-level fluctuation (maximum water depth - minimum water depth/catchment size) in 12 temporary, 12 seasonal, and 12 semipermanent wetlands equally distributed among landscapes dominated by tilled agricultural lands and landscapes dominated by grassland. Water levels fluctuated an average of 14.14 cm in wetlands within tilled agricultural landscapes, while water levels in wetlands within grassland landscapes fluctuated an average of only 4.27 cm. Tillage reduces the natural capacity of catch meets to mitigate surface flow into wetland basins during precipitation events, resulting in greater water-level fluctuations in wetlands with tilled catchments. In addition, water levels in temporary and seasonal wetlands fluctuated an average of 13.74 cm and 11.82 cm, respectively, while water levels in semipermanent wetlands fluctuated only 2.77 cm. Semipermanent wetlands receive a larger proportion of their water as input from ground water than do either temporary or seasonal wetlands. This input of water from the ground has a stabilizing effect on water-levels of semipermanent wetlands. Increases in water-level fluctuation due to tillage or due to alteration of ground-water hydrology may ultimately affect the composition of a wetland's flora and fauna. In this paper, we also describe an inexpensive device for determining absolute maximum and minimum water levels in wetlands.

  5. Nonpoint source of nutrients and herbicides associated with sugarcane production and its impact on Louisiana coastal water quality.

    PubMed

    Yu, Kewei; Delaune, Ronald D; Tao, Rui; Beine, Robert L

    2008-01-01

    A watershed analysis of nonpoint-source pollution associated with sugarcane (Saccharum officinarum L.) production was conducted. Runoff water samples following major rainfall events from two representative sugarcane fields (SC1 and SC2) were collected and analyzed. The impact of runoff on two receiving water bodies, St. James canal (SJC) and Bayou Chevreuil (BC) in a drainage basin (Baratarian Basin), was studied. Results show that runoff flow/rainfall ratios at the SC1 were significantly higher (P < 0.0001, n = 14) than at the SC2, probably mainly due to higher sand content and higher infiltration rate of surface soil at the SC2. In runoff water samples, total suspended solids (TSS) showed a significant correlation with the concentrations of N and P. Sugarcane runoff showed a direct impact on the SJC and BC locations where seasonal variations of pollutant concentrations in the waters followed the patterns of runoff loadings. Swamp forest runoff (SFR) location showed a buffering effect of forested wetlands on water quality with the lowest measured pollutant concentrations. The ratios in total N/total P and in inorganic N/organic N in runoff waters indicated that fertilization in spring greatly contributed to the temporal increase of N loadings, especially in forms of inorganic N. Isotope signature of (15)N-nitrate in the water samples verified that the nitrate was derived from fertilizers and was consumed during transportation. Both N and P concentrations in the receiving water bodies were above the eutrophic level. During the study period, herbicide concentrations in the receiving water bodies rarely exceeded the drinking water standards.

  6. Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters.

    PubMed

    Lindqvist, Niina; Tuhkanen, Tuula; Kronberg, Leif

    2005-06-01

    The occurrence of five acidic pharmaceuticals, ibuprofen, naproxen, ketoprofen, diclofenac and bezafibrate, in seven different sewage treatment plants (STP) and three receiving waters were determined. The analytical procedure included solid phase extraction, liquid chromatographic separation and detection by a triple-quadrupole mass spectrometer. The studied pharmaceuticals were found in all the STPs. The pattern of the occurrence of individual compounds was the same in every STP and matched the consumption figures reported in the literature. Ibuprofen is the most used pharmaceutical in Finland and was accordingly found to be the most abundant compound in the raw sewage. In the treatment processes, the highest removal rate was observed for ibuprofen and the lowest for diclofenac, 92%+/-8% and 26%+/-17%, respectively. Due to the incomplete removal in the STPs, the pharmaceuticals were found in rivers at the discharge points of the STP effluents. Downstream from the discharge points, the concentrations decreased significantly mainly due to dilution in the river water. The risk to the aquatic environment was estimated by a ratio of measured environmental concentration (MEC) and predicted no-effect concentration (PNEC). At the concentrations the compounds were found in the surface waters, they should not pose risk for the aquatic environment. However, at dry seasons and/or during malfunctions of STPs, ibuprofen could be associated with a risk in small river systems.

  7. Hydrodynamic modelling of the influence of stormwater and combined sewer overflows on receiving water quality: Benzo(a)pyrene and copper risks to recreational water.

    PubMed

    Björklund, Karin; Bondelind, Mia; Karlsson, Anna; Karlsson, Dick; Sokolova, Ekaterina

    2018-02-01

    The risk from chemical substances in surface waters is often increased during wet weather, due to surface runoff, combined sewer overflows (CSOs) and erosion of contaminated land. There are strong incentives to improve the quality of surface waters affected by human activities, not only from ecotoxicity and ecosystem health perspectives, but also for drinking water and recreational purposes. The aim of this study is to investigate the influence of urban stormwater discharges and CSOs on receiving water in the context of chemical health risks and recreational water quality. Transport of copper (Cu) and benzo[a]pyrene (BaP) in the Göta River (Sweden) was simulated using a hydrodynamic model. Within the 16 km modelled section, 35 CSO and 16 urban stormwater point discharges, as well as the effluent from a major wastewater treatment plant, were included. Pollutant concentrations in the river were simulated for two rain events and investigated at 13 suggested bathing sites. The simulations indicate that water quality guideline values for Cu are exceeded at several sites, and that stormwater discharges generally give rise to higher Cu and BaP concentrations than CSOs. Due to the location of point discharges and the river current inhibiting lateral mixing, the north shore of the river is better suited for bathing. Peak concentrations have a short duration; increased concentrations of the pollutants may however be present for several days after a rain event. Monitoring of river water quality indicates that simulated Cu and BaP concentrations are in the same order of magnitude as measured concentrations. It is concluded that hydrodynamic modelling is a useful tool for identifying suitable bathing sites in urban surface waters and areas of concern where mitigation measures should be implemented to improve water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The effect of hippophae rhamnoides extract on oral mucositis induced in rats with methotrexate.

    PubMed

    Kuduban, Ozan; Mazlumoglu, Muhammed Recai; Kuduban, Selma Denktas; Erhan, Ertugrul; Cetin, Nihal; Kukula, Osman; Yarali, Oguzhan; Cimen, Ferda Keskin; Cankaya, Murat

    2016-01-01

    To investigate the effect of HRE (Hippophae rhamnoides extract) on oral mucositis induced in rats with MTX. Experimental animals were divided into groups as healthy (HG), HRE+MTX (HMTX), and control group, which received MTX (MTXC). HMTX group received 50 mg/kg HRE while MTXC and HG groups received equivolume distilled water with gavage once a day. After one hour of HRE and distilled water administration, HMTX and MTXC groups received a single dose of oral MTX 5 mg/ kg. This procedure was repeated for one month. The levels of MDA, IL-1β, and TNF-α were found to be significantly higher in the cheek, lower lip, and tongue tissue of the animals receiving MTX, compared with HG and HMTX groups; however, these parameters were lower in the cheek and low lip tissue, and a milder damage ocurred in these tissues, compared with the tongue tissue in MTXC group. No histopathologic damage was observed in the cheek, lower lip, and tongue tissues of the rats treated with HRE. This findings indicate that HRE as a natural product is an important advantage compared with synthetic drugs for prophylaxis of oral mucositis developed due to MTX.

  9. Study on the propagation properties of laser in aerosol based on Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Leng, Kun; Wu, Wenyuan; Zhang, Xi; Gong, Yanchun; Yang, Yuntao

    2018-02-01

    When laser propagate in the atmosphere, due to aerosol scattering and absorption, laser energy will continue to decline, affecting the effectiveness of the laser effect. Based on the Monte Carlo method, the relationship between the photon spatial energy distributions of the laser wavelengths of 10.6μm in marine, sand-type, water-soluble and soot aerosols ,and the propagation distance, visibility and the divergence angle were studied. The results show that for 10.6μm laser, the maximum number of attenuation of photons arriving at the receiving plane is sand-type aerosol, the minimal attenuation is water soluble aerosol; as the propagation distance increases, the number of photons arriving at the receiving plane decreases; as the visibility increases, the number of photons arriving at the receiving plane increases rapidly and then stabilizes; in the above cases, the photon energy distribution does not deviated from the Gaussian distribution; as the divergence angle increases, the number of photons arriving at the receiving plane is almost unchanged, but the photon energy distribution gradually deviates from the Gaussian distribution.

  10. Two-dimensional porous anodic alumina for optoelectronics and photocatalytic application

    NASA Astrophysics Data System (ADS)

    Khoroshko, L. S.

    2015-11-01

    Fabrication of porous anodic alumina film structures using anodizing, sol-gel synthesis and photolithography is reported. The structures receive interest as planar waveguides due to strong photoluminescence of the embedded trivalent lanthanides. Mesoporous structures comprising sol-gel derived titania in porous anodic alumina play a role of effective catalyst for water purification.

  11. Effect of membrane and process characteristics on cost and energy usage for separating alcohol–water mixtures using a hybrid vapor stripping–vapor permeation process

    EPA Science Inventory

    BACKGROUND: Alcohols, including ethanol and butanol, are receiving increased attention as renewable liquid biofuels. Alcohol concentrations may be low in a biological process due to product inhibition and, for non-starch feedstocks, limited substrate concentrations. The result is...

  12. EVALUATION OF RETENTION POND AND CONSTRUCTED WETLAND BMPS FOR TREATING PARTICULATE-BOUND HEAVY METALS IN URBAN STORMWATER RUNOFF

    EPA Science Inventory

    Urban stormwater discharge during wet-weather flows is a major contributor to the pollution of many receiving waters. Heavy metals are of particular interest in stormwater runoff due to their toxicity, ubiquitousness, and their inability to degrade in the environment. The sources...

  13. Traditional Knowledge of Rainwater Harvesting Compared to Five Modern Case Studies (proceedings)

    EPA Science Inventory

    The water-energy-food nexus is receiving increased attention worldwide due to climate change and rising population. According to a projection of the United Nations, the global population is expected to increase by a factor of 1.3 by 2050—from 7.2 billion to 9.6 billion—with corre...

  14. Eutrophication and Bacterial Pathogens as Risk Factors for Avian Botulism Outbreaks in Wetlands Receiving Effluents from Urban Wastewater Treatment Plants

    PubMed Central

    Vidal, Dolors; Laguna, Celia; Díaz-Sánchez, Sandra; Sánchez, Sergio; Chicote, Álvaro; Florín, Máximo; Mateo, Rafael

    2014-01-01

    Due to the scarcity of water resources in the “Mancha Húmeda” Biosphere Reserve, the use of treated wastewater has been proposed as a solution for the conservation of natural threatened floodplain wetlands. In addition, wastewater treatment plants of many villages pour their effluent into nearby natural lakes. We hypothesized that certain avian pathogens present in wastewater may cause avian mortalities which would trigger avian botulism outbreaks. With the aim of testing our hypothesis, 24 locations distributed in three wetlands, two that receive wastewater effluents and one serving as a control, were monitored during a year. Sediment, water, water bird feces, and invertebrates were collected for the detection of putative avian pathogenic Escherichia coli (APEC), Salmonella spp., Clostridium perfringens type A, and Clostridium botulinum type C/D. Also, water and sediment physicochemical properties were determined. Overall, APEC, C. perfringens, and C. botulinum were significantly more prevalent in samples belonging to the wetlands which receive wastewater. The occurrence of a botulism outbreak in one of the studied wetlands coincided with high water temperatures and sediment 5-day biochemical oxygen demand (BOD5), a decrease in water redox potential, chlorophyll a, and sulfate levels, and an increase in water inorganic carbon levels. The presence of C. botulinum in bird feces before the onset of the outbreak indicates that carrier birds exist and highlights the risk of botulinum toxin production in their carcasses if they die by other causes such as bacterial diseases, which are more probable in wastewater wetlands. PMID:24795377

  15. Examination of time-reversal acoustics in shallow water and applications to noncoherent underwater communications.

    PubMed

    Smith, Kevin B; Abrantes, Antonio A M; Larraza, Andres

    2003-06-01

    The shallow water acoustic communication channel is characterized by strong signal degradation caused by multipath propagation and high spatial and temporal variability of the channel conditions. At the receiver, multipath propagation causes intersymbol interference and is considered the most important of the channel distortions. This paper examines the application of time-reversal acoustic (TRA) arrays, i.e., phase-conjugated arrays (PCAs), that generate a spatio-temporal focus of acoustic energy at the receiver location, eliminating distortions introduced by channel propagation. This technique is self-adaptive and automatically compensates for environmental effects and array imperfections without the need to explicitly characterize the environment. An attempt is made to characterize the influences of a PCA design on its focusing properties with particular attention given to applications in noncoherent underwater acoustic communication systems. Due to the PCA spatial diversity focusing properties, PC arrays may have an important role in an acoustic local area network. Each array is able to simultaneously transmit different messages that will focus only at the destination receiver node.

  16. Ecologic and Morphologic Analysis of a Proposed Network of Sediment Diversions

    NASA Astrophysics Data System (ADS)

    Meselhe, E. A.; Sadid, K. M.; Jung, H.; Messina, F.; Esposito, C.; Liang, M.

    2017-12-01

    Deltaic processes are governed by factors including the characteristics of inflowing sediment (e.g., temporal variability of the load and size class distribution), receiving basins (e.g., water depth, tidal range, circulation pattern, and wind field), and substrate (e.g., sediment type and soil strength). These factors influence the deltaic growth as well as the size and pattern of channel bifurcations. This topic is of importance to deltas experiencing land loss due to subsidence and sea level rise. The Mississippi River Delta is an example where a number of sediment diversions are being considered in conjunction with other restoration actions to minimize loss of wetlands. Historically, the Mississippi River played a significant role in providing sediment, nutrients, and fresh water to support Louisiana's coastal wetland system. As such, a systems perspective for regional-scale implementation of diversions is important. Field observations coupled with numerical modeling at various temporal and spatial scales, has provided insights toward a system-scale approach to design, evaluate and operate sediment diversions. These research activities investigate the uncertainties associated with morphodynamic processes both on the river and receiving basin sides and identify parameters influencing the magnitude and rate of building new land and sustaining existing wetland areas. Specifically, this presentation discusses the impact of extracting sediment and water from fluvial rivers, the ability to convey (and retain) sediment to the receiving basins. In addition to delivering sediment to receiving basins, some proposed sediment diversions could discharge high volumes of nutrient-rich fresh water into existing wetlands and bays. A goal of the analysis presented here is to improve our understanding of morphodynamic responses of the receiving basins and the ecosystem effects of discharges of freshwater and nutrients at this scale.

  17. Event-based design tool for construction site erosion and sediment controls

    NASA Astrophysics Data System (ADS)

    Trenouth, William R.; Gharabaghi, Bahram

    2015-09-01

    This paper provides additional discussion surrounding the novel event-based soil loss models developed by Trenouth and Gharabaghi (2015) for the design of erosion and sediment controls (ESCs) for various phases of construction - from pre-development to post-development conditions. The datasets for the study were obtained from three Ontario sites - Greensborough, Cookstown, and Alcona - in addition to datasets mined from the literature for three additional sites - Treynor, Iowa, Coshocton, Ohio and Cordoba, Spain. Model performances were evaluated for each of the study sites, and quantified using commonly-reported statistics. This work is nested within a broader conceptual framework, which includes the estimation of ambient receiving water quality, the prediction of event mean runoff quality for a given design storm, and the calculation of the required level of protection using adequate ESCs to meet receiving water quality guidelines. These models allow design engineers and regulatory agencies to assess the potential risk of ecological damage to receiving waters due to inadequate soil erosion and sediment control practices using dynamic scenario forecasting when considering rapidly changing land use conditions during various phases of construction, typically for a 2- or 5-year design storm return period.

  18. Water-quality analysis of an intensively used on-farm storage reservoir in the northeast Arkansas delta.

    PubMed

    Moore, Matthew T; Pierce, Jon R; Farris, Jerry L

    2015-07-01

    The use of farm reservoirs for supplemental irrigation is gaining popularity in the Mississippi Alluvial Plain (MAP). Due to depletions of several aquifers, many counties within the MAP have been designated as critical-use groundwater areas. To help alleviate stress on these aquifers, many farmers are implementing storage reservoirs for economic and conservation benefits. When used in tandem with a tailwater recovery system, reservoirs have the potential to trap and transform potential contaminants (e.g., nutrients and pesticides) rather than releasing them through drainage into receiving systems such as lakes, rivers, and streams. Roberts Reservoir is an intensively used, 49-ha on-farm storage reservoir located in Poinsett County, Arkansas. Water-quality analyses and toxicity assessments of the reservoir and surrounding ditches indicated a stable water-quality environment with no observed toxicity present in collected samples. Results of this study suggest that water released into a local receiving stream poses no contaminant risk and could be maintained for irrigation purposes, thereby decreasing the need for additional groundwater depletion.

  19. Rainfall measurement from opportunistic use of earth-space link in Ku Band

    NASA Astrophysics Data System (ADS)

    Barthès, L.; Mallet, C.

    2013-02-01

    The present study deals with the development of a low cost microwave device devoted to measure average rain rate observed along earth - satellite links. The principle is to use rain atmospheric attenuation along Earth - space links in Ku-band to deduce the path averaged rain rate. These links are characterized by a path length of a few km through the troposphere. Ground based power measurements are carried out by receiving TV channels from different geostationary satellites in Ku-band. The major difficulty in this study is to retrieve rain characteristics among many fluctuations of the received signal which are due to atmospheric scintillations, changes in the composition of the atmosphere (water vapour concentration, cloud water content) or satellite features (variation of the emitted power, satellite motions). In order to perform a feasibility study of such a device, a measurement campaign has been performed for five months near Paris. This paper proposes an algorithm based on an artificial neural network to identify drought and rainy periods and to suppress the variability of the received signal due to no-rain effects. Taking into account the height of the rain layer, rain attenuation is then inverted to obtain path averaged rain rate. Obtained rainfall rates are compared with co-located rain gauges and radar measurements on the whole experiment period, then the most significant rainy events are analyzed.

  20. Effects of a prescribed fire on water use and photosynthetic capacity of pitch pines

    Treesearch

    Heidi J. Renninger; Kenneth L. Clark; Nicholas Skowronski; Karina V.R. Schäfer

    2013-01-01

    Although wildfires are important in many forested ecosystems, increasing suburbanization necessitates management with prescribed fires. The physiological responses of overstory trees to prescribed fire has received little study and may differ from typical wildfires due to the lower intensity and timing of prescribed fire in the dormant season. Trees may be negatively...

  1. Hydrologic Controls on Sediment Retention in a Diversion-Fed Coastal Wetland

    NASA Astrophysics Data System (ADS)

    Keogh, M.; Kolker, A.; Snedden, G.; Renfro, A. A.

    2017-12-01

    The morphodynamics of river-dominated deltas are largely controlled by the supply and retention of sediment within deltaic wetlands and the rate of relative sea-level rise. Yet, sediment budgets for deltas are often poorly constrained. In the Mississippi River Delta, a system rapidly losing land to natural and anthropogenic causes, restoration efforts seek to build new land through the use of river diversions. At Davis Pond Freshwater Diversion, a new crevasse splay has emerged since construction was completed in 2002. Here, we use beryllium-7 (7Be) activity in sediment cores and USGS measurements of discharge and turbidity to calculate seasonal sediment input, deposition, and retention within the Davis Pond receiving basin. In winter/spring 2015, Davis Pond received 104,000 metric tons of sediment, 43.8% of which was retained within the basin. During this time, mean flow velocity was 0.21 m/s and turbidity was 56 formazin nephelometric units (FNU). In summer/fall 2015, Davis Pond received 35,100 metric tons of sediment, 82.1% of which was retained. Mean flow velocity in summer/fall was 0.10 m/s and turbidity was 55 FNU. The increase in sediment retention from winter/spring 2015 to summer/fall 2015 is likely due to the corresponding drop in water flow velocity, which allowed more sediment to settle out of suspension. Although high water discharge increases sediment input and deposition, increased turbulence associated with higher current velocity may increase sediment throughput and decrease the percent of sediments retained in the system. Sediment retention in Davis Pond is on the high end of the range seen in deltaic wetlands, likely due to the enclosed geometry of the receiving basin. Future diversion design and operation should target moderate water discharge and flow velocities in order to jointly maximize sediment deposition and retention and provide optimal conditions for delta growth.

  2. Perceptional and socio-demographic factors associated with household drinking water management strategies in rural Puerto Rico.

    PubMed

    Jain, Meha; Lim, Yili; Arce-Nazario, Javier A; Uriarte, María

    2014-01-01

    Identifying which factors influence household water management can help policy makers target interventions to improve drinking water quality for communities that may not receive adequate water quality at the tap. We assessed which perceptional and socio-demographic factors are associated with household drinking water management strategies in rural Puerto Rico. Specifically, we examined which factors were associated with household decisions to boil or filter tap water before drinking, or to obtain drinking water from multiple sources. We find that households differ in their management strategies depending on the institution that distributes water (i.e. government PRASA vs community-managed non-PRASA), perceptions of institutional efficacy, and perceptions of water quality. Specifically, households in PRASA communities are more likely to boil and filter their tap water due to perceptions of low water quality. Households in non-PRASA communities are more likely to procure water from multiple sources due to perceptions of institutional inefficacy. Based on informal discussions with community members, we suggest that water quality may be improved if PRASA systems improve the taste and odor of tap water, possibly by allowing for dechlorination prior to distribution, and if non-PRASA systems reduce the turbidity of water at the tap, possibly by increasing the degree of chlorination and filtering prior to distribution. Future studies should examine objective water quality standards to identify whether current management strategies are effective at improving water quality prior to consumption.

  3. Perceptional and Socio-Demographic Factors Associated with Household Drinking Water Management Strategies in Rural Puerto Rico

    PubMed Central

    Jain, Meha; Lim, Yili; Arce-Nazario, Javier A.; Uriarte, María

    2014-01-01

    Identifying which factors influence household water management can help policy makers target interventions to improve drinking water quality for communities that may not receive adequate water quality at the tap. We assessed which perceptional and socio-demographic factors are associated with household drinking water management strategies in rural Puerto Rico. Specifically, we examined which factors were associated with household decisions to boil or filter tap water before drinking, or to obtain drinking water from multiple sources. We find that households differ in their management strategies depending on the institution that distributes water (i.e. government PRASA vs community-managed non-PRASA), perceptions of institutional efficacy, and perceptions of water quality. Specifically, households in PRASA communities are more likely to boil and filter their tap water due to perceptions of low water quality. Households in non-PRASA communities are more likely to procure water from multiple sources due to perceptions of institutional inefficacy. Based on informal discussions with community members, we suggest that water quality may be improved if PRASA systems improve the taste and odor of tap water, possibly by allowing for dechlorination prior to distribution, and if non-PRASA systems reduce the turbidity of water at the tap, possibly by increasing the degree of chlorination and filtering prior to distribution. Future studies should examine objective water quality standards to identify whether current management strategies are effective at improving water quality prior to consumption. PMID:24586302

  4. The effect of hippophae rhamnoides extract on oral mucositis induced in rats with methotrexate

    PubMed Central

    Kuduban, Ozan; Mazlumoglu, Muhammed Recai; Kuduban, Selma Denktas; Erhan, Ertugrul; Cetin, Nihal; Kukula, Osman; Yarali, Oguzhan; Cimen, Ferda Keskin; Cankaya, Murat

    2016-01-01

    ABSTRACT Objective: To investigate the effect of HRE (Hippophae rhamnoides extract) on oral mucositis induced in rats with MTX. Material and Methods: Experimental animals were divided into groups as healthy (HG), HRE+MTX (HMTX), and control group, which received MTX (MTXC). HMTX group received 50 mg/kg HRE while MTXC and HG groups received equivolume distilled water with gavage once a day. After one hour of HRE and distilled water administration, HMTX and MTXC groups received a single dose of oral MTX 5 mg/ kg. This procedure was repeated for one month. Results: The levels of MDA, IL-1β, and TNF-α were found to be significantly higher in the cheek, lower lip, and tongue tissue of the animals receiving MTX, compared with HG and HMTX groups; however, these parameters were lower in the cheek and low lip tissue, and a milder damage ocurred in these tissues, compared with the tongue tissue in MTXC group. No histopathologic damage was observed in the cheek, lower lip, and tongue tissues of the rats treated with HRE. Conclusion: This findings indicate that HRE as a natural product is an important advantage compared with synthetic drugs for prophylaxis of oral mucositis developed due to MTX. PMID:27812611

  5. Widespread, routine occurrence of pharmaceuticals in sewage effluent, combined sewer overflows and receiving waters.

    PubMed

    Kay, Paul; Hughes, Stephen R; Ault, James R; Ashcroft, Alison E; Brown, Lee E

    2017-01-01

    Research addressing the occurrence, fate and effects of pharmaceuticals in the aquatic environment has expanded rapidly over the past two decades, primarily due to the development of improved chemical analysis methods. Significant research gaps still remain, however, including a lack of longer term, repeated monitoring of rivers, determination of temporal and spatial changes in pharmaceutical concentrations, and inputs from sources other than wastewater treatment plants (WWTPs), such as combined sewer overflows (CSOs). In addressing these gaps it was found that the five pharmaceuticals studied were routinely (51-94% of the time) present in effluents and receiving waters at concentrations ranging from single ng to μg L -1 . Mean concentrations were in the tens to hundreds ng L -1 range and CSOs appear to be a significant source of pharmaceuticals to water courses in addition to WWTPs. Receiving water concentrations varied throughout the day although there were no pronounced peaks at particular times. Similarly, concentrations varied throughout the year although no consistent patterns were observed. No dissipation of the study compounds was found over a 5 km length of river despite no other known inputs to the river. In conclusion, pharmaceuticals are routinely present in semi-rural and urban rivers and require management alongside more traditional pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effects of inequality of supply hours on consumers' coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal.

    PubMed

    Guragai, B; Takizawa, S; Hashimoto, T; Oguma, K

    2017-12-01

    To investigate the effects of unequal supply hours on consumers' coping strategies and perceptions of the intermittent water supply (IWS) in the Kathmandu Valley (KV), Nepal we conducted a randomized household survey (n=369) and on-site water quality tests. Half of the households received piped water for 6 or fewer hours per week. To augment or cope with the inadequate supply, 28% of the households used highly contaminated and expensive tanker-delivered water. Half of the piped water samples (n=13) were contaminated with Escherichia coli. Free chlorine concentration in all piped water samples was below the national standards (0.1-0.2mg/L), but combined chlorine was detected at an average of 0.24mg/L, indicating ingression of contaminants in the network. Point-of-use devices could increase access to safe water in the KV from 42% to 80%. The use of Lorenz curves and Gini coefficients revealed inequality of piped water supply hours per week both between and within service areas in the KV, due mainly to a small percentage of households who receive longer supply hours. To cope with reduced supply hours, home owners pay more to get water from alternative sources, while tenants compromise their water consumption. Under IWS, expectations for improvements in piped water quality and supply regularity are higher than those for supply volume. Consumers' perceptions of the piped water services worsen with the reduction in supply hours, but perceptions of piped water tariff are independent of supply hours. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Assessment of water quality of Sembilang River receiving effluent from controlled municipal solid waste (MSW) landfill in Selangor

    NASA Astrophysics Data System (ADS)

    Tengku Ibrahim, T. N. B.; Othman, F.; Mahmood, N. Z.

    2017-06-01

    Most of the landfills in Malaysia are situated near to the main river basin that supplies almost 90% of water requirement. This includes landfills in Selangor where a total of 20 landfill sites are situated in 5 main river basins and the highest number of operating landfills (three) are at the Selangor River Basin (Jeram, Bukit Tagar and Kuang Inert landfills). This situation has caused wide concern over the water safety, even the leachate has been treated. The leachate itself still contains contaminants that are difficult to treat. The main objective of this study is to investigate the effect on water quality of Sembilang River that receives effluent from the nearby landfill. In this study, we analyzed samples of water from ten sampling stations starting from the upstream to downstream of Sembilang River. The water quality was evaluated by the Water Quality Index (WQI) depending on in-situ and laboratory analysis. 11 water quality variables are selected for the quality assessment; temperature, pH, turbidity, salinity, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, total suspended solid, ammoniacal nitrogen, phosphate and nitrate. The result indicated that, when the effluent mixed with the river water, the water quality decreased gradually and was found to be lower at a few stations. The water quality of Sembilang River falls under Class III of Water Quality Index with ranges between 68.03 to 43.46 mg/L. It is revealed that the present scenario of water quality of Sembilang River is due to the effect of effluent from the landfill.

  8. Water circulation and governing factors in humid tropical river basins in the central Western Ghats, Karnataka, India.

    PubMed

    Tripti, M; Lambs, L; Gurumurthy, G P; Moussa, I; Balakrishna, K; Chadaga, M D

    2016-01-15

    The small river basins in the narrow stretch of the Arabian Sea coast of southwest India experience high annual rainfall (800-8000 mm), with a higher proportion (85 %) during the summer monsoon period between June and September. This is due to a unique orographic barrier provided by the Western Ghats mountain belt (600-2600 m) for the summer monsoon brought by the southwesterly winds. This study is the first of a kind focusing on the water cycle with an intensive stable isotopes approach (samples of river water, groundwater, rainwater; seasonal and spatial sampling) in this part of the Western Ghats in Karnataka and also in the highest rainfall-receiving region (with places like Agumbe receiving 7000-8000 mm annual rainfall) in South India. In addition, the region lacks sustainable water budgeting due to high demographic pressure and a dry pre-monsoon season as the monsoon is mainly unimodal in this part of India, particularly close to the coast. The stable isotopic compositions of groundwater, river water and rainwater in two tropical river basins situated approximately 60 km apart, namely the Swarna near Udupi and the Nethravati near Mangalore, were studied from 2010 to 2013. The δ(18)O and δ(2)H values of the water samples were measured by isotope ratio mass spectrometry, and the d-excess values calculated to better understand the dominant source of the water and the influence of evaporation/recycling processes. The water in the smaller area basin (Swarna basin) does not show seasonal variability in the δ(18)O values for groundwater and river water, having a similar mean value of -3.1 ‰. The d-excess value remains higher in both wet and dry seasons suggesting strong water vapor recycling along the foothills of the Western Ghats. In contrast, the larger tropical basin (Nethravati basin) displays specific seasonal isotopic variability. The observation of higher d-excess values in winter with lower δ(18)O values suggests an influence of northeast winter monsoon water in the larger basin. The narrow coastal strip to the west of the Western Ghats displays unique water characteristics in both tropical river basins investigated. For the smaller and hilly Swarna basin, the dense vegetation (wet canopies) could largely re-evaporate the (intercepted) rain, leading to no marked seasonal or altitude effect on the water isotope values within the basin. The larger Nethravati basin, which stretches farther into the foothills of the Western Ghats, receives winter monsoon water, and thus exhibits a clear seasonal variability in rainfall moisture sources. The degree of water vapor recycling in these wet tropical basins dominates the isotopic composition in this narrow coastal stretch of South India. An insight into the soil water contribution to the river water and groundwater, even in the rainfall-dependent tropical basins of South India, is provided in this study. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Holistic blue water use and life cycle cost savings of domestic and agricultural rainwater harvesting at the watershed scale in the Southeast US

    EPA Science Inventory

    According to the U.S. Global Change Research Program, from 1970 to 2007 most of the Southeast U.S. received heavy downpours in recent autumns while moderate-to-severe drought increased in spring and summer (12% and 14%). Rainwater harvesting (RWH) is getting attention due to rece...

  10. High-rate synthetic aperture communications in shallow water.

    PubMed

    Song, H C; Hodgkiss, W S; Kuperman, W A; Akal, T; Stevenson, M

    2009-12-01

    Time reversal communication exploits spatial diversity to achieve spatial and temporal focusing in complex ocean environments. Spatial diversity can be provided easily by a vertical array in a waveguide. Alternatively, spatial diversity can be obtained from a virtual horizontal array generated by two elements, a transmitter and a receiver, due to relative motion between them, referred to as a synthetic aperture. This paper presents coherent synthetic aperture communication results from at-sea experiments conducted in two different frequency bands: (1) 2-4 kHz and (2) 8-20 kHz. Case (1) employs binary-phase shift-keying modulation, while case (2) involves up to eight-phase shift keying modulation with a data rate of 30 kbits/s divided by the number of transmissions (diversity) to be accumulated. The receiver utilizes time reversal diversity combining followed by a single channel equalizer, with frequent channel updates to accommodate the time-varying channel due to coupling of space and time in the presence of motion. Two to five consecutive transmissions from a source moving at 4 kts over 3-6 km range in shallow water are combined successfully after Doppler compensation, confirming the feasibility of coherent synthetic aperture communications using time reversal.

  11. Cultural eutrophication control through water reuse.

    PubMed

    Sala, L; Mujeriego, R

    2001-01-01

    The increasing use of mineral fertilisers over the last decades has contributed to the appearance of numerous cases of water eutrophication, a new form of water pollution. The starting point of eutrophication is the increase of nutrient concentration (nitrogen and phosphorus) in a water mass, which is subsequently followed by an uncontrolled growth of primary producers and episodes of oxygen depletion due to microbial decomposition of algal organic matter. The excess nutrient loads reaching surface waters are usually associated to discharges from anthropogenic activities, which normally involve direct water usage instead of reuse of reclaimed effluents. Agriculture activities and livestock breeding are two of the main nutrient sources responsible for water eutrophication, as well as human--urban and industrial--wastewater discharges. Wastewater reclamation and reuse can be a suitable strategy for preserving the quality of natural waters, by suppressing effluent discharges and the associated nutrient contributions to receiving waters. Reuse of reclaimed water for agricultural and landscape irrigation as well as for environmental enhancement offers an adequate strategy for preserving natural water systems from eutrophication.

  12. Analysis of water application efficiency and emission uniformity of drip irrigation systems based on space-time analysis of soil moisture patterns in soils

    NASA Astrophysics Data System (ADS)

    Shabeeb, Ahmeed; Taha, Uday; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    In order to evaluate how efficiently and uniformly drip irrigation systems can deliver water to emitters distributed around a field, we need some methods for measuring/calculating water application efficiency (WAE) and emission uniformity (EU). In general, the calculation of the WAE and of other efficiency indices requires the measurement of the water stored in the root zone. Measuring water storage in soils allows directly saying how much water a given location of the field retains having received a given amount of irrigation water. And yet, due to the difficulties of measuring water content variability under an irrigation system at field scale, it is quite common using EU as a proxy indicator of the irrigation performance. This implicitly means assuming that the uniformity of water application is immediately reflected in an uniformity of water stored in the root zone. In other words, that if a site receive more water it will store more water. Nevertheless, due to the heterogeneity of soil hydrological properties the same EU may correspond to very different distributions of water stored in the soil root zone. 1) In the case of isolated drippers, the storages measured in the soil root zone layer shortly after an irrigation event may be or not different from the water height applied at the surface depending on the vertical/horizontal development of the wetted bulbs. Specifically, in the case of dominant horizontal spreading the water storage is expected to reflect the distribution of water applied at the surface. To the contrary, in the case of relatively significant vertical spreading, deep percolation fluxes (fluxes leaving the root zone) may well induce water storages in the root zone significantly different from the water applied at the surface. 2) The drippers and laterals are close enough that the wetted bulbs below adjacent drippers may interact. In this case, lateral fluxes in the soil may well induce water storages in the root zone which may be significantly uncorrelated with the uniformity of the water applied at the surface. In both the cases, the size of lateral fluxes compared to the vertical ones throughout the rooting zone depends, besides the soil hydraulic properties, on the amount of water delivered to the soil. Larger water applications produce greater spreading, but in both the horizontal and vertical directions. Increased vertical spreading may be undesirable because water moving below the active root zone can result in wasted water, loss of nutrients, and groundwater pollution.

  13. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams.

    PubMed

    Corsi, S R; Booth, N L; Hall, D W

    2001-07-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  14. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams

    USGS Publications Warehouse

    Corsi, S.R.; Booth, N.L.; Hall, D.W.

    2001-01-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  15. Water quality of a coastal Louisiana swamp and how dredging is undermining restoration efforts

    NASA Astrophysics Data System (ADS)

    Lane, Robert R.; Huang, Haosheng; Day, John W.; Justic, Dubravko; DeLaune, Ronald D.

    2015-01-01

    The Bayou Boeuf Basin (BBB), a sub-basin of the Barataria Basin estuary in coastal Louisiana, consists of forested and floating wetlands receiving drainage from surrounding agricultural fields and urban watersheds. We characterized surface water quality in the BBB, and determined through hydrologic modeling if a series of levee breaks along major drainage channels would significantly improve water quality by allowing flow into surrounding wetlands. Surface water monitoring found surrounding sugarcane farm fields to be major sources of nutrient and sediment loading. Hydrological modeling indicated that levee breaks would increase N reduction from the current 21.4% to only 29.2%, which is much lower than the anticipated 90-100% removal rate. This was due to several factors, one them being dredging of main drainage channels to such a degree that water levels do not rise much above the surrounding wetland elevation even during severe storms, so only a very small fraction of the stormwater carried in the channel is exposed to wetlands. These unexpected results provide insight into an undoubtedly pervasive problem in human dominated wetland systems; that of decreased flooding during storm events due to channel deepening by dredging activities. Additional water quality management practices should be implemented at the farm field level, prior to water entering major drainage canals.

  16. Water jacket for solid particle solar receiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasyluk, David T.

    A solar receiver includes: water jacket panels each having a light-receiving side and a back side with a watertight sealed plenum defined in-between; light apertures passing through the watertight sealed plenums to receive light from the light-receiving sides of the water jacket panels; a heat transfer medium gap defined between the back sides of the water jacket panels and a cylindrical back plate; and light channeling tubes optically coupled with the light apertures and extending into the heat transfer medium gap. In some embodiments ends of the light apertures at the light receiving side of the water jacket panel aremore » welded together to define at least a portion of the light-receiving side. A cylindrical solar receiver may be constructed using a plurality of such water jacket panels arranged with their light-receiving sides facing outward.« less

  17. Storm water management in an urban catchment: effects of source control and real-time management of sewer systems on receiving water quality.

    PubMed

    Frehmann, T; Nafo, I; Niemann, A; Geiger, W F

    2002-01-01

    For the examination of the effects of different storm water management strategies in an urban catchment area on receiving water quality, an integrated simulation of the sewer system, wastewater treatment plant and receiving water is carried out. In the sewer system real-time control measures are implemented. As examples of source control measures the reduction of wastewater and the reduction of the amount of impervious surfaces producing storm water discharges are examined. The surface runoff calculation and the simulation of the sewer system and the WWTP are based on a MATLAB/SIMULINK simulation environment. The impact of the measures on the receiving water is simulated using AQUASIM. It can be shown that the examined storm water management measures, especially the source control measures, can reduce the combined sewer overflow volume and the pollutant discharge load considerably. All examined measures also have positive effects on the receiving water quality. Moreover, the reduction of impervious surfaces avoids combined sewer overflow activities, and in consequence prevents pollutants from discharging into the receiving water after small rainfall events. However, the receiving water quality improvement may not be seen as important enough to avoid acute receiving water effects in general.

  18. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach.

    PubMed

    Tiwari, Bhagyashree; Sellamuthu, Balasubramanian; Ouarda, Yassine; Drogui, Patrick; Tyagi, Rajeshwar D; Buelna, Gerardo

    2017-01-01

    Due to research advancement and discoveries in the field of medical science, maintains and provides better human health and safer life, which lead to high demand for production of pharmaceutical compounds with a concomitant increase in population. These pharmaceutical (biologically active) compounds were not fully metabolized by the body and excreted out in wastewater. This micro-pollutant remains unchanged during wastewater treatment plant operation and enters into the receiving environment via the discharge of treated water. Persistence of pharmaceutical compounds in both surface and ground waters becomes a major concern due to their potential eco-toxicity. Pharmaceuticals (emerging micro-pollutants) deteriorate the water quality and impart a toxic effect on living organisms. Therefore, from last two decades, plenty of studies were conducted on the occurrence, impact, and removal of pharmaceutical residues from the environment. This review provides an overview on the fate and removal of pharmaceutical compounds via biological treatment process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Critical review: Uncharted waters? The future of the electricity-water nexus.

    PubMed

    Sanders, Kelly T

    2015-01-06

    Electricity generation often requires large amounts of water, most notably for cooling thermoelectric power generators and moving hydroelectric turbines. This so-called "electricity-water nexus" has received increasing attention in recent years by governments, nongovernmental organizations, industry, and academics, especially in light of increasing water stress in many regions around the world. Although many analyses have attempted to project the future water requirements of electricity generation, projections vary considerably due to differences in temporal and spatial boundaries, modeling frameworks, and scenario definitions. This manuscript is intended to provide a critical review of recent publications that address the future water requirements of electricity production and define the factors that will moderate the water requirements of the electric grid moving forward to inform future research. The five variables identified include changes in (1) fuel consumption patterns, (2) cooling technology preferences, (3) environmental regulations, (4) ambient climate conditions, and (5) electric grid characteristics. These five factors are analyzed to provide guidance for future research related to the electricity-water nexus.

  20. Optimizing piezoelectric receivers for acoustic power transfer applications

    NASA Astrophysics Data System (ADS)

    Gorostiaga, M.; Wapler, M. C.; Wallrabe, U.

    2018-07-01

    In this paper, we aim to optimize piezoelectric plate receivers for acoustic power transfer applications by analyzing the influence of the losses and of the acoustic boundary conditions. We derive the analytic expressions of the efficiency of the receiver with the optimal electric loads attached, and analyze the maximum efficiency value and its frequency with different loss and acoustic boundary conditions. To validate the analytical expressions that we have derived, we perform experiments in water with composite transducers of different filling fractions, and see that a lower acoustic impedance mismatch can compensate the influence of large dielectric and acoustic losses to achieve a good performance. Finally, we briefly compare the advantages and drawbacks of composite transducers and pure PZT (lead zirconate titanate) plates as acoustic power receivers, and conclude that 1–3 composites can achieve similar efficiency values in low power applications due to their adjustable acoustic impedance.

  1. 25 CFR 171.205 - How much water will I receive?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true How much water will I receive? 171.205 Section 171.205 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.205 How much water will I receive? The amount of water you receive will be based on your request, your legal...

  2. 25 CFR 171.205 - How much water will I receive?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false How much water will I receive? 171.205 Section 171.205 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.205 How much water will I receive? The amount of water you receive will be based on your request, your legal...

  3. 25 CFR 171.205 - How much water will I receive?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How much water will I receive? 171.205 Section 171.205 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.205 How much water will I receive? The amount of water you receive will be based on your request, your legal...

  4. An index for plant water deficit based on root-weighted soil water content

    NASA Astrophysics Data System (ADS)

    Shi, Jianchu; Li, Sen; Zuo, Qiang; Ben-Gal, Alon

    2015-03-01

    Governed by atmospheric demand, soil water conditions and plant characteristics, plant water status is dynamic, complex, and fundamental to efficient agricultural water management. To explore a centralized signal for the evaluation of plant water status based on soil water status, two greenhouse experiments investigating the effect of the relative distribution between soil water and roots on wheat and rice were conducted. Due to the significant offset between the distributions of soil water and roots, wheat receiving subsurface irrigation suffered more from drought than wheat under surface irrigation, even when the arithmetic averaged soil water content (SWC) in the root zone was higher. A significant relationship was found between the plant water deficit index (PWDI) and the root-weighted (rather than the arithmetic) average SWC over root zone. The traditional soil-based approach for the estimation of PWDI was improved by replacing the arithmetic averaged SWC with the root-weighted SWC to take the effect of the relative distribution between soil water and roots into consideration. These results should be beneficial for scheduling irrigation, as well as for evaluating plant water consumption and root density profile.

  5. Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA

    NASA Astrophysics Data System (ADS)

    Mukundan, Rajith; Pradhanang, Soni M.; Schneiderman, Elliot M.; Pierson, Donald C.; Anandhi, Aavudai; Zion, Mark S.; Matonse, Adão H.; Lounsbury, David G.; Steenhuis, Tammo S.

    2013-02-01

    High suspended sediment loads and the resulting turbidity can impact the use of surface waters for water supply and other designated uses. Changes in fluvial sediment loads influence material fluxes, aquatic geochemistry, water quality, channel morphology, and aquatic habitats. Therefore, quantifying spatial and temporal patterns in sediment loads is important both for understanding and predicting soil erosion and sediment transport processes as well as watershed-scale management of sediment and associated pollutants. A case study from the 891 km2 Cannonsville watershed, one of the major watersheds in the New York City water supply system is presented. The objective of this study was to apply Soil and Water Assessment Tool-Water Balance (SWAT-WB), a physically based semi-distributed model to identify suspended sediment generating source areas under current conditions and to simulate potential climate change impacts on soil erosion and suspended sediment yield in the study watershed for a set of future climate scenarios representative of the period 2081-2100. Future scenarios developed using nine global climate model (GCM) simulations indicate a sharp increase in the annual rates of soil erosion although a similar result in sediment yield at the watershed outlet was not evident. Future climate related changes in soil erosion and sediment yield appeared more significant in the winter due to a shift in the timing of snowmelt and also due to a decrease in the proportion of precipitation received as snow. Although an increase in future summer precipitation was predicted, soil erosion and sediment yield appeared to decrease owing to an increase in soil moisture deficit and a decrease in water yield due to increased evapotranspiration.

  6. Seismic Migration Imaging of the Mantle Transition Zone Beneath Continental US with Receiver Functions

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Schmandt, B.

    2017-12-01

    The mantle transition zone has been widely studied by multiple sub-fields in geosciences including seismology, mineral physics and geodynamics. Due to the relatively high water storage capacity of olivine polymorphs (wadsleyite and ringwoodite) inside the transition zone, it is proposed to be a potential geochemical water reservoir that may contain one or more ocean masses of water. However, there is an ongoing debate about the hydration level of those minerals and how it varies from place to place. Considering that dehydration melting, which may happen during mantle flow across phase transitions between hydrated olivine polymorphs, may be seismically detectable, large-scale seismic imaging of heterogeneous scattering in the transition zone can contribute to the debate. To improve our understanding of the properties of the mantle transition zone and how they relate to mantle flow across its boundaries, it is important to gain an accurate image with large spatial coverage. The accuracy is primarily limited by the density of broadband seismic data and the imaging algorithms applied to the data, while the spatial coverage is limited by the availability of wide-aperture (>500 km) seismic arrays. Thus, the emergence of the USArray seismic data set (www.usarray.org) provides a nearly ideal data source for receiver side imaging of the mantle transition zone due to its large aperture ( 4000 km) with relatively small station spacing ( 70 km), which ensures that the transition zone beneath it is well sampled by teleseismic waves. In total, more than 200,000 P to S receiver functions will be used for imaging structures in depth range of 300 km to 800 km beneath the continental US with an improved 3D Kirchhoff pre-stacking migration method. The method uses 3-D wave fronts calculated for P and S tomography models to more accurately calculate point scattering coefficients and map receiver function lag times to 3-D position. The new images will help resolve any laterally sporadic or dipping interfaces that may be present at transition zone depths. The locations of sporadic velocity decreases will be compared with mantle flow models to evaluate the possibility of dehydration melting.

  7. Identifying needs for streamflow forecasting in the Incomati basin, Southern Africa

    NASA Astrophysics Data System (ADS)

    Sunday, Robert; Werner, Micha; Masih, Ilyas; van der Zaag, Pieter

    2013-04-01

    Despite being widely recognised as an efficient tool in the operational management of water resources, rainfall and streamflow forecasts are currently not utilised in water management practice in the Incomati Basin in Southern Africa. Although, there have been initiatives for forecasting streamflow in the Sabie and Crocodile sub-basins, the outputs of these have found little use because of scepticism on the accuracy and reliability of the information, or the relevance of the information provided to the needs of the water managers. The process of improving these forecasts is underway, but as yet the actual needs of the forecasts are unclear and scope of the ongoing initiatives remains very limited. In this study questionnaires and focused group interviews were used to establish the need, potential use, benefit and required accuracy of rainfall and streamflow forecasts in the Incomati Basin. Thirty five interviews were conducted with professionals engaged in water sector and detailed discussions were held with water institutions, including the Inkomati Catchment Management Agency (ICMA), Komati Basin Water Authority (KOBWA), South African Weather Service (SAWS), water managers, dam operators, water experts, farmers and other water users in the Basin. Survey results show that about 97% of the respondents receive weather forecasts. In contrast to expectations, only 5% have access to the streamflow forecast. In the weather forecast, the most important variables were considered to be rainfall and temperature at daily and weekly time scales. Moreover, forecasts of global climatic indices such as El Niño or La Niña were neither received nor demanded. There was limited demand and/or awareness of flood and drought forecasts including the information on their linkages with global climatic indices. While the majority of respondents indicate the need and indeed use the weather forecast, the provision, communication and interpretation were in general found to be with too little detail and clarity. In some cases this was attributed to the short time and space allotted in media such as television and newspapers respectively. Major uses of the weather forecast were made in personal planning i.e., travelling (29%) and dressing (23%). The usefulness in water sector was reported for water allocation (23%), farming (11%) and flood monitoring (9%), but was considered as a factor having minor influence on the actual decision making in operational water management mainly due to uncertainty of the weather forecast, difference in the time scale and institutional arrangements. In the incidences where streamflow forecasts were received (5% of the cases), its application in decision making was not carried out due to high uncertainty. Moreover, dam operators indicated weekly streamflow forecast as very important in releasing water for agriculture but this was not the format in which forecasts were available to them. Generally, users affirmed the accuracy and benefits of weather forecasts and had no major concerns on the impacts of wrong forecasts. However, respondents indicated the need to improve the accuracy and accessibility of the forecast. Likewise, water managers expressed the need for both rainfall and flow forecasts but indicated that they face hindrances due to financial and human resource constraints. This shows that there is a need to strengthen water related forecasts and the consequent uses in the basin. This can be done through collaboration among forecasting and water organisations such as the SAWS, Research Institutions and users like ICMA, KOBWA and farmers. Collaboration between the meteorology and water resources sectors is important to establish consistent forecast information. The forecasts themselves should be detailed and user specific to ensure these are indeed used and can answer to the needs of the users.

  8. Modeling photosynthetically active radiation in water of Tampa Bay, Florida, with emphasis on the geometry of incident irradiance

    USGS Publications Warehouse

    Miller, R.L.; McPherson, B.F.

    1995-01-01

    A model is developed that uses a simplified geometric description of incident direct solar beam and diffuse skylight. The model incorporates effects of solar elevation angle and cloudiness on the amount of in-air photosynthetically active radiation (PAR) that passes through the air-water interface and on K0 in waters of relatively low turbidity. The value of K0 was estimated to vary as much as 41% on a clear summer day due to changes in solar elevation angle. The model was used to make estimates of the depth to which sea-grasses might receive adequate light for survival for a range of values of K0. -from Authors

  9. Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China.

    PubMed

    Fu, Zhiyou; Wu, Fengchang; Amarasiriwardena, Dulasiri; Mo, Changli; Liu, Bijun; Zhu, Jing; Deng, Qiujing; Liao, Haiqing

    2010-07-15

    Antimony (Sb) has received increasing attention recently due to its toxicity and potential human carcinogenicity. In the present work, drinking water, fish and algae samples were collected from the Xikuangshan (XKS) Sb mine area in Hunan, China. Results show that serious Sb and moderate arsenic (As) contamination is present in the aquatic environment. The average Sb concentrations in water and fish were 53.6 + or - 46.7 microg L(-1) and 218 + or - 113 microg kg(-1) dry weight, respectively. The Sb concentration in drinking water exceeded both Chinese and WHO drinking water guidelines by 13 and 3 times, respectively. Antimony and As concentrations in water varied with seasons. Fish gills exhibited the highest Sb concentrations but the extent of accumulation varied with habitat. Antimony enrichment in fish was significantly lower than that of As and Hg. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Dust Storm, Aral Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Aral Sea has shrunk to less than half its size since 1985. The Aral Sea receives little water (sometimes no water) from the two major rivers that empty into it-the Syr Darya and Amu Darya. Instead, the river water is diverted to support irrigation for the region's extensive cotton fields. Recently, water scarcity has increased due to a prolonged drought in Central Asia. As the Aral Sea recedes, its former sea bed is exposed. The Aral's sea bed is composed of fine sediments-including fertilizers and other agricultural chemicals-that are easily picked up by the region's strong winds, creating thick dust storms. The International Space Station crew observed and recorded a large dust storm blowing eastward from the Aral Sea in late June 2001. This image illustrates the strong coupling between human activities (water diversions and irrigation), and rapidly changing land, sea and atmospheric processes-the winds blow across the

  11. Impact of the Provision of Safe Drinking Water on School Absence Rates in Cambodia: A Quasi-Experimental Study

    PubMed Central

    Hunter, Paul R.; Risebro, Helen; Yen, Marie; Lefebvre, Hélène; Lo, Chay; Hartemann, Philippe; Longuet, Christophe; Jaquenoud, François

    2014-01-01

    Background Education is one of the most important drivers behind helping people in developing countries lift themselves out of poverty. However, even when schooling is available absenteeism rates can be high. Recently interest has focussed on whether or not WASH interventions can help reduce absenteeism in developing countries. However, none has focused exclusively on the role of drinking water provision. We report a study of the association between absenteeism and provision of treated water in containers into schools. Methods and Findings We undertook a quasi-experimental longitudinal study of absenteeism rates in 8 schools, 4 of which received one 20 L container of treated drinking water per day. The water had been treated by filtration and ultraviolet disinfection. Weekly absenteeism rates were compared across all schools using negative binomial model in generalized estimating equations. There was a strong association with provision of free water and reduced absenteeism (Incidence rate ratio = 0.39 (95% Confidence Intervals 0.27–0.56)). However there was also a strong association with season (wet versus dry) and a significant interaction between receiving free water and season. In one of the intervention schools it was discovered that the water supplier was not fulfilling his contract and was not delivering sufficient water each week. In this school we showed a significant association between the number of water containers delivered each week and absenteeism (IRR = 0.98 95%CI 0.96–1.00). Conclusion There appears to be a strong association between providing free safe drinking water and reduced absenteeism, though only in the dry season. The mechanism for this association is not clear but may in part be due to improved hydration leading to improved school experience for the children. PMID:24632573

  12. Impact of the provision of safe drinking water on school absence rates in Cambodia: a quasi-experimental study.

    PubMed

    Hunter, Paul R; Risebro, Helen; Yen, Marie; Lefebvre, Hélène; Lo, Chay; Hartemann, Philippe; Longuet, Christophe; Jaquenoud, François

    2014-01-01

    Education is one of the most important drivers behind helping people in developing countries lift themselves out of poverty. However, even when schooling is available absenteeism rates can be high. Recently interest has focussed on whether or not WASH interventions can help reduce absenteeism in developing countries. However, none has focused exclusively on the role of drinking water provision. We report a study of the association between absenteeism and provision of treated water in containers into schools. We undertook a quasi-experimental longitudinal study of absenteeism rates in 8 schools, 4 of which received one 20 L container of treated drinking water per day. The water had been treated by filtration and ultraviolet disinfection. Weekly absenteeism rates were compared across all schools using negative binomial model in generalized estimating equations. There was a strong association with provision of free water and reduced absenteeism (Incidence rate ratio = 0.39 (95% Confidence Intervals 0.27-0.56)). However there was also a strong association with season (wet versus dry) and a significant interaction between receiving free water and season. In one of the intervention schools it was discovered that the water supplier was not fulfilling his contract and was not delivering sufficient water each week. In this school we showed a significant association between the number of water containers delivered each week and absenteeism (IRR = 0.98 95%CI 0.96-1.00). There appears to be a strong association between providing free safe drinking water and reduced absenteeism, though only in the dry season. The mechanism for this association is not clear but may in part be due to improved hydration leading to improved school experience for the children.

  13. Impact of the Provision of Safe Drinking Water on School Absence Rates in Cambodia: A Quasi-Experimental Study.

    PubMed

    Hunter, Paul R; Risebro, Helen; Yen, Marie; Lefebvre, Héléne; Lo, Chay; Hartemann, Philippe; Longuet, Christophe; Jaquenoud, François

    2015-01-01

    Education is one of the most important drivers for helping people in developing countries lift themselves out of poverty. However, even when schooling is available absenteeism rates can be high. Recently, focus is being given on whether or not WASH interventions can help reduce absenteeism in developing countries. However, none has focused exclusively on the role of drinking water provision. We report a study on the association between absenteeism and provision of treated water in containers maintained in schools. We undertook a quasi-experimental longitudinal study of absenteeism rates in 8 schools, 4 of which received one 20 l container of treated drinking water per day. The water had been treated by filtration and ultraviolet disinfection. Weekly absenteeism rates were compared across all schools using the negative binomial model in generalized estimating equations. There was a strong association between the provision of free water and reduced absenteeism (Incidence rate ratio = 0.39 (95% confidence intervals 0.27-0.56)). However, there was also a strong association with season (wet versus dry) and a significant interaction between receiving free water and season. In one of the intervention schools, it was discovered that the water supplier was not fulfilling his contract and was not delivering sufficient water each week. In this school, we showed a significant association between the number of water containers delivered each week and absenteeism (IRR = 0.98 95% CI 0.96-1.00). There appears to be a strong association between providing free and safe drinking water and reduced absenteeism, although only in the dry season. The mechanism for this association is not clear but may be in part due to improved hydration leading to improved school experience for the children. © 2015 S. Karger AG, Basel.

  14. The influence of conservation tillage methods on soil water regimes in semi-arid southern Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mupangwa, W.; Twomlow, S.; Walker, S.

    Planting basins and ripper tillage practices are major components of the recently introduced conservation agriculture package that is being extensively promoted for smallholder farming in Zimbabwe. Besides preparing land for crop planting, these two technologies also help in collecting and using rainwater more efficiently in semi-arid areas. The basin tillage is being targeted for households with limited or no access to draught animals while ripping is meant for smallholder farmers with some draught animal power. Trials were established at four farms in Gwanda and Insiza in southern Zimbabwe to determine soil water contributions and runoff water losses from plots under four different tillage treatments. The tillage treatments were hand-dug planting basins, ripping, conventional spring and double ploughing using animal-drawn implements. The initial intention was to measure soil water changes and runoff losses from cropped plots under the four tillage practices. However, due to total crop failure, only soil water and runoff were measured from bare plots between December 2006 and April 2007. Runoff losses were highest under conventional ploughing. Planting basins retained most of the rainwater that fell during each rainfall event. The amount of rainfall received at each farm significantly influenced the volume of runoff water measured. Runoff water volume increased with increase in the amount of rainfall received at each farm. Soil water content was consistently higher under basin tillage than the other three tillage treatments. Significant differences in soil water content were observed across the farms according to soil types from sand to loamy sand. The basin tillage method gives a better control of water losses from the farmers’ fields. The planting basin tillage method has a greater potential for providing soil water to crops than ripper, double and single conventional ploughing practices.

  15. Potential Alleviation of Chlorella vulgaris and Zingiber officinale on Lead-Induced Testicular Toxicity: an Ultrastructural Study.

    PubMed

    Mustafa, Hesham Noaman

    2015-01-01

    Natural, products were studied to combat reproductive alterations of lead. The current work aimed to disclose the efficacy of Chlorella vulgaris and Zingiber officinale to alleviate lead acetate induced toxicity. Sixty adult male Wistar rats were distributed into four groups. Group 1 was considered control, group 2 received 200 mg/l PbAc water, group 3 received 50 mg/kg/rat of C. vulgaris extract and 200 mg/l PbAc water, and group 4 received 100 mg/kg/rat of Z. officinale and 200 mg/l PbAc water for 90 days. Testis samples were subjected to ultrastructural examination. It was observed that PbAc caused degenerative alterations in the spermatogenic series in many tubules, with a loss of germ cells and vacuoles inside the cytoplasm and between the germ cells. Mitochondria exhibited ballooning, with lost cristae and widening of the interstitial tissue, while nuclear envelopes of primary spermatocytes were broken up, and axonemes of the mid-pieces of the sperms were distorted. With the treatment with C. vulgaris or Z. officinale, there were noticeable improvements in these modifications. It was concluded that both C. vulgaris and Z. officinale represent convincing medicinal components that may be used to ameliorate testicular toxicity in those exposed to lead in daily life with superior potentials revealed by C. vulgaris due to its chelating action.

  16. Water and sanitation service delivery, pricing, and the poor: An empirical estimate of subsidy incidence in Nairobi, Kenya

    NASA Astrophysics Data System (ADS)

    Fuente, David; Gakii Gatua, Josephine; Ikiara, Moses; Kabubo-Mariara, Jane; Mwaura, Mbutu; Whittington, Dale

    2016-06-01

    The increasing block tariff (IBT) is among the most widely used tariffs by water utilities, particularly in developing countries. This is due in part to the perception that the IBT can effectively target subsidies to low-income households. Combining data on households' socioeconomic status and metered water use, this paper examines the distributional incidence of subsidies delivered through the IBT in Nairobi, Kenya. Contrary to conventional wisdom, we find that high-income residential and nonresidential customers receive a disproportionate share of subsidies and that subsidy targeting is poor even among households with a private metered connection. We also find that stated expenditure on water, a commonly used means of estimating water use, is a poor proxy for metered use and that previous studies on subsidy incidence underestimate the magnitude of the subsidy delivered through water tariffs. These findings have implications for both the design and evaluation of water tariffs in developing countries.

  17. Alcea rosea root extract as a preventive and curative agent in ethylene glycol-induced urolithiasis in rats

    PubMed Central

    Ahmadi, Marzieh; Rad, Abolfazl Khajavi; Rajaei, Ziba; Hadjzadeh, Mousa-Al-Reza; Mohammadian, Nema; Tabasi, Nafiseh Sadat

    2012-01-01

    Introduction: Alcea rosea L. is used in Asian folk medicine as a remedy for a wide range of ailments. The aim of the present study was to investigate the effect of hydroalcoholic extract of Alcea rosea roots on ethylene glycol-induced kidney calculi in rats. Materials and Methods: Male Wistar rats were randomly divided into control, ethylene glycol (EG), curative and preventive groups. Control group received tap drinking water for 28 days. Ethylene glycol (EG), curative and preventive groups received 1% ethylene glycol for induction of calcium oxalate (CaOx) calculus formation; preventive and curative subjects also received the hydroalcoholic extract of Alcea rosea roots in drinking water at dose of 170 mg/kg, since day 0 or day 14, respectively. Urinary oxalate concentration was measured by spectrophotometer on days 0, 14 and 28. On day 28, the kidneys were removed and examined histopathologically under light microscopy for counting the calcium oxalate deposits in 50 microscopic fields. Results: In both preventive and curative protocols, treatment of rats with hydroalcoholic extract of Alcea rosea roots significantly reduced the number of kidney calcium oxalate deposits compared to ethylene glycol group. Administration of Alcea rosea extract also reduced the elevated urinary oxalate due to ethylene glycol. Conclusion: Alcea rosea showed a beneficial effect in preventing and eliminating calcium oxalate deposition in the rat kidney. This effect is possibly due to diuretic and anti-inflammatory effects or presence of mucilaginous polysaccharides in the plant. It may also be related to lowering of urinary concentration of stone-forming constituents. PMID:22701236

  18. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone.

    PubMed

    Kashiwase, Haruhiko; Ohshima, Kay I; Nihashi, Sohey; Eicken, Hajo

    2017-08-15

    Ice-albedo feedback due to the albedo contrast between water and ice is a major factor in seasonal sea ice retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal ice cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea ice retreat. Analyses of satellite data (1979-2014) and a simplified ice-upper ocean coupled model reveal that divergent ice motion in the early melt season triggers large-scale feedback which subsequently amplifies summer sea ice anomalies. The magnitude of divergence controlling the feedback has doubled since 2000 due to a more mobile ice cover, which can partly explain the recent drastic ice reduction in the Arctic Ocean.

  19. Anti-inflammatory effects of royal jelly on ethylene glycol induced renal inflammation in rats.

    PubMed

    Aslan, Zeyneb; Aksoy, Laçine

    2015-01-01

    In this study, anti-inflammatory effects of Royal Jelly were investigated by inducing renal inflammation in rats with the use of ethylene glycol. For this purpose, the calcium oxalate urolithiasis model was obtained by feeding rats with ethylene glycol in drinking water. The rats were divided in five study groups. The 1st group was determined as the control group. The rats in the 2nd group received ethylene glycol (1%) in drinking water. The rats in the 3rd group were daily fed with Royal Jelly by using oral gavage. The 4th group was determined as the preventive group and the rats were fed with ethylene glycol (1%) in drinking water while receiving Royal Jelly via oral gavage. The 5th group was determined as the therapeutic group and received ethylene glycol in drinking water during the first 2 weeks of the study and Royal Jelly via oral gavage during the last 2 weeks of the study. At the end of the study, proinflammatory/anti-inflammatory cytokines, TNF-a, IL-1ß and IL-18 levels in blood and renal tissue samples from the rats used in the application were measured. The results have shown that ethylene glycol does induce inflammation and renal damage. This can cause the formation of reactive oxygen species. Royal Jelly is also considered to have anti-inflammatory effects due to its possible antiradical and antioxidative effects. It can have positive effects on both the prevention of urolithiasis and possible inflammation during the existing urolithiasis and support the medical treatment.

  20. A global positioning measurement system for regional geodesy in the caribbean

    NASA Astrophysics Data System (ADS)

    Renzetti, N. A.

    1986-11-01

    Low cost, portable receivers using signals from satellites of the Global Positioning System (GPS) will enable precision geodetic observations to be made on a large scale. A number of important geophysical questions relating to plate-motion kinematics and dynamics can be addressed with this measurement capability. We describe a plan to design and validate a GPS-based geodetic system, and to demonstrate its capability in California, Mexico and the Caribbean region. The Caribbean program is a prototype for a number of regional geodetic networks to be globally distributed. In 1985, efforts will be concentrated on understanding and minimizing error sources. Two dominant sources of error are uncertainties in the orbit ephemeris of the GPS satellites, and uncertainties in the correction for signal delay due to variable tropospheric water vapor. Orbit ephemeris uncertainties can be minimized by performing simultaneous satellite observations with GPS receivers at known (fiducial) points. Water vapor corrections can be made by performing simultaneous line-of-sight measurements of integrated water vapor content with ground-based water vapor radiometers. Specific experiments to validate both concepts are outlined. Caribbean measurements will begin in late 1985 or early 1986. Key areas of measurement are the northern strike-slip boundary, and the western convergent boundary. Specific measurement plans in both regions are described.

  1. Heterogeneous distribution of water in the mantle transition zone beneath United States inferred from seismic observations

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Pavlis, G. L.; Li, M.

    2017-12-01

    The amount of water in the Earth's deep mantle is critical for the evolution of the solid Earth and the atmosphere. Mineral physics studies have revealed that Wadsleyite and Ringwoodite in the mantle transition zone could store several times the volume of water in the ocean. However, the water content and its distribution in the transition zone remain enigmatic due to lack of direct observations. Here we use seismic data from the full deployment of the Earthscope Transportable Array to produce 3D image of P to S scattering of the mantle transition zone beneath the United States. We compute the image volume from 141,080 pairs of high quality receiver functions defined by the Earthscope Automated Receiver Survey, reprocessed by the generalized iterative deconvolution method and imaged by the plane wave migration method. We find that the transition zone is filled with previously unrecognized small-scale heterogeneities that produce pervasive, negative polarity P to S conversions. Seismic synthetic modeling using a point source simulation method suggests two possible structures for these objects: 1) a set of randomly distributed blobs of slight difference in size, and 2) near vertical diapir structures from small scale convections. Combining with geodynamic simulations, we interpret the observation as compositional heterogeneity from small-scale, low-velocity bodies that are water enriched. Our results indicate there is a heterogeneous distribution of water through the entire mantle transition zone beneath the contiguous United States.

  2. Monte Carlo study on pulse response of underwater optical channel

    NASA Astrophysics Data System (ADS)

    Li, Jing; Ma, Yong; Zhou, Qunqun; Zhou, Bo; Wang, Hongyuan

    2012-06-01

    Pulse response of the underwater wireless optical channel is significant for the analysis of channel capacity and error probability. Traditional vector radiative transfer theory (VRT) is not able to deal with the effect of receiving aperture. On the other hand, general water tank experiments cannot acquire an accurate pulse response due to the limited time resolution of the photo-electronic detector. We present a Monte Carlo simulation model to extract the time-domain pulse response undersea. In comparison with the VRT model, a more accurate pulse response for practical ocean communications could be achieved through statistical analysis of the received photons. The proposed model is more reasonable for the study of the underwater optical channel.

  3. Comparison of atmospheric water vapour content with GNSS, Radiosonde, Microwave radiometer, and Lidar

    NASA Astrophysics Data System (ADS)

    Sohn, D.; Park, K.

    2012-12-01

    The increased amount of saturated water vapor due to the Earth's temperature rise frequently causes abnormal meteorological phenomena such as local severe rainfall in Korea. The National Institute of Meteorological Research of Korea Meteorological Administration (KMA) conducted observation experiments using a variety of water-vapor measuring equipments to improve the accuracy of weather forecasts and accurately measure the precipitable water vapor in the atmosphere. Equipments used were GNSS, water vapor radiometers (WVR), radiosonde, and LiDAR. For GNSS measurements we used two receivers that can collect not only GPS but also GLONASS signals: Trimble NetR5 and Septentrio PolaRx4. The two WVR makers are Raidometrics and RPG. For radiosonde observations, KMA launched Vaisala GPSondes every 6 hours during the experiment period. The LiDAR system was made locally by Hanbat University in Daejeon. Thus, we could obtain collocation experiment results from 6 different kinds of water vapor measurement and analyze the characteristics of each device.

  4. Impacts of using rainwater tanks on stormwater harvesting and runoff quality.

    PubMed

    Khastagir, A; Jayasuriya, L N N

    2010-01-01

    The popularity of rainwater use in Australia depends completely on the individual householder's preference. The quality of reticulated water supplies in major cities of Australia is far superior to water stored in rainwater tanks. However, due to persistent drought and the implementation of stringent water restrictions, cities such as Melbourne have encouraged the use of rainwater harvesting within the property. The benefits of trapping stormwater within a property and using it effectively also reduce polluted runoff excess reaching receiving water. The study reported herein focuses on the effectiveness of rainwater tanks as a potential water sensitive urban design element used to manage stormwater using the MUSIC model. The study shows that the installation of a 3 kL tank reduces hydraulic loading by 75%, Total Suspended Solids by 97%, Total Phosphorous by 90% and Total Nitrogen by 81% if the rainwater stored in the tank is used to meet the indoor demand (toilet flushing and laundry use) as well as the outdoor demand (garden watering).

  5. Colon Necrosis Due to Sodium Polystyrene Sulfonate with and without Sorbitol: An Experimental Study in Rats.

    PubMed

    Ayoub, Isabelle; Oh, Man S; Gupta, Raavi; McFarlane, Michael; Babinska, Anna; Salifu, Moro O

    2015-01-01

    Based on a single rat study by Lillemoe et al, the consensus has been formed to implicate sorbitol rather than sodium polystyrene sulfonate (SPS) as the culprit for colon necrosis in humans treated with SPS and sorbitol. We tested the hypothesis that colon necrosis by sorbitol in the experiment was due to the high osmolality and volume of sorbitol rather than its chemical nature. 26 rats underwent 5/6 nephrectomy. They were divided into 6 groups and given enema solutions under anesthesia (normal saline, 33% sorbitol, 33% mannitol, SPS in 33% sorbitol, SPS in normal saline, and SPS in distilled water). They were sacrificed after 48 hours of enema administration or earlier if they were very sick. The gross appearance of the colon was visually inspected, and then sliced colon tissues were examined under light microscopy. 1 rat from the sorbitol and 1 from the mannitol group had foci of ischemic colonic changes. The rats receiving SPS enema, in sorbitol, normal saline, distilled water, had crystal deposition with colonic necrosis and mucosal erosion. All the rats not given SPS survived until sacrificed at 48 h whereas 11 of 13 rats that received SPS in sorbitol, normal saline or distilled water died or were clearly dying and sacrificed sooner. There was no difference between sorbitol and mannitol when given without SPS. In a surgical uremic rat model, SPS enema given alone or with sorbitol or mannitol seemed to cause colon necrosis and high mortality rate, whereas 33% sorbitol without SPS did not.

  6. Colon Necrosis Due to Sodium Polystyrene Sulfonate with and without Sorbitol: An Experimental Study in Rats

    PubMed Central

    Ayoub, Isabelle; Oh, Man S.; Gupta, Raavi; McFarlane, Michael; Babinska, Anna; Salifu, Moro O.

    2015-01-01

    Introduction Based on a single rat study by Lillemoe et al, the consensus has been formed to implicate sorbitol rather than sodium polystyrene sulfonate (SPS) as the culprit for colon necrosis in humans treated with SPS and sorbitol. We tested the hypothesis that colon necrosis by sorbitol in the experiment was due to the high osmolality and volume of sorbitol rather than its chemical nature. Methods 26 rats underwent 5/6 nephrectomy. They were divided into 6 groups and given enema solutions under anesthesia (normal saline, 33% sorbitol, 33% mannitol, SPS in 33% sorbitol, SPS in normal saline, and SPS in distilled water). They were sacrificed after 48 hours of enema administration or earlier if they were very sick. The gross appearance of the colon was visually inspected, and then sliced colon tissues were examined under light microscopy. Results 1 rat from the sorbitol and 1 from the mannitol group had foci of ischemic colonic changes. The rats receiving SPS enema, in sorbitol, normal saline, distilled water, had crystal deposition with colonic necrosis and mucosal erosion. All the rats not given SPS survived until sacrificed at 48 h whereas 11 of 13 rats that received SPS in sorbitol, normal saline or distilled water died or were clearly dying and sacrificed sooner. There was no difference between sorbitol and mannitol when given without SPS. Conclusions In a surgical uremic rat model, SPS enema given alone or with sorbitol or mannitol seemed to cause colon necrosis and high mortality rate, whereas 33% sorbitol without SPS did not. PMID:26413782

  7. Modeling spray drift and runoff-related inputs of pesticides to receiving water.

    PubMed

    Zhang, Xuyang; Luo, Yuzhou; Goh, Kean S

    2018-03-01

    Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) < 28%; for daily pesticide loading, NSE = 0.18 and PBIAS = -1.6%. This modeling framework will be useful for assessing the relative exposure from pesticides related to spray drift and runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed. Published by Elsevier Ltd.

  8. Relationship between organic precursors and N-nitrosodimethylamine (NDMA) formation in tropical water sources.

    PubMed

    Qi, Wang; Fang Yee, Lim; Jiangyong, Hu

    2014-12-01

    The presence of organic compounds in water sources is one of the concerns in water treatment. They are potential precursors of disinfection byproducts (DBPs) and thus induce health problems in humans. Among the emerging DBPs, carcinogenic compound N-nitrosodimethylamine (NDMA) has been receiving attention during the last decade. This study examined the characteristics of organic components in various water sources and investigated their relationships with NDMA formation. Experiments were carried out on selected water samples from both natural water and wastewater. Results showed similar NDMA formation kinetics for both water sources. However, more contribution of NDMA precursors was found to be from the wastewater due to its higher organic nitrogen content. NDMA formation potential (NDMAFP) of secondary effluent ranged from 264 to 530 ng/L. A correlation study between organic compound characteristics and NDMAFP indicated that the majority of NDMA precursors came from dissolved organic nitrogen (DON) compound with small molecular weight (smaller than 500 Da), with correlation R(2) = 0.898. Although secondary treatment removed more than 90% of NDMA precursors, the remaining precursors in secondary effluent would still pose a challenge for water quality.

  9. What do Indian children drink when they do not receive water? Statistical analysis of water and alternative beverage consumption from the 2005-2006 Indian National Family Health Survey.

    PubMed

    Fledderjohann, Jasmine; Doyle, Pat; Campbell, Oona; Ebrahim, Shah; Basu, Sanjay; Stuckler, David

    2015-07-05

    Over 1.2 billion people lack access to clean water. However, little is known about what children drink when there is no clean water. We investigated the prevalence of receiving no water and what Indian children drink instead. We analysed children's beverage consumption using representative data from India's National Family and Health Survey (NFHS-3, 2005-2006). Consumption was based on mothers' reports (n = 22,668) for children aged 6-59 months (n = 30,656). About 10 % of Indian children had no water in the last 24 h, corresponding to 12,700,000 children nationally, (95 % CI: 12,260,000 to 13,200,000). Among children who received no water, 23 % received breast or fresh milk and 24 % consumed formula, "other liquid", juice, or two or more beverages. Children over 2 were more likely to consume non-milk beverages, including tea, coffee, and juice than those under 2 years. Those in the lowest two wealth quintiles were 16 % less likely to have received water (OR = 0.84; 95 % CI: 0.74 to 0.96). Compared to those living in households with bottled, piped, or tanker water, children were significantly less likely to receive water in households using well water (OR = 0.75; 95 % CI: 0.64 to 0.89) or river, spring, or rain water (OR =0.70; 95 % CI: 0.53 to 0.92) in the last 24 h. About 13 million Indian children aged 6-59 months received no water in the last 24 h. Further research is needed to assess the risks potentially arising from insufficient water, caffeinated beverages, and high sugar drinks at early stages of life.

  10. Improving collected rainwater quality in rural communities.

    PubMed

    Garrido, S; Aviles, M; Ramirez, A; Gonzalez, A; Montellano, L; Gonzalez, B; de la Paz, J; Ramirez, R M

    2011-01-01

    The country of Mexico is facing serious problems with water quality and supply for human use and consumption in rural communities, mainly due to topographic and isolation. In Mexico the average annual precipitation is 1,500 cubic kilometers of water, if 3% of that amount were used, 13 million Mexicans could be supplied with drinking water that they currently do not have access. Considering the limited infrastructure and management in rural communities, which do not receive services from the centralized systems of large cities, a modified pilot multi-stage filtration (MMSF) system was designed, developed, and evaluated for treating collected rainwater in three rural communities, Ajuchitlan and Villa Nicolas Zapata (Morelos State) and Xacxamayo (Puebla State). The efficiencies obtained in the treatment system were: colour and turbidity >93%. It is worth mentioning that the water obtained for human use and consumption complies with the Mexican Standard NOM-127-SSA1-1994.

  11. Analysis of Water Use and Water Scarcity in Arid and Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Samayoa, S. D.

    2017-12-01

    Analysis of Water Use and Water Scarcity in Arid and Semi-arid Regions Susana Samayoa , Muhammed A. G. Chowdhury, Tushar Sinha Department of Environmental Engineering, Texas A & M University - Kingsville Freshwater sustainability in arid and semi-arid regions is highly uncertain under increasing demands due to population growth and urban development as well as limited water supply. In particular, six largest cities by population among the top twenty U.S. cities are located in Texas (TX), which also experience high variability in water availability due to frequent droughts and floods. Similarly, several regions in Arizona (AZ) are rapidly growing (e.g. Phoenix and Tucson) despite receiving scanty rainfall. Thus, the goal of this study is to analyze water use and water scarcity in watersheds within TX and AZ between 1985 and 2010. The water use data from U.S. Geological Survey (USGS) is analyzed by Hydrological Unit Code (HUC) - 8 within TX and AZ. Total freshwater use by county during 1985 and 2010 were converted into water use by HUC-8 using geospatial analysis. Water availability will be estimated by using a large scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC model will be calibrated and validated for multiple basins located in Texas and Arizona. The VIC model simulated total streamflow will be aggregated across the 1/8 degree grids that are within each HUC-8 to estimate water supply. The excess water for upstream HUC-8s (= local supply minus demands) will be routed, in addition to locally generated streamflow, to estimate water availability in downstream HUC-8s. Water Scarcity Index, defined as the ratio of total freshwater demand to supply, will be estimated during 1985 and 2010 to evaluate the effects of water availability and demands on scarcity. Finally, water scarcity and use will be analyzed by HUC-8s within TX and AZ. Such information could be useful in water resources management and planning. Keywords: Water scarcity, water use, water supply, VIC

  12. Investigation of the exposure to radon and progeny in the thermal spas of Loutraki (Attica-Greece): results from measurements and modelling.

    PubMed

    Nikolopoulos, Dimitrios; Vogiannis, Efstratios; Petraki, Ermioni; Zisos, Athanasios; Louizi, Anna

    2010-01-01

    Radon and progeny ((218)Po, (214)Pb, (214)Bi and (214)Po) in thermal spas are well known radioactive pollutants identified for additional radiation burden of patients due to the activity concentration peaks which appear during bath treatment or due to drinking of waters of high radon content. This burden affects additionally the working personnel of the spas. The present paper has focused on the thermal spas of Loutraki (Attica-Greece). The aim was the investigation of the health impact for patients and working personnel due to radon and progeny. Attention has been paid to radon and progeny transient concentration peaks (for bath treatment) and to radon of thermal waters (both for bath treatment and drinking therapy). Designed experiments have been carried out, which included radon and progeny activity concentration measurements in thermal waters and ambient air. Additionally, published models for description of radon and progeny transient concentration peaks were employed. The models were based on physicochemical processes involved and employed non linear first order derivative mass balance differential equations which were solved numerically with the aid of specially developed computer codes. The collected measurements were analysed incorporating these models. Results were checked via non linear statistical tests. Predictions and measurements were found in close agreement. Non linear parameters were estimated. The models were employed for dosimetric estimations of patients and working personnel. The effective doses of patients receiving bath treatment were found low but not negligible. The corresponding doses to patients receiving potable treatment were found high but below the proposed international limits. It was found that the working personnel are exposed to considerable effective doses, however well below the acceptable limits for workers. It was concluded that treatment and working in the Loutraki spas leads to intense variations of radon and progeny and consequently additional health impact both to patients and working personnel.

  13. Micropollutants in urban watersheds : substance flow analysis as management tool

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Copin, P. J.; Barry, A. D.; Bader, H.-P.; Scheidegger, R.; Chèvre, N.

    2009-04-01

    Micropollutants released by cities into water are of increasing concern as they are suspected of inducing long-term effects on both aquatic organisms and humans (eg., hormonally active substances). Substances found in the urban water cycle have different sources in the urban area and different fates in this cycle. For example, the pollutants emitted from traffic, like copper or PAHs get to surface water during rain events often without any treatment. Pharmaceuticals resulting from human medical treatments get to surface water mainly through wastewater treatment plants, where they are only partly treated and eliminated. One other source of contamination in urban areas for these compounds are combined sewer overflows (CSOs). Once in the receiving waters (lakes, rivers, groundwater), these substances may re-enter the cycle through drinking water. It is therefore crucial to study the behaviour of micropollutants in the urban water cycle and to get flexible tools for urban water management. Substance flow analysis (SFA) has recently been proposed as instrument for water pollution management in urban water systems. This kind of analysis is an extension of material flow analysis (MFA) originally developed in the economic sector and later adapted to regional investigations. In this study, we propose to test the application of SFA for a large number of classes of micropollutants to evaluate its use for urban water management. We chose the city of Lausanne as case study since the receiving water of this city (Lake Geneva) is an important source of drinking water for the surrounding population. Moreover a profound system-knowledge and many data were available, both on the sewer system and the water quality. We focus our study on one heavy metal (copper) and four pharmaceuticals (diclofenac, ibuprofen, carbamazepine and naproxen). Results conducted on copper reveals that around 1500 kg of copper enter the aquatic compartment yearly. This amount contributes to sediment enrichment, which may pose a long-term risk for the benthic organisms. The major sources (total of 73%) of copper in receiving surface water are roofs and contact lines of trolleybuses. Thus technical solutions have to be found to manage this specific source of contamination. Application of SFA approach to four pharmaceuticals reveals that CSOs represent an important source of contamination: Between 14% (carbamazepine) and 61% (ibuprofen) of the total annual loads of Lausanne city to the Lake are due to CSOs. These results will help in defining the best management strategy to limit Lake Geneva contamination. SFA is thus a promising tool for integrated urban water management.

  14. Multiregional input-output model for China's farm land and water use.

    PubMed

    Guo, Shan; Shen, Geoffrey Qiping

    2015-01-06

    Land and water are the two main drivers of agricultural production. Pressure on farm land and water resources is increasing in China due to rising food demand. Domestic trade affects China's regional farm land and water use by distributing resources associated with the production of goods and services. This study constructs a multiregional input-output model to simultaneously analyze China's farm land and water uses embodied in consumption and interregional trade. Results show a great similarity for both China's farm land and water endowments. Shandong, Henan, Guangdong, and Yunnan are the most important drivers of farm land and water consumption in China, even though they have relatively few land and water resource endowments. Significant net transfers of embodied farm land and water flows are identified from the central and western areas to the eastern area via interregional trade. Heilongjiang is the largest farm land and water supplier, in contrast to Shanghai as the largest receiver. The results help policy makers to comprehensively understand embodied farm land and water flows in a complex economy network. Improving resource utilization efficiency and reshaping the embodied resource trade nexus should be addressed by considering the transfer of regional responsibilities.

  15. Pilot evaluation of the efficacy of shampoo treatment with ultrapure soft water for canine pruritus.

    PubMed

    Ohmori, Keitaro; Tanaka, Akane; Makita, Yuka; Takai, Masaki; Yoshinari, Yuji; Matsuda, Hiroshi

    2010-10-01

    Ultrapure soft water (UPSW) is water in which calcium and magnesium ions have been replaced with sodium ions using a cation-exchange resin. We recently demonstrated that washing with soap and UPSW reduced the clinical severity of dermatitis and improved the skin barrier function in NC/NgaTnd mice, a murine model for human atopic dermatitis. The purpose of this pilot study was to evaluate the efficacy of shampoo treatment with UPSW for dogs with pruritus. Eleven dogs with pruritus were randomly assigned to two groups depending on whether they received weekly shampoo treatment with UPSW or tap water for 4 weeks. After a washout period, the treatment protocol was switched such that each dog received both treatments. The pre-treatment and post-treatment values of the following were compared: pruritus scores assessed by the owners; dermatitis scores recorded by an investigator; and transepidermal water loss (TEWL). Shampoo treatment with UPSW significantly decreased pruritus and dermatitis scores in the dogs, whereas shampoo treatment with tap water did not. In addition, shampoo treatment with UPSW, but not with tap water, significantly reduced TEWL in the dogs. Adverse events due to the treatment were not observed in the dogs. Furthermore, we found that topical application of UPSW for barrier-disrupted skin caused by tape stripping in healthy dogs decreased TEWL more rapidly than topical application of tap water. Our findings suggest that shampoo treatment with UPSW promotes skin barrier recovery and thus could be considered as a possible therapeutic option in the management of pruritus and dermatitis in dogs. © 2010 The Authors. Journal compilation © 2010 ESVD and ACVD.

  16. Reconnaissance Assessment of the Potential for Roadside Dry Wells to Affect Water Quality on the Island of Hawai'i

    USGS Publications Warehouse

    Izuka, Scot K.; Senter, Craig A.; Johnson, Adam G.

    2009-01-01

    The County of Hawai'i Department of Public Works (DPW) uses dry wells to dispose of stormwater runoff from roads. Recently, concern has been raised that water entering the dry wells may transport contaminants to groundwater and affect the quality of receiving waters. The DPW operates 2,052 dry wells. Compiling an inventory of these dry wells and sorting it on the basis of presence or absence of urbanization in the drainage area, distance between the bottom of the dry well and the water table, and proximity to receiving waters helps identify the dry wells having greatest potential to affect the quality of receiving waters so that future studies or mitigation efforts can focus on a smaller number of dry wells. The drainage areas of some DPW dry wells encompass urbanized areas, which could be a source of contaminants. Some dry wells penetrate close to or through the water table, eliminating or substantially reducing opportunities for contaminant attenuation between the ground surface and water table. Dry wells that have drainage areas that encompass urbanization, penetrate to near the water table, and are near the coast have the highest potential to affect the quality of coastal waters (this study did not consider specific sections of coastline that may be of greater concern than others). Some DPW dry wells, including a few that have drainage areas that encompass urbanization, lie within the areas contributing recharge (ACR) to drinking-water wells. Numerical groundwater modeling studies by previous investigators indicate that water infiltrating those dry wells could eventually be pumped at drinking-water wells. Dry wells that have a high potential for affecting coastal receiving waters or drinking-water wells can be the focus of studies to further understand the effect of the dry wells on the quality of receiving waters. Possible study approaches include sampling for contaminants at the dry well and receiving water, injecting and monitoring the movement of tracers, and numerical modeling. To fully assess whether dry wells actually pose a significant contamination threat to receiving waters, results from modeling or monitoring must be compared to limits for contaminant concentration at receiving waters. These limits are usually established by the agencies tasked with protecting those waters.

  17. 25 CFR 171.215 - What if the elevation of my farm unit is too high to receive irrigation water?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... receive irrigation water? 171.215 Section 171.215 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.215 What if the elevation of my farm unit is too high to receive irrigation water? (a) We will not change our service ditch...

  18. 25 CFR 171.215 - What if the elevation of my farm unit is too high to receive irrigation water?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... receive irrigation water? 171.215 Section 171.215 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.215 What if the elevation of my farm unit is too high to receive irrigation water? (a) We will not change our service ditch...

  19. N-acetylcysteine protects against star fruit-induced acute kidney injury.

    PubMed

    Shimizu, Maria Heloisa Massola; Gois, Pedro Henrique França; Volpini, Rildo Aparecido; Canale, Daniele; Luchi, Weverton Machado; Froeder, Leila; Heilberg, Ita Pfeferman; Seguro, Antonio Carlos

    2017-11-01

    Star fruit (SF) is a popular fruit, commonly cultivated in many tropical countries, that contains large amount of oxalate. Acute oxalate nephropathy and direct renal tubular damage through release of free radicals are the main mechanisms involved in SF-induced acute kidney injury (AKI). The aim of this study was to evaluate the protective effect of N-acetylcysteine (NAC) on SF-induced nephrotoxicity due to its potent antioxidant effect. Male Wistar rats received SF juice (4 mL/100 g body weight) by gavage after a 12 h fasting and water deprivation. Fasting and water deprivation continued for 6 h thereafter to warrant juice absorption. Thereafter, animals were allocated to three experimental groups: SF (n = 6): received tap water; SF + NAC (n = 6): received NAC (4.8 g/L) in drinking water for 48 h after gavage; and Sham (n = 6): no interventions. After 48 h, inulin clearance studies were performed to determine glomerular filtration rate. In a second series of experiment, rats were housed in metabolic cages for additional assessments. SF rats showed markedly reduced inulin clearance associated with hyperoxaluria, renal tubular damage, increased oxidative stress and inflammation. NAC treatment ameliorated all these alterations. Under polarized light microscopy, SF rats exhibited intense calcium oxalate birefringence crystals deposition, dilation of renal tubules and tubular epithelial degeneration, which were attenuate by NAC therapy. Our data show that therapeutic NAC attenuates renal dysfunction in a model of acute oxalate nephropathy following SF ingestion by reducing oxidative stress, oxaluria, and inflammation. This might represent a novel indication of NAC for the treatment of SF-induced AKI.

  20. Water quality simulation of sewage impacts on the west coast of Mumbai, India.

    PubMed

    Vijay, R; Khobragade, P J; Sohony, R A

    2010-01-01

    Most coastal cities use the ocean as a site of waste disposal where pollutant loading degrades the quality of coastal waters. Presently, the west coast of Mumbai receives partially treated effluent from wastewater treatment facilities through ocean outfalls and discharges into creeks as well as wastewater/sewage from various open drains and nallahs which affect the water quality of creek and coastal water. Therefore, the objective of this paper is to simulate and assess the hydrodynamic behaviour and water quality due to impact of sewage and wastewater discharges from the west coast of Mumbai. Hydrodynamics and water quality were simulated based on present conditions and validated by using measured tide, current data and observed DO, BOD and FC. Observed and simulated results indicated non compliance to standards in Malad, Mahim creeks and the impact zones of ocean outfalls. The developed model could be used for generating various conditions of hydrodynamics and water quality considering the improvement in wastewater collection systems, treatment levels and proper disposal for proper planning and management of creeks and coastal environment.

  1. Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Chuan; Shi, Honglan; Adams, Craig D; Gamagedara, Sanjeewa; Stayton, Isaac; Timmons, Terry; Ma, Yinfa

    2011-02-01

    A comprehensive method has been developed and validated in two different water matrices for the analysis of 16 pharmaceutical compounds using solid phase extraction (SPE) of water samples, followed by liquid chromatography coupled with tandem mass spectrometry. These 16 compounds include antibiotics, hormones, analgesics, stimulants, antiepileptics, and X-ray contrast media. Method detection limits (MDLs) that were determined in both reagent water and municipal tap water ranged from 0.1 to 9.9 ng/L. Recoveries for most of the compounds were comparable to those obtained using U.S. EPA methods. Treated and untreated water samples were collected from 31 different water treatment facilities across Missouri, in both winter and summer seasons, and analyzed to assess the 16 pharmaceutical compounds. The results showed that the highest pharmaceutical concentrations in untreated water were caffeine, ibuprofen, and acetaminophen, at concentrations of 224, 77.2, and 70 ng/L, respectively. Concentrations of pharmaceuticals were generally higher during the winter months, as compared to those in the summer due, presumably, to smaller water quantities in the winter, even though pharmaceutical loadings into the receiving waters were similar for both seasons. © 2010 Elsevier Ltd. All rights reserved.

  2. Neonatal exposure to fenoterol and betamethasone: effects on the behavioral development in the rat.

    PubMed

    Pitzer, Martina; Schmidt, Martin H

    2009-01-01

    We investigated longitudinally the behavioral development in the rat following exposure to beta-agonists and glucocorticoids (GC). Neonatal rats received either 1 mg/kg fenoterol (FEN), 0.3 mg/kg betamethasone (BET), or saline (SAL). Weanling and young adult rats were tested in the open field, the elevated-plus maze, and the water maze. FEN-treated as well as BET-treated animals displayed increased anxiety-like behavior. Furthermore, BET-treated adult animals showed a reduced locomotor activity. An enhanced 24-h memory in the water maze in both treatment groups may be facilitated by emotional arousal due to the increased anxiety levels. The possible neurobiological underpinnings are discussed in detail.

  3. Apportioning Sources of Riverine Nitrogen at Multiple Watershed Scales

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Alexander, R. B.; Sebestyen, S. D.

    2005-05-01

    Loadings of reactive nitrogen (N) entering terrestrial landscapes have increased in recent decades due to anthropogenic activities associated with food and energy production. In the northeastern USA, this enhanced supply of N has been linked to many environmental concerns in both terrestrial and aquatic ecosystems, such as forest decline, lake and stream acidification, human respiratory problems, and coastal eutrophication. Thus N is a priority pollutant with regard to a whole host of air, land, and water quality issues, highlighting the need for methods to identify and quantify various N sources. Further, understanding precursor sources of N is critical to current and proposed public policies targeted at the reduction of N inputs to the terrestrial landscape and receiving waters. We present results from published and ongoing studies using multiple approaches to fingerprint sources of N in the northeastern USA, at watershed scales ranging from the headwaters to the coastal zone. The approaches include: 1) a mass balance model with a nitrogen-budgeting approach for analyses of large watersheds; 2) a spatially-referenced regression model with an empirical modeling approach for analyses of water quality at regional scales; and 3) a meta-analysis of monitoring data with a chemical tracer approach, utilizing concentrations of multiple elements and isotopic composition of N from water samples collected in the streams and rivers. We discuss the successes and limitations of these various approaches for apportioning contributions of N from multiple sources to receiving waters at regional scales.

  4. Estimating water content in an active landfill with the aid of GPR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yochim, April, E-mail: ayochim@regionofwaterloo.ca; Zytner, Richard G., E-mail: rzytner@uoguelph.ca; McBean, Edward A., E-mail: emcbean@uoguelph.ca

    Highlights: • Limited information in the literature on the use of GPR to measure in situ water content in a landfill. • Developed GPR method allows measurement of in situ water content in a landfill. • Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and themore » lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33.9% for the drier landfill and 18.1% for the wetter landfill. Infiltration experiments also showed the potential to measure small increases in water content.« less

  5. a Study for Remote Detection of Industrial Effluents' Effect on Rice Using Thermal Images

    NASA Astrophysics Data System (ADS)

    Dehnavi, S.; Abkar, A. A.; Maghsoudi, Y.; Dehnavi, E.

    2015-12-01

    Rice is one of the most important nutritious grains all over the world, so that only in some parts of Asia more than 300 million acres allocated for cultivating this product. Therefore, qualitative and quantitative management of this product is of great importance in commercial, political and financial viewpoints. Rice plant is very influenced by physical and chemical characteristics of irrigation water, due to its specific kind of planting method. Hence, chemically-polluted waters which received by plant can change in live plants and their products. Thus, a very high degree of treatment will be required if the effluent discharges to rice plants. Current waters receive a variety of land-based water pollutants ranging from industrial wastes to excess sediments. One of the most hazardous wastes are chemicals that are toxic. Some factories discharge their effluents directly into a water body. So, what would happen for rice plant or its product if this polluted water flow to paddies? Is there any remotely-based method to study for this effect? Are surface temperature distributions (thermal images) useful in this context? The first goal in this research is thus to investigate the effect of a simulated textile factory's effluent sample on the rice product. The second goal is to investigate whether the polluted plant can be identified by means of thermal remote sensing or not. The results of this laboratory research have proven that the presence of industrial wastewater cause a decrease in plant's product and its f-cover value, also some changes in radiant temperature.

  6. Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement.

    PubMed

    Aguado, Ana; Capote, Nieves; Romero, Fernando; Dodd, Ian C; Colmenero-Flores, José M

    2014-10-01

    To investigate effects of soil moisture heterogeneity on plant physiology and gene expression in roots and leaves, three treatments were implemented in sunflower plants growing with roots split between two compartments: a control (C) treatment supplying 100% of plant evapotranspiration, and two treatments receiving 50% of plant evapotranspiration, either evenly distributed to both compartments (deficit irrigation - DI) or unevenly distributed to ensure distinct wet and dry compartments (partial rootzone drying - PRD). Plants receiving the same amount of water responded differently under the two irrigation systems. After 3 days, evapotranspiration was similar in C and DI, but 20% less in PRD, concomitant with decreased leaf water potential (Ψleaf) and increased leaf xylem ABA concentration. Six water-stress responsive genes were highly induced in roots growing in the drying soil compartment of PRD plants, and their expression was best correlated with local soil water content. On the other hand, foliar gene expression differed significantly from that of the root and correlated better with xylem ABA concentration and Ψleaf. While the PRD irrigation strategy triggered stronger physiological and molecular responses, suggesting a more intense and systemic stress reaction due to local dehydration of the dry compartment of PRD plants, the DI strategy resulted in similar water savings without strongly inducing these responses. Correlating physiological and molecular responses in PRD/DI plants may provide insights into the severity and location of water deficits and may enable a better understanding of long-distance signalling mechanisms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Utilizing the R/V Marcus G. Langseth's streamer to measure the acoustic radiation of its seismic source in the shallow waters of New Jersey's continental shelf.

    PubMed

    Crone, Timothy J; Tolstoy, Maya; Gibson, James C; Mountain, Gregory

    2017-01-01

    Shallow water marine seismic surveys are necessary to understand a range of Earth processes in coastal environments, including those that represent major hazards to society such as earthquakes, tsunamis, and sea-level rise. Predicting the acoustic radiation of seismic sources in shallow water, which is required for compliance with regulations designed to limit impacts on protected marine species, is a significant challenge in this environment because of variable reflectivity due to local geology, and the susceptibility of relatively small bathymetric features to focus or shadow acoustic energy. We use data from the R/V Marcus G. Langseth's towed hydrophone streamer to estimate the acoustic radiation of the ship's seismic source during a large survey of the shallow shelf off the coast of New Jersey. We use the results to estimate the distances from the source to acoustic levels of regulatory significance, and use bathymetric data from the ship's multibeam system to explore the relationships between seafloor depth and slope and the measured acoustic radiation patterns. We demonstrate that existing models significantly overestimate mitigation radii, but that the variability of received levels in shallow water suggest that in situ real-time measurements would help improve these estimates, and that post-cruise revisions of received levels are valuable in accurately determining the potential acoustic impact of a seismic survey.

  8. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  9. Receiving water quality assessment: comparison between simplified and detailed integrated urban modelling approaches.

    PubMed

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Urban water quality management often requires use of numerical models allowing the evaluation of the cause-effect relationship between the input(s) (i.e. rainfall, pollutant concentrations on catchment surface and in sewer system) and the resulting water quality response. The conventional approach to the system (i.e. sewer system, wastewater treatment plant and receiving water body), considering each component separately, does not enable optimisation of the whole system. However, recent gains in understanding and modelling make it possible to represent the system as a whole and optimise its overall performance. Indeed, integrated urban drainage modelling is of growing interest for tools to cope with Water Framework Directive requirements. Two different approaches can be employed for modelling the whole urban drainage system: detailed and simplified. Each has its advantages and disadvantages. Specifically, detailed approaches can offer a higher level of reliability in the model results, but can be very time consuming from the computational point of view. Simplified approaches are faster but may lead to greater model uncertainty due to an over-simplification. To gain insight into the above problem, two different modelling approaches have been compared with respect to their uncertainty. The first urban drainage integrated model approach uses the Saint-Venant equations and the 1D advection-dispersion equations, for the quantity and for the quality aspects, respectively. The second model approach consists of the simplified reservoir model. The analysis used a parsimonious bespoke model developed in previous studies. For the uncertainty analysis, the Generalised Likelihood Uncertainty Estimation (GLUE) procedure was used. Model reliability was evaluated on the basis of capacity of globally limiting the uncertainty. Both models have a good capability to fit the experimental data, suggesting that all adopted approaches are equivalent both for quantity and quality. The detailed model approach is more robust and presents less uncertainty in terms of uncertainty bands. On the other hand, the simplified river water quality model approach shows higher uncertainty and may be unsuitable for receiving water body quality assessment.

  10. Recent Progress in Metal‐Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting

    PubMed Central

    Wang, Wei; Xu, Xiaomin; Zhou, Wei

    2017-01-01

    The development of clean and renewable energy materials as alternatives to fossil fuels is foreseen as a potential solution to the crucial problems of environmental pollution and energy shortages. Hydrogen is an ideal energy material for the future, and water splitting using solar/electrical energy is one way to generate hydrogen. Metal‐organic frameworks (MOFs) are a class of porous materials with unique properties that have received rapidly growing attention in recent years for applications in water splitting due to their remarkable design flexibility, ultra‐large surface‐to‐volume ratios and tunable pore channels. This review focuses on recent progress in the application of MOFs in electrocatalytic and photocatalytic water splitting for hydrogen generation, including both oxygen and hydrogen evolution. It starts with the fundamentals of electrocatalytic and photocatalytic water splitting and the related factors to determine the catalytic activity. The recent progress in the exploitation of MOFs for water splitting is then summarized, and strategies for designing MOF‐based catalysts for electrocatalytic and photocatalytic water splitting are presented. Finally, major challenges in the field of water splitting are highlighted, and some perspectives of MOF‐based catalysts for water splitting are proposed. PMID:28435777

  11. An analysis of eco-environmental impacts of the south-to-north water transfer project on the receiving areas

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Gan, Hong; Xiao, Yuquan; You, Jinjun

    2010-05-01

    The receiving areas of the Phase I projects of the eastern and central routes of the South-to-North Water Transfer Project cover 41 administrative regions at and above the prefecture level in the provincial level administrative regions of Beijing, Tianjin, Hebei, Shandong and Henan, and have a carrying capacity of water resources most unadaptive to the needs by the economic and social development. Those areas have densely distributed population, farmland and agricultural and industrial activities and are experiencing rapid urbanization, but suffer from high scarcity of water resources, with all the cities in the areas seeing water shortage to a varying extent. Most of the cities are relying on abstracting deep groundwater and occupying agricultural water for urban water supply. In December 2002, the State Council officially approved the General Plan on the South-to-North Water Transfer Project, which provides multiple measures to reduce groundwater over-abstraction and improve and gradually restore the eco-environment in the receiving areas by using transferred water to replace the agricultural water occupied by urban water supply and the eco-environmental water occupied by cities and agriculture. What changes have occurred to the eco-environment and urban water use in the receiving areas in recent years ? How much water can be returned from the cities to agriculture and ecology after the objectives of water supply are met? What can be achieved in the control of groundwater abstraction? What level of guarantee can the water transfer provide for agricultural water use in a dry year? All of those issues have been at the focus of public attention. In this paper, statistical analysis is made on the eco-environmental status and urban water use of 72 cities in the receiving areas of the Phase I projects since year 2000 and a conclusion is drawn that the renewal capacity of the eco-environment and groundwater in the receiving areas is deteriorating. Then the water balancing method is used to quantitatively analyze the roles of the Phase I projects in improving the eco-environment in the receiving areas from the angles of alleviation of drought severity, replacement of local source water supply, reduction of groundwater abstraction, replacement of agricultural water occupied by urban water supply, increase of agricultural and ecological water use by water transfer, etc. The results show that the Phase I projects have produced significant impacts on the improvement of urban water supply and agricultural eco-environment in the receiving areas, but cannot fundamentally solve the groundwater over-abstraction problem, and water saving, water transfer and pollution control need to be implemented simultaneously in order to fully tap the benefits of the Phase I projects.

  12. 25 CFR 171.710 - Can I receive irrigation water if I am granted an Annual Assessment Waiver?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Can I receive irrigation water if I am granted an Annual Assessment Waiver? 171.710 Section 171.710 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Non-Assessment Status § 171.710 Can I receive irrigation water if I am granted an Annual...

  13. 25 CFR 171.710 - Can I receive irrigation water if I am granted an Annual Assessment Waiver?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Can I receive irrigation water if I am granted an Annual Assessment Waiver? 171.710 Section 171.710 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Non-Assessment Status § 171.710 Can I receive irrigation water if I am granted an Annual...

  14. 25 CFR 171.710 - Can I receive irrigation water if I am granted an Annual Assessment Waiver?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Can I receive irrigation water if I am granted an Annual Assessment Waiver? 171.710 Section 171.710 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Non-Assessment Status § 171.710 Can I receive irrigation water if I am granted an Annual...

  15. Major anion and cation fluxes from the Central SiberianPlateau watersheds with underlying permafrost

    NASA Astrophysics Data System (ADS)

    Kolosov, Roman R.; Prokushkin, Anatoly S.; Pokrovsky, Oleg S.

    2016-11-01

    The subarctic rivers of the Central Siberian Plateau have specific fed-characteristics due to the permafrost distribution and the active layer thawing dynamics. Two watersheds with different types of permafrost (from insular to continuous) are studied. Different data sources (Roshydromet and our own observations) are used for receiving anions’ (HCO3-, SO4 2-, Cl-) and cations’ (Ca2+, Mg2+) fluxes from the Nizhnyaya Tunguska river (1960-2011) and the Tembenchi river (1970-2011). The annual discharge of N. Tunguska for 1939-2011 is characterized by an increase of 0.3 km3/year/year, and for Tembenchi, 0.04 km3/year/year. The major part of the increase (about 60%) is due to spring flooding (May - June). The volume-weighted mean concentrations of major anions and cations in the N. Tunguska river water increased three times in the spring period (40.7 - 116.8 mg/l) and in the summer-fall period (74-212.9 mg/l). On the contrary, such concentrations decreased sharply during the winter mean water period. Due to these results, the total export of main anions and cations from the N. Tunguska river basin rose more than 4,5 times. Two possible reasons can be identified: 1) a water discharge increase of the Subarctic rivers (Peterson et al., 2002); 2) permafrost degradation induced by global climate warming (Frey and McClelland 2009).

  16. Dynamics of rain-induced pollutographs of solubles in sewers.

    PubMed

    Rutsch, M; Müller, I; Krebs, P

    2005-01-01

    When looking at acute receiving water impacts due to combined sewer overflows the characteristics of the background diurnal sewage flux variation may influence the peak loads from combined sewer overflows (CSO) and wastewater treatment plant (WWTP) effluent significantly. In this paper, effects on the dynamic compounds transported in the sewer, on CSO discharges and WWTP loading are evaluated by means of hydrodynamic simulations. The simulations are based on different scenarios for diurnal dry-weather flow variations induced by different infiltration rates.

  17. The control of hypertension by use of coconut water and mauby: two tropical food drinks.

    PubMed

    Alleyne, T; Roache, S; Thomas, C; Shirley, A

    2005-01-01

    In this study, the authors investigated the effect of regular consumption of two tropical food drinks, coconut (Cocos nucifera) water and mauby (Colubrina arborescens), on the control of hypertension. Twenty-eight hypertensive subjects were assigned to four equal groups and their systolic and diastolic blood pressures recorded for two weeks before and then for another two weeks while receiving one of four interventions. One group (the control) received bottled drinking water, the second group received coconut water, the third received mauby and the fourth group, a mixture of coconut water and mauby. Significant decreases in the mean systolic blood pressure were observed for 71%, 40% and 43% respectively of the groups receiving the coconut water, mauby and the mixture (p < or = 0.05). For these groups, the respective proportions showing significant decreases in the mean diastolic pressure were 29%, 40% and 57%. For the group receiving the mixture, the largest decreases in mean systolic and mean diastolic pressure were 24 mmHg and 15 mmHg respectively; these were approximately double the largest values seen with the single interventions.

  18. Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy.

    PubMed

    Hashemian, Mona; Anissian, Diana; Ghasemi-Kasman, Maryam; Akbari, Atefeh; Khalili-Fomeshi, Mohsen; Ghasemi, Shahram; Ahmadi, Fatemeh; Moghadamnia, Ali Akbar; Ebrahimpour, Anahita

    2017-10-03

    Despite several beneficial effects of curcumin, its medical application has been hampered due to low water solubility. To improve the aqueous solubility of curcumin, it has been loaded on chitosan (CS)-alginate (ALG) - sodium tripolyphosphate (STPP) nanoparticles (NPs). Then, the effect of curcumin NPs on memory improvement and glial activation was investigated in pentylenetetrazol (PTZ)-induced kindling model. Male NMRI mice have received the daily injection of curcumin NPs at dose of 12.5 or 25mg/kg. All interventions were injected intraperitoneally (i.p), 10days before PTZ administration and the injections were continued until 1h before each PTZ injection. Spatial learning and memory was evaluated using Morris water maze test after the 7th PTZ injection. Animals have received 10 injections of PTZ and then, brain tissues were removed for histological evaluation. Nissl staining was used to determine the level of cell death in hippocampus and immunostaining method was performed against NeuN and GFAP/Iba1 for assessment of neuronal density and glial activation respectively. Behavioral results showed that curcumin NPs exhibit anticonvulsant activity and prevent cognitive impairment in fully kindled animals. The level of cell death and glial activation reduced in animals which have received curcumin NPs compared to those received free curcumin. To conclude, these findings suggest that curcumin NPs effectively ameliorate memory impairment and attenuate the level of activated glial cells in a mice model of chronic epilepsy. Copyright © 2017. Published by Elsevier Inc.

  19. Sustained Pulmonary Delivery of a Water-Soluble Antibiotic Without Encapsulating Carriers.

    PubMed

    Ong, Winston; Nowak, Pawel; Cu, Yen; Schopf, Lisa; Bourassa, James; Enlow, Elizabeth; Moskowitz, Samuel M; Chen, Hongming

    2016-03-01

    Traditional polymeric nanoparticle formulations for prolonged local action during inhalation therapy are highly susceptible to muco-ciliary clearance. In addition, polymeric carriers are typically administered in high doses due to finite drug loading. For toxicological reasons, these carriers and their degradation byproducts are undesirable for inhalation therapy, particularly for chronic use, due to potential lung accumulation. We synthesized a novel, insoluble prodrug (MRPD) of a time-dependent β-lactam, meropenem, and formulated MRPD into mucus-penetrating crystals (MRPD-MPCs). After characterizing their mucus mobility (in vitro) and stability, we evaluated the lung pharmacokinetics of intratracheally-instilled MRPD-MPCs and a meropenem solution in guinea pigs. Meropenem levels rapidly declined in the lungs of guinea pigs receiving meropenem solution compared to those given MRPD-MPCs. At 9 h after dosing, drug levels in the lungs of animals that received meropenem solution dropped to 12 ng/mL, whereas those that received MRPD-MPCs maintained an average drug level of ≥1,065 ng/mL over a 12-h period. This work demonstrated that the combination of prodrug chemistry and mucus-penetrating platform created nanoparticles that produced sustained levels of meropenem in guinea pig lungs. This strategy represents a novel approach for sustained local drug delivery to the lung without using encapsulating matrices.

  20. Temporal and spatial variations in nutrient stoichiometry and regulation of phytoplankton biomass in Hong Kong waters: influence of the Pearl River outflow and sewage inputs.

    PubMed

    Xu, Jie; Ho, Alvin Y T; Yin, Kedong; Yuan, Xiangcheng; Anderson, Donald M; Lee, Joseph H W; Harrison, Paul J

    2008-01-01

    In 2001, the Hong Kong government implemented the Harbor Area Treatment Scheme (HATS) under which 70% of the sewage that had been formerly discharged into Victoria Harbor is now collected and sent to Stonecutters Island Sewage Works where it receives chemically enhanced primary treatment (CEPT), and is then discharged into waters west of the Harbor. The relocation of the sewage discharge will possibly change the nutrient dynamics and phytoplankton biomass in this area. Therefore, there is a need to examine the factors that regulate phytoplankton growth in Hong Kong waters in order to understand future impacts. Based on a historic nutrient data set (1986-2001), a comparison of ambient nutrient ratios with the Redfield ratio (N:P:Si=16:1:16) showed clear spatial variations in the factors that regulate phytoplankton biomass along a west (estuary) to east (coastal/oceanic) transect through Hong Kong waters. Algal biomass was constrained by a combination of low light conditions, a rapid change in salinity, and strong turbulent mixing in western waters throughout the year. Potential stoichiometric Si limitation (up to 94% of the cases in winter) occurred in Victoria Harbor due to the contribution of sewage effluent with high N and P enrichment all year, except for summer when the frequency of stoichiometric Si limitation (48%) was the same as P, owing to the influence of the high Si in the Pearl River discharge. In the eastern waters, potential N limitation and N and P co-limitation occurred in autumn and winter respectively, because of the dominance of coastal/oceanic water with low nutrients and low N:P ratios. In contrast, potential Si limitation occurred in spring and a switch to potential N, P and Si limitation occurred in eastern waters in summer. In southern waters, there was a shift from P limitation (80%) in summer due to the influence of the N-rich Pearl River discharge, to N limitation (68%) in autumn, and to N and P co-limitation in winter due to the dominance of N-poor oceanic water from the oligotrophic South China Sea. Our results show clear temporal and spatial variations in the nutrient stoichiometry which indicates potential regulation of phytoplankton biomass in HK waters due to the combination of the seasonal exchange of the Pearl River discharge and oceanic water, sewage effluent inputs, and strong hydrodynamic mixing from SW monsoon winds in summer and the NE monsoon winds in winter.

  1. Temporal and Spatial Variations in Nutrient Stoichiometry and Regulation of Phytoplankton Biomass in Hong Kong waters: Influence of the Pearl River Outflow and Sewage Inputs

    PubMed Central

    Xu, Jie; Ho, Alvin Y. T.; Yin, Kedong; Yuan, Xiangcheng; Anderson, Donald M.; Lee, Joseph H.W.; Harrison, Paul J.

    2017-01-01

    In 2001, the Hong Kong government implemented the Harbor Area Treatment Scheme (HATS) under which 70% of the sewage that had been formerly discharged into Victoria Harbor is now collected and sent to Stonecutters Island Sewage Works where it receives chemically enhanced primary treatment (CEPT), and is then discharged into waters west of the Harbor. The relocation of the sewage discharge will possibly change the nutrient dynamics and phytoplankton biomass in this area. Therefore, there is a need to examine the factors that regulate phytoplankton growth in Hong Kong waters in order to understand future impacts. Based on a historic nutrient data set (1986–2001), a comparison of ambient nutrient ratios with the Redfield ratio (N:P:Si=16:1:16) showed clear spatial variations in the factors that regulate phytoplankton biomass along a west (estuary) to east (coastal/oceanic) transect through Hong Kong waters. Algal biomass was constrained by a combination of low light conditions, a rapid change in salinity, and strong turbulent mixing in western waters throughout the year. Potential stoichiometric Si limitation (up to 94% of the cases in winter) occurred in Victoria Harbor due to the contribution of sewage effluent with high N and P enrichment all year, except for summer when the frequency of stoichiometric Si limitation (48%) was the same as P, owing to the influence of the high Si in the Pearl River discharge. In the eastern waters, potential N limitation and N and P co-limitation occurred in autumn and winter respectively, because of the dominance of coastal/oceanic water with low nutrients and low N:P ratios. In contrast, potential Si limitation occurred in spring and a switch to potential N, P and Si limitation occurred in eastern waters in summer. In southern waters, there was a shift from P limitation (80%) in summer due to the influence of the N-rich Pearl River discharge, to N limitation (68%) in autumn, and to N and P co-limitation in winter due to the dominance of N-poor oceanic water from the oligotrophic South China Sea. Our results show clear temporal and spatial variations in the nutrient stoichiometry which indicates potential regulation of phytoplankton biomass in HK waters due to the combination of the seasonal exchange of the Pearl River discharge and oceanic water, sewage effluent inputs, and strong hydrodynamic mixing from SW monsoon winds in summer and the NE monsoon winds in winter. PMID:18313698

  2. Least limiting water range of Udox soil under degraded pastures on different sun-exposed faces

    NASA Astrophysics Data System (ADS)

    Passos, Renato Ribeiro; Marciano da Costa, Liovando; Rodrigues de Assis, Igor; Santos, Danilo Andrade; Ruiz, Hugo Alberto; Guimarães, Lorena Abdalla de Oliveira Prata; Andrade, Felipe Vaz

    2017-07-01

    The efficient use of water is increasingly important and proper soil management, within the specificities of each region of the country, allows achieving greater efficiency. The South and Caparaó regions of Espírito Santo, Brazil are characterized by relief of `hill seas' with differences in the degree of pasture degradation due to sun exposure. The objective of this study was to evaluate the least limiting water range in Udox soil under degraded pastures with two faces of exposure to the sun and three pedoenvironments. In each pedoenvironment, namely Alegre, Celina, and Café, two areas were selected, one with exposure on the North/West face and the other on the South/East face. In each of these areas, undisturbed soil samples were collected at 0-10 cm depth to determine the least limiting water range. The exposed face of the pasture that received the highest solar incidence (North/West) presented the lowest values in least limiting water range. The least limiting water range proved to be a physical quality indicator for Udox soil under degraded pastures.

  3. Effects of volume change on the unsaturated hydraulic conductivity of Sphagnum moss

    NASA Astrophysics Data System (ADS)

    Golubev, V.; Whittington, P.

    2018-04-01

    Due to the non-vascular nature of Sphagnum mosses, the capitula (growing surface) of the moss must rely solely on capillary action to receive water from beneath. Moss subsides and swells in accordance with water table levels, an effect called "mire-breathing", which has been thought to be a self-preservation mechanism, although no systematic studies have been done to demonstrate exactly how volume change affects hydrophysical properties of moss. In this study, the unsaturated hydraulic conductivity (Kunsat) and water content of two different species of Sphagnum moss were measured at different compression rates, up to the maximum of 77%. The findings show that the Kunsat increases by up to an order of magnitude (10×) with compression up to a certain bulk density of the moss, after which higher levels of compression result in lowered unsaturated hydraulic conductivity. This was coupled with an increase in soil water retention with increased compression. The increase of the Kunsat with compression suggests that the mire-breathing effect should be considered a self-preservation mechanism to provide sufficient amount of water to growing moss in times of low water availability.

  4. Toxicity and pollutant impact analysis in an urban river due to combined sewer overflows loads.

    PubMed

    Casadio, A; Maglionico, M; Bolognesi, A; Artina, S

    2010-01-01

    The Navile Channel (Bologna, Italy) is an ancient artificial water course derived from the Reno river. It is the main receiving water body for the urban catchment of Bologna sewer systems and also for the Waste Water Treatment Plant (WWTP) main outlet. The aim of this work is to evaluate the Combined Sewer Overflows (CSOs) impact on Navile Channel's water quality. In order to collect Navile flow and water quality data in both dry and wet weather conditions, two measuring and sampling stations were installed, right upstream and downstream the WWTP outflow. The study shows that even in case of low intensity rain events, CSOs have a significant effect on both water quantity and quality, spilling a considerable amount of pollutants into the Navile Channel and presenting also acute toxicity effects. The collected data shown a good correlations between the concentrations of TSS and of chemical compounds analyzed, suggesting that the most part of such substances is attached to suspended solids. Resulting toxicity values are fairly high in both measuring points and seem to confirm synergistic interactions between heavy metals.

  5. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    PubMed Central

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-01-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments. PMID:27681994

  6. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries.

    PubMed

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-29

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  7. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    NASA Astrophysics Data System (ADS)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  8. Bayesian decision analysis as a tool for defining monitoring needs in the field of effects of CSOs on receiving waters.

    PubMed

    Korving, H; Clemens, F

    2002-01-01

    In recent years, decision analysis has become an important technique in many disciplines. It provides a methodology for rational decision-making allowing for uncertainties in the outcome of several possible actions to be undertaken. An example in urban drainage is the situation in which an engineer has to decide upon a major reconstruction of a system in order to prevent pollution of receiving waters due to CSOs. This paper describes the possibilities of Bayesian decision-making in urban drainage. In particular, the utility of monitoring prior to deciding on the reconstruction of a sewer system to reduce CSO emissions is studied. Our concern is with deciding whether a price should be paid for new information and which source of information is the best choice given the expected uncertainties in the outcome. The influence of specific uncertainties (sewer system data and model parameters) on the probability of CSO volumes is shown to be significant. Using Bayes' rule, to combine prior impressions with new observations, reduces the risks linked with the planning of sewer system reconstructions.

  9. Microbiological Investigation of Persistent Mortalities in Litopenaeus vannamei Grown in Low Saline Waters in India.

    PubMed

    Sanathkumar, Hirekudel; Ravi, Charan; Padinhatupurayil, Suresh Babu; Mol, Mini; Prasad, Jilagam Krishna; Nayak, Binaya Bhusan

    2014-09-01

    Abstract Microbial diseases are a serious hindrance to successful shrimp aquaculture. The Pacific white shrimp Litopenaeus vannamei is an exotic species recently introduced in India to supplement the failing aquaculture of the Asian tiger shrimp Penaeus monodon due to viral diseases. However, after a brief initial success, the aquaculture of L. vannamei is also experiencing serious problems due to microbial diseases. In this study, we conducted a microbiological investigation into the problem of persistent mortalities in selected L. vannamei farms on the southeastern coast of India. The infected shrimps were positive for the white spot syndrome virus (WSSV) by a nested PCR, though no visible white spots were present on the animals. The shrimps were heavily colonized by Vibrio parahemolyticus, which were isolated from the hepatopancreas, gills, and the body surface. The pond water, despite being low saline groundwater, harbored large numbers of V. parahemolyticus and other Vibrio species, and V. parahemolyticus isolated from L. vannamei were resistant to β-lactam antibiotics and cephalosporins. Our results strongly suggest that the persistent mortalities of L. vannamei were due to a co-infection by V. parahemolyticus and WSSV. Received December 16, 2013; accepted February 14, 2014.

  10. Does Personalized Water and Hand Quality Information Affect Attitudes, Behavior, and Health in Dar es Salaam, Tanzania?

    NASA Astrophysics Data System (ADS)

    Davis, J.; Pickering, A.; Horak, H.; Boehm, A.

    2008-12-01

    Tanzania (TZ) has one of the highest rates of child mortality due to enteric disease in the world. NGOs and local agencies have introduced numerous technologies (e.g., chlorine tablets, borewells) to increase the quantity and quality of water in Dar es Salaam, the capital of Tanzania, in hopes of reducing morbidity and mortality of waterborne disease. The objective of the present study is to determine if providing personalized information about water quality and hand surface quality, as determined by concentrations of enterococci and E. coli, results in improved health and water quality in households. A cohort study was completed in June-September 2008 in 3 communities ranging from urban to per-urban in Dar es Salaam, Tanzania to achieve our objective. The study consisted of 4 cohorts that were visited 4 times over the 3 month study. One cohort received no information about water and hand quality until the end of the summer, while the other groups received either just information on hand surface quality, just information on water quality, and information on both hand surface and water quality after the first (baseline) household visit. We report concentrations of enterococci and E. coli in water sources (surface waters and bore wells), water stored in households, and environmental waters were children and adults swim and bathe. In addition, we report concentrations of enterococci and E. coli on hands of caregivers and children in households. Preliminary results of surveys on health and perceptions of water quality and illness from the households are provided. Ongoing work will integrate the microbiological and sociological data sets to determine if personalized information interventions resulted in changes in health, water quality in the household, or perceptions of water quality, quantity and relation to human health. Future work will analyze DNA samples from hands and water for human-specific Bacteroides bacteria which are only present in human feces. Our study has the potential to provide empirical evidence to promote large scale monitoring and education campaigns in Africa to improve health and reduce the burden of waterborne disease.

  11. Access to water and sanitation facilities in primary schools: A neglected educational crisis in Ngamiland district in Botswana

    NASA Astrophysics Data System (ADS)

    Ngwenya, B. N.; Thakadu, O. T.; Phaladze, N. A.; Bolaane, B.

    2018-06-01

    In developing countries, the sanitation and hygiene provision often receives limited resources compared to the water supply. However, water supply benefits tend to diminish if improved sanitation and hygiene are neglected. This paper presents findings of a situational analysis of water supply, sanitation and hygiene infrastructure and their utilization in three primary schools in north-western Botswana. The overall objective of the paper is to determine access and functionality of water supply, sanitation and hygiene infrastructure in three primary schools. The specific objectives are: a) Learners' perspective of their water and sanitation facilities and b) gendered utilization of sanitation and hygiene facilities. Data were collected through a face-to-face administered social survey tool to 286 learners selected through proportionate stratified random sampling from three purposively selected villages in the middle and lower Okavango Delta. Findings indicate that standpipes provide 96% of potable water supply. However, the majority (65% of leaners) indicated that they 'sometimes' experienced water shortage due to dry/nonfunctioning taps/pumps and leaks/wastage. Overall, schools have relatively sufficient sanitation facilities consisting of both water borne toilets and VIP latrines. The major sanitation gap identified was that 80% flush toilets hardly work, while 77% of VIP toilets were in disrepair. Furthermore, poor water supply compromised hand washing with 65.7% learners "always" washing their hands if school standpipes had water, while the majority did not wash hands if standpipes were dry. The study concluded that availability of sanitation infrastructure does not necessarily translate into utilization in the study area due to multiple problems, such as lack of personal hygiene supplies (regular toilet paper and hand washing detergents), privacy issues and recurring water problems. The chronicity of inadequate water, sanitation and hygiene infrastructure in primary schools is critical and there is urgent need to address these challenges in order to create a conducive learning environment in primary schools in the district.

  12. Storm Induced Injection of the Mississippi River Plume Into the Open Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Yuan, Jinchun; Miller, Richard L.; Powell, Rodney T.; Dagg, Michael J.

    2004-01-01

    The direct impact of the Mississippi River on the open Gulf of Mexico is typically considered to be limited due to the predominantly along-shore current pattern. Using satellite imagery, we analyzed chl a distributions in the northern Gulf of Mexico before and after the passage of two storms: Hurricane Lili and Tropical Storm Barry. Our analyses indicate that storm-induced eddies can rapidly inject large volumes of nutrient-rich Mississippi River water to the open gulf, and lead to phytoplankton blooms. Although these events last only a few weeks, they transport significant amounts of fluvial substances to the ocean. These river-ocean interactions are especially significant in tropical and subtropical regions because receiving waters are typically permanently stratified and oligotrophic.

  13. Single-Pole Double-Throw MMIC Switches for a Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka P.

    2012-01-01

    In order to reduce the effect of gain and noise instabilities in the RF chain of a microwave radiometer, a Dicke radiometer topology is often used, as in the case of the proposed surface water and ocean topography (SWOT) radiometer instrument. For this topology, a single-pole double-throw (SPDT) microwave switch is needed, which must have low insertion loss at the radiometer channel frequencies to minimize the overall receiver noise figure. Total power radiometers are limited in accuracy due to the continuous variation in gain of the receiver. High-frequency SPDT switches were developed in the form of monolithic microwave integrated circuits (MMICs) using 75 micron indium phosphide (InP) PIN-diode technology. These switches can be easily integrated into Dicke switched radiometers that utilize microstrip technology.

  14. Influence of Nano-Fluid and Receiver Modification in Solar Parabolic Trough Collector Performance

    NASA Astrophysics Data System (ADS)

    Dharani Kumar, M.; Yuvaraj, G.; Balaji, D.; Pravinraj, R.; shanmugasundaram, Prabhu

    2018-02-01

    Utilization of natural renewal sources in India is very high over the past decades. Solar power is a prime source of energy available plenty in the world. In this work solar energy is modified into thermal energy by using copper absorber tube with fins. Due to low heat transfer coefficient results leading to higher thermal losses and lower thermal efficiency. In order to increase the heat transfer coefficient copper receiver tube with fins is used and as well as solid has higher thermal conductivity compare to fluid (Tio2) nano fluid is used to improve the heat transfer rate. The analyses have been carried out and take the account of parameters such as solar radiation with time variation, mass flow rate of water, temperatures.

  15. Environmental concerns of roxarsone in broiler poultry feed and litter in Maryland, USA.

    PubMed

    Fisher, Daniel J; Yonkos, Lance T; Staver, Kenneth W

    2015-02-17

    Roxarsone has been used extensively in the broiler chicken industry. We reviewed the environmental concerns of this usage. To summarize, arsenic added to poultry feed as roxarsone ends up in poultry litter. Fresh litter contains predominately roxarsone, whereas aged litter contains predominately inorganic arsenic. Soil arsenic concentrations from long-term poultry litter applications can exceed Maryland arsenic soil background remediation standards. Due to continued soil accumulation, arsenic-amended litter use as fertilizer is thought to be unsustainable. Surface-applied roxarsone-amended litter does not influence deep aquifer arsenic concentrations but is transported as inorganic arsenic to receiving waters and very shallow groundwater after precipitation. Arsenic in some receiving waters and sediments from agriculturally dominated watersheds have levels above established criteria. Arsenic in fish and shellfish is mostly organic. Phosphorus-based nutrient management will tend to limit PL application rates in areas that have over-applied phosphorus relative to crop needs, resulting in decreased rates of arsenic application and accumulation. Despite most arsenic in surface soils being tightly bound, as surface soils become more enriched in arsenic, the potential for downward movement increases but is limited in most soils due to the high capacity for binding of arsenic to clay minerals and oxides of iron and aluminum in subsoil horizons. In 2012, Maryland passed a law banning the use of arsenic additives except nitarsone in poultry feed. In 2013, the USFDA withdrew approval of roxarsone, carbarsone, and arsanilic but is reviewing nitarsone.

  16. Natural radioactivity in groundwater--a review.

    PubMed

    Dinh Chau, Nguyen; Dulinski, Marek; Jodlowski, Pawel; Nowak, Jakub; Rozanski, Kazimierz; Sleziak, Monika; Wachniew, Przemyslaw

    2011-12-01

    The issue of natural radioactivity in groundwater is reviewed, with emphasis on those radioisotopes which contribute in a significant way to the overall effective dose received by members of the public due to the intake of drinking water originating from groundwater systems. The term 'natural radioactivity' is used in this context to cover all radioactivity present in the environment, including man-made (anthropogenic) radioactivity. Comprehensive discussion of radiological aspects of the presence of natural radionuclides in groundwater, including an overview of current regulations dealing with radioactivity in drinking water, is provided. The presented data indicate that thorough assessments of the committed doses resulting from the presence of natural radioactivity in groundwater are needed, particularly when such water is envisaged for regular intake by infants. They should be based on a precise determination of radioactivity concentration levels of the whole suite of radionuclides, including characterisation of their temporal variability. Equally important is a realistic assessment of water intake values for specific age groups. Only such an evaluation may provide the basis for possible remedial actions.

  17. Damping measurements in flowing water

    NASA Astrophysics Data System (ADS)

    Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.

    2012-11-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  18. Analyses of water, bank material, bottom material, and elutriate samples collected near Belzoni, Mississippi (upper Yazoo projects)

    USGS Publications Warehouse

    Brightbill, David B.; Treadway, Joseph B.

    1980-01-01

    Four core-material-sampling sites and one bottom-material site were chosen by the U.S. Army Corps of Engineers to represent areas of proposed dredging activity along a 24.9-mile reach of the upper Yazoo River. Five receiving-water sites also were selected to represent the water that will contact the proposed dredged material. Chemical and physical analyses were performed upon core or bottom material and native-water (receiving-water) samples from these sites as well as upon elutriate samples of the mixture of sediment and receiving water. The results of these analyses are presented without interpertation. (USGS)

  19. Oral intake of hydrogen-rich water inhibits intimal hyperplasia in arterialized vein grafts in rats

    PubMed Central

    Sun, Qiang; Kawamura, Tomohiro; Masutani, Kosuke; Peng, Ximei; Sun, Qing; Stolz, Donna B.; Pribis, John P.; Billiar, Timothy R.; Sun, Xuejun; Bermudez, Christian A.; Toyoda, Yoshiya; Nakao, Atsunori

    2012-01-01

    Aims Arterialized vein grafts often fail due to intimal hyperplasia. Hydrogen potently protects organs and cells from many insults via its anti-inflammatory and antioxidant properties. We investigated the efficacy of oral administration of hydrogen-rich water (HW) for prevention of intimal hyperplasia. Methods and results The inferior vena cava was excised, stored in cold Ringer solution for 2 h, and placed as an interposition graft in the abdominal aorta of syngeneic Lewis rats. HW was generated by immersing a magnesium stick in tap water (Mg + 2H2O → Mg (OH)2 + H2). Beginning on the day of graft implantation, recipients were given tap water [regular water (RW)], HW or HW that had been subsequently degassed water (DW). Six weeks after grafting, the grafts in the rats given RW or DW had developed intimal hyperplasia, accompanied by increased oxidative injury. HW significantly suppressed intimal hyperplasia. One week after grafting, the grafts in HW-treated rats exhibited improved endothelial integrity with less platelet and white blood cell aggregation. Up-regulation of the mRNAs for intracellular adhesion molecules was attenuated in the vein grafts of the rats receiving HW. Activation of p38 mitogen-activated protein kinase, matrix metalloproteinase (MMP)-2, and MMP-9 was also significantly inhibited in grafts receiving HW. In rat smooth muscle cell (A7r5) cultures, hydrogen treatment for 24 h reduced smooth muscle cell migration. Conclusion Drinking HW significantly reduced neointima formation after vein grafting in rats. Drinking HW may have therapeutic value as a novel therapy for intimal hyperplasia and could easily be incorporated into daily life. PMID:22287575

  20. Early fruiting in Synsepalum dulcificum (Schumach. & Thonn.) Daniell juveniles induced by water and inorganic nutrient management

    PubMed Central

    Tchokponhoué, Dèdéou Apocalypse; N'Danikou, Sognigbé; Hale, Iago; Van Deynze, Allen; Achigan-Dako, Enoch Gbènato

    2017-01-01

    Background. The miracle plant, Synsepalum dulcificum (Schumach. & Thonn.) Daniell is a native African orphan crop species that has recently received increased attention due to its promise as a sweetener and source of antioxidants in both the food and pharmaceutical industries. However, a major obstacle to the species’ widespread utilization is its relatively slow growth rate and prolonged juvenile period. Method. In this study, we tested twelve treatments made up of various watering regimes and exogenous nutrient application (nitrogen, phosphorus and potassium, at varying dosages) on the relative survival, growth, and reproductive development of 15-months-old S. dulcificum juveniles. Results. While the plants survived under most tested growing conditions, nitrogen application at doses higher than 1.5 g [seedling] -1 was found to be highly detrimental, reducing survival to 0%. The treatment was found to affect all growth traits, and juveniles that received a combination of nitrogen, phosphorus, and potassium (each at a rate of 1.5 g [seedling] -1), in addition to daily watering, exhibited the most vegetative growth. The simple daily provision of adequate water was found to greatly accelerate the transition to reproductive maturity in the species (from >36 months to an average of 23 months), whereas nutrient application affected the length of the reproductive phase within a season, as well as the fruiting intensity. Conclusions. This study highlights the beneficial effect of water supply and fertilization on both vegetative and reproductive growth in S. dulcificum. Water supply appeared to be the most important factor unlocking flowering in the species, while the combination of nitrogen, phosphorus and potassium at the dose of 1.5 g (for all) consistently exhibited the highest performance for all growth and yield traits. These findings will help intensify S. dulcificum’s breeding and horticultural development. PMID:28620457

  1. Self-reported household impacts of large-scale chemical contamination of the public water supply, Charleston, West Virginia, USA.

    PubMed

    Schade, Charles P; Wright, Nasandra; Gupta, Rahul; Latif, David A; Jha, Ayan; Robinson, John

    2015-01-01

    A January 2014 industrial accident contaminated the public water supply of approximately 300,000 homes in and near Charleston, West Virginia (USA) with low levels of a strongly-smelling substance consisting principally of 4-methylcyclohexane methanol (MCHM). The ensuing state of emergency closed schools and businesses. Hundreds of people sought medical care for symptoms they related to the incident. We surveyed 498 households by telephone to assess the episode's health and economic impact as well as public perception of risk communication by responsible officials. Thirty two percent of households (159/498) reported someone with illness believed to be related to the chemical spill, chiefly dermatological or gastrointestinal symptoms. Respondents experienced more frequent symptoms of psychological distress during and within 30 days of the emergency than 90 days later. Sixty-seven respondent households (13%) had someone miss work because of the crisis, missing a median of 3 days of work. Of 443 households reporting extra expenses due to the crisis, 46% spent less than $100, while 10% spent over $500 (estimated average about $206). More than 80% (401/485) households learned of the spill the same day it occurred. More than 2/3 of households complied fully with "do not use" orders that were issued; only 8% reported drinking water against advice. Household assessments of official communications varied by source, with local officials receiving an average "B" rating, whereas some federal and water company communication received a "D" grade. More than 90% of households obtained safe water from distribution centers or stores during the emergency. We conclude that the spill had major economic impact with substantial numbers of individuals reporting incident-related illnesses and psychological distress. Authorities were successful supplying emergency drinking water, but less so with risk communication.

  2. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China.

    PubMed

    Li, Yi; Xiong, Wei; Zhang, Wenlong; Wang, Chao; Wang, Peifang

    2016-02-01

    To alleviate the water shortage in northern China, the Chinese government launched the world's largest water diversion project, the South-to-North Water Diversion Project (SNWDP), which delivers water from water-sufficient southern China to water-deficient northern China. However, an up-to-date study has not been conducted to determine whether the project is a favorable option to augment the water supply from an environmental perspective. The life cycle assessment (LCA) methodology integrated with a freshwater withdrawal category (FWI) was adopted to compare water supply alternatives in the water-receiving areas of the SNWDP, i.e., water diversion, wastewater reclamation and seawater desalination. Beijing, Tianjin, Jinan and Qingdao were studied as representative cities because they are the primary water-receiving areas of the SNWDP. The results revealed that the operation phase played the dominant role in all but one of the life cycle impact categories considered and contributed to more than 70% of their scores. For Beijing and Tianjin, receiving water through the SNWDP is the most sustainable option to augment the water supply. The result can be drawn in all of the water-receiving areas of the middle route of the SNWDP. For Jinan and Qingdao, the most sustainable option is the wastewater reclamation system. The seawater desalination system obtains the highest score of the standard impact indicators in all of the study areas, whereas it is the most favorable water supply option when considering the freshwater withdrawal impact. Although the most sustainable water supply alternative was recommended through an LCA analysis, multi-water resources should be integrated into the region's water supply from the perspective of water sustainability. The results of this study provide a useful recommendation on the management of water resources for China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Growing sensitivity of maize to water scarcity under climate change.

    PubMed

    Meng, Qingfeng; Chen, Xinping; Lobell, David B; Cui, Zhenling; Zhang, Yi; Yang, Haishun; Zhang, Fusuo

    2016-01-25

    Climate change can reduce crop yields and thereby threaten food security. The current measures used to adapt to climate change involve avoiding crops yield decrease, however, the limitations of such measures due to water and other resources scarcity have not been well understood. Here, we quantify how the sensitivity of maize to water availability has increased because of the shift toward longer-maturing varieties during last three decades in the Chinese Maize Belt (CMB). We report that modern, longer-maturing varieties have extended the growing period by an average of 8 days and have significantly offset the negative impacts of climate change on yield. However, the sensitivity of maize production to water has increased: maize yield across the CMB was 5% lower with rainfed than with irrigated maize in the 1980s and was 10% lower (and even >20% lower in some areas) in the 2000s because of both warming and the increased requirement for water by the longer-maturing varieties. Of the maize area in China, 40% now fails to receive the precipitation required to attain the full yield potential. Opportunities for water saving in maize systems exist, but water scarcity in China remains a serious problem.

  4. Widespread occurrence and seasonal variation of pharmaceuticals in surface waters and municipal wastewater treatment plants in central Finland.

    PubMed

    Lindholm-Lehto, Petra C; Ahkola, Heidi S J; Knuutinen, Juha S; Herve, Sirpa H

    2016-04-01

    The presence of five selected pharmaceuticals, consisting of four anti-inflammatory drugs, diclofenac, ibuprofen, ketoprofen, naproxen, and an antiepileptic drug carbamazepine, was determined at four municipal wastewater treatment plants (WWTPs) and in the receiving waterway in central Finland. The samples were taken from influents and effluents of the WWTPs and from surface water of six locations along the water way, including northern Lake Päijänne. In addition, seasonal variation in the area was determined by comparing the concentrations in the winter and summer. The samples were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The concentrations in the influents and effluents ranged from hundreds of nanogram per liter to microgram per liter while ranged from tens of nanogram per liter in northern parts of the waterway to hundreds of nanogram per liter in northern Lake Päijänne near the city area. In addition, the concentrations were higher in the winter compared to summer time in surface water due to decreased temperature and solar irradiation. On the other hand, higher concentrations of ibuprofen, ketoprofen, and naproxen were found in summer at the WWTPs, possibly due to seasonal variations in consumption. In conclusion, there are considerable amounts of pharmaceuticals not only in influents and effluents of the WWTPs but also in lake water along the waterway and in northern Lake Päijänne.

  5. On the derivation of specific yield and soil water retention characteristics in peatlands from rainfall, microrelief and water level data - Theory and Practice

    NASA Astrophysics Data System (ADS)

    Dettmann, Ullrich; Bechtold, Michel

    2016-04-01

    Water level depth is one of the crucial state variables controlling the biogeochemical processes in peatlands. For flat soil surfaces, water level depth dynamics as response to boundary fluxes are primarily controlled by the water retention characteristics of the soil in and above the range of the water level fluctuations. For changing water levels, the difference of the integrals of two soil moisture profiles (ΔAsoil), of a lower and a upper water level, is equal to the amount of water received or released by the soil. Dividing ΔAsoil by the water level change, results into a variable that is known as specific yield (Sy). For water level changes approaching the soil surface, changes in soil water storage are small due to the thin unsaturated zone that remains. Consequentially, Sy values approach zero with an abrupt transition to 1 in case of inundation. However, on contrary, observed water level rises due to precipitation events at various locations showed increasing Sy values for water level changes at shallow depths (Sy = precipitation/water level change; Logsdon et al., 2010). The increase of Sy values can be attributed in large parts to the influence of the microrelief on water level changes in these wet landscapes that are characterized by a mosaic of inundated and non-inundated areas. Consequentially, water level changes are dampened by partial inundation. In this situation, total Sy is composed of a spatially-integrated below ground and above ground contribution. We provide a general one-dimensional expression that correctly represents the effect of a microrelief on the total Sy. The one-dimensional expression can be applied for any soil hydraulic parameterizations and soil surface elevation frequency distributions. We demonstrate that Sy is influenced by the microrelief not only when surface storage directly contributes to Sy by (partial) inundation but also when water levels are lower than the minimum surface elevation. With the derived one-dimensional expression we developed a novel approach for the in situ determination of soil water retention characteristics that is applicable to shallow groundwater systems. Our approach is built on two assumptions: i) for shallow groundwater systems with medium- to high conductive soils the soil moisture profile is always close to hydrostatic equilibrium and ii) over short time periods differences in total water storage due to lateral fluxes are negligible. Given these assumptions, the height of a water level rise due to a precipitation event mainly depends on the soil water retention characteristics, the precipitation amount, the initial water level depth and, if present, the microrelief. We use this dependency to determine water retention characteristics (van Genuchten parameter) by Bayesian inversion. Our results demonstrate that observations of water level rises, caused by precipitation events, contain sufficient information to constrain the water retention characteristics around two dip wells in a Sphagnum bog to plausible ranges. We discuss the possible biases that come along with our approach and point out the research that is needed to quantify their significance.

  6. Spatial and seasonal patterns in water quality in an embayment-mainstem reach of the tidal freshwater Potomac River, USA: a multiyear study.

    PubMed

    Jones, R Christian; Kelso, Donald P; Schaeffer, Elaine

    2008-12-01

    Spatial and temporal patterns in water quality were studied for seven years within an embayment-river mainstem area of the tidal freshwater Potomac River. The purpose of this paper is to determine the important components of spatial and temporal variation in water quality in this study area to facilitate an understanding of management impacts and allow the most effective use of future monitoring resources. The study area received treated sewage effluent and freshwater inflow from direct tributary inputs into the shallow embayment as well as upriver sources in the mainstem. Depth variations were determined to be detectable, but minimal due mainly to the influence of tidal mixing. Results of principal component analysis of two independent water quality datasets revealed clear spatial and seasonal patterns. Interannual variation was generally minimal despite substantial variations in tributary and mainstem discharge among years. Since both spatial and seasonal components were important, data were segmented by season to best determine the spatial pattern. A clear difference was found between a set of stations located within one embayment (Gunston Cove) and a second set in the nearby Potomac mainstem. Parameters most highly correlated with differences were those typically associated with higher densities of phytoplankton: chlorophyll a, photosynthetic rate, pH, dissolved oxygen, BOD, total phosphorus and Secchi depth. These differences and their consistency indicated two distinct water masses: one in the cove harboring higher algal density and activity and a second in the river with lower phytoplankton activity. A second embayment not receiving sewage effluent generally had an intermediate position. While this was the most consistent spatial pattern, there were two others of a secondary nature. Stations closer to the effluent inputs in the embayment sometimes grouped separately due to elevated ammonia and chloride. Stations closer to tributary inflows into the embayment sometimes grouped separately due to dilution with freshwater runoff. Segmenting the datasets by spatial region resulted in a clarification of seasonal patterns with similar factors relating to algal activity being the major correlates of the seasonal pattern. A basic seasonal pattern of lower scores in the spring increasing steadily to a peak in July and August followed by a steady decline through the fall was observed in the cove. In the river, the pattern of increases tended to be delayed slightly in the spring. Results indicate that the study area can be effectively monitored with fewer study sites provided that at least one is located in each of the spatial regions.

  7. Utilizing the R/V Marcus G. Langseth’s streamer to measure the acoustic radiation of its seismic source in the shallow waters of New Jersey’s continental shelf

    PubMed Central

    Tolstoy, Maya; Gibson, James C.; Mountain, Gregory

    2017-01-01

    Shallow water marine seismic surveys are necessary to understand a range of Earth processes in coastal environments, including those that represent major hazards to society such as earthquakes, tsunamis, and sea-level rise. Predicting the acoustic radiation of seismic sources in shallow water, which is required for compliance with regulations designed to limit impacts on protected marine species, is a significant challenge in this environment because of variable reflectivity due to local geology, and the susceptibility of relatively small bathymetric features to focus or shadow acoustic energy. We use data from the R/V Marcus G. Langseth’s towed hydrophone streamer to estimate the acoustic radiation of the ship’s seismic source during a large survey of the shallow shelf off the coast of New Jersey. We use the results to estimate the distances from the source to acoustic levels of regulatory significance, and use bathymetric data from the ship’s multibeam system to explore the relationships between seafloor depth and slope and the measured acoustic radiation patterns. We demonstrate that existing models significantly overestimate mitigation radii, but that the variability of received levels in shallow water suggest that in situ real-time measurements would help improve these estimates, and that post-cruise revisions of received levels are valuable in accurately determining the potential acoustic impact of a seismic survey. PMID:28800634

  8. Pollution attenuation by soils receiving cattle slurry after passage of a slurry-like feed solution. Column experiments.

    PubMed

    Núñez-Delgado, Avelino; López-Períago, Eugenio; Diaz-Fierros-Viqueira, Francisco

    2002-09-01

    Designing soil filtration systems or vegetated filter strips as a means of attenuating water pollution should take into account soil purging capacity. Here we report data on laboratory column trials used to investigate the capacity of a Hortic Anthrosol to attenuate contamination due to downward leaching from cattle slurry applied at the surface. The columns comprised 900 g of soil to a depth of about 20-25 cm, and had been used previously in an experiment involving passage of at least 5 pore volumes of an ion-containing cattle slurry-like feed solution. For the present experiments, the columns were first washed through with distilled water (simulating resting and rain falling after passage of the feed solution), and then received a single slurry dose equivalent to about 300 m3 ha(-1). The columns were then leached with distilled water, with monitoring of chemical oxygen demand (COD) and ion contents in outflow. The results indicated that the pollution-neutralising capacity of the soil was still high but clearly lower than in the earlier experiments with the feed solution. Furthermore, the time-course of COD showed that organic acids were leached through the column even more rapidly than chloride (often viewed as an inert tracer) enhancing the risk of heavy metals leaching and subsequent water pollution. Resting and alternate use of different soil-plant buffer zones would increase the lifespan of purging systems that use soil like the here studied one.

  9. Revelations of an overt water contamination.

    PubMed

    Singh, Gurpreet; Kaushik, S K; Mukherji, S

    2017-07-01

    Contaminated water sources are major cause of water borne diseases of public health importance. Usually, contamination is suspected after an increase in patient load. Two health teams investigated the episode. First team conducted sanitary survey, and second team undertook water safety and morbidity survey. On-site testing was carried out from source till consumer end. Investigation was also undertaken to identify factors which masked the situation. Prevention and control measures included super chlorination, provision of alternate drinking water sources, awareness campaign, layout of new water pipeline bypassing place of contamination, repair of sewers, flushing and cleaning of water pipelines, and repeated water sampling and testing. Multiple sources of drinking water supply were detected. Water samples from consumer end showed 18 coliforms per 100 ml. Sewer cross connection with active leakage in water pipeline was found and this was confirmed by earth excavation. Water safety and morbidity survey found majority of households receiving contaminated water supply. This survey found no significant difference among households receiving contaminated water supply and those receiving clean water. Average proportion of household members with episode of loose motions, pain abdomen, vomiting, fever, and eye conditions was significantly more among households receiving contaminated water. The present study documents detailed methodology of investigation and control measures to be instituted on receipt of contaminated water samples. Effective surveillance mechanisms for drinking water supplies such as routine testing of water samples can identify water contamination at an early stage and prevent an impending outbreak.

  10. Hydrologic and biogeochemical controls of river subsurface solutes under agriculturally enhanced ground water flow

    USGS Publications Warehouse

    Wildman, R.A.; Domagalski, Joseph L.; Hering, J.G.

    2009-01-01

    The relative influences of hydrologic processes and biogeochemistry on the transport and retention of minor solutes were compared in the riverbed of the lower Merced River (California, USA). The subsurface of this reach receives ground water discharge and surface water infiltration due to an altered hydraulic setting resulting from agricultural irrigation. Filtered ground water samples were collected from 30 drive point locations in March, June, and October 2004. Hydrologic processes, described previously, were verified by observations of bromine concentrations; manganese was used to indicate redox conditions. The separate responses of the minor solutes strontium, barium, uranium, and phosphorus to these influences were examined. Correlation and principal component analyses indicate that hydrologic processes dominate the distribution of trace elements in the ground water. Redox conditions appear to be independent of hydrologic processes and account for most of the remaining data variability. With some variability, major processes are consistent in two sampling transects separated by 100 m. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  11. Prevalence of Antimicrobial Resistant and Virulent Salmonella spp. in Treated Effluent and Receiving Aquatic Milieu of Wastewater Treatment Plants in Durban, South Africa

    PubMed Central

    Odjadjare, Ejovwokoghene C.; Olaniran, Ademola O.

    2015-01-01

    In this study, we evaluated the impact of treated wastewater effluent from two wastewater treatment plants on the physicochemical parameters and Salmonella spp. load of receiving rivers. Presumptive Salmonella spp. were obtained at all sampled points including the discharge points, with counts ranging from 0 to 4.14 log cfu/mL at both plants. Turbidity, chemical and biological oxygen demand were found to be high and mostly above the required limit for treated wastewater discharge. However, recorded nitrate and phosphate values were very low. Of the 200 confirmed Salmonella spp. isolates recovered from the treated effluent and receiving surface waters, 93% harbored the spiC gene, 84% harbored the misL gene, and 87.5% harbored the orfL gene while 87% harbored the pipD gene. The antibiotic resistance profile revealed that the isolates were resistant to sulfamethoxazole, nalidixic acid and streptomycin, but susceptible to quinolones and third generation β-lactams. These results indicate that in South Africa treated effluents are still a major source of contamination of rivers with pathogens such as Salmonella. Appropriate steps by the regulatory authorities and workers at the treatment plants are needed to enforce stipulated guidelines in order to prevent pollution of surface water resources due to the discharge of poorly treated effluents. PMID:26295245

  12. Effects of Whole-Ecosystem Warming on Porewater Chemistry and Hydrology in a Northern Peatland

    NASA Astrophysics Data System (ADS)

    Griffiths, N.; Sebestyen, S. D.

    2016-12-01

    Northern peatlands are carbon-rich ecosystems, and thus it is important to understand the effects of climate change on carbon cycle feedbacks in these vulnerable systems. An ecosystem-scale experiment is evaluating the effects of warming and elevated CO2 on an ombrotrophic bog in northern Minnesota, USA. Ten enclosures, each 12-m in diameter, were constructed in the peatland to allow for both above and belowground warming. Each enclosure receives one of five temperature treatments (+0 to +9°C), with half of the enclosures receiving elevated CO2 (+500ppm) and the other half ambient CO2. A belowground corral with a lateral drainage system surrounds each enclosure, and allows for measurements of lateral outflow volume and chemistry. Piezometers are used to sample porewater chemistry at different depths (0-3m) into the peat. We evaluated the effects of one year of whole-ecosystem warming on depth-specific porewater chemistry and outflow dynamics. Changes in porewater chemistry were observed upon initiation of whole-ecosystem warming. Total organic carbon (TOC) concentrations increased in near-surface porewater in the warmer enclosures, while concentrations were lower and similar to pre-treatment conditions in the ambient (+0°C) enclosures. The changes in TOC concentration measured in response to whole-ecosystem warming were initially limited to only the near-surface porewater (0 m); however, TOC concentrations began to increase at 0.3 m depth after several months of warming. These changes in TOC concentrations were also reflected in water draining from each enclosure, with generally higher TOC concentrations in water flowing from warmer enclosures. However, warmer treatments tended to have lower water outflow rates, possibly due to increased evapotranspiration, and thus TOC fluxes were generally lowest from the warmest enclosures. Overall, these initial results suggest that warming may increase porewater TOC concentrations, possibly due to increased mineralization rates of peat; however, due to the interaction with hydrology, export of this TOC to downstream ecosystems may be lower with warming. Continued measurements over the next 10 years will evaluate the long-term effects of warming on peatland chemistry and hydrology.

  13. Propagation effects on radio range and noise in earth-space telecommunications

    NASA Technical Reports Server (NTRS)

    Flock, W. L.; Slobin, S. D.; Smith, E. K.

    1982-01-01

    Attention is given to the propagation effects on radio range and noise in earth-space telecommunications. The use of higher frequencies minimizes ionospheric effects on propagation, but tropospheric effects often increase or dominate. For paths of geostationary satellites, and beyond, the excess range delay caused by the ionosphere and plasmasphere is proportional to the total electron content along the path and inversely proportional to frequency squared. The delay due to dry air is usually of the order of a few meters while the delay due to water vapor (a few tens of centimeters) is responsible for most of the temporal variation in the range delay for clean air. For systems such as that of the Voyager spacecraft, and for attenuation values up to about 10 dB, increased sky noise degrades the received signal-to-noise ratio more than does the reduction in signal level due to attenuation.

  14. Assessment of Spatial and Temporal Variation of Surface Water Quality in Streams Affected by Coalbed Methane Development

    NASA Astrophysics Data System (ADS)

    Chitrakar, S.; Miller, S. N.; Liu, T.; Caffrey, P. A.

    2015-12-01

    Water quality data have been collected from three representative stream reaches in a coalbed methane (CBM) development area for over five years to improve the understanding of salt loading in the system. These streams are located within Atlantic Rim development area of the Muddy Creek in south-central Wyoming. Significant development of CBM wells is ongoing in the study area. Three representative sampling stream reaches included the Duck Pond Draw and Cow Creek, which receive co-produced water, and; South Fork Creek, and upstream Cow Creek which do not receive co-produced water. Water samples were assayed for various parameters which included sodium, calcium, magnesium, fluoride, chlorine, nitrate, O-phosphate, sulfate, carbonate, bicarbonates, and other water quality parameters such as pH, conductivity, and TDS. Based on these water quality parameters we have investigated various hydrochemical and geochemical processes responsible for the high variability in water quality in the region. However, effective interpretation of complex databases to understand aforementioned processes has been a challenging task due to the system's complexity. In this work we applied multivariate statistical techniques including cluster analysis (CA), principle component analysis (PCA) and discriminant analysis (DA) to analyze water quality data and identify similarities and differences among our locations. First, CA technique was applied to group the monitoring sites based on the multivariate similarities. Second, PCA technique was applied to identify the prevalent parameters responsible for the variation of water quality in each group. Third, the DA technique was used to identify the most important factors responsible for variation of water quality during low flow season and high flow season. The purpose of this study is to improve the understanding of factors or sources influencing the spatial and temporal variation of water quality. The ultimate goal of this whole research is to develop coupled salt loading and GIS-based hydrological modelling tool that will be able to simulate the salt loadings under various user defined scenarios in the regions undergoing CBM development. Therefore, the findings from this study will be used to formulate the predominant processes responsible for solute loading.

  15. REVEAL: Receiver Exploiting Variability in Estimated Acoustic Levels

    DTIC Science & Technology

    2013-08-07

    water . Several structures have been or are being investigated. In shallow water , passive sonar context, the characteristics of received signals are...source, particularly in shallow water . Several structures have been or are being investigated. In shallow water , passive sonar context, the... dynamic and variable in time and space, a statistical approach is necessary. WORK COMPLETED In a shallow water waveguide, where the distance

  16. Garonne River monitoring from Signal-to-Noise Ratio data collected by a single geodetic receiver

    NASA Astrophysics Data System (ADS)

    Roussel, Nicolas; Frappart, Frédéric; Darrozes, José; Ramillien, Guillaume; Bonneton, Philippe; Bonneton, Natalie; Detandt, Guillaume; Roques, Manon; Orseau, Thomas

    2016-04-01

    GNSS-Reflectometry (GNSS-R) altimetry has demonstrated a strong potential for water level monitoring through the last decades. Interference Pattern Technique (IPT) based on the analysis of the Signal-to-Noise Ratio (SNR) estimated by a GNSS receiver, presents the main advantage of being applicable everywhere by using a single geodetic antenna and a classical GNSS receiver. Such a technique has already been tested in various configurations of acquisition of surface-reflected GNSS signals with an accuracy of a few centimeters. Nevertheless, classical SNR analysis method used to estimate the variations of the reflecting surface height h(t) has a limited domain of validity due to its variation rate dh/dt(t) assumed to be negligible. In [1], authors solve this problem with a "dynamic SNR method" taking the dynamic of the surface into account to conjointly estimate h(t) and dh/dt(t) over areas characterized by high amplitudes of tides. If the performance of this dynamic SNR method is already well-established for ocean monitoring [1], it was not validated in continental areas (i.e., river monitoring). We carried out a field study during 3 days in August and September, 2015, using a GNSS antenna to measure the water level variations in the Garonne River (France) in Podensac located 140 km downstream of the estuary mouth. In this site, the semi-diurnal tide amplitude reaches ~5 m. The antenna was located ~10 m above the water surface, and reflections of the GNSS electromagnetic waves on the Garonne River occur until 140 m from the antenna. Both classical SNR method and dynamic SNR method are tested and results are compared. [1] N. Roussel, G. Ramillien, F. Frappart, J. Darrozes, A. Gay, R. Biancale, N. Striebig, V. Hanquiez, X. Bertin, D. Allain : "Sea level monitoring and sea state estimate using a single geodetic receiver", Remote Sensing of Environment 171 (2015) 261-277.

  17. Radon Levels Measured at a Touristic Thermal Spa Resort in Montagu (South Africa) and Associated Effective Doses.

    PubMed

    Botha, R; Newman, R T; Maleka, P P

    2016-09-01

    Radon activity concentrations (in water and in air) were measured at 13 selected locations at the Avalon Springs thermal spa resort in Montagu (Western Cape, South Africa) to estimate the associated effective dose received by employees and visitors. A RAD-7 detector (DURRIDGE), based on alpha spectrometry, and electret detectors (E-PERM®Radelec) were used for these radon measurements. The primary source of radon was natural thermal waters from the hot spring, which were pumped to various locations on the resort, and consequently a range of radon in-water analyses were performed. Radon in-water activity concentration as a function of time (short term and long term measurements) and spatial distributions (different bathing pools, etc.) were studied. The mean radon in-water activity concentrations were found to be 205 ± 6 Bq L (source), 112 ± 5 Bq L (outdoor pool) and 79 ± 4 Bq L (indoor pool). Radon in-air activity concentrations were found to range between 33 ± 4 Bq m (at the outside bar) to 523 ± 26 Bq m (building enclosing the hot spring's source). The most significant potential radiation exposure identified is that due to inhalation of air rich in radon and its progeny by the resort employees. The annual occupational effective dose due to the inhalation of radon progeny ranges from 0.16 ± 0.01 mSv to 0.40 ± 0.02 mSv. For the water samples collected, the Ra in-water activity concentrations from samples collected were below the lower detection limit (~0.7 Bq L) of the γ-ray detector system used. No significant radiological health risk can be associated with radon and progeny from the hot spring at the Avalon Springs resort.

  18. Swim and Survival at Sea Training: Does It Meet the Navy’s Needs

    DTIC Science & Technology

    1989-06-01

    34minimum water survival qualification for service in the Navy" [Ref. 2]. One can infer that, due to the nature of the job and its environment. Naval...they will receive dai !A Y im inctract to until they qual ifl. How lori 8 can oAAC of these individuals remain in swim hold status? The RTC’s are...occurred whilo victims were on duty. resulting in 43 drowni r[.ef. f Fighty of these mishapr involved personrvol Wh, ci t lor intentional ly jumped from

  19. The effect of intravitreal injection of vehicle solutions on form deprivation myopia in tree shrews.

    PubMed

    Ward, Alexander H; Siegwart, John T; Frost, Michael R; Norton, Thomas T

    2016-04-01

    lntravitreal injection of substances dissolved in a vehicle solution is a common tool used to assess retinal function. We examined the effect of injection procedures (three groups) and vehicle solutions (four groups) on the development of form deprivation myopia (FDM) in juvenile tree shrews, mammals closely related to primates, starting at 24 days of visual experience (about 45 days of age). In seven groups (n = 7 per group), the myopia produced by monocular form deprivation (FD) was measured daily for 12 days during an 11-day treatment period. The FD eye was randomly selected; the contralateral eye served as an untreated control. The refractive state of both eyes was measured daily, starting just before FD began (day 1); axial component dimensions were measured on day 1 and after eleven days of treatment (day 12). Procedure groups: the myopia (treated eye - control eye refraction) in the FD group was the reference. The sham group only underwent brief daily anesthesia and opening of the conjunctiva to expose the sclera. The puncture group, in addition, had a pipette inserted daily into the vitreous. In four vehicle groups, 5 μL of vehicle was injected daily. The NaCl group received 0.85% NaCl. In the NaCl + ascorbic acid group, 1 mg/mL of ascorbic acid was added. The water group received sterile water. The water + ascorbic acid group received water with ascorbic acid (1 mg/mL). We found that the procedures associated with intravitreal injections (anesthesia, opening of the conjunctiva, and puncture of the sclera) did not significantly affect the development of FDM. However, injecting 5 μL of any of the four vehicle solutions slowed the development of FDM. NaCl had a small effect; myopia development in the last 6 days (-0.15 ± 0.08 D/day) was significantly less than in the FD group (-0.55 ± 0.06 D/day). NaCl + Ascorbic acid further slowed the development of FDM on several treatment days. H2O (-0.09 ± 0.05 D/day) and H2O + ascorbic acid (-0.08 ± 0.05 D/day) both almost completely blocked myopia development. The treated eye vitreous chamber elongation, compared with the control eye, in all groups was consistent with the amount of myopia. When FD continued (days 12-16) without injections in the water and water + ascorbic acid groups, the rate of myopia development quickly increased. Thus, it appears the vehicles affected retinal signaling rather than causing damage. The effect of water and water + ascorbic acid may be due to reduced osmolality or ionic concentration near the tip of the injection pipette. The effect of ascorbic acid, compared to NaCl alone, may be due to its reported dopaminergic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Effects of Plastic Film Mulching on Maize Growth and Water Use in Dry and Rainy Years in Northeast China

    PubMed Central

    Xu, Jie; Li, Congfeng; Liu, Huitao; Zhou, Peilu; Tao, Zhiqiang; Wang, Pu; Meng, Qingfeng; Zhao, Ming

    2015-01-01

    Plastic film mulching (PM) has been widely used to improve maize (Zea mays L.) yields and water use efficiency (WUE) in Northeast China, but the effects of PM in a changing climate characterized by highly variable precipitation are not well understood. Six site-year field experiments were conducted in the dry and rainy years to investigate the effects of PM on maize growth, grain yield, and WUE in Northeast China. Compared to crops grown without PM treatment (control, CK), PM significantly increased the grain yield by 15-26% in the dry years, but no significant yield increase was observed in the rainy years. Yield increase in the dry years was mainly due to a large increase in dry matter accumulation pre-silking compared to the CK, which resulted from a greater dry matter accumulation rate due to the higher topsoil temperature and water content. As a result, the WUE of the crops that underwent PM (3.27 kg m-3) treatment was also increased by around 16% compared to the CK, although the overall evapotranspiration was similar between the two treatments. In the rainy years, due to frequent precipitation and scant sunshine, the topsoil temperature and water content in the field that received PM treatment was improved only at some stages and failed to cause higher dry matter accumulation, except at the 8th leaf stage. Consequently, the grain yield and WUE were not improved by PM in the rainy years. In addition, we found that PM caused leaf senescence at the late growth stage in both dry and rainy years. Therefore, in practice, PM should be applied cautiously, especially when in-season precipitation is taken into account. PMID:25970582

  1. Outbreak of Serratia marcescens Bloodstream Infections in Patients Receiving Parenteral Nutrition Prepared by a Compounding Pharmacy

    PubMed Central

    Gupta, Neil; Hocevar, Susan N.; Moulton-Meissner, Heather A.; Stevens, Kelly M.; McIntyre, Mary G.; Jensen, Bette; Kuhar, David T.; Noble-Wang, Judith A.; Schnatz, Rick G.; Becker, Shawn C.; Kastango, Eric S.; Shehab, Nadine; Kallen, Alexander J.

    2014-01-01

    Background. Compounding pharmacies often prepare parenteral nutrition (PN) and must adhere to rigorous standards to avoid contamination of the sterile preparation. In March 2011, Serratia marcescens bloodstream infections (BSIs) were identified in 5 patients receiving PN from a single compounding pharmacy. An investigation was conducted to identify potential sources of contamination and prevent further infections. Methods. Cases were defined as S. marcescens BSIs in patients receiving PN from the pharmacy between January and March 2011. We reviewed case patients’ clinical records, evaluated pharmacy compounding practices, and obtained epidemiologically directed environmental cultures. Molecular relatedness of available Serratia isolates was determined by pulsed-field gel electrophoresis (PFGE). Results. Nineteen case patients were identified; 9 died. The attack rate for patients receiving PN in March was 35%. No case patients were younger than 18 years. In October 2010, the pharmacy began compounding and filter-sterilizing amino acid solution for adult PN using nonsterile amino acids due to a national manufacturer shortage. Review of this process identified breaches in mixing, filtration, and sterility testing practices. S. marcescens was identified from a pharmacy water faucet, mixing container, and opened amino acid powder. These isolates were indistinguishable from the outbreak strain by PFGE. Conclusions. Compounding of nonsterile amino acid components of PN was initiated due to a manufacturer shortage. Failure to follow recommended compounding standards contributed to an outbreak of S. marcescens BSIs. Improved adherence to sterile compounding standards, critical examination of standards for sterile compounding from nonsterile ingredients, and more rigorous oversight of compounding pharmacies is needed to prevent future outbreaks. PMID:24729502

  2. 20 CFR 670.545 - How does Job Corps ensure that students receive due process in disciplinary actions?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... receive due process in disciplinary actions? 670.545 Section 670.545 Employees' Benefits EMPLOYMENT AND... process in disciplinary actions? The center operator must ensure that all students receive due process in disciplinary proceedings according to procedures developed by the Secretary. These procedures must include, at...

  3. Herschel/SPIRE observations of water production rates and ortho-to-para ratios in comets★

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas G.; Rawlings, Jonathan M. C.; Swinyard, Bruce M.

    2017-04-01

    This paper presents Herschel/SPIRE (Spectral and Photometric Imaging Receiver) spectroscopic observations of several fundamental rotational ortho- and para-water transitions seen in three Jupiter-family comets and one Oort-cloud comet. Radiative transfer models that include excitation by collisions with neutrals and electrons, and by solar infrared radiation, were used to produce synthetic emission line profiles originating in the cometary coma. Ortho-to-para ratios (OPRs) were determined and used to derived water production rates for all comets. Comparisons are made with the water production rates derived using an OPR of 3. The OPR of three of the comets in this study is much lower than the statistical equilibrium value of 3; however they agree with observations of comets 1P/Halley and C/2001 A2 (LINEAR), and the protoplanetary disc TW Hydrae. These results provide evidence suggesting that OPR variation is caused by post-sublimation gas-phase nuclear-spin conversion processes. The water production rates of all comets agree with previous work and, in general, decrease with increasing nucleocentric offset. This could be due to a temperature profile, additional water source or OPR variation in the comae, or model inaccuracies.

  4. MoSi 2 Oxidation in 670-1498 K Water Vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sooby Wood, Elizabeth; Parker, Stephen S.; Nelson, Andrew T.

    Molybdenum disilicide (MoSi 2) has well documented oxidation resistance at high temperature (T > 1273 K) in dry O 2 containing atmospheres due to the formation of a passive SiO 2 surface layer. But, its behavior under atmospheres where water vapor is the dominant species has received far less attention. Oxidation testing of MoSi 2 was performed at temperatures ranging from 670–1498 K in both 75% water vapor and synthetic air (Ar-O2, 80%–20%) containing atmospheres. Here the thermogravimetric and microscopy data describing these phenomena are presented. Over the temperature range investigated, MoSi 2 displays more mass gain in water vapormore » than in air. The oxidation kinetics observed in water vapor differ from that of the air samples. Two volatile oxides, MoO 2(OH) 2 and Si(OH) 4, are thought to be the species responsible for the varied kinetics, at 670–877 K and at 1498 K, respectively. Finally, we observed an increase in oxidation (140–300 mg/cm 2) from 980–1084 K in water vapor, where passivation is observed in air.« less

  5. MoSi 2 Oxidation in 670-1498 K Water Vapor

    DOE PAGES

    Sooby Wood, Elizabeth; Parker, Stephen S.; Nelson, Andrew T.; ...

    2016-03-08

    Molybdenum disilicide (MoSi 2) has well documented oxidation resistance at high temperature (T > 1273 K) in dry O 2 containing atmospheres due to the formation of a passive SiO 2 surface layer. But, its behavior under atmospheres where water vapor is the dominant species has received far less attention. Oxidation testing of MoSi 2 was performed at temperatures ranging from 670–1498 K in both 75% water vapor and synthetic air (Ar-O2, 80%–20%) containing atmospheres. Here the thermogravimetric and microscopy data describing these phenomena are presented. Over the temperature range investigated, MoSi 2 displays more mass gain in water vapormore » than in air. The oxidation kinetics observed in water vapor differ from that of the air samples. Two volatile oxides, MoO 2(OH) 2 and Si(OH) 4, are thought to be the species responsible for the varied kinetics, at 670–877 K and at 1498 K, respectively. Finally, we observed an increase in oxidation (140–300 mg/cm 2) from 980–1084 K in water vapor, where passivation is observed in air.« less

  6. Nitrogen Concentrations and Exports in Baseflow and Stormflow from Three Small Urban Catchments in Central Florida

    NASA Astrophysics Data System (ADS)

    Luo, J.; Hochmuth, G.; Clark, M. W.

    2014-12-01

    Export of nitrogen from different watersheds across the United States is receiving increasing attention due to the impairment of water quality in receiving water bodies. Researchers have indicated that different land uses exerted a substantial influence on the water quality. Nitrogen loadings on the watershed scale are being studied in many large ecosystems, such as the Baltimore Ecosystem and Arizona Ecosystem, but only a few focuses in a smaller scale such as catchment scale. Characterization of the land use in catchment scale can better explain the observed environmental phenomena under the watershed scale and enrich the related watershed studies. Nitrogen fluxes have been studied at Lake Alice watershed in Gainesville, Florida with a focus on the rarely studied catchments such as sports fields with intensive fertilization management (SFC), urban area with reclaimed water irrigation (RWC) and urban area without irrigation (CC). The entire study started from May 2013. Discharge was monitored in the three catchments by transducers every 5 minutes. Regular biweekly grab samples in the three catchments were used to estimate the baseflow N loads, composite samples in 13 storms were collected to estimate the stormflow N loads. The results showed that in the baseflow, the average NO3-N concentration in SFC was 12.19 mg/l, which was significantly different from the urban catchments. Also there was a significant difference between the NO3-N concentrations in RWC (1.17 mg/l on average) and CC (0.60 mg/l on average). A separate log-log relationship was developed between discharge and N loads to estimate the baseflow N loads and stormflow N loads. It showed that baseflow contributed more N loads than stormflow in the three catchments in the annual N load. In conclusion, the recreational catchment received the greatest N load compared to the other catchments, so it should be the priority catchment when it comes to adopting nutrient management practices in the Lake Alice watershed.

  7. Evidence from P-wave receiver functions for lower mantle plumes and mantle transition zone water beneath West Antarctica

    NASA Astrophysics Data System (ADS)

    Nyblade, A.; Emry, E.; Juliá, J.; Anandakrishnan, S.; Aster, R. C.; Wiens, D. A.; Huerta, A. D.; Wilson, T. J.

    2014-12-01

    West Antarctica has experienced abundant Cenozoic volcanism, and it is suspected that the region is influenced by upwelling thermal plumes from the lower mantle; however this has not yet been verified, because seismic tomography results are not well resolved at mantle transition zone (MTZ) depths. We use P-wave receiver functions (PRFs) from the 2007-2013 Antarctic POLENET array to explore the characteristics of the MTZ throughout Marie Byrd Land and the West Antarctic Rift System. We obtained over 8000 high-quality PRFs for earthquakes occurring at 30-90° with Mb>5.5 using a time-domain iterative deconvolution method filtered with a Gaussian-width of 0.5 and 1.0, corresponding to frequencies less than ~0.24 Hz and ~0.48 Hz, respectively. We stack P receiver functions as single-station and by common conversion point and migrate them to depth using the ak135 1-d velocity model. Results suggest that the thickness of the MTZ varies throughout the region with thinning beneath the Ruppert Coast of Marie Byrd Land and beneath the Bentley Subglacial Trench and Whitmore Mountains. We identify the 520' discontinuity throughout much of West Antarctica; the discontinuity is most prominent beneath the Bentley Subglacial Trench and Whitmore Mountains. Additionally, prominent negative peaks are detected above the transition zone beneath much of West Antarctica and may be evidence for water-induced partial melt above the MTZ. We propose that the MTZ beneath West Antarctica is hotter than average in some regions, possibly due to material upwelling from the lower mantle. Furthermore, we propose that the transition zone is water-rich and that upward migration of hydrated material results in formation of a partial melt layer above the MTZ.

  8. An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2016-02-01

    Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.

  9. Review: Groundwater management and groundwater/surface-water interaction in the context of South African water policy

    NASA Astrophysics Data System (ADS)

    Levy, Jonathan; Xu, Yongxin

    2012-03-01

    Groundwater/surface-water interaction is receiving increasing focus in Africa due to its importance to ecologic systems and sustainability. In South Africa's 1998 National Water Act (NWA), water-use licenses, including groundwater, are granted only after defining the Reserve, the amount of water needed to supply basic human needs and preserve some ecological integrity. Accurate quantification of groundwater contributions to ecosystems for successful implementation of the NWA proves challenging; many of South Africa's aquifers are in heterogeneous and anisotropic fractured-rock settings. This paper reviews the current conceptualizations and investigative approaches regarding groundwater/surface-water interactions in the context of South African policies. Some selected pitfall experiences are emphasized. The most common approach in South Africa is estimation of average annual fluxes at the scale of fourth-order catchments (˜500 km2) with baseflow separation techniques and then subtracting the groundwater discharge rate from the recharge rate. This approach might be a good start, but it ignores spatial and temporal variability, potentially missing local impacts associated with production-well placement. As South Africa's NWA has already been emulated in many countries including Zambia, Zimbabwe and Kenya, the successes and failures of the South African experience dealing with the groundwater/surface-water interaction will be analyzed to guide future policy directions.

  10. A real-time control strategy for separation of highly polluted storm water based on UV-Vis online measurements--from theory to operation.

    PubMed

    Hoppe, H; Messmann, S; Giga, A; Gruening, H

    2011-01-01

    'Classical' real-time control (RTC) strategies in sewer systems are based on water level and flow measurements with the goal of activation of retention volume. The control system rule of 'clean (storm water) runoff into the receiving water - polluted runoff into the treatment plant' has been thwarted by rough operating conditions and lack of measurements. Due to the specific boundary conditions in the city of Wuppertal's separate sewer system (clean stream water is mixed with polluted storm water runoff) a more sophisticated--pollution-based--approach was needed. In addition the requirements to be met by the treatment of storm water runoff have become more stringent in recent years. To separate the highly-polluted storm water runoff during rain events from the cleaner stream flow a pollution-based real-time control (P-RTC) system was developed and installed. This paper describes the measurement and P-RTC equipment, the definition of total suspended solids as the pollution-indicating parameter, the serviceability of the system, and also gives a cost assessment. A sensitivity analysis and pollution load calculations have been carried out in order to improve the P-RTC algorithm. An examination of actual measurements clearly shows the ecological and economic advantages of the P-RTC strategy.

  11. 25 CFR 171.215 - What if the elevation of my farm unit is too high to receive irrigation water?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What if the elevation of my farm unit is too high to receive irrigation water? 171.215 Section 171.215 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.215 What if the elevation of my farm unit is too high to receive...

  12. 25 CFR 171.215 - What if the elevation of my farm unit is too high to receive irrigation water?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true What if the elevation of my farm unit is too high to receive irrigation water? 171.215 Section 171.215 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.215 What if the elevation of my farm unit is too high to receive...

  13. 25 CFR 171.215 - What if the elevation of my farm unit is too high to receive irrigation water?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What if the elevation of my farm unit is too high to receive irrigation water? 171.215 Section 171.215 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.215 What if the elevation of my farm unit is too high to receive...

  14. Assessment of variable drinking water sources used in Egypt on broiler health and welfare.

    PubMed

    ELSaidy, N; Mohamed, R A; Abouelenien, F

    2015-07-01

    This study assessed the impact of four water sources used as drinking water in Egypt for broiler chickens on its performance, carcass characteristic, hematological, and immunological responses. A total of 204 unsexed 1-day old Indian River broiler chickens were used in this study. They were randomly allocated into four treatment groups of 51 birds in each, with three replicates, 17 birds per replicate. Groups were classified according to water source they had been received into (T1) received farm tap water; (T2) received filtered tap water (T3) received farm stored water at rooftop tanks, (T4) received underground (well) water. All water sources showed no significant differences among treated groups at (p>0.05) for most of the performance parameters and carcass characteristics. However (T2) group showed higher records for body weight (BWT), BWT gain (BWG), feed conversion ratio, bursa weight, serum total protein, globulin (G), albumin (A) and A/G ratio, Ab titer against New castle disease virus vaccine. On the other hand, it showed lower records for water intake (WI), WI/Feed intake ratio, total leukocytes count %, heterophil %, lymphocyte %, H/L ratio, liver weight, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, serum uric acid and creatinine. Where filtered water reverse osmosis showed lowest records for bacterial load, the absence of coliform bacteria, total dissolved solids (TDS), electrical conductivity (EC) and salinity. On the other hand stored water showed higher numerical values for TDS, EC, alkalinity, salinity, pH, bacterial count, and coliform count. Base on the results of this study, it is concluded that different water sources could safely be used as drinking water for poultry; as long as it is present within the acceptable range of drinking water quality for chickens. Suggesting the benefits of treatment of water sources on improving chickens' health and welfare. Draw attention to the importance of maintaining the hygienic quality of stored water.

  15. Assessment of variable drinking water sources used in Egypt on broiler health and welfare

    PubMed Central

    ELSaidy, N.; Mohamed, R. A.; Abouelenien, F.

    2015-01-01

    Aim: This study assessed the impact of four water sources used as drinking water in Egypt for broiler chickens on its performance, carcass characteristic, hematological, and immunological responses. Materials and Methods: A total of 204 unsexed 1-day old Indian River broiler chickens were used in this study. They were randomly allocated into four treatment groups of 51 birds in each, with three replicates, 17 birds per replicate. Groups were classified according to water source they had been received into (T1) received farm tap water; (T2) received filtered tap water (T3) received farm stored water at rooftop tanks, (T4) received underground (well) water. Results: All water sources showed no significant differences among treated groups at (p>0.05) for most of the performance parameters and carcass characteristics. However (T2) group showed higher records for body weight (BWT), BWT gain (BWG), feed conversion ratio, bursa weight, serum total protein, globulin (G), albumin (A) and A/G ratio, Ab titer against New castle disease virus vaccine. On the other hand, it showed lower records for water intake (WI), WI/Feed intake ratio, total leukocytes count %, heterophil %, lymphocyte %, H/L ratio, liver weight, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, serum uric acid and creatinine. Where filtered water reverse osmosis showed lowest records for bacterial load, the absence of coliform bacteria, total dissolved solids (TDS), electrical conductivity (EC) and salinity. On the other hand stored water showed higher numerical values for TDS, EC, alkalinity, salinity, pH, bacterial count, and coliform count. Conclusion: Base on the results of this study, it is concluded that different water sources could safely be used as drinking water for poultry; as long as it is present within the acceptable range of drinking water quality for chickens. Suggesting the benefits of treatment of water sources on improving chickens’ health and welfare. Draw attention to the importance of maintaining the hygienic quality of stored water. PMID:27047165

  16. Improvement Effect of Dewaxed Brown Rice on Constipation in Antibiotic-treated Mice

    PubMed Central

    INAGAWA, HIROYUKI; SAIKA, TOSHIYUKI; NISHIYAMA, NAOKI; NISIZAWA, TAKASHI; KOHCHI, CHIE; UENOBE, MAYA; SOMA, GEN-ICHIRO

    2017-01-01

    Background/Aim: A decrease in gastrointestinal motility causing weakened lipopolysaccharide (LPS) – toll-like receptor (TLR)4 signaling along with a decline in the number of enteric bacteria is known to be a cause of constipation due to the administration of antibiotics. A new type of brown rice with its wax layer removed, resulting in quick-cooking and tasty product, contains 100-times more LPS than polished white rice. In this study, the improvement effect on constipation due to intake of dewaxed brown rice was examined. Materials and Methods: Dewaxed brown rice was prepared at Toyo Rice from brown rice. Mice were given powdered feed to which powdered rice containing 0-50% of dewaxed brown rice was added. Antibiotics were administered for 10 or 27 days in drinking water containing vancomycin, metronidazole and neomycin. LPS, used as a control, was freely provided in drinking water. The defecation frequency, stool weight per hour and body weight were determined on the last day. Results: Although the 10-day administration of antibiotics reduced the stool weight per hour to half, the dewaxed brown rice and LPS groups showed a trend towards improvement at a level comparable to the group receiving no antibiotics. The body weight significantly decreased after the 27-day administration of antibiotics but was improved in the 50% dewaxed brown rice group at a level comparable to the group receiving no antibiotics. Though the defecation frequency and wet and dry stool weights per hour were reduced by as much as 50% in the group receiving antibiotics, a significant improvement in constipation was observed in the 50% dewaxed brown rice group. Conclusion: As the improvement effect of dewaxed brown rice on body weight loss and constipation caused by the long-term administration of antibiotics has been confirmed in animal experimentation, the introduction of dewaxed brown rice as a staple food to patients under long-term antibiotic treatment may improve constipation. PMID:28652422

  17. Improvement Effect of Dewaxed Brown Rice on Constipation in Antibiotic-treated Mice.

    PubMed

    Inagawa, Hiroyuki; Saika, Toshiyuki; Nishiyama, Naoki; Nisizawa, Takashi; Kohchi, Chie; Uenobe, Maya; Soma, Gen-Ichiro

    2017-01-01

    A decrease in gastrointestinal motility causing weakened lipopolysaccharide (LPS) - toll-like receptor (TLR)4 signaling along with a decline in the number of enteric bacteria is known to be a cause of constipation due to the administration of antibiotics. A new type of brown rice with its wax layer removed, resulting in quick-cooking and tasty product, contains 100-times more LPS than polished white rice. In this study, the improvement effect on constipation due to intake of dewaxed brown rice was examined. Dewaxed brown rice was prepared at Toyo Rice from brown rice. Mice were given powdered feed to which powdered rice containing 0-50% of dewaxed brown rice was added. Antibiotics were administered for 10 or 27 days in drinking water containing vancomycin, metronidazole and neomycin. LPS, used as a control, was freely provided in drinking water. The defecation frequency, stool weight per hour and body weight were determined on the last day. Although the 10-day administration of antibiotics reduced the stool weight per hour to half, the dewaxed brown rice and LPS groups showed a trend towards improvement at a level comparable to the group receiving no antibiotics. The body weight significantly decreased after the 27-day administration of antibiotics but was improved in the 50% dewaxed brown rice group at a level comparable to the group receiving no antibiotics. Though the defecation frequency and wet and dry stool weights per hour were reduced by as much as 50% in the group receiving antibiotics, a significant improvement in constipation was observed in the 50% dewaxed brown rice group. As the improvement effect of dewaxed brown rice on body weight loss and constipation caused by the long-term administration of antibiotics has been confirmed in animal experimentation, the introduction of dewaxed brown rice as a staple food to patients under long-term antibiotic treatment may improve constipation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. A Receiver Function Study of Mantle Transition Zone Discontinuities beneath Egypt and Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Liu, K. H.; Mohamed, A. A.; Gao, S. S.; Elsheikh, A. A.; Yu, Y.; Fat-Helbary, R. E.

    2014-12-01

    The dramatic asymmetry in terms of surface elevation, Cenozoic volcanisms, and earthquake activity across the Red Sea is an enigmatic issue in global tectonics, partially due to the unavailability of broadband seismic data on the African plate adjacent to the Red Sea. Here we report the first results from a receiver function study of the mantle transition zone (MTZ) discontinuities using data from the Egyptian National Seismic Network, and compare the resulting depths of the 410 and 660 km discontinuities (d410 and d660) with those observed on the Arabian side. Results using more than 6000 P-to-S receiver functions recorded at 49 broadband seismic stations in Egypt, Saudi Arabia and adjacent areas show that when the IASP91 Earth model is used for time-to-depth conversion, the resulting depth of the discontinuities increases systematically toward the axis of the Afro-Arabian Dome (AAD) from both the west and east. Relative to the westernmost area, the maximum depression of the 410-km discontinuity is about 30 km, and that of the 660-km discontinuity is about 45 km. Highly correlated d410 and d660 depths suggest that the observed apparent depth variations are mostly caused by lateral velocity anomalies in the upper mantle, while the 15 km additional depression of the d660 relative to the d410 requires either a colder-than-normal MTZ or the presence of water in the MTZ. We tested several models involving upper mantle and MTZ velocity anomalies and undulations of the MTZ discontinuities due to temperature anomalies and water content, and found that the observed systematic variations can best be explained by a model involving a hydrated MTZ and an upper-mantle low-velocity zone beneath the AAD (Mohamed et al., 2014, doi: 10.1093/gji/ggu284). Models invoking one or more mantle plumes originated from the MTZ or the lower-mantle beneath the study area are not consistent with the observations.

  19. 40 CFR 142.303 - Which size public water systems can receive a small system variance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Which size public water systems can receive a small system variance? 142.303 Section 142.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Variances for Small System General...

  20. 40 CFR 142.303 - Which size public water systems can receive a small system variance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Which size public water systems can receive a small system variance? 142.303 Section 142.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Variances for Small System General...

  1. Enantioselective degradation of amphetamine-like environmental micropollutants (amphetamine, methamphetamine, MDMA and MDA) in urban water.

    PubMed

    Evans, Sian E; Bagnall, John; Kasprzyk-Hordern, Barbara

    2016-08-01

    This paper aims to understand enantioselective transformation of amphetamine, methamphetamine, MDMA (3,4-methylenedioxy-methamphetamine) and MDA (3,4-methylenedioxyamphetamine) during wastewater treatment and in receiving waters. In order to undertake a comprehensive evaluation of the processes occurring, stereoselective transformation of amphetamine-like compounds was studied, for the first time, in controlled laboratory experiments: receiving water and activated sludge simulating microcosm systems. The results demonstrated that stereoselective degradation, via microbial metabolic processes favouring S-(+)-enantiomer, occurred in all studied amphetamine-based compounds in activated sludge simulating microcosms. R-(-)-enantiomers were not degraded (or their degradation was limited) which proves their more recalcitrant nature. Out of all four amphetamine-like compounds studied, amphetamine was the most susceptible to biodegradation. It was followed by MDMA and methamphetamine. Photochemical processes facilitated degradation of MDMA and methamphetamine but they were not, as expected, stereoselective. Preferential biodegradation of S-(+)-methamphetamine led to the formation of S-(+)-amphetamine. Racemic MDMA was stereoselectively biodegraded by activated sludge which led to its enrichment with R-(-)-enantiomer and formation of S-(+)-MDA. Interestingly, there was only mild stereoselectivity observed during MDMA degradation in rivers. This might be due to different microbial communities utilised during activated sludge treatment and those present in the environment. Kinetic studies confirmed the recalcitrant nature of MDMA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Water Management To Meet Challenges In Food Production ­ An Example From South India

    NASA Astrophysics Data System (ADS)

    Shadananan, K.

    Demands for food and water have been increasing with fast increasing population in many developing countries. Availability of water and fertile land, the two basic requirements for food production do not meet together in certain regions. In such regions, cooperation and efficient management practices can solve the problem to a good extend. The southern states of Kerala and Tamil Nadu of India are divided by the mountain chains, the Western Ghats the orography of which makes Kerala one among the heaviest rainfall region in the World itself and Tamil Nadu a scanty rainfall region. Kerala receives more than 300cm average annual rainfall, giving birth to a number of perennial rivers and other water bodies whereas Tamil Nadu receives rainfall less than100cm. Most of the rivers of Tamil Nadu are seasonal and it depends on interstate water transfer to face the permanent water shortage. Owing to the high density of population, peculiar topography and soil types, agricultural production in Kerala is quite inadequate and the State depends on neighbouring States, especially Tamil Nadu for rice and vegetables, but not willing to share water. According to the Constitution of India, control of rivers is by individual states and this often leads to transboundary water disputes that retard development activities. Around 80% of the rainfall of Kerala wastefully flows into the Sea, when there is acute water shortage in Tamil Nadu. All the rivers in Kerala originate in the Ghats and its steep slopes makes more water storage difficult. Cooperation among the States become essential for meeting the increasing needs in water and food. If some of the water from the catchments in Kerala is diverted into Tamil Nadu, and the States can do joint agriculture, it can meet the challenges due to increase in population and environmental changes and minimize unemployment problems. Water diversion to Tamil Naduwill reduce flood damage and soil erosion in Kerala. The existing socio-economic conditions in these States can be effectively utilised for the overall development. The present research paper is an assessment of the water and food situation in this region, in view of increasing needs associated with rise in population and change in environment. Detailed analysis of the water surpluses and deficiencies has been made using water balance model and suggestions for the better management have been presented.

  3. Assessing groundwater recharge mechanisms in the Pampa del Tamarugal Basin of northern Chile's Atacama Desert

    NASA Astrophysics Data System (ADS)

    Jayne, R., Jr.; Pollyea, R.; Dodd, J. P.; Olson, E. J.; Swanson, S.

    2015-12-01

    The hyper-arid Atacama Desert in northern Chile is one of the driest inhabited places on Earth receiving little to no rain (<5 mm/yr). Within the Tarapacá Region of the Atacama Desert, the Pampa del Tamarugal Aquifer (PTA) is the primary source of water for agriculture, industry, mining, and residential uses. The PTA covers 5,000 km2, and is located in the Pampa del Tamarugal Basin, which is situated between the Andes and the Coastal Cordillera, and is filled with ~1700m of Miocene and younger sediments. The source of recharge for the PTA originates as precipitation in the high Andes, which can receive up to 400 mm/yr of precipitation; however, the mechanisms and magnitude of recharge to the PTA are still poorly understood. Here, we present a regional scale, non-isothermal 2-D numerical groundwater model is developed to analyze the time scales and geological controls on fluid flow paths recharging the PTA. Results from this work suggest that (1) both shallow groundwater flow and deep (>1km) hydrothermal fluid circulation are responsible for recharging the PTA; (2) topography and geothermal gradients are the main driving factors for regional groundwater flow; (3) the Altos de Pica member 4, an ignimbrite layer in the sedimentary basin controls both heat and fluid flow in the western part of the basin, this is evident due to the presence of convection cells and meteoric water upwelling and presenting itself as surface water (salars); and (4) it takes meteoric water 100,000 years to travel from the high Andes to reach Pica and 1,000,000 years for salar formation. In addition, this work provides a theoretical basis for the spatial distribution of highly alkaline surface water bodies, known as salars in the western Atacama Desert.

  4. 17β-estradiol in runoff as affected by various poultry litter application strategies.

    PubMed

    Delaune, P B; Moore, P A

    2013-02-01

    Steroidal hormones, which are excreted by all mammalian species, have received increasing attention in recent years due to potential environmental implications. The objective of this study was to evaluate 17β-estradiol concentrations in runoff water from plots receiving poultry litter applications using various management strategies. Treatments included the effects of 1) aluminum sulfate (alum) application rates to poultry litter; 2) time until the first runoff event occurs after poultry litter application; 3) poultry litter application rate; 4) fertilizer type; and 5) litter from birds fed modified diets. Rainfall simulators were used to cause continuous runoff from fertilized plots. Runoff samples were collected and analyzed for 17β-estradiol concentrations. Results showed that increasing alum additions to poultry litter decreased 17β-estradiol concentrations in runoff water. A significant exponential decline in 17β-estradiol runoff was also observed with increasing time until the first runoff event after litter application. Concentrations of 17β-estradiol in runoff water increased with increasing litter application rate and remained above background concentrations after three runoff events at higher application rates. Management practices such as diet modification and selection of fertilizer type were also shown to affect 17β-estradiol concentrations in runoff water. Although results from these experiments typically represented a worst case scenario since runoff events generally occurred immediately after litter application, the contaminant loss from pastures fertilized with poultry litter can be expected to be much lower than continual estradiol loadings observed from waste water treatment plants. Management practices such as alum amendment and application timing can significantly reduce the risk of 17β-estradiol losses in the environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. [Endocarditis due to an alga of the genus Prototheca sp. A saprophyte of water and of tree sap?].

    PubMed

    Buendía, A; Patiño, E; Rijlaarsdam, M; Loredo, M L; Rivera, E; Ramírez, S; Attie, F

    1998-01-01

    We report a case of a preterm neonate with very low birth weight (775 grs), He stayed 77 days in a neonatal care unit due to respiratory distress syndrome, with respiratory support for 27 days, and complications in gastrointestinal and nervous systems. In a structural normal heart, he developed infective endocarditis that was treated with good bacteriologic results. An echocardiogram showed the persistence of a mass in the right atrium, the mass was a thrombus and it was resected. Histopathological analysis and cultures of the thrombus reported Prototheca sp. that is an algae. The patient received medical treatment with amphothericin B with satisfactory clinical evolution. He is doing well 6 months later. This is the first report of literature of an algae causing endocarditis.

  6. Causes of toxicity to Hyalella azteca in a stormwater management facility receiving highway runoff and snowmelt. Part II: salts, nutrients, and water quality.

    PubMed

    Bartlett, A J; Rochfort, Q; Brown, L R; Marsalek, J

    2012-01-01

    The Terraview-Willowfield Stormwater Management Facility (TWSMF) features a tandem of stormwater management ponds, which receive inputs of multiple contaminants from highway and residential runoff. Previous research determined that benthic communities in the ponds were impacted by poor habitat quality, due to elevated sediment concentrations of metals and polycyclic aromatic hydrocarbons (PAHS), and salinity in the overlying water, but did not address seasonal changes, including those caused by the influx of contaminants with the snowmelt. In order to address this issue, water and sediment samples were collected from the TWSMF during the fall and spring, and four-week sediment toxicity tests were conducted with Hyalella azteca. The effects of metals and PAHs are discussed in a companion paper; the effects of road salt, nutrients, and water quality are discussed here. After exposure to fall samples, survival of Hyalella was reduced (64-74% of controls) at three out of four sites, but growth was not negatively affected. After exposure to spring samples, survival was 0-75% of controls at the two sites furthest downstream, and growth was significantly lower in four out of five sites when comparing Hyalella exposed to site water overlying site sediment versus control water overlying site sediment. Toxicity appeared to be related to chloride concentrations: little or no toxicity occurred in fall samples (200 mg Cl(-)/L), and significant effects on survival and growth occurred in spring samples above 1550 mg Cl(-)/L and 380 mg Cl(-)/L, respectively. Sodium chloride toxicity tests showed similar results: four-week LC50s and EC25s (growth) were 1200 and 420 mg Cl(-)/L, respectively. Although water quality and nutrients were associated with effects observed in the TWSMF, chloride from road salt was the primary cause of toxicity in this study. Chloride persists during much of the year at concentrations representing a significant threat to benthic communities in the TWSMF. Copyright © 2011. Published by Elsevier B.V.

  7. Plunge location of sediment driven hyperpycnal river discharges considering bottom friction, lateral entrainment, and particle settling

    NASA Astrophysics Data System (ADS)

    Strom, K. B.; Bhattacharya, J.

    2012-12-01

    River discharges with very high sediment loads have the potential to develop into plunging hyperpycnal flows that transition from a river jet to a turbidity current at some location basinward of the river mouth due to the density difference between the turbid river and the receiving water body. However, even if the bulk density of the turbid river is greater than that of the receiving lake or ocean, some distance is needed for the forward inertia of the river to dissipate so that the downward gravitational pull can cause the system to collapse into a subaqueous turbidity current. This collapsing at the plunge point has been found to occur when the densimetric Froude number decreases to a value between 0.3 < Frd < 0.7 (Fang and Stefan 2000, Parker and Toniolo 2007, Dai and Garcia 2010, Lamb et al. 2010). In 2D channel flow analysis at the plunge point, this has led to the concept of a two-fold criterion for plunging. The first is simply for the need of high enough suspended sediment concentration to overcome the density difference between the river fluid and the fluid of the receiving water. The second is the need for sufficiently deep water to reduce the densimetric Froude below the critical value for plunging, which leads to dependence of plunging on the receiving water basin topography (Lamb et al. 2010). In this analysis, we expand on past work by solving a system of ODE river jet equations to account for bottom friction, lateral entrainment of ambient fluid, and particle settling between the river mouth and the plunge location. Typical entrainment and bottom friction coefficients are used and the model is tested against the laboratory density current data of Fang and Stefan (1991). A suite of conditions is solved with variable river discharge velocity, aspect ratio, suspended sediment concentration, and particle size; a range of salinity values and bottom slopes are used for the receiving water body. The plunge location is then expressed as a function of the boundary conditions at the river mouth and those of the receiving water. The relationships can be used for modern systems, but can also help to put reasonable bounds on paleo-hydraulic setting. References Dai, A. & Garcia, M. H. (2010). Energy Dissipative Plunging Flows. Journal of Hydraulic Engineering, 136(8), 519-523. Fang, X. & Stefan, H. G. (1991). Integral Jet Model for Flow from an Open Channel into a Shallow Lake or Reservoir. St. Anthony Falls Hydraulic Laboratory. Fang, X. & Stefan, H. G. (2000). Dependence of dilution of a plunging discharge over a sloping bottom on inflow conditions and bottom friction. Journal of Hydraulic Research, 38(1), 15-25. Lamb, M. P., McElroy, B., Kopriva, B., Shaw, J., & Mohrig, D. (2010). Linking river-flood dynamics to hyperpycnal-plume deposits: Experiments, theory, and geological implications. Geological Society of America Bulletin, 122(9/10), 1389-1400. Parker, G. & Toniolo, H. (2007). Note on the Analysis of Plunging of Density Flows. Journal of Hydraulic Engineering, 133(6), 690-694.

  8. Assessing effects of a mining and municipal sewage effluent mixture on fathead minnow (Pimephales promelas) reproduction using a novel, field-based trophic-transfer artificial stream.

    PubMed

    Rickwood, Carrie J; Dubé, Monique G; Weber, Lynn P; Lux, Sarah; Janz, David M

    2008-01-31

    The Junction Creek watershed, located in Sudbury, ON, Canada receives effluent from three metal mine wastewater treatment plants, as well as a municipal wastewater (MWW) discharge. Effects on fish have been documented within the creek (decreased egg size and increased metal body burdens). It has been difficult to identify the cause of the effects observed due to the confounded nature of the creek. The objectives of this investigation were to assess the: (1) effects of a mine effluent and municipal wastewater (CCMWW) mixture on fathead minnow (FHM; Pimephales promelas) reproduction in an on-site artificial stream and (2) importance of food (Chironomus tentans) as a source of exposure using a trophic-transfer system. Exposures to CCMWW through the water significantly decreased egg production and spawning events. Exposure through food and water using the trophic-transfer system significantly increased egg production and spawning events. Embryos produced in the trophic-transfer system showed similar hatching success but increased incidence and severity of deformities after CCMWW exposure. We concluded that effects of CCMWW on FHM were more apparent when exposed through the water. Exposure through food and water may have reduced effluent toxicity, possibly due to increased nutrients and organic matter, which may have reduced metal bioavailability. More detailed examination of metal concentrations in the sediment, water column, prey (C. tentans) and FHM tissues is recommended to better understand the toxicokinetics of potential causative compounds within the different aquatic compartments when conducting exposures through different pathways.

  9. Comparison of drinking water treatment process streams for optimal bacteriological water quality.

    PubMed

    Ho, Lionel; Braun, Kalan; Fabris, Rolando; Hoefel, Daniel; Morran, Jim; Monis, Paul; Drikas, Mary

    2012-08-01

    Four pilot-scale treatment process streams (Stream 1 - Conventional treatment (coagulation/flocculation/dual media filtration); Stream 2 - Magnetic ion exchange (MIEX)/Conventional treatment; Stream 3 - MIEX/Conventional treatment/granular activated carbon (GAC) filtration; Stream 4 - Microfiltration/nanofiltration) were commissioned to compare their effectiveness in producing high quality potable water prior to disinfection. Despite receiving highly variable source water quality throughout the investigation, each stream consistently reduced colour and turbidity to below Australian Drinking Water Guideline levels, with the exception of Stream 1 which was difficult to manage due to the reactive nature of coagulation control. Of particular interest was the bacteriological quality of the treated waters where flow cytometry was shown to be the superior monitoring tool in comparison to the traditional heterotrophic plate count method. Based on removal of total and active bacteria, the treatment process streams were ranked in the order: Stream 4 (average log removal of 2.7) > Stream 2 (average log removal of 2.3) > Stream 3 (average log removal of 1.5) > Stream 1 (average log removal of 1.0). The lower removals in Stream 3 were attributed to bacteria detaching from the GAC filter. Bacterial community analysis revealed that the treatments affected the bacteria present, with the communities in streams incorporating conventional treatment clustering with each other, while the community composition of Stream 4 was very different to those of Streams 1, 2 and 3. MIEX treatment was shown to enhance removal of bacteria due to more efficient flocculation which was validated through the novel application of the photometric dispersion analyser. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Green-blue water in the city: quantification of impact of source control versus end-of-pipe solutions on sewer and river floods.

    PubMed

    De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P

    2014-01-01

    Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.

  11. Water and watershed

    Treesearch

    Norbert V. DeByle

    1985-01-01

    Quaking aspen dominates several million acres on mountainous watersheds in the West. The sites occupied receive enough precipitation to yield water to lower elevations. Most aspen areas receive 16 inches (40 cm) or more precipitation annually; many receive more than 39 inches (100 cm) (see the CLIMATES chapter), well in excess of on-site loss from evapotranspiration....

  12. Investigating the presence of omeprazole in waters by liquid chromatography coupled to low and high resolution mass spectrometry: degradation experiments.

    PubMed

    Boix, C; Ibáñez, M; Sancho, J V; Niessen, W M A; Hernández, F

    2013-10-01

    Omeprazole is one of the most consumed pharmaceuticals around the world. However, this compound is scarcely detected in urban wastewater and surface water. The absence of this pharmaceutical in the aquatic ecosystem might be due to its degradation in wastewater treatment plants, as well as in receiving water. In this work, different laboratory-controlled degradation experiments have been carried out on surface water in order to elucidate generated omeprazole transformation products (TPs). Surface water spiked with omeprazole was subjected to hydrolysis, photo-degradation under both sunlight and ultraviolet radiation and chlorination. Analyses by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF MS) permitted identification of up to 17 omeprazole TPs. In a subsequent step, the TPs identified were sought in surface water and urban wastewater by LC-QTOF MS and by LC coupled to tandem mass spectrometry with triple quadrupole. The parent omeprazole was not detected in any of the samples, but four TPs were found in several water samples. The most frequently detected compound was OTP 5 (omeprazole sulfide), which might be a reasonable candidate to be included in monitoring programs rather than the parent omeprazole. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Development of the oil-water monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, C.

    1990-04-02

    The oil-water monitor is a device invented by Dr. Claude Swanson of Applied Physics Technology to respond to the petroleum-loss problem in crude oil transfers. It is a device which measures water content in crude oil and other petroleum products, in a flowing pipe such as a pipeline or tanker manifold. It is capable of accurately measuring the water contamination levels in crude oil shipments, in real time as the crude oil flows through the loading manifold into the tanker, or at the receiving point as the oil is off-loaded It has application in the verification of oil volumes andmore » concentration of contaminants at petroleum transfer points. The industry-estimated level of water loss at transfer points due to inadequate monitoring technology amounts to several billion dollars per year, so there is a definite perceived need within the petroleum community for this type of accurate water monitoring technology. The device has been patented, and initial feasibility experiments have been conducted. The present research is directed toward developing and demonstrating a bench model prototype of the oil-water monitor, complete with the computer software and automated microwave equipment and electronics which will demonstrate the performance of the invention, for implementation in full-scale fielded systems. 3 figs.« less

  14. High-frequency measurements reveal spatial and temporal patterns of dissolved organic matter in an urban water conveyance.

    PubMed

    Mihalevich, Bryce A; Horsburgh, Jeffery S; Melcher, Anthony A

    2017-10-30

    Stormwater runoff in urban areas can contribute high concentrations of dissolved organic matter (DOM) to receiving waters, potentially causing impairment to the aquatic ecosystem of urban streams and downstream water bodies. Compositional changes in DOM due to storm events in forested, agricultural, and urban landscapes have been well studied, but in situ sensors have not been widely applied to monitor stormwater contributions in urbanized areas, leaving the spatial and temporal characteristics of DOM within these systems poorly understood. We deployed fluorescent DOM (FDOM) sensors at upstream and downstream locations within a study reach to characterize the spatial and temporal changes in DOM quantity and sources within an urban water conveyance that receives stormwater runoff. Baseflow FDOM decreased over the summer season as seasonal flows upstream transported less DOM. FDOM fluctuated diurnally, the amplitude of which also declined as the summer season progressed. During storms, FDOM concentrations were rapidly elevated to values orders of magnitude greater than baseflow measurements, with greater concentrations at the downstream monitoring site, revealing high contributions from stormwater outfalls between the two locations. Observations from custom, in situ fluorometers resembled results obtained using laboratory methods for identifying DOM source material and indicated that DOM transitioned to a more microbially derived composition as the summer season progressed, while stormwater contributions contributed DOM from terrestrial sources. Deployment of a mobile sensing platform during varying flow conditions captured spatial changes in DOM concentration and composition and revealed contributions of DOM from outfalls during stormflows that would have otherwise been unobserved.

  15. Global Precipitation Responses to Land Hydrological Processes

    NASA Astrophysics Data System (ADS)

    Lo, M.; Famiglietti, J. S.

    2012-12-01

    Several studies have established that soil moisture increases after adding a groundwater component in land surface models due to the additional supply of subsurface water. However, impacts of groundwater on the spatial-temporal variability of precipitation have received little attention. Through the coupled groundwater-land-atmosphere model (NCAR Community Atmosphere Model + Community Land Model) simulations, this study explores how groundwater representation in the model alters the precipitation spatiotemporal distributions. Results indicate that the effect of groundwater on the amount of precipitation is not globally homogeneous. Lower tropospheric water vapor increases due to the presence of groundwater in the model. The increased water vapor destabilizes the atmosphere and enhances the vertical upward velocity and precipitation in tropical convective regions. Precipitation, therefore, is inhibited in the descending branch of convection. As a result, an asymmetric dipole is produced over tropical land regions along the equator during the summer. This is analogous to the "rich-get-richer" mechanism proposed by previous studies. Moreover, groundwater also increased short-term (seasonal) and long-term (interannual) memory of precipitation for some regions with suitable groundwater table depth and found to be a function of water table depth. Based on the spatial distributions of the one-month-lag autocorrelation coefficients as well as Hurst coefficients, air-land interaction can occur from short (several months) to long (several years) time scales. This study indicates the importance of land hydrological processes in the climate system and the necessity of including the subsurface processes in the global climate models.

  16. Geo-Acoustic Doppler Spectroscopy: A Novel Acoustic Technique For Surveying The Seabed

    NASA Astrophysics Data System (ADS)

    Buckingham, Michael J.

    2010-09-01

    An acoustic inversion technique, known as Geo-Acoustic Doppler Spectroscopy, has recently been developed for estimating the geo-acoustic parameters of the seabed in shallow water. The technique is unusual in that it utilizes a low-flying, propeller-driven light aircraft as an acoustic source. Both the engine and propeller produce sound and, since they are rotating sources, the acoustic signature of each takes the form of a sequence of narrow-band harmonics. Although the coupling of the harmonics across the air-sea interface is inefficient, due to the large impedance mismatch between air and water, sufficient energy penetrates the sea surface to provide a useable underwater signal at sensors either in the water column or buried in the sediment. The received signals, which are significantly Doppler shifted due to the motion of the aircraft, will have experienced a number of reflections from the seabed and thus they contain information about the sediment. A geo-acoustic inversion of the Doppler-shifted modes associated with each harmonic yields an estimate of the sound speed in the sediment; and, once the sound speed has been determined, the known correlations between it and the remaining geo-acoustic parameters allow all of the latter to be computed. This inversion technique has been applied to aircraft data collected in the shallow water north of Scripps pier, returning values of the sound speed, shear speed, porosity, density and grain size that are consistent with the known properties of the sandy sediment in the channel.

  17. A critical review of ferrate(VI)-based remediation of soil and groundwater.

    PubMed

    Rai, Prabhat Kumar; Lee, Jechan; Kailasa, Suresh Kumar; Kwon, Eilhann E; Tsang, Yiu Fai; Ok, Yong Sik; Kim, Ki-Hyun

    2018-01-01

    Over the past few decades, diverse chemicals and materials such as mono- and bimetallic nanoparticles, metal oxides, and zeolites have been used for soil and groundwater remediation. Ferrate (Fe VI O 4 2- ) has been widely employed due to its high-valent iron (VI) oxo compound with high oxidation/reduction potentials. Ferrate has received attention for wide environmental applications including water purification and sewage sludge treatment. Ferrate provides great potential for diverse environmental applications without any environmental problems. Therefore, this paper provides comprehensive information on the recent progress on the use of (Fe VI O 4 2- ) as a green material for use in sustainable treatment processes, especially for soil and water remediation. We reviewed diverse synthesis recipes for ferrates (Fe VI O 4 2- ) and their associated physicochemical properties as oxidants, coagulants, and disinfectants for the elimination of a diverse range of chemical and biological species from water/wastewater samples. A summary of the eco-sustainable performance of ferrate(VI) in water remediation is also provided and the future of ferrate(VI) is discussed in this review. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Thermal Energy Storage using PCM for Solar Domestic Hot Water Systems: A Review

    NASA Astrophysics Data System (ADS)

    Khot, S. A.; Sane, N. K.; Gawali, B. S.

    2012-06-01

    Thermal energy storage using phase chase materials (PCM) has received considerable attention in the past two decades for time dependent energy source such as solar energy. From several experimental and theoretical analyses that have been made to assess the performance of thermal energy storage systems, it has been demonstrated that PCM-based systems are reliable and viable options. This paper covers such information on PCMs and PCM-based systems developed for the application of solar domestic hot water system. In addition, economic analysis of thermal storage system using PCM in comparison with conventional storage system helps to validate its commercial possibility. From the economic analysis, it is found that, PCM based solar domestic hot water system (SWHS) provides 23 % more cumulative and life cycle savings than conventional SWHS and will continue to perform efficiently even after 15 years due to application of non-metallic tank. Payback period of PCM-based system is also less compared to conventional system. In conclusion, PCM based solar water heating systems can meet the requirements of Indian climatic situation in a cost effective and reliable manner.

  19. Droplet formation at the non-equilibrium water/water (w/w) interface

    NASA Astrophysics Data System (ADS)

    Chao, Youchuang; Mak, Sze Yi; Kong, Tiantian; Ding, Zijing; Shum, Ho Cheung

    2017-11-01

    The interfacial instability at liquid-liquid interfaces has been intensively studied in recent years due to their important role in nature and technology. Among them, two classic instabilities are Rayleigh-Taylor (RT) and double diffusive (DD) instabilities, which are practically relevant to many industrial processes, such as geologic CO2 sequestration. Most experimental and theoretical works have focused on RT or DD instability in binary systems. However, the study of such instability in complex systems, such as non-equilibrium ternary systems that involves mass-transfer-induced phase separation, has received less attention. Here, by using a ternary system known as the aqueous two-phase system (ATPS), we investigate experimentally the behavior of non-equilibrium water/water (w/w) interfaces in a vertically orientated Hele-Shaw cell. We observe that an array of fingers emerge at the w/w interface, and then break into droplets. We explore the instability using different concentrations of two aqueous phases. Our experimental findings are expected to inspire the mass production of all-aqueous emulsions in a simple setup.

  20. Study on an undershot cross-flow water turbine

    NASA Astrophysics Data System (ADS)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Omiya, Ryota; Fukutomi, Junichiro

    2014-06-01

    This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We performed tests by applying a cross-flow runner to an open channel as an undershot water turbine while attempting to simplify the structure and eliminate the casing. We experimentally investigated the flow fields and performance of water turbines in states where the flow rate was constant for the undershot cross-flow water turbine mentioned above. In addition, we compared existing undershot water turbines with our undershot cross-flow water turbine after attaching a bottom plate to the runner. From the results, we were able to clarify the following. Although the effective head for cross-flow runners with no bottom plate was lower than those found in existing runners equipped with a bottom plate, the power output is greater in the high rotational speed range because of the high turbine efficiency. Also, the runner with no bottom plate differed from runners that had a bottom plate in that no water was being wound up by the blades or retained between the blades, and the former received twice the flow due to the flow-through effect. As a result, the turbine efficiency was greater for runners with no bottom plate in the full rotational speed range compared with that found in runners that had a bottom plate.

  1. Final report on development and testing of the microwave oil-water monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, C.

    1991-06-15

    The oil-water monitor is a device invented by Dr. Claude Swanson of Applied Physics Technology to respond to the petroleum-loss problem in crude oil transfers. It is a device which measures water content in crude oil and other petroleum products, in a flowing pipe such as a pipeline or tanker manifold. It is capable of accurately measuring the water contamination levels in crude oil shipments, in real time as the crude oil flows through the loading manifold into the tanker, or at the receiving point as the oil is off-loaded. The oil-water monitor has application in the verification of oilmore » volumes and concentration of contaminants at petroleum transfer points. The industry-estimated level of water loss at transfer points due to inadequate monitoring technology amounts to several billion dollars per year, so there is a definite perceived need within the petroleum community for this type of accurate water monitoring technology. News articles indicating the importance of this problem are shown. The microwave oil-water monitor measures the water content in the oil, whether in the form of small droplets or large globules. Therefore it can be applied to the crude oil as it flows through crude oil pipes into the ship, or at transfer points in a crude oil distribution system. 4 refs., 18 figs.« less

  2. Perchlorate in Lake Water from an Operating Diamond Mine.

    PubMed

    Smith, Lianna J D; Ptacek, Carol J; Blowes, David W; Groza, Laura G; Moncur, Michael C

    2015-07-07

    Mining-related perchlorate [ClO4(-)] in the receiving environment was investigated at the operating open-pit and underground Diavik diamond mine, Northwest Territories, Canada. Samples were collected over four years and ClO4(-) was measured in various mine waters, the 560 km(2) ultraoligotrophic receiving lake, background lake water and snow distal from the mine. Groundwaters from the underground mine had variable ClO4(-) concentrations, up to 157 μg L(-1), and were typically an order of magnitude higher than concentrations in combined mine waters prior to treatment and discharge to the lake. Snow core samples had a mean ClO4(-) concentration of 0.021 μg L(-1) (n=16). Snow and lake water Cl(-)/ClO4(-) ratios suggest evapoconcentration was not an important process affecting lake ClO4(-) concentrations. The multiyear mean ClO4(-) concentrations in the lake were 0.30 μg L(-1) (n = 114) in open water and 0.24 μg L(-1) (n = 107) under ice, much below the Canadian drinking water guideline of 6 μg L(-1). Receiving lake concentrations of ClO4(-) generally decreased year over year and ClO4(-) was not likely [biogeo]chemically attenuated within the receiving lake. The discharge of treated mine water was shown to contribute mining-related ClO4(-) to the lake and the low concentrations after 12 years of mining were attributed to the large volume of the receiving lake.

  3. Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes.

    PubMed

    Wilson, Rachel D; Islam, Md Shahidul

    2012-01-01

    The main objective of the study was to develop an alternative non-genetic rat model for type 2 diabetes (T2D). Six-week-old male Sprague-Dawley rats (190.56 ± 23.60 g) were randomly divided into six groups, namely: Normal Control (NC), Diabetic Control (DBC), Fructose-10 (FR10), Fructose-20 (FR20), Fructose-30 (FR30) and Fructose-40 (FR40) and were fed a normal rat pellet diet ad libitum for 2 weeks. During this period, the two control groups received normal drinking water whilst the fructose groups received 10, 20, 30 and 40% fructose in drinking water ad libitum, respectively. After two weeks of dietary manipulation, all groups except the NC group received a single injection (i.p.) of streptozotocin (STZ) (40 mg/kg b.w.) dissolved in citrate buffer (pH 4.4). The NC group received only a vehicle buffer injection (i.p.). One week after the STZ injection, animals with non-fasting blood glucose levels > 300 mg/dl were considered as diabetic. Three weeks after the STZ injection, the animals in FR20, FR30 and FR40 groups were eliminated from the study due to the severity of diabetes and the FR10 group was selected for the remainder of the 11 weeks experimental period. The significantly (p < 0.05) higher fluid intake, blood glucose, serum lipids, liver glycogen, liver function enzymes and insulin resistance (HOMA-IR) and significantly (p < 0.05) lower body weight, oral glucose tolerance, number of pancreatic β-cells and pancreatic β-cell functions (HOMA-β) of FR10 group demonstrate that the 10% fructose-fed followed by 40 mg/kg of BWSTZ injected rat can be a new and alternative model for T2D.

  4. Elucidating the impact of nitrate and labile carbon application on spatial heterogeneity of denitrification by 15N modelling

    NASA Astrophysics Data System (ADS)

    Cardenas, Laura; Loick, Nadine; Dixon, Liz; Matthews, Peter; Gilsanz, Claudia; Bol, Roland; Lewicka-Szczebak, Dominika; Well, Reinhard

    2016-04-01

    N2O is considered to be an important GHG with soils representing its major source and accounting for approximately 6% of the current global warming and is also implicated in the depletion of stratospheric ozone. The atmospheric N2O concentration has been increasing since the Industrial Revolution making the understanding of its sources and removal processes very important for development of mitigation strategies. Bergstermann et al. (2011) found evidence of the existence of more than one pool of nitrate undergoing denitrification in a silty clay loam arable soil amended with glucose/nitrate solution. The Rayleigh type model was used to simulate d15N of N2O using process rates and associated fractionation factors, but assumptions for some of the model parameters had to be made due to lack of available data. In this study we carried out 2 incubation experiments in order to parameterise the model. To restrict the volume of soil reached by the amendment, we used blocks containing 3 soil cores that were incubated in one vessel to measure emissions of NO, N2O, N2 and CO2 from a clay grassland soil amended with KNO3 (N) and glucose (C) in three treatments: '1C' only 1 core received N and C (the other 2 received water), '3C' 3 cores received N and C, and 'Control' (received water only). The results showed changes in the d15Nbulk trends after day 6 post amendment application, coinciding with the decrease of N2O fluxes. We also report the results in the 15N site preference (SP) and d18O. We will show the results from the model validation based on this data.

  5. Fetal and neonatal exposure to trimethylolpropane phosphate alters rat social behavior and emotional responsivity.

    PubMed

    Bekkedal, M Y; Rossi, J; Panksepp, J

    1999-01-01

    The proconvulsant compound trimethylolpropane phosphate (TMPP) was evaluated for its effects on motor, social, and emotional behaviors. Long Evans rats were treated prenatally for 13 days and/or neonatally for 10 days. Behavioral tests were performed during treatment and several days after treatment. Beginning on gestation day 9, and continuing for 13 days, 20 dams received once daily i.p. injections. Half were treated with distilled water, the other 10 received 0.2 mg TMPP/kg body weight. No external malformations were observed in the live-born offspring of TMPP- or vehicle-exposed dams. On postnatal day 3 one-half the pups were cross-fostered to dams that had the opposite treatment as their biological mothers. Also on postnatal day 3, pups were divided into two groups, one receiving injections of distilled water, the other receiving injections of 0.2 mg TMPP/kg body weight. Ten daily injections were administered i.p., beginning postnatal day 3. Motor behaviors were evaluated in step-down and paw lift tasks and no group differences were found. At 18 days of age, one half the pups were separated from the dam and their littermates. The other half of the pups continued to be housed with the dam and remaining littermates until postnatal day 50. Social interaction was measured in juvenile play and adult social investigation. Emotional responsivity was assessed in open field activity, elevated plus-maze exploration, and ultrasonic distress vocalizations. Complex interactions were found for measures of social interaction and emotional responsivity related to drug treatment, housing condition, and sex. Due to the observed sex differences. it is hypothesized that the action of TMPP may involve a change in the hormonal systems that control the differentiation of related sex-typical behaviors.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deane, M.; Swan, S.H.; Harris, J.A.

    Residents of a census tract that received drinking water from a well contaminated with solvents were previously shown to experience a spontaneous abortion rate over twice that occurring in an unexposed census tract. In addition, the rate of birth defects in the exposed tract was three times that in the unexposed tract. Surprisingly, increased tapwater consumption was associated with higher rates of spontaneous abortions in both the exposed and the unexposed tracts. Subsequent studies in this area have investigated the relation between spontaneous abortions and consumption of tapwater in more detail. In this report, data from the original study havemore » been re-analyzed using methods comparable with those used in more recent studies. These results confirm the association between spontaneous abortions and reported cold tapwater consumption that was seen in the original study. The observed effect was not due to maternal risk factors, nor was it a function of consumption of bottled water. After controlling for bottled water, the odds ratio for consumption of tapwater was 3.4 (95% confidence interval = 0.6-19.4).« less

  7. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars.

    PubMed

    Petridis, Antonios; Therios, Ioannis; Samouris, Georgios; Koundouras, Stefanos; Giannakoula, Anastasia

    2012-11-01

    The olive tree (Olea europaea L.) is often exposed to severe water stress during the summer season. In this study, we determined the changes in total phenol content, oleuropein and hydroxytyrosol in the leaves of four olive cultivars ('Gaidourelia', 'Kalamon', 'Koroneiki' and 'Megaritiki') grown under water deficit conditions for two months. Furthermore, we investigated the photosynthetic performance in terms of gas exchange and chlorophyll a fluorescence, as well as malondialdehyde content and antioxidant activity. One-year-old self-rooted plants were subjected to three irrigation treatments that received a water amount equivalent to 100% (Control, C), 66% (Field Capacity 66%, FC(66)) and 33% (Field Capacity 33%, FC(33)) of field capacity. Measurements were conducted 30 and 60 days after the initiation of the experiment. Net CO(2) assimilation rate, stomatal conductance and F(v)/F(m) ratio decreased only in FC(33) plants. Photosynthetic rate was reduced mainly due to stomatal closure, but damage to PSII also contributed to this decrease. Water stress induced the accumulation of phenolic compounds, especially oleuropein, suggesting their role as antioxidants. Total phenol content increased in FC(33) treatment and oleuropein presented a slight increase in FC(66) and a sharper one in FC(33) treatment. Hydroxytyrosol showed a gradual decrease as water stress progressed. Malondialdehyde (MDA) content increased due to water stress, mostly after 60 days, while antioxidant activity increased for all cultivars in the FC(33) treatment. 'Gaidourelia' could be considered as the most tolerant among the tested cultivars, showing higher phenolic concentration and antioxidant activity and lower lipid peroxidation and photochemical damage after two months of water stress. The results indicated that water stress affected olive tree physiological and biochemical parameters and magnitude of this effect depended on genotype, the degree of water limitation and duration of treatment. However, the severity as well as the duration of water stress might exceed antioxidant capacity, since MDA levels and subsequent oxidative damage increased after two months of water deficit. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Recent advances in ultrasonic treatment: Challenges and field applications for controlling harmful algal blooms (HABs).

    PubMed

    Park, Jungsu; Church, Jared; Son, Younggyu; Kim, Keug-Tae; Lee, Woo Hyoung

    2017-09-01

    Algal blooms are a naturally occurring phenomenon which can occur in both freshwater and saltwater. However, due to excess nutrient loading in water bodies (e.g. agricultural runoff and industrial activities), harmful algal blooms (HABs) have become an increasing issue globally, and can even cause health effects in humans due to the release of cyanotoxins. Among currently available treatment methods, sonication has received increasing attention for algal control because of its low impact on ecosystems and the environment. The effects of ultrasound on algal cells are well understood and operating parameter such as frequency, intensity, and duration of exposure has been well studied. However, most studies have been limited to laboratory data interpretation due to complicated environmental conditions in the field. Only a few field and pilot tests in small reservoirs were reported and the applicability of ultrasound for HABs prevention and control is still under question. There is a lack of information on the upscaling of ultrasonication devices for HAB control on larger water bodies, considering field influencing factors such as rainfall, light intensity/duration, temperature, water flow, nutrients loading, and turbidity. In this review article, we address the challenges and field considerations of ultrasonic applications for controlling algal blooms. An extensive literature survey, from the fundamentals of ultrasound techniques to recent ultrasound laboratory and field studies, has been thoroughly conducted and summarized to identify future technical expectations for field applications. Case studies investigating spatial distribution of frequency and pressure during sonication are highlighted with future implications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Effects of a Water Conservation Instructional Unit on the Values Held by Sixth Grade Students

    ERIC Educational Resources Information Center

    Aird, Andrew; Tomera, Audrey

    1977-01-01

    Sixth grade students were divided into two groups. Students in one group received instruction on water conservation using expository and discovery activities. The students in the control group received none. Results gave evidence that students' values could be changed by this mode of water conservation instruction. (MA)

  10. Ptaquiloside in Irish Bracken Ferns and Receiving Waters, with Implications for Land Managers.

    PubMed

    O'Driscoll, Connie; Ramwell, Carmel; Harhen, Brendan; Morrison, Liam; Clauson-Kaas, Frederik; Hansen, Hans Christian B; Campbell, Graeme; Sheahan, Jerome; Misstear, Bruce; Xiao, Liwen

    2016-04-26

    Ptaquiloside, along with other natural phytotoxins, is receiving increased attention from scientists and land use managers. There is an urgent need to increase empirical evidence to understand the scale of phytotoxin mobilisation and potential to enter into the environment. In this study the risk of ptaquiloside to drinking water was assessed by quantifying ptaquiloside in the receiving waters at three drinking water abstraction sites across Ireland and in bracken fronds surrounding the abstraction sites. We also investigated the impact of different management regimes (spraying, cutting and rolling) on ptaquiloside concentrations at plot-scale in six locations in Northern Ireland, UK. Ptaquiloside concentrations were determined using recent advances in the use of LC-MS for the detection and quantification of ptaquiloside. The results indicate that ptaquiloside is present in bracken stands surrounding drinking water abstractions in Ireland, and ptaquiloside concentrations were also observed in the receiving waters. Furthermore, spraying was found to be the most effective bracken management regime observed in terms of reducing ptaquiloside load. Increased awareness is vital on the implications of managing land with extensive bracken stands.

  11. Acanthamoeba, an opportunistic microorganism: a review.

    PubMed

    Martinez, A J; Janitschke, K

    1985-01-01

    Granulomatous amebic encephalitis due to Acanthamoeba spp. usually occurs in chronically ill and debilitated individuals. Some of these patients may have received immunosuppressive therapy. Another infection due to Acanthamoeba spp. has been corneal ulcerations which usually occur after minimal trauma to the corneal epithelium (1). In contrast, primary amebic meningoencephalitis due to Naegleria fowleri usually occurs in healthy, young individuals with a history of swimming in heated swimming pools, in manmade lakes or with recent contact with contaminated water and practising water-related sports. Subclinical infections due to free-living amebas are probably common in healthy individuals with the protozoa living as "normal flora" in the nose and throat. It is possible that in humans, antibodies and cell-mediated immunity protect the host in such ordinary circumstances against invasive infection. In debilitated and chronically ill individuals, depressed cellmediated immunity may allow these protozoa to proliferate, allowing a fulminant "opportunistic" infection to develop. In the case of acanthamoebic keratitis, it is important to keep in mind that the temperature and moist environment of the eye serve as a good medium for the growth and proliferation of the amebas and is not necessarily associated with immunosuppression but rather with trauma. This review confirms that opportunistic free-living amebic infections occur with increased frequency in patients treated with steroids, radiotherapy, chemotherapeutic drugs or with broad-spectrum antibiotics and suggest that the mechanism of such infection may be depressed cell-mediated immunity or some other alteration of the immune system, like acquired immunodeficiency syndrome (AIDS).

  12. Effect of a rice bran fiber diet on serum glucose levels of diabetic patients in Brazil.

    PubMed

    Rodrigues Silva, Cecilia; Dutra de Oliveira, José Eduardo; de Souza, Rui Augusto Hudari Gonçalves; Silva, Hugo Candido

    2005-03-01

    Eleven diabetic patients: 5, type 1 and 6, type 2 received a low-fiber diet (I) during 1 week and during the next 7 days the same diet, enriched with 40 g of fiber (30.6% insoluble and 11.7% soluble components) from rice bran (II) per day. Results showed that mean fasting and postprandial serum glucose levels were reduced, but values of high fiber diet were significantly lower (p < 0.001) than that of the lower fiber diet. For all patients, the high-fiber diet increased fecal weight. This increase was due to the fiber excreted, rather than water retained. There was no relationship between the increase in fiber intake and its fecal excretion. Sucrose and raffinose were found in the bran, but not in the feces. Lactose was present in the stools of the patients receiving enriched diet.

  13. High correlation of double Debye model parameters in skin cancer detection.

    PubMed

    Truong, Bao C Q; Tuan, H D; Fitzgerald, Anthony J; Wallace, Vincent P; Nguyen, H T

    2014-01-01

    The double Debye model can be used to capture the dielectric response of human skin in terahertz regime due to high water content in the tissue. The increased water proportion is widely considered as a biomarker of carcinogenesis, which gives rise of using this model in skin cancer detection. Therefore, the goal of this paper is to provide a specific analysis of the double Debye parameters in terms of non-melanoma skin cancer classification. Pearson correlation is applied to investigate the sensitivity of these parameters and their combinations to the variation in tumor percentage of skin samples. The most sensitive parameters are then assessed by using the receiver operating characteristic (ROC) plot to confirm their potential of classifying tumor from normal skin. Our positive outcomes support further steps to clinical application of terahertz imaging in skin cancer delineation.

  14. N-type organic electrochemical transistors with stability in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovannitti, Alexander; Nielsen, Christian B.; Sbircea, Dan -Tiberiu

    Organic electrochemical transistors (OECTs) are receiving significant attention due to their ability to efficiently transduce biological signals. A major limitation of this technology is that only p-type materials have been reported, which precludes the development of complementary circuits, and limits sensor technologies. Here, we report the first ever n-type OECT, with relatively balanced ambipolar charge transport characteristics based on a polymer that supports both hole and electron transport along its backbone when doped through an aqueous electrolyte and in the presence of oxygen. This new semiconducting polymer is designed specifically to facilitate ion transport and promote electrochemical doping. Stability measurementsmore » in water show no degradation when tested for 2 h under continuous cycling. Furthermore, this demonstration opens the possibility to develop complementary circuits based on OECTs and to improve the sophistication of bioelectronic devices.« less

  15. N-type organic electrochemical transistors with stability in water

    DOE PAGES

    Giovannitti, Alexander; Nielsen, Christian B.; Sbircea, Dan -Tiberiu; ...

    2016-10-07

    Organic electrochemical transistors (OECTs) are receiving significant attention due to their ability to efficiently transduce biological signals. A major limitation of this technology is that only p-type materials have been reported, which precludes the development of complementary circuits, and limits sensor technologies. Here, we report the first ever n-type OECT, with relatively balanced ambipolar charge transport characteristics based on a polymer that supports both hole and electron transport along its backbone when doped through an aqueous electrolyte and in the presence of oxygen. This new semiconducting polymer is designed specifically to facilitate ion transport and promote electrochemical doping. Stability measurementsmore » in water show no degradation when tested for 2 h under continuous cycling. Furthermore, this demonstration opens the possibility to develop complementary circuits based on OECTs and to improve the sophistication of bioelectronic devices.« less

  16. Anticancer drug-based multifunctional nanogels through self-assembly of dextran-curcumin conjugates toward cancer theranostics.

    PubMed

    Nagahama, Koji; Sano, Yoshinori; Kumano, Takayuki

    2015-06-15

    Curcumin (CCM) has been received much attention in cancer theranostics because CCM exhibits both anticancer activity and strong fluorescence available for bio-imaging. However, CCM has never been utilized in clinical mainly due to its extremely low water solubility and its low cellular uptake into cancer cells. We fabricated novel CCM-based biodegradable nanoparticles through self-assembly of amphiphilic dextran-CCM conjugates. Significantly high CCM loading contents in the nanoparticles and the high water solubility were achieved. Importantly, the dextran-CCMs nanoparticles were effectively delivered into HeLa cells and exhibited strong fluorescence available for live-cell imaging, although the nanoparticles were not delivered into normal cells. Thus, the dextran-CCMs nanoparticles could be a promising for creation of novel CCM-based cancer theranostics with high efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Analysis of radiometric signal in sedimentating suspension flow in open channel

    NASA Astrophysics Data System (ADS)

    Zych, Marcin; Hanus, Robert; Petryka, Leszek; Świsulski, Dariusz; Doktor, Marek; Mastej, Wojciech

    2015-05-01

    The article discusses issues related to the estimation of the sedimentating solid particles average flow velocity in an open channel using radiometric methods. Due to the composition of the compound, which formed water and diatomite, received data have a very weak signal to noise ratio. In the process analysis the known determining of the solid phase transportation time delay the classical cross-correlation function is the most reliable method. The use of advanced frequency analysis based on mutual spectral density function and wavelet transform of recorded signals allows a reduction of the noise contribution.

  18. Outbreak of Serratia marcescens bloodstream infections in patients receiving parenteral nutrition prepared by a compounding pharmacy.

    PubMed

    Gupta, Neil; Hocevar, Susan N; Moulton-Meissner, Heather A; Stevens, Kelly M; McIntyre, Mary G; Jensen, Bette; Kuhar, David T; Noble-Wang, Judith A; Schnatz, Rick G; Becker, Shawn C; Kastango, Eric S; Shehab, Nadine; Kallen, Alexander J

    2014-07-01

    Compounding pharmacies often prepare parenteral nutrition (PN) and must adhere to rigorous standards to avoid contamination of the sterile preparation. In March 2011, Serratia marcescens bloodstream infections (BSIs) were identified in 5 patients receiving PN from a single compounding pharmacy. An investigation was conducted to identify potential sources of contamination and prevent further infections. Cases were defined as S. marcescens BSIs in patients receiving PN from the pharmacy between January and March 2011. We reviewed case patients' clinical records, evaluated pharmacy compounding practices, and obtained epidemiologically directed environmental cultures. Molecular relatedness of available Serratia isolates was determined by pulsed-field gel electrophoresis (PFGE). Nineteen case patients were identified; 9 died. The attack rate for patients receiving PN in March was 35%. No case patients were younger than 18 years. In October 2010, the pharmacy began compounding and filter-sterilizing amino acid solution for adult PN using nonsterile amino acids due to a national manufacturer shortage. Review of this process identified breaches in mixing, filtration, and sterility testing practices. S. marcescens was identified from a pharmacy water faucet, mixing container, and opened amino acid powder. These isolates were indistinguishable from the outbreak strain by PFGE. Compounding of nonsterile amino acid components of PN was initiated due to a manufacturer shortage. Failure to follow recommended compounding standards contributed to an outbreak of S. marcescens BSIs. Improved adherence to sterile compounding standards, critical examination of standards for sterile compounding from nonsterile ingredients, and more rigorous oversight of compounding pharmacies is needed to prevent future outbreaks. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. 40 CFR 130.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality of water and serve the purposes of the Act. (e) Load or loading. An amount of matter or thermal energy that is introduced into a receiving water; to introduce matter or thermal energy into a receiving...

  20. 40 CFR 130.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality of water and serve the purposes of the Act. (e) Load or loading. An amount of matter or thermal energy that is introduced into a receiving water; to introduce matter or thermal energy into a receiving...

  1. 40 CFR 130.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality of water and serve the purposes of the Act. (e) Load or loading. An amount of matter or thermal energy that is introduced into a receiving water; to introduce matter or thermal energy into a receiving...

  2. 75 FR 67714 - Notice of Intent To Suspend Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    .... August 30, 2008.. No data received. coefficient (n- octanol/water) shake flask method. 830.7570 Partition December 14, 2007. December 24, 2007. August 30, 2008.. No data received. coefficient (n- octanol/water...

  3. Comparison of a novel passive sampler to standard water-column sampling for organic contaminants associated with wastewater effluents entering a New Jersey stream

    USGS Publications Warehouse

    Alvarez, D.A.; Stackelberg, P.E.; Petty, J.D.; Huckins, J.N.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.

    2005-01-01

    Four water samples collected using standard depth and width water-column sampling methodology were compared to an innovative passive, in situ, sampler (the polar organic chemical integrative sampler or POCIS) for the detection of 96 organic wastewater-related contaminants (OWCs) in a stream that receives agricultural, municipal, and industrial wastewaters. Thirty-two OWCs were identified in POCIS extracts whereas 9-24 were identified in individual water-column samples demonstrating the utility of POCIS for identifying contaminants whose occurrence are transient or whose concentrations are below routine analytical detection limits. Overall, 10 OWCs were identified exclusively in the POCIS extracts and only six solely identified in the water-column samples, however, repetitive water samples taken using the standard method during the POCIS deployment period required multiple trips to the sampling site and an increased number of samples to store, process, and analyze. Due to the greater number of OWCs detected in the POCIS extracts as compared to individual water-column samples, the ease of performing a single deployment as compared to collecting and processing multiple water samples, the greater mass of chemical residues sequestered, and the ability to detect chemicals which dissipate quickly, the passive sampling technique offers an efficient and effective alternative for detecting OWCs in our waterways for wastewater contaminants.

  4. Effect of organized assemblies. Part 4. Formulation of highly concentrated coal-water slurry using a natural surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debadutta Das; Sagarika Panigrahi; Pramila K. Misra

    2008-05-15

    Coal-water slurry has received considerable research nowadays due to its ability in substituting energy sources. The present work reports the formulation of highly concentrated coal-water slurry using a natural occurring surface active compound, saponin, extracted from the fruits of plant Sapindous laurifolia. The isolation of saponin from the plant and its surface activity has been discussed. The rheological characteristics of coal-water slurry have been investigated as a function of coal loading, ash content of coal, pH, temperature, and amount of saponin. The viscosity of the slurry and zeta potential are substantially decreased with concomitant shift of the isoelectric point ofmore » coal on adsorption of saponin to it. In the presence of 0.8% of saponin, coal-water slurry containing 64% weight fraction of coal could be achieved. The slurry is stable for a period of as long as 1 month in contrast to 4-5 h in the case of bare coal-water slurry. The results confirm the use of saponin as a suitable additive for coal-water slurry similar to the commercially available additive such as sodium dodecyl sulfate. Basing on the effect of pH on the zeta potential and viscosity of slurry, a suitable mechanism for saponin-coal interaction and orientation of saponin at the coal-water interface has been proposed. 47 refs., 12 figs., 5 tabs.« less

  5. Integrating seismic-reflection and sequence-stratigraphic methods to characterize the hydrogeology of the Floridan aquifer system in southeast Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.

    2013-01-01

    The Floridan aquifer system (FAS) is receiving increased attention as a result of regulatory restrictions on water-supply withdrawals and treated wastewater management practices. The South Florida Water Management District’s Regional Water Availability Rule, adopted in 2007, restricts urban withdrawals from the shallower Biscayne aquifer to pre-April 2006 levels throughout southeast Florida. Legislation adopted by the State of Florida requires elimination of ocean outfalls of treated wastewater by 2025. These restrictions have necessitated the use of the more deeply buried FAS as an alternate water resource to meet projected water-supply shortfalls, and as a repository for the disposal of wastewater via Class I deep injection wells and injection of reclaimed water. Some resource managers in Broward County have expressed concern regarding the viability of the FAS as an alternative water supply due to a lack of technical data and information regarding its long-term sustainability. Sustainable development and management of the FAS for water supply is uncertain because of the potential risk posed by structural geologic anomalies (faults, fractures, and karst collapse structures) and knowledge gaps in the stratigraphy of the system. The integration of seismic-reflection and borehole data into an improved geologic and hydrogeologic framework will provide a better understanding of the structural and stratigraphic features that influence groundwater flow and contaminant transport.

  6. Using Bayesian Belief Networks to Explore the Effects of Nitrogen Inputs on Wetland Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Spence, P. L.; Jordan, S. J.

    2011-12-01

    Increased reactive nitrogen (Nr) inputs to freshwater wetlands resulting from infrastructure development due to population growth along with intensive agricultural practices associated with food production can threaten regulating (i.e. climate change, water purification, and waste treatment) and supporting (i.e. nutrient cycling) ecosystem services. Wetlands generally respond both by sequestering Nr (i.e. soil accumulation and biomass assimilation) and converting Nr into inert gaseous forms via biogeochemical processes. It is important for wetlands to be efficient in removing excessive Nr inputs from polluted waters to reduce eutrophication in downstream receiving water bodies while producing negligible amounts of nitrous oxide (N2O), a potent greenhouse gas, which results from incomplete denitrification. Wetlands receiving excessive Nr lose their ability to provide a constant balance between regulating water quality and mitigating climate change. The purpose of this study is to explore the effects of Nr inputs on ecosystem services provided by wetlands using a Bayesian Belief Network (BBN). The network was developed from established relationships between a variety of wetland function indicators and biogeochemical process associated with Nr removal. Empirical data for 34 freshwater wetlands were gathered from a comprehensive review of published peer-reviewed and gray literature. The BBN was trained using 30 wetlands (88% of the freshwater wetland case file) and tested using 4 wetlands (12% of the freshwater wetland case file). Sensitivity analysis suggested that Nr removal, water quality, soil Nr accumulation and N2O emissions had the greatest influence on ecosystem service tradeoffs. The magnitude of Nr inputs did not affect ecosystem services. The network implies that Nr removal efficiency has a greater influence on final ecosystem services associated with water quality impairment and atmospheric pollution. A very low error rate, which was based on 4 wetland cases, indicated that a larger dataset is required to provide robust predictions. These findings are considered preliminary and could change as the model is updated.

  7. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran.

    PubMed

    Mirzaei, Roya; Yunesian, Masud; Nasseri, Simin; Gholami, Mitra; Jalilzadeh, Esfandiyar; Shoeibi, Shahram; Mesdaghinia, Alireza

    2018-04-01

    The presence of most prescribed antibiotic compounds from four therapeutic classes (β-lactam, cephalosporins, macrolides, fluoroquinolones) were studied at two full-scale WWTPs, two rivers, thirteen groundwater resources, and five water treatment plants in Tehran. Analytical methodology was based on high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. Samples were collected at 33 sample locations on three sampling periods over four months from June to August 2016. None of the target antibiotics were detected in groundwater resources and water treatment plants, while seven out of nine target antibiotics were analyzed in two studied river waters as well as the influent and effluent of wastewater treatment plants at concentrations ranging from

  8. Self-Reported Household Impacts of Large-Scale Chemical Contamination of the Public Water Supply, Charleston, West Virginia, USA

    PubMed Central

    Schade, Charles P.; Wright, Nasandra; Gupta, Rahul; Latif, David A.; Jha, Ayan; Robinson, John

    2015-01-01

    A January 2014 industrial accident contaminated the public water supply of approximately 300,000 homes in and near Charleston, West Virginia (USA) with low levels of a strongly-smelling substance consisting principally of 4-methylcyclohexane methanol (MCHM). The ensuing state of emergency closed schools and businesses. Hundreds of people sought medical care for symptoms they related to the incident. We surveyed 498 households by telephone to assess the episode’s health and economic impact as well as public perception of risk communication by responsible officials. Thirty two percent of households (159/498) reported someone with illness believed to be related to the chemical spill, chiefly dermatological or gastrointestinal symptoms. Respondents experienced more frequent symptoms of psychological distress during and within 30 days of the emergency than 90 days later. Sixty-seven respondent households (13%) had someone miss work because of the crisis, missing a median of 3 days of work. Of 443 households reporting extra expenses due to the crisis, 46% spent less than $100, while 10% spent over $500 (estimated average about $206). More than 80% (401/485) households learned of the spill the same day it occurred. More than 2/3 of households complied fully with “do not use” orders that were issued; only 8% reported drinking water against advice. Household assessments of official communications varied by source, with local officials receiving an average “B” rating, whereas some federal and water company communication received a “D” grade. More than 90% of households obtained safe water from distribution centers or stores during the emergency. We conclude that the spill had major economic impact with substantial numbers of individuals reporting incident-related illnesses and psychological distress. Authorities were successful supplying emergency drinking water, but less so with risk communication. PMID:25951197

  9. The effect of d-lysergic acid diethylamide (LSD), 2,5-dimethoxy-4-methylamphetamine (DOM), pentobarbital and methaqualone on punished responding in control and 5,7-dihydroxytryptamine-treated rats.

    PubMed

    Commissaris, R L; Lyness, W H; Rech, R H

    1981-05-01

    The purpose of the present study was to determine the role of central 5-hydroxytryptamine (5-HT) neuronal systems in the effects of d-lysergic acid diethylamide (LSD), 2,5-methoxy-4-methylamphetamine (DOM), pentobarbital (PB) and methaqualone (MQ) on punished responding in rats. Water-deprived rats were trained to drink from a tube that was electrified at intervals (variable interval 21 sec; 0.03 mA current intensity), electrification being signalled by a tone. In daily 10-min control sessions, these animals accepted a relatively constant number of shocks; water consumption was also quite stable. At maximally effective doses PB, and to a lesser extent MQ, produced large (400-600 percent of control) increases in punished responding with little decrease in water intake. Higher doses of these agents produced a significant depression of unpunished responding (water intake). The hallucinogens, on the other hand, produced only moderate (125-175 percent of control) increases in the number of shock received, yet a similar depression of unpunished responding. Selective destruction of 5-HT neurons by intracerebroventricular administration of the neurotoxin 5,7-dihydroxytryptamine per se produced little change in the number of shocks received or water consumed in controls sessions. This destruction of 5-HT neurons failed to alter the effects of PB or MQ on punished or unpunished responding. The increase in punished responding produced by the hallucinogens, however, was blocked by this destruction of 5-HT neurons. Furthermore, the capacity of the hallucinogens to decrease water intake was significantly potentiated by the neurotoxin pretreatment. These data demonstrate that the effects of the hallucinogens LSD and DOM on conditioned suppression are quite different from those of PB and MQ, and that this difference may be due to the extent of 5-HT involvement in the effects of these agents.

  10. Produced water disposal in the southern San Joaquin Basin: a direct analog for brine leakage in response to carbon storage

    NASA Astrophysics Data System (ADS)

    Jordan, P. D.; Gillespie, J.

    2013-12-01

    Injection of CO2 during geologic carbon storage pressurizes reservoir fluid, which can cause its migration. Migration of saline water from the reservoir into underground sources of drinking water (USDW) via pathways such as permeable wells and faults is one concern. As of 2010, 2 billion cubic meters (MMMm3) of oil, 10 MMMm3 of water, and 400 MMMm3 of gas had been produced in the southern San Joaquin Valley. A considerable portion of the gas and a majority of the water were injected into production zones for pressure support, water flooding, or as steam for thermal recovery. However a portion of the produced water was disposed of by injection into zones without economic quantities of hydrocarbons, termed saline aquifers in the geologic carbon storage community. These zones often had the shallowest activity in a field, and so had no overlying pressure sink due to production and all oil and gas-related wells in the field encountered or passed through them. The subset of such zones at CO2 storage depths received disposed water volumes equivalent to tens of megatons (MT) of CO2 injected at overpressures of many MPa. For instance a water volume equivalent to over 20 MT of CO2 was injected at a depth of 900 m and an average wellhead pressure of 6 MPa in the Fruitvale oil field, which had almost a thousand wells. Use of USDW for irrigation and consumption is widespread in the area. An increase in total dissolved solids (TDS) in well water is acutely detectable either by taste or effect on crops. Consequently the produced water disposal injection in the southern San Joaquin Valley provides an analog for assessing the occurrence of water leakage impacts due to reservoir pressurization. Almost 230 articles regarding groundwater contamination published from 2000 to 2013 by The Bakersfield Californian, the main newspaper in the area, were assessed. These were written by 71 authors including 38 staff writers, covered 53 different types of facilities or activities that either contaminated groundwater or for which there was such a concern, and discussed 85 different geographic locations. They described groundwater contamination at hundreds of wells during and previous to the publication period. Contamination due to upward leakage caused by produced water disposal injection was not mentioned. Previous research found The Bakersfield Californian covered more well blowouts with the highest public consequence (evacuation) than did reports from the relevant state agency, but had virtually no coverage of the least consequential blow outs. This suggests the lack of reporting of groundwater impacts from leakage due to produced water disposal injection indicates no significant public impact, such as closure of numerous public supply wells, occurred during the article time period or for some years previous. This research continues with analysis of historic groundwater constituent data available from the California State Water Resources Control Board's Geotracker Groundwater Ambient Monitoring & Assessment database. For instance this database contains TDS and other constituent results for 149 wells within or in the immediate vicinity of the Fruitvale oil field.

  11. 11-Year change in water chemistry of large freshwater Reservoir Danjiangkou, China

    NASA Astrophysics Data System (ADS)

    Li, Siyue; Ye, Chen; Zhang, Quanfa

    2017-08-01

    Danjiangkou Reservoir, an important drinking water source, has become a hot spot internationally due to its draining catchment has been increasingly affected by anthropogenic activities. However, its natural water chemistry (major elements) received little attention though it is crucial for water quality and aquatic ecology. Major ions during 2004-2014 were determined using stoichiometry to explore their shifts and the driving factors in the Danjiangkou Reservoir. Results show significant differences in monthly, spatial and annual concentrations of major ions. Waters are controlled by carbonate weathering with the dominant ions of Ca2+ and HCO3- total contributing 74% to the solutes, which are consistent with regional geography. Carbonate dissolution was produced by sulfuric acid and carbonic acid in particular. The relative abundance of Ca2+ gradually decreases, Na+ + K+ abundance, however, has doubled in the recent 11 years. Population and human activities were the major drivers for several major ions, i.e., Cl- and Na+ concentrations were explained by population and GDP, and SO42- by GDP, industrial sewage and energy consumption. Estimation indicated that domestic salts and atmospheric deposition contributed 56% and 22% to Cl-, respectively. We conclude waters in the Reservoir are naturally controlled by rock weathering whilst some key elements largely contributed by anthropogenic activities.

  12. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review.

    PubMed

    Yang, Yi; Ok, Yong Sik; Kim, Ki-Hyun; Kwon, Eilhann E; Tsang, Yiu Fai

    2017-10-15

    In recent years, many of micropollutants have been widely detected because of continuous input of pharmaceuticals and personal care products (PPCPs) into the environment and newly developed state-of-the-art analytical methods. PPCP residues are frequently detected in drinking water sources, sewage treatment plants (STPs), and water treatment plants (WTPs) due to their universal consumption, low human metabolic capability, and improper disposal. When partially metabolized PPCPs are transferred into STPs, they elicit negative effects on biological treatment processes; therefore, conventional STPs are insufficient when it comes to PPCP removal. Furthermore, the excreted metabolites may become secondary pollutants and can be further modified in receiving water bodies. Several advanced treatment systems, including membrane filtration, granular activated carbon, and advanced oxidation processes, have been used for the effective removal of individual PPCPs. This review covers the occurrence patterns of PPCPs in water environments and the techniques adopted for their treatment in STP/WTP unit processes operating in various countries. The aim of this review is to provide a comprehensive summary of the removal and fate of PPCPs in different treatment facilities as well as the optimum methods for their elimination in STP and WTP systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandao-Mello, C.E.; Oliveira, A.R.; Valverde, N.J.

    Fifty persons involved in the {sup 137}Cs accident in Goiania showed symptoms of whole-body and local acute irradiation and also external or internal contamination mainly due to ingestion or absorption of {sup 137}Cs. Fourteen of the 50 developed severe bone marrow depression characterized by neutropenia and thrombocytopenia. Eight of these 14 received GM-CSF intravenously. None were submitted to bone marrow transplantation. Four of the 14 died due to hemorrhage and infection. For those with significant internal contamination evaluated by in-vitro and in-vivo assays, Prussian Blue was administered with doses ranging from 1.5 to 10 g d-1. Besides Prussian Blue, othermore » measures were taken to increase decorporation of {sup 137}Cs, including administration of diuretics, water overload, and ergometric exercises. From 50 to 100 persons are being followed in a medical protocol.« less

  14. Large differences in the diabatic heat budget of the tropical UTLS in reanalyses

    NASA Astrophysics Data System (ADS)

    Wright, J. S.; Fueglistaler, S.

    2013-04-01

    We present the time mean heat budgets of the tropical upper troposphere (UT) and lower stratosphere (LS) as simulated by five reanalysis models: MERRA, ERA-Interim, CFSR, JRA-25/JCDAS, and NCEP/NCAR. The simulated diabatic heat budget in the tropical UTLS differs significantly from model to model, with substantial implications for representations of transport and mixing. Large differences are apparent both in the net heat budget and in all comparable individual components, including latent heating, heating due to radiative transfer, and heating due to parameterised vertical mixing. We describe and discuss the most pronounced differences. Although they may be expected given difficulties in representing moist convection in models, the discrepancies in latent heating are still disturbing. We pay particular attention to discrepancies in radiative heating (which may be surprising given the strength of observational constraints on temperature and tropospheric water vapour) and discrepancies in heating due to turbulent mixing (which have received comparatively little attention).

  15. 76 FR 6462 - Notice of Intent To Suspend Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    .... 830.7550 Partition coefficient June 26, 2009 June 29, 2009 March 1, 2010 No data received. (n-octanol... March 1, 2010 No data received. (n-octanol/water), estimation by liquid chromatography. 830.7840 Water...

  16. Assessment of Long-term Irrigation Water Availability over Highly Managed and Economically Important Agricultural Region of the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Rushi, B. R.; Malek, K.; Rajagopalan, K.; Hall, S.; Kruger, C. E.; Brady, M.; Stockle, C.; Adam, J. C.

    2016-12-01

    Agriculture contributes about 12% in Washington State's economy. Water diverted from the Columbia River Basin (CRB) is the major source of irrigation water in this region. Although agriculture accounts for 80% of this state's total water withdrawal, this sector is the first to be curtailed (i.e., irrigators do not receive their full water right allocation) while there is a water shortage. This snow dominated region is already threatened by climate change. A robust regional-scale analysis of water supply, demand, unmet crop water requirements and associated impacts is critical to develop sustainable water resources plans under climate change. This study uses a dynamically-coupled hydrologic and cropping systems model, VIC-CropSyst, a reservoir management model, ColSim, and a water curtailment model to simulate changes in surface water irrigation demand projecting 30 years in the future in response to various climate, management and economic scenarios. Five downscaled climate scenarios for each of the IPCC's Representative Concentration Pathway 4.5 (rcp4.5) and 8.5 (rcp8.5) are selected in a way that they capture the projected spread of temperature and precipitation changes for the area. Results show an increase in total water availability across the CRB. Water availability is predicted to shift earlier in the season due to warming-induced snowpack reductions. Agricultural water demand is projected to decrease by approximately 5.0% (±0.7%) and 6.9% (±0.7%) respectively across the entire CRB and the Washington portion of the CRB by 2035. Irrigation demand is expected to shift earlier in the season along with water availability. This shift in demand may cause higher amount of early season irrigation water curtailment in some highly managed watersheds of the CRB in Washington State. This reduction and shift in demand is due to a warmer climate and an elevated atmospheric CO2 level which are leading to a shorter but early starting growing season. This study does not consider any expansion of irrigated crop lands for future, or any adaption measures such as double cropping, switching to slow maturing crop varieties. Curtailment increasing in the early season and declining in the late season may require adjustments to reservoir operations unless proper adaptive measures are taken.

  17. Influence of allochthonous dissolved organic matter on pelagic basal production in a northerly estuary

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Brugel, S.; Paczkowska, J.; Rowe, O. F.; Figueroa, D.; Kratzer, S.; Legrand, C.

    2018-05-01

    Phytoplankton and heterotrophic bacteria are key groups at the base of aquatic food webs. In estuaries receiving riverine water with a high content of coloured allochthonous dissolved organic matter (ADOM), phytoplankton primary production may be reduced, while bacterial production is favoured. We tested this hypothesis by performing a field study in a northerly estuary receiving nutrient-poor, ADOM-rich riverine water, and analyzing results using multivariate statistics. Throughout the productive season, and especially during the spring river flush, the production and growth rate of heterotrophic bacteria were stimulated by the riverine inflow of dissolved organic carbon (DOC). In contrast, primary production and photosynthetic efficiency (i.e. phytoplankton growth rate) were negatively affected by DOC. Primary production related positively to phosphorus, which is the limiting nutrient in the area. In the upper estuary where DOC concentrations were the highest, the heterotrophic bacterial production constituted almost 100% of the basal production (sum of primary and bacterial production) during spring, while during summer the primary and bacterial production were approximately equal. Our study shows that riverine DOC had a strong negative influence on coastal phytoplankton production, likely due to light attenuation. On the other hand DOC showed a positive influence on bacterial production since it represents a supplementary food source. Thus, in boreal regions where climate change will cause increased river inflow to coastal waters, the balance between phytoplankton and bacterial production is likely to be changed, favouring bacteria. The pelagic food web structure and overall productivity will in turn be altered.

  18. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  19. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE PAGES

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; ...

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  20. Opportunistic disease in yellow perch in response to decadal changes in the chemistry of oil sands-affected waters.

    PubMed

    Hogan, Natacha S; Thorpe, Karen L; van den Heuvel, Michael R

    2018-03-01

    Oil sands-affected water from mining must eventually be incorporated into the reclaimed landscape or treated and released. However, this material contains petrogenic organic compounds, such as naphthenic acids and traces of polycyclic aromatic hydrocarbons. This has raised concerns for impacts of oil sands process-affected waters on the heath of wildlife and humans downstream of receiving environments. The objective of this study was to evaluate the temporal association of disease states in fish with water chemistry of oil sands-affected waters over more than a decade and determine the pathogens associated with disease pathologies. Yellow perch (Perca flavescens) captured from nearby lakes were stocked into two experimental ponds during 1995-1997 and 2008-2010. South Bison Pond is a drainage basin that has received unextracted oil sands-contaminated material. Demonstration Pond is a constructed pond containing mature fine tailings capped with fresh water. Two disease pathologies, fin erosion for which a suspected bacterial pathogen (Acinetobacter Iwoffi) is identified, and lymphocystis (confirmed using a real-time PCR) were associated with oil sands-affected water exposure. From 1995 to 1997 pathologies were most prevalent in the South Bison Pond; however, from 2008 to 2009, disease was more frequently observed in the Demonstration Pond. CYP1A activity was 3-16 fold higher in fish from experimental ponds as compared to reference populations and this pattern was consistent across all sampling years. Bile fluorescence displayed a gradient of exposure with experimental ponds being elevated over local perch populations. Naphthenic acids decreased in the Bison Pond from approximately 12 mg/L to <4 mg/L while naphthenic acids increased in the Demonstration Pond from 6 mg/L to 12 mg/L due to tailings densification. Temporal changes in naphthenic acid levels, CYP1A activity and bile fluorescent metabolites correlate positively with incidence of disease pathologies whereas all inorganic water quality changes (major ions, pH, metals) were not associated with disease responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa

    NASA Astrophysics Data System (ADS)

    Munyaneza, Omar; Wali, Umaru G.; Uhlenbrook, Stefan; Maskey, Shreedhar; Mlotha, McArd J.

    Satellite radar altimetry measures the time required for a pulse to travel from the satellite antenna to the earth’s surface and back to the satellite receiver. Altimetry on inland lakes generally shows some deviation from in situ level measurements. The deviation is attributed to the geographically varying corrections applied to account for atmospheric effects on radar waves. This study was focused on verification of altimetry data for Lake Kivu (2400 km 2), a large inland lake between Rwanda and the Democratic Republic of Congo (DRC) and estimating the lake water levels using bathymetric data combined with satellite images. Altimetry data obtained from ENVISAT and ERS-2 satellite missions were compared with water level data from gauging stations for Lake Kivu. Gauge data for Lake Kivu were collected from the stations ELECTROGAZ and Rusizi. ENVISAT and ERS-2 data sets for Lake Kivu are in good agreement with gauge data having R2 of 0.86 and 0.77, respectively. A combination of the two data sets improved the coefficient of determination to 95% due to the improved temporal resolution of the data sets. The calculated standard deviation for Lake Kivu water levels was 0.642 m and 0.701 m, for ENVISAT and ERS-2 measurements, respectively. The elevation-surface area characteristics derived from bathymetric data in combination with satellite images were used to estimate the lake level gauge. Consequently, the water level of Lake Kivu could be estimated with an RMSE of 0.294 m and an accuracy of ±0.58 m. In situations where gauges become malfunctioning or inaccessible due to damage or extreme meteorological events, the method can be used to ensure data continuity.

  2. Physiological Responses to Prolonged Drought Differ Among Three Oak (Quercus) Species

    NASA Astrophysics Data System (ADS)

    Cooper, C. E.; Moore, G. W.; Vogel, J. G.; Muir, J. P.

    2015-12-01

    The physiological response of plants to water stress provides insights into which species may survive in exceptional drought conditions. This study conducted on a remnant post oak savanna site in College Station, Texas, examined how drought affected the physiology of three native oak species. In June 2014, after a period of equal watering, we subjected three year old Quercus shumardii (Shumard oak; SO), Q. virginiana (live oak; LO), and Q. macrocarpa (bur oak; BO) saplings to one of two watering treatments: 1) watered, receiving the equivalent of theaverage precipitation rate and 2) droughted, receiving a 100% reduction in precipitation. We measured predawn (ΨPD) and midday (ΨMD) leaf water potential; midday gas exchange (MGE) parameters including photosynthesis (Al), transpiration (T), stomatal conductance (gsw); and leaf soluble (SS) and non-soluble sugar (NSS) concentrations monthly between June and October 2014. Drought stress responses were evident after only one month of induced drought. Droughted saplings showed reduced ΨPD, ΨMD, and MGE (P ≤ 0.05) in comparison to watered saplings of the same species. LO saplings exhibited greater MGE (P ≤ 0.05) while maintaining similar LWP to their respective watered and droughted BO and SO counterparts. Droughted LO exhibited MGE rates similar to those of watered BO and SO (P ≤ 0.05), while watered LO adjusted its MGE rates to changes in water availability better than BO and LO during short-term drought. Compared to water saplings, droughted saplings had greater leaf SS (P = 0.08) and lower NSS concentrations (P = 0.10), possibly due to the conversion of NSS to SS and other simple compounds and reduced consumption of SS for growth by the droughted saplings. Although SO and BO exhibited similar photosynthesis rates, leaf total sugar (SS+NSS) concentration was greater in SO (P ≤ 0.05). By displaying the greatest average photosynthesis rate (P ≤ 0.05), LO should have accumulated the greatest amount of carbon, but had a low total leaf sugar concentration. LO saplings did however have greater relative height and diameter growth (P ≤ 0.05) than SO and BO, suggesting these species may differ in carbon allocation strategies. Results suggest LO is more likely to withstand drought mortality than BO or SO and may be an ideal species for forest restoration in environments that suffer from drought.

  3. Impact assessment of treated wastewater on water quality of the receiver using the Wilcoxon test

    NASA Astrophysics Data System (ADS)

    Ofman, Piotr; Puchlik, Monika; Simson, Grzegorz; Krasowska, Małgorzata; Struk-Sokołowska, Joanna

    2017-11-01

    Wastewater treatment is a process which aims to reduce the concentration of pollutants in wastewater to the level allowed by current regulations. This is to protect the receivers which typically are rivers, streams, lakes. Examination of the quality of treated wastewater allows for quick elimination of possible negative effects, and the study of water receiver prevents from excessive contamination. The paper presents the results of selected physical and chemical parameters of treated wastewater from the largest on the region in north-eastern Poland city of Bialystok municipal wastewater treatment and Biała River, the receiver. The samples for research were taken 3-4 a month in 2015 from two points: before and after discharge. The impact of the wastewater treatment plant on the quality of the receiver waters was studied by using non-parametric Wilcoxon test. This test determined whether the analyzed indicators varied significantly depending on different sampling points of the river, above and below place of discharge of treated wastewater. These results prove that the treated wastewater does not affect the water quality in the Biała River.

  4. Climate change effects on water allocations with season dependent water rights.

    PubMed

    Null, Sarah E; Prudencio, Liana

    2016-11-15

    Appropriative water rights allocate surface water to competing users based on seniority. Often water rights vary seasonally with spring runoff, irrigation schedules, or other non-uniform supply and demand. Downscaled monthly Coupled Model Intercomparison Project multi-model, multi-emissions scenario hydroclimate data evaluate water allocation reliability and variability with anticipated hydroclimate change. California's Tuolumne watershed is a study basin, chosen because water rights are well-defined, simple, and include competing environmental, agricultural, and urban water uses representative of most basins. We assume that dedicated environmental flows receive first priority when mandated by federal law like the Endangered Species Act or hydropower relicensing, followed by senior agricultural water rights, and finally junior urban water rights. Environmental flows vary by water year and include April pulse flows, and senior agricultural water rights are 68% larger during historical spring runoff from April through June. Results show that senior water right holders receive the largest climate-driven reductions in allocated water when peak streamflow shifts from snowmelt-dominated spring runoff to mixed snowmelt- and rainfall-dominated winter runoff. Junior water right holders have higher uncertainty from inter-annual variability. These findings challenge conventional wisdom that water shortages are absorbed by junior water users and suggest that aquatic ecosystems may be disproportionally impaired by hydroclimate change, even when environmental flows receive priority. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Hydrochemical water evolution in the Aral Sea Basin. Part I: Unconfined groundwater of the Amu Darya Delta - Interactions with surface waters

    NASA Astrophysics Data System (ADS)

    Schettler, Georg; Oberhänsli, Hedi; Stulina, Galina; Mavlonov, Aslon A.; Naumann, Rudolf

    2013-07-01

    The Aral Sea, which has been affected by lake level lowering of approximately 25 m and a salinity increase from 10 to >100 g/l since 1963, represents, along with the Amu Dary Delta a dynamic hydrological system under an arid climate regime. The system receives river water inflow at high seasonal and inter-annual variability from remote alpine source areas. In the Amu Darya Delta, there is a distinct salinity contrast between the low-salinity river water (∼1 g/l) and the salinity of the unconfined GW (GWunconf: 10-95 g/l). The GWunconf levels are predominantly controlled by the seepage of the river water inflow and GW discharge into the shrinking Aral Sea. In June 2009 and August 2009, we sampled water from various sources including surface waters, GWunconf, lake water and soil leachates for chemical analyses. Evaporative enrichment, precipitation/dissolution of gypsum and precipitation of calcite drive the GWunconf to an NaCl(SO4) water type presenting a positive correlation between Na and SO4. We model the hydrochemical evolution of the GWunconf in a box model which considers the capillary rise of near-surface GW, the precipitation of minerals in the unsaturated horizon and the seasonal re-flushing of adhesive residual brines and soluble salts. The model documents a rapid increase in salinity over a few annual cycles. Furthermore, the model simulations demonstrate the importance of the aeolian redistribution of soluble salts on the hydrochemical GW evolution. In a lab experiment, halite, hexahydrite and starkeyite are precipitated during the late stages of evaporative enrichment from a representative local brine. Processes specific to different water compartments plausibly explain the variations of selected element ratios. For example, the precipitation of low-Sr calcite in irrigation canals and natural river branches of the delta lowers Ca/Sr. The dissolution of gypsum in soils (Ca/Sr mole ratio ∼ 150) and the possible precipitation of SrSO4 associated with Sr-depletion in adhesive residual brines increases Ca/Sr in seepage and re-increases Ca/Sr in the unconfined GW. Aral Sea water, which receives high-Ca/Sr surface and groundwater inflow, developed due to continued precipitation of high-Ca/Sr calcite the almost lowest Ca/Sr ratio (∼25) over time. We observed spatial variations in the GWunconf composition: (i) ammonium levels increase strongly due to interaction with lake sediments rich in organic matter and (ii) distinct increases in levels of nitrate, U, Mo and Se locally reflect oxygenation when GW levels decrease. The Amu Darya Delta acts as a sink for boron (uptake via terrestrial vegetation) and a source for bromide (release by degradation of organically-bound Br). Our results concerning the hydrochemical evolution of the GWunconf and additional data from the Aral Sea constrain the parameter ‘GW discharge’ in water budget models of the lake and improve the basis for palaeoclimatic interpretations of sediment records from the Aral Sea.

  6. Analysis of the WindSat Receiver Frequency Passbands

    DTIC Science & Technology

    2014-09-12

    water vapor ( PWV ) calculated for each atmospheric profile. The differences for the 18.7 and 23.8 GHz bands vary with PWV . Modeled Tb’s for receiver...precipitable water vapor ( PWV ). WindSat Receiver Frequency Passbands 11 22 24 26 28 30 32 34 36 38 40 REU Temperature (°C) 0 1 2 3 4 5 P er ce nt o f O cc

  7. Integrated urban drainage, status and perspectives.

    PubMed

    Harremoës, P

    2002-01-01

    This paper summarises the status of urban storm drainage as an integrated professional discipline, including the management-policy interface, by which the goals of society are implemented. The paper assesses the development of the discipline since the INTERURBA conference in 1992 and includes aspects of the papers presented at the INTERURBA-II conference in 2001 and the discussions during the conference. Tools for integrated analysis have been developed, but there is less implementation than could be expected. That is due to lack of adequate knowledge about important mechanisms, coupled with a significant conservatism in the business. However, significant integrated analyses have been reported. Most of them deal with the sewer system and the treatment plant, while few incorporate the receiving water as anything but the object of the loads to be minimised by engineering measures up-stream. Important measures are local infiltration, source control, storage basins, local treatment and real time control. New paradigms have been introduced: risk of pollution due to system failure, technology for water reuse, sustainability, new architecture and greener up-stream solutions as opposed to down-stream concrete solutions. The challenge is to combine the inherited approaches with the new approaches by flexibility and adaptability.

  8. Identifying strategic sites for Green-Infrastructures (GI) to manage stormwater in a miscellaneous use urban African watershed

    NASA Astrophysics Data System (ADS)

    Selker, J. S.; Kahsai, S. K.

    2017-12-01

    Green Infrastructure (GI) or Low impact development (LID), is a land use planning and design approach with the objective of mitigating land development impacts to the environment, and is ever more looked to as a way to lessen runoff and pollutant loading to receiving water bodies. Broad-scale approaches for siting GI/LID have been developed for agricultural watersheds, but are rare for urban watersheds, largely due to greater land use complexity. And it is even more challenging when it comes to Urban Africa due to the combination of poor data quality, rapid and unplanned development, and civic institutions unable to reliably carry out regular maintenance. We present a spacio-temporal simulation-based approach to identify an optimal prioritization of sites for GI/LID based on DEM, land use and land cover. Optimization used is a multi-objective optimization tool along with an urban storm water management model (SWMM) to identify the most cost-effective combination of LID/GI. This was applied to an urban watershed in NW Kampala, Lubigi Catchment (notorious for being heavily flooded every year), with a miscellaneous use watershed in Uganda, as a case-study to demonstrate the approach.

  9. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-08-02

    ISS013-E-63766 (2 Aug. 2006) --- Berkeley Pit and Butte, Montana are featured in this image photographed by an Expedition 13 crewmember on the International Space Station. The city of Butte, Montana has long been a center of mining activity. Underground mining of copper began in Butte in the 1870s, and by 1901 underground workings had extended to the groundwater table. Thus began the creation of an intricate complex of underground drains and pumps to lower the groundwater level and continue the extraction of copper. Water extracted from the mines was so rich in dissolved copper sulfate that it was also "mined" (by chemical precipitation) for the copper it contained. In 1955, the Anaconda Copper Mining Company began open-pit mining for copper in what is now know as the Berkeley Pit (dark oblong area in center). The mine took advantage of the existing subterranean drainage and pump network to lower groundwater until 1982, when the new owner ARCO suspended operations at the mine. The groundwater level swiftly rose, and today water in the Pit is more than 900 feet deep. Many features of the mine workings are visible in this image such as the many terraced levels and access roadways of the open mine pits (gray and tan sculptured surfaces). A large gray tailings pile of waste rock and an adjacent tailings pond are visible to the north of the Berkeley Pit. Color changes in the tailings pond are due primarily to changing water depth. The Berkeley Pit is listed as a federal Superfund site due to its highly acidic water, which contains high concentrations of metals such as copper and zinc. The Berkeley Pit receives groundwater flowing through the surrounding bedrock and acts as a "terminal pit" or sink for these heavy metal-laden waters. Ongoing efforts include regulation of water flow into the pit to reduce filling of the Pit and potential release of contaminated water into local aquifers or surface streams.

  10. Variation pattern of particulate organic carbon and nitrogen in oceans and inland waters

    NASA Astrophysics Data System (ADS)

    Huang, Changchun; Jiang, Quanliang; Yao, Ling; Yang, Hao; Lin, Chen; Huang, Tao; Zhu, A.-Xing; Zhang, Yimin

    2018-03-01

    We examined the relationship between, and variations in, particulate organic carbon (POC) and particulate organic nitrogen (PON) based on previously acquired ocean and inland water data. The latitudinal dependency of POC / PON is significant between 20 and 90° N but weak in low-latitude areas and in the Southern Hemisphere. The mean values of POC / PON in the Southern Hemisphere and Northern Hemisphere were 7.40 ± 3.83 and 7.80 ± 3.92, respectively. High values of POC / PON appeared between 80-90 (12.2 ± 7.5) and 70-80° N (9.4 ± 6.4), while relatively low POC / PON was found from 20 (6.6 ± 2.8) to 40° N (6.7 ± 2.7). The latitudinal variation of POC / PON in the Northern Hemisphere is much stronger than in the Southern Hemisphere due to the influence of more terrestrial organic matter. Higher POC and PON could be expected in coastal waters. POC / PON growth ranged from 6.89 ± 2.38 to 7.59 ± 4.22 in the Northern Hemisphere, with an increasing rate of 0.0024 km from the coastal to open ocean. Variations of POC / PON in lake water also showed a similar latitude-variation tendency of POC / PON with ocean water but were significantly regulated by the lakes' morphology, trophic state and climate. Small lakes and high-latitude lakes prefer relatively high POC / PON, and large lakes and low-latitude lakes tend to prefer low POC / PON. The coupling relationship between POC and PON in oceans is much stronger than in inland waters. Variations in POC, PON and POC / PON in inland waters should receive more attention due to the implications of these values for the global carbon and nitrogen cycles and the indeterminacy of the relationship between POC and PON.

  11. Improving the local relevance of large scale water demand predictions: the way forward

    NASA Astrophysics Data System (ADS)

    Bernhard, Jeroen; Reynaud, Arnaud; de Roo, Ad

    2016-04-01

    Securing adequate availability of fresh water is of vital importance for socio-economic development of present and future Europe. Due to strong heterogeneity in climate conditions, some regions receive an abundant supply of water, where other areas almost completely depend on limited river discharge from upstream catchments. Furthermore, water demand differs greatly between regions due to differences in population density and local presence of intensive water using industries and agriculture. This results in many situations all across Europe where competition between water users translates into relative scarcity and economic damage. Additionally it is expected that inter-related economic and demographic developments, as well as climate change are to only further increase the need for efficient management of our water resources in the future. Successful policy making for such complex problems requires a good understanding of the system and reliable forecasting of conditions. The extent and complexity of the water use system however, stands in high contrast with the poor state of available data and lack of reliable predictions for this multi-disciplinary topic. Although the matching of available water to its demand is a European-wide problem, the amount of data with pan-European coverage is limited and usually with a national resolution at best. This is hindering researchers and policy makers because it usually makes large scale water demand predictions little relevant due to the strong regional heterogenic nature of the problem. We present in our study a first attempt of European-wide water demand predictions based on consistent regional data and econometric methods for the household and industry sector. We gathered data on water consumption, water prices and other relevant variables at the highest spatial detail available from national statistical offices and other organizational bodies. This database provides the most detailed up to date picture of present water use and water prices. Subsequently, econometric estimates allow us to make a monetary valuation of water and identify the dominant drivers of domestic and industrial water demand per country. Combined with socio-economic, demographic and climate scenarios we made predictions for future Europe. Since this is a first attempt we obtained mixed results between countries when it comes to data availability and therefore model uncertainty. For some countries we have been able to develop robust predictions based on vast amounts of data while some other countries proved more challenging. We do feel however, that large scale predictions based on regional data are the way forward to provide relevant scientific policy support. In order to improve on our work it is imperative to further expand our database of consistent regional data. We are looking forward to any kind of input and would be very interested in sharing our data to collaborate towards a better understanding of the water use system.

  12. Influence of altered precipitation pattern on greenhouse gas emissions and soil enzyme activities in Pannonian soils

    NASA Astrophysics Data System (ADS)

    Forstner, Stefan Johannes; Michel, Kerstin; Berthold, Helene; Baumgarten, Andreas; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Kitzler, Barbara

    2013-04-01

    Precipitation patterns are likely to be altered due to climate change. Recent models predict a reduction of mean precipitation during summer accompanied by a change in short-term precipitation variability for central Europe. Correspondingly, the risk for summer drought is likely to increase. This may especially be valid for regions which already have the potential for rare, but strong precipitation events like eastern Austria. Given that these projections hold true, soils in this area will receive water irregularly in few, heavy rainfall events and be subjected to long-lasting dry periods in between. This pattern of drying/rewetting can alter soil greenhouse gas fluxes, creating a potential feedback mechanism for climate change. Microorganisms are the key players in most soil carbon (C) and nitrogen (N) transformation processes including greenhouse gas exchange. A conceptual model proposed by Schimel and colleagues (2007) links microbial stress-response physiology to ecosystem-scale biogeochemical processes: In order to cope with decreasing soil water potential, microbes modify resource allocation patterns from growth to survival. However, it remains unclear how microbial resource acquisition via extracellular enzymes and microbial-controlled greenhouse gas fluxes respond to water stress induced by soil drying/rewetting. We designed a laboratory experiment to test for effects of multiple drying/rewetting cycles on soil greenhouse gas fluxes (CO2, CH4, N2O, NO), microbial biomass and extracellular enzyme activity. Three soils representing the main soil types of eastern Austria were collected in June 2012 at the Lysimeter Research Station of the Austrian Agency for Health and Food Safety (AGES) in Vienna. Soils were sieved to 2mm, filled in steel cylinders and equilibrated for one week at 50% water holding capacity (WHC) for each soil. Then soils were separated into two groups: One group received water several times per week (C=control), the other group received water only once in two weeks (D=dry). Both groups received same water totals for each soil. At the end of each two week drying period, greenhouse gas fluxes were measured via an open-chamber-system (CO2, NO) and a closed-chamber-approach (CH4, N2O, CO2). Additional cylinders were harvested destructively to quantify inorganic N forms, microbial biomass C, N and extracellular enzyme activity (Cellulase, Xylanase, Protease, Phenoloxidase, Peroxidase). We hypothesize that after rewetting (1) rates of greenhouse gas fluxes will generally increase, as well as (2) extracellular enzyme activity indicating enhanced microbial activity. However, response may be different for gases and enzymes involved in the C and N cycle, respectively, as drying/rewetting stress may uncouple microbial mediated biogeochemical cycles. Results will be presented at the EGU General Assembly. Reference: Schimel, J., Balser, T.C., and Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386-1394.

  13. Comparison between the protective effects of vitamin K and vitamin A on the modulation of hypervitaminosis D3 short-term toxicity in adult albino rats.

    PubMed

    Elshama, Said Said; Osman, Hosam-Eldin Hussein; El-Kenawy, Ayman El-Meghawry; Youseef, Hamdi Mohamed

    2016-02-17

    Vitamin D3 has increased risk of toxicity due to its common use in multivitamin preparations. Vitamin K and vitamin A play an important role in vitamin D action. The goal of the current study was to compare the protective effects of vitamin K and vitamin A on the modulation of hypervitaminosis D3 toxicity in rats by assessing serum calcium, renal function tests, cardiac enzymes, and related histopathological changes. Eighty adult albino rats were divided into four groups; each group consisted of 20 rats. The first group received water; the second received a toxic dose of vitamin D3; the third received a toxic dose of vitamin D3 with vitamin A; and the fourth received a toxic dose of vitamin D3 with vitamin K. Vitamin D3 toxicity led to significant abnormalities of cardiac enzymes, renal function tests, and serum calcium associated with histopathological changes in the kidney, heart, lung, adrenal gland, and aorta. Individual administration of vitamin A or vitamin K with a toxic dose of vitamin D improved the biochemical and histopathological abnormalities of hypervitaminosis D3. Vitamins A and K showed the same protective effects in the modulation of hypervitaminosis D3 short-term toxicity.

  14. Biological nitrate removal from water and wastewater by solid-phase denitrification process.

    PubMed

    Wang, Jianlong; Chu, Libing

    2016-11-01

    Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. In vivo interaction of ketoconazole and sucralfate in healthy volunteers.

    PubMed Central

    Carver, P L; Berardi, R R; Knapp, M J; Rider, J M; Kauffman, C A; Bradley, S F; Atassi, M

    1994-01-01

    Absorption of ketoconazole is impaired in subjects with an increased gastric pH due to administration of antacids, H2-receptor antagonists, proton pump inhibitors, or the presence of hypochlorhydria. Sucralfate could provide an attractive alternative in patients receiving ketoconazole who require therapy for acid-peptic disorders. Twelve healthy human volunteers were administered a single 400-mg oral dose of ketoconazole in each of three randomized treatment phases. In phase A, ketoconazole was administered orally with 240 ml of water. In phase B, ketoconazole and sucralfate (1.0 g) were administered simultaneously with 240 ml of water. In phase C, ketoconazole was administered with 240 ml of water 2 h after administration of sucralfate (1.0 g) orally with 240 ml of water. A 680-mg oral dose of glutamic acid hydrochloride was administered 10 min prior to and with each dose of ketoconazole, sucralfate, or ketoconazole plus sucralfate. Simultaneous administration of ketoconazole and sucralfate led to a significant reduction in the area under the concentration-time curve and maximal concentration of ketoconazole in serum (78.12 +/- 12.20 versus 59.32 +/- 13.61 micrograms.h/ml and 12.34 +/- 3.07 versus 8.92 +/- 2.57 micrograms/ml, respectively; P < 0.05). When ketoconazole was administered 2 h after sucralfate, the observed ketoconazole area under the concentration-time curve was not significantly decreased compared with that of ketoconazole alone. The time to maximal concentrations in serum and the ketoconazole elimination rate constant were not significantly different in any of the three treatment phases. In patients receiving concurrent administration of ketoconazole and sucralfate, doses should be separated by at least 2 h. PMID:7910724

  16. Stormwater Retention Ponds and Constructed Wetlands Research at NRMRL’s Urban Watershed Research Facility

    EPA Science Inventory

    Microorganisms are priority stressors to receiving water bodies. Practitioners often consider structural stormwater management practices as effective tools to mitigate stormwater-carried bacteria before reaching receiving waters. The performance of these controls for microbial ...

  17. PERFORMANCE OF STORMWATER RETENTION PONDS AND CONSTRUCTED WETLANDS IN REDUCING MICROBIAL CONCENTRATIONS

    EPA Science Inventory

    Stormwater runoff can transport high concentrations of pathogens to receiving waters. Bacteria indicator organisms, as surrogates for pathogens, are the most often reported cause of receiving water impairments. Stormwater best management practices (BMPs) are often considered ef...

  18. 76 FR 53678 - Notice of Intent To Suspend Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    ...- 12/14/2007 12/24/2007 8/20/2008 No data received. octanol/water) shake flask method. 19713-289 830.7570 Partition coefficient (n- 12/14/2007 12/24/2007 8/20/2008 No data received. octanol/water...

  19. 77 FR 10520 - Notice of Intent To Suspend Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    .../2007 12/24/2007 8/20/2008 No data coefficient (n- received. octanol/water) shake flask method. 19713-72......... 830.7570 Partition 12/14/2007 12/24/2007 8/20/2008 No data coefficient (n- received. octanol/water...

  20. Hydrology and quality of ground water in northern Thurston County, Washington

    USGS Publications Warehouse

    Dion, N.P.; Turney, G.L.; Jones, M.A.

    1994-01-01

    Northern Thurston County is underlain by as much as 1,000 feet of unconsolidated deposits of Pleistocene Age, that are of both glacial and nonglacial origin. Interpretation of 17 geelogic sections led to the delineation of 7 major geohydrologic units, 3 of which constitute aquifers in the area. Precipi- tation ranges from about 35 to 65 inches per year across the study area. Estimates of gross recharge from precipitation indicate that the ground-water system of the area receives about 25 inches per year. The net recharge to the system (recharge from precipitation minus withdrawals from wells) is the equivalent of about 23 inches per year. Ground water generally moves toward marine bodiesand to major surface drainage channels. Leakage from Lake St. Clair, which lies in a compound kettle within permeable glacial outwash, is almost 24 feet per year per unit area. Leakage from the lake may make up part of the water that discharges at McAllister Springs, north of the lake. Of the few water-quality problems encountered, the most widespread is seawater intrusion, which is caused by the activities of man. Most water-quality problems in the study area, however, are due to natural causes. Iron concentrations axe as large as 21,000 micrograms per liter, manganese concentrations are as large as 3,400 micrograms per liter, and connate seawater is present in ground water in the southern pan of the study area.

  1. Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater.

    PubMed

    Simsek, Halis; Kasi, Murthy; Ohm, Jae-Bom; Murthy, Sudhir; Khan, Eakalak

    2016-04-01

    Dissolved organic nitrogen (DON) and its biodegradability in treated wastewater have recently gained attention due to increased regulatory requirements on effluent quality to protect receiving waters. Laboratory scale chemostat experiments were conducted at 9 different solids retention times (SRTs) (0.3, 0.7, 2, 3, 4, 5, 7, 8, and 13 days) to examine whether SRT could be used to control DON, biodegradable DON (BDON), and DON biodegradability (BDON/DON) levels in treated wastewater. Results indicated no trend between effluent DON and SRTs. Effluent BDON was comparable for SRTs of 0.3-4 days and had a decreasing trend with SRT after that. Effluent DON biodegradability (effluent BDON/effluent DON) ranging from 23% to 59% tended to decrease with SRT. Chemostat during longer SRTs, however, was contributing to non-biodegradable DON (NBDON) and this fraction of DON increased with SRT above 4 days. Model calibration results indicated that ammonification rate, and growth rates for ordinary heterotrophs, ammonia oxidizing bacteria and nitrite oxidizing bacteria were not constants but have a decreasing trend with increasing SRT. This study indicates the benefit of high SRTs in term of producing effluent with less DON biodegradability leading to relatively less oxygen consumption and nutrient support in receiving waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A randomized controlled trial of household-based flocculant-disinfectant drinking water treatment for diarrhea prevention in rural Guatemala.

    PubMed

    Reller, Megan E; Mendoza, Carlos E; Lopez, M Beatriz; Alvarez, Maricruz; Hoekstra, Robert M; Olson, Christy A; Baier, Kathleen G; Keswick, Bruce H; Luby, Stephen P

    2003-10-01

    We conducted a study to determine if use of a new flocculant-disinfectant home water treatment reduced diarrhea. We randomly assigned 492 rural Guatemalan households to five different water treatment groups: flocculant-disinfectant, flocculant-disinfectant plus a customized vessel, bleach, bleach plus a vessel, and control. During one year of observation, residents of control households had 4.31 episodes of diarrhea per 100 person-weeks, whereas the incidence of diarrhea was 24% lower among residents of households receiving flocculant-disinfectant, 29% lower among those receiving flocculant-disinfectant plus vessel, 25% lower among those receiving bleach, and 12% lower among households receiving bleach plus vessel. In unannounced evaluations of home drinking water, free chlorine was detected in samples from 27% of flocculant-disinfectant households, 35% of flocculant-disinfectant plus vessel households, 35% of bleach households, and 43% of bleach plus vessel households. In a setting where diarrhea was a leading cause of death, intermittent use of home water treatment with flocculant-disinfectant decreased the incidence of diarrhea.

  3. How might Australian rainforest cloud interception respond to climate change?

    NASA Astrophysics Data System (ADS)

    Wallace, Jim; McJannet, Dave

    2013-02-01

    SummaryThe lower and upper montane rainforests in northern Queensland receive significant amounts of cloud interception that affect both in situ canopy wetness and downstream runoff. Cloud interception contributes 5-30% of the annual water input to the canopy and this increases to 40-70% of the monthly water input during the dry season. This occult water is therefore an important input to the canopy, sustaining the epiphytes, mosses and other species that depend on wet canopy conditions. The potential effect of climate change on cloud interception was examined using the relationship between cloud interception and cloud frequency derived from measurements made at four different rainforest locations. Any given change in cloud frequency produces a greater change in cloud interception and this 'amplification' increases from 1.1 to 1.7 as cloud frequency increases from 5% to 70%. This means that any changes in cloud frequency will have the greatest relative effects at the higher altitude sites where cloud interception is greatest. As cloud frequency is also a major factor affecting canopy wetness, any given change in cloud frequency will therefore have a greater impact on canopy wetness at the higher altitude sites. These changes in wetness duration will augment those due to changes in rainfall and may have important implications for the fauna and flora that depend on wet canopy conditions. We also found that the Australian rainforests may be more efficient (by ˜50% on average) in intercepting cloud water than American coniferous forests, which may be due to differences in canopy structure and exposure at the different sites.

  4. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    NASA Astrophysics Data System (ADS)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  5. DISINFECTION, Chapter 4

    EPA Science Inventory

    Wet-weather flow has been shown to be a significant contributor to microbial contamination of receiving waters. The presence of pathogens in SW and CSO, as well as their potential release into receiving waters, are the main reasons for growing interest in the area of WWF disinfe...

  6. NTP Toxicology and Carcinogenesis Studies of Barium Chloride Dihydrate (CAS No. 10326-27-9) in F344/N Rats and B6C3F1 Mice (Drinking Water Studies).

    PubMed

    1994-01-01

    Barium chloride dihydrate, a white crystalline granule or powder, is used in pigments, aluminum refining, leather tanning and coloring, the manufacture of magnesium metal, ceramics, glass, and paper products, as a pesticide, and in medicine as a cardiac stimulant. Toxicology and carcinogenicity studies were conducted by administering barium chloride dihydrate (99% pure) in drinking water to F344/N rats and B6C3F1 mice for 15 days, 13 weeks, and 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, cultured Chinese hamster ovary cells, and mouse lymphoma cells. 15-DAY STUDY IN RATS: Groups of five males and five females received barium chloride dihydrate in the drinking water at concentrations of 0, 125, 250, 500, 1,000, or 2,000 ppm for 15 days, corresponding to average daily doses of 10, 15, 35, 60, or 110 mg barium/kg body weight to males and females. No chemical-related deaths, differences in final mean body weights, or clinical findings of toxicity were observed. Water consumption by male and female rats exposed to 2,000 ppm was slightly less (S16%) than controls during week 2. There were no significant differences in absolute or relative organ weights between exposed and control rats. No biologically significant differences in hematology, clinical chemistry, or neurobehavioral parameters occurred in rats. 15-DAY STUDY IN MICE: Groups of five males and five females received barium chloride dihydrate in the drinking water at concentrations of 0, 40, 80,173, 346, or 692 ppm for 15 days, corresponding to average daily doses of 5,10, 20, 40, or 70 mg barium/kg body weight to males and 5, 10, 15, 40, or 85 mg barium/kg body weight to females. No chemical-related deaths, differences in mean body weights or in water consumption, or clinical findings of toxicity were observed in mice. The relative liver weight of males receiving 692 ppm was significantly greater than that of the controls. The absolute and relative liver weights of females that received 692 ppm were significantly greater than those of the controls. No histopathologic evidence of toxicity was observed in mice. 13-WEEK STUDY IN RATS: Groups of 10 males and 10 females received barium chloride dihydrate in the drinking water at concentrations of 0, 125, 500, 1,000, 2,000, or 4,000 ppm for 13 weeks, corresponding to average daily doses of 10, 30, 65, 110, or 200 mg barium/kg body weight to males and 10, 35, 65, 115, or 180 mg barium/kg body weight to females. Three males and one female in the 4,000 ppm groups died during the last week of the study. The final mean body weights of male and female rats receiving 4,000 ppm were significantly lower (13% and 8%) than those of the controls. Water consumption by male and female rats in the 4,000 ppm groups was approximately 30% lower than that by the controls. No clearly chemical-related clinical findings of toxicity or neurobehavioral or cardiovascular effects were noted. Serum phosphorus levels in 2,000 and 4,000 ppm male and female rats were significantly higher than those in controls, but there were no biologically significant differences in hematology parameters or in serum sodium, potassium, or calcium levels. Renal tubule dilatation in the outer stripe of the outer medulla and cortex occurred in male and female rats receiving 4,000 ppm. 13-WEEK STUDY IN MICE: Groups of 10 males and 10 females received barium chloride dihydrate in the drinking water at concentrations of 0, 125, 500, 1,000, 2,000, or 4,000 ppm for 13 weeks, corresponding to average daily doses of 15, 55, 100, 205, or 450 mg barium/kg body weight to males and 15, 60, 110, 200, or 495 mg barium/kg body weight to females. Six males and seven females that received 4,000 ppm and one male that received 125 ppm died during the study. Final mean body weights of male and female mice receiving 4,000 ppm were significantly lower (>30%) than those of controls. Water consumption by male mice in the 4,000 ppm group was 18% lower than that by the controls; water consumption by other exposed groups of male and female mice was similar to thatd groups of male and female mice was similar to that by the controls. Clinical findings of toxicity were limited to debilitation in the surviving male and female mice receiving 4,000 ppm. The absolute and/or relative liver weights of mice receiving 1,000, 2,000, and 4,000 ppm were significantly lower than those of the controls. Multifocal to diffuse nephropathy characterized by tubule dilatation, regeneration, and atrophy occurred in 4,000 ppm male and female mice. 2-YEAR STUDY IN RATS: Groups of 60 males and 60 females received barium chloride dihydrate in the drinking water at concentrations of 0, 500, 1,250, or 2,500 ppm for 104 (males) or 105 weeks (females), corresponding to average daily doses of 15, 30, or 60 mg barium/kg body weight for males and 15, 45, or 75 mg barium/kg body weight for females. The high dose of 2,500 ppm was selected based on decreased final mean body weights, mortality, decreased water consumption, and chemical-related kidney lesions observed in the 4,000 ppm groups in the 13-week study. Survival, Body Weights, Water Consumption, and Clinical Findings: Two-year survival of exposed male and female rats was similar to that of the controls. The final mean body weights of male and female rats that received 2,500 ppm were (5% and 11%) lower than those of controls. Beginning as early as week 5, water consumption by male and female rats receiving 2,500 ppm was substantially lower than that by controls (male: 11% to 30%; female: 19% to 33%). There were no chemical-related clinical findings. Hematology and Clinical Chemistry: There were no chemical-related differences in hematology or clinical chemistry parameters in male or female rats. Special Studies: At the 15-month interim evaluation, the plasma barium concentrations (mg/ml) were significantly increased in males receiving 1,250 and 2,500 ppm and in all exposed groups of females (male: 0 ppm, 0.98; 500 ppm, 1.00; 1,250 ppm, 1.23; 2,500 ppm, 1.68; female: 0 ppm, 0.74; 500 ppm, 0.99; 1,250 ppm, 0.97; 2,500 ppm, 1.43). Barium levels in bone in rats from the 2,500 ppm groups were about 400 times greater than those in the controls. Pathology Findings: At the end of 2 years, there were no increased incidences of neoplasms or nonneoplastic lesions that could be attributed to barium chloride dihydrate. However, there were dose-related decreased incidences of adrenal medulla pheochromocytomas and mononuclear cell leukemia in male rats. 2-YEAR STUDY IN MICE: Groups of 60 males and 60 females received barium chloride dihydrate in the drinking water at concentrations of 0, 500, 1,250, or 2,500 ppm for 103 (males) or 104 weeks (females), corresponding to average daily doses of 30, 75, or 160 mg barium/kg body weight for males and 40, 90, or 200 mg barium/kg body weight for females. The high dose of 2,500 ppm was selected based on decreased final mean body weights, mortality, decreased water consumption, and chemical-related kidney lesions observed in the 4,000 ppm groups in the 13-week study. Survival, Body Weights, Water Consumption, and Clinical Findings: Two-year survival of male and female mice receiving 2,500 ppm was significantly lower than that of the controls due to renal toxicity. Final mean body weights of 2,500 ppm males and females were 9% and 12% lower than those of controls. Water consumption by male and female mice receiving barium chloride was similar to that by the controls. There were no chemical-related clinical findings. Hematology and Clinical Chemistry: There were no differences in hematology or clinical chemistry parameters measured at the 15-month interim evaluation. Special Studies: At the 15-month interim evaluation, plasma barium concentrations (mg/mL) were significantly increased in all exposed groups of mice (male: 0 ppm, 0.62; 500 ppm, 0.77; 1,250 ppm, 0.89; 2,500 ppm, 1.49; female: 0 ppm, 0.52; 500 ppm, 0.74; 1,250 ppm, 1.01; 2,500 ppm, 1.35). Pathology Findings: At the end of the 2-year study, there were increased incidences of nephropathy in male and female mice (male: 1/50, 0/50, 2/48, 19/50; female: 0/50, 2/53, 1/50, 37/54). There were no chemical-related increased incidences of neoplasms in male or female mice. The incidence of hepatocellular adenoma was significantly decreased in male mice receiving 2,500 ppm. GENETIC TOXICOLOGY: Barium chloride dihydrate was not mutagenic in Salmonella typhimurium strains TA97, TA98, TA100, TA1535, or TA1537, with or without exogenous metabolic activation (S9). It was mutagenic in L5178Y mouse lymphoma cells in the presence of S9, but it did not induce sister chromatid exchanges or chromosomal aberrations in cultured Chinese hamster ovary cells, with or without S9. CONCLUSIONS: Under the conditions of these 2-year drinking water studies, there was no evidence of carcinogenic activity of barium chloride dihydrate in male or female F344/N rats that received 500, 1,250, or 2,500 ppm. There was no evidence of carcinogenic activity of barium chloride dihydrate in male or female B6C3F1 mice that received 500, 1,250, or 2,500 ppm. There were chemical-related increased incidences of nephropathy in male and female mice.

  7. The potential impact of an inter-basin water transfer project on nutrients (nitrogen and phosphorous) and chlorophyll a of the receiving water system.

    PubMed

    Zeng, Qinghui; Qin, Lihuan; Li, Xuyong

    2015-12-01

    Any inter-basin water transfer project would cause complex physical, chemical, hydrological and biological changes to the receiving system. The primary channel of the middle route of the South-to-North Water Transfer Project has a total length of 1267 km. There is a significant difference between the physical, chemical and biological characteristics of the originating and receiving drinking water conservation districts. To predict the impacts of this long-distance inter-basin water transfer project on the N&P (nitrogen and phosphorus) concentrations and eutrophication risk of the receiving system, an environmental fluid dynamics code (EFDC) model was applied. The calibrated model accurately reproduced the hydrodynamic, water quality and the entire algal bloom process. Thirteen scenarios were defined to fully understand the N&P and chlorophyll a (Chl a) variation among different hydrological years, different quantity and timing of water transfer, and different inflows of N&P concentrations. The results showed the following: (a) The water transfer project would not result in a substantial difference to the trophic state of the Miyun reservoir in any of the hydrological years. (b) The area affected by the water transfer did not involve the entire reservoir. To minimize the impact of water transfer on N&P nutrients and Chl a, water should be transferred as uniform as possible with small discharge. (c) The variation in Chl a was more sensitive to an increase in P than an increase in N for the transferred water. The increased percentages of the average Chl a concentration when water was transferred in the spring, summer and autumn were 7.76%, 16.67% and 16.45%. Our findings imply that special attention should be given to prevent P increment of the transferred water from May to October to prevent algal blooms. The results provide useful information for decision makers about the quantity and timing of water transfers. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Testing the effect of increased temperature and river water input on benthic and pelagic metabolism using a large scale experimental pond ecosystem

    NASA Astrophysics Data System (ADS)

    Rodriguez, Patricia; Geibrink, Erik; Vasconcelos, Francisco; Hedström, Per; Byström, Pär; Karlsson, Jan

    2013-04-01

    We performed a large scale experimental study to test the effect of increased temperatures and concentration of allochthonous dissolved organic carbon (DOC) on benthic and pelagic primary production and respiration. The experiment was carried out during one ice-free season (May-October 2012) in a clear-water pond ecosystem divided into 16 enclosures (each 120 m3 and 1.6 m deep) including natural benthic and pelagic habitats and fish as top consumers (40 adult three-spine sticklebacks were introduced at the beginning of the experiment). Treatments included input of brown river water (23 mg/L in DOC) and heating (3° C above ambient temperature) in a factorial design: 4 enclosures were kept as controls (clear-cold), 4 enclosures were heated (clear-hot), 4 received river water (dark-cold) and 4 were both heated and received river water (dark-hot). Physical and chemical variables were monitored weekly meanwhile benthic, pelagic and ecosystems metabolism were estimated from free-water oxygen data and incubation studies. The 3° C difference in temperature between hot and cold enclosures was consistent during the study and DOC concentrations averaged 4 and 8 mg/L in clear water and dark enclosures, respectively; without any interaction effect between temperature and DOC concentration. Vertical light attenuation coefficient (Kd) showed significant differences between treatments with (0.62±0.40 m-1) and without river water (0.24±0.13 m-1). Total nitrogen concentrations ranged between 187 and 300 μg/L, with higher values in the dark-cold enclosures. The same pattern of higher values in dark-cold enclosures was found in phytoplankton chlorophyll a and primary production. Preliminary results show that gross benthic primary production (higher in clear-cold enclosures) largely exceeded phytoplankton production at the beginning of the experiment. Due to high respiration compared to gross primary production the net ecosystem production was in general negative in the pelagic habitat and did not show any effect of temperature or river water treatment. Our results suggest that input of river water may affect relatively shallow lake ecosystems differently compared to what is generally assumed based on studies of deeper systems.

  9. A GIS and Remote Sensing Perspective on the Hydrodynamic Response of the 2014 Kashmir Floods

    NASA Astrophysics Data System (ADS)

    Tyagi, H.; Goyal, A.

    2016-12-01

    In September-2014, the Jammu and Kashmir state of India received unprecedented rains due to strong interaction of the western disturbances with the retreating monsoon. Consequently, several districts were ravaged by the catastrophic floods and subsequent landslides. On 5th September-2014, the Jhelum River in Srinagar breached the danger level by over 1.34 m. The flood discharge was also recorded to be around 2.8 times the normal discharge. The current study examined the hydrodynamic response of the catchment to this rainstorm event. Moreover, the flood progression and recession was analyzed from the remote sensing imageries in pre-flood and post-flood scenarios. Also, the spatio-temporal extent of the inundated and inundation prone areas was mapped using GIS. It was concluded that the deluge was triggered by record rainfall coupled with choked stormwater drains, and reduced carrying capacity of the channel due to excessive silt, encroached floodplains and unplanned urbanization. Past research on the present study area has reported shrinkage and degradation of wetlands and water bodies due to sedimentation and deforestation. Further, even when this region is susceptible to flashfloods historically, and the meteorology data hints towards increasing trend in temperature and rainfall, there is no flood forecasting station in this state. Understandably, it is incumbent on the government to plan for such natural calamities and their consequences. Thus, it is the need of the hour to rehabilitate the water bodies and storm drains, and build a robust network of hydro-meteorology stations. Also, it becomes imperative to scientifically demarcate the river margins as they not only come handy in groundwater recharge, natural silting-desilting and flood mitigation during annual cycles of lows flows and floods, but also support a delicate ecological balance being a medium of land-water interface.

  10. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, D.H.

    1984-08-30

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.

  11. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  12. Healthy Water

    MedlinePlus

    ... Medical Professionals Aquatics, Water Utilities, & Other Water-related Sectors Publications, Data, & Statistics Get Email Updates To receive ... Medical Professionals Aquatics, Water Utilities, & Other Water-related Sectors Publications, Data, & Statistics Magnitude & Burden of Waterborne Disease ...

  13. Radiation heat transfer simulation in a window for a small particle solar receiver using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Whitmore, Alexander Jason

    Concentrating solar power systems are currently the predominant solar power technology for generating electricity at the utility scale. The central receiver system, which is a concentrating solar power system, uses a field of mirrors to concentrate solar radiation onto a receiver where a working fluid is heated to drive a turbine. Current central receiver systems operate on a Rankine cycle, which has a large demand for cooling water. This demand for water presents a challenge for the current central receiver systems as the ideal locations for solar power plants have arid climates. An alternative to the current receiver technology is the small particle receiver. The small particle receiver has the potential to produce working fluid temperatures suitable for use in a Brayton cycle which can be more efficient when pressurized to 0.5 MPa. Using a fused quartz window allows solar energy into the receiver while maintaining a pressurized small particle receiver. In this thesis, a detailed numerical investigation for a spectral, three dimensional, cylindrical glass window for a small particle receiver was performed. The window is 1.7 meters in diameter and 0.0254 meters thick. There are three Monte Carlo Ray Trace codes used within this research. The first MCRT code, MIRVAL, was developed by Sandia National Laboratory and modified by a fellow San Diego State University colleague Murat Mecit. This code produces the solar rays on the exterior surface of the window. The second MCRT code was developed by Steve Ruther and Pablo Del Campo. This code models the small particle receiver, which creates the infrared spectral direction flux on the interior surface of the window used in this work. The third MCRT, developed for this work, is used to model radiation heat transfer within the window itself and is coupled to an energy equation solver to produce a temperature distribution. The MCRT program provides a source term to the energy equation. This in turn, produces a new temperature field for the MCRT program; together the equations are solved iteratively. These iterations repeat until convergence is reached for a steady state temperature field. The energy equation was solved using a finite volume method. The window's thermal conductivity is modeled as a function of temperature. This thermal model is used to investigate the effects of different materials, receiver geometries, interior convection coefficients and exterior convection coefficients. To prevent devitrification and the ultimate failure of the window, the window needs to stay below the devitrification temperature of the material. In addition, the temperature gradients within the window need to be kept to a minimum to prevent thermal stresses. A San Diego State University colleague E-Fann Saung uses these temperature maps to insure that the mounting of the window does not produce thermal stresses which can cause cracking in the brittle fused quartz. The simulations in this thesis show that window temperatures are below the devitrification temperature of the window when there are cooling jets on both surfaces of the window. Natural convection on the exterior window surface was explored and it does not provide adequate cooling; therefore forced convection is required. Due to the low thermal conductivity of the window, the edge mounting thermal boundary condition has little effect on the maximum temperature of the window. The simulations also showed that the solar input flux absorbed less than 1% of the incoming radiation while the window absorbed closer to 20% of the infrared radiation emitted by the receiver. The main source of absorbed power in the window is located directly on the interior surface of the window where the infrared radiation is absorbed. The geometry of the receiver has a large impact on the amount of emitted power which reached the interior surface of the window, and using a conical shaped receiver dramatically reduced the receiver's infrared flux on the window. The importance of internal emission is explored within this research. Internal emission produces a more even emission field throughout the receiver than applying radiation surface emission only. Due to a majority of the infrared receiver re-radiation being absorbed right at the interior surface, the surface emission only approximation method produces lower maximum temperatures.

  14. Screening procedure to assess the impact of urban stormwater temperature to populations of brown trout in receiving water.

    PubMed

    Rossi, Luca; Hari, Renata E

    2007-07-01

    The discharge of urban stormwater may cause a sudden temperature increase in receiving waters that may be harmful to fish and other aquatic organisms. A screening procedure is proposed with temperature thresholds for the runoff from roofs and roads as well as for the receiving water system to protect brown trout from thermal damage. The stormwater temperature is calculated on the basis of a simple thermodynamic estimate for different latitudes. Only receiving waters with maximum daily mean temperatures of 22 degrees C (T1) are considered potential habitats for brown trout. The maximum temperature for a 1-h exposure time with a safety margin for 100% survival is 25 degrees C (T2), the sudden temperature change at the beginning of a rain event must not exceed 7 degrees C (T3), and fish-egg development requires the daily maximum temperature in winter to be below 12 degrees C (T4). Examples of stormwater runoff from roof or road surfaces from Switzerland validate our approach within +/-0.5 degrees C. Effects of runoff into receiving waters without detailed data can be predicted within +/-0.8 degrees C. With the restriction by T1, T2 seems not to be an acute problem at Swiss latitudes. T3 could play a role, especially if a large amount of runoff is discharged in small and rather cool rivers and streams. Finally, T4 deserves more attention than hitherto given. The proposed procedure may be a useful tool for assessing the influence of urban stormwater on the temperature of the receiving waters, particularly with regard to predicting the thermal impacts of urban or suburban runoff to populations of brown trout.

  15. Biogeochemistry of Lakes in Western Papua, Indonesia - First Results of a Pilot Study.

    NASA Astrophysics Data System (ADS)

    Kallmeyer, J.; Nomosatryo, S.; Henny, C.; Kopalit, H.

    2016-12-01

    Despite years of exploration for mineral and hydrocarbon resources, the lakes of Western Papua have received very little attention from a limnogeologic perspective. In some cases not even the maximum water depth of the lakes is published. The only research carried out so far focused on the fish and invertebrate fauna of the lakes, because the macrofauna of Papuan Lakes is significantly different from other islands of western Indonesia. Most lakes harbor numerous endemic species. We carried out a first limnogeologic pilot campaign in spring 2016 to measure water column profiles and take short (max 80 cm long) sediment cores.Lake Sentani is seated in Mesozoic mafic bedrock and consists of four separate basins with maximum water depths of 30 to 40 m. Three basins are connected by shallow sills and one by a natural canal. Although all four basins share almost identical surface water chemistry and exhibit sub- to anoxic bottom waters, each basin has its distinct water column stratification and sediment geochemistry. Despite its coastal location and minimal elevation we could not identify an influx of seawater into the lake. Lake Ayamaru is located further inland on a densely forested karstified carbonate platform. The lake level has dropped significantly in recent years due to water loss into the karst, further reduction of open water surface is caused by massive growth of Pistia. Currently the lake has a maximum depth of around 2 m. Its sediment is mainly composed of carbonate minerals and methane saturated. Due to the carbonate bedrock the lake is highly alkaline (up to 20 meq/L) despite its very low salinity. The initial analyses show that these lakes offer unique biogeochemical conditions that require further in-depth studies.Our research will expand to lakes Anggi Giji and Anggi Gida, which are at almost 2000 m elevation. They have maximum depths of around 200 m and much colder surface waters (12-20°C) compared to the other two lakes that have about 30°C throughout the year.

  16. Laboratory calibration and field testing of the Chemcatcher-Metal for trace levels of rare earth elements in estuarine waters.

    PubMed

    Petersen, Jördis; Pröfrock, Daniel; Paschke, Albrecht; Broekaert, Jose A C; Prange, Andreas

    2015-10-01

    Little knowledge is available about water concentrations of rare earth elements (REEs) in the marine environment. The direct measurement of REEs in coastal waters is a challenging task due to their ultra-low concentrations as well as the high salt content in the water samples. To quantify these elements at environmental concentrations (pg L(-1) to low ng L(-1)) in coastal waters, current analytical techniques are generally expensive and time consuming, and require complex chemical preconcentration procedures. Therefore, an integrative passive sampler was tested as a more economic alternative sampling approach for REE analysis. We used a Chemcatcher-Metal passive sampler consisting of a 3M Empore Chelating Disk as the receiving phase, as well as a cellulose acetate membrane as the diffusion-limiting layer. The effect of water turbulence and temperature on the uptake rates of REEs was analyzed during 14-day calibration experiments by a flow-through exposure tank system. The sampling rates were in the range of 0.42 mL h(-1) (13 °C; 0.25 m s(-1)) to 4.01 mL h(-1) (13 °C; 1 m s(-1)). Similar results were obtained for the different REEs under investigation. The water turbulence was the most important influence on uptake. The uptake rates were appropriate to ascertain time-weighted average concentrations of REEs during a field experiment in the Elbe Estuary near Cuxhaven Harbor (exposure time 4 weeks). REE concentrations were determined to be in the range 0.2 to 13.8 ng L(-1), where the highest concentrations were found for neodymium and samarium. In comparison, most of the spot samples measured along the Chemcatcher samples had REE concentrations below the limit of detection, in particular due to necessary dilution to minimize the analytical problems that arise with the high salt content in marine water samples. This study was among the first efforts to measure REE levels in the field using a passive sampling approach. Our results suggest that passive samplers could be an effective tool to monitor ultra-trace concentrations of REEs in coastal waters with high salt content.

  17. Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Krasner, Stuart W; Templeton, Michael R

    2012-04-27

    The haloacetamides (HAcAms) are disinfection by-products (DBPs) in drinking water which are currently receiving increased scientific attention due to their elevated toxicity relative to regulated disinfection by-products. A simultaneous determination method of 13 HAcAms, combining solid-phase extraction (SPE) enrichment, liquid chromatographic (LC) separation, and triple quadrupole mass spectrometry (tqMS) detection with atmospheric pressure chemical ionization (APCI) using selective reaction monitoring in positive mode, was developed to measure HAcAms, including chlorinated, brominated, and iodinated analogs. Ammonium chloride and Oasis HLB were selected as the dechlorinating reagent and polymeric SPE sorbent of HAcAm samples. The used tqMS apparatus showed higher sensitivity for the studied HAcAms in the APCI mode than electrospray ionization. 13 HAcAms were separated by LC in 9.0 min, and the detection limits ranged from 7.6 to 19.7 ng/L. The SPE-LC/tqMS method was successfully applied to quantify 13 HAcAms in drinking water samples for the first time, and first indentified tribromoacetamide and chloroiodoacetamide as DBPs in drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The effects of motorway runoff on freshwater ecosystems. 2: Identifying major toxicants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltby, L.; Boxall, A.B.A.; Forrow, D.M.

    1995-06-01

    Previous studies have provided prima facie evidence that runoff from the M1 motorway, UK, affects both the quality of the receiving water and the biota living there, in sites short distances from point sources-i.e., possible worst-case situations. Because discharges contain a wide variety of contaminants, both the identification of toxicants and the establishment of causal relationships between observed changes in water/sediment quality and biology are often difficult. In this particular case, the problem was addressed by conducting a series of toxicity tests using the benthic amphipod Gammarus pulex. The abundance of this species was greatly reduced downstream of the pointmore » where motorway runoff entered the stream. Stream water contaminated with motorway runoff was not toxic to G. pulex. However, exposure to contaminated sediments resulted in a slight reduction in survival over 14 d, and sediment manipulation experiments identified hydrocarbons, copper, and zinc as potential toxicants. Spiking experiments confirmed the importance of hydrocarbons, and fractionation studies indicated that most of the observed toxicity was due to the fraction containing polycyclic aromatic hydrocarbons. Animals exposed to contaminated sediments and water spiked with sediment extract accumulated aromatic hydrocarbons in direct proportion to exposure concentrations.« less

  19. Inversion of sonobuoy data from shallow-water sites with simulated annealing.

    PubMed

    Lindwall, Dennis; Brozena, John

    2005-02-01

    An enhanced simulated annealing algorithm is used to invert sparsely sampled seismic data collected with sonobuoys to obtain seafloor geoacoustic properties at two littoral marine environments as well as for a synthetic data set. Inversion of field data from a 750-m water-depth site using a water-gun sound source found a good solution which included a pronounced subbottom reflector after 6483 iterations over seven variables. Field data from a 250-m water-depth site using an air-gun source required 35,421 iterations for a good inversion solution because 30 variables had to be solved for, including the shot-to-receiver offsets. The sonobuoy derived compressional wave velocity-depth (Vp-Z) models compare favorably with Vp-Z models derived from nearby, high-quality, multichannel seismic data. There are, however, substantial differences between seafloor reflection coefficients calculated from field models and seafloor reflection coefficients based on commonly used Vp regression curves (gradients). Reflection loss is higher at one field site and lower at the other than predicted from commonly used Vp gradients for terrigenous sediments. In addition, there are strong effects on reflection loss due to the subseafloor interfaces that are also not predicted by Vp gradients.

  20. Climate change impact on infection risks during bathing downstream of sewage emissions from CSOs or WWTPs.

    PubMed

    Sterk, Ankie; de Man, Heleen; Schijven, Jack F; de Nijs, Ton; de Roda Husman, Ana Maria

    2016-11-15

    Climate change is expected to influence infection risks while bathing downstream of sewage emissions from combined sewage overflows (CSOs) or waste water treatment plants (WWTPs) due to changes in pathogen influx, rising temperatures and changing flow rates of the receiving waters. In this study, climate change impacts on the surface water concentrations of Campylobacter, Cryptosporidium and norovirus originating from sewage were modelled. Quantitative microbial risk assessment (QMRA) was used to assess changes in risks of infection. In general, infection risks downstream of WWTPs are higher than downstream CSOs. Even though model outputs show an increase in CSO influxes, in combination with changes in pathogen survival, dilution within the sewage system and bathing behaviour, the effects on the infection risks are limited. However, a decrease in dilution capacity of surface waters could have significant impact on the infection risks of relatively stable pathogens like Cryptosporidium and norovirus. Overall, average risks are found to be higher downstream WWTPs compared to CSOs. Especially with regard to decreased flow rates, adaptation measures on treatment at WWTPs may be more beneficial for human health than decreasing CSO events. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Impact simulation of shrimp farm effluent on BOD-DO in Setiu River

    NASA Astrophysics Data System (ADS)

    Chong, Michael Sueng Lock; Teh, Su Yean; Koh, Hock Lye

    2017-08-01

    Release of effluent from intensive aquaculture farms into a river can pollute the receiving river and exert negative impacts on the aquatic ecosystem. In this paper, we simulate the effects of effluent released from a marine shrimp aquaculture farm into Sg Setiu, focusing on two critical water quality parameters i.e. DO (dissolved oxygen) and BOD (biochemical oxygen demand). DO is an important constituent in a river in sustaining water quality, with levels of DO below 5 mg/L deemed undesirable. DO levels can be depressed by the presence of BOD and other organics that consume DO. Water quality simulations in conjunction with management of effluent treatment can suggest mitigation measures for reducing the adverse environmental impact. For this purpose, an in-house two-dimensional water quality simulation model codenamed TUNA-WQ will be used for these simulations. TUNA-WQ has been undergoing regular updates and improvements to broaden the applicability and to improve the robustness. Here, the model is calibrated and verified for simulation of DO and BOD dynamics in Setiu River (Sg Setiu). TUNA-WQ simulated DO and BOD in Setiu River due to the discharge from a marine shrimp aquaculture farm will be presented.

  2. Assessment of water availability and its relationship with vegetation distribution over a tropical montane system

    NASA Astrophysics Data System (ADS)

    Streher, A. S.; Sobreiro, J. F. F.; Silva, T. S. F.

    2017-12-01

    Water availability is one of the main drivers of vegetation distribution, but assessing it over mountainous regions is difficult given the effects of rugged topography on hydroclimatic dynamics (orographic rainfall, soil water, and runoff). We assessed how water availability may influence the distribution of vegetation types in the Espinhaço Range, a South American tropical mountain landscape comprised of savannas, grasslands, rock outcrops, cloud forests, and semi-deciduous/deciduous forests. For precipitation, we used CHIRPS monthly and daily products (1981- 2016) and 112 rain gauge ground stations, and assessed potential evapotranspiration (PET) using the MODIS MOD16A3 (2000-2013) product. Vegetation types were classified according to the Global Ecoregions by WWF. We show that rainfall has well-defined rainy and dry seasons with a strong latitudinal pattern, there is evidence for local orographic effects. Dry forests (907 mm/yr; 8% cv) and caatinga vegetation (795 mm/yr; 7% cv) had the lowest average annual precipitation and low variance, whilst Atlantic tropical forest in the southeast (1267 mm/yr; 15% cv), cerrado savanna vegetation in the west (1086 mm/yr; 15% cv) and rupestrian grasslands above 800m (1261 mm/yr; 20% cv) received the highest annual precipitation, with the largest observed variance due to their wide latitudinal distribution. Forests and rupestrian grasslands in the windward side of the mountain had a higher frequency of intense rainfall events (> 20mm), accounting for 6% of the CHIRPS daily time series, suggesting orographic effects on precipitation. Annual average PET was highest for dry forests (2437 mm/yr) and caatinga (2461 mm/yr), intermediate for cerrado (2264 mm/yr) and lowest for Atlantic tropical forest (2083 mm/yr) and rupestrian grasslands (2136 mm/yr). All vegetation types received less rainfall than its PET capacity based on yearly data, emphasizing the need for ecophysiological adaptations to water use. Climate change threatens these ecosystems by possible alterations on the hydrological cycle and, consequently, capacity for adaptations on water use. These could lead to shifts in vegetation composition and distribution within the studied region. Further investigation of seasonal trends on water availability and edaphic factors would improve these analyses.

  3. TREATMENT OF HEAVY METALS IN STORMWATER RUNOFF USING WET POND AND WETLAND MESOCOSMS

    EPA Science Inventory

    Urban stormwater runoff is being recognized as a major source of pollutants to receiving waters and a number of recent investigations have evaluated stormwater runoff quality and best management practices to minimize pollutant input to receiving waters. Particle-bound contaminant...

  4. COMBINED SEWER OVERFLOW - BALANCING FLOW FOR CSO ABATEMENT

    EPA Science Inventory

    Instead of using conventional storage units, e.g., reinforced concrete tanks and lined earthen basins, which are relatively expensive and require a lot of urban land area, the in-receiving water flow balance method (FBM) facilities use the receiving water body itself for storage ...

  5. Microwave hydrology: A trilogy

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.

    1985-01-01

    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  6. Assessing potential effects of highway runoff on receiving-water quality at selected sites in Oregon with the Stochastic Empirical Loading and Dilution Model (SELDM)

    USGS Publications Warehouse

    Risley, John C.; Granato, Gregory E.

    2014-01-01

    6. An analysis of the use of grab sampling and nonstochastic upstream modeling methods was done to evaluate the potential effects on modeling outcomes. Additional analyses using surrogate water-quality datasets for the upstream basin and highway catchment were provided for six Oregon study sites to illustrate the risk-based information that SELDM will produce. These analyses show that the potential effects of highway runoff on receiving-water quality downstream of the outfall depends on the ratio of drainage areas (dilution), the quality of the receiving water upstream of the highway, and the concentration of the criteria of the constituent of interest. These analyses also show that the probability of exceeding a water-quality criterion may depend on the input statistics used, thus careful selection of representative values is important.

  7. Comparison of Water Vapor Measurements from Ground-based and Space-based GPS Atmospheric Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Colon-Pagan, Ian; Kuo, Ying-Hwa

    2008-10-01

    In this study, we compare precipitable water vapor (PWV) values from ground-based GPS water vapor sensing and COSMIC radio occultation (RO) measurements over the Caribbean Sea, Gulf of Mexico, and United States regions as well as global analyses from NCEP and ECMWF models. The results show good overall agreement; however, the PWV values estimated by ground-based GPS receivers tend to have a slight dry bias for low PWV values and a slight wet bias for higher PWV values, when compared with GPS RO measurements and global analyses. An application of a student T-test indicates that there is a significant difference between both ground- and space-based GPS measured datasets. The dry bias associated with space-based GPS is attributed to the missing low altitude data, where the concentration of water vapor is large. The close agreements between space-based and global analyses are due to the fact that these global analyses assimilate space-based GPS RO data from COSMIC, and the retrieval of water vapor profiles from space-based technique requires the use of global analyses as the first guess. This work is supported by UCAR SOARS and a grant from the National Oceanic and Atmospheric Administration, Educational Partnership Program under the cooperative agreement NA06OAR4810187.

  8. Distribution of trace metals in the vicinity of a wastewater treatment plant on the Potomac River, Washington, DC, USA

    NASA Astrophysics Data System (ADS)

    Smith, J. P.; Muller, A. C.

    2013-05-01

    Predicting the fate and distribution of anthropogenic-sourced trace metals in riverine and estuarine systems is challenging due to multiple and varying source functions and dynamic physiochemical conditions. Between July 2011 and November 2012, sediment and water column samples were collected from over 20 sites in the tidal-fresh Potomac River estuary, Washington, DC near the outfall of the Blue Plains Advanced Wastewater Treatment Plant (BPWTP) for measurement of select trace metals. Field observations of water column parameters (conductivity, temperature, pH, turbidity) were also made at each sampling site. Trace metal concentrations were normalized to the "background" composition of the river determined from control sites in order to investigate the distribution BPWTP-sourced in local Potomac River receiving waters. Temporal differences in the observed distribution of trace metals were attributed to changes in the relative contribution of metals from different sources (wastewater, riverine, other) coupled with differences in the physiochemical conditions of the water column. Results show that normalizing near-source concentrations to the background composition of the water body and also to key environmental parameters can aid in predicting the fate and distribution of anthropogenic-sourced trace metals in dynamic riverine and estuarine systems like the tidal-fresh Potomac River.

  9. The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries.

    PubMed

    Nam, Kwan Woo; Kim, Sangryun; Lee, Soyeon; Salama, Michael; Shterenberg, Ivgeni; Gofer, Yossi; Kim, Joo-Seong; Yang, Eunjeong; Park, Chan Sun; Kim, Ju-Sik; Lee, Seok-Soo; Chang, Won-Seok; Doo, Seok-Gwang; Jo, Yong Nam; Jung, Yousung; Aurbach, Doron; Choi, Jang Wook

    2015-06-10

    Rechargeable magnesium batteries have lately received great attention for large-scale energy storage systems due to their high volumetric capacities, low materials cost, and safe characteristic. However, the bivalency of Mg(2+) ions has made it challenging to find cathode materials operating at high voltages with decent (de)intercalation kinetics. In an effort to overcome this challenge, we adopt an unconventional approach of engaging crystal water in the layered structure of Birnessite MnO2 because the crystal water can effectively screen electrostatic interactions between Mg(2+) ions and the host anions. The crucial role of the crystal water was revealed by directly visualizing its presence and dynamic rearrangement using scanning transmission electron microscopy (STEM). Moreover, the importance of lowering desolvation energy penalty at the cathode-electrolyte interface was elucidated by working with water containing nonaqueous electrolytes. In aqueous electrolytes, the decreased interfacial energy penalty by hydration of Mg(2+) allows Birnessite MnO2 to achieve a large reversible capacity (231.1 mAh g(-1)) at high operating voltage (2.8 V vs Mg/Mg(2+)) with excellent cycle life (62.5% retention after 10000 cycles), unveiling the importance of effective charge shielding in the host and facile Mg(2+) ions transfer through the cathode's interface.

  10. Teleseismic Earthquake Signals Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2015-12-01

    The West Antarctic Rift System (WARS) is one of Earth's largest continental extension zones. Study of the WARS is complicated by the presence of the West Antarctic Ice Sheet, the Ross Ice Shelf, and the Ross Sea. Recent deployments of broadband seismographs in the POLENET project have allowed passive seismic techniques, such as receiver function analysis and surface wave dispersion, to be widely utilized to infer crustal and mantle velocity structure across much of the WARS and West Antarctica. However, a large sector of the WARS lies beneath the Ross Ice Shelf. In late 2014, 34 broadband seismographs were deployed atop the ice shelf to jointly study deep Earth structure and the dynamics of the ice shelf. Ice shelf conditions present strong challenges to broadband teleseismic imaging: 1) The presence of complicating signals in the microseism through long-period bands due to the influence of ocean gravity waves; 2) The strong velocity contrasts at the ice-water and water-sediment interfaces on either side of the water layer give rise to large amplitude reverberations; 3) The water layer screens S-waves or P-to-S phases originating from below the water layer. We present an initial analysis of the first teleseismic earthquake arrivals collected on the ice shelf at the end of the 2014 field season from a limited subset of these stations.

  11. Local drinking water filters reduce diarrheal disease in Cambodia: a randomized, controlled trial of the ceramic water purifier.

    PubMed

    Brown, Joe; Sobsey, Mark D; Loomis, Dana

    2008-09-01

    A randomized, controlled intervention trial of two household-scale drinking water filters was conducted in a rural village in Cambodia. After collecting four weeks of baseline data on household water quality, diarrheal disease, and other data related to water use and handling practices, households were randomly assigned to one of three groups of 60 households: those receiving a ceramic water purifier (CWP), those receiving a second filter employing an iron-rich ceramic (CWP-Fe), and a control group receiving no intervention. Households were followed for 18 weeks post-baseline with biweekly follow-up. Households using either filter reported significantly less diarrheal disease during the study compared with a control group of households without filters as indicated by longitudinal prevalence ratios CWP: 0.51 (95% confidence interval [CI]: 0.41-0.63); CWP-Fe: 0.58 (95% CI: 0.47-0.71), an effect that was observed in all age groups and both sexes after controlling for clustering within households and within individuals over time.

  12. A randomized clinical trial comparing an extended-use hygroscopic condenser humidifier with heated-water humidification in mechanically ventilated patients.

    PubMed

    Kollef, M H; Shapiro, S D; Boyd, V; Silver, P; Von Harz, B; Trovillion, E; Prentice, D

    1998-03-01

    To determine the safety and cost-effectiveness of mechanical ventilation with an extended-use hygroscopic condenser humidifier (Duration; Nellcor Puritan-Bennett; Eden Prairie, Minn) compared with mechanical ventilation with heated-water humidification. Prospective randomized clinical trial. Medical and surgical ICUs of Barnes-Jewish Hospital, St. Louis, a university-affiliated teaching hospital. Three hundred ten consecutive qualified patients undergoing mechanical ventilation. Patients requiring mechanical ventilation were randomly assigned to receive humidification with either an extended-use hygroscopic condenser humidifier (for up to the first 7 days of mechanical ventilation) or heated-water humidification. Occurrence of ventilator-associated pneumonia, endotracheal tube occlusion, duration of mechanical ventilation, lengths of intensive care and hospitalization, acquired multiorgan dysfunction, and hospital mortality. One hundred sixty-three patients were randomly assigned to receive humidification with an extended-use hygroscopic condenser humidifier, and 147 patients were randomly assigned to receive heated-water humidification. The two groups were similar at the time of randomization with regard to demographic characteristics, ICU admission diagnoses, and severity of illness. Risk factors for the development of ventilator-associated pneumonia were also similar during the study period for both treatment groups. Ventilator-associated pneumonia was seen in 15 (9.2%) patients receiving humidification with an extended-use hygroscopic condenser humidifier and in 15 (10.2%) patients receiving heated-water humidification (relative risk, 0.90; 95% confidence interval=0.46 to 1.78; p=0.766). No statistically significant differences for hospital mortality, duration of mechanical ventilation, lengths of stay in the hospital ICU, or acquired organ system derangements were found between the two treatment groups. No episode of endotracheal tube occlusion occurred during the study period in either treatment group. The total cost of providing humidification was $2,605 for patients receiving a hygroscopic condenser humidifier compared with $5,625 for patients receiving heated-water humidification. Our findings suggest that the initial application of an extended-use hygroscopic condenser humidifier is a safe and more cost-effective method of providing humidification to patients requiring mechanical ventilation compared with heated-water humidification.

  13. Effect of low quality effluent from wastewater stabilization ponds to receiving bodies, case of Kilombero sugar ponds and Ruaha river, Tanzania.

    PubMed

    Machibya, Magayane; Mwanuzi, Fredrick

    2006-06-01

    A study was conducted in a sewage system at Kilombero Sugar Company to review its design, configuration, effectiveness and the quality of influent and effluent discharged into the Ruaha river (receiving body). The concern was that, the water in the river, after effluent has joined the river, is used as drinking water by villages located downstream of the river. Strategic sampling at the inlet of the oxidation pond, at the outlet and in the river before and after the effluent has joined the receiving body (river) was undertaken. Samples from each of these locations were taken three times, in the morning, noon and evening. The sample were then analysed in the laboratory using standard methods of water quality analysis. The results showed that the configuration and or the layout of the oxidation ponds (treatment plant) were not in accordance with the acceptable standards. Thus, the BOD5 of the effluent discharged into the receiving body (Ruaha River) was in the order of 41 mg/l and therefore not meeting several standards as set out both by Tanzanian and international water authorities. The Tanzanian water authorities, for example, requires that the BOD5 of the effluent discharged into receiving bodies be not more that 30 mg/l while the World Health Organization (WHO) requires that the effluent quality ranges between 10 - 30 mg/l. The paper concludes that proper design of treatment plants (oxidation ponds) is of outmost importance especially for factories, industries, camps etc located in rural developing countries where drinking water from receiving bodies like rivers and lakes is consumed without thorough treatment. The paper further pinpoint that both owners of treatment plants and water authorities should establish monitoring/management plan such that treatment plants (oxidation ponds) could be reviewed regarding the change on quantity of influent caused by population increase.

  14. Characteristics of water vapor fluctuations by the use of GNSS signal delays

    NASA Astrophysics Data System (ADS)

    Gregorič, Asta; Škrlec, Samo; Mole, Maruška; Bergant, Klemen; Vučković, Marko; Stanič, Samo

    2017-04-01

    Water vapor plays a crucial role in a number of atmospheric processes related to the water cycle. It is also the Earth's most abundant greenhouse gas, thus influencing global climate as well as micrometeorology. Since the phase change of water is associated with large latent heat, water vapor plays an important role in the vertical atmospheric stability. It also influences aerosol aging and removal from the atmosphere. As the temporal and spatial distribution of water vapor is in general highly variable, continuous monitoring at several locations is required to be able to describe the situation in a given terrain configuration. In-situ meteorological measurements provide the information on water vapor concentration at the surface only, while the radiosonde data suffers from poor temporal and spatial (horizontal) resolution. Integrated water vapor content above a certain location on the surface can also be monitored in real time, exploiting the wet delay of GNSS signals, however, it does not yield absolute humidity. In this contribution we present a measurement of average absolute humidity within the Vipava valley (Slovenia), between February 2015 and October 2016. It is based on differential measurement of integrated water vapor content at two adjacent stations, using stationary GNSS receivers, which are horizontally displaced for 6 km, and vertically displaced for 826 m. The integrated water vapor values were derived using the GIPSY-OASIS II software. One of the receivers is located at the valley floor (125 m a.s.l.) and the other on the top of the adjacent mountain ridge (951 m a.s.l.). Visual data from both stations was also stored to evaluate the reliability of the remote sensing results in different weather conditions. Based on the dataset covering 20 consecutive months, we investigated temporal evolution of the water vapor content within the valley. The results show typical seasonal pattern and are strongly correlated to weather phenomena. Comparison to the absolute humidity values obtained from ground-based measurements of temperature and relative humidity showed good correlation between the two methods. Based on the visual data, we observed that the correlation, which is excellent in clear weather conditions, considerably deteriorates in the presence of rain and clouds. We assume this effect is due to the presence of both water vapor and water droplets. The absolute humidity from GNSS measurements was found to be less biased with respect to weather conditions at a given micro-location and should be a more relevant observable for the study of processes within the planetary boundary layer, such as aerosol hygroscopic properties, then those obtained from ground-based measurements.

  15. Method of measuring sea surface water temperature with a satellite including wideband passive synthetic-aperture multichannel receiver

    NASA Technical Reports Server (NTRS)

    Stacey, J. M. (Inventor)

    1985-01-01

    A wideband passive synthetic-aperture multichannel receiver with an antenna is mounted on a satellite which travels in an orbit above the Earth passing over large bodies of water, e.g., the Atlantic Ocean. The antenna is scanned to receive signals over a wide frequency band from each incremental surface area (pixel) of the water which are related to the pixel's sea temperature. The received signals are fed to several channels which are tuned to separate selected frequencies. Their outputs are fed to a processor with a memory for storage. As the antenna points to pixels within a calibration area around a buoy of known coordinates, signals are likewise received and stored. Exactly measured sea temperature is received from the buoy. After passing over several calibration areas, a forward stepwise regression analysis is performed to produce an expression which selects the significant from the insignificant channels and assigns weights (coefficients) to them. The expression is used to determine the sea temperature at each pixel based on the signals received therefrom. Wind temperature, pressure, and wind speed at each pixel can also be calculated.

  16. Evaluation of Medicated Gel as a Supplement to Providing Acetaminophen in the Drinking Water of C57BL/6 Mice after Surgery

    PubMed Central

    Christy, Amanda C; Byrnes, Kimberly R; Settle, Timothy L

    2014-01-01

    After surgery, rodents frequently receive acetaminophen-treated drinking water for pain relief, but the effectiveness of this practice is often questioned. Gel products are now available to facilitate the delivery of oral medication to rodents after surgery. We sought to compare consumption of flavored medicated gel and medicated water after surgery and to determine whether providing supplemental acetaminophen in gel form ensures the ingestion of a therapeutic dose of an analgesic after surgery. Male C57BL/6 mice were allocated into 3 groups after surgery: those that received acetaminophen-treated water and untreated gel (MW group); those that received medicated gel and untreated water (MG group); and those that received acetaminophen in both forms (MWG group). Total water and gel consumption were monitored daily from the day before surgery until 2 d thereafter. Mice in the MG group consumed significantly less gel than water, and consequently, the total acetaminophen dose per mouse in the MG group (49 mg/kg) was significantly less than that of the MWG group (347 mg/kg). Although the dose consumed by mice in the MW group (158 mg/kg) approached the targeted acetaminophen dose of 200 mg/kg, only mice in the MWG group actually achieved the desired dose. The results of this study indicate that flavored acetaminophen-containing gel can be used in combination with medicated water to ensure that rodents ingest the targeted dose of medication. PMID:24602545

  17. The methods of receiving coal water suspension and its use as the modifying additive in concrete

    NASA Astrophysics Data System (ADS)

    Buyantuyev, S. L.; Urkhanova, L. A.; Lkhasaranov, S. A.; Stebenkova, Y. Y.; Khmelev, A. B.; Kondratenko, A. S.

    2017-01-01

    Results of research of the coal water suspension (CWS) from a cake received in the electrodigit ways in the fluid environment and gas are given in article and also the possibilities of its use as the modifying additive in concrete are considered. Use of a coal cake is perspective as it is a withdrawal of the coal and concentrating enterprises and has extremely low cost. Methods of receiving CWS and possibility of formation of carbon nanomaterials (CNM) are given in their structure. Research and the analysis of a microstructure of a surface of exemplars before electrodigit processing, their element structure, dependence of durability of a cement stone on a look and quantity of an additive of CWS is conducted. For modification of cement the carbon nanomaterials received from the following exemplars of water coal suspensions were used: foams from a cake from a scrubber of the plasma modular reactor, coal water suspension from a cake from electrodigit installation. The product which can find further application for a power engineering as fuel for combustion, and also in structural materials science, in particular, as the modifying additive in concrete allows to receive these methods.

  18. Water survey of Canada: Application for use of ERTS-A for retransmission of water resources data

    NASA Technical Reports Server (NTRS)

    Halliday, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Over 7000 transmissions were received from six operating DCPs in 1972. Of these, only two were incorrect. One had the wrong date and the other had an invalid digit in the water level reading. Extensive checks have indicated that DCP data are accurate. The maximum number of transmissions received each day varies from 26 to 12 and the minimum from 10 to 3 depending on the site. Data has been received on as many as seven orbits in a day. The number of transmissions received from the two DCPs located in mountainous areas of southern B.C. is lower than the number received from more northerly but more open sites. The unheated DCPs have survived temperatures of -40 F and antenna loadings of two feet of snow and wind speeds over 50 mph. Two DCPs have indicated sensor malfunctions thus alerting field staff to the fact that repairs will be necessary on their next visit to the site. Also in another case, DCP data were used to fill in a period of missing record when a water level recorder malfunctioned for a few days.

  19. Gonadal hormones do not alter the development of antinociceptive tolerance to delta-9-tetrahydrocannabinol in adult rats

    PubMed Central

    Wakley, Alexa A; Wiley, Jenny L; Craft, Rebecca M

    2015-01-01

    The purpose of this study was to determine whether sex differences in the development of antinociceptive tolerance to delta-9-tetrahydrocannabinol (THC) are due to activational effects of gonadal hormones. Rats were sham-gonadectomized (sham-GDX) or gonadectomized (GDX). GDX females received no hormone replacement (GDX+0), estradiol (GDX+E2), progesterone (GDX+P4), or both (GDX+E2/P4). GDX male rats received no hormone (GDX+0) or testosterone (GDX+T). Two weeks later, antinociceptive potency of THC was determined (pre-chronic test) on the warm water tail withdrawal and paw pressure assays. Vehicle or a sex-specific THC dose (females, 5.7 mg/kg, males, 9.9 mg/kg) was administered twice-daily for 9 days, then the THC dose-effect curves were re-determined (post-chronic test). On the pre-chronic test (both assays), THC was more potent in sham-GDX females than males, and gonadectomy did not alter this sex difference. In GDX females, P4 significantly decreased THC’s antinociceptive potency, whereas E2 had no effect. In GDX males, T did not alter THC’s antinociceptive potency. After chronic THC treatment, THC’s antinociceptive potency was decreased more in sham-GDX females than males, on the tail withdrawal test; this sex difference in tolerance was not altered in GDX or hormone-treated groups. These results suggest that greater antinociceptive tolerance in females, which occurred despite females receiving 40% less THC than males, is not due to activational effects of gonadal hormones. PMID:25863271

  20. A burst-mode photon counting receiver with automatic channel estimation and bit rate detection

    NASA Astrophysics Data System (ADS)

    Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.

    2016-04-01

    We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.

  1. Safety and durability of low-density polyethylene bags in solar water disinfection applications.

    PubMed

    Danwittayakul, Supamas; Songngam, Supachai; Fhulua, Tipawan; Muangkasem, Panida; Sukkasi, Sittha

    2017-08-01

    Solar water disinfection (SODIS) is a simple point-of-use process that uses sunlight to disinfect water for drinking. Polyethylene terephthalate (PET) bottles are typically used as water containers for SODIS, but a new SODIS container design has recently been developed with low-density polyethylene (LDPE) bags and can overcome the drawbacks of PET bottles. Two nesting layers of LDPE bags are used in the new design: the inner layer containing the water to be disinfected and the outer one creating air insulation to minimize heat loss from the water to the surroundings. This work investigated the degradation of LDPE bags used in the new design in actual SODIS conditions over a period of 12 weeks. The degradation of the LDPE bags was investigated weekly using a scanning electron microscope, Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometer, and tensile strength tester. It was found that the LDPE bags gradually degraded under the sunlight due to photo-oxidation reactions, especially in the outer bags, which were directly exposed to the sun and surroundings, leading to the reduction of light transmittance (by 11% at 300 nm) and tensile strength (by 33%). In addition, possible leaching of organic compounds into the water contained in the inner bags was examined using gas chromatography-mass spectrometer. 2,4-Di-tert-butylphenol was found in some SODIS water samples as well as the as-received water samples, in the concentration range of 1-4 μg/L, which passes the Environmental Protection Agency Drinking Water Guidance on Disinfection By-Products.

  2. Monitoring middle-atmospheric water vapor over Seoul by using a 22 GHz ground-based radiometer SWARA

    NASA Astrophysics Data System (ADS)

    Ka, Soohyun; de Wachter, Evelyn; Kaempfer, Niklaus; Oh, Jung Jin

    2010-10-01

    Water vapor is the strongest natural greenhouse gas in the atmosphere. It is most abundant in the troposphere at low altitudes, due to evaporation at the ocean surface, with maximum values of around 6 g/kg. The amount of water vapor reaches a minimum at tropopause level and increases again in the middle atmosphere through oxidation of methane and vertical transport. Water vapor has both positive and negative effects on global warming, and we need to study how it works on climate change by monitoring water vapor concentration in the middle atmosphere. In this paper, we focus on the 22 GHz ground-based radiometer called SWARA (Seoul Water vapor Radiometer) which has been operated at Sookmyung women's university in Seoul, Korea since Oct. 2006. It is a joint project of the University of Bern, Switzerland, and the Sookmyung Women's University of Seoul, South Korea. The SWARA receives 22.235 GHz emitted from water vapor spontaneously and converts down to 1.5 GHz with +/- 0.5 GHz band width in 61 kHz resolution. To represent 22.235 GHz water vapor spectrum precisely, we need some calibration methods because the signal shows very weak intensity in ~0.1 K on the ground. For SWARA, we have used the balancing and the tipping curve methods for a calibration. To retrieve the water vapor profile, we have applied ARTS and Qpack software. In this paper, we will present the calibration methods and water vapor variation over Seoul for the last 4 years.

  3. Assessment of environmental improvement measures using a novel integrated model: a case study of the Shenzhen River catchment, China.

    PubMed

    Qin, Hua-Peng; Su, Qiong; Khu, Soon-Thiam

    2013-01-15

    Integrated water environmental management in a rapidly urbanizing area often requires combining social, economic and engineering measures in order to be effective. However, in reality, these measures are often considered independently by different planners, and decisions are made in a hierarchical manner; this has led to problems in environmental pollution control and also an inability to devise innovative solutions due to technological lock-in. In this paper, we use a novel coupled system dynamics and water environmental model (SyDWEM) to simulate the dynamic interactions between the socio-economic system, water infrastructure and receiving water in a rapidly urbanizing catchment in Shenzhen, China. The model is then applied to assess the effects of proposed socio-economic or engineering measures on environmental and development indicators in the catchment for 2011-2020. The results indicate that 1) measures to adjust industry structures have a positive effect on both water quantity and quality in the catchment; 2) measures to increase the labor productivity, the water use efficiency, the water transfer quota or the reclaimed wastewater reuse can alleviate the water shortage, but cannot improve water quality in the river; 3) measures to increase the wastewater treatment rate or the pollutant removal rate can improve water quality in the river, but have no effect on water shortage. Based on the effectiveness of the individual measures, a combination of socio-economic and engineering measures is proposed, which can achieve water environmental sustainability in the study area. Thus, we demonstrate that SyDWEM has the capacity to evaluate the effects of both socio-economic and engineering measures; it also provides a tool for integrated decision making by socio-economic and water infrastructure planners. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Ozonation of mutagenic and carcinogenic polyaromatic amines and polyaromatic hydrocarbons in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burleson, G.R.; Caulfield, M.J.; Pollard, M.

    1979-06-01

    The Salmonella-microsome assay for mutagenesis was used to determine the effect of ozone on the mutagenesis of selected carcinogens and mutagens in water. Short periods of ozonation were shown to completely inactivate the mutagenicity of several polyaromatic amine mutagens including acriflavine, proflavine, and beta-naphthylamine. Selected polyaromatic hydrocarbons were also sensitive to ozonation. Kinetic studies revealed that the mutagenicity of benzo(a)pyrene, 3-methylcholanthrene, and 7,12-dimethylbenz(a)anthracene was destroyed after short periods of ozonation. To correlate loss of mutagenicity with loss of carcinogenicity, two polyaromatic hydrocarbons were treated with ozone, extracted from water with hexane, and tested for carcinogenicity in mice. When 7,12-dimethyl-benz(a)anthracene andmore » 3-methyl-cholanthrene were treated with ozone, there was a substantial reduction in carcinogenicity compared to control groups treated with oxygen alone. However, a small number of tumors developed in the group of animals receiving a hexane extract of ozonated 7,12-dimethylbenz(a)anthracene. This activity may be due to breakdown products of 7,12-dimethylbenz(a)anthracene that are not mutagenic.« less

  5. Numerical Study on Radiation Effects to Evaporator in Natural Vacuum Solar Desalination System

    NASA Astrophysics Data System (ADS)

    Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.; Ambarita, H.

    2018-01-01

    The need for clean water is increasing day by day due to the increasing factor of living standard of mankind, hence designed natural vacuum solar desalination. The natural vacuum Solar desalination is studied experimentally. A small-scale natural vacuum desalination study consists of evaporator and condenser as the main components designed and manufactured. To transfer heat from the solar collector into the evaporator, the fluid transfer system uses a pump powered by a solar cell. Thus, solar collectors are called hybrid solar collectors. The main purpose of this exposure is to know the characteristics of the radiation effects on incoming energy on the evaporator during the process. This system is tested by exposing the unit to the solar radiation in the 4th floor building in Medan. The experiment was conducted from 8.00 to 16.00 local time. The results show that natural vacuum solar desalination with hybrid solar collectors can be operated perfectly. If the received radiation is high, then the incoming energy received by the evaporator will also be high. From measurements with HOBO microstation, obtained the highest radiation 695.6 W/m2, and the calculation result of incoming energy received evaporator obtained highest result 1807.293 W.

  6. Radiation Doses from the Norwegian Diet.

    PubMed

    Komperød, Mari; Skuterud, Lavrans

    2018-06-13

    Ingestion doses between and within countries are expected to vary significantly due to differences in dietary habits and geographical variations in radionuclide concentrations. This paper presents the most comprehensive assessment to date of the effective radiation dose from the Norwegian diet, from natural as well as anthropogenic radionuclides. Ingestion doses to the Norwegian public are calculated using national dietary statistics and the most relevant radionuclide concentration data for the various food products. The age-weighted average effective dose received by the Norwegian population from the diet is estimated at 0.41 mSv y from naturally occurring radionuclides and 0.010 mSv y from anthropogenic radionuclides. This is approximately 50% higher than the estimated world average. Fish and shellfish is the food group that provides the largest dose contribution from the average Norwegian diet. Although the average dose from anthropogenic radionuclides today is low, the exposure may still be significant for certain critical groups-especially persons who consume large amounts of reindeer meat from the regions that received significant radioactive fallout after the Chernobyl accident. Furthermore, persons with high Rn concentrations in their drinking water are among those receiving the highest ingestion doses in Norway.

  7. Vulnerability of boreal zone for increased nitrogen loading due to climate change

    NASA Astrophysics Data System (ADS)

    Rankinen, Katri; Holmberg, Maria

    2016-04-01

    The observed rapid warming of the boreal zone that has been observed in Finland (0.14 °C by decade) is expected to continue (http://www.ipcc.ch/report/ar5/wg1/). Also precipitation is assumed to increase in future. These changes may increase nitrogen (N) loading from terrestrial environments to water bodies by accelerating soil organic matter decay and by increasing runoff. Nitrogen is limiting nutrient in the Baltic Sea but also in some lakes, so increased loading may increase eutrophication. Further, high nitrate levels in drinking water may cause methaemoglobin anemia for humans, and nitrate is also connected to increased risk of diabetes and cancer. Thus EU has set upper limits to nitrate concentration in drinking water. MONIMET (LIFE12 ENV/FI/000409) is a project about Climate Change Indicators and Vulnerability of Boreal Zone. We simulated N loading from two boreal catchments to the receiving waters by the dynamic, catchment scale model INCA in different climate change and land use change scenarios. We calculated land use specific N loading values for these two well monitored catchments that belong to the LTER (The Long Term Ecological Research) monitoring network. We upscaled the results to the larger river basin, combining them with the information on drinking water supply to assess the vulnerability. Specific emphasis was paid on nitrate concentrations in soil water and groundwater. In general, land use change has higher influence on N loading than increase in precipitation and temperature alone. Peak runoff will sift from snow melting peak in April to late autumn and winter. Growing season will become longer allowing more efficient vegetation uptake of nutrients. Small groundwater aquifers and private wells in the middle of agricultural fields will be in the risk of increased N concentrations, if agricultural N loading increases due to changes in agricultural patterns and land use change.

  8. Endocrine disrupting compounds in streams in Israel and the Palestinian West Bank: Implications for transboundary basin management.

    PubMed

    Dotan, Pniela; Yeshayahu, Maayan; Odeh, Wa'd; Gordon-Kirsch, Nina; Groisman, Ludmila; Al-Khateeb, Nader; Abed Rabbo, Alfred; Tal, Alon; Arnon, Shai

    2017-12-15

    Endocrine disrupting compounds (EDCs) frequently enter surface waters via discharges from wastewater treatment plants (WWTPs), as well as from industrial and agricultural activities, creating environmental and health concerns. In this study, selected EDCs were measured in water and sediments along two transboundary streams flowing from the Palestinian Authority (PA) into Israel (the Zomar-Alexander and Hebron-Beer Sheva Streams). We assessed how the complicated conflict situation between Israel and the PA and the absence of a coordinated strategy and joint stream management commission influence effective EDC control. Both streams receive raw Palestinian wastewater in their headwaters, which flows through rural areas and is treated via sediment settling facilities after crossing the 1949 Armistice Agreement Line. Four sampling campaigns were conducted over two years, with concentrations of selected EDCs measured in both the water and the sediments. Results show asymmetrical pollution profiles due to socio-economic differences and contrasting treatment capacities. No in-stream attenuation was observed along the stream and in the sediments within the Palestinian region. After sediment settling in treatment facilities at the Israeli border, however, significant reductions in the EDC concentrations were measured both in the sediments and in the water. Differences in sedimentation technologies had a substantial effect on EDC removal at the treatment location, positively affecting the streams' ability to further remove EDCs downstream. The prevailing approach to addressing the Israeli-Palestinian transboundary wastewater contamination reveals a narrow perspective among water managers who on occasion only take local interests into consideration, with interventions focused solely on improving stream water quality in isolated segments. Application of the "proximity principle" through the establishment of WWTPs at contamination sources constitutes a preferable strategy for reducing contamination by EDCs and other pollutants to ensure minimization of public health risks due to the pollution of streams and underlying potable groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Spectral Evidence for Hydrated Salts in Seasonal Brine Flows on Mars

    NASA Astrophysics Data System (ADS)

    Ojha, L.

    2015-12-01

    Recurring Slope Lineae (RSL) are narrow, low-reflectance features forming on present-day Mars that have been hypothesized to be due to the transient flow of liquid water. RSL extend incrementally downslope on steep, warm slopes, fade when inactive, and reappear annually over multiple Mars years as monitored by the HiRISE camera on board the Mars Reconnaissance Orbiter (MRO). In the southern mid-latitudes of Mars, RSL are observed to form most commonly on equator facing slopes, but in equatorial regions RSL often "follow the sun", forming and growing on slopes that receive the greatest insolation during a particular season. The temperature on slopes where RSL are active typically exceeds 250 K and often but not always exceeds 273 K, although sub-surface temperatures would be colder. These characteristics suggest a possible role of salts in lowering the freezing point of water, allowing briny solutions to flow. Confirmation of this wet origin hypothesis for RSL would require either (i) detection of liquid water absorptions on the surface, or (ii) detection of hydrated salts precipitated from that water. The mineralogical composition of RSL and their surroundings can be investigated using orbital data acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) also on board MRO, which acquires spectral cubes with 544 spectral channels in the visible to near-infrared range of ~0.36 μm to 3.92 μm [13], within which both liquid water and hydrated salts have diagnostic absorption bands at ~1.4 μm, ~1.9 μm, ~3.0 μm. Additionally, hydrated salts may have combination of overtones at other wavelengths from 1.7 μm to 2.4 μm. We present results from examination of individual pixels containing RSL at four different sites that confirm the hypothesis that RSL are due to present-day activity of briny water.

  10. Underwater wireless optical communication using a lens-free solar panel receiver

    NASA Astrophysics Data System (ADS)

    Kong, Meiwei; Sun, Bin; Sarwar, Rohail; Shen, Jiannan; Chen, Yifei; Qu, Fengzhong; Han, Jun; Chen, Jiawang; Qin, Huawei; Xu, Jing

    2018-11-01

    In this paper, we first propose that self-powered solar panels featuring large receiving area and lens-free operation have great application prospect in underwater vehicles or underwater wireless sensor networks (UWSNs) for data collection. It is envisioned to solve the problem of link alignment. The low-cost solar panel used in the experiment has a large receiving area of 5 cm2 and a receiving angle of 20°. Over a 1-m air channel, a 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal at a data rate of 20.02 Mb/s is successfully transmitted within the receiving angle of 20°. Over a 7-m tap water channel, we achieve data rates of 20.02 Mb/s using 16-QAM, 18.80 Mb/s using 32-QAM and 22.56 Mb/s using 64-QAM, respectively. By adding different quantities of Mg(OH)2 powders into the water, the impact of water turbidity on the solar panel-based underwater wireless optical communication (UWOC) is also investigated.

  11. GPS meteorology - Remote sensing of atmospheric water vapor using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Bevis, Michael; Businger, Steven; Herring, Thomas A.; Rocken, Christian; Anthes, Richard A.; Ware, Randolph H.

    1992-01-01

    We present a new approach to remote sensing of water vapor based on the Global Positioning System (GPS). Geodesists and geophysicists have devised methods for estimating the extent to which signals propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water vapor. This delay is parameterized in terms of a time-varying zenith wet delay (ZWD) which is retrieved by stochastic filtering of the GPS data. Given surface temperature and pressure readings at the GPS receiver, the retrieved ZWD can be transformed with very little additional uncertainty into an estimate of the integrated water vapor (IWV) overlying that receiver. Networks of continuously operating GPS receivers are being constructed by geodesists, geophysicists, and government and military agencies, in order to implement a wide range of positioning capabilities. These emerging GPS networks offer the possibility of observing the horizontal distribution of IWV or, equivalently, precipitate water with unprecedented coverage and a temporal resolution of the order of 10 min. These measurements could be utilized in operational weather forecasting and in fundamental research into atmospheric storm systems, the hydrologic cycle, atmospheric chemistry, and global climate change.

  12. Drinking Water

    MedlinePlus

    ... safest water supplies in the world, but drinking water quality can vary from place to place. It depends on the condition of the source water and the treatment it receives. Treatment may include ...

  13. 18 CFR 367.1410 - Account 141, Notes receivable.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 141, Notes receivable. 367.1410 Section 367.1410 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES SUBJECT TO...

  14. 18 CFR 367.1720 - Account 172, Rents receivable.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 172, Rents receivable. 367.1720 Section 367.1720 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES SUBJECT TO...

  15. 18 CFR 131.50 - Reports of proposals received.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Reports of proposals received. 131.50 Section 131.50 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY..., including maximum life and average life of sinking fund issue; (e) Dividend or interest rate; (f) Call...

  16. 18 CFR 131.50 - Reports of proposals received.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Reports of proposals received. 131.50 Section 131.50 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY..., including maximum life and average life of sinking fund issue; (e) Dividend or interest rate; (f) Call...

  17. 18 CFR 131.50 - Reports of proposals received.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Reports of proposals received. 131.50 Section 131.50 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY..., including maximum life and average life of sinking fund issue; (e) Dividend or interest rate; (f) Call...

  18. 18 CFR 131.50 - Reports of proposals received.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Reports of proposals received. 131.50 Section 131.50 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY..., including maximum life and average life of sinking fund issue; (e) Dividend or interest rate; (f) Call...

  19. Environmental Assessment: Maintenance of the Bear Lake Storm Water Retention Pond Whiteman Air Force Base, Missouri

    DTIC Science & Technology

    2010-10-01

    Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be...and fugitive dust The noise environment due to construction vehicle operations Biological resources and wetlands due to land and water disturbance...construction vehicle operations ; Biological resources and wetlands due to land and water disturbance; Water quality due to land and water disturbance

  20. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, water year 2010: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2011-01-01

    For the eight monitoring stations in water year 2010, a total of 99.7 percent of the TDG data were received in real time and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent stations. Data received from the individual stations ranged from 98.4 to 100.0 percent complete.

  1. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, water year 2009: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; and Johnston, Matthew W.

    2010-01-01

    For the eight monitoring stations in water year 2009, a total of 99.2 percent of the TDG data were received in real time by the USGS satellite downlink and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the individual stations ranged from 97.0 to 100.0 percent complete.

  2. Mine-drainage treatment wetland as habitat for herptofaunal wildlife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacki, M.J.; Hummer, J.W.; Webster, H.J.

    Land reclamation techniques that incorporate habitat features for herptofaunal wildlife have received little attention. We assessed the suitability of a wetland, constructed for the treatment of mine-water drainage, for supporting herptofaunal wildlife from 1988 through 1990 using diurnal and nocturnal surveys. Natural wetlands within the surrounding watershed were also monitored for comparison. The treatment wetland supported the greatest abundance and species richness of herptofauna among the sites surveyed. Abundance was a function of the frog density, particularly green frogs (rana clamitans) and pickerel frogs (R. palustris), while species richness was due to the number of snake species found. The richmore » mix of snake species present at the treatment wetland was believed due to a combination of an abundant frog prey base and an amply supply of den sites in rock debris left behind from earlier surface-mining activities. Nocturnal surveys of breeding male frogs demonstrated highest breeding activity at the treatment wetland, particularly for spring peepers (Hyla crucifer). Whole-body assays of green frog and bullfrog (R. catesbeiana) tissues showed no differences among sites in uptake of iron, aluminum, and zinc; manganese levels in samples from the treatment wetland were significantly lower than those from natural wetlands. These results suggest that wetlands established for water quality improvement can provide habitat for reptiles and amplibians, with the species composition dependent on the construction design, the proximity to source populations, and the degree of acidity and heavy-metal concentrations in drainage waters. 35 refs., 4 tabs.« less

  3. Mine-drainage treatment wetland as habitat for herptofaunal wildlife

    NASA Astrophysics Data System (ADS)

    Lacki, Michael J.; Hummer, Joseph W.; Webster, Harold J.

    1992-07-01

    Land reclamation techniques that incorporate habitat features for herptofaunal wildlife have received little attention. We assessed the suitability of a wetland, constructed for the treatment of mine-water drainage, for supporting herptofaunal wildlife from 1988 through 1990 using diurnal and nocturnal surveys. Natural wetlands within the surrounding watershed were also monitored for comparison. The treatment wetland supported the greatest abundance and species richness of herptofauna among the sites surveyed. Abundance was a function of the frog density, particularly green frogs ( Rana clamitans) and pickerel frogs ( R. palustris), while species richness was due to the number of snake species found. The rich mix of snake species present at the treatment wetland was believed due to a combination of an abundant frog prey base and an amply supply of den sites in rock debris left behind from earlier surface-mining activities. Nocturnal surveys of breeding male frogs demonstrated highest breeding activity at the treatment wetland, particularly for spring peepers ( Hyla crucifer). Whole-body assays of green frog and bullfrog ( R. catesbeiana) tissues showed no differences among sites in uptake of iron, aluminum, and zinc; managanese levels in samples from the treatment wetland were significantly lower than those from natural wetlands. These results suggest that wetlands established for water quality improvement can provide habitat for reptiles and amphibians, with the species composition dependent on the construction design, the proximity to source populations, and the degree of acidity and heavy-metal concentrations in drainage waters.

  4. Emission of heavy metals from an urban catchment into receiving water and possibility of its limitation on the example of Lodz city.

    PubMed

    Sakson, Grazyna; Brzezinska, Agnieszka; Zawilski, Marek

    2018-04-14

    Heavy metals are among the priority pollutants which may have toxic effects on receiving water bodies. They are detected in most of samples of stormwater runoff, but the concentrations are very variable. This paper presents results of study on the amount of heavy metals discharged from urban catchment in Lodz (Poland) in 2011-2013. The research was carried out to identify the most important sources of their emission and to assess the threats to receiving water quality and opportunities of their limitation. The city is equipped with a combined sewerage in the center with 18 combined sewer overflows and with separate system in other parts. Stormwater and wastewater from both systems are discharged into 18 small urban rivers. There is a need of restoration of water bodies in the city. Research results indicate that the main issue is high emission of heavy metals, especially zinc and copper, contained in stormwater. Annual mass loads (g/ha/year) from separate system were 1629 for Zn and 305 for Cu. It was estimated that about 48% of the annual load of Zn, 38% of Cu, 61% of Pb, and 40% of Cd discharged into receiving water came from separate system, respectively 4% of Zn and Cu, 10% of Pb and 11% of Cd from CSOs, and the remaining part from wastewater treatment plant. Effective reduction of heavy metals loads discharged into receiving water requires knowledge of sources and emissions for each catchment. Obtained data may indicate the need to apply centralized solution or decentralized by source control.

  5. The potential vulnerability of the Namib and Nama Aquifers due to low recharge levels in the area surrounding the Naukluft Mountains, SW Namibia

    NASA Astrophysics Data System (ADS)

    Kambinda, Winnie N.; Mapani, Benjamin

    2017-12-01

    The Naukluft Mountains in the Namib Desert are a high rainfall-high discharge area. It sees increased stream-, spring-flow as well as waterfalls during the rainy season. The mountains are a major resource for additional recharge to the Namib and Nama aquifers that are adjacent to the mountains. This paper aimed to highlight the potential vulnerability of the aquifers that surround the Naukluft Mountain area; if the strategic importance of the Naukluft Karst Aquifer (NKA) for bulk water supply becomes necessary. Chloride Mass Balance Method (CMBM) was applied to estimate rainfall available for recharge as well as actual recharge thereof. This was applied using chloride concentration in precipitation, borehole and spring samples collected from the study area. Groundwater flow patterns were mapped from hydraulic head values. A 2D digital elevation model was developed using Arc-GIS. Results highlighted the influence of the NKA on regional groundwater flow. This paper found that groundwater flow was controlled by structural dip and elevation. Groundwater was observed to flow predominantly from the NKA to the south west towards the Namib Aquifer in two distinct flow patterns that separate at the center of the NKA. A distinct groundwater divide was defined between the two flow patterns. A minor flow pattern from the northern parts of the NKA to the north east towards the Nama Aquifer was validated. Due to the substantial water losses, the NKA is not a typical karst aquifer. While the project area receives an average rainfall of 170.36 mm/a, it was estimated that 1-14.24% (maximum 24.43 mm/a) rainfall was available for recharge to the NKA. Actual recharge to the NKA was estimated to be less than 1-18.21% (maximum 4.45 mm/a) reflecting the vast losses incurred by the NKA via discharge. This paper concluded that groundwater resources of the NKA were potentially finite. The possibility of developing the aquifer for bulk water supply would therefore drastically lower recharge to surrounding aquifers that sustain local populations because all received rainfall will be utilized to maximise recharge to the NKA instead of surrounding aquifers.

  6. Rainfall and crop modeling-based water stress assessment for rainfed maize cultivation in peninsular India

    NASA Astrophysics Data System (ADS)

    Manivasagam, V. S.; Nagarajan, R.

    2018-04-01

    Water stress due to uneven rainfall distribution causes a significant impact on the agricultural production of monsoon-dependent peninsular India. In the present study, water stress assessment for rainfed maize crop is carried out for kharif (June-October) and rabi (October-February) cropping seasons which coincide with two major Indian monsoons. Rainfall analysis (1976-2010) shows that the kharif season receives sufficient weekly rainfall (28 ± 32 mm) during 26th-39th standard meteorological weeks (SMWs) from southwest monsoon, whereas the rabi season experiences a major portion of its weekly rainfall due to northeast monsoon between the 42nd and 51st SMW (31 ± 42 mm). The later weeks experience minimal rainfall (5.5 ± 15 mm) and thus expose the late sown maize crops to a severe water stress during its maturity stage. Wet and dry spell analyses reveal a substantial increase in the rainfall intensity over the last few decades. However, the distribution of rainfall shows a striking decrease in the number of wet spells, with prolonged dry spells in both seasons. Weekly rainfall classification shows that the flowering and maturity stages of kharif maize (33rd-39th SMWs) can suffer around 30-40% of the total water stress. In the case of rabi maize, the analysis reveals that a shift in the sowing time from the existing 42nd SMW (16-22 October) to the 40th SMW (1-7 October) can avoid terminal water stress. Further, AquaCrop modeling results show that one or two minimal irrigations during the flowering and maturity stages (33rd-39th SMWs) of kharif maize positively avoid the mild water stress exposure. Similarly, rabi maize requires an additional two or three lifesaving irrigations during its flowering and maturity stages (48th-53rd SMWs) to improve productivity. Effective crop planning with appropriate sowing time, short duration crop, and high yielding drought-resistant varieties will allow for better utilization of the monsoon rain, thus reducing water stress with an increase in rainfed maize productivity.

  7. Reuse water: Exposure duration, seasonality and treatment affect tissue responses in a model fish.

    PubMed

    Blunt, B J; Singh, A; Wu, L; Gamal El-Din, M; Belosevic, M; Tierney, K B

    2017-12-31

    Partially remediated gray (reuse) water will likely find increasing use in a variety of applications owing to the increasing scarcity of freshwater. We aimed to determine if a model fish, the goldfish, could sense reuse water using olfaction (smell), and if 30min or 7d (acute) and 60d (sub-chronic) exposures would affect their olfactory responses to natural odorants. We examined olfaction as previous studies have found that numerous chemicals can impair the olfactory sense, which is critical to carrying out numerous life-sustaining behaviors from feeding to mating. We also examined if fish olfactory and liver tissues would mount a response in terms of biotransformation enzyme gene expression, and whether treatment of reuse water with UV/H 2 O 2 ameliorated adverse effects following reuse water exposure. We found that fish olfactory tissue responded to reuse water as it would to a natural odorant and that UV/H 2 O 2 treatment had no influence on this. With acute exposures, olfactory impairment was apparent regardless of water type (e.g. responses of 23-55% of control), but in sub-chronic exposures, only the untreated reuse water caused olfactory impairment. The exposure of fish to reuse water increased the expression of one enzyme (CYP1A; >2.5-6.5 fold change) and reuse water treatment with UV/H 2 O 2 reversed the effect. There was a seasonal effect that was likely due to changes in water quality (60d summer exposure impaired olfaction whereas spring and fall exposures did not). Overall, the data suggest that reuse water may be detected by olfaction, impair olfactory responses in fish receiving unavoidable exposures, and that exposure duration and season are important factors to consider regarding adverse effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Organic contaminants in onsite wastewater treatment systems

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  9. Underwater Sound: Deep-Ocean Propagation: Variations of temperature and pressure have great influence on the propagation of sound in the ocean.

    PubMed

    Frosch, R A

    1964-11-13

    The absorption of sound in sea water varies markedly with frequency, being much greater at high than at low frequencies. It is sufficiently small at frequencies below several kilocycles per second, however, to permit propagation to thousands of miles. Oceanographic factors produce variations in sound velocity with depth, and these variations have a strong influence on long-range propagation. The deep ocean is characterized by a strong channel, generally at a depth of 500 to 1500 meters. In addition to guided propagation in this channel, the velocity structure gives rise to strongly peaked propagation from surface sources to surface receivers 48 to 56 kilometers away, with strong shadow zones of weak intensity in between. The near-surface shadow zone, in the latter case, may be filled in by bottom reflections or near-surface guided propagation due to a surface isothermal layer. The near-surface shadow zones can be avoided with certainty only through locating sources and receivers deep in the ocean.

  10. Green roof impact on the hydrological cycle components

    NASA Astrophysics Data System (ADS)

    Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo

    2013-04-01

    In the last decades the importance of storm water management in urban areas has increased considerably, due to both urbanization extension and to a greater concern for environment pollution. Traditional storm water control practices, based on the "all to the sewer" attitude, rely on conveyance to route storm water runoff from urban impervious surfaces towards the nearby natural water bodies. In recent years, infiltration facilities are receiving an increasing attention, due to their particular efficiency in restoring a balance in hydrological cycle quite equal to quite pre-urbanization condition. In particular, such techniques are designed to capture, temporarily retain and infiltrate storm water, promote evapotranspiration and harvest water at the source, encouraging in general evaporation, evapotranspiration, groundwater recharge and the re-use of storm water. Green roofs are emerging as an increasingly popular Sustainable Urban Drainage Systems (SUDS) technique for urban storm water management. Indeed, they are able to operate hydrologic control over storm water runoff: they allow a significant reduction of peak flows and runoff volumes collected by drainage system, with a consequent reduction of flooding events and pollution masses discharges by CSO. Furthermore green roofs have a positive influence on the microclimate in urban areas by helping in lower urban air temperatures and mitigate the heat island effect. Last but not least, they have the advantage of improving the thermal insulation of buildings, with significant energy savings. A detailed analysis of the hydrological dynamics, connected both with the characteristics of the climatic context and with the green roof technical design, is essential in order to obtain a full characterization of the hydrologic behavior of a green roof system and its effects on the urban water cycle components. The purpose of this paper is to analysis the hydrological effects and urban benefits of the vegetation cover of a building by installing green roofs and, thus, providing a conversion of rooftops in pervious areas; the objective is modeling hydrological fluxes (interception, evapotranspiration, soil water fluxes in the surface and hypodermic components) in relation to climate forcing, basic technology components and geometric characteristics of green roof systems (thickness of the stratigraphy, soil layers and materials, vegetation typology and density). The sensitivity analysis of hydrological processes at different hydrological, climatic and geometric parameters has allowed to draw some general guidelines useful in the design and construction of this type of drainage systems.

  11. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, water year 2011: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2012-01-01

    For the eight monitoring stations in water year 2011, a total of 93.5 percent of the TDG data were received in real time and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the Cascade Island site were only 34.9% complete because the equipment was destroyed by high water. The other stations ranged from 99.6 to 100 percent complete.

  12. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, water year 2012: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2013-01-01

    For the eight monitoring stations in water year 2012, a total of 97.0 percent of the TDG data were received in real time and were within 1-percent saturation of the expected value on the ba-sis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the Cascade Island site were only 77.8 percent complete because the equipment was destroyed by high water. The other stations ranged from 98.9 to 100.0 percent complete.

  13. Analyses of water, core material, and elutriate samples collected near Buras, Louisiana (New Orleans to Venice, Louisiana, Hurricane Protection Project)

    USGS Publications Warehouse

    Leone, Harold A.

    1977-01-01

    Eight core-material-sampling sites were chosen by the U.S. Army Corps of Engineers as possible borrow areas for fill material to be used in levee contruction near Buras, La. Eleven receiving-water sites also were selected to represent the water that will contact the porposed levees. Analyses of selected nutrients, metals, pesticides, and other organic constitutents were performed upon these bed-material and native-water samples as well as upon elutriate samples of specific core material-receiving water systems. The results of these analyses are presented without interpretation. (Woodard-USGS)

  14. Spatial and temporal variations of water quality in an artificial urban river receiving WWTP effluent in South China.

    PubMed

    Zhang, Di; Tao, Yi; Liu, Xiaoning; Zhou, Kuiyu; Yuan, Zhenghao; Wu, Qianyuan; Zhang, Xihui

    2016-01-01

    Urban wastewater treatment plant (WWTP) effluent as reclaimed water provides an alternative water resource for urban rivers and effluent will pose a significant influence on the water quality of rivers. The objective of this study was to investigate the spatial and temporal variations of water quality in XZ River, an artificial urban river in Shenzhen city, Guangdong Province, China, after receiving reclaimed water from WWTP effluent. The water samples were collected monthly at different sites of XZ River from April 2013 to September 2014. Multivariate statistical techniques and a box-plot were used to assess the variations of water quality and to identify the main pollution factor. The results showed the input of WWTP effluent could effectively increase dissolved oxygen, decrease turbidity, phosphorus load and organic pollution load of XZ River. However, total nitrogen and nitrate pollution loads were found to remain at higher levels after receiving reclaimed water, which might aggravate eutrophication status of XZ River. Organic pollution load exhibited the lowest value on the 750 m downstream of XZ River, while turbidity and nutrient load showed the lowest values on the 2,300 m downstream. There was a higher load of nitrogen and phosphorus pollution in the dry season and at the beginning of wet season.

  15. Experimental study of a vertical jet in a vegetated crossflow.

    PubMed

    Ben Meftah, Mouldi; De Serio, Francesca; Malcangio, Daniela; Mossa, Michele; Petrillo, Antonio Felice

    2015-12-01

    Aquatic ecosystems have long been used as receiving environments of wastewater discharges. Effluent discharge in a receiving water body via single jet or multiport diffuser, reflects a number of complex phenomena, affecting the ecosystem services. Discharge systems need to be designed to minimize environmental impacts. Therefore, a good knowledge of the interaction between effluents, discharge systems and receiving environments is required to promote best environmental management practice. This paper reports innovative 3D flow velocity measurements of a jet discharged into an obstructed crossflow, simulating natural vegetated channel flows for which correct environmental management still lacks in literature. In recent years, numerous experimental and numerical studies have been conducted on vegetated channels, on the one hand, and on turbulent jets discharged into unvegetated crossflows, on the other hand. Despite these studies, however, there is a lack of information regarding jets discharged into vegetated crossflow. The present study aims at obtaining a more thorough understanding of the interaction between a turbulent jet and an obstructed crossflow. In order to achieve such an objective, a series of laboratory experiments was carried out in the Department of Civil, Environmental, Building Engineering and Chemistry of the Technical University of Bari - Italy. The physical model consists of a vertical jet discharged into a crossflow, obstructed by an array of vertical, rigid, circular and threaded steel cylinders. Analysis of the measured flow velocities shows that the array of emergent rigid vegetation significantly affects the jet and the ambient flow structures. It reduces the mean channel velocity, allowing the jet to penetrate higher into the crossflow. It significantly increases the transversal flow motion, promoting a major lateral spreading of the jet within the crossflow. Due to the vegetation array effects, the jet undergoes notable variations in its vortical structure. The variation of the flow patterns affects the mixing process and consequently the dilution of pollutants discharged in receiving water bodies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Tracking Clouds with low cost GNSS chips aided by the Arduino platform

    NASA Astrophysics Data System (ADS)

    Hameed, Saji; Realini, Eugenio; Ishida, Shinya

    2016-04-01

    The Global Navigation Satellite System (GNSS) is a constellation of satellites that is used to provide geo-positioning services. Besides this application, the GNSS system is important for a wide range of scientific and civilian applications. For example, GNSS systems are routinely used in civilian applications such as surveying and scientific applications such as the study of crustal deformation. Another important scientific application of GNSS system is in meteorological research. Here it is mainly used to determine the total water vapour content of the troposphere, hereafter Precipitable Water Vapor (PWV). However, both GNSS receivers and software have prohibitively high price due to a variety of reasons. To overcome this somewhat artificial barrier we are exploring the use of low-cost GNSS receivers along with open source GNSS software for scientific research, in particular for GNSS meteorology research. To achieve this aim, we have developed a custom Arduino compatible data logging board that is able to operate together with a specific low-cost single frequency GNSS receiver chip from NVS Technologies AG. We have also developed an open-source software bundle that includes a new Arduino core for the Atmel324p chip, which is the main processor used in our custom logger. We have also developed software code that enables data collection, logging and parsing of the GNSS data stream. Additionally we have comprehensively evaluated the low power characteristics of the GNSS receiver and logger boards. Currently we are exploring the use of several openly source or free to use for research software to map GNSS delays to PWV. These include the open source goGPS (http://www.gogps-project.org/) and gLAB (http://gage.upc.edu/gLAB) and the openly available GAMIT software from Massachusetts Institute of Technology (MIT). We note that all the firmware and software developed as part of this project is available on an open source license.

  17. Where Carbon Goes When Water Flows: Carbon Cycling across the Aquatic Continuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Nicholas D.; Bianchi, Thomas S.; Medeiros, Patricia M.

    The purpose of this review is to highlight progress in unraveling carbon cycling dynamics across the continuum of landscapes, inland waters, coastal oceans, and the atmosphere. Earth systems are intimately interconnected, yet most biogeochemical studies focus on specific components in isolation. The movement of water drives the carbon cycle, and, as such, inland waters provide a critical intersection between terrestrial and marine biospheres. Inland, estuarine, and coastal waters are well studied in regions near centers of human population in the Northern hemisphere. However, many of the world’s large river systems and their marine receiving waters remain poorly characterized, particularly inmore » the tropics, which contribute to a disproportionately large fraction of the transformation of terrestrial organic matter to carbon dioxide, and the Arctic, where positive feedback mechanisms are likely to amplify global climate change. There are large gaps in current coverage of environmental observations along the aquatic continuum. For example, tidally-influenced reaches of major rivers and near-shore coastal regions around river plumes are often left out of carbon budgets due to a combination of methodological constraints and poor data coverage. We suggest that closing these gaps could potentially alter global estimates of CO2 outgassing from surface waters to the atmosphere by several-fold. Finally, in order to identify and constrain/embrace uncertainties in global carbon budget estimations it is important that we further adopt statistical and modeling approaches that have become well-established in the fields of oceanography and paleoclimatology, for example.« less

  18. Waste remediation

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2017-01-17

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  19. Waste remediation

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  20. Concentrating molasses distillery wastewater using biomimetic forward osmosis (FO) membranes.

    PubMed

    Singh, N; Petrinic, I; Hélix-Nielsen, C; Basu, S; Balakrishnan, M

    2018-03-01

    Treatment of sugarcane molasses distillery wastewater is challenging due to the presence of complex phenolic compounds (melanoidins and polyphenols) having antioxidant properties. Due to zero liquid discharge regulations, Indian distilleries continue to explore effective treatment options. This work examines the concentration of distillery wastewater by forward osmosis (FO) using aquaporin biomimetic membranes and magnesium chloride hexahydrate (MgCl 2 .6H 2 O) as draw solution. The operational parameters viz. feed solution and draw solution flow rate and draw solution concentration were optimized using 10% v/v melanoidins model feed solution. This was followed by trials with distillery wastewater. Under the conditions of this work, feed and draw flow rates of 1 L/min and draw solution concentration of 2M MgCl 2 .6H 2 O for melanoidins model solution and 3M MgCl 2 .6H 2 O for distillery wastewater were optimal for maximum rejection. Rejection of 90% melanoidins, 96% antioxidant activity and 84% COD was obtained with melanoidins model feed, with a corresponding water flux of 6.3 L/m 2 h. With as-received distillery wastewater, the rejection was similar (85-90%) to the melanoidins solution, but the water flux was lower (2.8 L/m 2 h). Water recovery from distillery wastewater over 24 h study period was higher with FO (70%) than reported for RO (35-45%). Repeated use of the FO membrane over five consecutive 24 h cycles with fresh feed and draw solutions and periodic cleaning showed consistent average water flux and rejection of the feed constituents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of field storage method on E. coli concentrations measured in storm water runoff.

    PubMed

    Harmel, Daren; Wagner, Kevin; Martin, Emily; Smith, Doug; Wanjugi, Pauline; Gentry, Terry; Gregory, Lucas; Hendon, Tina

    2016-03-01

    Storm water runoff is increasingly assessed for fecal indicator organisms (e.g., Escherichia coli, E. coli) and its impact on contact recreation. Concurrently, use of autosamplers along with logistic, economic, technical, and personnel barriers is challenging conventional protocols for sample holding times and storage conditions in the field. A common holding time limit for E. coli is 8 h with a 10 °C storage temperature, but several research studies support longer hold time thresholds. The use of autosamplers to collect E. coli water samples has received little field research attention; thus, this study was implemented to compare refrigerated and unrefrigerated autosamplers and evaluate potential E. coli concentration differences due to field storage temperature (storms with holding times ≤24 h) and due to field storage time and temperature (storms >24 h). Data from 85 runoff events on four diverse watersheds showed that field storage times and temperatures had minor effects on mean and median E. coli concentrations. Graphs and error values did, however, indicate a weak tendency for higher concentrations in the refrigerated samplers, but it is unknown to what extent differing die-off and/or regrowth rates, heterogeneity in concentrations within samples, and laboratory analysis uncertainty contributed to the results. The minimal differences in measured E. coli concentrations cast doubt on the need for utilizing the rigid conventional protocols for field holding time and storage temperature. This is not to say that proper quality assurance and quality control is not important but to emphasize the need to consider the balance between data quality and practical constraints related to logistics, funding, travel time, and autosampler use in storm water studies.

  2. Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses.

    PubMed

    Vijver, Martina G; van den Brink, Paul J

    2014-01-01

    Imidacloprid, the largest selling insecticide in the world, has received particular attention from scientists, policymakers and industries due to its potential toxicity to bees and aquatic organisms. The decline of aquatic macro-invertebrates due to imidacloprid concentrations in the Dutch surface waters was hypothesised in a recent paper by Van Dijk, Van Staalduinen and Van der Sluijs (PLOS ONE, May 2013). Although we do not disagree with imidacloprid's inherent toxicity to aquatic organisms, we have fundamental concerns regarding the way the data were analysed and interpreted. Here, we demonstrate that the underlying toxicity of imidacloprid in the field situation cannot be understood except in the context of other co-occurring pesticides. Although we agree with Van Dijk and co-workers that effects of imidacloprid can emerge between 13 and 67 ng/L we use a different line of evidence. We present an alternative approach to link imidacloprid concentrations and biological data. We analysed the national set of chemical monitoring data of the year 2009 to estimate the relative contribution of imidacloprid compared to other pesticides in relation to environmental quality target and chronic ecotoxicity threshold exceedances. Moreover, we assessed the relative impact of imidacloprid on the pesticide-induced potential affected fractions of the aquatic communities. We conclude that by choosing to test a starting hypothesis using insufficient data on chemistry and biology that are difficult to link, and by ignoring potential collinear effects of other pesticides present in Dutch surface waters Van Dijk and co-workers do not provide direct evidence that reduced taxon richness and abundance of macroinvertebrates can be attributed to the presence of imidacloprid only. Using a different line of evidence we expect ecological effects of imidacloprid at some of the exposure profiles measured in 2009 in the surface waters of the Netherlands.

  3. Influence of Glacier Melting and River Discharges on the Nutrient Distribution and DIC Recycling in the Southern Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Vargas, Cristian A.; Cuevas, L. Antonio; Silva, Nelson; González, Humberto E.; De Pol-Holz, Ricardo; Narváez, Diego A.

    2018-01-01

    The Chilean Patagonia constitutes one of the most important and extensive fjord systems worldwide, therefore can be used as a natural laboratory to elucidate the pathway of both organic and inorganic matter in the receiving environment. In this study we use data collected during an intensive oceanographic cruise along the Magellan Strait into the Almirantazgo Fjord in southern Patagonia to evaluate how different sources of dissolved inorganic carbon (DIC) and recycling may impact particulate organic carbon (POC) δ13C and influence the nutrients and carbonate system spatial distribution. The carbonate system presented large spatial heterogeneity. The lowest total alkalinity and DIC were associated to freshwater dilution observed near melting glaciers. The δ13CDIC analysis suggests that most DIC in the upper 50 m depth was not derived from terrestrial organic matter remineralization. 13C-depleted riverine and ice-melting DIC influence the DIC pool along the study area, but due to that DIC concentration from rivers and glaciers is relatively low, atmospheric carbon contribution or biological processes seem to be more relevant. Intense undersaturation of CO2 was observed in high chlorophyll waters. Respired DIC coming from the bottom waters seems to be almost insignificant for the inorganic carbon pool and therefore do not impact significantly the stable carbon isotopic composition of dissolved organic carbon and POC in the upper 50 m depth. Considering the combined effect of cold and low alkalinity waters due to ice melting, our results highlight the importance of these processes in determining corrosive waters for CaCO3 and local acidification processes associated to calving glacier in fjord ecosystems.

  4. Relating Satellite Gravimetry Data To Global Snow Water Equivalent Data

    NASA Astrophysics Data System (ADS)

    Baumann, Sabine

    2017-04-01

    In 04/2002, the gravimetric satellites GRACE were launched. They measure Earth's gravity via a precise microwave system. These satellites assess changes of Earth's mass. Main contributions of these changes originate from hydrological compartments as e.g. surface water, groundwater, soil moisture, or snow water equivalent (SWE). The benefit of GRACE data is to receive a direct measured signal. The data are not calibrated with other data (as e.g. done in models) or unusable due to particular Earth's surface conditions (e.g. AMSR-e for thick and wet snow surfaces). GRACE data show changes in total water storage (TWS) but cannot distinguish between different sources. Therefore, other data, models, and methods are necessary to extract the different compartments. Due to the spatial resolution of 200,000 km2 and an accuracy of 2.5 cm w.e., mostly other global products are compared with GRACE. In this study, the hydrological model WGHM (TWS and SWE), the land surface model GLDAS (TWS and SWE), and the passive microwave sensor AMSR-E (SWE) are compared with the GRACE data. All data have to be pre-processed in the same way as the GRACE data to be comparable. A correlation analysis was performed between the different products assuming that changes in TWS can be linked to changes in SWE if either SWE is the dominant compartment of TWS or if SWE changes proportionally with TWS. To focus on the SWE product a second correlation was performed only for the winter season. Spatial extent was focused on the large permafrost areas in North America and Russia. By this method, those areas were detected in which GRACE data can be integrated for SWE data assessment to, for example, improve the models.

  5. 77 FR 46771 - Notice of Permit Application Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... emissions and waste water (urine, grey- water, and human solid waste. All wastes would be packaged and... (NSF) has received a waste management permit application for Quark Expeditions' cruise ships to conduct...-8030. SUPPLEMENTARY INFORMATION: NSF's Antarctic Waste Regulation, 45 CFR Part 671, requires all U.S...

  6. 18 CFR 367.1460 - Account 146, Accounts receivable from associate companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1460... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 146, Accounts receivable from associate companies. 367.1460 Section 367.1460 Conservation of Power and Water Resources...

  7. 18 CFR 367.1450 - Account 145, Notes receivable from associate companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... POWER ACT AND NATURAL GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1450... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 145, Notes receivable from associate companies. 367.1450 Section 367.1450 Conservation of Power and Water Resources...

  8. SHORT-TERM METHODS FOR ESTIMATING THE CHRONIC TOXICITY OF EFFLUENTS AND RECEIVING WATERS TO WEST COAST MARINE AND ESTUARINE ORGANISMS

    EPA Science Inventory

    This manual describes six short-term (forty minutes to seven days) estuarine and marine methods for measuring the chronic toxicity of effluents and receiving waters to eight species: the topsmelt, Atherinops affinis; the mysid, Holmesimysis costata; the sea urchin, Stronglocentro...

  9. New type of nonglossy image-receiving sheet

    NASA Astrophysics Data System (ADS)

    Aono, Toshiaki; Shibata, Takeshi; Nakamura, Yoshisada

    1990-07-01

    We have developed a new type of non-glossy surface of an image receiving sheet for a photothermographic color hardcopy system. There is a basic conflict in realizing uniform dye transfer with use of a receiving sheet having a matted surface, because when the degree of roughness exceeds a certain extent, uneven dye transfer readily takes place. It: has been solved by use of "microscopic" phase separation of a certain water-soluble polymer blend which constitutes the surface layer of the image receiving sheet. One of the preferable polymer blends for our purpose proved to be a ternary system, consisting of sodium salt of polymethacrylic acid (PMAA-Na), ammonium salt of polyacrylic acid (PAA-NH4) and water. Phase separation, which proceeded during the evaporation of water from the coated mixture, turned out to be of a spinodal decomposition type and thus capable of stably providing a desirable non-glossy surface.

  10. Hemispherical Optical Dome for Underwater Communication

    NASA Technical Reports Server (NTRS)

    Shiri, Ron S.; Lunde, Emily L.; Coronado, Patrick L.; Quijada, Manuel A.

    2017-01-01

    For many years, acoustic systems have been used as the primary method for underwater communication; however, the data transfer rate of such systems is low because sound propagates slowly through the water. A higher throughput can be achieved using visible light to transmit data underwater. The first issue with using this approach is that there is generally a large loss of the light signal due to scattering and absorption in water even though there is an optimal wavelength for transmission in the blue or green wavelengths of the visible spectrum. The second issue is that a simple system consisting only of a highly directional source transmitter and small optical detector receiver has a very narrow field of view. The goal of this project is to improve an optical, underwater communication system by increasing the effective field of view of the receiving optics. To this end, we make two changes to the simple system: (1) An optical dome was added near the receiver. An array of lenses is placed radially on the surface of the dome, reminiscent of the compound eye of an insect. The lenses make the source and detector planes conjugate, and each lens adds a new region of the source plane to the instrument's total field of view. (2) The receiver was expanded to include multiple photodiodes. With these two changes, the receiver has much more tolerance to misalignments (in position and angle) of the transmitter.Two versions of the optical dome (with 6 and 8 diameters) were designed using the CREO CAD software and modeled using the CODE V optical design software. A series of these transparent hemispherical domes, with both design diameters, were manufactured using a 5-axis mill. The prototype was then retrofitted with lenses and compared with the computer-generated model to demonstrate the effectiveness of this solution. This work shows the dome design improves the optical field of view of the underwater communication system considerably. Furthermore, with the experimental test results, a geometric optimization model was derived providing insights to the design performance limits.

  11. Hemispherical optical dome for underwater communication

    NASA Astrophysics Data System (ADS)

    Shiri, Ron S.; Lunde, Emily L.; Coronado, Patrick L.; Quijada, Manuel A.

    2017-08-01

    For many years, acoustic systems have been used as the primary method for underwater communication; however, the data transfer rate of such systems is low because sound propagates slowly through water. A higher throughput can be achieved using visible light to transmit data underwater. The first issue with this approach is that there is generally a large loss of the light signal due to scattering and absorption in water, even though there is an optimal wavelength for transmission in the blue or green wavelengths of the visible spectrum. The second issue is that a simple communication system, consisting only of a highly directional source/transmitter and small optical detector/receiver, has a very narrow field of view. The goal of this project is to improve an optical, underwater communication system by increasing the effective field of view of the receiving optics. To this end, we make two changes to the simple system: (1) An optical dome was added near the receiver. An array of lenses is placed radially on the surface of the dome, reminiscent of the compound eye of an insect. The lenses make the source and detector planes conjugate, and each lens adds a new region of the source plane to the instrument's total field of view. (2) The receiver was expanded to include multiple photodiodes. With these two changes, the receiver has much more tolerance to misalignments (in position and angle) of the transmitter. Two versions of the optical dome (with 6" and 8" diameters) were designed using PTC's Creo CAD software and modeled using Synopsys' CODE V optical design software. A series of these transparent hemispherical domes, with both design diameters, were manufactured using a 5-axis mill. The prototype was then retrofitted with lenses and compared with the computer-generated model to demonstrate the effectiveness of this solution. This work shows that the dome design improves the optical field of view of the underwater communication system considerably. Furthermore, with the experimental test results, a geometric optimization model was derived providing insights to the design performance limits.

  12. Hemispherical Optical Dome for Underwater Communication

    NASA Technical Reports Server (NTRS)

    Shiri, Ron S.; Lunde, Emily L.; Coronado, Patrick L.; Quijada, Manuel A.

    2017-01-01

    For many years, acoustic systems have been used as the primary method for underwater communication; however, the data transfer rate of such systems is low because sound propagates slowly through the water. A higher throughput can be achieved using visible light to transmit data underwater. The first issue with using this approach is that there is generally a large loss of the light signal due to scattering and absorption in water even though there is an optimal wavelength for transmission in the blue or green wavelengths of the visible spectrum. The second issue is that a simple system consisting only of a highly directional source/transmitter and small optical detector/receiver has a very narrow field of view. The goal of this project is to improve an optical, underwater communication system by increasing the effective field of view of the receiving optics. To this end, we make two changes to the simple system: (1) An optical dome was added near the receiver. An array of lenses is placed radially on the surface of the dome, reminiscent of the compound eye of an insect. The lenses make the source and detector planes conjugate, and each lens adds a new region of the source plane to the instrument's total field of view. (2) The receiver was expanded to include multiple photodiodes. With these two changes, the receiver has much more tolerance to misalignments (in position and angle) of the transmitter.Two versions of the optical dome (with 6 and 8 diameters) were designed using the CREO CAD software and modeled using the CODE V optical design software. A series of these transparent hemispherical domes, with both design diameters, were manufactured using a 5-axis mill. The prototype was then retrofitted with lenses and compared with the computer-generated model to demonstrate the effectiveness of this solution. This work shows the dome design improves the optical field of view of the underwater communication system considerably. Furthermore, with the experimental test results, a geometric optimization model was derived providing insights to the design performance limits.

  13. Numerical research of dynamic characteristics in tower solar cavity receiver based on step-change radiation flux

    NASA Astrophysics Data System (ADS)

    Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi

    2013-07-01

    The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.

  14. Propagation of Exploration Seismic Sources in Shallow Water

    NASA Astrophysics Data System (ADS)

    Diebold, J. B.; Tolstoy, M.; Barton, P. J.; Gulick, S. P.

    2006-05-01

    The choice of safety radii to mitigation the impact of exploration seismic sources upon marine mammals is typically based on measurement or modeling in deep water. In shallow water environments, rule-of-thumb spreading laws are often used to predict the falloff of amplitude with offset from the source, but actual measurements (or ideally, near-perfect modeling) are still needed to account for the effects of bathymetric changes and subseafloor characteristics. In addition, the question: "how shallow is 'shallow?'" needs an answer. In a cooperative effort by NSF, MMS, NRL, IAGC and L-DEO, a series of seismic source calibration studies was carried out in the Northern Gulf of Mexico during 2003. The sources used were the two-, six-, ten-, twelve-, and twenty-airgun arrays of R/V Ewing, and a 31-element, 3-string "G" gun array, deployed by M/V Kondor, an exploration industry source ship. The results of the Ewing calibrations have been published, documenting results in deep (3200m) and shallow (60m) water. Lengthy analysis of the Kondor results, presented here, suggests an approach to answering the "how shallow is shallow" question. After initially falling off steadily with source-receiver offset, the Kondor levels suddenly increased at a 4km offset. Ray-based modeling with a complex, realistic source, but with a simple homogeneous water column-over-elastic halfspace ocean shows that the observed pattern is chiefly due to geophysical effects, and not focusing within the water column. The same kind of modeling can be used to predict how the amplitudes will change with decreasing water depth, and when deep-water safety radii may need to be increased. Another set of data (see Barton, et al., this session) recorded in 20 meters of water during early 2005, however, shows that simple modeling may be insufficient when the geophysics becomes more complex. In this particular case, the fact that the seafloor was within the near field of the R/V Ewing source array seems to have given rise to seismic phases not normally seen in marine survey data acquired in deeper water. The associated partitioning of energy is likely to have caused the observed uncharacteristically rapid loss of energy with distance. It appears that in this case, the shallow-water marine mammal safety mitigation measures prescribed and followed were far more stringent than they needed to be. A new approach, wherein received levels detected by the towed 6-km multichannel hydrophone array may be used to modify safety radii has recently been proposed, based on these observations.

  15. Acoustic monitoring of the tide height and slope-water intrusion at the New Jersey Shelf in winter conditions.

    PubMed

    Turgut, Altan; Orr, Marshall; Pasewark, Bruce

    2007-05-01

    Waveguide invariant theory is used to describe the frequency shifts of constant acoustic intensity level curves in broadband signal spectrograms measured at the New Jersey Shelf during the winter of 2003. The broadband signals (270-330 Hz) were transmitted from a fixed source and received at three fixed receivers, located at 10, 20, and 30 km range along a cross-shelf propagation track. The constant acoustic intensity level curves of the received signals indicate regular frequency shifts that can be well predicted by the change in water depth observed through tens of tidal cycles. A second pattern of frequency shifts is observed at only 30 km range where significant variability of slope-water intrusion was measured. An excellent agreement between observed frequency shifts of the constant acoustic intensity levels and those predicted by the change in tide height and slope water elevations suggests the capability of long-term acoustic monitoring of tide and slope water intrusions in winter conditions.

  16. Ecophysiological responses of three dominant species to experimental drought on the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Duniway, M.; Hoover, D. L.; Belnap, J.

    2014-12-01

    Water limitations in dryland ecosystems are predicted to intensify with climate change due to the combination of decreased precipitation and increased warming. Plants in these ecosystems may be living at or near their tolerance limits, and thus subtle changes in water availability may have dramatic effects on their performance. To examine the impacts of subtle, but chronic reductions in water availability, we established a network of 40 rainfall removal shelters across a range of plant communities, soil types and elevations in the Colorado Plateau. Each site consisted of a control plot receiving ambient precipitation paired with a drought plot that received a 35% precipitation reduction. After three years, we observed a range of ecosystem-level responses to the treatments by key plant functional types. The experimental drought had dramatic effects on the C3 grasses (mortality and cover changes), but the treatment effects were relatively minor for the C4 grasses (cover change only) and C3 shrubs (no treatment effects on cover or mortality). We investigated the mechanisms behind the relative drought tolerances of the latter two plant functional types by measuring the ecophysiological responses of three dominant species on the Colorado Plateau: Pleuraphis jamensii (C4 grass), Coleogyne ramosissima (C3 shrub) and Ephedra viridis (C3 shrub). During the 2014 growing season, we measured mid-day leaf water potential and net photosynthesis monthly for these dominant species under the control and drought treatments (n=5). We analyzed the effects of treatment, month and their interaction on these measurements using a mixed effects model for each species separately. Overall, P. jamensii was the most sensitive to drought of the three focal species as evidenced by significant effects of drought on both leaf water potential and net photosynthesis (30% reduction). Neither of the C3 shrubs had significant treatment effects on either ecophysiolgoical variable. These results provide mechanistic evidence behind the ecosystem-level effects; the drought treatments are causing stress in C4 grasses but not C3 shrubs. These results suggest that subtle but chronic changes in water availability may alter the structure and function of the Colorado Plateau ecosystem by differentially impacting key plant functional types.

  17. Permafrost Thaw and Vegetation Cover Change May Alter Silicon Exports to Arctic Coastal Receiving Waters

    NASA Astrophysics Data System (ADS)

    Spencer, R.; Carey, J.; Tang, J.

    2016-12-01

    Silicon (Si) availability in Arctic coastal waters is a critical factor dictating phytoplankton species composition, as diatoms require as much Si as nitrogen (N) on a molar basis to survive. Riverine exports are the main source of Si to Arctic coastal waters annually and thus, the timing and magnitude of river Si fluxes have direct implications for marine ecology and global carbon dynamics. Although geochemical factors exert large controls on Si exports to marine waters, watershed land cover has recently been shown to alter the retention and transport of Si along the land-ocean continuum in lower latitudes, due in large part to the ability of terrestrial vegetation to store large quantities of Si in its tissue. However, it is unclear how shifts in basin land cover and climatic warming will alter Si exports in the Arctic, as increasing shrubiness and northward migration of treeline may increase Si retention on land, but permafrost thaw and elevated weathering rates may stimulate Si exports towards coastal waters. In this study we investigate how permafrost thaw and vegetation cover shifts are altering Arctic riverine Si export using the geochemical signatures of ten rivers draining a 700 km north-south gradient across the Yukon and Arctic North Slope basins in Alaska. Across the 2016 spring freshet, average dissolved Si (DSi) concentrations across sites ranged from 22 to 115 µM, with a significant negative relationship observed between average DSi concentration and latitude (r=-0.95, p<0.05). Conversely, average biogenic Si (BSi) concentrations showed no trends with latitude and were more uniform across the permafrost-vegetation cover gradient, ranging from 8 to 15 µM BSi. Si yields followed a similar pattern as concentrations across the gradient. We use data on basin lithology and land cover, instantaneous discharge, and the concentrations of inorganic nutrients (N, phosphorous), chlorophyll a, total suspended solids (TSS), and Ge (Germanium)/Si ratios, to determine the drivers of these patterns in Si behavior. In turn, our results will be used to create the first predictive framework to assess how future warming will alter fluvial Si exports to Arctic receiving waters.

  18. An insight into the drinking-water access in the health institutions at the Saharawi refugee camps in Tindouf (Algeria) after 40years of conflict.

    PubMed

    Vivar, M; Pichel, N; Fuentes, M; Martínez, F

    2016-04-15

    Drinking water access in the Saharawi refugee camps located in the Algerian desert is a challenge that is still an on-going problem after 40years of conflict. This work presents an analysis of the situation with emphasis on the water supply in health institutions (quantity and quality) including both sanitary inspections and a comprehensive water quality study. Results from sanitary inspections show that only half of the water supply installations at the hospitals are in adequate conditions and the rest present high risk of microbiological contamination. Water access in small medical community centres on the other hand present issues related to the non-availability of food-grade water tanks for the institutions (70%), the use of small 10l containers as the main water supply (40%), poor maintenance (60% under antihygienic conditions and 30% with damaged covers), and insufficient chlorine levels that prevent microbiological contamination. Regarding water quality analyses, raw water supply in Smara, El Aiun and Awserd camps present high conductivity and high levels of fluoride, chloride, nitrate and sulphate, but dropping to normal levels within the drinking-water standards after water treatment via reverse osmosis plants. But for the case of El Aiun and Awserd, the reverse osmosis plant only provides treated water to the population each 20days, so the population receives raw water directly and health risks should be evaluated. Finally, Dakhla water supply is the best in terms of physico-chemical parameters quality, currently providing safe drinking water after a chlorination stage. In summary, drinking water access has improved dramatically in the last years due to the efforts of local and international authorities but several issues remain to be solved: access to treated water for all the population, improved water quality controls (especially in Dakhla), expansion of distribution networks, and adequate storage systems and maintenance. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biodegradability of organic matter associated with sewer sediments during first flush.

    PubMed

    Sakrabani, Ruben; Vollertsen, Jes; Ashley, Richard M; Hvitved-Jacobsen, Thorkild

    2009-04-01

    The high pollution load in wastewater at the beginning of a rain event is commonly known to originate from the erosion of sewer sediments due to the increased flow rate under storm weather conditions. It is essential to characterize the biodegradability of organic matter during a storm event in order to quantify the effect it can have further downstream to the receiving water via discharges from Combined Sewer Overflow (CSO). The approach is to characterize the pollutograph during first flush. The pollutograph shows the variation in COD and TSS during a first flush event. These parameters measure the quantity of organic matter present. However these parameters do not indicate detailed information on the biodegradability of the organic matter. Such detailed knowledge can be obtained by dividing the total COD into fractions with different microbial properties. To do so oxygen uptake rate (OUR) measurements on batches of wastewater have shown itself to be a versatile technique. Together with a conceptual understanding of the microbial transformation taking place, OUR measurements lead to the desired fractionation of the COD. OUR results indicated that the highest biodegradability is associated with the initial part of a storm event. The information on physical and biological processes in the sewer can be used to better manage sediment in sewers which can otherwise result in depletion of dissolved oxygen in receiving waters via discharges from CSOs.

  20. The industrial utility of public water supplies in the United States, 1952, part 1, States east of the Mississippi River

    USGS Publications Warehouse

    Lohr, E.W.; Love, S.K.

    1954-01-01

    Investigations by others have shown that a definite relationship exists between fluoride in drinking water and the incidence of dental caries in the teeth of children. A total of about 85 percent of the population served from the large public supplies receive water having a fluoride concentration in the range of 0.0 to 0. 5 part per million. Few large public supplies contain fluoride in concentrations in excess of 3 parts per million. A total of 155 places of those included in the report received fluoridated water in 1955.

  1. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, C.J.; Fliermans, C.B.; Santo Domingo, J.

    1997-10-30

    In order to assess the microbial condition of foreign nuclear fuel storage facilities, fourteen different water samples were received from facilities outside the United States that have sent spent nuclear fuel to SRS for wet storage. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate- reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to other foreign samples and to data from the receiving basin for off- site fuel (RBOF) at SRS.

  2. Selenium source identification and biogeochemical processes controlling selenium in surface water and biota, Kendrick Reclamation Project, Wyoming, U.S.A.

    USGS Publications Warehouse

    Naftz, D.L.; See, R.B.; Ramirez, P.

    1993-01-01

    The major tributaries draining the Kendrick Reclamation Project (KRP) account for an average of 52% of the total Se load measured in the North Platte River downstream from Casper, Wyoming. The Casper Creek drainage basin contributed the largest Se load of the five tributary sites to the North Platte River. The 4-d average Se concentration in water samples from one site in the part of the North Platte River that receives irrigation return flows exceeded the 5 ??g/l U.S. Environmental Protection Agency's aquatic life criterion five time during a 50-d monitoring period in 1989. In agreement with the water-quality data, muscle and liver tissue rom rainbow trout collected from the same part of the North Platte River had Se concentrations exceeding levels known to cause reproductive failure and chronic Se poisoning. On the basis of Se: Cl, 18O/16O and D/H ratios in water from Goose and Rasmus Lee Lakes (closed-basin systems), the large Se concentrations in those lakes were derived by natural evaporation of irrigation water without leaching of soluble forms of Se from soil or rocks. Water samples from Thirtythree Mile Reservoir and Illco Pond (flow-through systems) showed considerable enrichment in Se over evaporative concentration, presumably due to leaching and desorption of Se from soil and rock. The Se: Cl ratios of irrigation drain water collected from the KRP indicate that leaching and desorption of soluble forms of Se from soils and rocks are the dominant processes in drain water. Results of a Wilcoxon matched-pairs test for 43 paired drain-water samples collected during June and August 1988, indicated there is a statistically larger concentration of Se (0.01 significance level) during the June sampling period. The larger concentrations of Se and other chemical constitutents during the early part of the irrigation season probably were due to dissolution of seleniferous salts that have accumulated in soils within the KRP since the last irrigation season. The large Se concentrations in water samples from wetland sites in the KRP were reflected in the aquatic-bird food chain. Most waterfowl and shorebirds nesting at the KRP showed Se concentrations in livers and eggs greater than levels suspected of causing adverse reproductive effects. ?? 1993.

  3. Subsidized Sachet Water to Reduce Diarrheal Disease in Young Children: A Feasibility Study in Accra, Ghana

    PubMed Central

    Wright, James; Dzodzomenyo, Mawuli; Fink, Günther; Wardrop, Nicola A.; Aryeetey, Genevieve C.; Adanu, Richard M.; Hill, Allan G.

    2016-01-01

    Use of drinking water sold in plastic bags (sachet water) is growing rapidly in west Africa. The impact on water consumption and child health remains unclear, and a debate on the taxation and regulation of sachet water is ongoing. This study assessed the feasibility of providing subsidized sachet water to low-income urban households in Accra and measured the resultant changes in water consumption. A total of 86 children, 6–36 months of age in neighborhoods lacking indoor piped water, were randomized to three study arms. The control group received education about diarrhea. The second arm received vouchers for 15 L/week/child of free water sachets (value: $0.63/week) plus education. The third arm received vouchers for the same water sachet volume at half price plus education. Water consumption was measured at baseline and followed for 4 months thereafter. At baseline, 66 of 81 children (82%) drank only sachet water. When given one voucher/child/week, households redeemed an average 0.94 vouchers/week/child in the free-sachet-voucher arm and 0.82 vouchers/week/child in the half-price arm. No change in water consumption was observed in the half-price arm, although the study was not powered to detect such differences. In the free-sachet-voucher arm, estimated sachet water consumption increased by 0.27 L/child/day (P = 0.03). The increase in sachet water consumption by children in the free-sachet-voucher arm shows that provision of fully subsidized water sachets might improve the quality of drinking water consumed by children. Further research is needed to quantify this and any related child health impacts. PMID:27215298

  4. Subsidized Sachet Water to Reduce Diarrheal Disease in Young Children: A Feasibility Study in Accra, Ghana.

    PubMed

    Wright, James; Dzodzomenyo, Mawuli; Fink, Günther; Wardrop, Nicola A; Aryeetey, Genevieve C; Adanu, Richard M; Hill, Allan G

    2016-07-06

    Use of drinking water sold in plastic bags (sachet water) is growing rapidly in west Africa. The impact on water consumption and child health remains unclear, and a debate on the taxation and regulation of sachet water is ongoing. This study assessed the feasibility of providing subsidized sachet water to low-income urban households in Accra and measured the resultant changes in water consumption. A total of 86 children, 6-36 months of age in neighborhoods lacking indoor piped water, were randomized to three study arms. The control group received education about diarrhea. The second arm received vouchers for 15 L/week/child of free water sachets (value: $0.63/week) plus education. The third arm received vouchers for the same water sachet volume at half price plus education. Water consumption was measured at baseline and followed for 4 months thereafter. At baseline, 66 of 81 children (82%) drank only sachet water. When given one voucher/child/week, households redeemed an average 0.94 vouchers/week/child in the free-sachet-voucher arm and 0.82 vouchers/week/child in the half-price arm. No change in water consumption was observed in the half-price arm, although the study was not powered to detect such differences. In the free-sachet-voucher arm, estimated sachet water consumption increased by 0.27 L/child/day (P = 0.03). The increase in sachet water consumption by children in the free-sachet-voucher arm shows that provision of fully subsidized water sachets might improve the quality of drinking water consumed by children. Further research is needed to quantify this and any related child health impacts. © The American Society of Tropical Medicine and Hygiene.

  5. Effective Dose of Radon 222 Bottled Water in Different Age Groups Humans: Bandar Abbas City, Iran.

    PubMed

    Fakhri, Yadolah; Mahvi, Amir Hossein; Langarizadeh, Ghazaleh; Zandsalimi, Yahya; Amirhajeloo, Leila Rasouli; Kargosha, Morteza; Moradi, Mahboobeh; Moradi, Bigard; Mirzaei, Maryam

    2015-06-04

    Radon 222 is a natural radioactive element with a half-life of 3.8 days. It is odorless and colorless as well as water-soluble. Consuming waters which contain high concentration of 222Rn would increase the effective dose received by different age groups. It would also be followed by an increased prevalence of cancer. In this research, 72 samples of the most commonly used bottled water in Bandar Abbas were collected in 3 consecutive months, May, June and July of 2013. Concentration 222Rn of was measured by radon-meter model RTM166-2. The effective dose received by the 4 age groups, male and female adults as well as children and infants was estimated using the equation proposed by UNSCEAR. The results revealed that the mean and range concentration of 222Rn in bottled waters were 641±9 Bq/m3 and 0-901 Bq/m3, respectively. The mean concentration of 222Rn in the well-known Marks followed this Zam Zam>Bishe>Koohrng>Dassani>Christal>Polour>Damavand>Sivan. Infants were observed to receive a higher effective dose than children. The highest and lowest effective dose received was found to belong to male adults and children, respectively.

  6. Effective Dose of Radon 222 Bottled Water in Different Age Groups Humans: Bandar Abbas City, Iran

    PubMed Central

    Fakhri, Yadolah; Mahvi, Amir Hossein; Langarizadeh, Ghazaleh; Zandsalimi, Yahya; Amirhajeloo, Leila Rasouli; Kargosha, Morteza; Moradi, Mahboobeh; Moradi, Bigard; Mirzaei, Maryam

    2016-01-01

    Radon 222 is a natural radioactive element with a half-life of 3.8 days. It is odorless and colorless as well as water-soluble. Consuming waters which contain high concentration of 222Rn would increase the effective dose received by different age groups. It would also be followed by an increased prevalence of cancer. In this research, 72 samples of the most commonly used bottled water in Bandar Abbas were collected in 3 consecutive months, May, June and July of 2013. Concentration 222Rn of was measured by radon-meter model RTM166-2. The effective dose received by the 4 age groups, male and female adults as well as children and infants was estimated using the equation proposed by UNSCEAR. The results revealed that the mean and range concentration of 222Rn in bottled waters were 641±9 Bq/m3 and 0-901 Bq/m3, respectively. The mean concentration of 222Rn in the well-known Marks followed this Zam Zam>Bishe>Koohrng>Dassani>Christal>Polour>Damavand>Sivan. Infants were observed to receive a higher effective dose than children. The highest and lowest effective dose received was found to belong to male adults and children, respectively. PMID:26383192

  7. Thermohaline variability in the Adriatic and Northern Ionian Seas observed from the Argo floats during 2010-2014

    NASA Astrophysics Data System (ADS)

    Kovačević, Vedrana; Ursella, Laura; Gačić, Miroslav; Notarstefano, Giulio; Menna, Milena; Bensi, Manuel; Civitarese, Giuseppe; Poulain, Pierre-Marie

    2015-04-01

    The Adriatic Sea is the northernmost basin of the Eastern Mediterranean Sea (EMed). At its southern end, the basin communicates with the adjacent Ionian Sea through the 80 km wide and 850 m deep Strait of Otranto. Due to the river discharge in the north and due to the strong winter cooling, the Adriatic is both a dilution basin and the dense water formation region. The basin-wide circulation is cyclonic. The circulation is however, energetic also at smaller spatial and temporal scales, and several circulation cells and mesoscale features are regularly observed equally along the littoral and in the open sea. The North Adriatic Dense Water (NAdDW) formed during winter is the densest water of the whole Mediterranean Sea (up to 1060 kg/m3). It flows as a density driven bottom current from the northern shelf toward south, filling the deep layers of the middle and southern Adriatic pits. The deep open-sea area of the South Adriatic Pit (SAP, 1200 m) feels the influence of a water mass exchange through the Strait of Otranto. Specifically, it receives salty and warm surface and Levantine Intermediate Waters from the Ionian Sea. Through the open-sea winter convection that homogenizes and ventilates 400-800 m thick upper water column, this salty water contributes to the formation of the Adriatic Deep Water (AdDW, 1029.17-1029.20 kg/m3), which is not as dense as the NAdDW. Both dense waters eventually mix and spill across the sill ventilating the deep and bottom layers of the Ionian Sea, and driving the deep thermohaline cell of the EMed. Thermohaline properties of the Adriatic Sea vary at wide spatial and temporal scales, and this in turn affects the properties of its dense waters. The long-term scales are of a particular interest, as they are often associated with the biogeochemical and biotic variability such as intrusion of alien species into the Adriatic Sea and interconnection with the adjacent Ionian basin. Due to the extremely variable meteo- and climatic conditions, the signal of the Adriatic dense waters can be fairly irregular and impulsive. Sporadic in-situ surveys by research vessels are not always sufficient to capture this irregularity and its consequences on the circulation. The Lagrangian platforms are disseminated within the whole Mediterranean through the international Argo program. They are a useful tool to assess some of the spatial and temporal variability in the two basins. Combining the information from the floats and in-situ CTD profiles from oceanographic campaigns, we picture the inter-annual variability of the thermohaline properties in general during 2010-2014. In addition, the peculiarities of the very dense water overflow that during 2012 spilled out form the Strait of Otranto into the Northern Ionian is evidenced. Also, by the remotely sensed sea surface topography, we depict the most prominent circulation features of the upper layer.

  8. Total Water Management: A Watershed Based Approach

    EPA Science Inventory

    In this urbanizing world, municipal water managers need to develop planning and management frameworks to meet challenges such as limiting fresh water supplies, degrading receiving waters, increasing regulatory requirements, flooding, aging infrastructure, rising utility (energy) ...

  9. Total Water Management: A Watershed Based Approach - slides

    EPA Science Inventory

    ABSTRACT In this urbanizing world, municipal water managers need to develop planning and management frameworks to meet challenges such as limiting fresh water supplies, degrading receiving waters, increasing regulatory requirements, flooding, aging infrastructure, rising utility...

  10. Effects of drinking water treatment on susceptibility of laying hens to Salmonella enteritidis during forced molt.

    PubMed

    Kubena, L F; Byrd, J A; Moore, R W; Ricke, S C; Nisbet, D J

    2005-02-01

    Feed deprivation is used in the layer industry to induce molting and stimulate multiple egg-laying cycles in laying hens. Unfortunately, the stress involved increases susceptibility to Salmonella enteritidis (SE), the risk of SE-positive eggs, and incidence of SE in internal organs. Leghorn hens over 50 wk of age were divided into 4 treatment groups of 12 hens each in experiment 1 and 3 treatment groups of 12 hens in experiments 2 and 3; hens were placed in individual laying hen cages. Treatment groups were 1) nonmolted (NM) and received feed and distilled water for 9 d, 2) force molted by feed removal for 9 d and received distilled water, 3) force molted by feed removal for 9 d and received 0.5% lactic acid (LA) in distilled water. An additional group (4) in experiment 1 only was force molted by feed removal for 9 d and received 0.5% acetic acid in distilled water. Seven days before feed removal hens were exposed to an 8L:16D photoperiod, which was continued throughout the experiment. Individual hens among all treatments were challenged orally with 10(4) SE on d 4 of feed removal. When compared with the NM treatments, weight losses were significantly higher in the M treatments, regardless of water treatments. When compared with NM treatments, crop pH was significantly higher in the M treatment receiving distilled water. Crop pH was reduced to that of the NM controls by 0.5% acetic acid in the drinking water. No consistent significant changes were observed for volatile fatty acids. The number of hens positive for SE in crop and ceca after culture and the number of SE per crop and per gram of cecal contents were higher in the M treatments, when compared with the NM treatments, but there was no effect of addition of either of the acids to the drinking water. Additional research using different acid treatment regimens may provide a tool for reducing the incidence of SE in eggs and internal organs during and following molting of laying hens.

  11. Lettuce facing microcystins-rich irrigation water at different developmental stages: Effects on plant performance and microcystins bioaccumulation.

    PubMed

    Levizou, Efi; Statiris, George; Papadimitriou, Theodoti; Laspidou, Chrysi S; Kormas, Konstantinos Ar

    2017-09-01

    This study investigated the microcystins (MCs)-rich irrigation water effect on lettuce of different developmental stages, i.e. during a two months period, covering the whole period from seed germination to harvest at marketable size of the plant. We followed four lettuce plant groups receiving MCs-rich water (1.81μgl -1 of dissolved MCs), originating from the Karla Reservoir, central Greece: 1) from seeds, 2) the cotyledon, 3) two true leaves and 4) four true leaves stages, all of which were compared to control plants that received tap water. Lettuce growth, photosynthetic performance, biochemical and mineral characteristics, as well as MCs accumulation in leaves, roots and soil were measured. The overall performance of lettuce at various developmental stages pointed to increased tolerance since growth showed minor alterations and non-enzymatic antioxidants remained unaffected. Plants receiving MCs-rich water from the seed stage exhibited higher photosynthetic capacity, chlorophylls and leaf nitrogen content. Nevertheless, considerable MCs accumulation in various plant tissues occurred. The earlier in their development lettuce plants started receiving MCs-rich water, the more MCs they accumulated: roots and leaves of plants exposed to MCs-rich water from seeds and cotyledons stage exhibited doubled MCs concentrations compared to respective tissues of the 4 Leaves group. Furthermore, roots accumulated significantly higher MCs amounts than leaves of the same plant group. Concerning human health risk, the Estimated Daily Intake values (EDI) of Seed and Cotyledon groups leaves exceeded Tolerable Daily Intake (TDI) by a factor of 6, while 2 Leaves and 4 Leaves groups exceeded TDI by a factor of 4.4 and 2.4 respectively. Our results indicate that irrigation of lettuce with MCs-rich water may constitute a serious public health risk, especially when contaminated water is received from the very early developmental stages (seed and cotyledon). Finally, results obtained for the tolerant lettuce indicate that MCs bioaccumulation in edible tissues is not necessarily coupled with phytotoxic effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Environmental Assessment Facility Renovation / New Construction and Operation of Marine Corps Units (MAG-42, HMLA-773 and MALS-42) Relocated from Naval Air Station Atlanta to Robins Air Force Base

    DTIC Science & Technology

    2007-08-16

    activities within the area do not significantly adversely or significantly positively impact storm water quality . The Proposed Construction Area does...adversely impact storm water quality . Existing buildings receive limited runoff from the adjacent area to the west; however, no indications of adverse... water quality . Existing buildings receive limited runoff from the adjacent area to the north and west; however, no indications of adverse environmental

  13. Thermal and dissolved oxygen characteristics of a South Carolina cooling reservoir

    USGS Publications Warehouse

    Oliver, James L.; Hudson, Patrick L.

    1987-01-01

    Temperature and dissolved oxygen concentrations were measured monthly from January 1971 to December 1982 at 1-m depth intervals at 13 stations in Keowee Reservoir in order to characterize spatial and temporal changes associated with operation of the Oconee Nuclear Station. The reservoir water column was i to 4°C warmer in operational than in non-operational years. The thermo-dine was at depths of 5 to 15 m before the operation of Oconee Nuclear Station, but was always below the upper level of the intake (20 m) after the station was in full operation; this suggests that pumping by the Oconee Nuclear Station had depleted all available cool hypolimnetic water to this depth. As a result summer water temperatures at depths greater than 10 m were usually 10°C higher after plant operation began than before. By fall the reservoir was nearly homothemious to a depth of 27 m, where a thermocine developed. Seasonal temperature profiles varied with distance from the plant; a cool water plume was evident in spring and a warm water plume was present in the summer, fall, and winter. A cold water plume also developed in the northern section of the reservoir due to the operation of Jocassee Pumped Storage Station. Increases in the mean water temperature of the reservoir during operational periods were correlated with the generating output of the power plant. The annual heat load to the reservoir increased by one-third after plant operations began. The alteration of the thermal stratification of the receiving water during the summer also caused the dissolved oxygen to mix to greater depths.

  14. Long-term reclaimed water application effects on phosphorus leaching potential in rapid infiltration basins.

    PubMed

    Moura, Daniel R; Silveira, Maria L; O'Connor, George A; Wise, William R

    2011-09-01

    Rapid infiltration basins (RIBs) are effective tools for wastewater treatment and groundwater recharge, but continuous application of wastewater can increase soil P concentrations and subsequently impact groundwater quality. The objectives of this study were to (1) investigate the effects of reclaimed water infiltration rate and "age" of RIBs on soil P concentrations at various depths, and (2) estimate the degree (percentage) of sorption equilibrium reached between effluent P and soil attained during reclaimed water application to different RIBs. The study was conducted in four contrasting cells of a RIB system with up to a 25 year history of secondary wastewater application. Soil samples were collected from 0 to 300 cm depth at 30 cm intervals and analyzed for water extractable phosphorus (WEP) and oxalate extractable P, Al, and Fe concentrations. Water extractable P and P saturation ratio (PSR) values were generally greater in the cells receiving reclaimed water compared to control soils, suggesting that reclaimed water P application can increase soil P concentrations and the risk of P movement to greater depths. Differences between treatment and control samples were more evident in cells with longer histories of reclaimed water application due to greater P loading. Data also indicated considerable spatial variability in WEP concentrations and PSR values, especially within cells from RIBs characterized by fast infiltration rates. This occurs because wastewater-P flows through surface soils much faster than the minimum time required for sorption equilibrium to occur. Studies should be conducted to investigate soil P saturation at deeper depths to assess possible groundwater contamination.

  15. 76 FR 10899 - Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention of Dental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... Drinking Water for Prevention of Dental Caries; Extension of Comment Period AGENCY: Office of the Secretary... dental caries while limiting the risk of dental fluorosis. The proposed recommendation was published in... caries has been extended to April 15, 2011. To receive consideration comments must be received no later...

  16. Canopy architecture of a walnut orchard

    NASA Technical Reports Server (NTRS)

    Ustin, Susan L.; Martens, Scott N.; Vanderbilt, Vern C.

    1991-01-01

    A detailed dataset describing the canopy geometry of a walnut orchard was acquired to support testing and comparison of the predictions of canopy microwave and optical inversion models. Measured canopy properties included the quantity, size, and orientation of stems, leaves, and fruit. Eight trees receiving 100 percent of estimated potential evapotranspiration water use and eight trees receiving 33 percent of potential water use were measured. The vertical distributions of stem, leaf, and fruit properties are presented with respect to irrigation treatment. Zenith and probability distributions for stems and leaf normals are presented. These data show that, after two years of reduced irrigation, the trees receiving only 33 percent of their potential water requirement had reduced fruit yields, lower leaf area index, and altered allocation of biomass within the canopy.

  17. Water quality and dissolved inorganic fluxes of N, P, SO₄, and K of a small catchment river in the Southwestern Coast of India.

    PubMed

    Padmalal, D; Remya, S I; Jyothi, S Jissy; Baijulal, B; Babu, K N; Baiju, R S

    2012-03-01

    The southwestern coast of India is drained by many small rivers with lengths less than 250 km and catchment areas less than 6,500 km(2). These rivers are perennial and are also the major drinking water sources in the region. But, the fast pace of urbanization, industrialization, fertilizer intensive agricultural activities and rise in pilgrim tourism in the past four to five decades have imposed marked changes in water quality and solute fluxes of many of these rivers. The problems have aggravated further due to leaching of ionic constituents from the organic-rich (peaty) impervious sub-surface layers that are exposed due to channel incision resulting from indiscriminate instream mining for construction-grade sand and gravel. In this context, an attempt has been made here to evaluate the water quality and the net nutrient flux of one of the important rivers in the southwestern coast of India, the Manimala river which has a length of about 90 km and catchment area of 847 km(2). The river exhibits seasonal variation in most of the water quality parameters (pH, electrical conductivity, dissolved oxygen, total dissolved solids, Ca, Mg, Na, K, Fe, HCO(3), NO(2)-N, NO(3)-N, P[Formula: see text], P[Formula: see text], chloride, SO(4), and SiO(2)). Except for NO(3)-N and SiO(2), all the other parameters are generally enriched in non-monsoon (December-May) samples than that of monsoon (June-November). The flux estimation reveals that the Manimala river transports an amount of 2,308 t y(-1) of dissolved inorganic nitrogen, 87 t y(-1) dissolved inorganic phosphorus, and 9246 t y(-1) of SO(4), and 1984 t y(-1) K into the receiving coastal waters. These together constitute about 23% of the total dissolved fluxes transported by the Manimala river. Based on the study, a set of mitigation measures are also suggested to improve the overall water quality of small catchment rivers of the densely populated tropics in general and the south western coast in particular.

  18. Synergistic effects of mining and urban effluents on the level and distribution of methylmercury in a shallow aquatic ecosystem of the Bolivian Altiplano.

    PubMed

    Alanoca, L; Guédron, S; Amouroux, D; Audry, S; Monperrus, M; Tessier, E; Goix, S; Acha, D; Seyler, P; Point, D

    2016-12-08

    Lake Uru Uru (3686 m a.s.l.) located in the Bolivian Altiplano region receives both mining effluents and urban wastewater discharges originating from the surrounding local cities which are under rapid development. We followed the spatiotemporal distribution of different mercury (Hg) compounds and other metal(oid)s (e.g., Fe, Mn, Sb, Ti and W) in both water and sediments during the wet and dry seasons along a north-south transect of this shallow lake system. Along the transect, the highest Hg and metal(oid) concentrations in both water and sediments were found downstream of the confluences with mining effluents. Although a dilution effect was found for major elements during the wet season, mean Hg and metal(oid) concentrations did not significantly differ from the dry season due to the increase in acid mine drainage (AMD) inputs into the lake from upstream mining areas. In particular, high filtered (<0.45 μm) mono-methylmercury (MMHg) concentrations (0.69 ± 0.47 ng L -1 ) were measured in surface water representing 49 ± 11% of the total filtered Hg concentrations (THgF) for both seasons. Enhanced MMHg lability in relation with the water alkalinity, coupled with abundant organic ligands and colloids (especially for downstream mining effluents), are likely factors favoring Hg methylation and MMHg preservation while inhibiting MMHg photodegradation. Lake sediments were identified as the major source of MMHg for the shallow water column. During the dry season, diffusive fluxes were estimated to be 227 ng m -2 d -1 for MMHg. This contribution was found to be negligible during the wet season due to a probable shift of the redox front downwards in the sediments. During the wet season, the results obtained suggest that various sources such as mining effluents and benthic or macrophytic biofilms significantly contribute to MMHg inputs in the water column. This work demonstrates the seasonally dependent synergistic effect of AMD and urban effluents on the shallow, productive and evaporative high altitude lake ecosystems which promotes the formation of natural organometallic toxins such as MMHg in the water column.

  19. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for South Fork, Wildcat Creek, Clinton County, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1979-01-01

    The Indiana State Board of Health is developing a State water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in South Fork Wildcat Creek was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Natural streamflow during the 7-day, 10-year low flow is zero, so no benefit from dilution is provided. The Indiana State Board of Health 's projected ammonia-nitrogen concentration for the Frankfort wastewater-treatment facility will violate the instream total ammonia-nitrogen standard of 2.5 mg/l and 4.0 mg/l during summer and winter low flows, respectively. The model indicates that nitrification and algal respiration were significant factors affecting the dissolved-oxygen dynamics of South Fork Wildcat Creek during two water-quality surveys. Stream water quality during the two water-quality surveys was degraded by the discharge of wastewater receiving only primary treatment. Benthic deposits resulting from this wastewater discharge seem to exert a considerable oxygen demand. The discharge of partially treated wastewater should be eliminated when a new wastewater-treatment facility becomes operational in mid-1979. Therefore, benthic-oxygen demand due to benthic deposits should become negligible at that time.

  20. POLAR ORGANIC CHEMICAL INTEGRATIVE SAMPLING ...

    EPA Pesticide Factsheets

    The purpose of the research presented in this paper is two-fold: (1) to demonstrate the 4 coupling of two state-of-the-art techniques: a time-weighted polar organic integrative sampler (POCIS) and micro-liquid chromatography-electrospray/ion trap mass spectrometry (u-LC-6 ES/ITMS); and (2) the assessment of these methodologies in a real-world environment -wastewater effluent - for detecting six drugs (four prescription and two illicit). In the effluent from three wastewater treatment plants (WWTP), azithromycin was detected at concentrations ranging from 15ng/L to 66ng/L, equivalent to the total annual release of 0.4 -4 kg into the receiving waters. Detected and confirmed in the effluent from two WWTPs were two illicit drugs methamphetamine and methylenedioxymethamphetamine (MDMA), at 2ng/L and 0.5ng/L, respectively. While the ecotoxicological significance of drugs in environmental matrices, particularly water, has not been closely examined, it can only be surmised that these substances have the potential to adversely affect biota that are continuously exposed to them even at very low levels. The potential for chronic affects on human health is also unknown, but of increasing concern due to the multi use character of water, particularly in densely populated arid areas. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality

  1. Landscape linkages between geothermal activity and solute composition and ecological response in surface waters draining the Atlantic slope of Costa Rica

    USGS Publications Warehouse

    Pringle, Catherine M.; Rowe, Gary L.; Triska, Frank J.; Fernandez, Jose F.; West, John

    1993-01-01

    Surface waters draining three different volcanoes in Costa Rica, ranging from dormant to moderately active to explosive, have a wide range of solute compositions that partly reflects the contribution of different types of solute-rich, geothermal waters. Three major physical transport vectors affect flows of geothermally derived solutes: thermally driven convection of volcanic gases and geothermal fluids; lateral and gravity-driven downward transport of geothermal fluids; and wind dispersion of ash, gases, and acid rain. Specific vector combinations interact to determine landscape patterns in solute chemistry and biota: indicator taxa of algae and bacteria reflect factors such as high temperature, wind-driven or hydrologically transported acidity, high concentrations of various solutes, and chemical precipitation reactions. Many streams receiving geothermally derived solutes have high levels of soluble reactive phosphorus (SRP) (up to 400 µg liter−1), a nutrient that is typically not measured in geochemical studies of geothermal waters. Regional differences in levels of SRP and other solutes among volcanoes were typically not significant due to high local variation in solute levels among geothermally modified streams and between geothermally modified and unmodified streams on each volcano. Geothermal activity along the volcanic spine of Costa Rica provides a natural source of phosphorus, silica, and other solutes and plays an important role in determining emergent landscape patterns in the solute chemistry of surface waters and aquatic biota.

  2. System for delivery of broadcast digital video as an overlay to baseband switched services on a fiber-to-the-home access network

    NASA Astrophysics Data System (ADS)

    Chand, Naresh; Magill, Peter D.; Swaminathan, Venkat S.; Yadvish, R. D.

    1999-04-01

    For low cost fiber-to-the-home (FTTH) passive optical networks (PON), we have studied the delivery of broadcast digital video as an overlay to baseband switched digital services on the same fiber using a single transmitter and a single receiver. We have multiplexed the baseband data at 155.52 Mbps with digital video QPSK channels in the 270 - 1450 MHz range with minimal degradation. We used an additional 860 MHz carrier modulated with 8 Mbps QPSK as a test-signal. An optical to electrical (O/E) receiver using an APD satisfies the power budget needs of ITU-T document G983.x for both class B and C operations (i.e., receiver sensitivity less than -33 dBm for a 10-10 bit error rate) without any FEC for both data and video. The PIN diode O/E receiver nearly satisfies the need for class B operation (-30 dBm receiver sensitivity) of G983 with FEC in QPSK FDM video. For a 155.52 Mbps baseband data transmission and for a given bit error rate, there is approximately 6 dBo1 optical power penalty due to video overlay. Of this, 1 dBo penalty is due to biasing the laser with an extinction ratio reduced from 10 dBo to approximately 6 dBo, and approximately 5 dBo penalty is due to receiver bandwidth increasing from approximately 100 MHz to approximately 1 GHz. The penalty due to receiver is after optimizing the filter for baseband data, and is caused by the reduced value of feedback resistor of the first stage transimpedance amplifier. The optical power penalty for video transmission is about 2 dBo due to reduced optical modulation index.

  3. The Effectiveness of Heterotrophic Bacteria Isolated from Dumai Marine Waters of Riau, Used as Antibacterial against Pathogens in Fish Culture

    NASA Astrophysics Data System (ADS)

    Feliatra, F.; Nursyirwani; Tanjung, A.; Adithiya, DS; Susanna, M.; Lukystyowati, I.

    2018-02-01

    Heterotrophic bacteria have an important role as decomposer of organic compounds (mineralization) derived from industrial waste, decomposition of unconsumed feed, faecal, excretion of fish, and have the ability to inhibit the growth of pathogenic bacteria. We investigated the role of heterotrophic bacteria used as antibacterial against pathogens in fish culture.This research was conducted from January until March 2017. The phylogenitic of the isolated bacterial was determined by 16S rDNA sequences analysis. Antagonism test showed that the bacteria had the ability to inhibit the growth of pathogenic bacteria (Vibrio alginolyticus, Aeromonas hydrophila and Pseudomonas sp.) Three isolates (Dm5, Dm6 and Dm4) indicated high inhibition zones which were classified into strong category with the average from 10.5 to 11.8 mm toward V. alginolitycus. Other isolates were classified into medium and weak category. Based on DNA analysis of heterotrophic bacteria isolated from marine waters of industrial area and low salinity of estuarine waters twelve strains of bacteria were identified, and all had highest level of homology to Bacillus sp.,one isolates has similarity to Enterobacter cloacae, other isolates to Clostridium cetobutylicum. Most of isolated bacteria obtained from the waters of industrial area due to it received much of nutrients that very influenced the growth of bacteria.

  4. Surface temperature measurements of a levitated water drop during laser irradiation

    NASA Astrophysics Data System (ADS)

    Brownell, Cody; Tracey, Timothy

    2016-11-01

    Simulation of high energy laser propagation and scattering in the maritime environment is problematic, due to the high liklihood of turbulence, fog, and rain or sea spray within the beam path. Laser interactions with large water drops (diameters of approximately 1-mm), such as those found in a light rain, have received relatively less attention. In this regime a high energy laser will rapidly heat and vaporize a water drop as it traverses the beam path, but the exact heating / vaporization rate, its dependence on impurities, and ancillary effects on the drop or surroundings are unclear. In this work we present surface temperature measurements of a water drop obtained using a FLIR IR camera. The drop is acoustically levitated, and subject to a continuous wave laser with a wavelength of 1070-nm and a mean irradiance of approximately 500 W/cm2. These measurements show that the steady-state surface temperature of the drop is well below the saturation temperature, yet based on the time history of the drop volume vaporization begins almost immediately upon laser strike. Inferences on the turbulence characteristics within the drop are also made from measurements of the fluctuations in the surface temperature. Supported by ONR, HEL-JTO, and USNA Trident Scholar Program.

  5. Chemical Composition and Potential Environmental Impacts of Water-Soluble Polar Crude Oil Components Inferred from ESI FT-ICR MS

    PubMed Central

    Liu, Yina; Kujawinski, Elizabeth B.

    2015-01-01

    Polar petroleum components enter marine environments through oil spills and natural seepages each year. Lately, they are receiving increased attention due to their potential toxicity to marine organisms and persistence in the environment. We conducted a laboratory experiment and employed state-of-the-art Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to characterize the polar petroleum components within two operationally-defined seawater fractions: the water-soluble fraction (WSF), which includes only water-soluble molecules, and the water-accommodated fraction (WAF), which includes WSF and microscopic oil droplets. Our results show that compounds with higher heteroatom (N, S, O) to carbon ratios (NSO:C) than the parent oil were selectively partitioned into seawater in both fractions, reflecting the influence of polarity on aqueous solubility. WAF and WSF were compositionally distinct, with unique distributions of compounds across a range of hydrophobicity. These compositional differences will likely result in disparate impacts on environmental health and organismal toxicity, and thus highlight the need to distinguish between these often-interchangeable terminologies in toxicology studies. We use an empirical model to estimate hydrophobicity character for individual molecules within these complex mixtures and provide an estimate of the potential environmental impacts of different crude oil components. PMID:26327219

  6. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges.

    PubMed

    Moussa, Dina T; El-Naas, Muftah H; Nasser, Mustafa; Al-Marri, Mohammed J

    2017-01-15

    Electrocoagulation is an effective electrochemical approach for the treatment of different types of contaminated water and has received considerable attention in recent years due its high efficiency in dealing with numerous stubborn pollutants. It has been successful in dealing with organic and inorganic contaminants with negligible or almost no generation of by-product wastes. During the past decade, vast amount of research has been devoted to utilizing electrocoagulation for the treatment of several types of wastewater, ranging from polluted groundwater to highly contaminated refinery wastewater. This paper offers a comprehensive review of recent literature that has been dedicated to utilizing electrocoagulation for water treatment, focusing on current successes on specific applications in water and wastewater treatment, as well as potentials for future applications. The paper examines such aspects as theory, potential applications, current challenges, recent developments as well as economical concerns associated with the technology. Most of the recent EC research has been focusing on pollutant-specific evaluation without paying attention to cell design, process modeling or industrial applications. This review attempts to highlight the main achievements in the area and outlines the major shortcomings with recommendations for promising research options that can enhance the technology and broaden its range of applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. SHARAD Penetrates Only the Youngest Geological Units on Mars

    NASA Astrophysics Data System (ADS)

    Stillman, D.; Grimm, R. E.

    2009-12-01

    The SHAllow RADar (SHARAD) instrument on the Mars Reconnaissance Orbiter was intended to receive echoes from up to 1 km deep in the rocky martian subsurface. Such deep penetration only occurs in the icy polar caps and in certain ice-rich units. In fact, over the majority of the rocky units of Mars, only surface echoes are detected. Therefore, rocky units are more attenuating than expected. To gain insight into the cause of this attenuation, we correlated SHARAD subsurface reflectors with a geologic map of the northern plains of Mars [Tanaka et al., 2005]. Our survey was restricted to this area due to general smoother topography and hence less potential influence of surface scattering (clutter). All released SHARAD data (approximately 1,500 radargrams) overlying the geologic map were individually interpreted. Geologic units were categorized by their map description into ice-rich, pristine volcanic, and water-altered units. The last category comprises units interpreted to be fluvial, lacustrine, or periglacial in origin, as well as volcanic and other units that were subsequently altered by water or ice. Radar reflections in each unit were further categorized as abundant, occasional, or none. We found that abundant reflections are only detected in geologic units that are Amazonian in age, and ice-rich or pristine volcanic. No reflections are seen in water altered units. Occasional reflections are detected in Hesperian-aged pristine volcanic units. We propose two endmember hypotheses for this attenuation behavior, scattering and absorption, but they could act jointly. The young pristine volcanic units that SHARAD penetrates consist of thick (about 50 m) flood basalts or tuff. These units are expected to have cooling joints in them, but little if any other heterogeneity; therefore their scattering loss should be small. With increasing age and thermoelastic stress due to global cooling and contraction, these previously homogeneous volcanics could become increasingly fractured, thus more efficient at scattering. Under this hypothesis, all of the water-altered units have significant subwavelength heterogeneity due to their primary mode of origin or secondary alteration. Alternatively, absorption due to the dielectric relaxation of adsorbed water could influence the attenuation. Alteration minerals such as phyllosilicates and palagonite drastically increase the surface area and can hold up to three monolayers of adsorbed water at martian temperatures. Our lab measurements indicate that about 6% phyllosilicates or 15% palagonite by volume can completely attenuate the reflected signal of an interface at a depth of 30 m; which is the shallowest depth SHARAD can detect due to sidelobe effects. These minerals would not be confined to Noachian units as currently suggested by orbital spectroscopy. A smaller proportion of hydrated minerals could be accommodated if the shallow geotherm is steep, or if alteration minerals are below the detection threshold due to their degree of hydration or grain size. In either case, subsurface radar attenuation on Mars is less than that of the Earth, but more than that of the Moon. Tanaka, K.L., J.A. Skinner, and T.M. Hare (2005) Geologic map of the northern plains of Mars, USGS Sci. Invest. Map, 2888.

  8. Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water.

    PubMed

    Wu, Ming-Hong; Que, Chen-Jing; Xu, Gang; Sun, Yan-Feng; Ma, Jing; Xu, Hui; Sun, Rui; Tang, Liang

    2016-10-01

    The occurrence and fate of 12 commonly used antibiotics, two fluoroquinolones (FQs), three sulfonamides (SAs), three macrolides (MLs), two β-lactams and two tetracyclines (TCs), were studied in four sewage treatment plants (STPs) and their receiving water, the Huangpu River, Shanghai. The levels of selected antibiotics in the STPs ranged from ngL(-1) to μgL(-1), while ofloxacin (OFL) was predominant (reach up to 2936.94ngL(-1)). The highest and lowest proportions were of FQs (STP 1, STP 2 and STP 3) and TCs (in four STPs) respectively in both influents and effluents. And the second-highest proportion was of FQs in STP 4 (only 2% lower than the highest). What could be inferred was that the usage of TCs were extremely low while the usage of FQs were larger than other antibiotics in our study area. The elimination of antibiotics through these STPs was incomplete and a wide range of removal efficiencies (-442.8% to 100%) during the treatment was observed. Based on the mass loadings as well as the per-capita mass loadings of target antibiotics in four STPs, OFL was considered the primary contaminant herein. In the Huangpu River, 3 antibiotics were not detected in any water samples, while the detection frequencies of 4 antibiotics were 100%. The highest concentration detected in the river was 53.91ngL(-1) of sulfapyridine (SD). The Spearman correlation analysis of antibiotics in STPs and the nearby water samples suggests that the antibiotics discharged from some STPs might influence the receiving water to some extent. Moreover, most of the hazard quotient (HQ) values in STP effluents were one order magnitude higher than those in their receiving water. However, there is no imminent significant ecotoxicological risk caused by any single compound in the effluents and receiving waters. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effects of waste-disposal practices on ground-water quality at five poultry (broiler) farms in north-central Florida, 1992-93

    USGS Publications Warehouse

    Hatzell, H.H.

    1995-01-01

    Waste-disposal areas such as chicken-house floors, litter stockpiles, fields that receive applications of litter, and dead-chicken pits are potential sources of nitrates and other chemical constituents in downward-percolating recharge water. Broiler- farms in north-central Florida are concentrated in a region where the Upper Floridan aquifer is unconfined and susceptible to contamination. Eighteen monitoring wells installed at five sites were sampled quarterly from March 1992 through January 1993. Increases in median concentrations of constituents relative to an upgradient well were used to determine the source of the nitrate at two sites. At these sites, increases in the median concentrations of nitrate as nitrogen in ground water in the vicinity of waste-disposal areas at these sites were: 5.4 mg/L for one chicken house; 9.0 mg/L for a second chicken house; 2.0 mg/L for a fallow field that received an application of litter; and, 2.0 mg/L for a dead-chicken pit. At the three remaining sites where the direction of local ground-water flow could not be ascertained, the sources of concentrations of nitrate and other constituents could not be determined. However, median nitrate concentrations in the vicinity of waste-disposal areas at these sites were: 45.5 mg/L for a set of two chicken houses; 3.0 mg/L for a stockpile area; and 2.1 mg/L for a hayfield that received an application of litter. The nitrate concentration in ground water in the vicinity of a field that had previously received heavy applications of litter increased from 3.0 mg/L to 105 mg/L approximately 4 months after receiving an application of commercial fertilizer. Increases in concentrations of organic nitrogen in ground water in the vicinity of waste-disposal areas may be related to the decomposition of litter and subsequent movement with downward percolating recharge water.(USGS)

  10. Nutrient load can lead to enhanced CH4 fluxes through changes in vegetation, peat surface elevation and water table depth in ombrotrophic bog

    NASA Astrophysics Data System (ADS)

    Juutinen, Sari; Bubier, Jill; Larmola, Tuula; Humphreys, Elyn; Arnkil, Sini; Roy, Cameron; Moore, Tim

    2016-04-01

    Atmospheric nitrogen (N) deposition has led to nutrient enrichment in wetlands, particularly in temperate areas, affecting plant community composition, carbon (C) cycling, and microbial dynamics. It is vital to understand the temporal scales and mechanisms of the changes, because peatlands are long-term sinks of C, but sources of methane (CH4), an important greenhouse gas. Rainwater fed (ombrotrophic) bogs are considered to be vulnerable to nutrient loading due to their natural nutrient poor status. We fertilized Mer Bleue Bog, a Sphagnum moss and evergreen shrub-dominated ombrotrophic bog near Ottawa, Ontario, now for 11-16 years with N (NO3 NH4) at 0.6, 3.2, and 6.4 g N m-2 y-1 (~5, 10 and 20 times ambient N deposition during summer months) with and without phosphorus (P) and potassium (K). Treatments were applied to triplicate plots (3 x 3 m) from May - August 2000-2015 and control plots received distilled water. We measured CH4 fluxes with static chambers weekly from May to September 2015 and peat samples were incubated in laboratory to measure CH4 production and consumption potentials. Methane fluxes at the site were generally low, but after 16 years, mean CH4 emissions have increased and more than doubled in high nitrogen addition treatments if P and K input was also increased (3.2 and 6.4 g N m-2yr-1 with PK), owing to drastic changes in vegetation and soil moisture. Vegetation changes include a loss of Sphagnum moss and introduction of new species, typical to minerogenic mires, which together with increased decomposition have led to decreased surface elevation and to higher water table level relative to the surface. The trajectories indicate that the N only treatments may result in similar responses, but only over longer time scales. Elevated atmospheric deposition of nutrients to peatlands may increase loss of C not only due to changes in CO2 exchange but also due to enhanced CH4 emissions in peatlands through a complex suite of feedbacks and interactions among vegetation, microclimate, and microbial processes. It is uncertain, however, how the vegetation change continues due to collapsing surface and higher water table levels, and how that will affect future CH4 emissions and C balance.

  11. Uncertainty in BMP evaluation and optimization for watershed management

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Cibin, R.; Sudheer, K.; Her, Y.

    2012-12-01

    Use of computer simulation models have increased substantially to make watershed management decisions and to develop strategies for water quality improvements. These models are often used to evaluate potential benefits of various best management practices (BMPs) for reducing losses of pollutants from sources areas into receiving waterbodies. Similarly, use of simulation models in optimizing selection and placement of best management practices under single (maximization of crop production or minimization of pollutant transport) and multiple objective functions has increased recently. One of the limitations of the currently available assessment and optimization approaches is that the BMP strategies are considered deterministic. Uncertainties in input data (e.g. precipitation, streamflow, sediment, nutrient and pesticide losses measured, land use) and model parameters may result in considerable uncertainty in watershed response under various BMP options. We have developed and evaluated options to include uncertainty in BMP evaluation and optimization for watershed management. We have also applied these methods to evaluate uncertainty in ecosystem services from mixed land use watersheds. In this presentation, we will discuss methods to to quantify uncertainties in BMP assessment and optimization solutions due to uncertainties in model inputs and parameters. We have used a watershed model (Soil and Water Assessment Tool or SWAT) to simulate the hydrology and water quality in mixed land use watershed located in Midwest USA. The SWAT model was also used to represent various BMPs in the watershed needed to improve water quality. SWAT model parameters, land use change parameters, and climate change parameters were considered uncertain. It was observed that model parameters, land use and climate changes resulted in considerable uncertainties in BMP performance in reducing P, N, and sediment loads. In addition, climate change scenarios also affected uncertainties in SWAT simulated crop yields. Considerable uncertainties in the net cost and the water quality improvements resulted due to uncertainties in land use, climate change, and model parameter values.

  12. 76 FR 38158 - Meeting of the National Drinking Water Advisory Council; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... water supplies. The Council will also receive updates about several on-going drinking water program... ENVIRONMENTAL PROTECTION AGENCY [FRL-9425-8] Meeting of the National Drinking Water Advisory... meeting of the National Drinking Water Advisory Council (NDWAC), established under the Safe Drinking Water...

  13. Assessing the value of multi-receiver low-frequency electromagnetic-induction (EMI) measurement for assessing variation in soil moisture content in field experiments with winter wheat (Triticum aestivum)

    NASA Astrophysics Data System (ADS)

    Shanahan, Peter; Binley, Andrew; Dodd, Ian; Whalley, Richard; Watts, Chris; Ashton, Rhys; Ober, Eric

    2014-05-01

    In large plant breeding field trials with multiple genotypes, measuring soil water status (an indicator of crop water uptake) by conventional techniques (e.g. core extraction and penetration resistance) is limited by the cost and effort needed to achieve sufficient replication to apply robust statistical analysis. Geophysical methods may provide a more cost-effective means of more assessing valuable information about soil water status for such studies. We present here results from a field experiment using geophysical techniques for remote mapping of soil water content on sandy loam and silt loam soils in spring/summer 2013 in the UK. The aim of the study was to assess electromagnetic-induction (EMI) conductivity measurements for sensitivity to variations in shallow soil electrical properties and the spatial and temporal mapping of soil water. The CMD Mini-Explorer (GF Instruments) operates with three receiver coils at fixed distances from a transmitter coil (0.32 m, 0.71 m, 1.2 m). Measurement of magnetic field quadrature in horizontal coplanar (HC) and vertical coplanar (VC) of the three receiver coils provides six depths of investigation for the given coil spacing cumulative sensitivities. At the two field sites the instrument was applied to measuring apparent electrical conductivity (ECa) below 7.0 x 1.8 m plots consisting of 23 rain fed winter wheat cultivars and bare soil fallow control plots. These plots were sown in March 2013 and organised into a randomised block design. Electrical resistivity tomography (ERT) surveys along 15 m transects were also conducted at the two sites in order to compare EMI measured ECa. Our results show that progressive soil drying at both sites due to crop uptake significantly decreased (p<0.05) soil ECa. The difference in soil ECa as a result of water uptake between cultivars was found to be significant (p<0.05) from one of the coil configurations (coil spacing 1.8m in HC mode), and only at the silty loam site (no significant difference was found in data from the sandy loam site). The difference in soil ECa over time was expected owing to crop root development and low rainfall during the growing season. It was expected that soil ECa between certain cultivars in the June and July would differ over all investigation depths at both sites. It was not possible in this study to produce calibrations for EMI measured ECa from the ERT data. Our study confirms the suitability of multi-core EMI devices for efficient and repeatable measurements of soil ECa in trials of winter wheat cultivars, providing data on soil ECa with minimal user requirements and instrument error. Differences in soil ECa as a result of crop water uptake was, however, not fully conclusive, since water extraction by the different cultivars is difficult to detect with the instrument, especially on sandy textured soils. The full-depth of investigation (1.8 m) of the instrument used on silt loam soil textures can provide qualitative data on crop performance. Over time, with gradual soil drying, the instrument detected reductions in ECa at all depths of investigation in both sandy and silt textured soils. Further analysis will be done using profiles of electrical conductivity determined from inversions of measured ECa values. ERT data calibration of EMI measured ECa was not possible due to lower than expected variation in ECa measured along the 15 m transect over the field season. This has meant a change in the methodology by having transects crossing soil with greater vertical variation in ECa (determined from field EMI surveys) and surface conditions (e.g. bare and cropped soil).

  14. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (5) Loss of water supply is not a basis for assistance under this authority. (6) Water will not be... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Emergency water supplies due to... PROCEDURES Emergency Water Supplies: Contaminated Water Sources and Drought Assistance § 203.61 Emergency...

  15. Viral Pollution of Surface Waters Due to Chlorinated Primary Effluents

    PubMed Central

    Sattar, Syed A.; Westwood, J. C. N.

    1978-01-01

    The role of chlorinated primary effluents in viral pollution of the Ottawa River (Ontario) was assessed by examining 282 field samples of wastewaters from two different sewage treatment plants over a 2-year period. The talc-Celite technique was used for sample concentration, and BS-C-1 cells were employed for virus detection. Viruses were detected in 80% (75/94) of raw sewage, 72% (68/94) of primary effluent, and 56% (53/94) of chlorinated effluent samples. Both raw sewage and primary effluent samples contained about 100 viral infective units (VIU) per 100 ml. Chlorination produced a 10- to 50-fold reduction in VIU and gave nearly 2.7 VIU/100 ml of chlorinated primary effluent. With a combined daily chlorinated primary effluent output of approximately 3.7 × 108 liters, these two plants were discharging 1.0 × 1010 VIU per day. Because the river has a mean annual flow of 8.0 × 1010 liters per day, these two sources alone produced a virus loading of 1.0 VIU/8 liters of the river water. This river also receives at least 9.0 × 107 liters of raw sewage per day and undetermined but substantial amounts of storm waters and agricultural wastes. It is used for recreation and acts as a source of potable water for some 6.0 × 105 people. In view of the potential of water for disease transmission, discharge of such wastes into the water environment needs to be minimized. PMID:215085

  16. Effects of water additions, chemical amendments, and plants on in situ measures of nutrient bioavailability in calcareous soils of southeastern Utah, USA

    USGS Publications Warehouse

    Miller, M.E.; Belnap, J.; Beatty, S.W.; Webb, B.L.

    2006-01-01

    We used ion-exchange resin bags to investigate effects of water additions, chemical amendments, and plant presence on in situ measures of nutrient bioavailability in conjunction with a study examining soil controls of ecosystem invasion by the exotic annual grass Bromus tectorum L. At five dryland sites in southeastern Utah, USA, resin bags were buried in experimental plots randomly assigned to combinations of two watering treatments (wet and dry), four chemical-amendment treatments (KCl, MgO, CaO, and no amendment), and four plant treatments (B. tectorum alone, the perennial bunchgrass Stipa hymenoides R. & S. alone, B. tectorum and S. hymenoides together, and no plants). Resin bags were initially buried in September 1997; replaced in January, April, and June 1998; and removed at the end of the study in October 1998. When averaged across watering treatments, plots receiving KCl applications had lower resin-bag NO 3- than plots receiving no chemical amendments during three of four measurement periods-probably due to NO 3- displacement from resin bags by Cl- ions. During the January-April period, KCl application in wet plots (but not dry plots) decreased resin-bag NH 4+ and increased resin-bag NO 3- . This interaction effect likely resulted from displacement of NH 4+ from resins by K+ ions, followed by nitrification and enhanced NO 3- capture by resin bags. In plots not receiving KCl applications, resin-bag NH 4+ was higher in wet plots than in dry plots during the same period. During the January-April period, resin-bag measures for carbonate-related ions HPO 42- , Ca2+, and Mn2+ tended to be greater in the presence of B. tectorum than in the absence of B. tectorum. This trend was evident only in wet plots where B. tectorum densities were much higher than in dry plots. We attribute this pattern to the mobilization of carbonate-associated ions by root exudates of B. tectorum. These findings indicate the importance of considering potential indirect effects of soil amendments performed in conjunction with resource-limitation studies, and they suggest the need for further research concerning nutrient acquisition mechanisms of B. tectorum. ?? 2006 Springer Science+Business Media B.V.

  17. Space Radar Image of North Atlantic Ocean

    NASA Image and Video Library

    1999-04-15

    This is a radar image showing surface features on the open ocean in the northeast Atlantic Ocean. There is no land mass in this image. The purple line in the lower left of the image is the stern wake of a ship. The ship creating the wake is the bright white spot on the middle, left side of the image. The ship's wake is about 28 kilometers (17 miles) long in this image and investigators believe that is because the ship may be discharging oil. The oil makes the wake last longer and causes it to stand out in this radar image. A fairly sharp boundary or front extends from the lower left to the upper right corner of the image and separates two distinct water masses that have different temperatures. The different water temperature affects the wind patterns on the ocean. In this image, the light green area depicts rougher water with more wind, while the purple area is calmer water with less wind. The dark patches are smooth areas of low wind, probably related to clouds along the front, and the bright green patches are likely due to ice crystals in the clouds that scatter the radar waves. The overall "fuzzy" look of this image is caused by long ocean waves, also called swells. Ocean radar imagery allows the fine detail of ocean features and interactions to be seen, such as the wake, swell, ocean front and cloud effects, which can then be used to enhance the understanding of ocean dynamics on smaller and smaller scales. The image is centered at 42.8 degrees north latitude, 26.2 degrees west longitude and shows an area approximately 35 kilometers by 65 kilometers (22 by 40 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is C-band horizontally transmitted, horizontally received; blue is L-band vertically transmitted, vertically received. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on April 11, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth. http://photojournal.jpl.nasa.gov/catalog/PIA01799

  18. Calculation of intercepted runoff depth based on stormwater quality and environmental capacity of receiving waters for initial stormwater pollution management.

    PubMed

    Peng, Hai-Qin; Liu, Yan; Gao, Xue-Long; Wang, Hong-Wu; Chen, Yi; Cai, Hui-Yi

    2017-11-01

    While point source pollutions have gradually been controlled in recent years, the non-point source pollution problem has become increasingly prominent. The receiving waters are frequently polluted by the initial stormwater from the separate stormwater system and the wastewater from sewage pipes through stormwater pipes. Consequently, calculating the intercepted runoff depth has become a problem that must be resolved immediately for initial stormwater pollution management. The accurate calculation of intercepted runoff depth provides a solid foundation for selecting the appropriate size of intercepting facilities in drainage and interception projects. This study establishes a separate stormwater system for the Yishan Building watershed of Fuzhou City using the InfoWorks Integrated Catchment Management (InfoWorks ICM), which can predict the stormwater flow velocity and the flow of discharge outlet after each rainfall. The intercepted runoff depth is calculated from the stormwater quality and environmental capacity of the receiving waters. The average intercepted runoff depth from six rainfall events is calculated as 4.1 mm based on stormwater quality. The average intercepted runoff depth from six rainfall events is calculated as 4.4 mm based on the environmental capacity of the receiving waters. The intercepted runoff depth differs when calculated from various aspects. The selection of the intercepted runoff depth depends on the goal of water quality control, the self-purification capacity of the water bodies, and other factors of the region.

  19. Heavy-metal pollution assessment in the coastal lagoons of Jacarepaguá, Rio de Janeiro, Brazil.

    PubMed

    Fernandes, H M; Bidone, E D; Veiga, L H; Patchineelam, S R

    1994-01-01

    The Jacarepaguá lagoon receives the waste from 239 industries and domestic sewage. Bottom sediment analysis revealed that metal pollution is not spread over the lagoons but restricted to the discharge areas of the main metal-carrier rivers. Metal concentrations in superficial water showed the following concentrations values in ng/ml: Zn, 9.63+/-3.59; Pb, 0.61+/-0.43; Cu, 0.94+/-0.45; Mn, 12.7+/-8.0. Metal concentration in fish (average of seven different species) presented the following results, in mg/kg wet weight: Cr, 0.08+/-0.01; Cu, 0.4+/-0.15; Zn, 4.6+/-3.4; Fe, 2.4+/-1.3; Mn, 0.4+/-0.3. These results imply, considering fish consumption rate and the RfD (USEPA Reference Dose), that the local population is not exposed to undue health risks. Metal concentrations in the water may, however, increase due to their dissolution induced by pH and redox changes in the sediments.

  20. Elastic parabolic equation and normal mode solutions for seismo-acoustic propagation in underwater environments with ice covers.

    PubMed

    Collis, Jon M; Frank, Scott D; Metzler, Adam M; Preston, Kimberly S

    2016-05-01

    Sound propagation predictions for ice-covered ocean acoustic environments do not match observational data: received levels in nature are less than expected, suggesting that the effects of the ice are substantial. Effects due to elasticity in overlying ice can be significant enough that low-shear approximations, such as effective complex density treatments, may not be appropriate. Building on recent elastic seafloor modeling developments, a range-dependent parabolic equation solution that treats the ice as an elastic medium is presented. The solution is benchmarked against a derived elastic normal mode solution for range-independent underwater acoustic propagation. Results from both solutions accurately predict plate flexural modes that propagate in the ice layer, as well as Scholte interface waves that propagate at the boundary between the water and the seafloor. The parabolic equation solution is used to model a scenario with range-dependent ice thickness and a water sound speed profile similar to those observed during the 2009 Ice Exercise (ICEX) in the Beaufort Sea.

  1. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunjo; Zhang, Shuzeng; Barnard, Dan; Li, Xiongbing

    2015-09-01

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α2 ≃ 2α1.

  2. Marine debris on beaches of Arraial do Cabo, RJ, Brazil: An important coastal tourist destination.

    PubMed

    Silva, Melanie Lopes da; Castro, Rebeca Oliveira; Sales, Alessandro Souza; Araújo, Fábio Vieira de

    2018-05-01

    Arraial do Cabo, RJ, Brazil, is known as the diving capital due to its clear waters and great biodiversity, a consequence of the upwelling phenomenon. This feature attracts tourists tripling their population during holidays, causing increase in the amount of debris on beaches and waters endangering marine biodiversity. To evaluate the amount of solid waste found on beaches in two different holiday period, eight people in each beach collected macrodebris (≥2 cm) in a transect covering an 20 m wide area, during 20 min, in winter/2015 and summer/2017. The materials were weighed, quantified and characterized. In the summer, when the number of tourists is greater, a larger total amount of waste in units were found. Plastic and cigarette butts were the most abundant. The results show that the city does not have adequate planning to receive a large amount of tourists, being vulnerable to socioeconomic and environmental damages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Effects of combined sewer overflow and stormwater on indicator bacteria concentrations in the Tama River due to the high population density of Tokyo Metropolitan area.

    PubMed

    Ham, Young-Sik; Kobori, Hiromi; Takasago, Masahisa

    2009-05-01

    The indicator bacteria (standard plate count, total coliform, and fecal coliform bacteria) concentrations have been investigated using six ambient habitats (population density, percent sewer penetration, stream flow rate (m(3)/sec), percent residential area, percent forest area and percent agricultural area) in the Tama River basin in Tokyo, Japan during June 2003 to January 2005. The downstream and tributary Tama River showed higher concentrations of TC and FC bacteria than the upstream waters, which exceeded an environmental quality standard for rivers and a bathing water quality criterion. It was estimated that combined sewer overflow (CSO) and stormwater effluents contributed -4-23% to the indicator bacteria concentrations of the Tama River. The results of multiple regression analyses show that the indicator bacteria concentrations of Tama River basin are significantly affected by population density. It is concluded that the Tama River received a significant bacterial contamination load originating from the anthropogenic source.

  4. Ecotoxicological assessment of bluegill sunfish inhabiting a selenium-enriched fly ash stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reash, R.J.; Lohner, T.W.; Wood, K.V.

    1999-07-01

    Little Scary Creek (LSC), a 2nd-order tributary of the Kanawha River in West Virginia, receives treated fly ash produced during coal combustion. Selenium and other trace metals were determined in water column and sediment samples, caddisflies, and bluegill sunfish liver and gonads during 1995--96 to estimate pathways of selenium exposure and assess the likelihood of toxic effects. Selenium levels in LSC water and sediment samples, and in caddisflies were elevated compared to reference sites. Mean dry weight selenium concentrations in bluegill liver, ovary, and tested tissue equaled or exceeded published toxic thresholds. Other trace metals were significantly higher in LSCmore » bluegill. Leukopenia, elevated serum salts, and lowered liver weight were found in LSC bluegill. Fewer older bluegill were found in LSC. Sunfish in LSC are experiencing various kinds of sublethal stress, presumably due to metals exposure. However, major toxic effects that would be predicted to occur based on tissue selenium levels (complete reproductive failure or mortality) have not been observed in this population.« less

  5. Protective Effect of Propolis in Proteinuria, Crystaluria, Nephrotoxicity and Hepatotoxicity Induced by Ethylene Glycol Ingestion.

    PubMed

    El Menyiy, Nawal; Al Waili, Noori; Bakour, Meryem; Al-Waili, Hamza; Lyoussi, Badiaa

    2016-10-01

    Propolis is a natural honeybee product with wide biological activities and potential therapeutic properties. The aim of the study is to evaluate the protective effect of propolis extract on nephrotoxicity and hepatotoxicity induced by ethylene glycol in rats. Five groups of rats were used. Group 1 received drinking water, group 2 received 0.75% ethylene-glycol in drinking water, group 3 received 0.75% ethylene-glycol in drinking water along with cystone 500 mg/kg/body weight (bw) daily, group 4 received 0.75% ethylene-glycol in drinking water along with propolis extract at a dose of 100 mg/kg/bw daily, and group 5 received 0.75% ethylene-glycol in drinking water along with propolis extract at a dose of 250 mg/kg/bw daily. The treatment continued for a total of 30 d. Urinalyses for pH, crystals, protein, creatinine, uric acid and electrolytes, and renal and liver function tests were performed. Ethylene-glycol increased urinary pH, urinary volume, and urinary calcium, phosphorus, uric acid and protein excretion. It decreased creatinine clearance and magnesium and caused crystaluria. Treatment with propolis extract or cystone normalized the level of magnesium, creatinine, sodium, potassium and chloride. Propolis is more potent than cystone. Propolis extract alleviates urinary protein excretion and ameliorates the deterioration of liver and kidney function caused by ethylene glycol. Propolis extract has a potential protective effect against ethylene glycol induced hepatotoxicity and nephrotoxicity and has a potential to treat and prevent urinary calculus, crystaluria and proteinuria. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  6. Improved Calibration of Modeled Discharge and Storage Change in the Atchafalaya Floodplain Using SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Jung, Hahn Chul; Jasinski, Michael; Kim, Jin-Woo; Shum, C. K.; Bates, Paul; Neal, Jeffrey; Lee, Hyongki; Alsdorf, Doug

    2011-01-01

    This study focuses on the feasibility of using SAR interferometry to support 2D hydrodynamic model calibration and provide water storage change in the floodplain. Two-dimensional (2D) flood inundation modeling has been widely studied using storage cell approaches with the availability of high resolution, remotely sensed floodplain topography. The development of coupled 1D/2D flood modeling has shown improved calculation of 2D floodplain inundation as well as channel water elevation. Most floodplain model results have been validated using remote sensing methods for inundation extent. However, few studies show the quantitative validation of spatial variations in floodplain water elevations in the 2D modeling since most of the gauges are located along main river channels and traditional single track satellite altimetry over the floodplain are limited. Synthetic Aperture Radar (SAR) interferometry recently has been proven to be useful for measuring centimeter-scale water elevation changes over the floodplain. In the current study, we apply the LISFLOOD hydrodynamic model to the central Atchafalaya River Basin, Louisiana, during a 62 day period from 1 April to 1 June 2008 using two different calibration schemes for Manning's n. First, the model is calibrated in terms of water elevations from a single in situ gauge that represents a more traditional approach. Due to the gauge location in the channel, the calibration shows more sensitivity to channel roughness relative to floodplain roughness. Second, the model is calibrated in terms of water elevation changes calculated from ALOS PALSAR interferometry during 46 days of the image acquisition interval from 16 April 2008 to 1 June 2009. Since SAR interferometry receives strongly scatters in floodplain due to double bounce effect as compared to specular scattering of open water, the calibration shows more dependency to floodplain roughness. An iterative approach is used to determine the best-fit Manning's n for the two different calibration approaches. Results suggest similar floodplain roughness but slightly different channel roughness. However, application of SAR interferometry provides a unique view of the floodplain flow gradients, not possible with a single gauge calibration. These gradients, allow improved computation of water storage change over the 46-day simulation period. Overall, the results suggest that the use of 2D SAR water elevation changes in the Atchafalaya basin offers improved understanding and modeling of floodplain hydrodynamics.

  7. Low dose dietary nitrate improves endothelial dysfunction and plaque stability in the ApoE-/- mouse fed a high fat diet.

    PubMed

    Bakker, J R; Bondonno, N P; Gaspari, T A; Kemp-Harper, B K; McCashney, A J; Hodgson, J M; Croft, K D; Ward, N C

    2016-10-01

    Nitric oxide (NO) is an important vascular signalling molecule. NO is synthesised endogenously by endothelial nitric oxide synthase (eNOS). An alternate pathway is exogenous dietary nitrate, which can be converted to nitrite and then stored or further converted to NO and used immediately. Atherosclerosis is associated with endothelial dysfunction and subsequent lesion formation. This is thought to arise due to a reduction in the bioavailability and/or bioactivity of endogenous NO. To determine if dietary nitrate can protect against endothelial dysfunction and lesion formation in the ApoE -/- mouse fed a high fat diet (HFD). ApoE -/- fed a HFD were randomized to receive (i) high nitrate (10mmol/kg/day, n=12), (ii) moderate nitrate (1mmol/kg/day, n=8), (iii) low nitrate (0.1mmol/kg/day, n=8), or (iv) sodium chloride supplemented drinking water (control, n=10) for 10 weeks. A group of C57BL6 mice (n=6) received regular water and served as a healthy reference group. At 10 weeks, ACh-induced vessel relaxation was significantly impaired in ApoE -/- mice versus C57BL6. Mice supplemented with low or moderate nitrate showed significant improvements in ACh-induced vessel relaxation compared to ApoE -/- mice given the high nitrate or sodium chloride. Plaque collagen expression was increased and lipid deposition reduced following supplementation with low or moderate nitrate compared to sodium chloride, reflecting increased plaque stability with nitrate supplementation. Plasma nitrate and nitrite levels were significantly increased in all three groups fed the nitrate-supplemented water. Low and moderate dose nitrate significantly improved endothelial function and atherosclerotic plaque composition in ApoE -/- mice fed a HFD. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The effect of river pulsing on sedimentation and nutrients in created riparian wetlands.

    PubMed

    Nahlik, Amanda M; Mitsch, William J

    2008-01-01

    Sedimentation under pulsed and steady-flow conditions was investigated in two created flow-through riparian wetlands in central Ohio over 2 yr. Hydrologic pulses of river water lasting for 6 to 8 d were imposed on each wetland from January through June during 2004. Mean inflow rates during pulses averaged 52 and 7 cm d(-1) between pulses. In 2005, the wetlands received a steady-flow regime of 11 cm d(-1) with no major hydrologic fluctuations. Thirty-two sediment traps were deployed and sampled once per month in April, May, June, and July for two consecutive years in each wetland. January through March were not sampled in either year due to frozen water surfaces in the wetlands. Gross sedimentation (sedimentation without normalizing for differences between years) was significantly greater in the pulsing study period (90 kg m(-2)) than in the steady-flow study period (64 kg m(-2)). When normalized for different hydrologic and total suspended solid inputs between years, sedimentation for April through July was not significantly different between pulsing and steady-flow study periods. Sedimentation for the 3 mo that received hydrologic pulses (April, May, and June) was significantly lower during pulsing months than in the corresponding steady-flow months. Large fractions of inorganic matter in collected sediments indicated that allochthonous inputs were the main contributor to sedimentation in these wetlands. Organic matter fractions of collected sediments were consistently greater in the steady-flow study period (1.8 g kg(-1)) than in the pulsed study period (1.5 g kg(-1)), consistent with greater primary productivity in the water column during steady-flow conditions.

  9. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.

    2010-01-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  10. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.

    PubMed

    Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T

    2010-02-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.

  11. Effects of highway runoff on streamflow and water quality in the Sevenmile Creek basin, a rural area in the Piedmont Province of North Carolina, July 1981 to July 1982

    USGS Publications Warehouse

    Harned, Douglas

    1988-01-01

    An evaluation of water-quality data from streams that receive stormwater runoff from a segment of Interstate Highway 85 in North Carolina indicated increased levels of many constituents compared to levels in nearby undeveloped basins. Additional data collected from a network of dry and wet atmospheric deposition collectors, lysimeter samples, soil surveys, wind measurements, and road sweepings helped define the general sources and migration of chemical substances near the highway. The eight study basins, located in a rural area in the Piedmont of North Carolina, had a combined area of 17.5 square miles and drained a 4.8-mile-long segment of the interstate. The average traffic flow along this section was 25,000 vehicles per day. During storm runoff, streamflow in basins traversed by the highway rose and fell more rapidly than that in the undeveloped basins. This more rapid response is due to the impervious, paved area of the basins and the manmade drainage systems designed to rapidly move water off the highway. Alkalinity, specific conductance, and concentrations of calcium, sodium, and chloride were greater at the highway stations than in the undeveloped basins as a result of highway salting for control of ice. Specific conductance and concentrations of dissolved and total nitrogen peaked at the beginning of each storm event. The data indicated that, for the study basins, highway runoff had little or no effect on suspended sediment, water temperature, dissolved oxygen, and pH. However, the pH at all stations decreased during stormflow because the rainfall drained off by the streams had pH values less than 5.7. High metals concentrations were found in the soils within 100 feet of the highway and in the soil water infiltrating the soil zone. Chromium, copper, nickel, and zinc concentrations in the streams near the highway generally were above the maximum levels recommended by the U.S. Environmental Protection Agency (EPA) for the protection of aquatic life. Lead and cadmium concentrations frequently exceeded the maximum levels recommended by the EPA for drinking water. The highway is a source of contaminants to surrounding areas. Particulate and metal loads in dustfall and chemical-constituent concentrations in soils decrease exponentially with distance from the highway. The highest concentrations of contaminants were found on the downwind side. Increased concentrations of metals (cadmium, chromium, iron, lead, nickel, and zinc) in rainfall were observed in samples collected near the highway and in samples collected approximately one-half mile away. Material loading due to dustfall was greater than loading due to rainfall. Loading due to saltated particles, those heavier particles bounced along the highway surface, was higher than loading due to dustfall. Saltation loads were greatest during the winter months because of highway deicing and sanding, which supplied an estimated two-thirds of the saltated materials. The remaining one-third of the saltated load came primarily from the deposition of particles from vehicles. Some of the greatest constituent concentrations were measured in the soil water sampled from the lysimeters located adjacent to the highway.

  12. Influence of enrofloxacin traces in drinking water to doxycycline tissue pharmacokinetics in healthy and infected by Mycoplasma gallisepticum broiler chickens.

    PubMed

    Gbylik-Sikorska, Malgorzata; Posyniak, Andrzej; Sniegocki, Tomasz; Sell, Bartosz; Gajda, Anna; Sawicka, Anna; Olszewska-Tomczyk, Monika; Bladek, Tomasz; Tomczyk, Grzegorz; Zmudzki, Jan

    2016-04-01

    Most of antibiotics, administrated in the treatment of poultry diseases are dissolved in drinking water, and it can lead to water supply systems contamination, especially when the regular cleaning is not using. This situation can lead to unconscious administration of low doses of antibiotics to untreated animals. The aim of this study was to clarify the impact of the exposure of enrofloxacin traces (500 μg l(-1)) to doxycycline pharmacokinetics in healthy and experimentally Mycoplasma gallisepticum infected broiler chickens., Two experimental groups, received of enrofloxacin in water and all groups, received 20 mg kg(-1) bw of doxycycline. The compounds concentrations in muscles and livers were determined by LC-MS/MS. The maximum drug tissue concentration (Cmax) of doxycycline was highest in liver obtained from infected chickens which, received enrofloxacin traces (ENR + DC/MG). It was about 40% higher than in healthy chickens from group I which received only doxycycline. It was found that the concentration-time curve AUC(0-t) values in group ENR + DC/MG were almost 75% higher than in the group (DC) and 35% higher than in group (ENR + DC) which also received enrofloxacin traces. The constant exposure of broiler chickens on enrofloxacin traces as well as infection, may significantly influenced on doxycycline tissue pharmacokinetic profile. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Indicators: Dissolved Oxygen

    EPA Pesticide Factsheets

    Dissolved oxygen (DO) is the amount of oxygen that is present in water. It is an important measure of water quality as it indicates a water body's ability to support aquatic life. Water bodies receive oxygen from the atmosphere and from aquatic plants.

  14. 20 CFR 10.207 - May an employee who returns to work, then stops work again due to the effects of the injury...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... stops work again due to the effects of the injury, receive COP? 10.207 Section 10.207 Employees... Eligibility for Cop § 10.207 May an employee who returns to work, then stops work again due to the effects of the injury, receive COP? If the employee recovers from disability and returns to work, then becomes...

  15. 20 CFR 10.207 - May an employee who returns to work, then stops work again due to the effects of the injury...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... stops work again due to the effects of the injury, receive COP? 10.207 Section 10.207 Employees... Eligibility for Cop § 10.207 May an employee who returns to work, then stops work again due to the effects of the injury, receive COP? If the employee recovers from disability and returns to work, then becomes...

  16. 20 CFR 10.207 - May an employee who returns to work, then stops work again due to the effects of the injury...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... stops work again due to the effects of the injury, receive COP? 10.207 Section 10.207 Employees... Eligibility for Cop § 10.207 May an employee who returns to work, then stops work again due to the effects of the injury, receive COP? If the employee recovers from disability and returns to work, then becomes...

  17. 20 CFR 10.207 - May an employee who returns to work, then stops work again due to the effects of the injury...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... stops work again due to the effects of the injury, receive COP? 10.207 Section 10.207 Employees... Eligibility for Cop § 10.207 May an employee who returns to work, then stops work again due to the effects of the injury, receive COP? If the employee recovers from disability and returns to work, then becomes...

  18. 20 CFR 10.207 - May an employee who returns to work, then stops work again due to the effects of the injury...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... stops work again due to the effects of the injury, receive COP? 10.207 Section 10.207 Employees... Eligibility for Cop § 10.207 May an employee who returns to work, then stops work again due to the effects of the injury, receive COP? If the employee recovers from disability and returns to work, then becomes...

  19. Characterizing phosphorus dynamics in tile-drained agricultural fieldsof eastern Wisconsin

    USGS Publications Warehouse

    Madison, Allison; Ruark, Matthew; Stuntebeck, Todd D.; Komiskey, Matthew J.; Good, Laura W.; Drummy, Nancy; Cooley, Eric

    2014-01-01

    Artificial subsurface drainage provides an avenue for the rapid transfer of phosphorus (P) from agricultural fields to surface waters. This is of particular interest in eastern Wisconsin, where there is a concentrated population of dairy farms and high clay content soils prone to macropore development. Through collaboration with private landowners, surface and tile drainage was measured and analyzed for dissolved reactive P (DRP) and total P (TP) losses at four field sites in eastern Wisconsin between 2005 and 2009. These sites, which received frequent manure applications, represent a range of crop management practices which include: two chisel plowed corn fields (CP1, CP2), a no-till corn–soybean field (NT), and a grazed pasture (GP). Subsurface drainage was the dominant pathway of water loss at each site accounting for 66–96% of total water discharge. Average annual flow-weighted (FW) TP concentrations were 0.88, 0.57, 0.21, and 1.32 mg L−1 for sites CP1, CP2, NT, and GP, respectively. Low TP concentrations at the NT site were due to tile drain interception of groundwater flow where large volumes of tile drainage water diluted the FW-TP concentrations. Subsurface pathways contributed between 17% and 41% of the TP loss across sites. On a drainage event basis, total drainage explained between 36% and 72% of the event DRP loads across CP1, CP2, and GP; there was no relationship between event drainflow and event DRP load at the NT site. Manure applications did not consistently increase P concentrations in drainflow, but annual FW-P concentrations were greater in years receiving manure applications compared to years without manure application. Based on these field measures, P losses from tile drainage must be integrated into field level P budgets and P loss calculations on heavily manured soils, while also acknowledging the unique drainage patterns observed in eastern Wisconsin.

  20. Characterizing phosphorus dynamics in tile-drained agricultural fields of eastern Wisconsin

    NASA Astrophysics Data System (ADS)

    Madison, Allison M.; Ruark, Matthew D.; Stuntebeck, Todd D.; Komiskey, Matthew J.; Good, Lara W.; Drummy, Nancy; Cooley, Eric T.

    2014-11-01

    Artificial subsurface drainage provides an avenue for the rapid transfer of phosphorus (P) from agricultural fields to surface waters. This is of particular interest in eastern Wisconsin, where there is a concentrated population of dairy farms and high clay content soils prone to macropore development. Through collaboration with private landowners, surface and tile drainage was measured and analyzed for dissolved reactive P (DRP) and total P (TP) losses at four field sites in eastern Wisconsin between 2005 and 2009. These sites, which received frequent manure applications, represent a range of crop management practices which include: two chisel plowed corn fields (CP1, CP2), a no-till corn-soybean field (NT), and a grazed pasture (GP). Subsurface drainage was the dominant pathway of water loss at each site accounting for 66-96% of total water discharge. Average annual flow-weighted (FW) TP concentrations were 0.88, 0.57, 0.21, and 1.32 mg L-1 for sites CP1, CP2, NT, and GP, respectively. Low TP concentrations at the NT site were due to tile drain interception of groundwater flow where large volumes of tile drainage water diluted the FW-TP concentrations. Subsurface pathways contributed between 17% and 41% of the TP loss across sites. On a drainage event basis, total drainage explained between 36% and 72% of the event DRP loads across CP1, CP2, and GP; there was no relationship between event drainflow and event DRP load at the NT site. Manure applications did not consistently increase P concentrations in drainflow, but annual FW-P concentrations were greater in years receiving manure applications compared to years without manure application. Based on these field measures, P losses from tile drainage must be integrated into field level P budgets and P loss calculations on heavily manured soils, while also acknowledging the unique drainage patterns observed in eastern Wisconsin.

  1. Hell and High Water: Diminished Septic System Performance in Coastal Regions Due to Climate Change

    PubMed Central

    Cooper, Jennifer A.; Loomis, George W.; Amador, Jose A.

    2016-01-01

    Climate change may affect the ability of soil-based onsite wastewater treatment systems (OWTS) to treat wastewater in coastal regions of the Northeastern United States. Higher temperatures and water tables can affect treatment by reducing the volume of unsaturated soil and oxygen available for treatment, which may result in greater transport of pathogens, nutrients, and biochemical oxygen demand (BOD5) to groundwater, jeopardizing public and aquatic ecosystem health. The soil treatment area (STA) of an OWTS removes contaminants as wastewater percolates through the soil. Conventional STAs receive wastewater from the septic tank, with infiltration occurring deeper in the soil profile. In contrast, shallow narrow STAs receive pre-treated wastewater that infiltrates higher in the soil profile, which may make them more resilient to climate change. We used intact soil mesocosms to quantify the water quality functions of a conventional and two types of shallow narrow STAs under present climate (PC; 20°C) and climate change (CC; 25°C, 30 cm elevation in water table). Significantly greater removal of BOD5 was observed under CC for all STA types. Phosphorus removal decreased significantly from 75% (PC) to 66% (CC) in the conventional STA, and from 100% to 71–72% in shallow narrow STAs. No fecal coliform bacteria (FCB) were released under PC, whereas up to 17 and 20 CFU 100 mL-1 were released in conventional and shallow narrow STAs, respectively, under CC. Total N removal increased from 14% (PC) to 19% (CC) in the conventional STA, but decreased in shallow narrow STAs, from 6–7% to less than 3.0%. Differences in removal of FCB and total N were not significant. Leaching of N in excess of inputs was also observed in shallow narrow STAs under CC. Our results indicate that climate change can affect contaminant removal from wastewater, with effects dependent on the contaminant and STA type. PMID:27583363

  2. Hell and High Water: Diminished Septic System Performance in Coastal Regions Due to Climate Change.

    PubMed

    Cooper, Jennifer A; Loomis, George W; Amador, Jose A

    2016-01-01

    Climate change may affect the ability of soil-based onsite wastewater treatment systems (OWTS) to treat wastewater in coastal regions of the Northeastern United States. Higher temperatures and water tables can affect treatment by reducing the volume of unsaturated soil and oxygen available for treatment, which may result in greater transport of pathogens, nutrients, and biochemical oxygen demand (BOD5) to groundwater, jeopardizing public and aquatic ecosystem health. The soil treatment area (STA) of an OWTS removes contaminants as wastewater percolates through the soil. Conventional STAs receive wastewater from the septic tank, with infiltration occurring deeper in the soil profile. In contrast, shallow narrow STAs receive pre-treated wastewater that infiltrates higher in the soil profile, which may make them more resilient to climate change. We used intact soil mesocosms to quantify the water quality functions of a conventional and two types of shallow narrow STAs under present climate (PC; 20°C) and climate change (CC; 25°C, 30 cm elevation in water table). Significantly greater removal of BOD5 was observed under CC for all STA types. Phosphorus removal decreased significantly from 75% (PC) to 66% (CC) in the conventional STA, and from 100% to 71-72% in shallow narrow STAs. No fecal coliform bacteria (FCB) were released under PC, whereas up to 17 and 20 CFU 100 mL-1 were released in conventional and shallow narrow STAs, respectively, under CC. Total N removal increased from 14% (PC) to 19% (CC) in the conventional STA, but decreased in shallow narrow STAs, from 6-7% to less than 3.0%. Differences in removal of FCB and total N were not significant. Leaching of N in excess of inputs was also observed in shallow narrow STAs under CC. Our results indicate that climate change can affect contaminant removal from wastewater, with effects dependent on the contaminant and STA type.

  3. Statistical Method for Identification of Potential Groundwater Recharge Zone

    NASA Astrophysics Data System (ADS)

    Banerjee, Pallavi; Singh, V. S.

    2010-05-01

    The effective development of groundwater resource is essential for a country like India. Artificial recharge is the planned, human activity of augmenting the amount of groundwater available through works designed to increase the natural replenishment or percolation of surface waters into the groundwater aquifers, resulting in a corresponding increase in the amount of groundwater available for abstraction. India receives good amount of average annual rainfall about 114 cm but most of it's part waste through runoff. The imbalance between rainfall and recharge has caused serious shortage of water for drinking, agriculture and industrial purposes. The over exploitation of groundwater due to increasing population is an additional cause of water crisis that resulting in reduction in per capita availability of water in the country. Thus the planning for effective development of groundwater is essential through artificial recharge. Objective of the paper is to identification of artificial recharge zones by arresting runoff through suitable sites to restore groundwater conditions using statistical technique. The water table variation follows a pattern similar to rainfall variation with time delay. The rainfall and its relationship with recharge is a very important process in a shallow aquifer system. Understanding of this process is of critical importance to management of groundwater resource in any terrain. Groundwater system in a top weathered regolith in a balastic terrain forms shallow aquifer is often classified into shallow water table category. In the present study an effort has been made to understand the suitable recharge zone with relation to rainfall and water level by using statistical analysis. Daily time series data of rainfall and borehole water level data are cross correlated to investigate variations in groundwater level response time during the months of monsoon. This measurement facilitate to demarcate favorable areas for Artificial Recharge. KEYWORDS: Water level; Rainfall; Recharge; Statistical analysis; Cross correlation.

  4. Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Bandini, Filippo; Jakobsen, Jakob; Olesen, Daniel; Reyna-Gutierrez, Jose Antonio; Bauer-Gottwein, Peter

    2017-05-01

    The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts have been devoted to the retrieval of these hydraulic properties from spaceborne platforms in the past few decades. However, due to coarse spatial and temporal resolutions, spaceborne missions have several limitations when assessing the water level of terrestrial surface water bodies and determining complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turn-around time, using flexible payload design. This study focused on categorizing and testing sensors, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric height). Three different ranging payloads, which consisted of a radar, a sonar and an in-house developed camera-based laser distance sensor (CLDS), have been evaluated in terms of accuracy, precision, maximum ranging distance and beam divergence. After numerous flights, the relative accuracy of the overall system was estimated. A ranging accuracy better than 0.5% of the range and a maximum ranging distance of 60 m were achieved with the radar. The CLDS showed the lowest beam divergence, which is required to avoid contamination of the signal from interfering surroundings for narrow fields of view. With the GNSS system delivering a relative vertical accuracy better than 3-5 cm, water level can be retrieved with an overall accuracy better than 5-7 cm.

  5. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion.

    PubMed

    Yan, Zhenhua; Yang, Haohan; Dong, Huike; Ma, Binni; Sun, Hongwei; Pan, Ting; Jiang, Runren; Zhou, Ranran; Shen, Jie; Liu, Jianchao; Lu, Guanghua

    2018-08-01

    Water diversion has been increasingly applied to improve water quality in many water bodies. However, little is known regarding pollution by organic micropollutants (OMPs) in water diversion projects, especially at the supplier, and this pollution may threaten the quality of transferred water. In the present study, a total of 110 OMPs belonging to seven classes were investigated in water and sediment collected from a supplier of the Yangtze River within four water diversion projects. A total of 69 and 58 target OMPs were detected in water and sediment, respectively, at total concentrations reaching 1041.78 ng/L and 5942.24 ng/g dry weight (dw). Polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals were the predominant pollutants identified. When preliminarily compared with the pollution in the receiving water, the Yangtze River generally exhibited mild OMPs pollution and good water quality parameters, implying a clean water source in the water diversion project. However, in Zongyang and Fenghuangjing, PAHs pollution was more abundant than that in the corresponding receiving water in Chaohu Lake. Ammonia nitrogen pollution in the Wangyu River was comparable to that in Taihu Lake. These findings imply that water diversion may threaten receiving waters in some cases. In addition, the risks of all detected pollutants in both water and sediment were assessed. PAHs in water, especially phenanthrene and high-molecular-weight PAHs, posed high risks to invertebrates, followed by the risks to fish and algae. Pharmaceuticals, such as antibiotics and antidepressants, may also pose risks to algae and fish at a number of locations. To the best of our knowledge, this report is the first to describe OMPs pollution in water diversion projects, and the results provide a new perspective regarding the security of water diversion projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. A preliminary risk assessment of trace elements accumulated in fish to the Indo-Pacific Humpback dolphin (Sousa chinensis) in the northwestern waters of Hong Kong.

    PubMed

    Hung, C L H; So, M K; Connell, D W; Fung, C N; Lam, M H W; Nicholson, S; Richardson, B J; Lam, P K S

    2004-08-01

    In order to assess the potential risks associated with consumption of contaminated prey items to the Indo-Pacific Humpback dolphin (Sousa chinensis), fish species (Collichthys lucida, Pseudosciaena crocea, Johnius sp., Thryssa sp., Mugil sp. and Trichiurus sp.) representing the main food items of the dolphin were collected from the northwestern waters of Hong Kong, including the Sha Chau and Lung Kwu Chau Marine Park, which form the main habitat of the dolphin in Hong Kong. Within these waters, there are several potential sources of pollution including significant inputs from the Pearl River catchment, several major sewage outfalls and a series of mud pits that receive contaminated dredged sediments. Concentrations of thirteen trace elements (Ag, As, Cd, Co, Cr, Cs, Cu, Hg, Mn, Ni, Se, V, and Zn) in the fish tissue were analyzed by inductively coupled plasma mass spectrometer (ICP-MS). An assessment of the risks of adverse effects on the dolphin due to consumption of tainted fish was undertaken using two toxic reference benchmarks, namely the reference dose (RfD) and toxicity reference value (TRV). The risk quotient (RQ) calculated for each element showed that the risks from consumption of fish were generally low and within safe limits. The risks associated with arsenic, cadmium and mercury were, however, elevated. The highest calculated RQ was associated with total arsenic; however, the majority of arsenic in marine organisms tends to be in the non-toxic organic form, and the actual risk to the dolphin due to this metalloid is likely to be lower.

  7. Usage of Riot Control Agents and other methods resulting in physical and psychological injuries sustained during civil unrest in Turkey in 2013.

    PubMed

    Unuvar, Umit; Yilmaz, Deniz; Ozyildirim, Ilker; Dokudan, Erenc Y; Korkmaz, Canan; Doğanoğlu, Senem; Kutlu, Levent; Fincanci, Sebnem Korur

    2017-01-01

    Turkey has experienced a wave of demonstrations in the summer of 2013, called Gezi Park Demonstrations. Between 31 May and 30 August, 297 people who had been subjected to trauma by several methods of demonstration control and Riot Control Agents applied to the Human Rights Foundation of Turkey Rehabilitation Centers to receive treatment/rehabilitation and/or documentation. 296 patients except one 5-year-old child were included in the study. Of the 296 patients; 175 were male, 120 were female, and one was a transgender individual. The highest number of applications was received by the Istanbul center with 216 patients. The mean age of applicants was 33.85, and the age range was 15-71 years. While 268 of applicants (91%) stated that they had been exposed to Riot Control Agents, 62 patients suffered only chemical exposure who had no other traumatic injuries whereas 234 patients suffered at least one blunt trauma injury. Blunt trauma injuries are due to being shot by gas canisters in 127 patients (43%), by plastic bullets in 31 patients (10%). 59 patients (20%) were severely beaten, and 30 patients (10%) were injured by pressurized cold water ejected by water cannons. Thirteen patients (4.4%) suffered injuries that caused loss of vision or eye. Psychiatric evaluations were carried out for 117 patients while 43% of them were diagnosed with Acute Stress Disorder. Post Traumatic Stress Disorder and Major Depressive Disorder followed this diagnosis. This study includes the medical evaluation of injuries allegedly sustained during Gezi Park demonstrations in 2013 as a result of several methods of demonstration control and/or by being exposed to Riot Control Agents. The aim is to discuss different types of injuries due to those methods and health consequences of Riot Control Agents. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  8. Remote monitoring of left ventricular assist device parameters after HeartAssist-5 implantation.

    PubMed

    Pektok, Erman; Demirozu, Zumrut Tuba; Arat, Nurcan; Yildiz, Omer; Oklu, Emine; Eker, Deniz; Ece, Ferah; Ciftci, Cavlan; Yazicioglu, Nuran; Bayindir, Osman; Kucukaksu, Deniz Suha

    2013-09-01

    Although several left ventricular assist devices (LVADs) have been used widely, remote monitoring of LVAD parameters has been available only recently. We present our remote monitoring experience with an axial-flow LVAD (HeartAssist-5, MicroMed Cardiovascular, Inc., Houston, TX, USA). Five consecutive patients who were implanted a HeartAssist-5 LVAD because of end-stage heart failure due to ischemic (n=4) or idiopathic (n=1) cardiomyopathy, and discharged from hospital between December 2011 and January 2013 were analyzed. The data (pump speed, pump flow, power consumption) obtained from clinical visits and remote monitoring were studied. During a median follow-up of 253 (range: 80-394) days, fine tuning of LVADs was performed at clinical visits. All patients are doing well and are in New York Heart Association Class-I/II. A total of 39 alarms were received from three patients. One patient was hospitalized for suspected thrombosis and was subjected to physical examinations as well as laboratory and echocardiographic evaluations; however, no evidence of thrombus washout or pump thrombus was found. The patient was treated conservatively. Remaining alarms were due to insufficient water intake and were resolved by increased water consumption at night and summer times, and fine tuning of pump speed. No alarms were received from the remaining two patients. We believe that remote monitoring is a useful technology for early detection and treatment of serious problems occurring out of hospital thereby improving patient care. Future developments may ease troubleshooting, provide more data from the patient and the pump, and eventually increase physician and patient satisfaction. Despite all potential clinical benefits, remote monitoring should be taken as a supplement to rather than a substitute for routine clinical visits for patient follow-up. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  9. 33 CFR 17.01-10 - Authority to receive gifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Authority to receive gifts. 17.01... GENERAL UNITED STATES COAST GUARD GENERAL GIFT FUND General Provisions § 17.01-10 Authority to receive gifts. (a) The Commandant, United States Coast Guard, may accept, receive, hold, or administer gifts...

  10. Aquatic disposal field investigations Galveston, Texas, offshore disposal site. Evaluative summary. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, T.D.; Mathis, D.B.; Brannon, J.M.

    This study was part of an investigation to determine the environmental effects of offshore dredged material disposal at Galveston, Texas. The biological portion of the study was conducted in two phases: a pilot survey of the dredged material disposal site (DMDS) to determine the areal distribution of the biota and sediments; and an experimental study to assess the effect of dredged material disposal on the biota at selected sites in the DMDS. Three experimental sites were investigated: a sandy bottom that received sand, shell, and silt-clay dredged material; a muddy bottom that received sand and shell dredged material; and amore » muddy bottom that received silt-clay dredged material. The magnitude of the effect on the benthic populations could not be accurately assessed because adequate predisposal data on natural sediment and benthic population changes were not available. Dredged material deposits had no apparent effect on feeding habits of fish or on the distribution of nekton, although some nektonic species may have congregated in the turbid water following dredged material disposal. Zooplankton and phytoplankton studies detected no population changes during disposal that could not have been due to sampling error. It is probable that sudden abiotic changes and commercial fishing activities cause more destruction of biota than dredging-related activities.« less

  11. MODIS Views North Pole

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image over the North Pole was acquired by the MODerate-resolution Imaging Spectroradiometer (MODIS), flying aboard the Terra spacecraft, on May 5, 2000. The scene was received and processed by Norway's MODIS Direct Broadcast data receiving station, located in Svalbard, within seconds of photons hitting the sensor's detectors. (Click for more details about MODIS Direct Broadcast data.) In this image, the sea ice appears white and areas of open water, or recently refrozen sea surface, appear black. The irregular whitish shapes toward the bottom of the image are clouds, which are often difficult to distinguish from the white Arctic surface. Notice the considerable number of cracks, or 'leads,' in the ice that appear as dark networks of lines. Throughout the region within the Arctic Circle leads are continually opening and closing due to the direction and intensity of shifting wind and ocean currents. Leads are particularly common during the summer, when temperatures are higher and the ice is thinner. In this image, each pixel is one square kilometer. Such true-color views of the North Pole are quite rare, as most of the time much of the region within the Arctic Circle is cloaked in clouds. Image by Allen Lunsford, NASA GSFC Direct Readout Laboratory; Data courtesy Tromso receiving station, Svalbard, Norway

  12. Assessing the effect of administering probiotics in water or as a feed supplement on broiler performance and immune response.

    PubMed

    Karimi Torshizi, M A; Moghaddam, A R; Rahimi, Sh; Mojgani, N

    2010-04-01

    1. Two routes of probiotic administration in broiler farms, in water and in feed, were compared using 360 one-day-old male broiler chickens. Controls received no probiotics or antimicrobials. The water group received a probiotic preparation at a rate of 0.5 g/l, and the feed group received it at an inclusion rate of 1 g/kg. 2. Performance of broilers in terms body weight gain (BWG), feed intake (FI) and feed conversion ratio (FCR) improved when probiotic was provided via drinking water, compared to the control and feed groups. Probiotic administration reduced plasma cholesterol and triglyceride concentrations. 3. Spleen (28 and 42 d) and bursa (42 d) relative weights were influenced by method of probiotic administration, which also improved T-cell dependent skin thickness response to phytohaemagglutinin (PHA) injection. The effect of challenge by dinitrochlorobenzene (DNCB) depended on the method of probiotic administration. 4. The method of probiotic administration can influence the performance and immune competence of birds, and administration via drinking water appears to be superior to the more conventional in-feed supplementation method.

  13. Using Low-Cost GNSS Receivers to Investigate the Small-Scale Precipitable Water Vapor Variability in the Atmosphere for Improving High Resolution Rainfall Forecasts

    NASA Astrophysics Data System (ADS)

    Krietemeyer, Andreas; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2017-04-01

    Recent research has shown that assimilation of Precipitable Water Vapor (PWV) measurements into numerical weather predictions models improve the quality of rainfall now- and forecasting. Local PWV fluctuations may be related with water vapor increases in the lower troposphere which lead to deep convection. Prior studies show that about 20 minutes before rain occurs, the amount of water vapor in the atmosphere at 1 km height increases. Monitoring the small-scale temporal and spatial variability of PWV is therefore crucial to improve the weather now- and forecasting for convective storms, that are typically critical for urban stormwater systems. One established technique to obtain PWV measurements in the atmosphere is to exploit signal delays from GNSS satellites to dual-frequency receivers on the ground. Existing dual-frequency receiver networks typically have inter-station distances in the order of tens of kilometers, which is not sufficiently dense to capture the small-scale PWV variations. In this study, we will add low-cost, single-frequency GNSS receivers to an existing dual-frequency receiver network to obtain an inter-station distance of about 1 km in the Rotterdam area (Netherlands). The aim is to investigate the spatial variability of PWV in the atmosphere at this scale. We use the surrounding dual-frequency network (distributed over a radius of approximately 25 km) to apply an ionospheric delay model that accounts for the delay in the ionosphere (50-1000 km altitude) that cannot be eliminated by single-frequency receivers. The results are validated by co-aligning a single-frequency receiver to a dual-frequency receiver. In the next steps, we will investigate how the high temporal and increased spatial resolution network can help to improve high-resolution rainfall forecasts. Their supposed improved forecasting results will be evaluated based on high-resolution rainfall estimates from a polarimetric X-band rainfall radar installed in the city of Rotterdam.

  14. Nitrate source indicators in ground water of the Scimitar Subdivision, Peters Creek area, Anchorage, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Strelakos, Pat M.; Jokela, Brett

    2000-01-01

    A combination of aqueous chemistry, isotopic measurement, and in situ tracers were used to study the possible nitrate sources, the factors contributing to the spatial distribution of nitrate, and possible septic system influence in the ground water in the Scimitar Subdivision, Municipality of Anchorage, Alaska. Two water types were distinguished on the basis of the major ion chemistry: (1) a calcium sodium carbonate water, which was associated with isotopically heavier boron and with chlorofluorocarbons (CFC's) that were in the range expected from equilibration with the atmosphere (group A water) and (2) a calcium magnesium carbonate water, which was associated with elevated nitrate, chloride, and magnesium concentrations, generally isotopically lighter boron, and CFC's concentrations that were generally in excess of that expected from equilibration with the atmosphere (group B water). Water from wells in group B had nitrate concentrations that were greater than 3 milligrams per liter, whereas those in group A had nitrate concentrations of 0.2 milligram per liter or less. Nitrate does not appear to be undergoing extensive transformation in the ground-water system and behaves as a conservative ion. The major ion chemistry trends and the presence of CFC's in excess of an atmospheric source for group B wells are consistent with waste-water influences. The spatial distribution of the nitrate among wells is likely due to the magnitude of this influence on any given well. Using an expanded data set composed of 16 wells sampled only for nitrate concentration, a significant difference in the static water level relative to bedrock was found. Well water samples with less than 1 milligram per liter nitrate had static water levels within the bedrock, whereas those samples with greater than 1 milligram per liter nitrate had static water levels near or above the top of the bedrock. This observation would be consistent with a conceptual model of a low-nitrate fractured bedrock aquifer that receives slow recharge from an overlying nitrate-enriched surficial aquifer.

  15. Study of ecological compensation in complex river networks based on a mathematical model.

    PubMed

    Wang, Xiao; Shen, Chunqi; Wei, Jun; Niu, Yong

    2018-05-31

    Transboundary water pollution has resulted in increasing conflicts between upstream and downstream administrative districts. Ecological compensation is an efficient means of restricting pollutant discharge and achieving sustainable utilization of water resources. The tri-provincial region of Taihu Basin is a typical river networks area. Pollutant flux across provincial boundaries in the Taihu Basin is hard to determine due to complex hydrologic and hydrodynamic conditions. In this study, ecological compensation estimation for the tri-provincial area based on a mathematical model is investigated for better environmental management. River discharge and water quality are predicted with the one-dimensional mathematical model and validated with field measurements. Different ecological compensation criteria are identified considering the notable regional discrepancy in sewage treatment costs. Finally, the total compensation payment is estimated. Our study indicates that Shanghai should be the receiver of payment from both Jiangsu and Zhenjiang in 2013, with 305 million and 300 million CNY, respectively. Zhejiang also contributes more pollutants to Jiangsu, and the compensation to Jiangsu is estimated as 9.3 million CNY. The proposed ecological compensation method provides an efficient way for solving the transboundary conflicts in a complex river networks area and is instructive for future policy-making.

  16. Biological monitoring of iodine, a water disinfectant for long-term space missions

    NASA Technical Reports Server (NTRS)

    Zareba, G.; Cernichiari, E.; Goldsmith, L. A.; Clarkson, T. W.

    1995-01-01

    In order to establish guidelines for exposure of astronauts to iodine, used as a water disinfectant in space, we studied the usefulness of hair, saliva, and urine for biological monitoring in humans and in the human hair/nude mouse model. The monitoring of iodine in patients that received 150 mCi of Na131I (carrier-free) showed similar patterns of elimination for blood, saliva, and urine. The mean correlation coefficient (r) between iodine elimination for blood/saliva was 0.99, for blood/urine, 0.95, and for saliva/urine, 0.97. The absolute value of iodine concentrations in urine revealed marked variability, which was corrected by adjusting for creatinine levels. The autoradiographic studies of human hair demonstrated that iodine is rapidly incorporated into external layers of the hair root and can be removed easily during washing. These data were confirmed after iodine exposure using the human hair/nude mouse model. Hair does not provide satisfactory information about exposure due to unstable incorporation of iodine. The most useful medium for biological monitoring of astronauts exposed to high doses of iodine in drinking water is urine, when adjusted for creatinine, and saliva, if quantitative evaluation of flow rate is provided.

  17. Utilising monitoring and modelling of estuarine environments to investigate catchment conditions responsible for stratification events in a typically well-mixed urbanised estuary

    NASA Astrophysics Data System (ADS)

    Lee, Serena B.; Birch, Gavin F.

    2012-10-01

    Estuarine health is affected by contamination from stormwater, particularly in highly-urbanised environments. For systems where catchment monitoring is insufficient, novel techniques must be employed to determine the impact of urban runoff on receiving water bodies. In the present work, estuarine monitoring and modelling were successfully employed to determine stormwater runoff volumes and establish an appropriate rainfall/runoff relationship capable of replicating fresh-water discharge due to the full range of precipitation conditions in the Sydney Estuary, Australia. Using estuary response to determine relationships between catchment rainfall and runoff is a widely applicable method and may be of assistance in the study of waterways where monitoring fluvial discharges is not practical or is beyond the capacity of management authorities. For the Sydney Estuary, the SCS-CN method replicated rainfall/runoff and was applied in numerical modelling experiments investigating the hydrodynamic characteristics affecting stratification and estuary recovery following high precipitation. Numerical modelling showed stratification in the Sydney Estuary was dominated by fresh-water discharge. Spring tides and up-estuary winds contributed to mixing and neap tides and down-estuary winds enhanced stratification.

  18. An effective method of UV-oxidation of dissolved organic carbon in natural waters for radiocarbon analysis by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xue, Yuejun; Ge, Tiantian; Wang, Xuchen

    2015-12-01

    Radiocarbon (14C) measurement of dissolved organic carbon (DOC) is a very powerful tool to study the sources, transformation and cycling of carbon in the ocean. The technique, however, remains great challenges for complete and successful oxidation of sufficient DOC with low blanks for high precision carbon isotopic ratio analysis, largely due to the overwhelming proportion of salts and low DOC concentrations in the ocean. In this paper, we report an effective UV-Oxidation method for oxidizing DOC in natural waters for radiocarbon analysis by accelerator mass spectrometry (AMS). The UV-oxidation system and method show 95%±4% oxidation efficiency and high reproducibility for DOC in both river and seawater samples. The blanks associated with the method was also low (about 3 µg C) that is critical for 14C analysis. As a great advantage of the method, multiple water samples can be oxidized at the same time so it reduces the sample processing time substantially compared with other UV-oxidation method currently being used in other laboratories. We have used the system and method for 14C studies of DOC in rivers, estuaries, and oceanic environments and have received promise results.

  19. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation.

    PubMed

    Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J; Herbert, Matthew E; May, Christopher A; Li, Shu-Guang

    2015-01-01

    The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional "pipeline" consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens.

  20. Politics of innovation in multi-level water governance systems

    NASA Astrophysics Data System (ADS)

    Daniell, Katherine A.; Coombes, Peter J.; White, Ian

    2014-11-01

    Innovations are being proposed in many countries in order to support change towards more sustainable and water secure futures. However, the extent to which they can be implemented is subject to complex politics and powerful coalitions across multi-level governance systems and scales of interest. Exactly how innovation uptake can be best facilitated or blocked in these complex systems is thus a matter of important practical and research interest in water cycle management. From intervention research studies in Australia, China and Bulgaria, this paper seeks to describe and analyse the behind-the-scenes struggles and coalition-building that occurs between water utility providers, private companies, experts, communities and all levels of government in an effort to support or block specific innovations. The research findings suggest that in order to ensure successful passage of the proposed innovations, champions for it are required from at least two administrative levels, including one with innovation implementation capacity, as part of a larger supportive coalition. Higher governance levels can play an important enabling role in facilitating the passage of certain types of innovations that may be in competition with currently entrenched systems of water management. Due to a range of natural biases, experts on certain innovations and disciplines may form part of supporting or blocking coalitions but their evaluations of worth for water system sustainability and security are likely to be subject to competing claims based on different values and expertise, so may not necessarily be of use in resolving questions of "best courses of action". This remains a political values-based decision to be negotiated through the receiving multi-level water governance system.

  1. Understanding Groundwater and Surface Water Exchange Processes Along a Controlled Stream Using Thermal Remote Sensing and In-Situ Measurements

    NASA Astrophysics Data System (ADS)

    Varli, D.; Yilmaz, K. K.

    2016-12-01

    Effective management of water resources requires understanding and quantification of interaction between groundwater and surface water bodies. Moreover, the exchange processes have recently received increasing attention due to important influences on biogeochemical and ecological status of watersheds. In this study we investigated the exchange processes between surface water and groundwater along Kirmir stream - a controlled stream nearby Kizilcahamam, Ankara, Turkey. At the first stage, potential stream reaches where the exchange processes could occur were pinpointed using geological and geomorphological information. Then, thermal remote sensing was utilized to further narrow down the potential locations in which interaction could occur at a smaller scale. Nested piezometers were installed at identified locations to observe the variations in vertical hydraulic gradient over time. Differential discharge measurements were performed to understand the gains and losses along the stream reach. Streambed temperature measurements were taken at two different depths for a period of time using temperature loggers to calculate the vertical fluid fluxes through the streambed at various locations. Basic water quality field parameters (temperature, electrical conductivity, total dissolved solid amount, dissolved oxygen, pH and oxidation - reduction potential) were measured along the stream reach, from surface water and the piezometers as wells as from the nearby springs and wells. Chloride mass balance was performed to find the contribution of groundwater and chloride concentrations were associated with the geology of the area. This hierarchical, multi-scale methodology provided an efficient and effective way to determine the locations and the direction of groundwater and surface water exchange processes within the study area.

  2. 78 FR 58985 - Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for pH AGENCY: Delaware River... public hearing to receive comments on proposed amendments to the Commission's Water Quality Regulations...

  3. The Water Footprint of Food Aid

    NASA Astrophysics Data System (ADS)

    Jackson, N. D.; Konar, M.; Hoekstra, A. Y.

    2015-12-01

    Food aid is a critical component of the global food system, particularly when emergency situations arise. For the first time, we evaluate the water footprint of food aid. To do this, we draw on food aid data from theWorld Food Programme and virtual water content estimates from WaterStat. We find that the total water footprint of food aid was 10 km3 in 2005, which represents approximately 0.5% of the water footprint of food trade and 2.0% of the water footprint of land grabbing (i.e., water appropriation associated with large agricultural land deals). The United States is by far the largest food aid donor and contributes 82% of the water footprint of food aid. The countries that receive the most water embodied in aid are Ethiopia, Sudan, North Korea, Bangladesh and Afghanistan. Notably, we find that there is significant overlap between countries that receive food aid and those that have their land grabbed. Multivariate regression results indicate that donor water footprints are driven by political and environmental variables, whereas recipient water footprints are driven by land grabbing and food indicators.

  4. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2007: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2007-01-01

    For the eight monitoring sites in water year 2007, an average of 99.5% of the total-dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the sites ranged from 97.9% to 100.0% complete.

  5. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2008: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2008-01-01

    For the eight monitoring stations in water year 2008, an average of 99.6 percent of the TDG data were received in real time by the USGS satellite downlink and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent stations. Data received from the individual stations ranged from 98.8 to 100.0 percent complete.

  6. Evaluating benefits and costs of changes in water quality.

    Treesearch

    Jessica Koteen; Susan J. Alexander; John B. Loomis

    2002-01-01

    Water quality affects a variety of uses, such as municipal water consumption and recreation. Changes in water quality can influence the benefits water users receive. The problem is how to define water quality for specific uses. It is not possible to come up with one formal definition of water quality that fits all water uses. There are many parameters that influence...

  7. Evaluation of microplastics in Jurujuba Cove, Niterói, RJ, Brazil, an area of mussels farming.

    PubMed

    Castro, Rebeca Oliveira; Silva, Melanie L; Marques, Mônica Regina C; de Araújo, Fábio V

    2016-09-15

    Once non-biodegradable, microplastics remain on the environment absorbing toxic hydrophobic compounds making them a risk to biodiversity when ingested or filtered by organisms and entering in the food chain. To evaluate the potential of the contamination by microplastics in mussels cultivated in Jurujuba Cove, Niterói, RJ, waters of three stations were collected during a rain and dry seasons using a plankton net and later filtered. Microplastics were quantified and characterized morphologically and chemically. The results showed a high concentration of microplastics in both seasons with diversity of colors, types and sizes. Synthetic polymers were present in all samples. The presence of microplastics was probably due to a high and constant load of effluent that this area receives and to the mussel farming activity that use many plastic materials. Areas with high concentrations of microplastics could not be used for mussel cultivation due to the risk of contamination to consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Improving the feasibility of producing biofuels from microalgae using wastewater.

    PubMed

    Rawat, I; Bhola, V; Kumar, R Ranjith; Bux, F

    2013-01-01

    Biofuels have received much attention recently owing to energy consumption and environmental concerns. Despite many of the technologies being technically feasible, the processes are often too costly to be commercially viable. The major stumbling block to full-scale production of algal biofuels is the cost of upstream and downstream processes and environmental impacts such as water footprint and indirect greenhouse gas emissions from chemical nutrient production. The technoeconomics of biofuels production from microalgae is currently unfeasible due to the cost of inputs and productivities achieved. The use of a biorefinery approach sees the production costs reduced greatly due to utilization of waste streams for cultivation and the generation of several potential energy sources and value-added products while offering environmental protection. The use of wastewater as a production media, coupled with CO2 sequestration from flue gas greatly reduces the microalgal cultivation costs. Conversion of residual biomass and by-products, such as glycerol, for fuel production using an integrated approach potentially holds the key to near future commercial implementation of biofuels production.

  9. Evaluation of modeled bacteria loads along an impaired stream reach receiving discharge from a municipal separate storm sewer system in Independence, Mo.

    USGS Publications Warehouse

    Flickinger, Allison; Christensen, Eric D.

    2017-01-01

    The Little Blue River in Jackson County, Missouri, was listed as impaired in 2012 due to Escherichia coli (E. coli) from urban runoff and storm sewers. A study was initiated to characterize E. coli concentrations and loads to aid in the development of a total maximum daily load implementation plan. Longitudinal sampling along the stream revealed spatial and temporal variability in E. coli loads. Regression models were developed to better represent E. coli variability in the impaired reach using continuous hydrologic and water-quality parameters as predictive parameters. Daily loads calculated from main-stem samples were significantly higher downstream compared to upstream even though there was no significant difference between the upstream and downstream measured concentrations and no significant conclusions could be drawn from model-estimated loads due to model-associated uncertainty. Increasing sample frequency could decrease the bias and increase the accuracy of the modeled results.

  10. Groundwater-surface water interactions in a glacierized catchment and their influence on proglacial water supply

    NASA Astrophysics Data System (ADS)

    Gordon, R. P.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.

    2012-12-01

    The tropical glaciers of the Cordillera Blanca of Peru are retreating rapidly due to climate change, which threatens water resources for the quarter-million inhabitants of the upper Rio Santa river valley and many more downstream. Recent studies have shown that glacial melt supplies approximately half of dry season stream discharge in Cordillera Blanca valleys. The remainder of streamflow is supplied by groundwater stored in alpine meadows, moraines and talus slopes. In the future, when glacier loss has reduced the influence of melt water on streams, groundwater discharge will be the primary dry-season source of stream water for irrigation, municipalities, and hydropower in the Santa watershed. A better understanding of the dynamics of alpine groundwater, including sources and exchange fluxes, is therefore important for future planning in this region. Understanding these groundwater-surface water interactions is necessary for making accurate estimates of meltwater contributions to the hydrologic budget, and for our ability to make predictions about future water resources under deglaciating conditions. We combined measurements of groundwater-surface water exchange during the dry season with synoptic sampling of stream water and end-members in order to quantify the groundwater contributions to streamflow from an alpine meadow, debris fan, and moraine complex in a glacierized valley of the Cordillera Blanca. Using stream tracer-dilution techniques, we calculated channel water balances for 9 stream reaches of 100-200 m throughout the meadow and measured the discharge of glacial meltwater into debris fan and moraine units. We used vertical heat tracing to measure stream-groundwater exchange at 2-hour increments over 2 weeks in 13 stream locations in the meadow, debris fan, and moraine units. Channel water balance and heat tracing results show that, during the studied portion of the dry season, the stream loses water (2.5 l/s or ~25% of flow) to the subsurface in the upstream half of the meadow, and gains water (7 l/s or ~6% of flow) in the lower half. The debris fan adjacent to the meadow received 22 l/s of surficial melt water from a glacial lake but contributed ~100 l/s of streamflow to the meadow, mostly through springs at the fan-meadow interface. In contrast, the terminal moraine complex at the head of the meadow received 36 l/s of glacial lake discharge but only contributed 5 l/s of streamflow to the meadow; the remainder of stream discharge over the moraine was apparently lost to an underlying aquifer. Results show that gains and losses of stream water are unequally distributed across the landscape in the dry season, with the debris fan and meadow being net sources of streamflow, and the moraine a net sink. Almost all of the stream water exiting the catchment (115 l/s) spent some time in the subsurface, with approximately half originating as groundwater within the studied watershed.

  11. Effects of different on-farm management on yield and water use efficiency of Potato crop cultivated in semiarid environments under subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2016-04-01

    In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular obtained for a value of this ratio equal to 1.45. Moreover, when increasing the seasonal pluviometric deficit (P-ETm) and therefore the irrigation depth (I), standard deviations of crop yield tended to decrease, as a consequence ofthe more uniform soil water content in the root zone. In terms of agronomic water use efficiency (AWUE),differences among the investigated treatments varied in a quite narrow range,due to thecombined effects of seasonal precipitation and atmospheric water demand on irrigation depths and crop yield.On the other hand, when considering irrigation water use efficiency (IWUE), more relevant differences between treatments were observed,being the higher values of IWUEgenerally associated to the lower irrigation depths. However, to define the best irrigation management strategy it is necessary, from one side, to consider the availability of water and from the other, to perform aneconomic analysis accounting for the cost of water and the related benefits achievable by the farmer.

  12. Protective Role of Flaxseed Oil and Flaxseed Lignan Secoisolariciresinol Diglucoside Against Oxidative Stress in Rats with Metabolic Syndrome.

    PubMed

    Pilar, Bruna; Güllich, Angélica; Oliveira, Patrícia; Ströher, Deise; Piccoli, Jacqueline; Manfredini, Vanusa

    2017-12-01

    This study evaluated the protective effect of flaxseed oil (FO) and flaxseed lignan secoisolariciresinol diglucoside (SDG) against oxidative stress in rats with metabolic syndrome (MS). 48 rats were allocated into the following 6 groups: Groups 1 (control), 5 (FO), and 6 (SDG) received water and were treated daily orally with saline, FO, and SDG, respectively. Groups 2 (MS), 3 (MS+FO), and 4 (MS+SDG) received 30% fructose in drinking water for MS induction and were treated daily orally with saline, FO, and SDG, respectively. After 30 d, animals were sacrificed, and blood was collected for biochemical and oxidative analysis. Body weight was recorded weekly. Systolic blood pressure (SBP) was measured before and after treatment. Fructose could produce MS and oxidative stress. FO and SDG prevented changes in SBP, lipids, and glucose. FO and SDG prevented oxidative damage to lipids, and only FO prevented oxidative damage to proteins associated to MS. FO and SDG improved enzymatic antioxidants defenses and reduced glutathione levels, which was greater with SDG. Total polyphenol levels were enhanced in groups that received SDG. Thus, the results of this study demonstrated that treatment with a 30% fructose solution for 30 d is effective for MS induction and the oxidative stress is involved in the pathophysiology of MS induced by fructose-rich diets. Furthermore, we demonstrated that the antioxidant effects attributed to flaxseed are mainly due to its high lignan content especially that of SDG, suggesting that this compound can be used in isolation to prevent oxidative stress associated with MS. We report that the antioxidant effects attributed to flaxseed are mainly due to its high lignan content, especially that of secoisolariciresinol diglucoside. This is significant because suggests that this compound can be used in isolation to prevent oxidative stress associated with MS. Furthermore, this study was the only one to perform a comparison of the abilities of 2 components of flaxseed to protect against oxidative stress in an MS model, which brings a great advance in the medicine's field, since it indicates another alternative for improve the health and the quality of life of patients with this disorder. © 2017 Institute of Food Technologists®.

  13. Doses from radon 222 irradiation for workers of the granite mining industry.

    PubMed

    Сrygorieva, L; Tomilin, Yu

    2017-12-01

    determining the integral value of annual effective dose from 222Rn for workers of the granite mining industry and assessment for the expected life effective dose from 222Rn. Materials were the results of measurements of external exposure dose of radiation measurements equiv alent equilibrium volume activity of 222Rn in workrooms and workplaces of major groups of granite quarry workers Mykolaiv region, studies EROA 222Rn air premises of these workers, research content 222Rn in drinking water. Granite quarry workers receive double radiation exposure of 222Rn due to exposure in the workplace and at home. The load in the workplace due to inhalation of 222Rn the air was (2.1 ± 0.2) mSv / year (vari ation 0.9-5.9) in a residential area - (4,1 ± 0,2) mSv/year (variation 1.8-5.9). The total annual effective dose from internal exposure from air flow and working premises and drinking water was on average (6,5 ± 0,2) mSv/year, equal to a maximum value of 20 mSv/year. The expected life for the chronic exposure dose of technological naturally occurring radioactive sources for people who work in the granite quarries and, while living in high risk from radon is in the range of 0.16-1.12 Sv. The research results indicate that in assessing the effects associated with exposure due to radon 222 contingents persons such surveys must take into account all sources of this radionuclide dose. L. Сrygorieva, Yu. Tomilin.

  14. Comparative study of isotopic trends in two coastal ecosystems of North Biscay: A multitrophic spatial gradient approach

    NASA Astrophysics Data System (ADS)

    Mortillaro, J. M.; Schaal, G.; Grall, J.; Nerot, C.; Brind'Amour, A.; Marchais, V.; Perdriau, M.; Le Bris, H.

    2014-01-01

    In coastal estuarine embayments, retention of water masses due to coastal topography may result in an increased contribution of continental organic matter in food webs. However, in megatidal embayments, the effect of topography can be counterbalanced by the process of tidal mixing. Large amounts of continental organic matter are exported each year by rivers to the oceans. The fate of terrestrial organic matter in food webs of coastal areas and on neighboring coastal benthic communities was therefore evaluated, at multi-trophic levels, from primary producers to primary consumers and predators. Two coastal areas of the French Atlantic coast, differing in the contributions from their watershed, tidal range and aperture degree, were compared using carbon and nitrogen stable isotopes (δ13C and δ15N) during two contrasted periods. The Bay of Vilaine receives large inputs of freshwater from the Vilaine River, displaying 15N enriched and 13C depleted benthic communities, emphasizing the important role played by allochtonous inputs and anthropogenic impact on terrestrial organic matter in the food web. In contrast, the Bay of Brest which is largely affected by tidal mixing, showed a lack of agreement between isotopic gradients displayed by suspended particulate organic matter (SPOM) and suspension-feeders. Discrepancy between SPOM and suspension-feeders is not surprising due to differences in isotopes integration times. We suggest further that such a discrepancy may result from water replenishment due to coastal inputs, nutrient depletion by phytoplankton production, as well as efficient selection of highly nutritive phytoplanktonic particles by primary consumers.

  15. Heavy metal displacement in salt-water-irrigated soil during phytoremediation.

    PubMed

    Wahla, Intkhab Hazoor; Kirkham, M B

    2008-09-01

    In regions where phytoremediation is carried out, brackish water must often be used. However, no information exists concerning the consequences of saline-water irrigation on the mobility of heavy metals in sludge applied to soil during phytoremediation. The purpose of this experiment was to determine the effect of NaCl irrigation on displacement of seven heavy metals in sludge (Cd, Cu, Fe, Mn, Ni, Pb, Zn) applied to the surface of soil columns containing barley plants. Half the columns received NaCl irrigation (10,000 mg L(-1)) and half the columns received tap-water irrigation. Half the columns were treated with the chelating agent EDTA. With no EDTA, irrigation with the NaCl solution increased the concentrations of Cd, Fe, Mn, and Pb in the drainage water above drinking-water standards. Irrigation of sludge farms with brackish water is not recommended, because saline water increased the mobility of the heavy metals and they polluted the drainage water.

  16. Baseline water quality and preliminary effects of artificial recharge on ground water, south-central Kansas, 1995-98

    USGS Publications Warehouse

    Ziegler, Andrew C.; Christensen, Victoria G.; Ross, Heather C.

    1999-01-01

    To investigate the feasbility of artificial recharge as a method of meeting future water-supply needs and to protect the Equus Beds aquifer from saltwater intrusion from natural and anthropogenic sources to the west, the Equus Beds Ground-Water Recharge from Demonstration Project was begun in 1995. The project is a cooperative effort between the city of Wichita and the Bureau of Reclamation, U.S. Department of the Interior. During the project, high flows from the Little Arkansas River are captured and recharged into the Equus Beds aquifer through recharge basins, a trench, or a recharge well, located at two recharge sites near Halstead and Sedgwick, Kansas. To document baseline concentrations and compatibility of stream (recharge) and aquifer water, the U.S. Geological Survey collected water samples from February 1995 through August 1998. These samples were analyzed for dissolved solids, total and dissolved inorganic constituents, nutrients, organic and volatile organic compounds, radionuclides, and bacteria. Results of baseline sampling indicated that the primary constituents of concern for recharge were sodium, chloride, nitrite plus nitrate, iron and manganese, total coliform bacteria, and atrazine. Chloride and atrazine were of particular concern because concentrations of these constituents in water from the Little Arkansas River frequently exceeded regulatory criteria. The Little Arkansas River is used as the source water for recharge. The U.S. Environmental Protection Agency Secondary Maximum Contaminant Level for chloride is 250 mg/L (milligrams per liter), and the Maximum Contaminant Level for atrazine is 3.0 ?g/L (micrograms per liter) as an annual mean. Baseline concentrations of chloride in surface water ranged from 8.0 to 400 ?g/L. Baseline concentrations of atrazine in surface water ranged from less than 0.10 to 46 ?g/L. Concentrations of chloride and atrazine have increased in water from some of the wells at both the Halstead and Sedgwick recharge sites after recharge began, although concentrations remained within the range of baseline values in the Equus Beds aquifer and are considerably less than U.S. Environmental Protection Agency drinking-water criteria. However, a substantial quantity of water has not been recharged at the Sedgwick site to determine the overall effects of artificial recharge on aquifer quality. Continued monitoring is necessary to determine long-term effects at both sites. Major ion and trace element concentrations in source water and receiving water were analyzed to determine the compatibility of recharge and receiving ground water for artificial recharge. Stiff diagrams of major ions were used to show the similarity or differences between source surface water and receiving ground water. The water from both sources, for the most part, was chemically compatible to the receiving aquifer water at both recharge sites. It may be possible to decrease the monitoring frequency at the Halstead recharge site because water-quality changes in receiving water at this site are very gradual. However, real-time water-quality monitoring of surrogates needs to be site specific for the determination of chloride and atrazine. Real-time water-quality monitoring potentially can be used to more effectively manage the artificial recharge process, enabling project officials to respond more rapidly to changes in water quality.

  17. Instrumental research of lithodynamic processes in estuaries of the White Sea

    NASA Astrophysics Data System (ADS)

    Rimsky-Korsakov, Nikolai; Korotaev, Vladislav; Ivanov, Vadim

    2017-04-01

    The report provides a comparative analysis of morphological lithodynamic processes in estuaries and river deltas on the basis of 2013-2015 field geophysical and hydrographic surveys held by IO RAS and MSU. Studies performed using side scan sonar (Imagenex YellowFin SSS), bathymetric (FortXXI Scat Echo sounder) and navigation (DGPS/GLONASS Sigma Ashtek receiver) equipment. North Dvina modern delta can be classified as multi-arm delta estuary lagoon performance. Areas of modern river waters occupy a large accumulation of deltaic arms. It formed a young island with elevations of about 1 m. The islands are composed of river alluvium and annually flooded during the flood period. Onega river mouth area is unique due to the specific geological conditions. Short, wellhead site is the cause of the anomalous attenuation of the tidal wave and the limited range of penetration of salt water seashore only to Kokorinskogo threshold. Morphological lithodynamic processes in high tide Mezen estuaries (syzygy - 8.5 m) are caused by tidal currents, river runoff, wind waves and sediment longshore drift. Due to the movement of huge masses of sediment in the Mezen estuary occur intense deformation silty-sand banks, reshaping of the bottom channel trenches and displacement of navigable waterways. Thus, the specificity of the morphological lithodynamic processes in high tidal estuaries is a lack of modern delta, the development of mobile local sediment structures inside the estuary and the formation of a broad mouth bar on the open wellhead coast. In multi-arm deltas an intense process of increasing marine edge of the delta is observed due to wellhead delta arms elongation and the formation of small estuarine bars at the mouths of the underwater channel trenches coming out into the open coast. Simultaneously, the process of filling the river sediments of residual waters within the subaerial delta and the formation of marine coastal bars on the outer perimeter edge of the sea ground delta.

  18. PFAM 2.0 - Documentations

    EPA Pesticide Factsheets

    The advanced capabilities of PFAM include accounting for water and pest management practices and for degradation in soil and aquatic environments, as well as for post processing of discharged paddy waters to a user-defined receiving water.

  19. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Emergency water supplies due to contaminated water source. 203.61 Section 203.61 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Emergency Water Supplies:...

  20. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Emergency water supplies due to contaminated water source. 203.61 Section 203.61 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Emergency Water Supplies:...

  1. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Emergency water supplies due to contaminated water source. 203.61 Section 203.61 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Emergency Water Supplies:...

  2. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Emergency water supplies due to contaminated water source. 203.61 Section 203.61 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Emergency Water Supplies:...

  3. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  4. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  5. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  6. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  7. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  8. Dissemination of drinking water contamination data to consumers: a systematic review of impact on consumer behaviors.

    PubMed

    Lucas, Patricia J; Cabral, Christie; Colford, John M

    2011-01-01

    Drinking water contaminated by chemicals or pathogens is a major public health threat in the developing world. Responses to this threat often require water consumers (households or communities) to improve their own management or treatment of water. One approach hypothesized to increase such positive behaviors is increasing knowledge of the risks of unsafe water through the dissemination of water contamination data. This paper reviews the evidence for this approach in changing behavior and subsequent health outcomes. A systematic review was conducted for studies where results of tests for contaminants in drinking water were disseminated to populations whose water supply posed a known health risk. Studies of any design were included where data were available from a contemporaneous comparison or control group. Using multiple sources >14,000 documents were located. Six studies met inclusion criteria (four of arsenic contamination and two of microbiological contamination). Meta-analysis was not possible in most cases due to heterogeneity of outcomes and study designs. Outcomes included water quality, change of water source, treatment of water, knowledge of contamination, and urinary arsenic. Source switching was most frequently reported: of 5 reporting studies 4 report significantly higher rates of switching (26-72%) among those who received a positive test result and a pooled risk difference was calculate for 2 studies (RD = 0.43 [CI0.4.0-0.46] 6-12 months post intervention) suggesting 43% more of those with unsafe wells switched source compared to those with safe wells. Strength of evidence is low since the comparison is between non-equivalent groups. Two studies concerning fecal contamination reported non-significant increases in point-of-use water treatment. Despite the publication of some large cohort studies and some encouraging results the evidence base to support dissemination of contamination data to improve water management is currently equivocal. Rigorous studies on this topic are needed, ideally using common outcome measures.

  9. Dissemination of Drinking Water Contamination Data to Consumers: A Systematic Review of Impact on Consumer Behaviors

    PubMed Central

    Lucas, Patricia J.; Cabral, Christie; Colford, John M.

    2011-01-01

    Background Drinking water contaminated by chemicals or pathogens is a major public health threat in the developing world. Responses to this threat often require water consumers (households or communities) to improve their own management or treatment of water. One approach hypothesized to increase such positive behaviors is increasing knowledge of the risks of unsafe water through the dissemination of water contamination data. This paper reviews the evidence for this approach in changing behavior and subsequent health outcomes. Methods/Principal Findings A systematic review was conducted for studies where results of tests for contaminants in drinking water were disseminated to populations whose water supply posed a known health risk. Studies of any design were included where data were available from a contemporaneous comparison or control group. Using multiple sources >14,000 documents were located. Six studies met inclusion criteria (four of arsenic contamination and two of microbiological contamination). Meta-analysis was not possible in most cases due to heterogeneity of outcomes and study designs. Outcomes included water quality, change of water source, treatment of water, knowledge of contamination, and urinary arsenic. Source switching was most frequently reported: of 5 reporting studies 4 report significantly higher rates of switching (26–72%) among those who received a positive test result and a pooled risk difference was calculate for 2 studies (RD = 0.43 [CI0.4.0–0.46] 6–12 months post intervention) suggesting 43% more of those with unsafe wells switched source compared to those with safe wells. Strength of evidence is low since the comparison is between non-equivalent groups. Two studies concerning fecal contamination reported non-significant increases in point-of-use water treatment. Conclusion Despite the publication of some large cohort studies and some encouraging results the evidence base to support dissemination of contamination data to improve water management is currently equivocal. Rigorous studies on this topic are needed, ideally using common outcome measures. PMID:21738609

  10. MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF

    EPA Science Inventory

    Urban stormwater runoff, a leading cause of water quality impairment related to human activities in lakes and reservoirs, can have significant negative effects on receiving water quality. It can also create human health concerns when these waters are used for drinking water reso...

  11. MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF - 2005 VERSION

    EPA Science Inventory

    Urban stormwater runoff is a leading cause of water quality impairment in lakes and reservoirs. Stormwater discharges, with latent bacterial loads, can negatively impact receiving water quality and create human health concerns when these waters are used for drinking water resourc...

  12. Disinfection By-Products: Formation and Occurrence in Drinking Water

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the twentieth century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended he...

  13. Testing plant use of mobile vs immobile soil water sources using stable isotope experiments.

    PubMed

    Vargas, Ana I; Schaffer, Bruce; Yuhong, Li; Sternberg, Leonel da Silveira Lobo

    2017-07-01

    We tested for isotope exchange between bound (immobile) and mobile soil water, and whether there is isotope fractionation during plant water uptake. These are critical assumptions to the formulation of the 'two water worlds' hypothesis based on isotope profiles of soil water. In two different soil types, soil-bound water in two sets of 19-l pots, each with a 2-yr-old avocado plant (Persea americana), were identically labeled with tap water. After which, one set received isotopically enriched water whereas the other set received tap water as the mobile phase water. After a dry down period, we analyzed plant stem water as a proxy for soil-bound water as well as total soil water by cryogenic distillation. Seventy-five to 95% of the bound water isotopically exchanged with the mobile water phase. In addition, plants discriminated against 18 O and 2 H during water uptake, and this discrimination is a function of the soil water loss and soil type. The present experiment shows that the assumptions for the 'two water worlds' hypothesis are not supported. We propose a novel explanation for the discrepancy between isotope ratios of the soil water profile and other water compartments in the hydrological cycle. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system

    NASA Astrophysics Data System (ADS)

    Sahu, Sanjay Kumar; Shanmugam, Palanisamy

    2018-02-01

    Scattering by water molecules and particulate matters determines the path and distance of photon propagation in underwater medium. Consequently, photon angle of scattering (given by scattering phase function) requires to be considered in addition to the extinction coefficient of the aquatic medium governed by the absorption and scattering coefficients in channel characterization for an underwater wireless optical communication (UWOC) system. This study focuses on analyzing the received signal power and impulse response of UWOC channel based on Monte-Carlo simulations for different water types, link distances, link geometries and transceiver parameters. A newly developed scattering phase function (referred to as SS phase function), which represents the real water types more accurately like the Petzold phase function, is considered for quantification of the channel characteristics along with the effects of absorption and scattering coefficients. A comparison between the results simulated using various phase function models and the experimental measurements of Petzold revealed that the SS phase function model predicts values closely matching with the actual values of the Petzold's phase function, which further establishes the importance of using a correct scattering phase function model while estimating the channel capacity of UWOC system in terms of the received power and channel impulse response. Results further demonstrate a great advantage of considering the nonzero probability of receiving scattered photons in estimating channel capacity rather than considering the reception of only ballistic photons as in Beer's Law, which severely underestimates the received power and affects the range of communication especially in the scattering water column. The received power computed based on the Monte-Carlo method by considering the receiver aperture sizes and field of views in different water types are further analyzed and discussed. These results are essential for evaluating the underwater link budget and constructing different system and design parameters for an UWOC system.

  15. A critical review on iodine presence in drinking water access at the Saharawi refugee camps (Tindouf, Algeria).

    PubMed

    Pichel, N; Vivar, M

    2017-07-01

    Iodine content in drinking water at the Saharawi refugee camps was analysed to assess the controversy in the origin of the prevalence of goitre among this population. A review on the iodine presence in drinking water reported in the literature was conducted, along with international standards and guidelines for iodine intake and iodine concentration in drinking water were also consulted. Chinese legislation was taken as the reference standard to evaluate the iodine concentration in water as adequate (10-150μg/L) or not (high iodine >150μg/L and iodine excess goitre >300μg/L). Water sampling was conducted in 2015 and 2016 at the Saharawi camps (El Aiun, Awserd, Smara, Boujador and Dakhla) and at the institutional capital of Rabouni. The water supply in the camps is organized in three zones: El Aiun and Awserd where each 'wilaya' receives treated water 20days and raw water another 20days; Smara, Rabouni and Boujador receiving treated water continuously and Dakhla receiving raw water continuously. Results show that Smara, Rabouni and Boujador have access to drinking water with adequate iodine levels, as it occurs in Dakhla where raw water meets the Chinese standard, however in El Aiun and Awserd all population should have access to treated water given the current quality of the raw water supply. External supplies of water and animal milk could be also contributing to the high iodine intake. In conclusion, the contribution of drinking water as the main source of iodine to the urinary iodine concentration (UIC) and goitre prevalence among the Saharawi refugee population is not clear. Further studies should be conducted to assess the iodine content among all the nutritional sources of the population with a detailed study on the daily intake of these foods and drinks, including UIC and goitre prevalence studies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Impacts of pesticides in a Central California estuary.

    PubMed

    Anderson, Brian; Phillips, Bryn; Hunt, John; Siegler, Katie; Voorhees, Jennifer; Smalling, Kelly; Kuivila, Kathy; Hamilton, Mary; Ranasinghe, J Ananda; Tjeerdema, Ron

    2014-03-01

    Recent and past studies have documented the prevalence of pyrethroid and organophosphate pesticides in urban and agricultural watersheds in California. While toxic concentrations of these pesticides have been found in freshwater systems, there has been little research into their impacts in marine receiving waters. Our study investigated pesticide impacts in the Santa Maria River estuary, which provides critical habitat to numerous aquatic, terrestrial, and avian species on the central California coast. Runoff from irrigated agriculture constitutes a significant portion of Santa Maria River flow during most of the year, and a number of studies have documented pesticide occurrence and biological impacts in this watershed. Our study extended into the Santa Maria watershed coastal zone and measured pesticide concentrations throughout the estuary, including the water column and sediments. Biological effects were measured at the organism and community levels. Results of this study suggest the Santa Maria River estuary is impacted by current-use pesticides. The majority of water samples were highly toxic to invertebrates (Ceriodaphnia dubia and Hyalella azteca), and chemistry evidence suggests toxicity was associated with the organophosphate pesticide chlorpyrifos, pyrethroid pesticides, or mixtures of both classes of pesticides. A high percentage of sediment samples were also toxic in this estuary, and sediment toxicity occurred when mixtures of chlorpyrifos and pyrethroid pesticides exceeded established toxicity thresholds. Based on a Relative Benthic Index, Santa Maria estuary stations where benthic macroinvertebrate communities were assessed were degraded. Impacts in the Santa Maria River estuary were likely due to the proximity of this system to Orcutt Creek, the tributary which accounts for most of the flow to the lower Santa Maria River. Water and sediment samples from Orcutt Creek were highly toxic to invertebrates due to mixtures of the same pesticides measured in the estuary. This study suggests that the same pyrethroid and organophosphate pesticides that have been shown to cause water and sediment toxicity in urban and agriculture water bodies throughout California, have the potential to affect estuarine habitats. The results establish baseline data in the Santa Maria River estuary to allow evaluation of ecosystem improvement as management initiatives to reduce pesticide runoff are implemented in this watershed.

  17. Threshold Monitoring Maps for Under-Water Explosions

    NASA Astrophysics Data System (ADS)

    Arora, N. S.

    2014-12-01

    Hydro-acoustic energy in the 1-100 Hz range from under-water explosions can easily spread for thousands of miles due to the unique properties of the deep sound channel. This channel, aka SOFAR channel, exists almost everywhere in the earth's oceans where the water has at least 1500m depth. Once the energy is trapped in this channel it spreads out cylindrically, and hence experiences very little loss, as long as there is an unblocked path from source to receiver. Other losses such as absorption due to chemicals in the ocean (mainly boric acid and magnesium sulphate) are also quite minimal at these low frequencies. It is not surprising then that the International Monitoring System (IMS) maintains a global network of hydrophone stations listening on this particular frequency range. The overall objective of our work is to build a probabilistic model to detect and locate under-water explosions using the IMS network. A number of critical pieces for this model, such as travel time predictions, are already well known. We are extending the existing knowledge-base by building the remaining pieces, most crucially the models for transmission losses and detection probabilities. With a complete model for detecting under-water explosions we are able to combine it with our existing model for seismic events, NET-VISA. In the conference we will present threshold monitoring maps for explosions in the earth's oceans. Our premise is that explosive sources release an unknown fraction of their total energy into the SOFAR channel, and this trapped energy determines their detection probability at each of the IMS hydrophone stations. Our threshold monitoring maps compute the minimum amount of energy at each location that must be released into the deep sound channel such that there is a ninety percent probability that at least two of the IMS stations detect the event. We will also present results of our effort to detect and locate hydro-acoustic events. In particular, we will show results from a recent under-water volcanic eruption at the Ahyl Seamount (April-May 2014), and compare our work with the current processing, both automated and human, at the IDC.

  18. The Developing on Awareness of Water Resources Management of Grade 6 Students in Namphong Sub-Basin

    ERIC Educational Resources Information Center

    Seehamat, Lumyai; Sanrattana, Unchalee; Tungkasamit, Angkana

    2016-01-01

    Awareness of water resources management is expression behavior as receive, response, valuing, and organization. Water resources is an important for everyone in the world and the recently water resources are be risky as lack of water, waste water, and blooding. The development on awareness of water resources management for grade 6 students is very…

  19. Effects of oral electrolyte supplementation on endurance horses competing in 80 km rides.

    PubMed

    Sampieri, F; Schott, H C; Hinchcliff, K W; Geor, R J; Jose-Cunilleras, E

    2006-08-01

    There is no evidence that use of oral electrolyte pastes enhances performance in competing endurance horses. To ascertain whether oral administration of a high dose (HD) of sodium chloride (NaCl) and potassium chloride (KCl) to endurance horses would differentially increase water intake, attenuate bodyweight (bwt) loss and improve performance when compared to a low dose (LD). A randomised, blinded, crossover study was conducted on 8 horses participating in two 80 km rides (same course, 28 days apart). Thirty minutes before and at 40 km of the first ride 4, horses received orally 02 g NaCl/kg bwt and 0.07 g KCl/kg bwt. The other 4 received 0.07 g NaCl/kg bwt and 0.02 g KCl/kg bwt. Horses received the alternate treatment in the second ride. Data were analysed with 2-way ANOVA for repeated measures (P<0.05). Estimated water intake was significantly greater with HD both at the 40 km mark and as total water intake; however, differences in bwt loss and speed between HD and LD were not found. Treatment significantly affected serum Na+, Cl-, HCO3, pH and water intake, but not serum K+ or bwt. Serum Na+ and Cl- were significantly higher at 80 km when horses received HD, but no differences were found in early recovery. Venous HCO3- and pH were significantly lower throughout the ride and in early recovery when horses received HD. Other than enhancing water intake, supplementing endurance horses with high doses of NaCI and KCl did not provide any detectable competitive advantage in 80 km rides. Further, the elevated serum electrolyte concentrations induced with HD might not be appropriate for endurance horses.

  20. Estimating risks for water-quality exceedances of total-copper from highway and urban runoff under predevelopment and current conditions with the Stochastic Empirical Loading and Dilution Model (SELDM)

    USGS Publications Warehouse

    Granato, Gregory E.; Jones, Susan C.; Dunn, Christopher N.; Van Weele, Brian

    2017-01-01

    The stochastic empirical loading and dilution model (SELDM) was used to demonstrate methods for estimating risks for water-quality exceedances of event-mean concentrations (EMCs) of total-copper. Monte Carlo methods were used to simulate stormflow, total-hardness, suspended-sediment, and total-copper EMCs as stochastic variables. These simulations were done for the Charles River Basin upstream of Interstate 495 in Bellingham, Massachusetts. The hydrology and water quality of this site were simulated with SELDM by using data from nearby, hydrologically similar sites. Three simulations were done to assess the potential effects of the highway on receiving-water quality with and without highway-runoff treatment by a structural best-management practice (BMP). In the low-development scenario, total copper in the receiving stream was simulated by using a sediment transport curve, sediment chemistry, and sediment-water partition coefficients. In this scenario, neither the highway runoff nor the BMP effluent caused concentration exceedances in the receiving stream that exceed the once in three-year threshold (about 0.54 percent). In the second scenario, without the highway, runoff from the large urban areas in the basin caused exceedances in the receiving stream in 2.24 percent of runoff events. In the third scenario, which included the effects of the urban runoff, neither the highway runoff nor the BMP effluent increased the percentage of exceedances in the receiving stream. Comparison of the simulated geometric mean EMCs with data collected at a downstream monitoring site indicates that these simulated values are within the 95-percent confidence interval of the geometric mean of the measured EMCs.

Top