Science.gov

Sample records for receptor agonist treatment

  1. Melatonin receptor agonists: new options for insomnia and depression treatment.

    PubMed

    Spadoni, Gilberto; Bedini, Annalida; Rivara, Silvia; Mor, Marco

    2011-12-01

    The circadian nature of melatonin (MLT) secretion, coupled with the localization of MLT receptors to the suprachiasmatic nucleus, has led to numerous studies of the role of MLT in modulation of the sleep-wake cycle and circadian rhythms in humans. Although much more needs to be understood about the various functions exerted by MLT and its mechanisms of action, three therapeutic agents (ramelteon, prolonged-release MLT, and agomelatine) are already in use, and MLT receptor agonists are now appearing as new promising treatment options for sleep and circadian-rhythm related disorders. In this review, emphasis has been placed on medicinal chemistry strategies leading to MLT receptor agonists, and on the evidence supporting therapeutic efficacy of compounds undergoing clinical evaluation. A wide range of clinical trials demonstrated that ramelteon, prolonged-release MLT and tasimelteon have sleep-promoting effects, providing an important treatment option for insomnia and transient insomnia, even if the improvements of sleep maintenance appear moderate. Well-documented effects of agomelatine suggest that this MLT agonist offers an attractive alternative for the treatment of depression, combining efficacy with a favorable side effect profile. Despite a large number of high affinity nonselective MLT receptor agonists, only limited data on MT₁ or MT₂ subtype-selective compounds are available up to now. Administration of the MT₂-selective agonist IIK7 to rats has proved to decrease NREM sleep onset latency, suggesting that MT₂ receptor subtype is involved in the acute sleep-promoting action of MLT; rigorous clinical studies are needed to demonstrate this hypothesis. Further clinical candidates based on selective activation of MT₁ or MT₂ receptors are expected in coming years.

  2. [Treatment of GLP1 receptor agonists and body mass control].

    PubMed

    Žák, Petr; Olšovský, Jindřich

    2015-04-01

    The prevalence of obesity continues to be increasing in all age groups in most countries of the European Union (EU). Many obese people have a history of several successful weight losses, but very few are able to maintain the weight loss over a longer period of time. Initiation of the GLP1 RA administration during weight loss maintenance would inhibit weight loss-induced increases in soluble leptin receptor plasma concentrations resulting in higher level of free leptin thereby preventing weight regain. In contrast initiation of insulin treatment in type 2 diabetes patients is frequently accompanied with weight gain. The GLP1 administration results in HbA1c decrease accompanied with weight loss, presents attractive alternative to basal insulin. The question remains to be answered in the future, if the GLP1 RA administration is generally more frequently started in antiobese than antidiabetes implication.

  3. [Cardiovascular effects of GLP-1 receptor agonist treatment: focus on liraglutide].

    PubMed

    Haluzík, Martin; Trachta, Pavel; Mráz, Miloš

    2015-01-01

    Cardiovascular risk reduction is the major aim of type 2 diabetes mellitus treatment. The effects of various antidiabetics on the cardiovascular complications are currently under careful scrutiny. Incretin-based therapy that utilizes the effects of glucagon-like peptide 1 (GLP-1) or stimulation of its receptor by GLP-1 receptor agonists represents one of the most promising approaches from the potential cardiovascular risk reduction point of view. Experimental studies have shown that the GLP-1 and GLP-1 agonists treatment improves endothelial function, decrease blood pressure and protects myocardium during experimentally-induced ischemia. Clinical studies with GLP-1 receptor agonists consistently show that, in addition to good antidiabetic efficacy, its long-term administration decreases blood pressure, body weight and improves circulating lipid levels while slightly increasing heart rate. In this paper, we focus on the cardiovascular effects of GLP-1 receptor agonist liraglutide. Preliminary analyses of cardiovascular complications in phase III trials with liraglutide indicate its good cardiovascular safety. A possibility of cardioprotective effects of liraglutide remains still open and is currently studied within a prospective cardiovascular trial LEADER.

  4. In vitro and in vivo efficacy of a potent opioid receptor agonist, biphalin, compared to subtype-selective opioid receptor agonists for stroke treatment.

    PubMed

    Yang, Li; Islam, Mohammad R; Karamyan, Vardan T; Abbruscato, Thomas J

    2015-06-03

    To meet the challenge of identification of new treatments for stroke, this study was designed to evaluate a potent, nonselective opioid receptor (OR) agonist, biphalin, in comparison to subtype selective OR agonists, as a potential neuroprotective drug candidate using in vitro and in vivo models of ischemic stroke. Our in vitro approach included mouse primary neuronal cells that were challenged with glutamate and hypoxic/aglycemic (H/A) conditions. We observed that 10nM biphalin, exerted a statistically significant neuroprotective effect after glutamate challenge, compared to all selective opioid agonists, according to lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Moreover, 10nM biphalin provided superior neuroprotection after H/A-reoxygenation compared to selective opioid agonists in all cases. Our in vitro investigations were supported by in vivo studies which indicate that the nonselective opioid agonist, biphalin, achieves enhanced neuroprotective potency compared to any of the selective opioid agonists, evidenced by reduced edema and infarct ratios. Reduction of edema and infarction was accompanied by neurological improvement of the animals in two independent behavioral tests. Collectively these data strongly suggest that concurrent agonist stimulation of mu, kappa and delta ORs with biphalin is neuroprotective and superior to neuroprotection by activation of any single OR subtype.

  5. In vitro and in vivo efficacy of a potent opioid receptor agonist, biphalin, compared to subtype-selective opioid receptor agonists for stroke treatment

    PubMed Central

    Yang, Li; Islam, Mohammad R; Karamyan, Vardan T.; Abbruscato, Thomas J.

    2015-01-01

    To meet the challenge of identification of new treatments for stroke, this study was designed to evaluate a potent, nonselective opioid receptor (OR) agonist, biphalin, in comparison to subtype selective OR agonists, as a potential neuroprotective drug candidate using in vitro and in vivo models of ischemic stroke. Our in vitro approach included mouse primary neuronal cells that were challenged with glutamate and hypoxic/aglycemic (H/A) conditions. We observed that 10 nM biphalin, exerted a statistically significant neuroprotective effect after glutamate challenge, compared to all selective opioid agonists, according to lactate dehydrogenase (LDH) and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Moreover, 10 nM biphalin provided superior neuroprotection after H/A-reoxygenation compared to selective opioid agonists in all cases. Our in vitro investigations were supported by in vivo studies which indicate that the nonselective opioid agonist, biphalin, achieves enhanced neuroprotective potency compared to any of the selective opioid agonists, evidenced by reduced edema and infarct ratios. Reduction of edema and infarction was accompanied by neurological improvement of the animals in two independent behavioral tests. Collectively these data strongly suggest that concurrent agonist stimulation of mu, kappa and delta ORs with biphalin is neuroprotective and superior to neuroprotection by activation of any single OR subtype. PMID:25801116

  6. [Melatonin receptor agonist].

    PubMed

    Uchiyama, Makoto

    2015-06-01

    Melatonin is a hormone secreted by the pineal gland and is involved in the regulation of human sleep-wake cycle and circadian rhythms. The melatonin MT1 and MT2 receptors located in the suprachiasmatic nucleus in the hypothalamus play a pivotal role in the sleep-wake regulation. Based on the fact that MT1 receptors are involved in human sleep onset process, melatonin receptor agonists have been developed to treat insomnia. In this article, we first reviewed functions of melatonin receptors with special reference to MT1 and MT2, and properties and clinical application of melatonin receptor agonists as hypnotics.

  7. The safety and tolerability of GLP-1 receptor agonists in the treatment of type-2 diabetes.

    PubMed

    Russell-Jones, D

    2010-09-01

    Established therapies for type-2 diabetes effectively reduce blood glucose, but are often associated with adverse effects that pose risks to patient's health or diminish adherence to treatment. Weight gain, hypoglycaemia and gastrointestinal symptoms are commonly reported and some agents may not be safe for use in patients with renal impairment or elevated cardiovascular risk. New treatments based on the action of the endogenous human hormone glucagon-like peptide-1 (GLP-1), including exenatide and liraglutide, are available. These therapies provide a novel pharmacological approach to glycaemic control via multiple mechanisms of action, and accordingly exhibit different safety and tolerability profiles than conventional treatments. GLP-1 receptor agonists stimulate insulin release only in the presence of elevated blood glucose and are therefore associated with a fairly low risk of hypoglycaemia. Gastrointestinal symptoms are common but transient, and there appears to be little potential for interaction with other drugs. GLP-1 receptor agonists are associated with weight loss rather than weight gain. As protein-based therapies, these agents have the potential to induce antibody formation, but the impact on efficacy and safety is minor. GLP-1 receptor agonists thus offer a new and potentially useful option for clinicians concerned about some of the common adverse effects of type-2 diabetes therapies.

  8. Alpha-2 receptor agonists for the treatment of posttraumatic stress disorder.

    PubMed

    Belkin, Molly R; Schwartz, Thomas L

    2015-01-01

    Clonidine and guanfacine are alpha-2 receptor agonists that decrease sympathetic outflow from the central nervous system. Posttraumatic stress disorder (PTSD) is an anxiety disorder that is theorized to be related to a hyperactive sympathetic nervous system. Currently, the only US Food and Drug Administration (FDA)-approved medications for PTSD are the selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine. Sometimes use of the SSRIs may not lead to full remission and symptoms of hyperarousal often persist. This article specifically reviews the literature on alpha-2 receptor agonist use for the treatment of PTSD and concludes that while the evidence base is limited, these agents might be considered useful when SSRIs fail to treat symptoms of agitation and hyperarousal in patients with PTSD.

  9. Alpha-2 receptor agonists for the treatment of posttraumatic stress disorder

    PubMed Central

    Belkin, Molly R; Schwartz, Thomas L

    2015-01-01

    Clonidine and guanfacine are alpha-2 receptor agonists that decrease sympathetic outflow from the central nervous system. Posttraumatic stress disorder (PTSD) is an anxiety disorder that is theorized to be related to a hyperactive sympathetic nervous system. Currently, the only US Food and Drug Administration (FDA)-approved medications for PTSD are the selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine. Sometimes use of the SSRIs may not lead to full remission and symptoms of hyperarousal often persist. This article specifically reviews the literature on alpha-2 receptor agonist use for the treatment of PTSD and concludes that while the evidence base is limited, these agents might be considered useful when SSRIs fail to treat symptoms of agitation and hyperarousal in patients with PTSD. PMID:26322115

  10. GABA(B) receptor agonists for the treatment of drug addiction: a review of recent findings.

    PubMed

    Cousins, Michael S; Roberts, David C S; de Wit, Harriet

    2002-02-01

    A growing preclinical and clinical literature suggests that GABA(B) receptor agonists promote abstinence and reduce the use of cocaine, heroin, alcohol and nicotine. The purpose of this paper is to critically review these data. GABA(B) receptor agonists, such as baclofen, appear to reduce the reinforcing effects of abused drugs in animal models under multiple experimental procedures. This occurs at doses that have little effect on responding for other positive reinforcers such as food or water. We review evidence that these potential therapeutic effects may be mediated by modulation of mesolimbic dopamine neurons. This review also examines the preliminary clinical data from studies of the efficacy of baclofen for treatment of cocaine, alcohol, and nicotine dependence. We suggest that these preliminary data provide a rationale for conducting more systematic studies of the effects of GABA(B) receptor agonists as treatment for drug abuse. This line of research may also improve our understanding of the neurochemical mechanisms underlying the drug dependence process.

  11. Detection of glucocorticoid receptor agonists in effluents from sewage treatment plants in Japan.

    PubMed

    Suzuki, Go; Sato, Kentaro; Isobe, Tomohiko; Takigami, Hidetaka; Brouwer, Abraham; Nakayama, Kei

    2015-09-15

    Glucocorticoids (GCs) are widely used as anti-inflammatory drugs. Our previous study demonstrated that several GCs such as cortisol and dexamethasone (Dex) were frequently detected in effluents collected from Japanese sewage treatment plants (STPs) in 2012. In this study, we used the GC-Responsive Chemical-Activated LUciferase gene eXpression (GR-CALUX) assay to elucidate GC receptor (GR) agonistic activities of ten pure synthetic GCs and selected STP effluents in Japan for assessment of the risks associated with the presence of GR agonists. The tested GCs demonstrated dose-dependent agonistic effects in the GR-CALUX assay and their EC50 values were calculated for estimation of relative potencies (REPs) compared to Dex. The GR agonistic potency was in the rank of: clobetasol propionate > clobetasone butyrate > betamethasone 17-valerate > difluprednate > betamethasone 17,21-dipropionate > Dex > betamethasone > 6α-methylprednisolone > prednisolone > cortisol. The GR agonistic activity in STP effluents as measured in Dex-equivalent (Dex-EQ) activities ranged from < 3.0-78 ng L(-1) (median: 29 ng L(-1), n = 50). To evaluate the contribution of the target GCs, theoretical Dex-EQs were calculated by multiplying the concentrations of each GC by its respective REP. Our calculation of Dex-EQ contribution for individual GR agonists indicated that the well-known GCs cortisol and Dex should not be given priority for subsequent in vivo testing, monitoring and removal experiments, but rather the highly potent synthetic GCs clobetasol propionate and betamethasone 17-valerate (REP = 28 and 3.1) as well as other unidentified compounds are important GR agonists in STP effluents in Japan.

  12. Therapeutic potential of histamine H3 receptor agonist for the treatment of obesity and diabetes mellitus.

    PubMed

    Yoshimoto, Ryo; Miyamoto, Yasuhisa; Shimamura, Ken; Ishihara, Akane; Takahashi, Kazuhiko; Kotani, Hidehito; Chen, Airu S; Chen, Howard Y; Macneil, Douglas J; Kanatani, Akio; Tokita, Shigeru

    2006-09-12

    Histamine H3 receptors (H3Rs) are located on the presynaptic membranes and cell soma of histamine neurons, where they negatively regulate the synthesis and release of histamine. In addition, H3Rs are also located on nonhistaminergic neurons, acting as heteroreceptors to regulate the releases of other amines such as dopamine, serotonin, and norepinephrine. The present study investigated the effects of H3R ligands on appetite and body-weight regulation by using WT and H3R-deficient mice (H3RKO), because brain histamine plays a pivotal role in energy homeostasis. The results showed that thioperamide, an H3R inverse agonist, increases, whereas imetit, an H3R agonist, decreases appetite and body weight in diet-induced obese (DiO) WT mice. Moreover, in DiO WT mice, but not in DiO H3RKO mice, imetit reduced fat mass, plasma concentrations of leptin and insulin, and hepatic triglyceride content. The anorexigenic effects of imetit were associated with a reduction in histamine release, but a comparable reduction in histamine release with alpha-fluoromethylhistidine, an inhibitor of histamine synthesis, increased appetite. Moreover, the anorexigenic effects of imetit were independent of the melanocortin system, because imetit comparably reduced appetite in melanocortin 3 and 4 receptor-deficient mice. The results provide roles of H3Rs in energy homeostasis and suggest a therapeutic potential for H3R agonists in the treatment of obesity and diabetes mellitus.

  13. Treatment of Type 2 Diabetes by Free Fatty Acid Receptor Agonists

    PubMed Central

    Watterson, Kenneth R.; Hudson, Brian D.; Ulven, Trond; Milligan, Graeme

    2014-01-01

    Dietary free fatty acids (FFAs), such as ω-3 fatty acids, regulate metabolic and anti-inflammatory processes, with many of these effects attributed to FFAs interacting with a family of G protein-coupled receptors. Selective synthetic ligands for free fatty acid receptors (FFA1-4) have consequently been developed as potential treatments for type 2 diabetes (T2D). In particular, clinical studies show that Fasiglifam, an agonist of the long-chain FFA receptor, FFA1, improved glycemic control and reduced HbA1c levels in T2D patients, with a reduced risk of hypoglycemia. However, this ligand was removed from clinical trials due to potential liver toxicity and determining if this is a target or a ligand-specific feature is now of major importance. Pre-clinical studies also show that FFA4 agonism increases insulin sensitivity, induces weight loss, and reduces inflammation and the metabolic and anti-inflammatory effects of short chain fatty acids (SCFAs) are linked with FFA2 and FFA3 activation. In this review, we therefore show that FFA receptor agonism is a potential clinical target for T2D treatment and discuss ongoing drug development programs within industry and academia aimed at improving the safety and effectiveness of these potential treatments. PMID:25221541

  14. [Extrapancreatic effects of GLP-1 receptor agonists: an open window towards new treatment goals in type 2 diabetes].

    PubMed

    Salvador, Javier; Andrada, Patricia

    2014-09-01

    The wide ubiquity of GLP-1 receptors in the body has stimulated the search for different extrapancreatic actions of GLP-1 and its receptor agonists. Thus, severe cardioprotective effects directed on myocardial ischaemia and dysfunction as well as diverse antiaterogenic actions have been reported. Also, native and GLP-1 receptor agonists have demonstrated significant beneficial effects on liver steatosis and fibrosis and on neuronal protection in experimental models of Alzheimer, and Parkinson's disease as well as on cerebral ischaemia. Recent evidences suggest that these drugs may also be useful for prevention and treatment of diabetic retinopathy, nephropathy and peripheral neuropathy. Good results have also been reported in psoriasis. Despite we still need confirmation that these promising effects can be applied to clinical practice, they offer new interesting perspectives for treatment of type 2 diabetes associated complications and give to GLP-1 receptor agonists an even more integral position in diabetes therapy.

  15. [Extrapancreatic effects of GLP-1 receptor agonists: an open window towards new treatment goals in type 2 diabetes].

    PubMed

    Salvador, Javier; Andrada, Patricia

    2014-01-01

    The wide ubiquity of GLP-1 receptors in the body has stimulated the search for different extrapancreatic actions of GLP-1 and its receptor agonists. Thus, severe cardioprotective effects directed on myocardial ischaemia and dysfunction as well as diverse antiaterogenic actions have been reported. Also, native and GLP-1 receptor agonists have demonstrated significant beneficial effects on liver steatosis and fibrosis and on neuronal protection in experimental models of Alzheimer, and Parkinson's disease as well as on cerebral ischaemia. Recent evidences suggest that these drugs may also be useful for prevention and treatment of diabetic retinopathy, nephropathy and peripheral neuropathy. Good results have also been reported in psoriasis. Despite we still need confirmation that these promising effects can be applied to clinical practice, they offer new interesting perspectives for treatment of type 2 diabetes associated complications and give to GLP-1 receptor agonists an even more integral position in diabetes therapy.

  16. Mechanisms of anorexia-cachexia syndrome and rational for treatment with selective ghrelin receptor agonist.

    PubMed

    Esposito, Angela; Criscitiello, Carmen; Gelao, Lucia; Pravettoni, Gabriella; Locatelli, Marzia; Minchella, Ida; Di Leo, Maria; Liuzzi, Rita; Milani, Alessandra; Massaro, Mariangela; Curigliano, Giuseppe

    2015-11-01

    Cancer cachexia is a multi-organ, multifactorial and often irreversible syndrome affecting many patients with cancer. Cancer cachexia is invariably associated with weight loss, mainly from loss of skeletal muscle and body fat, conditioning a reduced quality of life due to asthenia, anorexia, anaemia and fatigue. Treatment options for treating cancer cachexia are limited. The approach is multimodal and may include: treatment of secondary gastrointestinal symptoms, nutritional treatments, drug, and non-drug treatments. Nutritional counselling and physical training may be beneficial in delaying or preventing the development of anorexia-cachexia. However, these interventions are limited in their effect, and no definitive pharmacological treatment is available to address the relevant components of the syndrome. Anamorelin is a first-in-class, orally active ghrelin receptor agonist that binds and stimulates the growth hormone secretagogue receptor centrally, thereby mimicking the appetite-enhancing and anabolic effects of ghrelin. It represents a new class of drug and an additional treatment option for this patient group, whose therapeutic options are currently limited. In this review we examine the mechanisms of anamorelin by which it contrasts catabolic states, its role in regulation of metabolism and energy homeostasis, the data of recent trials in the setting of cancer cachexia and its safety profile.

  17. Treatment potential of the GLP-1 receptor agonists in type 2 diabetes mellitus: a review.

    PubMed

    Østergaard, L; Frandsen, Christian S; Madsbad, S

    2016-01-01

    Over the last decade, the discovery of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) has increased the treatment options for patients with type 2 diabetes mellitus (T2DM). GLP-1 RAs mimic the effects of native GLP-1, which increases insulin secretion, inhibits glucagon secretion, increases satiety and slows gastric emptying. This review evaluates the phase III trials for all approved GLP-1 RAs and reports that all GLP-1 RAs decrease HbA1c, fasting plasma glucose, and lead to a reduction in body weight in the majority of trials. The most common adverse events are nausea and other gastrointestinal discomfort, while hypoglycaemia is rarely reported when GLP-1 RAs not are combined with sulfonylurea or insulin. Treatment options in the near future will include co-formulations of basal insulin and a GLP-1 RA.

  18. Inhaled P2Y2 receptor agonists as a treatment for patients with Cystic Fibrosis lung disease.

    PubMed

    Kellerman, Don; Evans, Richard; Mathews, Dave; Shaffer, Christy

    2002-12-05

    P2Y(2) receptor agonists are a new class of compounds that are being evaluated as a treatment for the pulmonary manifestations of Cystic Fibrosis (CF). Results of preclinical research suggest that these compounds inhibit sodium absorption, restore chloride conductance and rehydrate the CF airway surface. In addition, P2Y(2) receptor agonists have been shown to enhance ciliary beat frequency and increase mucociliary clearance in animals and subjects with impaired mucociliary clearance. The normalization of airway surface liquid and enhancement of lung clearance is expected to provide a clinical benefit to CF patients. A number of P2Y(2) agonist compounds have been evaluated in healthy subjects and patients with CF. Most recently, INS37217, a metabolically stable and potent P2Y(2) agonist has been developed and studies have shown it to be well-tolerated when given via inhalation. This compound is currently being evaluated in children and adults with CF lung disease.

  19. [Treatment strategy for elderly diabetic patient with insulin or GLP-1 receptor agonist].

    PubMed

    Ando, Yasuyo

    2013-11-01

    It has been established that diabetes is an independent risk factor for microvascular and macrovascular complications, and many studies indicate that diabetic subjects are at greater risk of dementia, depression and fracture. Risk reductions for microvascular, macrovascular and death were observed by intensive therapy using insulin or oral diabetic agents. But a history of hypoglycemia was increased myocardial infarction, mortality, dementia and fracture. So it is important that optimum glycemic control has to be achieved without hypoglycemia. Treatment with a long-acting basal insulin analogue or glucagon-like peptide-1(GLP-1) receptor agonist, provide effective glycemic control without serious hypoglycemia in elderly patients. Self-monitoring of blood glucose might be effective in improving glycemic control in elderly patients, and it is useful for the diagnosis of hypoglycemia.

  20. Effects of repeated treatment with the dopamine D2/D3 receptor partial agonist aripiprazole on striatal D2/D3 receptor availability in monkeys

    PubMed Central

    Czoty, Paul W.; Gage, H. Donald; Garg, Pradeep K.; Garg, Sudha; Nader, Michael A.

    2013-01-01

    Rationale Chronic treatment with dopamine (DA) receptor agonists and antagonists can differentially affect measures of DA D2/D3 receptor number and function, but the effects of chronic treatment with a partial D2/D3 receptor agonist are not clear. Objective We used a within-subjects design in male cynomolgus monkeys to determine the effects of repeated (17-day) treatment with the D2/D3 receptor partial agonist aripiprazole (ARI; 0.03 mg/kg and 0.1 mg/kg i.m.) on food-reinforced behavior (n=5) and on D2/D3 receptor availability as measured with positron emission tomography (PET; n=9). Methods Five monkeys responded under a fixed-ratio 50 schedule of food reinforcement and D2/D3 receptor availability was measured before and four days after ARI treatment using PET and the D2/D3 receptor-selective radioligand [18F]fluoroclebopride (FCP). Four additional monkeys were studied using [11C]raclopride and treated sequentially with each dose of ARI for 17 days. Results ARI decreased food-maintained responding with minimal evidence of tolerance. Repeated ARI administration increased FCP and raclopride distribution volume ratios (DVRs) in the caudate nucleus and putamen in most monkeys, but decreases were observed in monkeys with the highest baseline DVRs. Conclusions The results indicate that repeated treatment with a low efficacy DA receptor partial agonist produces effects on brain D2/D3 receptor availability that are qualitatively different from those of both high-efficacy receptor agonists and antagonists, and suggest that the observed individual differences in response to ARI treatment may reflect its partial agonist activity. PMID:24077804

  1. Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability.

    PubMed

    Fairfax, Benjamin P; Pitcher, Julie A; Scott, Mark G H; Calver, Andrew R; Pangalos, Menelas N; Moss, Stephen J; Couve, Andrés

    2004-03-26

    GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. The dynamic control of the cell surface stability of GABA(B) receptors is likely to be of fundamental importance in the modulation of receptor signaling. Presently, however, this process is poorly understood. Here we demonstrate that GABA(B) receptors are remarkably stable at the plasma membrane showing little basal endocytosis in cultured cortical and hippocampal neurons. In addition, we show that exposure to baclofen, a well characterized GABA(B) receptor agonist, fails to enhance GABA(B) receptor endocytosis. Lack of receptor internalization in neurons correlates with an absence of agonist-induced phosphorylation and lack of arrestin recruitment in heterologous systems. We also demonstrate that chronic exposure to baclofen selectively promotes endocytosis-independent GABA(B) receptor degradation. The effect of baclofen can be attenuated by activation of cAMP-dependent protein kinase or co-stimulation of beta-adrenergic receptors. Furthermore, we show that increased degradation rates are correlated with reduced receptor phosphorylation at serine 892 in GABA(B)R2. Our results support a model in which GABA(B)R2 phosphorylation specifically stabilizes surface GABA(B) receptors in neurons. We propose that signaling pathways that regulate cAMP levels in neurons may have profound effects on the tonic synaptic inhibition by modulating the availability of GABA(B) receptors.

  2. The development of non-peptide glucagon-like peptide-1 receptor agonist for the treatment of type 2 diabetes.

    PubMed

    Moon, Ho-Sang; Kim, Mi-Kyung; Son, Moon-Ho

    2011-07-01

    Glucagon-like peptide-1 (GLP-1) is the main member of the incretin family and stimulates insulin secretion by binding with its specific receptor on pancreatic β-cells. In addition, GLP-1 exerts broad beneficial effects on the glucose regulation by suppressing food intake and delaying stomach emptying. Now, long acting GLP-1 analogs including exenatide and liraglutide have been approved for the treatment of diabetes mellitus type 2, however long-term injection can limit their use for these chronic patients. In this report, the authors provide a review on the development of non-peptide GLP-1 receptor agonists and introduce a novel agonist DA-15864.

  3. Rodent antinociception following acute treatment with different histamine receptor agonists and antagonists.

    PubMed

    Farzin, Davood; Asghari, Ladan; Nowrouzi, Mahvash

    2002-06-01

    The effects of different histamine receptor agonists and antagonists on the nociceptive threshold were investigated in mice by two different kinds of noxious stimuli: thermal (hot plate) and chemical (acetic acid-induced abdominal writhing). Intracerebroventricular (icv) injection of the histamine H(1) receptor agonist, HTMT (6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl) heptanecarboxamide) (50 microg/mouse), produced a hypernociception in the hot plate and writhing tests. Conversely, intraperitoneal (ip) injection of dexchlorpheniramine (30 and 40 mg/kg) and diphenhydramine (20 and 40 mg/kg) increased the pain threshold in both tests. The histamine H(2) receptor agonist, dimaprit (50 and 100 microg/mouse icv), or antagonist, ranitidine (50 and 100 microg/mouse icv), raised the pain threshold in both hot plate and writhing tests. In the mouse hot plate test, the histamine H(3) receptor agonist, imetit (50 mg/kg ip), reduced the pain threshold, while the histamine H(3) receptor antagonist, thioperamide (10 and 20 mg/kg ip), produced an antinociception. The hypernociceptive effects of HTMT and imetit were antagonized by dexchlorpheniramine (20 mg/kg ip) and thioperamide (5 mg/kg ip), respectively. The results suggest that histaminergic mechanisms may be involved in the modulation of nociceptive stimuli.

  4. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study.

    PubMed

    Marcus, Monica M; Björkholm, Carl; Malmerfelt, Anna; Möller, Annie; Påhlsson, Ninni; Konradsson-Geuken, Åsa; Feltmann, Kristin; Jardemark, Kent; Schilström, Björn; Svensson, Torgny H

    2016-09-01

    Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression.

  5. Effect of dopamine receptor agonists on sensory nerve activity: possible therapeutic targets for the treatment of asthma and COPD

    PubMed Central

    Birrell, Mark A; Crispino, Natascia; Hele, David J; Patel, Hema J; Yacoub, Magdi H; Barnes, Peter J; Belvisi, Maria G

    2002-01-01

    Sensory nerves regulate central and local reflexes such as airway plasma leakage, and cough and their function may be enhanced during inflammation. Evidence suggests that dopamine receptor agonists may inhibit sensory nerve-mediated responses.In this study dopamine inhibited vagal sensory nerve induced microvascular leakage in the rat. In order to characterize the receptor involved rat vagus preparations were utilized. Quinagolide (D2/3 agonist), ropinirole (D2/3/4 agonist), SKF 38393 (D1/5 agonist), AR-C68397AA (Viozan™) (dual D2/B2 agonist) and dopamine inhibited hypertonic saline induced depolarization by approximately 50%. Data suggests that AR-C68397AA and quinagolide also inhibited depolarization of the human vagus.The quinagolide response was blocked by sulpiride (D2/3 antagonist) but not SCH 23390 (D1/5 antagonist); ropinirole was partially blocked by sulpiride, totally blocked by spiperone (at a concentration that blocks all dopamine receptors) but not by SCH 23390. The response to SKF 38393 was not blocked by sulpiride but was by SCH 23390. The inhibition evoked by AR-C68397AA was only partially blocked by SCH 23390 but not by sulpiride or spiperone whereas dopamine was blocked by spiperone. The effect of dopamine was not stimulus-specific as it inhibited capsaicin-induced depolarization of the rat vagus in a spiperone sensitive manner.In conclusion, dopamine receptor ligands inhibit depolarization of the rat and human vagus. These data suggest that dopamine receptor agonists may be of therapeutic benefit in the treatment of symptoms such as cough and mucus secretion which are evident in respiratory diseases such as asthma and chronic obstructive pulmonary disease. PMID:12055141

  6. Effect of dopamine receptor agonists on sensory nerve activity: possible therapeutic targets for the treatment of asthma and COPD.

    PubMed

    Birrell, Mark A; Crispino, Natascia; Hele, David J; Patel, Hema J; Yacoub, Magdi H; Barnes, Peter J; Belvisi, Maria G

    2002-06-01

    Sensory nerves regulate central and local reflexes such as airway plasma leakage, and cough and their function may be enhanced during inflammation. Evidence suggests that dopamine receptor agonists may inhibit sensory nerve-mediated responses. In this study dopamine inhibited vagal sensory nerve induced microvascular leakage in the rat. In order to characterize the receptor involved rat vagus preparations were utilized. Quinagolide (D(2/3) agonist), ropinirole (D(2/3/4) agonist), SKF 38393 (D(1/5) agonist), AR-C68397AA (Viozan) (dual D(2)/B(2) agonist) and dopamine inhibited hypertonic saline induced depolarization by approximately 50%. Data suggests that AR-C68397AA and quinagolide also inhibited depolarization of the human vagus. The quinagolide response was blocked by sulpiride (D(2/3) antagonist) but not SCH 23390 (D(1/5) antagonist); ropinirole was partially blocked by sulpiride, totally blocked by spiperone (at a concentration that blocks all dopamine receptors) but not by SCH 23390. The response to SKF 38393 was not blocked by sulpiride but was by SCH 23390. The inhibition evoked by AR-C68397AA was only partially blocked by SCH 23390 but not by sulpiride or spiperone whereas dopamine was blocked by spiperone. The effect of dopamine was not stimulus-specific as it inhibited capsaicin-induced depolarization of the rat vagus in a spiperone sensitive manner. In conclusion, dopamine receptor ligands inhibit depolarization of the rat and human vagus. These data suggest that dopamine receptor agonists may be of therapeutic benefit in the treatment of symptoms such as cough and mucus secretion which are evident in respiratory diseases such as asthma and chronic obstructive pulmonary disease.

  7. Identification and optimization of pteridinone Toll-like receptor 7 (TLR7) agonists for the oral treatment of viral hepatitis.

    PubMed

    Roethle, Paul A; McFadden, Ryan M; Yang, Hong; Hrvatin, Paul; Hui, Hon; Graupe, Michael; Gallagher, Brian; Chao, Jessica; Hesselgesser, Joseph; Duatschek, Paul; Zheng, Jim; Lu, Bing; Tumas, Daniel B; Perry, Jason; Halcomb, Randall L

    2013-09-26

    Pteridinone-based Toll-like receptor 7 (TLR7) agonists were identified as potent and selective alternatives to the previously reported adenine-based agonists, leading to the discovery of GS-9620. Analogues were optimized for the immunomodulatory activity and selectivity versus other TLRs, based on differential induction of key cytokines including interferon α (IFN-α) and tumor necrosis factor α (TNF-α). In addition, physicochemical properties were adjusted to achieve desirable in vivo pharmacokinetic and pharmacodynamic properties. GS-9620 is currently in clinical evaluation for the treatment of chronic hepatitis B (HBV) infection.

  8. Theoretical analysis of somatostatin receptor 5 with antagonists and agonists for the treatment of neuroendocrine tumors.

    PubMed

    Nagarajan, Santhosh Kumar; Babu, Sathya; Madhavan, Thirumurthy

    2017-02-02

    We report on SSTR5 receptor modeling and its interaction with reported antagonist and agonist molecules. Modeling of the SSTR5 receptor was carried out using multiple templates with the aim of improving the precision of the generated models. The selective SSTR5 antagonists, agonists and native somatostatin SRIF-14 were employed to propose the binding site of SSTR5 and to identify the critical residues involved in the interaction of the receptor with other molecules. Residues Q2.63, D3.32, Q3.36, C186, Y7.34 and Y7.42 were found to be highly significant for their strong interaction with the receptor. SSTR5 antagonists were utilized to perform a 3D quantitative structure-activity relationship study. A comparative molecular field analysis (CoMFA) was conducted using two different alignment schemes, namely the ligand-based and receptor-based alignment methods. The best statistical results were obtained for ligand-based ([Formula: see text], [Formula: see text] = 0.988, noc = 4) and receptor-guided methods (docked mode 1:[Formula: see text], [Formula: see text], noc = 5), (docked mode 2:[Formula: see text] = 0.555, [Formula: see text], noc = 5). Based on CoMFA contour maps, an electropositive substitution at [Formula: see text], [Formula: see text] and [Formula: see text] position and bulky group at [Formula: see text] position are important in enhancing molecular activity.

  9. Future Treatment of Constipation-associated Disorders: Role of Relamorelin and Other Ghrelin Receptor Agonists

    PubMed Central

    Mosińska, Paula; Zatorski, Hubert; Storr, Martin; Fichna, Jakub

    2017-01-01

    There is an unmet need for effective pharmacological therapies for constipation, a symptom that significantly deteriorates patients’ quality of life and impacts health care. Ghrelin is an endogenous ligand for the growth hormone secretagogue receptor and has been shown to exert prokinetic effects on gastrointestinal (GI) motility via the vagus and pelvic nerves. The pharmacological potential of ghrelin is hampered by its short half-life. Ghrelin receptor (GRLN-R) agonists with enhanced pharmacokinetics were thus developed. Centrally penetrant GRLN-R agonists stimulate defecation and improve impaired lower GI transit in animals and humans. This review summarizes the current knowledge on relamorelin, a potent ghrelin mimetic, and other GRLN-R analogs which are in preclinical or clinical stages of development for the management of disorders with underlying GI hypomotility, like constipation. PMID:28238253

  10. Functionalized Ergot-alkaloids as potential dopamine D3 receptor agonists for treatment of schizophrenia

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka; Spiteller, Michael

    2012-12-01

    The relationship between the molecular structure and physical properties of functionalized naturally occurred Ergot-alkaloids as potential dopamine D3 receptor agonists is presented. The molecular modeling of the ergoline-skeleton is based on the comprehensive theoretical study of the binding affinity of the isolated chemicals towards the active sites of the D3 sub-type receptor (D3R) loops. The studied proton accepting ability under physiological conditions allows classifying four types of monocationics, characterizing with the different binding modes to D3R involving selected amino acid residues to the active sites. These results marked the pharmaceutical potential and clinical usage of the reported compounds as antipsychotic drugs for Schizophrenia treatment, since they allowed evaluating the highlights of the different hypothesizes of the biochemical causes the illness. The applied complex approach for theoretical and experimental elucidation, including quantum chemistry method, electrospray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI) mass spectrometric (MS) methods, nuclear magnetic resonance and vibrational IR and Raman spectroscopy on the isolated fifteen novel derivatives (1)-(15) and their different protonated forms (1a)-(15a) evidenced a strong dependence of molecular conformation, physical properties and binding affinity. Thus, the semi-synthetic functionalization of the naturally occurred products (NPs), provided significant possibilities to further molecular drugs-design and development of novel derivatives with wanted biological function, using the established profile of selected classes/families of NPs. The work described chiefly the non-linear (NL) approach for the interpretation of the mass chromatograms on the performed hybrid high performance liquid chromatography (HPLC) tandem MS/MS and MS/MS/MS experiments, discussing the merits and great diversity of instrumentation flexibility, thus achieving fundamental

  11. Effects of Long-Term Treatment with Estradiol and Estrogen Receptor Subtype Agonists on Serotonergic Function in Ovariectomized Rats.

    PubMed

    Benmansour, Saloua; Adeniji, Opeyemi S; Privratsky, Anthony A; Frazer, Alan

    2016-01-01

    Acute estradiol treatment was reported to slow the clearance of serotonin via activation of estrogen receptors (ER)β and/or GPR30 and to block the ability of a selective serotonin reuptake inhibitor (SSRI) to slow serotonin clearance via activation of ERα. In this study, the behavioral consequences of longer-term treatments with estradiol or ER subtype-selective agonists and/or an SSRI were examined in the forced swim test (FST). Ovariectomized rats were administered the following for 2 weeks: estradiol, ERβ agonist (diarylpropionitrile, DPN), GPR30 agonist (G1), ERα agonist (PPT), and/or the SSRI sertraline. Similar to sertraline, longer-term treatment with estradiol, DPN or G1 induced an antidepressant-like effect. By contrast, PPT did not, even though it blocked the antidepressant-like effect of sertraline. Uterus weights, used as a peripheral measure of estrogenic activity, were increased by estradiol and PPT but not DPN or G1 treatment. A second part of this study investigated, using Western blot analyses in homogenates from hippocampus, whether these behavioral effects are accompanied by changes in the activation of specific signaling pathways and/or TrkB. Estradiol and G1 increased phosphorylation of Akt, ERK and TrkB. These effects were similar to those obtained after treatment with sertraline. Treatment with DPN increased phosphorylation of ERK and TrkB, but it did not alter that of Akt. Treatment with PPT increased phosphorylation of Akt and ERK without altering that of TrkB. In conclusion, activation of at least TrkB and possibly ERK may be involved in the antidepressant-like effect of estradiol, ERβ and GPR30 agonists whereas Akt activation may not be necessary.

  12. EFFECTS OF LONG-TERM TREATMENT WITH ESTRADIOL AND ESTROGEN RECEPTOR SUBTYPE AGONISTS ON SEROTONERGIC FUNCTION IN OVARIECTOMIZED RATS

    PubMed Central

    Benmansour, Saloua; Adeniji, Opeyemi S.; Privratsky, Anthony A.; Frazer, Alan

    2015-01-01

    Acute estradiol treatment was reported to slow the clearance of serotonin via activation of estrogen receptors (ER)β and/or GPR30 and to block the ability of a selective serotonin reuptake inhibitor (SSRI) to slow serotonin clearance via activation of ERα. In this study, the behavioral consequences of longer-term treatments with estradiol or ER subtype-selective agonists and/or an SSRI were examined in the forced swim test (FST). Ovariectomized rats were administered for two weeks: estradiol, ERβ agonist (DPN), GPR30 agonist (G1), ERα agonist (PPT), and/or the SSRI sertraline. Similar to sertraline, longer-term treatment with estradiol, DPN or G1 induced an antidepressant- like effect. By contrast, PPT did not, even though it blocked the antidepressant-like effect of sertraline. Uterus weights, used as a peripheral measure of estrogenic activity, were increased by estradiol and PPT but not DPN or G1 treatment. A second part of this study investigated, using Western blot analyses in homogenates from hippocampus, whether these behavioral effects are accompanied by changes in the activation of specific signaling pathways and/or TrkB. Estradiol and G1 increased phosphorylation of Akt, ERK and TrkB. These effects were similar to those obtained after treatment with sertraline. Treatment with DPN increased phosphorylation of ERK and TrkB but it did not alter that of Akt. Treatment with PPT increased phosphorylation of Akt and ERK without altering that of TrkB. In conclusion, activation of at least TrkB and possibly ERK may be involved in the antidepressant-like effect of estradiol, ERβ and GPR30 agonists whereas Akt activation may not be necessary. PMID:26159182

  13. Body temperature as a mouse pharmacodynamic response to bombesin receptor subtype-3 agonists and other potential obesity treatments.

    PubMed

    Metzger, Joseph M; Gagen, Karen; Raustad, Kate A; Yang, Liming; White, Amanda; Wang, Sheng-Ping; Craw, Stephanie; Liu, Ping; Lanza, Thomas; Lin, Linus S; Nargund, Ravi P; Guan, Xiao-Ming; Strack, Alison M; Reitman, Marc L

    2010-11-01

    Treatment of rodents with a bombesin receptor subtype-3 (BRS-3) agonist reduces food intake and increases fasting metabolic rate, causing weight loss with continued treatment. In small mammals, core body temperature (T(b)) is regulated in part by nutritional status, with a reduced T(b) during fasting. We report that fed Brs3 knockout mice have a lower T(b), which is discordant with their nutritional status. Treatment of wild-type mice with a BRS-3 agonist increased T(b), more so when the baseline T(b) was reduced such as by fasting or during the inactive phase of the light cycle. With repeated BRS-3 agonist dosing, the T(b) increase attenuated despite continued weight loss efficacy. The increase in T(b) was not prevented by inhibitors of prostaglandin E (PGE) production but was partially reduced by a β-adrenergic blocker. These results demonstrate that BRS-3 has a role in body temperature regulation, presumably secondary to its effect on energy metabolism, including effects on sympathetic tone. By making use of this phenomenon, the reversal of the fasting T(b) reduction was developed into a sensitive single-dose pharmacodynamic assay for BRS-3 agonism and other antiobesity compounds acting by various mechanisms, including sibutramine, cannabinoid-1, and melanin-concentrating hormone-1 receptor blockers, and melanocortin, β₃-adrenergic, and cholecystokinin-1 receptor agonists. These drugs increased both the fasted T(b) and the fasted, resting metabolic rates. The T(b) assay is a robust, information-rich assay that is simpler and has a greater throughput than measuring metabolic rate and is a practical, effective tool for drug discovery.

  14. Ligand-Specific Regulation of the Endogenous Mu-Opioid Receptor by Chronic Treatment with Mu-Opioid Peptide Agonists

    PubMed Central

    Murányi, Marianna; Cinar, Resat; Kékesi, Orsolya; Birkás, Erika; Fábián, Gabriella; Bozó, Beáta; Zentai, András; Tóth, Géza; Kicsi, Emese Gabriella; Mácsai, Mónika; Szabó, Gyula; Szücs, Mária

    2013-01-01

    Since the discovery of the endomorphins (EM), the postulated endogenous peptide agonists of the mu-opioid receptors, several analogues have been synthesized to improve their binding and pharmacological profiles. We have shown previously that a new analogue, cis-1S,2R-aminocyclohexanecarboxylic acid2-endomorphin-2 (ACHC-EM2), had elevated mu-receptor affinity, selectivity, and proteolytic stability over the parent compound. In the present work, we have studied its antinociceptive effects and receptor regulatory processes. ACHC-EM2 displayed a somewhat higher (60%) acute antinociceptive response than the parent peptide, EM2 (45%), which peaked at 10 min after intracerebroventricular (icv) administration in the rat tail-flick test. Analgesic tolerance developed to the antinociceptive effect of ACHC-EM2 upon its repeated icv injection that was complete by a 10-day treatment. This was accompanied by attenuated coupling of mu-sites to G-proteins in subcellular fractions of rat brain. Also, the density of mu-receptors was upregulated by about 40% in the light membrane fraction, with no detectable changes in surface binding. Distinct receptor regulatory processes were noted in subcellular fractions of rat brains made tolerant by the prototypic full mu-agonist peptide, DAMGO, and its chloromethyl ketone derivative, DAMCK. These results are discussed in light of the recently discovered phenomenon, that is, the “so-called biased agonism” or “functional selectivity”. PMID:24350273

  15. Ligand-specific regulation of the endogenous mu-opioid receptor by chronic treatment with mu-opioid peptide agonists.

    PubMed

    Murányi, Marianna; Cinar, Resat; Kékesi, Orsolya; Birkás, Erika; Fábián, Gabriella; Bozó, Beáta; Zentai, András; Tóth, Géza; Kicsi, Emese Gabriella; Mácsai, Mónika; Dochnal, Roberta; Szabó, Gyula; Szücs, Mária

    2013-01-01

    Since the discovery of the endomorphins (EM), the postulated endogenous peptide agonists of the mu-opioid receptors, several analogues have been synthesized to improve their binding and pharmacological profiles. We have shown previously that a new analogue, cis-1S,2R-aminocyclohexanecarboxylic acid(2)-endomorphin-2 (ACHC-EM2), had elevated mu-receptor affinity, selectivity, and proteolytic stability over the parent compound. In the present work, we have studied its antinociceptive effects and receptor regulatory processes. ACHC-EM2 displayed a somewhat higher (60%) acute antinociceptive response than the parent peptide, EM2 (45%), which peaked at 10 min after intracerebroventricular (icv) administration in the rat tail-flick test. Analgesic tolerance developed to the antinociceptive effect of ACHC-EM2 upon its repeated icv injection that was complete by a 10-day treatment. This was accompanied by attenuated coupling of mu-sites to G-proteins in subcellular fractions of rat brain. Also, the density of mu-receptors was upregulated by about 40% in the light membrane fraction, with no detectable changes in surface binding. Distinct receptor regulatory processes were noted in subcellular fractions of rat brains made tolerant by the prototypic full mu-agonist peptide, DAMGO, and its chloromethyl ketone derivative, DAMCK. These results are discussed in light of the recently discovered phenomenon, that is, the "so-called biased agonism" or "functional selectivity".

  16. Postnatal treatment of rats with adrenergic receptor agonists or antagonists influences differentiation of sexual behavior.

    PubMed

    Jarzab, B; Sickmöller, P M; Geerlings, H; Döhler, K D

    1987-12-01

    The aim of the study was to investigate the possible role of the adrenergic system in development and differentiation of neural centers controlling sexual behavior in adulthood. For this purpose normal and androgenized female rats were treated with the alpha 1-receptor antagonist prazosin, the alpha 2-receptor agonist clonidine, or the alpha 2-receptor antagonist yohimbine-HCl throughout the first week of life. In adulthood all animals were ovariectomized and, after appropriate hormone-priming, they were tested for the capacity to display female and male sexual behavior patterns. Alteration of adrenergic transmission during the critical postnatal period for sexual differentiation of neural centers resulted in significant changes in the capacity to express female lordosis behavior in adulthood. In nonandrogenized animals clonidine significantly reduced the capacity for lordosis behavior. In androgenized animals clonidine had the opposite effect; it attenuated the inhibitory effect of testosterone propionate (TP) on differentiation of lordosis behavior. Prazosin, which was without effect in nonandrogenized animals, also attenuated the inhibitory effect of TP on differentiation of lordosis behavior. Yohimbine was without effect in androgenized and nonandrogenized animals. There was no influence of any of the adrenergic drugs on differentiation of male sexual behavior. In conclusion, differentiation of lordosis behavior seems to be mediated or modulated via adrenergic transmission. The defeminizing effect of testosterone postnatally on the differentiation of lordosis behavior seems to be expressed via alpha 1-adrenergic transmission, and diminished adrenergic activity during the postnatal period seems to protect the developing brain against this effect of testosterone.

  17. Virtual screening studies of Chinese medicine Coptidis Rhizoma as alpha7 nicotinic acetylcholine receptor agonists for treatment of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Xiang, Li; Xu, Youdong; Zhang, Yan; Meng, Xianli; Wang, Ping

    2015-04-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease. Extensive in vitro and in vivo experiments have proved that the decreased activity of the cholinergic neuron is responsible for the memory and cognition deterioration. The alpha7 nicotinic acetylcholine receptor (α7-nAChR) is proposed to a drug target of AD, and compounds which acting as α7-nAChR agonists are considered as candidates in AD treatment. Chinese medicine CoptidisRhizoma and its compounds are reported in various anti-AD effects. In this study, virtual screening, docking approaches and hydrogen bond analyses were applied to screen potential α7-nAChR agonists from CoptidisRhizome. The 3D structure of the protein was obtained from PDB database. 87 reported compounds were included in this research and their structures were accessed by NCBI Pubchem. Docking analysis of the compounds was performed using AutoDock 4.2 and AutoDock Vina. The images of the binding modes hydrogen bonds and the hydrophobic interaction were rendered with PyMOL1.5.0.4. and LigPlot+ respectively. Finally, N-tran-feruloyltyramine, isolariciresinol, flavanone, secoisolariciresinol, (+)-lariciresinol and dihydrochalcone, exhibited the lowest docking energy of protein-ligand complex. The results indicate these 6 compounds are potential α7 nAChR agonists, and expected to be effective in AD treatment.

  18. Effects of Liver × receptor agonist treatment on signal transduction pathways in acute lung inflammation

    PubMed Central

    2010-01-01

    Background Liver × receptor α (LXRα) and β (LXRβ) are members of the nuclear receptor super family of ligand-activated transcription factors, a super family which includes the perhaps better known glucocorticoid receptor, estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptors. There is limited evidence that LXL activation may reduces acute lung inflammation. The aim of this study was to investigate the effects of T0901317, a potent LXR receptor ligand, in a mouse model of carrageenan-induced pleurisy. Methods Injection of carrageenan into the pleural cavity of mice elicited an acute inflammatory response characterized by: accumulation of fluid containing a large number of neutrophils (PMNs) in the pleural cavity, infiltration of PMNs in lung tissues and subsequent lipid peroxidation, and increased production of nitrite/nitrate (NOx), tumor necrosis factor-α, (TNF-α) and interleukin-1β (IL-1β). Furthermore, carrageenan induced the expression of iNOS, nitrotyrosine and PARP, as well as induced apoptosis (TUNEL staining and Bax and Bcl-2 expression) in the lung tissues. Results Administration of T0901317, 30 min after the challenge with carrageenan, caused a significant reduction in a dose dependent manner of all the parameters of inflammation measured. Conclusions Thus, based on these findings we propose that LXR ligand such as T0901317, may be useful in the treatment of various inflammatory diseases. PMID:20175894

  19. In vivo pharmacological characterization of AC-3933, a benzodiazepine receptor partial inverse agonist for the treatment of Alzheimer's disease.

    PubMed

    Hatayama, Y; Hashimoto, T; Kohayakawa, H; Kiyoshi, T; Nakamichi, K; Kinoshita, T; Yoshida, N

    2014-04-18

    GABAergic neurons are known to inhibit neural transduction and therefore negatively affect excitatory neural circuits in the brain. We have previously reported that 5-(3-methoxyphenyl)-3-(5-methyl-1,2,4-oxadiazol-3-yl)-1,6-naphthyridin-2(1H)-one (AC-3933), a partial inverse agonist for the benzodiazepine receptor (BzR), reverses GABAergic inhibitory effect on cholinergic neurons, and thus enhances acetylcholine release from these neurons in rat hippocampal slices. In this study, we evaluated AC-3933 potential for the treatment of Alzheimer's disease, a disorder characterized by progressive decline mainly in cholinergic function. Oral administration of AC-3933 (0.01-0.03mg/kg) resulted in the amelioration of scopolamine-induced amnesia, as well as a shift in electroencephalogram (EEG) relative power characteristic of pro-cognitive cholinergic activators, such as donepezil. In addition, treatment with AC-3933 even at the high dose of 100mg/kg p.o. produced no seizure or anxiety, two major adverse effects of BzR inverse agonists developed in the past. These findings indicate that AC-3933 with its low risk for side effects may be useful in the treatment of Alzheimer's disease.

  20. Fates of endocytosed somatostatin sst2 receptors and associated agonists.

    PubMed Central

    Koenig, J A; Kaur, R; Dodgeon, I; Edwardson, J M; Humphrey, P P

    1998-01-01

    Somatostatin agonists are rapidly and efficiently internalized with the somatostatin sst2 receptor. The fate of internalized agonists and receptors is of critical importance because the rate of ligand recycling back to the cell surface can limit the amount of radioligand accumulated inside the cells, whereas receptor recycling might be of vital importance in providing the cell surface with dephosphorylated, resensitized receptors. Furthermore the accumulation of radioisotope-conjugated somatostatin agonists inside cancer cells resulting from receptor-mediated internalization has been used as a treatment for cancers that overexpress somatostatin receptors. In the present study, radio-iodinated agonists at the sst2 somatostatin receptor were employed to allow quantitative analysis of the fate of endocytosed agonist. After endocytosis, recycling back to the cell surface was the main pathway for both 125I-labelled somatostatin-14 (SRIF-14) and the more stable agonist 125I-labelled cyclo(N-Me-Ala-Tyr-d-Trp-Lys-Abu-Phe) (BIM-23027; Abu stands for aminobutyric acid), accounting for 75-85% of internalized ligand when re-endocytosis of radioligand was prevented. We have shown that there is a dynamic cycling of both somatostatin agonist ligands and receptors between the cell surface and internal compartments both during agonist treatment and after surface-bound agonist has been removed, unless steps are taken to prevent the re-activation of receptors by recycled agonist. Internalization leads to increased degradation of 125I-labelled SRIF-14 but not 125I-labelled BIM-23027. The concentration of recycled agonist accumulating in the extracellular medium was sufficient to re-activate the receptor, as measured both by the inhibition of forskolin-stimulated adenylate cyclase and the recovery of surface receptor number after internalization. PMID:9820803

  1. Dopamine receptor agonists, partial agonists and psychostimulant addiction.

    PubMed

    Pulvirenti, L; Koob, G F

    1994-10-01

    Despite the epidemic growth of psychostimulant addiction over the past years, few pharmacological means of intervention are available to date for clinical treatment. This is of importance since the withdrawal syndrome that follows abstinence from drugs such as cocaine and the amphetamines is characterized, among other symptoms, by intense craving for the abused drug, and this is considered a critical factor leading into relapse of drug use. In this article, Luigi Pulvirenti and George Koob focus on the modulatory role shown by drugs acting at the dopamine receptor on the various phases of psychostimulant dependence in preclinical models and in human studies, and suggest that a class of compounds with partial agonist properties at the dopamine receptor may have therapeutic potential.

  2. A partial trace amine-associated receptor 1 agonist exhibits properties consistent with a methamphetamine substitution treatment.

    PubMed

    Pei, Yue; Asif-Malik, Aman; Hoener, Marius; Canales, Juan J

    2016-05-19

    Recent evidence suggests that the trace amine-associated receptor 1 (TAAR1) plays a pivotal role in the regulation of dopamine (DA) transmission and psychostimulant action. Several selective TAAR1 agonists have previously shown efficacy in models of cocaine addiction. However, the effects of TAAR1 activation on methamphetamine (METH)-induced behaviours are less well understood, as indeed are the underlying neurochemical mechanisms mediating potential interactions between TAAR1 and METH. Here, in a progressive ratio schedule of reinforcement the partial TAAR1 agonist, RO5263397, reduced the break-point for METH self-administration, while significantly increasing responding maintained by food reward. Following self-administration and extinction training, RO5263397 completely blocked METH-primed reinstatement of METH seeking. Moreover, when used as a substitute, unlike a low dose of METH, which sustained vigorous responding when substituting for the training dose of METH, RO5263397 was not self-administered at any dose, thus exhibiting no apparent abuse liability. Fast-scan cyclic voltammetry experiments showed that RO5263397 prevented METH-induced DA overflow in slices of the nucleus accumbens, while having no effect on DA transmission in its own right. Collectively, the present observations demonstrate that partial TAAR1 activation decreases the motivation to self-administer METH, blocks METH-primed reinstatement of METH seeking and prevents METH-induced DA elevations in the nucleus accumbens, and strongly support the candidacy of TAAR1-based medications as potential substitute treatment in METH addiction.

  3. Neonatal DSP-4 treatment modifies antinociceptive effects of the CB1 receptor agonist methanandamide in adult rats.

    PubMed

    Korossy-Mruk, Eva; Kuter, Katarzyna; Nowak, Przemysław; Szkilnik, Ryszard; Rykaczewska-Czerwinska, Monika; Kostrzewa, Richard M; Brus, Ryszard

    2013-01-01

    To study the influence of the central noradrenergic system on antinociceptive effects mediated by the CB(1)-receptor agonist methanandamide, intact rats were contrasted with rats in which noradrenergic nerves were largely destroyed shortly after birth with the neurotoxin DSP-4 [N-(-2-chloroethyl)-N-ethyl-2-bromobenzylamine (50 mg/kg sc × 2, P1 and P3); zimelidine (10 mg/kg sc, 30 min pretreatment, selective serotonin reuptake inhibitor). When rats attained 10 weeks of age, monoamine and their metabolite concentrations were determined in the frontal cortex, thalamus, and spinal cord by an HPLC/ED method. Antinociceptive effects after methanandamide (10 mg/kg ip) apply were evaluated by a battery of tests. In addition, immunohistochemistry and densitometric analysis of the cannabinoid CB(1) receptor in the rat brain was performed. DSP-4 lesioning was associated with a reduction in norepinephrine content of the frontal cortex (>90 %) and spinal cord (>80 %) with no changes in the thalamus. Neonatal DSP-4 treatment produced a significant reduction in the antinociceptive effect of methanandamide in the tail-immersion test, hot-plate test and writhing tests. In the paw pressure and formalin hind paw tests results were ambiguous. These findings indicate that the noradrenergic system exerts a prominent influence on analgesia acting via the cannabinoid system in brain, without directly altering CB(1) receptor density in the brain.

  4. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  5. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  6. The role of α5 GABAA receptor agonists in the treatment of cognitive deficits in schizophrenia

    PubMed Central

    Gill, Kathryn M.; Grace, Anthony A.

    2014-01-01

    Currently available pharmacotherapies for the treatment of schizophrenia are ineffective in restoring the disrupted cognitive function associated with this disorder. As such, there is a continued search for more viable novel drug targets. Engaging in cognitive behaviors is associated with distinct coordinated oscillatory activity across brain regions, in particular the hippocampus and prefrontal cortex. In schizophrenia patients, pathological alterations in the functionality of GABAergic interneurons in the PFC and HPC responsible for generating network oscillations are thought to contribute to impaired cognition. Destabilized GABAergic interneuron activity in the HPC is further associated with aberrant increases in HPC output and enhanced dopamine neuron activity. Consequently, drugs directed at restoring HPC function could impact both oscillatory activity along with dopamine tone. There is compelling evidence from animal models of schizophrenia that allosteric modulation of the α5 subunit of the GABAA receptor is a viable means of resolving aberrant dopamine system activity through indirect alteration of HPC output. Consequently, these compounds are promising for their potential in also ameliorating cognitive deficits attributed to dysfunction in HPC network activity. PMID:24345268

  7. Treatment of antipsychotic-induced hyperprolactinemia: an update on the role of the dopaminergic receptors D2 partial agonist aripiprazole.

    PubMed

    De Berardis, Domenico; Fornaro, Michele; Serroni, Nicola; Marini, Stefano; Piersanti, Monica; Cavuto, Marilde; Valchera, Alessandro; Mazza, Monica; Girinelli, Gabriella; Iasevoli, Felice; Perna, Giampaolo; Martinotti, Giovanni; Di Giannantonio, Massimo

    2014-01-01

    Hyperprolactinemia is an unwanted adverse effect present in several typical and atypical antipsychotics. Aripiprazole is a drug with partial agonist activity at the level of dopamine receptors D2, which may be effective for antipsychotic- induced hyperprolactinemia. Therefore, we analyzed the literature concerning the treatment of antipsychoticinduced hyperprolactinemia with aripiprazole by updating a previous paper written on the same topic. More recent studies were reviewed. They showed that there are two options for the treatment of antipsychotic-induced hyperprolactinemia with aripiprazole. The safest strategy may require the addition of aripiprazole to ongoing treatments, in the case patients had previously responded to antipsychotic drugs and then developed hyperprolactinemia. However, it is advisable to monitor the patients in case relapses and/or side effect, although rare, might occur. Switching drugs should be considered when a patient does not appear to be responding to the previous antipsychotic, thus developing hyperprolactinemia. A cross-taper switch should always be considered, but the risk of a relapse in the disorder may occur more frequently and the patients should be closely monitored. However, limitations must be considered and further studies are needed to definitely elucidate this important issue. Some relevant patents are also described in this review.

  8. Long-Term Estrogen Receptor Beta Agonist Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats

    PubMed Central

    Sárvári, Miklós; Kalló, Imre; Hrabovszky, Erik; Solymosi, Norbert; Rodolosse, Annie; Liposits, Zsolt

    2016-01-01

    Estradiol (E2) robustly activates transcription of a broad array of genes in the hippocampal formation of middle-aged ovariectomized rats via estrogen receptors (ERα, ERβ, and G protein-coupled ER). Selective ERβ agonists also influence hippocampal functions, although their downstream molecular targets and mechanisms are not known. In this study, we explored the effects of long-term treatment with ERβ agonist diarylpropionitrile (DPN, 0.05 mg/kg/day, sc.) on the hippocampal transcriptome in ovariectomized, middle-aged (13 month) rats. Isolated hippocampal formations were analyzed by Affymetrix oligonucleotide microarray and quantitative real-time PCR. Four hundred ninety-seven genes fulfilled the absolute fold change higher than 2 (FC > 2) selection criterion. Among them 370 genes were activated. Pathway analysis identified terms including glutamatergic and cholinergic synapse, RNA transport, endocytosis, thyroid hormone signaling, RNA degradation, retrograde endocannabinoid signaling, and mRNA surveillance. PCR studies showed transcriptional regulation of 58 genes encoding growth factors (Igf2, Igfb2, Igf1r, Fgf1, Mdk, Ntf3, Bdnf), transcription factors (Otx2, Msx1), potassium channels (Kcne2), neuropeptides (Cck, Pdyn), peptide receptors (Crhr2, Oprm1, Gnrhr, Galr2, Sstr1, Sstr3), neurotransmitter receptors (Htr1a, Htr2c, Htr2a, Gria2, Gria3, Grm5, Gabra1, Chrm5, Adrb1), and vesicular neurotransmitter transporters (Slc32a1, Slc17a7). Protein-protein interaction analysis revealed networking of clusters associated with the regulation of growth/troph factor signaling, transcription, translation, neurotransmitter and neurohormone signaling mechanisms and potassium channels. Collectively, the results reveal the contribution of ERβ-mediated processes to the regulation of transcription, translation, neurogenesis, neuromodulation, and neuroprotection in the hippocampal formation of ovariectomized, middle-aged rats and elucidate regulatory channels responsible for

  9. Predictors of weight-loss response with glucagon-like peptide-1 receptor agonist treatment among adolescents with severe obesity.

    PubMed

    Nathan, B M; Rudser, K D; Abuzzahab, M J; Fox, C K; Coombes, B J; Bomberg, E M; Kelly, A S

    2016-02-01

    In two previous, separate clinical trials, we demonstrated significant reductions in body mass index (BMI) with exenatide in adolescents with severe obesity. In the present study, we pooled data from these near identical trials to evaluate factors that may predict BMI reduction at 3 months. Data from 32 patients (mean age 14.3 ± 2.2 years; 69% female; mean BMI 39.8 ± 5.8 kg m(-2)) were included. Exenatide treatment consisted of 5 mcg twice daily for 1 month, followed by an increase to 10 mcg twice daily for 2 additional months. Predictor variables included baseline BMI, BMI percent change at 1 month, incidence of nausea or vomiting and baseline appetite and satiety measures. Treatment effects of percent change in BMI from baseline were estimated within predictor subgroups using generalized estimating equations with exchangeable working correlation and robust variance estimation for confidence intervals and P-values to account for paired observations. The pooled data treatment effect on absolute BMI at 3 months was -3.42% (95% confidence interval: -5.41%, -1.42%) compared to placebo. Within treated participants, appetite at baseline (treatment effect in high [-4.28%] vs. low [1.02%], P = 0.028) and sex (treatment effect in female [-4.78%] vs. male [0.76%], P = 0.007) were significant predictors of change in BMI at 3 months. Baseline BMI, BMI percent change at 1 month, age, incidence of nausea, vomiting, or other gastrointestinal symptoms and satiety scores did not predict 3-month responses. Sex and measures of appetite may serve as useful predictors of glucagon-like peptide-1 receptor agonist treatment response among adolescents with severe obesity.

  10. Identification and in Vivo Evaluation of Liver X Receptor β-Selective Agonists for the Potential Treatment of Alzheimer's Disease.

    PubMed

    Stachel, Shawn J; Zerbinatti, Celina; Rudd, Michael T; Cosden, Mali; Suon, Sokreine; Nanda, Kausik K; Wessner, Keith; DiMuzio, Jillian; Maxwell, Jill; Wu, Zhenhua; Uslaner, Jason M; Michener, Maria S; Szczerba, Peter; Brnardic, Edward; Rada, Vanessa; Kim, Yuntae; Meissner, Robert; Wuelfing, Peter; Yuan, Yang; Ballard, Jeanine; Holahan, Marie; Klein, Daniel J; Lu, Jun; Fradera, Xavier; Parthasarathy, Gopal; Uebele, Victor N; Chen, Zhongguo; Li, Yingjie; Li, Jian; Cooke, Andrew J; Bennett, D Jonathan; Bilodeau, Mark T; Renger, John

    2016-04-14

    Herein, we describe the development of a functionally selective liver X receptor β (LXRβ) agonist series optimized for Emax selectivity, solubility, and physical properties to allow efficacy and safety studies in vivo. Compound 9 showed central pharmacodynamic effects in rodent models, evidenced by statistically significant increases in apolipoprotein E (apoE) and ATP-binding cassette transporter levels in the brain, along with a greatly improved peripheral lipid safety profile when compared to those of full dual agonists. These findings were replicated by subchronic dosing studies in non-human primates, where cerebrospinal fluid levels of apoE and amyloid-β peptides were increased concomitantly with an improved peripheral lipid profile relative to that of nonselective compounds. These results suggest that optimization of LXR agonists for Emax selectivity may have the potential to circumvent the adverse lipid-related effects of hepatic LXR activity.

  11. Histamine H3-receptor inverse agonists as novel antipsychotics.

    PubMed

    Ito, Chihiro

    2009-06-01

    Schizophrenia (SZ) that is resistant to treatment with dopamine (DA) D2 antagonists may involve changes other than those in the dopaminergic system. Recently, histamine (HA), which regulates arousal and cognitive functions, has been suggested to act as a neurotransmitter in the central nervous system. Four HA receptors-H1, H2, H3, and H4-have been identified. Our recent basic and clinical studies revealed that brain HA improved the symptoms of SZ. The H3 receptor is primarily localized in the central nervous system, and it acts not only as a presynaptic autoreceptor that modulates the HA release but also as a presynaptic heteroreceptor that regulates the release of other neurotransmitters such as monoamines and amino acids. H3-receptor inverse agonists have been considered to improve cognitive functions. Many atypical antipsychotics are H3-receptor antagonists. Imidazole-containing H3-receptor inverse agonists inhibit not only cytochrome P450 but also hERG potassium channels (encoded by the human ether-a-go-go-related gene). Several imidazole H3-receptor inverse agonists also have high affinity for H4 receptors, which are expressed at high levels in mast cells and leukocytes. Clozapine is an H4-receptor agonist; this agonist activity may be related to the serious side effect of agranulocytosis caused by clozapine. Therefore, selective non-imidazole H3-receptor inverse agonists can be considered as novel antipsychotics that may improve refractory SZ.

  12. The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor.

    PubMed

    Warne, Tony; Moukhametzianov, Rouslan; Baker, Jillian G; Nehmé, Rony; Edwards, Patricia C; Leslie, Andrew G W; Schertler, Gebhard F X; Tate, Christopher G

    2011-01-13

    β-adrenergic receptors (βARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline. Synthetic ligands have been developed that either activate or inhibit βARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermostabilized turkey (Meleagris gallopavo) β(1)-adrenergic receptor (β(1)AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 Å contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser(5.42) and Ser(5.46)), but partial agonists only interact with Ser(5.42) (superscripts refer to Ballesteros-Weinstein numbering). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.

  13. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future

    PubMed Central

    Kalra, Sanjay; Baruah, Manash P.; Sahay, Rakesh K.; Unnikrishnan, Ambika Gopalakrishnan; Uppal, Shweta; Adetunji, Omolara

    2016-01-01

    Glucagon-like peptide-1 (GLP-1)–based therapy improves glycaemic control through multiple mechanisms, with a low risk of hypoglycaemia and the additional benefit of clinically relevant weight loss. Since Starling and Bayliss first proposed the existence of intestinal secretions that stimulate the pancreas, tremendous progress has been made in the area of incretins. As a number of GLP-1 receptor agonists (GLP-1 RAs) continue to become available, physicians will soon face the challenge of selecting the right option customized to their patient's needs. The following discussion, derived from an extensive literature search using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide, provides a comprehensive review of existing and upcoming molecules in the GLP-1 RA class in terms of their structure, pharmacological profiles, efficacy, safety, and convenience. Search Methodology: A literature search was conducted using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide. Relevant articles were those that discussed structural, pharmacokinetic and pharmacodynamic differences, classification, long-acting and short-acting GLP-1 RAs, phase 3 trials, and expert opinions. Additional targeted searches were conducted on diabetes treatment guidelines and reviews on safety, as well as the American Diabetes Association/European Society for Study of Diabetes (ADA/EASD) statement on pancreatic safety. PMID:27042424

  14. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  15. α7 Nicotinic Receptor Agonists: Potential Therapeutic Drugs for Treatment of Cognitive Impairments in Schizophrenia and Alzheimer’s Disease

    PubMed Central

    Toyohara, Jun; Hashimoto, Kenji

    2010-01-01

    Accumulating evidence suggests that α7 nicotinic receptors (α7 nAChRs), a subtype of nAChRs, play a role in the pathophysiology of neuropsychiatric diseases, including schizophrenia and Alzheimer’s disease (AD). A number of psychopharmacological and genetic studies shown that α7 nAChRs play an important role in the deficits of P50 auditory evoked potential in patients with schizophrenia, and that (α nAChR agonists would be potential therapeutic drugs for cognitive impairments associated with P50 deficits in schizophrenia. Furthermore, some studies have demonstrated that α7 nAChRs might play a key role in the amyloid-β (Aβ)-mediated pathology of AD, and that α7 nAChR agonists would be potential therapeutic drugs for Aβ deposition in the brains of patients with AD. Interestingly, the altered expression of α7 nAChRs in the postmortem brain tissues from patients with schizophrenia and AD has been reported. Based on all these findings, selective α7 nAChR agonists can be considered potential therapeutic drugs for cognitive impairments in both schizophrenia and AD. In this article, we review the recent research into the role of α7 nAChRs in the pathophysiology of these diseases and into the potential use of novel α7 nAChR agonists as therapeutic drugs. PMID:21249164

  16. Discovery of TUG-770: A Highly Potent Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonist for Treatment of Type 2 Diabetes

    PubMed Central

    2013-01-01

    Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing. PMID:23687558

  17. [Economic evaluation of Thrombopoietin Receptor Agonists in the treatment of chronic primary immune thrombocytopenia].

    PubMed

    Parrondo, J; Grande, C; Ibáñez, J; Palau, J; Páramo, J A; Villa, G

    2013-01-01

    Objetivo: Desarrollar una herramienta de apoyo a la decisión en la selección de agonistas del receptor de trombopoyetina en el tratamiento de pacientes adultos con trombocitopenia inmune primaria crónica (PTI) refractaria. Métodos: Análisis coste-efectividad estocástico con un modelo de Markov de seis estados: estable, sangrado tipo 2, 3 ó 4, post-sangrado 4 y muerte. Cada simulación analiza un escenario aleatoriamente generado que describe las características del paciente, los resultados medidos en años de vida ajustados a calidad (AVACs) y los costes (en ?2011). Se obtuvieron distribuciones a partir de los datos para España de la Encuesta Europea de Salud de 2009, de la estimación de población para 2011 del INE, de los estudios a 6 meses de Eltrombopag y Romiplostim, de las utilidades obtenidas de la bibliografía y de las tarifas oficiales en España para procesos y actividad. Se generaron 10.000 escenarios aleatorios y se simuló la evolución de los pacientes de cada escenario durante un horizonte temporal de cinco años (ciclos de dos semanas). Perspectiva del Sistema Nacional de Salud (SNS). Tasa de descuento anual del 3% para costes y efectos. Resultados: En 9.983 escenarios Eltrombopag mostró mayor efectividad y en 17 no hubo diferencias. Eltombopag fue la alternativa dominante en 7.048 escenarios y la más coste efectiva en otros 19 (umbral 30.000 ?/AVAC). Conclusiones: Eltrombopag es la alternativa más coste-efectiva en el 70,67% de los escenarios simulados, por lo que su uso podría producir menores costes al SNS.

  18. We Need 2C but Not 2B: Developing Serotonin 2C (5-HT2C) Receptor Agonists for the Treatment of CNS Disorders.

    PubMed

    Cheng, Jianjun; Kozikowski, Alan P

    2015-12-01

    The serotonin 2C (5-HT2C ) receptor has been identified as a potential drug target for the treatment of a variety of central nervous system (CNS) disorders, such as obesity, substance abuse, and schizophrenia. In this Viewpoint article, recent progress in developing selective 5-HT2C agonists for use in treating these disorders is summarized, including the work of our group. Challenges in this field and the possible future directions are described. Homology modeling as a method to predict the binding modes of 5-HT2C ligands to the receptor is also discussed. Compared to known ligands, the improved pharmacological profiles of the 2-phenylcyclopropylmethylamine-based 5-HT2C agonists make them preferred candidates for further studies.

  19. We Need 2C but Not 2B: Developing Serotonin 2C (5-HT2C) Receptor Agonists for the Treatment of CNS Disorders

    PubMed Central

    Cheng, Jianjun; Kozikowski, Alan P.

    2016-01-01

    The serotonin 2C (5-HT2C) receptor has been identified as a potential drug target for the treatment of a variety of central nervous system (CNS) disorders, such as obesity, substance abuse, and schizophrenia. In this Viewpoint article, recent progress in developing selective 5-HT2C agonists for use in treating these disorders is summarized, including the work of our group. Challenges in this field and the possible future directions are described. Homology modeling as a method to predict the binding modes of 5-HT2C ligands to the receptor is also discussed. Compared to known ligands, the improved pharmacological profiles of the 2-phenylcyclopropylmethylamine-based 5-HT2C agonists make them preferred candidates for further studies. PMID:26507582

  20. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss

    PubMed Central

    Iepsen, E W; Lundgren, J; Dirksen, C; Jensen, J-EB; Pedersen, O; Hansen, T; Madsbad, S; Holst, J J; Torekov, S S

    2015-01-01

    Background: Recent studies indicate that glucagon-like peptide (GLP)-1 inhibits appetite in part through regulation of soluble leptin receptors. Thus, during weight loss maintenance, GLP-1 receptor agonist (GLP-1RA) administration may inhibit weight loss-induced increases in soluble leptin receptors thereby preserving free leptin levels and preventing weight regain. Methods: In a randomized controlled trial, 52 healthy obese individuals were, after a diet-induced 12% body weight loss, randomized to treatment with or without administration of the GLP-1RA liraglutide (1.2 mg per day). In case of weight gain, low-calorie diet products were allowed to replace up to two meals per day to achieve equal weight maintenance. Glucose tolerance and hormone responses were investigated before and after weight loss and after 52 weeks weight maintenance. Primary end points: increase in soluble leptin receptor plasma levels and decrease in free leptin index after 52 weeks weight loss maintenance. Results: Soluble leptin receptor increase was 59% lower; 2.1±0.7 vs 5.1±0.8 ng ml−1 (−3.0 (95% confidence interval (CI)=−0.5 to −5.5)), P<0.001 and free leptin index decrease was 43% smaller; −62±15 vs −109±20 (−47 (95% CI=−11 to −83)), P<0.05 with administration of GLP-1RA compared with control group. The 12% weight loss was successfully maintained in both the groups with no significant change in weight after 52 weeks follow-up. The GLP-1RA group had greater weight loss during the weight maintenance period (−2.3 kg (95% CI=−0.6 to −4.0)), and had fewer meal replacements per day compared with the control group (minus one meal per day (95% CI=−0.6 to −1)), P<0.001. Fasting glucose was decreased by an additional −0.2±0.1 mmol l−1 in the GLP-1RA group in contrast to the control group, where glucose increased 0.3±0.1 mmol l−1 to the level before weight loss (−0.5mmol l−1 (95% CI=−0.1 to −0.9)), P<0.005. Meal response of peptide

  1. GABA receptor agonists: pharmacological spectrum and therapeutic actions.

    PubMed

    Bartholini, G

    1985-01-01

    From the data discussed in this review it appears that GABA receptor agonists exhibit a variety of actions in the central nervous system, some of which are therapeutically useful (Table V). GABA receptor agonists, by changing the firing rate of the corresponding neurons accelerate noradrenaline turnover without changes in postsynaptic receptor density and diminish serotonin liberation with an up-regulation of 5HT2 receptors. These effects differ from those of tricyclic antidepressants which primarily block monoamine re-uptake and cause down-regulation of beta-adrenergic and 5HT2 receptors. The GABA receptor agonist progabide has been shown to exert an antidepressant action which is indistinguishable from that of imipramine in patients with major affective disorders. The fact that: (a) GABA receptor agonists and tricyclic antidepressants affect noradrenergic and serotonergic transmission differently; and (b) tricyclic antidepressants alter GABA-related parameters challenges the classical monoamine hypothesis of depression and suggests that GABA-mediated mechanisms play a role in mood disorders. Decreases in cellular excitability produced by GABAergic stimulation leads to control of seizures in practically all animal models of epilepsy. GABA receptor agonists have a wide spectrum as they antagonize not only seizures which are dependent on decreased GABA synaptic activity but also convulsant states which are apparently independent of alterations in GABA-mediated events. These results in animals are confirmed in a wide range of human epileptic syndromes. GABA receptor agonists decrease dopamine turnover in the basal ganglia and antagonize neuroleptic-induced increase in dopamine release. On repeated treatment, progabide prevents or reverses the neuroleptic-induced up-regulation of dopamine receptors in the rat striatum and antagonizes the concomitant supersensitivity to dopaminomimetics. Behaviorally, GABA receptor agonists diminish the stereotypies induced by

  2. Desensitization of the insulin receptor by antireceptor antibodies in vivo is blocked by treatment of mice with beta-adrenergic agonists.

    PubMed

    Elias, D; Rapoport, M; Cohen, I R; Shechter, Y

    1988-06-01

    In previous studies we reported that immunization of mice with ungulate insulins induced the development of antiinsulin antibodies, which include an idiotype that appeared to recognize the part of the insulin molecule recognized by the hormone receptor. The antiinsulin antibodies of this idiotype were replaced spontaneously by antiidiotypic antibodies. The antiidiotypic antibodies, which persisted for about 14 d, mimicked insulin and functioned as antibodies to the insulin receptor. They induced down regulation, desensitization and refractoriness of the insulin receptor and disturbances in glucose homeostasis in vivo (Shechter, Y., D. Elias, R. Maron, and I.R. Cohen., 1984; Elias, D., R. Maron, I.R. Cohen, and Y. Shechter. 1984, J. Biol. Chem. 259: 6411-6419). We now report that effects of the antiidiotypic antibodies on the insulin receptor effector system can be modified pharmacologically. Administration of the beta-adrenergic agonist isoproterenol during the period of insulin resistance (days 26-40 after primary immunization), largely restored fat cell responsiveness to insulin, and eliminated the appearance of fasting hyperglycemia. This restoration appeared to be caused by inhibition of both insulin receptor desensitization and refractoriness. In contrast, down regulation of insulin receptors was not reversed by isoproterenol treatment in vivo. The effects of treatment with isoproterenol persisted for 2-4 d after termination of treatment. The beta-antagonist, propranolol and more so, the beta 1a-antagonist metoprolol, specifically blocked the effect of isoproterenol at a molar ratio of 3-10:1. Oral administration of the cAMP phosphodiesterase inhibitor, aminophylline, was also effective in inhibiting the development of desensitization in fat cells. These results indicate that treatment with beta 1-adrenergic agonists in vivo, or other agents that elevate cellular cAMP levels, can inhibit the development of the "postbinding" defects induced by insulin

  3. Muscimol as an ionotropic GABA receptor agonist.

    PubMed

    Johnston, Graham A R

    2014-10-01

    Muscimol, a psychoactive isoxazole from Amanita muscaria and related mushrooms, has proved to be a remarkably selective agonist at ionotropic receptors for the inhibitory neurotransmitter GABA. This historic overview highlights the discovery and development of muscimol and related compounds as a GABA agonist by Danish and Australian neurochemists. Muscimol is widely used as a ligand to probe GABA receptors and was the lead compound in the development of a range of GABAergic agents including nipecotic acid, tiagabine, 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, (Gaboxadol(®)) and 4-PIOL.

  4. Corepressors of agonist-bound nuclear receptors

    SciTech Connect

    Gurevich, Igor; Aneskievich, Brian J.

    2007-09-15

    Nuclear receptors (NRs) rely on coregulator proteins to modulate transcription of target genes. NR coregulators can be broadly subdivided into coactivators which potentiate transcription and corepressors which silence gene expression. The prevailing view of coregulator action holds that in the absence of agonist the receptor interacts with a corepressor via the corepressor nuclear receptor (CoRNR, 'corner') box motifs within the corepressor. Upon agonist binding, a conformational change in the receptor causes the shedding of corepressor and the binding of a coactivator which interacts with the receptor via NR boxes within the coregulator. This view was challenged with the discovery of RIP140 which acts as a NR corepressor in the presence of agonist and utilizes NR boxes. Since then a number of other corepressors of agonist-bound NRs have been discovered. Among them are LCoR, PRAME, REA, MTA1, NSD1, and COPR1 Although they exhibit a great diversity of structure, mechanism of repression and pathophysiological function, these corepressors frequently have one or more NR boxes and often recruit histone deacetylases to exert their repressive effects. This review highlights these more recently discovered corepressors and addresses their potential functions in transcription regulation, disease pharmacologic responses and xenobiotic metabolism.

  5. Antidepressant-like Effects of δ Opioid Receptor Agonists in Animal Models

    PubMed Central

    Saitoh, Akiyoshi; Yamada, Mitsuhiko

    2012-01-01

    Recently, δ opioid receptor agonists have been proposed to be attractive targets for the development of novel antidepressants. Several studies revealed that single treatment of δ opioid receptor agonists produce antidepressant-like effects in the forced swimming test, which is one of the most popular animal models for screening antidepressants. In addition, subchronic treatment with δ opioid receptor agonists has been shown to completely attenuate the hyperemotional responses found in olfactory bulbectomized rats. This animal model exhibits hyperemotional behavior that may mimic the anxiety, aggression, and irritability found in depressed patients, suggesting that δ opioid receptor agonists could be effective in the treatment of these symptoms in depression. On the other hand, prototype δ opioid receptor agonists produce convulsive effects, which limit their therapeutic potential and clinical development. In this review, we presented the current knowledge regarding the antidepressant-like effects of δ opioid receptor agonists, which include some recently developed drugs lacking convulsive effects. PMID:23449756

  6. Opioid receptor agonists reduce brain edema in stroke.

    PubMed

    Yang, Li; Wang, Hezhen; Shah, Kaushik; Karamyan, Vardan T; Abbruscato, Thomas J

    2011-04-06

    Cerebral edema is a leading cause of mortality in stroke patients. The purpose of this study was to assess a non-selective opioid receptor agonist, biphalin, in decreasing reducing brain edema formation using both in vitro and in vivo models of stroke. For the in situ model of ischemia, hippocampal slices were exposed to oxygen glucose deprivation (OGD) conditions and we observed that hippocampal water content was increased, compared to normoxia. Treatment with the mu agonist, Tyr-D-Ala', N-CH, -Phe4, Glyol-Enkephalin (DAMGO), delta opioid agonists, D-pen(2), D-phe(5) enkephalin (DPDPE), and kappa agonist, U50 488, all significantly decreased brain slice water gain. Interestingly, the non-selective agonist, biphalin, exhibited a statistically significant (P<0.01) greater effect in decreasing water content in OGD-exposed hippocampal slices, compared with mu, delta, and kappa selective opioid agonists. Moreover, biphalin exhibited anti-edematous effects in a dose responsive manner. The non-selective opioid antagonist, naloxone, returned the water content nearly back to original OGD values for all opioid agonist treatments, supporting that these effects were mediated by an opioid receptor pathway. Furthermore, biphalin significantly decreased edema (53%) and infarct (48%) ratios, and neuronal recovery from stroke, compared with the vehicle-treated groups in a 12h permanent middle cerebral artery occlusion (MCAO) model of focal ischemia. Biphalin also significantly decreased the cell volume increase in primary neuronal cells exposed to OGD condition. These data suggest that opioid receptor activation may provide neuroprotection during stroke and further investigations are needed in the development of novel opioid agonist as efficacious treatments for brain ischemia.

  7. Potential of nonpeptide (ant)agonists to rescue vasopressin V2 receptor mutants for the treatment of X-linked nephrogenic diabetes insipidus.

    PubMed

    Los, E L; Deen, P M T; Robben, J H

    2010-05-01

    According to the body's need, water is reabsorbed from the pro-urine that is formed by ultrafiltration in the kidney. This process is regulated by the antidiuretic hormone arginine-vasopressin (AVP), which binds to its type 2 receptor (V2R) in the kidney. Mutations in the gene encoding the V2R often lead to the X-linked inheritable form of nephrogenic diabetes insipidus (NDI), a disorder in which patients are unable to concentrate their urine despite the presence of AVP. Many of these mutations are missense mutations that do not interfere with the intrinsic functionality of V2R, but cause its retention in the endoplasmic reticulum (ER), making it unavailable for AVP binding. Because the current treatments for NDI relieve its symptoms to some extent, but do not cure the disorder, cell-permeable antagonists (pharmacological chaperones) have been successfully used to stabilise the mutant receptors and restore their plasma membrane localisation. Recently, cell-permeable agonists also were shown to rescue ER-retained V2R mutants, leading to increased cAMP levels and translocation of aquaporin-2 to the apical membrane. This makes V2R-specific cell-permeable agonists very promising therapeutics for NDI as a result of misfolded V2R receptors.

  8. Liver X receptor agonist treatment significantly affects phenotype and transcriptome of APOE3 and APOE4 Abca1 haplo-deficient mice

    PubMed Central

    Fitz, Nicholas F.; Mounier, Anais; Wolfe, Cody M.; Nam, Kyong Nyon; Reeves, Valerie L.; Kamboh, Hafsa; Koldamova, Radosveta

    2017-01-01

    ATP-binding cassette transporter A1 (ABCA1) controls cholesterol and phospholipid efflux to lipid-poor apolipoprotein E (APOE) and is transcriptionally controlled by Liver X receptors (LXRs) and Retinoic X Receptors (RXRs). In APP transgenic mice, lack of Abca1 increased Aβ deposition and cognitive deficits. Abca1 haplo-deficiency in mice expressing human APOE isoforms, increased level of Aβ oligomers and worsened memory deficits, preferentially in APOE4 mice. In contrast upregulation of Abca1 by LXR/RXR agonists significantly ameliorated pathological phenotype of those mice. The goal of this study was to examine the effect of LXR agonist T0901317 (T0) on the phenotype and brain transcriptome of APP/E3 and APP/E4 Abca1 haplo-deficient (APP/E3/Abca1+/- and APP/E4/Abca1+/-) mice. Our data demonstrate that activated LXRs/RXR ameliorated APOE4-driven pathological phenotype and significantly affected brain transcriptome. We show that in mice expressing either APOE isoform, T0 treatment increased mRNA level of genes known to affect brain APOE lipidation such as Abca1 and Abcg1. In both APP/E3/Abca1+/- and APP/E4/Abca1+/- mice, the application of LXR agonist significantly increased ABCA1 protein level accompanied by an increased APOE lipidation, and was associated with restoration of APOE4 cognitive deficits, reduced levels of Aβ oligomers, but unchanged amyloid load. Finally, using Gene set enrichment analysis we show a significant APOE isoform specific response to LXR agonist treatment: Gene Ontology categories “Microtubule Based Process” and “Synapse Organization” were differentially affected in T0-treated APP/E4/Abca1+/- mice. Altogether, the results are suggesting that treatment of APP/E4/Abca1+/- mice with LXR agonist T0 ameliorates APOE4-induced AD-like pathology and therefore targeting the LXR-ABCA1-APOE regulatory axis could be effective as a potential therapeutic approach in AD patients, carriers of APOEε4. PMID:28241068

  9. Chronic 5-HT4 receptor agonist treatment restores learning and memory deficits in a neuroendocrine mouse model of anxiety/depression.

    PubMed

    Darcet, Flavie; Gardier, Alain M; David, Denis J; Guilloux, Jean-Philippe

    2016-03-11

    Cognitive disturbances are often reported as serious invalidating symptoms in patients suffering from major depression disorders (MDD) and are not fully corrected by classical monoaminergic antidepressant drugs. If the role of 5-HT4 receptor agonists as cognitive enhancers is well established in naïve animals or in animal models of cognitive impairment, their cognitive effects in the context of stress need to be examined. Using a mouse model of anxiety/depression (CORT model), we reported that a chronic 5-HT4 agonist treatment (RS67333, 1.5mg/kg/day) restored chronic corticosterone-induced cognitive deficits, including episodic-like, associative and spatial learning and memory impairments. On the contrary, a chronic monoaminergic antidepressant drug treatment with fluoxetine (18mg/kg/day) only partially restored spatial learning and memory deficits and had no effect in the associative/contextual task. These results suggest differential mechanisms underlying cognitive effects of these drugs. Finally, the present study highlights 5-HT4 receptor stimulation as a promising therapeutic mechanism to alleviate cognitive symptoms related to MDD.

  10. Physiologic and weight-focused treatment strategies for managing type 2 diabetes mellitus: the metformin, glucagon-like peptide-1 receptor agonist, and insulin (MGI) approach.

    PubMed

    Nadeau, Daniel A

    2013-05-01

    The prevalence of type 2 diabetes mellitus (T2DM) is rising in association with an increase in obesity rates. Current treatment options for patients with T2DM include lifestyle modifications and numerous antidiabetic medications. Despite the availability of effective and well-tolerated treatments, many patients do not achieve recommended glycemic targets. Lack of efficacy is complicated by the wide range of available agents and little specificity in treatment guidelines, thus challenging clinicians to understand the relative benefits and risks of individual options for each patient. In this article, lifestyle intervention strategies and current antidiabetic agents are evaluated for their efficacy, safety, and weight-loss potential. Because of the heterogeneous and progressive nature of T2DM, physicians should advocate approaches that emphasize weight management, limit the risk of hypoglycemia and adverse events, and focus on the core pathophysiologic defects in patients with T2DM. A healthy, plant-based diet that is low in saturated fat and refined carbohydrates but high in whole grains, vegetables, legumes, and fruits, coupled with resistance and aerobic exercise regimens, are recommended for patients with T2DM. When necessary, drug intervention, described in this article as the MGI (metformin, glucagon-like peptide-1 receptor agonist, and insulin) approach, should begin with metformin and progress to the early addition of glucagon-like peptide-1 receptor agonists because of their weight loss potential and ability to target multiple pathophysiologic defects in patients with T2DM. For most patients, treatments that induce weight gain and hypoglycemia should be avoided. Long-acting insulin should be initiated if glycemic control is not achieved with metformin and glucagon-like peptide-1 receptor agonist combination therapy, focusing on long-acting insulin analogs that induce the least weight gain and have the lowest hypoglycemic risk. Ultimately, a patient

  11. Emerging strategies for exploiting cannabinoid receptor agonists as medicines.

    PubMed

    Pertwee, Roger G

    2009-02-01

    Medicines that activate cannabinoid CB(1) and CB(2) receptor are already in the clinic. These are Cesamet (nabilone), Marinol (dronabinol; Delta(9)-tetrahydrocannabinol) and Sativex (Delta(9)-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol can also be prescribed to stimulate appetite, while Sativex is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB(2) receptors; or (v) 'multi-targeting'. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed.

  12. Emerging strategies for exploiting cannabinoid receptor agonists as medicines

    PubMed Central

    Pertwee, Roger G

    2009-01-01

    Medicines that activate cannabinoid CB1 and CB2 receptor are already in the clinic. These are Cesamet® (nabilone), Marinol® (dronabinol; Δ9-tetrahydrocannabinol) and Sativex® (Δ9-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol® can also be prescribed to stimulate appetite, while Sativex® is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB2 receptors; or (v) ‘multi-targeting’. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed. PMID:19226257

  13. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with Pompe disease

    PubMed Central

    Farah, Benjamin L.; Madden, Lauran; Li, Songtao; Nance, Sierra; Bird, Andrew; Bursac, Nenad; Yen, Paul M.; Young, Sarah P.; Koeberl, Dwight D.

    2014-01-01

    Enzyme or gene replacement therapy with acid α-glucosidase (GAA) has achieved only partial efficacy in Pompe disease. We evaluated the effect of adjunctive clenbuterol treatment on cation-independent mannose-6-phosphate receptor (CI-MPR)-mediated uptake and intracellular trafficking of GAA during muscle-specific GAA expression with an adeno-associated virus (AAV) vector in GAA-knockout (KO) mice. Clenbuterol, which increases expression of CI-MPR in muscle, was administered with the AAV vector. This combination therapy increased latency during rotarod and wirehang testing at 12 wk, in comparison with vector alone. The mean urinary glucose tetrasaccharide (Glc4), a urinary biomarker, was lower in GAA-KO mice following combination therapy, compared with vector alone. Similarly, glycogen content was lower in cardiac and skeletal muscle following 12 wk of combination therapy in heart, quadriceps, diaphragm, and soleus, compared with vector alone. These data suggested that clenbuterol treatment enhanced trafficking of GAA to lysosomes, given that GAA was expressed within myofibers. The integral role of CI-MPR was demonstrated by the lack of effectiveness from clenbuterol in GAA-KO mice that lacked CI-MPR in muscle, where it failed to reverse the high glycogen content of the heart and diaphragm or impaired wirehang performance. However, the glycogen content of skeletal muscle was reduced by the addition of clenbuterol in the absence of CI-MPR, as was lysosomal vacuolation, which correlated with increased AKT signaling. In summary, β2-agonist treatment enhanced CI-MPR-mediated uptake and trafficking of GAA in mice with Pompe disease, and a similarly enhanced benefit might be expected in other lysosomal storage disorders.—Farah, B. L., Madden, L., Li, S., Nance, S., Bird, A., Bursac, N., Yen, P. M., Young, S. P., Koeberl, D. D. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with

  14. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists.

    PubMed

    Magnan, Rémi; Masri, Bernard; Escrieut, Chantal; Foucaud, Magali; Cordelier, Pierre; Fourmy, Daniel

    2011-02-25

    Given the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of β-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or β-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and β-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for β-arrestin recruitment. However, this region and β-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R·β-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor.

  15. β‐Arrestin 2 dependence of δ opioid receptor agonists is correlated with alcohol intake

    PubMed Central

    Chiang, T; Sansuk, K

    2016-01-01

    Background and Purpose δ Opioid receptor agonists are being developed as potential treatments for depression and alcohol use disorders. This is particularly interesting as depression is frequently co‐morbid with alcohol use disorders. Yet we have previously shown that δ receptor agonists range widely in their ability to modulate alcohol intake; certain δ receptor agonists actually increase alcohol consumption in mice. We propose that variations in β‐arrestin 2 recruitment contribute to the differential behavioural profile of δ receptor agonists. Experimental Approach We used three diarylmethylpiperazine‐based non‐peptidic δ receptor selective agonists (SNC80, SNC162 and ARM390) and three structurally diverse δ receptor agonists (TAN‐67, KNT127 and NIH11082). We tested these agonists in cAMP and β‐arrestin 2 recruitment assays and a behavioural assay of alcohol intake in male C57BL/6 mice. We used β‐arrestin 2 knockout mice and a model of depression‐like behaviour to further study the role of β‐arrestin 2 in δ receptor pharmacology. Key Results All six tested δ receptor agonists were full agonists in the cAMP assay but displayed distinct β‐arrestin 2 recruitment efficacy. The efficacy of δ receptor agonists to recruit β‐arrestin 2 positively correlated with their ability to increase alcohol intake (P < 0.01). The effects of the very efficacious recruiter SNC80 on alcohol intake, alcohol place preference and depression‐like behaviour were β‐arrestin 2‐dependent. Conclusions and Implications Our finding that δ receptor agonists that strongly recruit β‐arrestin 2 can increase alcohol intake carries important ramifications for drug development of δ receptor agonists for treatment of alcohol use disorders and depressive disorders. © 2015 The British Pharmacological Society PMID:26507558

  16. Chronic treatment with the G protein-coupled receptor 30 agonist G-1 decreases blood pressure in ovariectomized mRen2.Lewis rats.

    PubMed

    Lindsey, Sarah Hoffmann; Cohen, Jonathan A; Brosnihan, K Bridget; Gallagher, Patricia E; Chappell, Mark C

    2009-08-01

    The mRen2.Lewis congenic strain is an estrogen-sensitive model of hypertension whereby estrogen depletion produces a significant and sustained increase in blood pressure. The recent identification of G protein-coupled receptor 30 (GPR30) as a third estrogen receptor isotype prompted us to test the hypothesis that this novel receptor exhibits beneficial cardiovascular actions in the hypertensive female mRen2.Lewis rat. Intact female, ovariectomized female (OVX), and male mRen2.Lewis rats were treated with the selective GPR30 agonist G-1 or vehicle via osmotic minipump for 2 wk. G-1 significantly reduced systolic blood pressure in OVX (178 +/- 7 to 142 +/- 10 mm Hg, P < 0.001, n = 8) but not intact female (144 +/- 3 to 143 +/- 5 mm Hg, P > 0.05, n = 5) or male mRen2.Lewis rats (207 +/- 7 to 192 +/- 5 mm Hg, P > 0.05, n = 7). G-1 did not alter uterine or body weight in OVX, suggesting activation of a receptor distinct from estrogen receptor-alpha and -beta. In isolated aortic rings from OVX, G-1 reduced constriction in response to angiotensin II. Vascular angiotensin-converting enzyme and angiotensin type 1 receptor mRNA were also lower, whereas angiotensin-converting enzyme-2 mRNA was increased. G-1 treatment in OVX was not associated with alterations in either endothelial nitric oxide synthase expression or acetylcholine-induced relaxation. Immunohistochemical staining for GPR30 was evident in both the intima and media of the aorta. We conclude that the novel estrogen receptor GPR30 may contribute to the beneficial cardiovascular actions of estrogen in female mRen2.Lewis rats through regulation of vascular components of the renin-angiotensin system.

  17. Is there a justification for classifying GLP-1 receptor agonists as basal and prandial?

    PubMed

    Miñambres, Inka; Pérez, Antonio

    2017-01-01

    Several GLP-1 receptor agonists are currently available for treatment of type 2 diabetic patients. Based on their pharmacokinetic/pharmacodynamic profile, these drugs are classified as short-acting GLP-1 receptor agonists (exenatide and lixisenatide) or long-acting GLP-1 receptor agonists (exenatide-LAR, liraglutide, albiglutide, and dulaglutide). In clinical practice, they are also classified as basal or prandial GLP-1 receptor agonists to differentiate between patients who would benefit more from one or another based on characteristics such as previous treatment and the predominance of fasting or postprandial hyperglycemia. In the present article we examine available data on the pharmacokinetic characteristics of the various GLP-1 agonists and compare their effects with respect to the main parameters used to evaluate glycemic control. The article also analyzes whether the differences between the different GLP-1 agonists justify their classification as basal or prandial.

  18. Cariprazine for the Treatment of Schizophrenia: A Review of this Dopamine D3-Preferring D3/D2 Receptor Partial Agonist.

    PubMed

    Citrome, Leslie

    2016-01-01

    Cariprazine is an antipsychotic medication and received approval by the U.S. Food and Drug Administration for the treatment of schizophrenia in September 2015. Cariprazine is a dopamine D3 and D2 receptor partial agonist, with a preference for the D3 receptor. Cariprazine is also a partial agonist at the serotonin 5-HT1A receptor and acts as an antagonist at 5-HT2B and 5-HT2A receptors. The recommended dose range of cariprazine for the treatment of schizophrenia is 1.5-6 mg/d; the starting dose of 1.5 mg/d is potentially therapeutic. Cariprazine is administered once daily and is primarily metabolized in the liver through the CYP3A4 enzyme system and, to a lesser extent, by CYP2D6. There are two active metabolites of note, desmethyl-cariprazine and didesmethyl-cariprazine; the latter's half-life is substantially longer than that for cariprazine and systemic exposure to didesmethyl-cariprazine is several times higher than that for cariprazine. Three positive, 6-week, Phase 2/3, randomized controlled trials in acute schizophrenia demonstrated superiority of cariprazine over placebo. Pooled responder rates were 31% for cariprazine 1.5-6 mg/d vs. 21% for placebo, resulting in a number needed to treat (NNT) of 10. In a 26-72 week, randomized withdrawal study, significantly fewer patients relapsed in the cariprazine group compared with placebo (24.8% vs. 47.5%), resulting in an NNT of 5. The most commonly encountered adverse events (incidence ≥5% and at least twice the rate of placebo) are extrapyramidal symptoms (number needed to harm [NNH] 15 for cariprazine 1.5-3 mg/d vs. placebo and NNH 10 for 4.5-6 mg/d vs. placebo) and akathisia (NNH 20 for 1.5-3 mg/d vs. placebo and NNH 12 for 4.5-6 mg/d vs. placebo). Short-term weight gain appears small (approximately 8% of patients receiving cariprazine 1.5-6 mg/d gained ≥7% body weight from baseline, compared with 5% for those randomized to placebo, resulting in an NNH of 34). Cariprazine is associated with no clinically

  19. Agonists block currents through acetylcholine receptor channels.

    PubMed Central

    Sine, S M; Steinbach, J H

    1984-01-01

    We have examined the effects of high concentrations of cholinergic agonists on currents through single acetylcholine receptor (AChR) channels on clonal BC3H1 cells. We find that raised concentrations of acetylcholine (ACh; above 300 microM) or carbamylcholine (Carb; above 1,000 microM) produce a voltage- and concentration-dependent reduction in the mean single-channel current. Raised concentrations of suberyldicholine (Sub; above 3 microM) produce a voltage- and concentration-dependent increase in the number of brief duration low-conductance interruptions of open-channel currents. These observations can be quantitatively described by a model in which agonist molecules enter and transiently occlude the ion-channel of the AChR. PMID:6478036

  20. Neonatal melanocortin receptor agonist treatment reduces play fighting and promotes adult attachment in prairie voles in a sex-dependent manner.

    PubMed

    Barrett, Catherine E; Modi, Meera E; Zhang, Billy C; Walum, Hasse; Inoue, Kiyoshi; Young, Larry J

    2014-10-01

    The melanocortin receptor (MCR) system has been studied extensively for its role in feeding and sexual behavior, but effects on social behavior have received little attention. α-MSH interacts with neural systems involved in sociality, including oxytocin, dopamine, and opioid systems. Acute melanotan-II (MTII), an MC3/4R agonist, potentiates brain oxytocin (OT) release and facilitates OT-dependent partner preference formation in socially monogamous prairie voles. Here we examined the long-term impact of early-life MCR stimulation on hypothalamic neuronal activity and social development in prairie voles. Male and female voles were given daily subcutaneous injections of 10 mg/kg MTII or saline between postnatal days (PND) 1-7. Neonatally-treated males displayed a reduction in initiated play fighting bouts as juveniles compared to control males. Neonatal exposure to MTII facilitated partner preference formation in adult females, but not males, after a brief cohabitation with an opposite-sex partner. Acute MTII injection elicited a significant burst of the immediate early gene EGR-1 immunoreactivity in hypothalamic OT, vasopressin, and corticotrophin releasing factor neurons, when tested in PND 6-7 animals. Daily neonatal treatment with 1 mg/kg of a more selective, brain penetrant MC4R agonist, PF44687, promoted adult partner preferences in both females and males compared with vehicle controls. Thus, developmental exposure to MCR agonists lead to a persistent change in social behavior, suggestive of structural or functional changes in the neural circuits involved in the formation of social relationships.

  1. Discovery of isoxazole analogues of sazetidine-A as selective α4β2-nicotinic acetylcholine receptor partial agonists for the treatment of depression.

    PubMed

    Liu, Jianhua; Yu, Li-Fang; Eaton, J Brek; Caldarone, Barbara; Cavino, Katie; Ruiz, Christina; Terry, Matthew; Fedolak, Allison; Wang, Daguang; Ghavami, Afshin; Lowe, David A; Brunner, Dani; Lukas, Ronald J; Kozikowski, Alan P

    2011-10-27

    Depression, a common neurological condition, is one of the leading causes of disability and suicide worldwide. Standard treatment, targeting monoamine transporters selective for the neurotransmitters serotonin and noradrenaline, is not able to help many patients that are poor responders. This study advances the development of sazetidine-A analogues that interact with α4β2 nicotinic acetylcholine receptors (nAChRs) as partial agonists and that possess favorable antidepressant profiles. The resulting compounds that are highly selective for the α4β2 subtype of nAChR over α3β4-nAChRs are partial agonists at the α4β2 subtype and have excellent antidepressant behavioral profiles as measured by the mouse forced swim test. Preliminary absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies for one promising ligand revealed an excellent plasma protein binding (PPB) profile, low CYP450-related metabolism, and low cardiovascular toxicity, suggesting it is a promising lead as well as a drug candidate to be advanced through the drug discovery pipeline.

  2. Impact of efficacy at the μ-opioid receptor on antinociceptive effects of combinations of μ-opioid receptor agonists and cannabinoid receptor agonists.

    PubMed

    Maguire, David R; France, Charles P

    2014-11-01

    Cannabinoid receptor agonists, such as Δ(9)-tetrahydrocannabinol (Δ(9)-THC), enhance the antinociceptive effects of μ-opioid receptor agonists, which suggests that combining cannabinoids with opioids would improve pain treatment. Combinations with lower efficacy agonists might be preferred and could avoid adverse effects associated with large doses; however, it is unclear whether interactions between opioids and cannabinoids vary across drugs with different efficacy. The antinociceptive effects of μ-opioid receptor agonists alone and in combination with cannabinoid receptor agonists were studied in rhesus monkeys (n = 4) using a warm water tail withdrawal procedure. Etorphine, fentanyl, morphine, buprenorphine, nalbuphine, Δ(9)-THC, and CP 55,940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol) each increased tail withdrawal latency. Pretreatment with doses of Δ(9)-THC (1.0 mg/kg) or CP 55,940 (0.032 mg/kg) that were ineffective alone shifted the fentanyl dose-effect curve leftward 20.6- and 52.9-fold, respectively, and the etorphine dose-effect curve leftward 12.4- and 19.6-fold, respectively. Δ(9)-THC and CP 55,940 shifted the morphine dose-effect curve leftward only 3.4- and 7.9-fold, respectively, and the buprenorphine curve only 5.4- and 4.1-fold, respectively. Neither Δ(9)-THC nor CP 55,940 significantly altered the effects of nalbuphine. Cannabinoid receptor agonists increase the antinociceptive potency of higher efficacy opioid receptor agonists more than lower efficacy agonists; however, because much smaller doses of each drug can be administered in combinations while achieving adequate pain relief and that other (e.g., abuse-related) effects of opioids do not appear to be enhanced by cannabinoids, these results provide additional support for combining opioids with cannabinoids to treat pain.

  3. Dopamine receptor agonists for protection and repair in Parkinson's disease.

    PubMed

    Ferrari-Toninelli, Giulia; Bonini, Sara A; Cenini, Giovanna; Maccarinelli, Giuseppina; Grilli, Mariagrazia; Uberti, Daniela; Memo, Maurizio

    2008-01-01

    Dopamine agonists have been usually used as adjunctive therapy for the cure of Parkinson's disease. It is generally believed that treatment with these drugs is symptomatic rather than curative and it does not stop or delay the progression of neuronal degeneration. However, several dopamine agonists of the D2-receptor family have recently been shown to possess neuroprotective properties in different in vitro and in vivo experimental Parkinson's disease models. Here we summarize some recent molecular evidences underlining the wide pharmacological spectrum of dopamine agonists currently used for treating Parkinson's disease patients. In particular, the mechanism of action of different dopamine agonists does not always appear to be restricted to the stimulation of selective dopamine receptor subtypes since at least some of these drugs are endowed with antioxidant, antiapoptotic or neurotrophic properties. These neuroprotective activities are molecule-specific and may contribute to the clinical efficacy of these drugs for the treatment of chronic and progressive neurodegenerative diseases in which oxidative injury and/or protein misfolding and aggregation exert a primary role.

  4. Intracellular β2-adrenergic receptor signaling specificity in mouse skeletal muscle in response to single-dose β2-agonist clenbuterol treatment and acute exercise.

    PubMed

    Sato, Shogo; Shirato, Ken; Mitsuhashi, Ryosuke; Inoue, Daisuke; Kizaki, Takako; Ohno, Hideki; Tachiyashiki, Kaoru; Imaizumi, Kazuhiko

    2013-05-01

    The aim of this study was to clarify the intracellular β2-adrenergic receptor signaling specificity in mouse slow-twitch soleus and fast-twitch tibialis anterior (TA) muscles, resulting from single-dose β2-agonist clenbuterol treatment and acute exercise. At 1, 4, and 24 h after single-dose treatment with clenbuterol or after acute running exercise, the soleus and TA muscles were isolated and subjected to analysis. The phosphorylation of p38 mitogen-activated protein kinase (MAPK) increased after single-dose clenbuterol treatment and acute exercise in the soleus muscle but not in the TA muscle. Although there was no change in the phosphorylation of Akt after acute exercise in either muscle, phosphorylation of Akt in the soleus muscle increased after single-dose clenbuterol treatment, whereas that in the TA muscle remained unchanged. These results suggest that p38 MAPK and Akt pathways play a functional role in the adaptation to clenbuterol treatment and exercise, particularly in slow-twitch muscles.

  5. GABAB receptor agonist baclofen improves methamphetamine-induced cognitive deficit in mice.

    PubMed

    Arai, Sawako; Takuma, Kazuhiro; Mizoguchi, Hiroyuki; Ibi, Daisuke; Nagai, Taku; Kamei, Hiroyuki; Kim, Hyoung-Chun; Yamada, Kiyofumi

    2009-01-05

    In this study, we investigated the effects of GABA(A) and GABA(B) receptor agonists on the methamphetamine-induced impairment of recognition memory in mice. Repeated treatment with methamphetamine at a dose of 1 mg/kg for 7 days induced an impairment of recognition memory. Baclofen, a GABA(B) receptor agonist, ameliorated the repeated methamphetamine-induced cognitive impairment, although gaboxadol, a GABA(A) receptor agonist, had no significant effect. GABA(B) receptors may constitute a putative new target in treating cognitive deficits in patients suffering from schizophrenia, as well as methamphetamine psychosis.

  6. Cannabinoid receptor 1 antagonist treatment induces glucagon release and shows an additive therapeutic effect with GLP-1 agonist in diet-induced obese mice.

    PubMed

    Patel, Kartikkumar Navinchandra; Joharapurkar, Amit Arvind; Patel, Vishal; Kshirsagar, Samadhan Govind; Bahekar, Rajesh; Srivastava, Brijesh Kumar; Jain, Mukul R

    2014-12-01

    Cannabinoid 1 (CB1) receptor antagonists reduce body weight and improve insulin sensitivity. Preclinical data indicates that an acute dose of CB1 antagonist rimonabant causes an increase in blood glucose. A stable analog of glucagon-like peptide 1 (GLP-1), exendin-4 improves glucose-stimulated insulin secretion in pancreas, and reduces appetite through activation of GLP-1 receptors in the central nervous system and liver. We hypothesized that the insulin secretagogue effect of GLP-1 agonist exendin-4 may synergize with the insulin-sensitizing action of rimonabant. Intraperitoneal as well as intracerebroventricular administration of rimonabant increased serum glucose upon glucose challenge in overnight fasted, diet-induced obese C57 mice, with concomitant rise in serum glucagon levels. Exendin-4 reversed the acute hyperglycemia induced by rimonabant. The combination of exendin-4 and rimonabant showed an additive effect in the food intake, and sustained body weight reduction upon repeated dosing. The acute efficacy of both the compounds was additive for inducing nausea-like symptoms in conditioned aversion test in mice, whereas exendin-4 treatment antagonized the effect of rimonabant on forced swim test upon chronic dosing. Thus, the addition of exendin-4 to rimonabant produces greater reduction in food intake owing to increased aversion, but reduces the other central nervous system side effects of rimonabant. The hyperglucagonemia induced by rimonabant is partially responsible for enhancing the antiobesity effect of exendin-4.

  7. Anxiogenic-like action of caerulein, a CCK-8 receptor agonist, in the mouse: influence of acute and subchronic diazepam treatment.

    PubMed

    Harro, J; Põld, M; Vasar, E

    1990-01-01

    Effects of caerulein, a cholecystokinin octapeptide (CCK-8) receptor agonist, on exploratory activity of mice were investigated. Exploratory and locomotor activity of animals were measured using elevated plus-maze and open field tests. The systemic administration of caerulein at non-sedative doses (100 ng/kg-1 micrograms/kg i.p.) resulted in a significant decrease in the exploratory activity of mice. This effect was completely blocked by proglumide, a CCK-8 receptor. Acute treatment with low doses (0.1-0.75 mg/kg i.p.) of diazepam did not attenuate the anxiogenic-like effect of caerulein, but at more high doses of diazepam the coadministration depressed locomotor activity in mice. After subchronic diazepam treatment (2.5 mg/kg once a day, 10 days, i.p.) tolerance was developed toward the sedative effect of diazepam, and 72 h after withdrawal of the drug the animals showed increased anxiety in the plus-maze test. 30 min after the last injection procedure the anxiogenic-like effect of caerulein (500 ng/kg i.p.) on exploration was absent in both diazepam or vehicle groups. However, 72 h after the last pretreatment injection caerulein (500 ng/kg i.p.) reduced significantly the exploratory activity in control group, whereas it was inactive after diazepam withdrawal. The results obtained in this study support the hypothesis that endogenous CCK-8 an CCK-8 receptors are involved in the neurochemistry of anxiety and the anxiolytic action of benzodiazepine tranquillizers.

  8. Randomized clinical trial: effect of the 5-HT4 receptor agonist revexepride on reflux parameters in patients with persistent reflux symptoms despite PPI treatment

    PubMed Central

    Tack, J; Zerbib, F; Blondeau, K; des Varannes, S B; Piessevaux, H; Borovicka, J; Mion, F; Fox, M; Bredenoord, A J; Louis, H; Dedrie, S; Hoppenbrouwers, M; Meulemans, A; Rykx, A; Thielemans, L; Ruth, M

    2015-01-01

    Background Approximately, 20–30% of patients with gastro-esophageal reflux disease (GERD) experience persistent symptoms despite treatment with proton pump inhibitors (PPIs). These patients may have underlying dysmotility; therefore, targeting gastric motor dysfunction in addition to acid inhibition may represent a new therapeutic avenue. The aim of this study was to assess the pharmacodynamic effect of the prokinetic agent revexepride (a 5-HT4 receptor agonist) in patients with GERD who have persistent symptoms despite treatment with a PPI. Methods This was a phase II, exploratory, multicenter, randomized, placebo-controlled, double-blind, parallel-group study in patients with GERD who experienced persistent symptoms while taking a stable dose of PPIs (http://ClinicalTrials.gov identifier: NCT01370863). Patients were randomized to either revexepride (0.5 mg, three times daily) or matching placebo for 4 weeks. Reflux events and associated characteristics were assessed by pH/impedance monitoring and disease symptoms were assessed using electronic diaries and questionnaires. Key Results In total, 67 patients were enrolled in the study. There were no significant differences between study arms in the number, the mean proximal extent or the bolus clearance times of liquid-containing reflux events. Changes from baseline in the number of heartburn, regurgitation, and other symptom events were minimal for each treatment group and no clear trends were observed. Conclusions & Inferences No clear differences were seen in reflux parameters between the placebo and revexepride groups. PMID:25530111

  9. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists' treatment: a meta-analysis of randomized controlled trials.

    PubMed

    Su, Bin; Sheng, Hui; Zhang, Manna; Bu, Le; Yang, Peng; Li, Liang; Li, Fei; Sheng, Chunjun; Han, Yuqi; Qu, Shen; Wang, Jiying

    2015-02-01

    Traditional anti-diabetic drugs may have negative or positive effects on risk of bone fractures. Yet the relationship between the new class glucagon-like peptide-1 receptor agonists (GLP-1 RA) and risk of bone fractures has not been established. We performed a meta-analysis including randomized controlled trials (RCT) to study the risk of bone fractures associated with liraglutide or exenatide, compared to placebo or other active drugs. We searched MEDLINE, EMBASE, and clinical trial registration websites for published or unpublished RCTs comparing the effects of liraglutide or exenatide with comparators. Only studies with disclosed bone fracture data were included. Separate pooled analysis was performed for liraglutide or exenatide, respectively, by calculating Mantel-Haenszel odds ratio (MH-OR). 16 RCTs were identified including a total of 11,206 patients. Liraglutide treatment was associated with a significant reduced risk of incident bone fractures (MH-OR=0.38, 95% CI 0.17-0.87); however, exenatide treatment was associated with an elevated risk of incident bone fractures (MH-OR=2.09, 95% CI 1.03-4.21). Publication bias and heterogeneity between studies were not observed. Our study demonstrated a divergent risk of bone fractures associated with different GLP-1 RA treatments. The current findings need to be confirmed by future well-designed prospective or RCT studies.

  10. Differential opioid agonist regulation of the mouse mu opioid receptor.

    PubMed

    Blake, A D; Bot, G; Freeman, J C; Reisine, T

    1997-01-10

    Mu opioid receptors mediate the analgesia induced by morphine. Prolonged use of morphine causes tolerance development and dependence. To investigate the molecular basis of tolerance and dependence, the cloned mouse mu opioid receptor with an amino-terminal epitope tag was stably expressed in human embryonic kidney (HEK) 293 cells, and the effects of prolonged opioid agonist treatment on receptor regulation were examined. In HEK 293 cells the expressed mu receptor showed high affinity, specific, saturable binding of radioligands and a pertussis toxin-sensitive inhibition of adenylyl cyclase. Pretreatment (1 h, 3 h, or overnight) of cells with 1 microM morphine or [D-Ala2MePhe4,Gly(ol)5]enkephalin (DAMGO) resulted in no apparent receptor desensitization, as assessed by opioid inhibition of forskolin-stimulated cAMP levels. In contrast, the morphine and DAMGO pretreatments (3 h) resulted in a 3-4-fold compensatory increase in forskolin-stimulated cAMP accumulation. The opioid agonists methadone and buprenorphine are used in the treatment of addiction because of a markedly lower abuse potential. Pretreatment of mu receptor-expressing HEK 293 cells with methadone or buprenorphine abolished the ability of opioids to inhibit adenylyl cyclase. No compensatory increase in forskolin-stimulated cAMP accumulation was found with methadone or buprenorphine; these opioids blocked the compensatory effects observed with morphine and DAMGO. Taken together, these results indicate that methadone and buprenorphine interact differently with the mouse mu receptor than either morphine or DAMGO. The ability of methadone and buprenorphine to desensitize the mu receptor and block the compensatory rise in forskolin-stimulated cAMP accumulation may be an underlying mechanism by which these agents are effective in the treatment of morphine addiction.

  11. Investigation of the mechanism of agonist and inverse agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Lin, Hong; Strange, Philip G

    2004-05-01

    This study investigated, for the D2 dopamine receptor, the relation between the ability of agonists and inverse agonists to stabilise different states of the receptor and their relative efficacies. Ki values for agonists were determined in competition versus the binding of the antagonist [3H]spiperone. Competition data were fitted best by a two-binding site model (with the exception of bromocriptine, for which a one-binding site model provided the best fit) and agonist affinities for the higher (Kh) (G protein-coupled) and lower affinity (Kl) (G protein-uncoupled) sites determined. Ki values for agonists were also determined in competition versus the binding of the agonist [3H]N-propylnorapomorphine (NPA) to provide a second estimate of Kh. Maximal agonist effects (Emax) and their potencies (EC50) were determined from concentration-response curves for agonist stimulation of guanosine-5'-O-(3-[32S]thiotriphosphate) ([35S]GTPgammaS) binding. The ability of agonists to stabilise the G protein-coupled state of the receptor (Kl/Kh determined from ligand-binding assays) did not correlate with either of two measures of relative efficacy (relative Emax, Kl/EC50) of agonists determined in [35S]GTPgammaS-binding assays, when the data for all of the compounds tested were analysed. For a subset of compounds, however, there was a relation between Kl/Kh and Emax. Competition-binding data versus [3H]spiperone and [3H]NPA for a range of inverse agonists were fitted best by a one-binding site model. Ki values for the inverse agonists tested were slightly lower in competition versus [3H]NPA compared to [3H]spiperone. These data do not provide support for the idea that inverse agonists act by binding preferentially to the ground state of the receptor.

  12. Discovery of G Protein-Biased EP2 Receptor Agonists

    PubMed Central

    2016-01-01

    To identify G protein-biased and highly subtype-selective EP2 receptor agonists, a series of bicyclic prostaglandin analogues were designed and synthesized. Structural hybridization of EP2/4 dual agonist 5 and prostacyclin analogue 6, followed by simplification of the ω chain enabled us to discover novel EP2 agonists with a unique prostacyclin-like scaffold. Further optimization of the ω chain was performed to improve EP2 agonist activity and subtype selectivity. Phenoxy derivative 18a showed potent agonist activity and excellent subtype selectivity. Furthermore, a series of compounds were identified as G protein-biased EP2 receptor agonists. These are the first examples of biased ligands of prostanoid receptors. PMID:26985320

  13. GLP-1 receptor agonist-induced polyarthritis: a case report.

    PubMed

    Ambrosio, Maria Luisa; Monami, Matteo; Sati, Lavinia; Marchionni, Niccolò; Di Bari, Mauro; Mannucci, Edoardo

    2014-08-01

    Occasional cases of bilateral, symmetrical, seronegative polyarthritis have been reported in patients treated with dipeptidyl peptidase-4 inhibitors (Crickx et al. in Rheumatol Int, 2013). We report here a similar case observed during treatment with a GLP-1 receptor agonist. A 42-year-old man with type 2 diabetes treated with metformin 1,500 mg/day and liraglutide 1.8 mg/day. After 6 months from the beginning of treatment, the patient complained of bilateral arthralgia (hands, feet, ankles, knees, and hips). Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and leukocytes were increased. Rheumatoid factor, anticyclic citrullinated protein antibody, antinuclear antibodies, anti-Borrelia, and burgdorferi antibodies were all negative, and myoglobin and calcitonin were normal. Liraglutide was withdrawn, and the symptoms completely disappeared within 1 week, with normalization of ESR, CRP, fibrinogen, and leukocytes. Previously described cases of polyarthritis associated with DPP4 inhibitors had been attributed to a direct effect of the drugs on inflammatory cells expressing the enzyme. The present case, occurred during treatment with a GLP-1 receptor agonists, suggests a possibly different mechanism, mediated by GLP-1 receptor stimulation, which deserved further investigation.

  14. Role of nicotine receptor partial agonists in tobacco cessation

    PubMed Central

    Maity, Nivedita; Chand, Prabhat; Murthy, Pratima

    2014-01-01

    One in three adults in India uses tobacco, a highly addictive substance in one or other form. In addition to prevention of tobacco use, offering evidence-based cessation services to dependent tobacco users constitutes an important approach in addressing this serious public health problem. A combination of behavioral methods and pharmacotherapy has shown the most optimal results in tobacco dependence treatment. Among currently available pharmacological agents, drugs that preferentially act on the α4 β2-nicotinic acetyl choline receptor like varenicline and cytisine appear to have relatively better cessation outcomes. These drugs are in general well tolerated and have minimal drug interactions. The odds of quitting tobacco use are at the very least doubled with the use of partial agonists compared with placebo and the outcomes are also superior when compared to nicotine replacement therapy and bupropion. The poor availability of partial agonists and specifically the cost of varenicline, as well as the lack of safety data for cytisine has limited their use world over, particularly in developing countries. Evidence for the benefit of partial agonists is more robust for smoking rather than smokeless forms of tobacco. Although more studies are needed to demonstrate their effectiveness in different populations of tobacco users, present literature supports the use of partial agonists in addition to behavioral methods for optimal outcome in tobacco dependence. PMID:24574554

  15. Quantifying agonist activity at G protein-coupled receptors.

    PubMed

    Ehlert, Frederick J; Suga, Hinako; Griffin, Michael T

    2011-12-26

    When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors. Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence of ligands, the inactive state predominates. The binding of agonist increases the probability that the receptor will switch into the active state because its affinity constant for the active state (K(b)) is much greater than that for the inactive state (K(a)). The summation of the random outputs of all of the receptors in the population yields a constant level of receptor activation in time. The reciprocal of the concentration of agonist eliciting half-maximal receptor activation is equivalent to the observed affinity constant (K(obs)), and the fraction of agonist-receptor complexes in the active state is defined as efficacy (ε) (Figure 2). Methods for analyzing the downstream responses of GPCRs have been developed that enable the estimation of the K(obs) and relative efficacy of an agonist. In this report, we show how to modify this analysis to estimate the agonist K(b) value relative to that of another agonist. For assays that exhibit constitutive activity, we show how to estimate K(b) in absolute units of M(-1). Our method of analyzing agonist concentration-response curves consists of global nonlinear regression using the operational model. We describe a procedure using the software application, Prism (GraphPad Software, Inc., San Diego, CA). The analysis yields an estimate of the product of K(obs) and a parameter proportional to efficacy (

  16. The pharmacological profile and clinical prospects of the oral 5-HT1F receptor agonist lasmiditan in the acute treatment of migraine

    PubMed Central

    Israel, Heike; Neeb, Lars

    2015-01-01

    More than 20 years have passed without the launch of a new substance class for acute migraine therapy. Triptans were the latest class of substances which successfully passed all developmental stages with a significant antimigraine efficacy and a sufficient safety profile. New drugs with a better adverse event profile and at least similar efficacy are needed for migraine subjects who cannot tolerate triptans for attack treatment. Lasmiditan is a novel highly specific 5-HT1F receptor agonist currently in clinical trials for acute migraine therapy and devoid of vasoconstriction in coronary arteries as determined in a surrogate assay. In both phase II randomized, placebo-controlled trials in acute migraine the primary endpoint was met. For the intravenous formulation a clear dose-dependent effect on headaches could be determined. Lasmiditan tablets in doses of 50–400 mg show significant headache relief after 2 hours compared with placebo and improved accompanying symptoms. This substance is chemically clearly different from other antimigraine drugs, which is also reflected by its dose-dependent adverse event profile chiefly including dizziness, vertigo, paresthesia and fatigue. Adverse events are usually linked to the central nervous system. Future phase III clinical trials with an active triptan comparator or in a preferential trial design will allow a better comparison of lasmiditan and triptans. They will also determine whether lasmiditan will become available to the migraine patient. PMID:25584073

  17. A Double-Chambered Protein Nanocage Loaded with Thrombin Receptor Agonist Peptide (TRAP) and γ-Carboxyglutamic Acid of Protein C (PC-Gla) for Sepsis Treatment.

    PubMed

    Lee, Wonhwa; Seo, Junyoung; Kwak, Soyoung; Park, Eun Ji; Na, Dong Hee; Kim, Soyoun; Lee, You Mie; Kim, In-San; Bae, Jong-Sup

    2015-11-01

    New protein nanocages are designed bearing two functional proteins, γ-carboxyglutamic acid of protein C (PC-Gla) and thrombin receptor agonist peptide (TRAP), and have an anti-septic response. These nanoparticles reduce sepsis-induced organ injury and septic mortality in vivo. Noting that there are currently no medications for severe sepsis, these results show that novel nanoparticles can be used to treat sepsis.

  18. Protein alterations induced by long-term agonist treatment of HEK293 cells expressing thyrotropin-releasing hormone receptor and G11alpha protein.

    PubMed

    Drastichova, Zdenka; Bourova, Lenka; Hejnova, Lucie; Jedelsky, Petr; Svoboda, Petr; Novotny, Jiri

    2010-01-01

    This study aimed to determine whether sustained stimulation with thyrotropin-releasing hormone (TRH), a peptide with important physiological functions, can possibly affect expression of plasma membrane proteins in HEK293 cells expressing high levels of TRH receptor and G(11)alpha protein. Our previous experiments using silver-stained two-dimensional polyacrylamide gel electrophoretograms did not reveal any significant changes in an overall composition of membrane microdomain proteins after long-term treatment with TRH of these cells (Matousek et al. 2005 Cell Biochem Biophys 42: 21-40). Here we used a purified plasma membrane fraction prepared by Percoll gradient centrifugation and proteins resolved by 2D electrophoresis were stained with SYPRO Ruby gel stain. The high enrichment in plasma membrane proteins of this preparation was confirmed by a multifold increase in the number of TRH receptors and agonist stimulated G-protein activity, compared to postnuclear supernatant. By a combination of these approaches we were able to determine a number of clearly discernible protein changes in the plasma membrane-enriched fraction isolated from cells treated with TRH (1 x 10(-5) M, 16 h): 4 proteins disappeared, the level of 18 proteins decreased and the level of 39 proteins increased. Our concomitant immunochemical determinations also indicated a clear down-regulation of G(q/11)alpha proteins in preparations from hormone-treated cells. In parallel, we observed decrease in caspase 3 and alterations in some other apoptotic marker proteins, which were in line with the presumed antiapoptotic effect of TRH.

  19. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with Pompe disease.

    PubMed

    Farah, Benjamin L; Madden, Lauran; Li, Songtao; Nance, Sierra; Bird, Andrew; Bursac, Nenad; Yen, Paul M; Young, Sarah P; Koeberl, Dwight D

    2014-05-01

    Enzyme or gene replacement therapy with acid α-glucosidase (GAA) has achieved only partial efficacy in Pompe disease. We evaluated the effect of adjunctive clenbuterol treatment on cation-independent mannose-6-phosphate receptor (CI-MPR)-mediated uptake and intracellular trafficking of GAA during muscle-specific GAA expression with an adeno-associated virus (AAV) vector in GAA-knockout (KO) mice. Clenbuterol, which increases expression of CI-MPR in muscle, was administered with the AAV vector. This combination therapy increased latency during rotarod and wirehang testing at 12 wk, in comparison with vector alone. The mean urinary glucose tetrasaccharide (Glc4), a urinary biomarker, was lower in GAA-KO mice following combination therapy, compared with vector alone. Similarly, glycogen content was lower in cardiac and skeletal muscle following 12 wk of combination therapy in heart, quadriceps, diaphragm, and soleus, compared with vector alone. These data suggested that clenbuterol treatment enhanced trafficking of GAA to lysosomes, given that GAA was expressed within myofibers. The integral role of CI-MPR was demonstrated by the lack of effectiveness from clenbuterol in GAA-KO mice that lacked CI-MPR in muscle, where it failed to reverse the high glycogen content of the heart and diaphragm or impaired wirehang performance. However, the glycogen content of skeletal muscle was reduced by the addition of clenbuterol in the absence of CI-MPR, as was lysosomal vacuolation, which correlated with increased AKT signaling. In summary, β2-agonist treatment enhanced CI-MPR-mediated uptake and trafficking of GAA in mice with Pompe disease, and a similarly enhanced benefit might be expected in other lysosomal storage disorders.

  20. Treatment intensification in patients with inadequate glycemic control on basal insulin: rationale and clinical evidence for the use of short‐acting and other glucagon‐like peptide‐1 receptor agonists

    PubMed Central

    Bonadonna, Riccardo C.; Gentile, Sandro; Vettor, Roberto; Pozzilli, Paolo

    2016-01-01

    Summary A substantial proportion of patients with type 2 diabetes mellitus do not reach glycemic targets, despite treatment with oral anti‐diabetic drugs and basal insulin therapy. Several options exist for treatment intensification beyond basal insulin, and the treatment paradigm is complex. In this review, the options for treatment intensification will be explored, focusing on drug classes that act via the incretin system and paying particular attention to the short‐acting glucagon‐like peptide‐1 receptor agonists exenatide and lixisenatide. Current treatment guidelines will be summarized and discussed. © 2016 The Authors. Diabetes/Metabolism Research and Reviews Published by John Wiley & Sons Ltd. PMID:26787264

  1. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  2. Octopaminergic agonists for the cockroach neuronal octopamine receptor.

    PubMed

    Hirashima, Akinori; Morimoto, Masako; Kuwano, Eiichi; Eto, Morifusa

    2003-01-01

    The compounds 1-(2,6-diethylphenyl)imidazolidine-2-thione and 2-(2,6-diethylphenyl)imidazolidine showed the almost same activity as octopamine in stimulating adenylate cyclase of cockroach thoracic nervous system among 70 octopamine agonists, suggesting that only these compounds are full octopamine agonists and other compounds are partial octopamine agonists. The quantitative structure-activity relationship of a set of 22 octopamine agonists against receptor 2 in cockroach nervous tissue, was analyzed using receptor surface modeling. Three-dimensional energetics descriptors were calculated from receptor surface model/ligand interaction and these three-dimensional descriptors were used in quantitative structure-activity relationship analysis. A receptor surface model was generated using some subset of the most active structures and the results provided useful information in the characterization and differentiation of octopaminergic receptor.

  3. The peroxisome proliferators activated receptor-gamma agonists as therapeutics for the treatment of Alzheimer's disease and mild-to-moderate Alzheimer's disease: a meta-analysis.

    PubMed

    Cheng, Huawei; Shang, Yuping; Jiang, Ling; Shi, Tian-lu; Wang, Lin

    2016-01-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disease and there is no effective therapy for it. Peroxisome proliferators activated receptor-gamma (PPAR-γ) agonists is a promising therapeutic approach for AD and has been widely studied recently, but no consensus was available up to now. To clarify this point, a meta-analysis was performed. We searched MEDLINE, EMBASE, Cochrane Central database, PUBMED, Springer Link database, SDOS database, CBM, CNKI and Wan fang database by December 2014. Standardized mean difference (SMD), relative risk (RR) and 95% confidence interval (CI) were calculated to assess the strength of the novel therapeutics for AD and mild-to-moderate AD. A total of nine studies comprising 1314 patients and 1311 controls were included in the final meta-analysis. We found the effect of PPAR-γ agonists on Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-cog) scores by using STATA software. There was no evidence for obvious publication bias in the overall meta-analysis. There is insufficient evidence of statistically incognition of AD and mild-to-moderate AD patients have been improved who were treated with PPAR-γ agonists in our research. However, PPAR-γ agonists may be a promising therapeutic approach in future, especially pioglitazone, with large-scale randomized controlled trials to confirm.

  4. Agonist pharmacology of two Drosophila GABA receptor splice variants.

    PubMed Central

    Hosie, A. M.; Sattelle, D. B.

    1996-01-01

    1. The Drosophila melanogaster gamma-aminobutyric acid (GABA) receptor subunits, RDLac and DRC 17-1-2, form functional homo-oligomeric receptors when heterologously expressed in Xenopus laevis oocytes. The subunits differ in only 17 amino acids, principally in regions of the N-terminal domain which determine agonist pharmacology in vertebrate ionotropic neurotransmitter receptors. A range of conformationally restricted GABA analogues were tested on the two homo-oligomers and their agonists pharmacology compared with that of insect and vertebrate iontropic GABA receptors. 2. The actions of GABA, isoguvacine and isonipecotic acid on RDLac and DRC 17-1-2 homo-oligomers were compared, by use of two-electrode voltage-clamp. All three compounds were full agonists of both receptors, but were 4-6 fold less potent agonists of DRC 17-1-2 homo-oligomers than of RDLac. However, the relative potencies of these agonists on each receptor were very similar. 3. A more complete agonist profile was established for RDLac homo-oligomers. The most potent agonists of these receptors were GABA, muscimol and trans-aminocrotonic acid (TACA), which were approximately equipotent. RDLac homo-oligomers were fully activated by a range of GABA analogues, with the order of potency: GABA > ZAPA ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid) > isoguvacine > imidazole-4-acetic acid > or = isonipecotic acid > or = cis-aminocrotonic acid (CACA) > beta-alanine. 3-Aminopropane sulphonic acid (3-APS), a partial agonist of RDLac homo-oligomers, was the weakest agonist tested and 100 fold less potent than GABA. 4. SR95531, an antagonist of vertebrate GABAA receptors, competitively inhibited the GABA responses of RDLac homo-oligomers, which have previously been found to insensitive to bicuculline. However, its potency (IC50 500 microM) was much reduced when compared to GABAA receptors. 5. The agonist pharmacology of Drosophila RDLac homo-oligomers exhibits aspects of the characteristic pharmacology of

  5. Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond.

    PubMed

    Xia, Yang; Kellems, Rodney E

    2013-06-21

    Hypertensive disorders are life-threatening diseases with high morbidity and mortality, affecting billions of individuals worldwide. A multitude of underlying conditions may contribute to hypertension, thus the need for a plethora of treatment options to identify the approach that best meets the needs of individual patients. A growing body of evidence indicates that (1) autoantibodies that bind to and activate the major angiotensin II type I (AT₁) receptor exist in the circulation of patients with hypertensive disorders, (2) these autoantibodies contribute to disease pathophysiology, (3) antibody titers correlate to the severity of the disease, and (4) efforts to block or remove these pathogenic autoantibodies have therapeutic potential. These autoantibodies, termed AT₁ agonistic autoantibodies have been extensively characterized in preeclampsia, a life-threatening hypertensive condition of pregnancy. As reviewed here, these autoantibodies cause symptoms of preeclampsia when injected into pregnant mice. Somewhat surprisingly, these auto antibodies also appear in 3 animal models of preeclampsia. However, the occurrence of AT₁ agonistic autoantibodies is not restricted to pregnancy. These autoantibodies are prevalent among kidney transplant recipients who develop severe transplant rejection and malignant hypertension during the first week after transplantation. AT₁ agonistic autoantibodies are also highly abundant among a group of patients with essential hypertension that are refractory to standard therapy. More recently these autoantibodies have been seen in patients with the autoimmune disease, systemic sclerosis. These 3 examples extend the clinical impact of AT₁ agonistic autoantibodies beyond pregnancy. Research reviewed here raises the intriguing possibility that preeclampsia and other hypertensive conditions are autoimmune diseases characterized by the presence of pathogenic autoantibodies that activate the major angiotensin receptor, AT₁. These

  6. Randomized, Double-Blind, Placebo-Controlled Study of Encenicline, an α7 Nicotinic Acetylcholine Receptor Agonist, as a Treatment for Cognitive Impairment in Schizophrenia.

    PubMed

    Keefe, Richard S E; Meltzer, Herbert A; Dgetluck, Nancy; Gawryl, Maria; Koenig, Gerhard; Moebius, Hans J; Lombardo, Ilise; Hilt, Dana C

    2015-12-01

    Encenicline is a novel, selective α7 nicotinic acetylcholine receptor agonist in development for treating cognitive impairment in schizophrenia and Alzheimer's disease. A phase 2, double-blind, randomized, placebo-controlled, parallel-design, multinational study was conducted. Patients with schizophrenia on chronic stable atypical antipsychotics were randomized to encenicline 0.27 or 0.9 mg once daily or placebo for 12 weeks. The primary efficacy end point was the Overall Cognition Index (OCI) score from the CogState computerized battery. Secondary end points include MATRICS Consensus Cognitive Battery (MCCB) (in US patients), the Schizophrenia Cognition Rating Scale (SCoRS) total score, SCoRS global rating, and Positive and Negative Syndrome Scale (PANSS) total and subscale and cognition factor scores. Of 319 randomized patients, 317 were included in the safety population, and 307 were included in the intent-to-treat population. Notable trends in improvement were demonstrated across all cognition scales. For the OCI score, the LS mean difference for encenicline 0.27 mg vs placebo was significant (Cohen's d=0.257; P=0.034). Mean SCoRS total scores decreased showing improvement in function over time, and the difference was significant for encenicline 0.9 mg vs placebo (P=0.011). Furthermore, the difference between encenicline 0.9 mg and placebo was significant for the PANSS Cognition Impairment Domain (P=0.0098, Cohen's d=0.40) and for the PANSS Negative scale (P=0.028, Cohen's d=0.33). Treatment-emergent adverse events were reported at similar frequencies across all treatment groups (39.0% with placebo, 23.4% with encenicline 0.27 mg, and 33.3% with encenicline 0.9 mg). Overall, encenicline was generally well tolerated and demonstrated clinically meaningful improvements in cognition and function in patients with schizophrenia.

  7. Effect of exercise combined with glucagon-like peptide-1 receptor agonist treatment on cardiac function: A randomised double-blinded placebo-controlled clinical trial.

    PubMed

    Jørgensen, Peter G; Jensen, Magnus T; Mensberg, Pernille; Storgaard, Heidi; Nyby, Signe; Jensen, Jan S; Knop, Filip K; Vilsbøll, Tina

    2017-02-11

    In patients with type 2 diabetes, both supervised exercise and treatment with the glucagon-like peptide-1 (GLP-1) receptor agonist (GLP-1RA) liraglutide may improve cardiac function. We evaluated cardiac function before and after 16 weeks of treatment with the GLP-1RA liraglutide or placebo combined with supervised exercise in 33 dysregulated patients with type 2 diabetes on diet and/or metformin. Early diastolic myocardial tissue velocity was improved by exercise in the placebo group (-7.1 ± 1.6 cm/s (mean ± standard deviation) to -7.7 ± 1.8 cm/s, p = 0.01), but not in the liraglutide group (-7.1 ± 1.4 to -7.0 ± 1.4 cm/s, p = 0.60; between groups: p = 0.02). Similarly, the ratio of early and atrial mitral annular tissue velocities improved in the placebo group (1.0 ± 0.4 to 1.2 ± 0.4, p = 0.003), but not in the liraglutide group (1.0 ± 0.3 to 1.0 ± 0.3, p = 0.87; between groups: p = 0.03). We found no significant differences in heart rate, left ventricular structure or function within or between the groups. In conclusion, addition of liraglutide to exercise in sedentary patients with dysregulated type 2 diabetes may blunt the suggested beneficial effect of exercise on left ventricular diastolic function.

  8. Randomized, Double-Blind, Placebo-Controlled Study of Encenicline, an α7 Nicotinic Acetylcholine Receptor Agonist, as a Treatment for Cognitive Impairment in Schizophrenia

    PubMed Central

    Keefe, Richard SE; Meltzer, Herbert A; Dgetluck, Nancy; Gawryl, Maria; Koenig, Gerhard; Moebius, Hans J; Lombardo, Ilise; Hilt, Dana C

    2015-01-01

    Encenicline is a novel, selective α7 nicotinic acetylcholine receptor agonist in development for treating cognitive impairment in schizophrenia and Alzheimer's disease. A phase 2, double-blind, randomized, placebo-controlled, parallel-design, multinational study was conducted. Patients with schizophrenia on chronic stable atypical antipsychotics were randomized to encenicline 0.27 or 0.9 mg once daily or placebo for 12 weeks. The primary efficacy end point was the Overall Cognition Index (OCI) score from the CogState computerized battery. Secondary end points include MATRICS Consensus Cognitive Battery (MCCB) (in US patients), the Schizophrenia Cognition Rating Scale (SCoRS) total score, SCoRS global rating, and Positive and Negative Syndrome Scale (PANSS) total and subscale and cognition factor scores. Of 319 randomized patients, 317 were included in the safety population, and 307 were included in the intent-to-treat population. Notable trends in improvement were demonstrated across all cognition scales. For the OCI score, the LS mean difference for encenicline 0.27 mg vs placebo was significant (Cohen's d=0.257; P=0.034). Mean SCoRS total scores decreased showing improvement in function over time, and the difference was significant for encenicline 0.9 mg vs placebo (P=0.011). Furthermore, the difference between encenicline 0.9 mg and placebo was significant for the PANSS Cognition Impairment Domain (P=0.0098, Cohen's d=0.40) and for the PANSS Negative scale (P=0.028, Cohen's d=0.33). Treatment-emergent adverse events were reported at similar frequencies across all treatment groups (39.0% with placebo, 23.4% with encenicline 0.27 mg, and 33.3% with encenicline 0.9 mg). Overall, encenicline was generally well tolerated and demonstrated clinically meaningful improvements in cognition and function in patients with schizophrenia. PMID:26089183

  9. Serotonergic agonists behave as partial agonists at the dopamine D2 receptor.

    PubMed

    Rinken, A; Ferré, S; Terasmaa, A; Owman, C; Fuxe, K

    1999-02-25

    RAT dopamine D2short receptors expressed in CHO cells were characterized by activation of [35S]GTPgammaS binding. There were no significant differences between the maximal effects seen in activation of [35S]GTPgammaS binding caused by dopaminergic agonists, but the effects of 5-HT, 8OH-DPAT and 5-methoxytryptamine amounted to 47 +/- 7%, 43 +/- 5% and 70 +/- 7% of the dopamine effect, respectively. The dopaminergic antagonist (+)butaclamol inhibited activations of both types of ligands with equal potency (pA2 = 8.9 +/- 0.1), indicating that only one type of receptor is involved. In competition with [3H]raclopride binding, dopaminergic agonists showed 53 +/- 2% of the binding sites in the GTP-dependent high-affinity state, whereas 5-HT showed only 20 +/- 3%. Taken together, the results indicate that serotonergic agonists behave as typical partial agonists for D2 receptors with potential antiparkinsonian activity.

  10. Traumatic Brain Injury-Induced Cognitive and Histological Deficits Are Attenuated by Delayed and Chronic Treatment with the 5-HT1A-Receptor Agonist Buspirone

    PubMed Central

    Olsen, Adam S.; Sozda, Christopher N.; Cheng, Jeffrey P.; Hoffman, Ann N.

    2012-01-01

    Abstract The aim of this study was to evaluate the potential efficacy of the serotonin1A (5-HT1A) receptor agonist buspirone (BUS) on behavioral and histological outcome after traumatic brain injury (TBI). Ninety-six isoflurane-anesthetized adult male rats were randomized to receive either a controlled cortical impact or sham injury, and then assigned to six TBI and six sham groups receiving one of five doses of BUS (0.01, 0.05, 0.1, 0.3, or 0.5 mg/kg) or saline vehicle (VEH, 1.0 mL/kg). Treatments began 24 h after surgery and were administered intraperitoneally once daily for 3 weeks. Motor function (beam-balance/beam-walk tests) and spatial learning/memory (Morris water maze) were assessed on post-operative days 1–5 and 14–19, respectively. Morphologically intact CA1/CA3 cells and cortical lesion volume were quantified at 3 weeks. No differences were observed among the BUS and VEH sham groups in any end-point measure and thus the data were pooled. Regarding the TBI groups, repeated-measures ANOVAs revealed that the 0.3 mg/kg dose of BUS enhanced cognitive performance relative to VEH and the other BUS doses (p<0.05), but did not significantly impact motor function. Moreover, the same dose conferred selective histological protection as evidenced by smaller cortical lesions, but not greater CA1/CA3 cell survival. No significant behavioral or histological differences were observed among the other BUS doses versus VEH. These data indicate that BUS has a narrow therapeutic dose response, and that 0.3 mg/kg is optimal for enhancing spatial learning and memory in this model of TBI. BUS may have potential as a novel pharmacotherapy for clinical TBI. PMID:22416854

  11. Pregnane X receptor agonists impair postprandial glucose tolerance.

    PubMed

    Rysä, J; Buler, M; Savolainen, M J; Ruskoaho, H; Hakkola, J; Hukkanen, J

    2013-06-01

    We conducted a randomized, open, placebo-controlled crossover trial to investigate the effects of the pregnane X receptor (PXR) agonist rifampin on an oral glucose tolerance test (OGTT) in 12 healthy volunteers. The subjects were administered 600 mg rifampin or placebo once daily for 7 days, and OGTT was performed on the eighth day. The mean incremental glucose and insulin areas under the plasma concentration-time curves (AUC(incr)) increased by 192% (P = 0.008) and 45% (P = 0.031), respectively. The fasting glucose, insulin, and C-peptide, and the homeostasis model assessment for insulin resistance, were not affected. The glucose AUC(incr) during OGTT was significantly increased in rats after 4-day treatment with pregnenolone 16α-carbonitrile (PCN), an agonist of the rat PXR. The hepatic level of glucose transporter 2 (Glut2) mRNA was downregulated by PCN. In conclusion, both human and rat PXR agonists elicited postprandial hyperglycemia, suggesting a detrimental role of PXR activation on glucose tolerance.

  12. [Safety and tolerability of GLP-1 receptor agonists].

    PubMed

    Soldevila, Berta; Puig-Domingo, Manel

    2014-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1ra) are a new group of drugs with a glucose-lowering action due to their incretin effect. The GLP-1 receptor is expressed in various human tissues, which could be related to the pleiotropic effects of human GLP-1, as well as to the adverse effects described in patients treated with GLP-1ra. The risk of hypoglycaemia is low, which is one of the main considerations in the safety of this family of compounds and is also important to patients with diabetes. The most frequent adverse effect is nausea, which usually occurs at the start of treatment and is transient in 20-60% of affected patients. This article also reviews the information available on antibody formation, the potential effect on the thyroid gland, and the controversial association between this group of drugs with pancreatitis and cancer.

  13. [Safety and tolerability of GLP-1 receptor agonists].

    PubMed

    Soldevila, Berta; Puig-Domingo, Manel

    2014-09-01

    Glucagon-like peptide-1 receptor agonists (GLP-1ra) are a new group of drugs with a glucose-lowering action due to their incretin effect. The GLP-1 receptor is expressed in various human tissues, which could be related to the pleiotropic effects of human GLP-1, as well as to the adverse effects described in patients treated with GLP-1ra. The risk of hypoglycaemia is low, which is one of the main considerations in the safety of this family of compounds and is also important to patients with diabetes. The most frequent adverse effect is nausea, which usually occurs at the start of treatment and is transient in 20-60% of affected patients. This article also reviews the information available on antibody formation, the potential effect on the thyroid gland, and the controversial association between this group of drugs with pancreatitis and cancer.

  14. Anti-nociception mediated by a κ opioid receptor agonist is blocked by a δ receptor agonist

    PubMed Central

    Taylor, A M W; Roberts, K W; Pradhan, A A; Akbari, H A; Walwyn, W; Lutfy, K; Carroll, F I; Cahill, C M; Evans, C J

    2015-01-01

    BACKGROUND AND PURPOSE The opioid receptor family comprises four structurally homologous but functionally distinct sub-groups, the μ (MOP), δ (DOP), κ (KOP) and nociceptin (NOP) receptors. As most opioid agonists are selective but not specific, a broad spectrum of behaviours due to activation of different opioid receptors is expected. In this study, we examine whether other opioid receptor systems influenced KOP-mediated antinociception. EXPERIMENTAL APPROACH We used a tail withdrawal assay in C57Bl/6 mice to assay the antinociceptive effect of systemically administered opioid agonists with varying selectivity at KOP receptors. Pharmacological and genetic approaches were used to analyse the interactions of the other opioid receptors in modulating KOP-mediated antinociception. KEY RESULTS Etorphine, a potent agonist at all four opioid receptors, was not anti-nociceptive in MOP knockout (KO) mice, although etorphine is an efficacious KOP receptor agonist and specific KOP receptor agonists remain analgesic in MOP KO mice. As KOP receptor agonists are aversive, we considered KOP-mediated antinociception might be a form of stress-induced analgesia that is blocked by the anxiolytic effects of DOP receptor agonists. In support of this hypothesis, pretreatment with the DOP antagonist, naltrindole (10 mg·kg−1), unmasked etorphine (3 mg·kg−1) antinociception in MOP KO mice. Further, in wild-type mice, KOP-mediated antinociception by systemic U50,488H (10 mg·kg−1) was blocked by pretreatment with the DOP agonist SNC80 (5 mg·kg−1) and diazepam (1 mg·kg−1). CONCLUSIONS AND IMPLICATIONS Systemic DOP receptor agonists blocked systemic KOP antinociception, and these results identify DOP receptor agonists as potential agents for reversing stress-driven addictive and depressive behaviours mediated through KOP receptor activation. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles

  15. Toll-like receptor agonists in cancer therapy

    PubMed Central

    Adams, Sylvia

    2010-01-01

    Toll-like receptors (TLRs) are pattern-recognition receptors related to the Drosophila Toll protein. TLR activation alerts the immune system to microbial products and initiates innate and adaptive immune responses. The naturally powerful immunostimulatory property of TLR agonists can be exploited for active immunotherapy against cancer. Antitumor activity has been demonstrated in several cancers, and TLR agonists are now undergoing extensive clinical investigation. This review discusses recent advances in the field and highlights potential opportunities for the clinical development of TLR agonists as single agent immunomodulators, vaccine adjuvants and in combination with conventional cancer therapies. PMID:20563267

  16. Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity.

    PubMed

    Gurevich, V V; Pals-Rylaarsdam, R; Benovic, J L; Hosey, M M; Onorato, J J

    1997-11-14

    The rapid decrease of a response to a persistent stimulus, often termed desensitization, is a widespread biological phenomenon. Signal transduction by numerous G protein-coupled receptors appears to be terminated by a strikingly uniform two-step mechanism, most extensively characterized for the beta2-adrenergic receptor (beta2AR), m2 muscarinic cholinergic receptor (m2 mAChR), and rhodopsin. The model predicts that activated receptor is initially phosphorylated and then tightly binds an arrestin protein that effectively blocks further G protein interaction. Here we report that complexes of beta2AR-arrestin and m2 mAChR-arrestin have a higher affinity for agonists (but not antagonists) than do receptors not complexed with arrestin. The percentage of phosphorylated beta2AR in this high affinity state in the presence of full agonists varied with different arrestins and was enhanced by selective mutations in arrestins. The percentage of high affinity sites also was proportional to the intrinsic activity of an agonist, and the coefficient of proportionality varies for different arrestin proteins. Certain mutant arrestins can form these high affinity complexes with unphosphorylated receptors. Mutations that enhance formation of the agonist-receptor-arrestin complexes should provide useful tools for manipulating both the efficiency of signaling and rate and specificity of receptor internalization.

  17. New Small Molecule Agonists to the Thyrotropin Receptor

    PubMed Central

    Ali, M. Rejwan; Ma, Risheng; David, Martine; Morshed, Syed A.; Ohlmeyer, Michael; Felsenfeld, Dan P.; Lau, Zerlina; Mezei, Mihaly; Davies, Terry F.

    2015-01-01

    Background Novel small molecular ligands (SMLs) to the thyrotropin receptor (TSHR) have potential as improved molecular probes and as therapeutic agents for the treatment of thyroid dysfunction and thyroid cancer. Methods To identify novel SMLs to the TSHR, we developed a transcription-based luciferase-cAMP high-throughput screening system and we screened 48,224 compounds from a 100K library in duplicate. Results We obtained 62 hits using the cut-off criteria of the mean±three standard deviations above the baseline. Twenty molecules with the greatest activity were rescreened against the parent CHO-luciferase cell for nonspecific activation, and we selected two molecules (MS437 and MS438) with the highest potency for further study. These lead molecules demonstrated no detectible cross-reactivity with homologous receptors when tested against luteinizing hormone (LH)/human chorionic gonadotropin receptor and follicle stimulating hormone receptor–expressing cells. Molecule MS437 had a TSHR-stimulating potency with an EC50 of 13×10−8 M, and molecule MS438 had an EC50 of 5.3×10−8 M. The ability of these small molecule agonists to bind to the transmembrane domain of the receptor and initiate signal transduction was suggested by their activation of a chimeric receptor consisting of an LHR ectodomain and a TSHR transmembrane. Molecular modeling demonstrated that these molecules bound to residues S505 and E506 for MS438 and T501 for MS437 in the intrahelical region of transmembrane helix 3. We also examined the G protein activating ability of these molecules using CHO cells co-expressing TSHRs transfected with luciferase reporter vectors in order to measure Gsα, Gβγ, Gαq, and Gα12 activation quantitatively. The MS437 and MS438 molecules showed potent activation of Gsα, Gαq, and Gα12 similar to TSH, but neither the small molecule agonists nor TSH showed activation of the Gβγ pathway. The small molecules MS437 and MS438 also showed upregulation of

  18. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation.

  19. Characterizing novel metabolic pathways of melatonin receptor agonist agomelatine using metabolomic approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agomelatine (AGM), an analog of melatonin, is a potential agonist at melatonin receptors 1/2 and a selective antagonist at 5-hydroxytryptamine 2C receptors. AGM is widely used for the treatment of major depressive episodes in adults. However, multiple adverse effects associated with AGM have been re...

  20. Can the sigma-1 receptor agonist fluvoxamine prevent schizophrenia?

    PubMed

    Hashimoto, Kenji

    2009-12-01

    In the past decade there has been increasing interest in the potential benefit of early pharmacological intervention in schizophrenia. Patients with schizophrenia show nonpsychotic and nonspecific prodromal symptoms (e.g., depression and cognitive deficits) for several years preceding the onset of frank psychosis. Several studies have demonstrated that medication with atypical antipsychotic drugs in people with prodromal symptoms may reduce the risk of subsequent transition to schizophrenia. Furthermore, a naturalistic treatment study in young people with prodromal symptoms demonstrated that medication with antidepressants could prevent the development of psychosis. Although the sample in this study was small, the results were striking. Some antidepressants, including selective serotonin reuptake inhibitors (SSRIs), had high to moderate affinities at the endoplasmic reticulum protein sigma-1 receptors, which are implicated in neuroprotection and neuronal plasticity. Among all antidepressants, fluvoxamine was the most potent sigma-1 receptor agonist. Since the effects of fluroxaming were antagonized by the selective sigma-1 receptor antagonist NE-100. Based on the role of sigma-1 receptors in the pathophysiology of cognition and depression, the author would like to propose a hypothesis that SSRIs (e.g., fluvoxamine) with sigma-1 receptor agonism may reduce the risk of subsequent transition to schizophrenia.

  1. The therapeutic potential of nociceptin/orphanin FQ receptor agonists as analgesics without abuse liability.

    PubMed

    Lin, Ann P; Ko, Mei-Chuan

    2013-02-20

    Although mu opioid (MOP) receptor agonists are the most commonly used analgesics for the treatment of moderate to severe pain in the clinic, the side effects of MOP agonists such as abuse liability limit their value as a medication. Research to identify novel analgesics without adverse effects is pivotal to advance the health care of humans. The nociceptin/orphanin FQ peptide (NOP) receptor, the fourth opioid receptor subtype, mediates distinctive actions in nonhuman primates which suggests the possibility that activity at this receptor may result in strong analgesia in the absence of virtually all of the side effects associated with MOP agonists. The present review highlights the recent progress of pharmacological studies of NOP-related ligands in primates. Selective NOP agonists, either peptidic or nonpeptidic, produce full analgesia in various assays in primates, when delivered systemically or intrathecally. Yet small molecule NOP agonists do not serve as reinforcers, indicating a lack of abuse liability. Given that NOP agonists have low abuse liability and that coactivation of NOP and MOP receptors produces synergistic antinociception, it is worth developing bifunctional NOP/MOP ligands. The outcomes of these studies and recent developments provide new perspectives to establish a translational bridge for understanding the biobehavioral functions of NOP receptors in primates and for facilitating the development of NOP-related ligands as a new generation of analgesics without abuse liability in humans.

  2. Basal Insulin Use With GLP-1 Receptor Agonists.

    PubMed

    Anderson, Sarah L; Trujillo, Jennifer M

    2016-08-01

    IN BRIEF The combination of basal insulin and a glucagon-like peptide 1 receptor agonist is becoming increasingly common and offers several potential benefits to patients with type 2 diabetes. Clinical studies have demonstrated improved glycemic control and low risks of hypoglycemia and weight gain with the combination, which provides a safe and effective alternative to basal-bolus insulin with less treatment burden. Fixed-ratio combination products that administer both agents in a single injection are in the pipeline and will offer additional options for clinicians and patients. This review focuses on the rationale for, clinical evidence on, and implications of using this combination of therapies in the treatment of type 2 diabetes.

  3. Effect of Light and Melatonin and Other Melatonin Receptor Agonists on Human Circadian Physiology.

    PubMed

    Emens, Jonathan S; Burgess, Helen J

    2015-12-01

    Circadian (body clock) timing has a profound influence on mental health, physical health, and health behaviors. This review focuses on how light, melatonin, and other melatonin receptor agonist drugs can be used to shift circadian timing in patients with misaligned circadian rhythms. A brief overview of the human circadian system is provided, followed by a discussion of patient characteristics and safety considerations that can influence the treatment of choice. The important features of light treatment, light avoidance, exogenous melatonin, and other melatonin receptor agonists are reviewed, along with some of the practical aspects of light and melatonin treatment.

  4. Effect of Light and Melatonin and other Melatonin Receptor Agonists on Human Circadian Physiology

    PubMed Central

    Emens, Jonathan S.

    2015-01-01

    Synopsis Circadian (body clock) timing has a profound influence on mental health, physical health, and health behaviors. This review focuses on how light, melatonin and other melatonin receptor agonist drugs can be used to shift circadian timing in patients with misaligned circadian rhythms. A brief overview of the human circadian system is provided, followed by a discussion of patient characteristics and safety considerations that can influence the treatment of choice. The important features of light treatment, light avoidance, exogenous melatonin and other melatonin receptor agonists are reviewed, along with some of the practical aspects of light and melatonin treatment. PMID:26568121

  5. Contamination with retinoic acid receptor agonists in two rivers in the Kinki region of Japan.

    PubMed

    Inoue, Daisuke; Nakama, Koki; Sawada, Kazuko; Watanabe, Taro; Takagi, Mai; Sei, Kazunari; Yang, Min; Hirotsuji, Junji; Hu, Jianying; Nishikawa, Jun-ichi; Nakanishi, Tsuyoshi; Ike, Michihiko

    2010-04-01

    This study was conducted to investigate the agonistic activity against human retinoic acid receptor (RAR) alpha in the Lake Biwa-Yodo River and the Ina River in the Kinki region of Japan. To accomplish this, a yeast two-hybrid assay was used to elucidate the spatial and temporal variations and potential sources of RARalpha agonist contamination in the river basins. RARalpha agonistic activity was commonly detected in the surface water samples collected along two rivers at different periods, with maximum all-trans retinoic acid (atRA) equivalents of 47.6 ng-atRA/L and 23.5 ng-atRA/L being observed in Lake Biwa-Yodo River and Ina River, respectively. The results indicated that RARalpha agonists are always present and widespread in the rivers. Comparative investigation of RARalpha and estrogen receptor alpha agonistic activities at 20 stations along each river revealed that the spatial variation pattern of RARalpha agonist contamination was entirely different from that of the estrogenic compound contamination. This suggests that the effluent from municipal wastewater treatment plants, a primary source of estrogenic compounds, seemed not to be the cause of RARalpha agonist contamination in the rivers. Fractionation using high performance liquid chromatography (HPLC) directed by the bioassay found two bioactive fractions from river water samples, suggesting the presence of at least two RARalpha agonists in the rivers. Although a trial conducted to identify RARalpha agonists in the major bioactive fraction was not completed as part of this study, comparison of retention times in HPLC analysis and quantification with liquid chromatography-mass spectrometry analysis revealed that the major causative contaminants responsible for the RARalpha agonistic activity were not RAs (natural RAR ligands) and 4-oxo-RAs, while 4-oxo-RAs were identified as the major RAR agonists in sewage in Beijing, China. These findings suggest that there are unknown RARalpha agonists with high

  6. Sigma-1 receptor agonists as therapeutic drugs for cognitive impairment in neuropsychiatric diseases.

    PubMed

    Niitsu, Tomihisa; Iyo, Masaomi; Hashimoto, Kenji

    2012-01-01

    Cognitive impairment is a core feature of patients with neuropsychiatric diseases such as schizophrenia and psychotic depression. The drugs currently used to treat cognitive impairment have significant limitations, ensuring that the search for more effective therapies remains active. Endoplasmic reticulum protein sigma-1 receptors are unique binding sites in the brain that exert a potent effect on multiple neurotransmitter systems. Accumulating evidence suggests that sigma-1 receptors play a role in both the pathophysiology of neuropsychiatric diseases, and the mechanistic action of some therapeutic drugs, such as the selective serotonin reuptake inhibitors (SSRIs), donepezil and neurosteroids. Among SSRIs, fluvoxamine, a potent sigma-1 receptor agonist, has the highest affinity at sigma-1 receptors. Sigma-1 receptor agonists greatly potentiate nerve-growth factor (NGF)-induced neurite outgrowth in PC12 cells, an effect that is antagonized by treatment with the selective sigma-1 receptor antagonist NE-100. Furthermore, phencyclidine (PCP)-induced cognitive impairment, associated with animal models of schizophrenia is significantly improved by sub-chronic administration of sigma-1 receptor agonists such as fluvoxamine, SA4503 (cutamesine) and donepezil. This effect is antagonized by co-administration of NE-100. A positron emission tomography (PET) study using the specific sigma-1 receptor ligand [11C]SA4503 demonstrates that fluvoxamine and donepezil bind to sigma-1 receptors in the healthy human brain. In clinical studies, some sigma-1 receptor agonists, including fluvoxamine, donepezil and neurosteroids, improve cognitive impairment and clinical symptoms in neuropsychiatric diseases. In this article, we review the recent findings on sigma-1 receptor agonists as potential therapeutic drugs for the treatment of cognitive impairment in schizophrenia and psychotic depression.

  7. Functional receptor coupling to Gi is a mechanism of agonist-promoted desensitization of the beta2-adrenergic receptor.

    PubMed

    Tepe, N M; Liggett, S B

    2000-01-01

    The beta2-adrenergic receptor (beta2AR) couples to Gs activating adenylyl cyclase (AC) and increasing cAMP. Such signaling undergoes desensitization with continued agonist exposure. Beta2AR also couple to Gi after receptor phosphorylation by the cAMP dependent protein kinase A, but the efficiency of such coupling is not known. Given the PKA dependence of beta2AR-Gi coupling, we explored whether this may be a mechanism of agonist-promoted desensitization. HEK293 cells were transfected to express beta2AR or beta2AR and Gialpha2, and then treated with vehicle or the agonist isoproterenol to evoke agonist-promoted beta2AR desensitization. Membrane AC activities showed that Gialpha2 overexpression decreased basal levels, but the fold-stimulation of the AC over basal by agonist was not altered. However, with treatment of the cells with isoproterenol prior to membrane preparation, a marked decrease in agonist-stimulated AC was observed with the cells overexpressing Gialpha2. In the absence of such overexpression, beta2AR desensitization was 23+/-7%, while with 5-fold Gialpha2 overexpression desensitization was 58+/-5% (p<0.01, n=4). The effect of Gi on desensitization was receptor-specific, in that forskolin responses were not altered by G(i)alpha2 overexpression. Thus, acquired beta2AR coupling to Gi is an important mechanism of agonist-promoted desensitization, and pathologic conditions that increase Gi levels contribute to beta2AR dysfunction.

  8. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration

    PubMed Central

    Chakrabarti, Mrinmay; Haque, Azizul; Banik, Naren L.; Nagarkatti, Prakash; Nagarkatti, Mitzi; Ray, Swapan K.

    2014-01-01

    Recent results from laboratory investigations and clinical trials indicate important roles for estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent studies suggest that ER agonists can provide neuroprotection by modulation of cell survival mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly via two ERs known as ERα and ERβ. Although some studies have suggested that ER agonists may be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for augmenting cognitive function may triumph over the associated side effects. Also, understanding the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the development of selective anti-inflammatory molecules with neuroprotective roles in different CNS disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on finding the most plausible molecular pathways for enhancing protective functions of ER agonists in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS. PMID:25245209

  9. Agonist and antagonist protect sulfhydrals in the binding site of the D-1 dopamine receptor

    SciTech Connect

    Sidhu, A.; Kebabian, J.W.; Fishman, P.H.

    1986-05-01

    An iodinated compound (/sup 125/I)-SCH 23982 (8-iodo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol) has been characterized as a specific, high affinity (Kd = 0.7 nM) ligand for the D-1 dopamine receptor. The ligand binding site of the D-1 receptor in rat striatum was inactivated by N-ethylmaleimide (NEM) in a time and concentration dependent manner. The inactivation was rapid and irreversible with a 70% net loss of binding sites. Scatchard analysis of binding to NEM-treated tissue showed a decrease both in receptor number and in radioligand affinity. The remaining receptors retained their selectivity for stereoisomers of both agonist and antagonist. Receptor occupancy by either a D-1 specific agonist or antagonist protected in a dose dependent manner the binding sites from inactivation by NEM; the agonist was more effective than the antagonist. The agonist high affinity site, however, was abolished in the absence or presence of protective compound, presumably because of inactivation of the GTP-binding component of adenylate cyclase. In this regard, there was a total loss of agonist- and forskolin-stimulated adenylate cyclase activity after NEM treatment. The authors conclude that the D-1 dopamine receptor contains NEM-sensitive sulfhydral group(s) at or near the vicinity of the ligand binding site.

  10. GLP-1 Receptor Agonists: Nonglycemic Clinical Effects in Weight Loss and Beyond

    PubMed Central

    Ryan, Donna; Acosta, Andres

    2015-01-01

    Obective Glucagon-like peptide-1 (GLP-1) receptor agonists are indicated for treatment of type 2 diabetes since they mimic the actions of native GLP-1 on pancreatic islet cells, stimulating insulin release, while inhibiting glucagon release, in a glucose-dependent manner. The observation of weight loss has led to exploration of their potential as antiobesity agents, with liraglutide 3.0 mg day−1 approved for weight management in the US on December 23, 2014, and in the EU on March 23, 2015. This review examines the potential nonglycemic effects of GLP-1 receptor agonists. Methods A literature search was conducted to identify preclinical and clinical evidence on nonglycemic effects of GLP-1 receptor agonists. Results GLP-1 receptors are distributed widely in a number of tissues in humans, and their effects are not limited to the well-recognized effects on glycemia. Nonglycemic effects include weight loss, which is perhaps the most widely recognized nonglycemic effect. In addition, effects on the cardiovascular, neurologic, and renal systems and on taste perception may occur independently of weight loss. Conclusions GLP-1 receptor agonists may provide other nonglycemic clinical effects besides weight loss. Understanding these effects is important for prescribers in using GLP-1 receptor agonists for diabetic patients, but also if approved for chronic weight management. PMID:25959380

  11. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  12. A Novel Method for Screening Adenosine Receptor Specific Agonists for Use in Adenosine Drug Development

    PubMed Central

    Jones, Karlie R.; Choi, Uimook; Gao, Ji-Liang; Thompson, Robert D.; Rodman, Larry E.; Malech, Harry L.; Kang, Elizabeth M.

    2017-01-01

    Agonists that target the A1, A2A, A2B and A3 adenosine receptors have potential to be potent treatment options for a number of diseases, including autoimmune diseases, cardiovascular disease and cancer. Because each of these adenosine receptors plays a distinct role throughout the body, obtaining highly specific receptor agonists is essential. Of these receptors, the adenosine A2AR and A2BR share many sequence and structural similarities but highly differ in their responses to inflammatory stimuli. Our laboratory, using a combination of specially developed cell lines and calcium release analysis hardware, has created a new and faster method for determining specificity of synthetic adenosine agonist compounds for the A2A and A2B receptors in human cells. A2A receptor expression was effectively removed from K562 cells, resulting in the development of a distinct null line. Using HIV-lentivector and plasmid DNA transfection, we also developed A2A and A2B receptor over-expressing lines. As adenosine is known to cause changes in intracellular calcium levels upon addition to cell culture, calcium release can be determined in these cell lines upon compound addition, providing a functional readout of receptor activation and allowing us to isolate the most specific adenosine agonist compounds. PMID:28317879

  13. Virtual screening of CB(2) receptor agonists from bayesian network and high-throughput docking: structural insights into agonist-modulated GPCR features.

    PubMed

    Renault, Nicolas; Laurent, Xavier; Farce, Amaury; El Bakali, Jamal; Mansouri, Roxane; Gervois, Philippe; Millet, Régis; Desreumaux, Pierre; Furman, Christophe; Chavatte, Philippe

    2013-04-01

    The relevance of CB(2)-mediated therapeutics is well established in the treatment of pain, neurodegenerative and gastrointestinal tract disorders. Recent works such as the crystallization of class-A G-protein-coupled receptors in a range of active states and the identification of specific anchoring sites for CB(2) agonists challenged us to design a reliable agonist-bound homology model of CB(2) receptor. Docking-scoring enrichment tests of a high-throughput virtual screening of 140 compounds led to 13 hits within the micromolar affinity range. Most of these hits behaved as CB(2) agonists, among which two novel full agonists emerged. Although the main challenge was a high-throughput docking run targeting an agonist-bound state of a CB(2) model, a prior 2D ligand-based Bayesian network was computed to enrich the input commercial library for 3D screening. The exclusive discovery of agonists illustrates the reliability of this agonist-bound state model for the identification of polar and aromatic amino acids as new agonist-modulated CB(2) features to be integrated in the wide activation pathway of G-protein-coupled receptors.

  14. Optimisation of in silico derived 2-aminobenzimidazole hits as unprecedented selective kappa opioid receptor agonists.

    PubMed

    Sasmal, Pradip K; Krishna, C Vamsee; Adabala, S Sudheerkumar; Roshaiah, M; Rawoof, Khaji Abdul; Thadi, Emima; Sukumar, K Pavan; Cheera, Srisailam; Abbineni, Chandrasekhar; Rao, K V L Narasimha; Prasanthi, A; Nijhawan, Kamal; Jaleel, Mahaboobi; Iyer, Lakshmi Ramachandran; Chaitanya, T Krishna; Tiwari, Nirbhay Kumar; Krishna, N Lavanya; Potluri, Vijay; Khanna, Ish; Frimurer, Thomas M; Lückmann, Michael; Rist, Øystein; Elster, Lisbeth; Högberg, Thomas

    2015-02-15

    Kappa opioid receptor (KOR) is an important mediator of pain signaling and it is targeted for the treatment of various pains. Pharmacophore based mining of databases led to the identification of 2-aminobenzimidazole derivative as KOR agonists with selectivity over the other opioid receptors DOR and MOR. A short SAR exploration with the objective of identifying more polar and hence less brain penetrant agonists is described herewith. Modeling studies of the recently published structures of KOR, DOR and MOR are used to explain the receptor selectivity. The synthesis, biological evaluation and SAR of novel benzimidazole derivatives as KOR agonists are described. The in vivo proof of principle for anti-nociceptive effect with a lead compound from this series is exemplified.

  15. Heterocyclic acetamide and benzamide derivatives as potent and selective beta3-adrenergic receptor agonists with improved rodent pharmacokinetic profiles.

    PubMed

    Goble, Stephen D; Wang, Liping; Howell, K Lulu; Bansal, Alka; Berger, Richard; Brockunier, Linda; DiSalvo, Jerry; Feighner, Scott; Harper, Bart; He, Jiafang; Hurley, Amanda; Hreniuk, Donna; Parmee, Emma; Robbins, Michael; Salituro, Gino; Sanfiz, Anthony; Streckfuss, Eric; Watkins, Eloisa; Weber, Ann E; Struthers, Mary; Edmondson, Scott D

    2010-03-15

    A series of amide derived beta(3)-adrenergic receptor (AR) agonists is described. The discovery and optimization of several series of compounds derived from 1, is used to lay the SAR foundation for second generation beta(3)-AR agonists for the treatment of overactive bladder.

  16. Selective VIP Receptor Agonists Facilitate Immune Transformation for Dopaminergic Neuroprotection in MPTP-Intoxicated Mice

    PubMed Central

    Olson, Katherine E.; Kosloski-Bilek, Lisa M.; Anderson, Kristi M.; Diggs, Breha J.; Clark, Barbara E.; Gledhill, John M.; Shandler, Scott J.; Mosley, R. Lee

    2015-01-01

    Vasoactive intestinal peptide (VIP) mediates a broad range of biological responses by activating two related receptors, VIP receptor 1 and 2 (VIPR1 and VIPR2). Although the use of native VIP facilitates neuroprotection, clinical application of the hormone is limited due to VIP's rapid metabolism and inability to distinguish between VIPR1 and VIPR2 receptors. In addition, activation of both receptors by therapeutics may increase adverse secondary toxicities. Therefore, we developed metabolically stable and receptor-selective agonists for VIPR1 and VIPR2 to improve pharmacokinetic and pharmacodynamic therapeutic end points. Selective agonists were investigated for their abilities to protect mice against MPTP-induced neurodegeneration used to model Parkinson's disease (PD). Survival of tyrosine hydroxylase neurons in the substantia nigra was determined by stereological tests after MPTP intoxication in mice pretreated with either VIPR1 or VIPR2 agonist or after adoptive transfer of splenic cell populations from agonist-treated mice administered to MPTP-intoxicated animals. Treatment with VIPR2 agonist or splenocytes from agonist-treated mice resulted in increased neuronal sparing. Immunohistochemical tests showed that agonist-treated mice displayed reductions in microglial responses, with the most pronounced effects in VIPR2 agonist-treated, MPTP-intoxicated mice. In parallel studies, we observed reductions in proinflammatory cytokine release that included IL-17A, IL-6, and IFN-γ and increases in GM-CSF transcripts in CD4+ T cells recovered from VIPR2 agonist-treated animals. Moreover, a phenotypic shift of effector to regulatory T cells was observed. These results support the use of VIPR2-selective agonists as neuroprotective agents for PD treatment. SIGNIFICANCE STATEMENT Vasoactive intestinal peptide receptor 2 can elicit immune transformation in a model of Parkinson's disease (PD). Such immunomodulatory capabilities can lead to neuroprotection by attenuating

  17. Bitter Taste Receptor Agonists Mitigate Features of Allergic Asthma in Mice

    PubMed Central

    Sharma, Pawan; Yi, Roslyn; Nayak, Ajay P.; Wang, Nadan; Tang, Francesca; Knight, Morgan J.; Pan, Shi; Oliver, Brian; Deshpande, Deepak A.

    2017-01-01

    Asthma is characterized by airway inflammation, mucus secretion, remodeling and hyperresponsiveness (AHR). Recent research has established the bronchodilatory effect of bitter taste receptor (TAS2R) agonists in various models. Comprehensive pre-clinical studies aimed at establishing effectiveness of TAS2R agonists in disease models are lacking. Here we aimed to determine the effect of TAS2R agonists on features of asthma. Further, we elucidated a mechanism by which TAS2R agonists mitigate features of asthma. Asthma was induced in mice using intranasal house dust mite or aerosol ova-albumin challenge, and chloroquine or quinine were tested in both prophylactic and treatment models. Allergen challenge resulted in airway inflammation as evidenced by increased immune cells infiltration and release of cytokines and chemokines in the lungs, which were significantly attenuated in TAS2R agonists treated mice. TAS2R agonists attenuated features of airway remodeling including smooth muscle mass, extracellular matrix deposition and pro-fibrotic signaling, and also prevented mucus accumulation and development of AHR in mice. Mechanistic studies using human neutrophils demonstrated that inhibition of immune cell chemotaxis is a key mechanism by which TAS2R agonists blocked allergic airway inflammation and exerted anti-asthma effects. Our comprehensive studies establish the effectiveness of TAS2R agonists in mitigating multiple features of allergic asthma.

  18. Once-weekly glucagon-like peptide 1 receptor agonists.

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep

    2015-07-01

    The once-weekly glucagon-like peptide 1 receptor agonists (QW GLP1RA) represent a major advancement in diabetes pharmaco-therapeutics. This review describes the basic, clinical, and comparative pharmacology of this novel class of drugs. It highlights the clinical placement and posology of these drugs.

  19. Retinoic Acid Receptor β2 Agonists Restore Glycemic Control In Diabetes and Reduce Steatosis

    PubMed Central

    Trasino, Steven E.; Tang, Xiao-Han; Jessurun, Jose; Gudas, Lorraine J.

    2016-01-01

    Aims Retinoids (vitamin A (retinol), and structurally related molecules) possess metabolic modulating properties, prompting new interest in their role in the treatment of diabetes and fatty liver disease, but little is known about the effects of specific retinoic acid receptor (RAR) agonists in these diseases. Materials and Methods Synthetic agonists for retinoic acid receptor RARβ2 were administered to wild type (wt) mice in a model of high fat diet (HFD)-induced type 2 diabetes (T2D) and to ob/ob and db/db mice (genetic models of obesity-associated T2D). Results We demonstrate that administration of synthetic agonists for the retinoic acid receptor RARβ2 to either wild type (wt) mice in a model of high fat diet (HFD)-induced type 2 diabetes (T2D) or to ob/ob and db/db mice (genetic models of obesity-associated T2D) reduces hyperglycemia, peripheral insulin resistance, and body weight. Furthermore, RARβ2 agonists dramatically reduce steatosis, lipid peroxidation, and oxidative stress in the liver, pancreas, and kidneys of obese, diabetic mice. RARβ2 agonists also lower levels of mRNAs involved in lipogenesis, such as SREBP1 and FASN (fatty acid synthase), and increase mRNAs that mediate mitochondrial fatty acid β-oxidation, such as CPT1α, in these organs. RARβ2 agonists lower triglyceride levels in these organs, and in muscle. Conclusions Collectively, our data show that orally active, rapidly acting, high affinity pharmacological agonists for RARβ2 improve the diabetic phenotype while reducing lipid levels in key insulin target tissues. We suggest that RARβ2 agonists should be useful drugs for T2D therapy and for treatment of hepatic steatosis. PMID:26462866

  20. Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors *

    PubMed Central

    Ryman-Rasmussen, Jessica P.; Griffith, Adam; Oloff, Scott; Vaidehi, Nagarajan; Brown, Justin T.; Goddard, William A.; Mailman, Richard B.

    2007-01-01

    Recently, we demonstrated that D1 agonists can cause functionally selective effects when the endpoints of receptor internalization and adenylate cyclase activation are compared. The present study was designed to probe the phenomenon of functional selectivity at the D1 receptor further by testing the hypothesis that structurally dissimilar agonists with efficacies at these endpoints that equal or exceed those of dopamine would differ in ability to influence receptor fate after internalization, a functional endpoint largely unexplored for the D1 receptor. We selected two novel agonists of therapeutic interest that meet these criteria (the isochroman A-77636, and the isoquinoline dinapsoline), and compared the fates of the D1 receptor after internalization in response to these two compounds with that of dopamine. We found that dopamine caused the receptor to be rapidly recycled to the cell surface within 1 h of removal. Conversely, A-77636 caused the receptor to be retained intracellularly up to 48 h after agonist removal. Most surprisingly, the D1 receptor recovered to the cell surface 48 h after removal of dinapsoline. Taken together, these data indicate that these agonists target the D1 receptor to different intracellular trafficking pathways, demonstrating that the phenomenon of functional selectivity at the D1 receptor is operative for cellular events that are temporally downstream of immediate receptor activation. We hypothesize that these differential effects result from interactions of the synthetic ligands with aspects of the D1 receptor that are distal from the ligand binding domain. PMID:17067639

  1. The impact of improved glycaemic control with GLP-1 receptor agonist therapy on diabetic retinopathy.

    PubMed

    Varadhan, Lakshminarayanan; Humphreys, Tracy; Walker, Adrian B; Varughese, George I

    2014-03-01

    Rapid improvement in glycaemic control with GLP-1 receptor agonist (RA) therapy has been reported to be associated with significant progression of diabetic retinopathy. This deterioration is transient, and continuing GLP-1 RA treatment is associated with reversal of this phenomenon. Pre-existent maculopathy, higher grade of retinopathy and longer duration of diabetes may be risk factors for persistent deterioration.

  2. Modification of formalin-induced nociception by different histamine receptor agonists and antagonists.

    PubMed

    Farzin, Davood; Nosrati, Farnaz

    2007-01-15

    The present study evaluated the effects of different histamine receptor agonists and antagonists on the nociceptive response in the mouse formalin test. Intracerebroventricular (20-40 microg/mouse i.c.v.) or subcutaneous (1-10 mg/kg s.c.) injection of HTMT (H(1) receptor agonist) elicited a dose-related hyperalgesia in the early and late phases. Conversely, intraperitoneal (20 and 30 mg/kg i.p.) injection of dexchlorpheniramine (H(1) receptor antagonist) was antinociceptive in both phases. At a dose ineffective per se, dexchlorpheniramine (10 mg/kg i.p.) antagonized the hyperalgesia induced by HTMT (40 mug/mouse i.c.v. or 10 mg/kg s.c.). Dimaprit (H(2) receptor agonist, 30 mg/kg i.p.) and ranitidine (H(2) receptor antagonist, 20 and 40 mg/kg i.p.) reduced the nociceptive responses in the early and late phases. No significant change in the antinociceptive activity was found following the combination of dimaprit (30 mg/kg i.p.) with ranitidine (10 mg/kg i.p.). The antinociceptive effect of dimaprit (30 mg/kg i.p.) was prevented by naloxone (5 mg/kg i.p.) in the early phase or by imetit (H(3) receptor agonist, 25 mg/kg i.p.) in both early and late phases. The histamine H(3) receptor agonist imetit was hyperalgesic following i.p. administration of 50 mg/kg. Imetit-induced hyperalgesia was completely prevented by treatment with a dose ineffective per se of thioperamide (H(3) receptor antagonist, 5 mg/kg i.p.). The results suggest that histamine H(1) and H(3) receptor activations increase sensitivity to nociceptive stimulus in the formalin test.

  3. Effect of AVE 0991 angiotensin-(1-7) receptor agonist treatment on elemental and biomolecular content and distribution in atherosclerotic plaques of apoE-knockout mice

    NASA Astrophysics Data System (ADS)

    Kowalska, J.; Gajda, M.; Jawień, J.; Kwiatek, W. M.; Appel, K.; Dumas, P.

    2013-12-01

    Gene-targeted apolipoprotein E-knockout (apoE-KO) mice display early and highly progressive vascular lesions containing lipid deposits and they became a reliable animal model to study atherosclerosis. The aim of the present study was to investigate the effect of AVE 0991 angiotensin-(1-7) receptor agonist on the distribution of selected pro- and anti- inflammatory elements as well as biomolecules in atherosclerotic plaques of apoE-knockout mice. Synchrotron radiation-based X-ray fluorescence (micro-XRF) and Fourier Transform Infrared (micro-FTIR) microspectroscopies were applied. Two-month-old apoE-KO mice were fed for following four months diet supplemented with AVE 0991 (0.58 μmol/kg b.w. per day). Histological sections of ascending aortas were analyzed spectroscopically. The distribution of P, Ca, Fe and Zn were found to correspond with histological structure of the lesion. Significantly lower contents of P, Ca, Zn and significantly higher content of Fe were observed in animals treated with AVE 0991. Biomolecular analysis showed lower lipids saturation level and lower lipid to protein ratio in AVE 0991 treated group. Protein secondary structure was studied according to the composition of amide I band (1660 cm-1) and it demonstrated higher proportion of β-sheet structure as compared to α-helix in both studied groups.

  4. Thermodynamic analysis of antagonist and agonist interactions with dopamine receptors.

    PubMed

    Duarte, E P; Oliveira, C R; Carvalho, A P

    1988-03-01

    The binding of [3H]spiperone to dopamine D-2 receptors and its inhibition by antagonists and agonists were examined in microsomes derived from the sheep caudate nucleus, at temperatures between 37 and 1 degree C, and the thermodynamic parameters of the binding were evaluated. The affinity of the receptor for the antagonists, spiperone and (+)-butaclamol, decreased as the incubation temperature decreased; the affinity for haloperidol did not further decrease at temperatures below 15 degrees C. The binding of the antagonists was associated with very large increases in entropy, as expected for hydrophobic interactions. The enthalpy and entropy changes associated with haloperidol binding were dependent on temperature, in contrast to those associated with spiperone and (+)-butaclamol. The magnitude of the entropy increase associated with the specific binding of the antagonists did not correlate with the degree of lipophilicity of these drugs. The data suggest that, in addition to hydrophobic forces, other forces are also involved in the antagonist-dopamine receptor interactions, and that a conformational change of the receptor could occur when the antagonist binds. Agonist binding data are consistent with a two-state model of the receptor, a high-affinity state (RH) and a low-affinity state (RL). The affinity of dopamine binding to the RH decreased with decreasing temperatures below 20 degrees C, whereas the affinity for the RL increased at low temperatures. In contrast, the affinity of apomorphine for both states of receptor decreased as the temperature decreased from 30 to 8 degrees C. A clear distinction between the energetics of high-affinity and low-affinity agonist binding was observed. The formation of the high-affinity complex was associated with larger increases in enthalpy and entropy than the interaction with the low-affinity state was. The results suggest that the interaction of the receptor with the G-proteins, induced or stabilized by the binding of

  5. 5-HT(2C) agonists as therapeutics for the treatment of schizophrenia.

    PubMed

    Rosenzweig-Lipson, Sharon; Comery, Thomas A; Marquis, Karen L; Gross, Jonathan; Dunlop, John

    2012-01-01

    The 5-HT(2C) receptor is a highly complex, highly regulated receptor which is widely distributed throughout the brain. The 5-HT(2C) receptor couples to multiple signal transduction pathways leading to engagement of a number of intracellular signaling molecules. Moreover, there are multiple allelic variants of the 5-HT(2C) receptor and the receptor is subject to RNA editing in the coding regions. The complexity of this receptor is further emphasized by the studies suggesting the utility of either agonists or antagonists in the treatment of schizophrenia. While several 5-HT(2C) agonists have demonstrated clinical efficacy in obesity (lorcaserin, PRX-000933), the focus of this review is on the therapeutic potential of 5-HT(2C) agonists in schizophrenia. To this end, the preclinical profile of 5-HT(2C) agonists from a neurochemical, electrophysiological, and a behavioral perspective is indicative of antipsychotic-like efficacy without extrapyramidal symptoms or weight gain. Recently, the selective 5-HT(2C) agonist vabicaserin demonstrated clinical efficacy in a Phase II trial in schizophrenia patients without weight gain and with low EPS liability. These data are highly encouraging and suggest that 5-HT(2C) agonists are potential therapeutics for the treatment of psychiatric disorders.

  6. Modulation of P2 receptors on pancreatic β-cells by agonists and antagonists: a molecular target for type 2 diabetes treatment.

    PubMed

    Pacheco, Paulo Anastácio Furtado; Ferreira, Leonardo Gomes Braga; Alves, Luiz Anastacio; Faria, Robson Xavier

    2013-05-01

    Morbidity and mortality from diabetes mellitus (DM) are serious worldwide concerns. By the year 2030, the estimated number of diabetic patients will reach a staggering 439 million worldwide. Diabetes mellitus type 2 (DM2), which involves disturbances in both insulin secretion and resistance, is the most common form of diabetes and affects approximately 5 to 7% of the world's population. When a patient with DM2 cannot regulate his or her blood glucose levels through diet, weight loss, or exercise, oral medications, such as hypoglycemic agents (i.e., sulphonylureas, biguanides, alpha glucosidase inhibitors and thiazolidinediones), are crucial. Here, we discuss some physiological aspects of P2 receptors on pancreatic β-cells, which express a variety of P2 receptor isoforms. These receptors enhance glucose-dependent insulin release. In addition, we speculate on the potential of purinergic compounds as novel or additional treatments for Type 2 Diabetes mellitus.

  7. Comparative Review of Approved Melatonin Agonists for the Treatment of Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Williams, Wilbur P Trey; McLin, Dewey E; Dressman, Marlene A; Neubauer, David N

    2016-09-01

    Circadian rhythm sleep-wake disorders (CRSWDs) are characterized by persistent or recurrent patterns of sleep disturbance related primarily to alterations of the circadian rhythm system or the misalignment between the endogenous circadian rhythm and exogenous factors that affect the timing or duration of sleep. These disorders collectively represent a significant unmet medical need, with a total prevalence in the millions, a substantial negative impact on quality of life, and a lack of studied treatments for most of these disorders. Activation of the endogenous melatonin receptors appears to play an important role in setting the circadian clock in the suprachiasmatic nucleus of the hypothalamus. Therefore, melatonin agonists, which may be able to shift and/or stabilize the circadian phase, have been identified as potential therapeutic candidates for the treatment of CRSWDs. Currently, only one melatonin receptor agonist, tasimelteon, is approved for the treatment of a CRSWD: non-24-hour sleep-wake disorder (or non-24). However, three additional commercially available melatonin receptor agonists-agomelatine, prolonged-release melatonin, and ramelteon-have been investigated for potential use for treatment of CRSWDs. Data indicate that these melatonin receptor agonists have distinct pharmacologic profiles that may help clarify their clinical use in CRSWDs. We review the pharmacokinetic and pharmacodynamic properties of these melatonin agonists and summarize their efficacy profiles when used for the treatment of CRSWDs. Further studies are needed to determine the therapeutic potential of these melatonin agonists for most CRSWDs.

  8. Characterization of the complex morphinan derivative BU72 as a high efficacy, long-lasting mu-opioid receptor agonist.

    PubMed

    Neilan, Claire L; Husbands, Stephen M; Breeden, Simon; Ko, M C Holden; Aceto, Mario D; Lewis, John W; Woods, James H; Traynor, John R

    2004-09-19

    The development of buprenorphine as a treatment for opiate abuse and dependence has drawn attention to opioid ligands that have agonist actions followed by long-lasting antagonist actions. In a search for alternatives to buprenorphine, we discovered a bridged pyrrolidinomorphinan (BU72). In vitro, BU72 displayed high affinity and efficacy for mu-opioid receptors, but was also a partial delta-opioid receptor agonist and a full kappa-opioid receptor agonist. BU72 was a highly potent and long-lasting antinociceptive agent against both thermal and chemical nociception in the mouse and against thermal nociception in the monkey. These effects were prevented by mu-, but not kappa- or delta-, opioid receptor antagonists. Once the agonist effects of BU72 had subsided, the compound acted to attenuate the antinociceptive action of morphine. BU72 is too efficacious for human use but manipulation to reduce efficacy could provide a lead to the development of a treatment for opioid dependence.

  9. Cannabinoid receptors and their endogenous agonist, anandamide.

    PubMed

    Axelrod, J; Felder, C C

    1998-05-01

    Cannabinoids are a class of compound found in marijuana which have been known for their therapeutic and psychoactive properties for at least 4000 years. Isolation of the active principle in marijuana, delta9-THC, provided the lead structure in the development of highly potent congeners which were used to probe for the mechanism of marijuana action. Cannabinoids were shown to bind to selective binding sites in brain tissue thereby regulating second messenger formation. Such studies led to the cloning of three cannabinoid receptor subtypes, CB1, CB2, and CB1A all of which belong to the superfamily of G protein-coupled plasma membrane receptors. Analogous to the discovery of endogenous opiates, isolation of cannabinoid receptors provided the appropriate tool to isolate an endogenous cannabimimetic eicosanoid, anandamide, from porcine brain. Recent studies indicate that anandamide is a member of a family of fatty acid ethanolamides that may represent a novel class of lipid neurotransmitters. This review discusses recent progress in cannabinoid research with a focus on the receptors for delta9-THC, their coupling to second messenger responses, and the endogenous lipid cannabimimetic, anandamide.

  10. Pharmacology of INS37217 [P(1)-(uridine 5')-P(4)- (2'-deoxycytidine 5')tetraphosphate, tetrasodium salt], a next-generation P2Y(2) receptor agonist for the treatment of cystic fibrosis.

    PubMed

    Yerxa, B R; Sabater, J R; Davis, C W; Stutts, M J; Lang-Furr, M; Picher, M; Jones, A C; Cowlen, M; Dougherty, R; Boyer, J; Abraham, W M; Boucher, R C

    2002-09-01

    INS37217 [P(1)-(uridine 5')-P(4)-(2'-deoxycytidine 5')tetraphosphate, tetrasodium salt] is a deoxycytidine-uridine dinucleotide with agonist activity at the P2Y(2) receptor. In primate lung tissues, the P2Y(2) receptor mRNA was located by in situ hybridization predominantly in epithelial cells and not in smooth muscle or stromal tissue. The pharmacologic profile of INS37217 parallels that of UTP, leading to increased chloride and water secretion, increased cilia beat frequency, and increased mucin release. The combined effect of these actions was confirmed in an animal model of tracheal mucus velocity that showed that a single administration of INS37217 significantly enhanced mucus transport for at least 8 h after dosing. This extended duration of action is consistent with the ability of INS37217 to resist metabolism by airway cells and sputum enzymes. The enhanced metabolic stability and resultant increased duration of improved mucociliary clearance may confer significant advantages to INS37217 over other P2Y(2) agonists in the treatment of diseases such as cystic fibrosis.

  11. Discovery of novel acetanilide derivatives as potent and selective beta3-adrenergic receptor agonists.

    PubMed

    Maruyama, Tatsuya; Onda, Kenichi; Hayakawa, Masahiko; Matsui, Tetsuo; Takasu, Toshiyuki; Ohta, Mitsuaki

    2009-06-01

    In the search for potent and selective human beta3-adrenergic receptor (AR) agonists as potential drugs for the treatment of obesity and noninsulin-dependent (type II) diabetes, a novel series of acetanilide-based analogues were prepared and their biological activities were evaluated at the human beta3-, beta2-, and beta1-ARs. Among these compounds, 2-pyridylacetanilide (2f), pyrimidin-2-ylacetanilide (2u), and pyrazin-2-ylacetanilide (2v) derivatives exhibited potent agonistic activity at the beta3-AR with functional selectivity over the beta1- and beta2-ARs. In particular, compound 2u was found to be the most potent and selective beta3-AR agonist with an EC(50) value of 0.11 microM and no agonistic activity for either the beta1- or beta2-AR. In addition, 2f, 2u, and 2v showed significant hypoglycemic activity in a rodent diabetic model.

  12. Effects of cannabinoid and vanilloid receptor agonists and their interaction on learning and memory in rats.

    PubMed

    Shiri, Mariam; Komaki, Alireza; Oryan, Shahrbanoo; Taheri, Masoumeh; Komaki, Hamidreza; Etaee, Farshid

    2017-04-01

    Despite previous findings on the effects of cannabinoid and vanilloid systems on learning and memory, the effects of the combined stimulation of these 2 systems on learning and memory have not been studied. Therefore, in this study, we tested the interactive effects of cannabinoid and vanilloid systems on learning and memory in rats by using passive avoidance learning (PAL) tests. Forty male Wistar rats were divided into the following 4 groups: (1) control (DMSO+saline), (2) WIN55,212-2, (3) capsaicin, and (4) WIN55,212-2 + capsaicin. On test day, capsaicin, a vanilloid receptor type 1 (TRPV1) agonist, or WIN55,212-2, a cannabinoid receptor (CB1/CB2) agonist, or both substances were injected intraperitoneally. Compared to the control group, the group treated with capsaicin (TRPV1 agonist) had better scores in the PAL acquisition and retention test, whereas treatment with WIN55,212-2 (CB1/CB2 agonist) decreased the test scores. Capsaicin partly reduced the effects of WIN55,212-2 on PAL and memory. We conclude that the acute administration of a TRPV1 agonist improves the rats' cognitive performance in PAL tasks and that a vanilloid-related mechanism may underlie the agonistic effect of WIN55,212-2 on learning and memory.

  13. Buprenorphine is a weak partial agonist that inhibits opioid receptor desensitization

    PubMed Central

    Virk, Michael S.; Arttamangkul, Seksiri; Birdsong, William T.; Williams, John T.

    2009-01-01

    Buprenorphine is a weak partial agonist at mu-opioid receptors that is used for treatment of pain and addiction. Intracellular and whole cell recordings were made from locus coeruleus (LC) neurons in rat brain slices to characterize the actions of buprenorphine. Acute application of buprenorphine caused a hyperpolarization that was prevented by previous treatment of slices with the irreversible opioid antagonist, β-chlornaltrexamine (β-CNA), but was not reversed by a saturating concentration of naloxone. As expected for a partial agonist, sub-saturating concentrations of buprenorphine decreased the [Met]5 enkephalin (ME) induced hyperpolarization or outward current. When the ME induced current was decreased below a critical value, desensitization and internalization of μ-opioid receptors (MOR) was eliminated. The inhibition of desensitization by buprenorphine was not the result of prior desensitization, slow dissociation from the receptor, or elimination of receptor reserve. Treatment of slices with sub-saturating concentrations of etorphine, methadone, oxymorphone or β-CNA also reduced the current induced by ME but did not block ME-induced desensitization. Treatment of animals with buprenorphine for a week resulted in the inhibition of the current induced by ME and a block of desensitization that was not different from the acute application of buprenorphine to brain slices. These observations show the unique characteristics of buprenorphine and further demonstrate the range of agonist selective actions that are possible through G-protein coupled receptors. PMID:19494155

  14. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  15. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors

    PubMed Central

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-01-01

    Background and Purpose Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). Experimental Approach The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [3H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. Key Results [3H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Conclusions and Implications Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. PMID:25339241

  16. Receptors and Channels Targeted by Synthetic Cannabinoid Receptor Agonists and Antagonists

    PubMed Central

    Pertwee, R.G.

    2010-01-01

    It is widely accepted that non-endogenous compounds that target CB1 and/or CB2 receptors possess therapeutic potential for the clinical management of an ever growing number of disorders. Just a few of these disorders are already treated with Δ9-tetrahydrocannabinol or nabilone, both CB1/CB2 receptor agonists, and there is now considerable interest in expanding the clinical applications of such agonists and also in exploiting CB2-selective agonists, peripherally restricted CB1/CB2 receptor agonists and CB1/CB2 antagonists and inverse agonists as medicines. Already, numerous cannabinoid receptor ligands have been developed and their interactions with CB1 and CB2 receptors well characterized. This review describes what is currently known about the ability of such compounds to bind to, activate, inhibit or block non-CB1, non-CB2 G protein-coupled receptors such as GPR55, transmitter gated channels, ion channels and nuclear receptors in an orthosteric or allosteric manner. It begins with a brief description of how each of these ligands interacts with CB1 and/or CB2 receptors. PMID:20166927

  17. Improving the developability profile of pyrrolidine progesterone receptor partial agonists

    SciTech Connect

    Kallander, Lara S.; Washburn, David G.; Hoang, Tram H.; Frazee, James S.; Stoy, Patrick; Johnson, Latisha; Lu, Qing; Hammond, Marlys; Barton, Linda S.; Patterson, Jaclyn R.; Azzarano, Leonard M.; Nagilla, Rakesh; Madauss, Kevin P.; Williams, Shawn P.; Stewart, Eugene L.; Duraiswami, Chaya; Grygielko, Eugene T.; Xu, Xiaoping; Laping, Nicholas J.; Bray, Jeffrey D.; Thompson, Scott K.

    2010-09-17

    The previously reported pyrrolidine class of progesterone receptor partial agonists demonstrated excellent potency but suffered from serious liabilities including hERG blockade and high volume of distribution in the rat. The basic pyrrolidine amine was intentionally converted to a sulfonamide, carbamate, or amide to address these liabilities. The evaluation of the degree of partial agonism for these non-basic pyrrolidine derivatives and demonstration of their efficacy in an in vivo model of endometriosis is disclosed herein.

  18. Glucagon-like peptide-1 receptors agonists (GLP1 RA).

    PubMed

    Kalra, Sanjay

    2013-10-01

    The glucagon-like peptide-1 receptors agonists (GLP1RA) are a relatively new class of drugs, used for management of type 2 diabetes. This review studies the characteristics of these drugs, focusing upon their mechanism of action, intra-class differences, and utility in clinical practice. It compares them with other incretin based therapies, the dipeptidyl peptidase-IV inhibitors, and predicts future developments in the use of these molecules, while highlighting the robust indications for the use of these drugs.

  19. The inhibitory effect of combination treatment with leptin and cannabinoid CB1 receptor agonist on food intake and body weight gain is mediated by serotonin 1B and 2C receptors.

    PubMed

    Wierucka-Rybak, M; Wolak, M; Juszczak, M; Drobnik, J; Bojanowska, E

    2016-06-01

    Previous studies reported that the co-injection of leptin and cannabinoid CB1 receptor antagonists reduces food intake and body weight in rats, and this effect is more profound than that induced by these compounds individually. Additionally, serotonin mediates the effects of numerous anorectic drugs. To investigate whether serotonin interacts with leptin and endocannabinoids to affect food intake and body weight, we administered 5-hydroxytryptamine(HT)1B and 5-hydroxytryptamine(HT)2C serotonin receptor antagonists (3 mg/kg GR 127935 and 0.5 mg/kg SB 242084, respectively) to male Wistar rats treated simultaneously with leptin (100 μg/kg) and the CB1 receptor inverse agonist AM 251 (1 mg/kg) for 3 days. In accordance with previous findings, the co-injection of leptin and AM 251, but not the individual injection of each drug, resulted in a significant decrease in food intake and body weight gain. Blockade of the 5-HT1B and 5-HT2C receptors completely abolished the leptin- and AM 251-induced anorectic and body-weight-reducing effects. These results suggest that serotonin mediates the leptin- and AM 251-dependent regulation of feeding behavior in rats via the 5-HT1B and 5-HT2C receptors.

  20. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na/sup +/ channel interaction

    SciTech Connect

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-12

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.

  1. MDA7: a novel selective agonist for CB2 receptors that prevents allodynia in rat neuropathic pain models

    PubMed Central

    Naguib, M; Diaz, P; Xu, J J; Astruc-Diaz, F; Craig, S; Vivas-Mejia, P; Brown, D L

    2008-01-01

    Background and purpose: There is growing interest in using cannabinoid type 2 (CB2) receptor agonists for the treatment of neuropathic pain. In this report, we describe the pharmacological characteristics of MDA7 (1-[(3-benzyl-3-methyl-2,3-dihydro-1-benzofuran-6-yl)carbonyl]piperidine), a novel CB2 receptor agonist. Experimental approach: We characterized the pharmacological profile of MDA7 by using radioligand-binding assays and in vitro functional assays at human cannabinoid type 1 (CB1) and CB2 receptors. In vitro functional assays were performed at rat CB1 and CB2 receptors. The effects of MDA7 in reversing neuropathic pain were assessed in spinal nerve ligation and paclitaxel-induced neuropathy models in rats. Key results: MDA7 exhibited selectivity and agonist affinity at human and rat CB2 receptors. MDA7 treatment attenuated tactile allodynia produced by spinal nerve ligation or by paclitaxel in a dose-related manner. These effects were selectively antagonized by a CB2 receptor antagonist but not by CB1 or opioid receptor antagonists. MDA7 did not affect rat locomotor activity. Conclusion and implications: MDA7, a novel selective CB2 agonist, was effective in suppressing neuropathic nociception in two rat models without affecting locomotor behaviour. These results confirm the potential for CB2 agonists in the treatment of neuropathic pain. PMID:18846037

  2. Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task.

    PubMed

    Perez-García, Georgina S; Meneses, A

    2005-08-30

    This work aimed to evaluate further the role of 5-HT7 receptors during memory formation in an autoshaping Pavlovian/instrumental learning task. Post-training administration of the potential 5-HT7 receptor agonist AS 19 or antagonist SB-269970 enhanced memory formation or had no effect, respectively. The AS 19 facilitatory effect was reversed by SB-269970, but not by the selective 5-HT1A antagonist WAY100635. Amnesia induced by scopolamine (cholinergic antagonist) or dizocilpine (NMDA antagonist) was also reversed by AS 19. Certainly, reservations regarding the selectivity of AS 19 for 5-HT7 and other 5-HT receptors in vivo are noteworthy and, therefore, its validity for use in animal models as a pharmacological tool. Having mentioned that, it should be noticed that together these data are providing further support to the notion of the 5-HT7 receptors role in memory formation. Importantly, this 5-HT7 receptor agonist AS 19 appears to represent a step forward respect to the notion that potent and selective 5-HT7 receptor agonists can be useful in the treatment of dysfunctional memory in aged-related decline and Alzheimer's disease.

  3. hvTRA, a novel TRAIL receptor agonist, induces apoptosis and sustained growth retardation in melanoma.

    PubMed

    Fleten, Karianne G; Flørenes, Vivi Ann; Prasmickaite, Lina; Hill, Oliver; Sykora, Jaromir; Mælandsmo, Gunhild M; Engesæter, Birgit

    2016-01-01

    In recent years, new treatment options for malignant melanoma patients have enhanced the overall survival for selected patients. Despite new hope, most melanoma patients still relapse with drug-resistant tumors or experience intrinsic resistance to the therapy. Therefore, novel treatment modalities beneficial for subgroups of patients are needed. TRAIL receptor agonists have been suggested as promising candidates for use in cancer treatment as they preferentially induce apoptosis in cancer cells. Unfortunately, the first generation of TRAIL receptor agonists showed poor clinical efficacy. hvTRA is a second-generation TRAIL receptor agonist with improved composition giving increased potency, and in the present study, we showed hvTRA-induced activation of apoptosis leading to an efficient and sustained reduction in melanoma cell growth in cell lines and xenograft models. Furthermore, the potential of hvTRA in a clinical setting was demonstrated by showing efficacy on tumor cells harvested from melanoma patients with lymph node metastasis in an ex vivo drug sensitivity assay. Inhibition of mutated BRAF has been shown to regulate proteins in the intrinsic apoptotic pathway, making the cells more susceptible for apoptosis induction. In an attempt to increase the efficacy of hvTRA, combination treatment with the mutated BRAF inhibitor vemurafenib was investigated. A synergistic effect by the combination was observed for several cell lines in vitro, and an initial cytotoxic effect was observed in vivo. Unfortunately, the initial increased reduction in tumor growth compared with hvTRA mono treatment was not sustained, and this was related to downregulation of the DR5 level by vemurafenib. Altogether, the presented data imply that hvTRA efficiently induce apoptosis and growth delay in melanoma models and patient material, and the potential of this TRAIL receptor agonist should be further evaluated for treatment of subgroups of melanoma patients.

  4. hvTRA, a novel TRAIL receptor agonist, induces apoptosis and sustained growth retardation in melanoma

    PubMed Central

    Fleten, Karianne G; Flørenes, Vivi Ann; Prasmickaite, Lina; Hill, Oliver; Sykora, Jaromir; Mælandsmo, Gunhild M; Engesæter, Birgit

    2016-01-01

    In recent years, new treatment options for malignant melanoma patients have enhanced the overall survival for selected patients. Despite new hope, most melanoma patients still relapse with drug-resistant tumors or experience intrinsic resistance to the therapy. Therefore, novel treatment modalities beneficial for subgroups of patients are needed. TRAIL receptor agonists have been suggested as promising candidates for use in cancer treatment as they preferentially induce apoptosis in cancer cells. Unfortunately, the first generation of TRAIL receptor agonists showed poor clinical efficacy. hvTRA is a second-generation TRAIL receptor agonist with improved composition giving increased potency, and in the present study, we showed hvTRA-induced activation of apoptosis leading to an efficient and sustained reduction in melanoma cell growth in cell lines and xenograft models. Furthermore, the potential of hvTRA in a clinical setting was demonstrated by showing efficacy on tumor cells harvested from melanoma patients with lymph node metastasis in an ex vivo drug sensitivity assay. Inhibition of mutated BRAF has been shown to regulate proteins in the intrinsic apoptotic pathway, making the cells more susceptible for apoptosis induction. In an attempt to increase the efficacy of hvTRA, combination treatment with the mutated BRAF inhibitor vemurafenib was investigated. A synergistic effect by the combination was observed for several cell lines in vitro, and an initial cytotoxic effect was observed in vivo. Unfortunately, the initial increased reduction in tumor growth compared with hvTRA mono treatment was not sustained, and this was related to downregulation of the DR5 level by vemurafenib. Altogether, the presented data imply that hvTRA efficiently induce apoptosis and growth delay in melanoma models and patient material, and the potential of this TRAIL receptor agonist should be further evaluated for treatment of subgroups of melanoma patients. PMID:28028438

  5. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    SciTech Connect

    Di Paolo, T.; Falardeau, P.

    1987-08-31

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p < 0.001). Competition for (/sup 3/H)-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-(..beta..-..gamma..-imino)triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables.

  6. Luteinizing hormone-releasing hormone agonists in premenopausal hormone receptor-positive breast cancer.

    PubMed

    Tan, Sing-Huang; Wolff, Antonio C

    2007-02-01

    Ovarian function suppression for the treatment of premenopausal breast cancer was first used in the late 19th century. Traditionally, ovarian function suppression had been accomplished irreversibly via irradiation or surgery, but analogues of the luteinizing hormone-releasing hormone (LH-RH) have emerged as reliable and reversible agents for this purpose, especially the LH-RH agonists. Luteinizing hormone-releasing hormone antagonists are in earlier stages of development in breast cancer and are not currently in clinical use. Luteinizing hormonereleasing hormone agonists act by pituitary desensitization and receptor downregulation, thereby suppressing gonadotrophin release. Limited information is available comparing the efficacies of the depot preparations of various agonists, but pharmacodynamic studies have shown comparable suppressive capabilities on estradiol and luteinizing hormone. At present, only monthly goserelin is Food and Drug Administration-approved for the treatment of estrogen receptor-positive, premenopausal metastatic breast cancer in the United States. Luteinizing hormone-releasing hormone agonists have proven to be as effective as surgical oophorectomy in premenopausal advanced breast cancer. They offer similar outcomes compared with tamoxifen, but the endocrine combination appears to be more effective than LH-RH agonists alone. In the adjuvant setting, LH-RH agonists versus no therapy reduce the annual odds of recurrence and death in women aged>50 years with estrogen receptor-positive tumors. Luteinizing hormone-releasing hormone agonists alone or in combination with tamoxifen have shown disease-free survival rates similar to chemotherapy with CMF (cyclophosphamide/methotrexate/5-fluorouracil). Outcomes of chemotherapy with or without LH-RH agonists are comparable, though a few trials favor the combination in young premenopausal women (aged<40 years). Adjuvant LH-RH agonists with or without tamoxifen might be as efficacious as tamoxifen alone

  7. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice

    PubMed Central

    Vang, Derek; Paul, Jinny A.; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T.; Gupta, Kalpna

    2015-01-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia. PMID:26294734

  8. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice.

    PubMed

    Vang, Derek; Paul, Jinny A; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T; Gupta, Kalpna

    2015-12-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia.

  9. Therapeutic Potential of 5-HT2C Receptor Agonists for Addictive Disorders.

    PubMed

    Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    The neurotransmitter 5-hydroxytryptamine (5-HT; serotonin) has long been associated with the control of a variety of motivated behaviors, including feeding. Much of the evidence linking 5-HT and feeding behavior was obtained from studies of the effects of the 5-HT releaser (dex)fenfluramine in laboratory animals and humans. Recently, the selective 5-HT2C receptor agonist lorcaserin received FDA approval for the treatment of obesity. This review examines evidence to support the use of selective 5-HT2C receptor agonists as treatments for conditions beyond obesity, including substance abuse (particularly nicotine, psychostimulant, and alcohol dependence), obsessive compulsive, and excessive gambling disorder. Following a brief survey of the early literature supporting a role for 5-HT in modulating food and drug reinforcement, we propose that intrinsic differences between SSRI and serotonin releasers may have underestimated the value of serotonin-based pharmacotherapeutics to treat clinical forms of addictive behavior beyond obesity. We then highlight the critical involvement of the 5-HT2C receptor in mediating the effect of (dex)fenfluramine on feeding and body weight gain and the evidence that 5-HT2C receptor agonists reduce measures of drug reward and impulsivity. A recent report of lorcaserin efficacy in a smoking cessation trial further strengthens the idea that 5-HT2C receptor agonists may have potential as a treatment for addiction. This review was prepared as a contribution to the proceedings of the 11th International Society for Serotonin Research Meeting held in Hermanus, South Africa, July 9-12, 2014.

  10. Therapeutic effects of melatonin receptor agonists on sleep and comorbid disorders.

    PubMed

    Laudon, Moshe; Frydman-Marom, Anat

    2014-09-09

    Several melatonin receptors agonists (ramelteon, prolonged-release melatonin, agomelatine and tasimelteon) have recently become available for the treatment of insomnia, depression and circadian rhythms sleep-wake disorders. The efficacy and safety profiles of these compounds in the treatment of the indicated disorders are reviewed. Accumulating evidence indicates that sleep-wake disorders and co-existing medical conditions are mutually exacerbating. This understanding has now been incorporated into the new Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). Therefore, when evaluating the risk/benefit ratio of sleep drugs, it is pertinent to also evaluate their effects on wake and comorbid condition. Beneficial effects of melatonin receptor agonists on comorbid neurological, psychiatric, cardiovascular and metabolic symptomatology beyond sleep regulation are also described. The review underlines the beneficial value of enhancing physiological sleep in comorbid conditions.

  11. Therapeutic Effects of Melatonin Receptor Agonists on Sleep and Comorbid Disorders

    PubMed Central

    Laudon, Moshe; Frydman-Marom, Anat

    2014-01-01

    Several melatonin receptors agonists (ramelteon, prolonged-release melatonin, agomelatine and tasimelteon) have recently become available for the treatment of insomnia, depression and circadian rhythms sleep-wake disorders. The efficacy and safety profiles of these compounds in the treatment of the indicated disorders are reviewed. Accumulating evidence indicates that sleep-wake disorders and co-existing medical conditions are mutually exacerbating. This understanding has now been incorporated into the new Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). Therefore, when evaluating the risk/benefit ratio of sleep drugs, it is pertinent to also evaluate their effects on wake and comorbid condition. Beneficial effects of melatonin receptor agonists on comorbid neurological, psychiatric, cardiovascular and metabolic symptomatology beyond sleep regulation are also described. The review underlines the beneficial value of enhancing physiological sleep in comorbid conditions. PMID:25207602

  12. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    SciTech Connect

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    1983-12-01

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate. Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.

  13. Metabolic mapping of A3 adenosine receptor agonist MRS5980

    PubMed Central

    Fang, Zhong-Ze; Tosh, Dilip K.; Tanaka, Naoki; Wang, Haina; Krausz, Kristopher W.; O'Connor, Robert; Jacobson, Kenneth A.; Gonzalez, Frank J.

    2015-01-01

    (1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason of drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment group in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation for feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the major involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and

  14. Metabolic mapping of A3 adenosine receptor agonist MRS5980.

    PubMed

    Fang, Zhong-Ze; Tosh, Dilip K; Tanaka, Naoki; Wang, Haina; Krausz, Kristopher W; O'Connor, Robert; Jacobson, Kenneth A; Gonzalez, Frank J

    2015-09-15

    (1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason for drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment groups in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation of feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and

  15. Modulation Effect of Peroxisome Proliferator-Activated Receptor Agonists on Lipid Droplet Proteins in Liver

    PubMed Central

    Zhu, Yun-Xia; Zhang, Ming-Liang; Zhong, Yuan; Wang, Chen; Jia, Wei-Ping

    2016-01-01

    Peroxisome proliferator-activated receptor (PPAR) agonists are used for treating hyperglycemia and type 2 diabetes. However, the mechanism of action of these agonists is still under investigation. The lipid droplet-associated proteins FSP27/CIDEC and LSDP5, regulated directly by PPARγ and PPARα, are associated with hepatic steatosis and insulin sensitivity. Here, we evaluated the expression levels of FSP27/CIDEC and LSDP5 and the regulation of these proteins by consumption of a high-fat diet (HFD) or administration of PPAR agonists. Mice with diet-induced obesity were treated with the PPARγ or PPARα agonist, pioglitazone or fenofibrate, respectively. Liver tissues from db/db diabetic mice and human were also collected. Interestingly, FSP27/CIEDC was expressed in mouse and human livers and was upregulated in obese C57BL/6J mice. Fenofibrate treatment decreased hepatic triglyceride (TG) content and FSP27/CIDEC protein expression in mice fed an HFD diet. In mice, LSDP5 was not detected, even in the context of insulin resistance or treatment with PPAR agonists. However, LSDP5 was highly expressed in humans, with elevated expression observed in the fatty liver. We concluded that fenofibrate greatly decreased hepatic TG content and FSP27/CIDEC protein expression in mice fed an HFD, suggesting a potential regulatory role for fenofibrate in the amelioration of hepatic steatosis. PMID:26770990

  16. A delayed and chronic treatment regimen with the 5-HT1A receptor agonist 8-OH-DPAT after cortical impact injury facilitates motor recovery and acquisition of spatial learning

    PubMed Central

    Cheng, Jeffrey P.; Hoffman, Ann N.; Zafonte, Ross D.; Kline, Anthony E.

    2008-01-01

    An early (i.e., 15 min) single systemic administration of the 5-HT1A receptor agonist 8-OH-DPAT enhances behavioral recovery after experimental traumatic brain injury (TBI). However, acute administration of pharmacotherapies after TBI may be clinically challenging and thus the present study sought to investigate the potential efficacy of a delayed and chronic 8-OH-DPAT treatment regimen. Forty-eight isoflurane-anesthetized adult male rats received either a controlled cortical impact or sham injury and beginning 24 hrs later were administered 8-OH-DPAT (0.1 or 0.5 mg/kg) or saline vehicle (1.0 mL/kg) intraperitoneally once daily until all behavioral assessments were completed. Neurobehavior was assessed by motor and cognitive tests on post-operative days 1–5 and 14–19, respectively. The lower dose of 8-OH-DPAT (0.1 mg/kg) enhanced motor performance, acquisition of spatial learning, and memory retention vs. both the higher dose (0.5 mg/kg) and vehicle treatment (p < 0.05). These data replicate previous findings from our laboratory showing that 8-OH-DPAT improves neurobehavior after TBI, and extend those results by demonstrating that the benefits can be achieved even when treatment is withheld for 24 hrs. A delayed and chronic treatment regimen may be more clinically feasible. PMID:18638506

  17. Central- and peripheral-type benzodiazepine receptors: similar regulation by stress and GABA receptor agonists.

    PubMed

    Rägo, L; Kiivet, R A; Harro, J; Pŏld, M

    1989-04-01

    Central- and peripheral-type benzodiazepine (BD) receptors were labelled either by 3H-flunitrazepam or 3H-Ro 5-4864 in vitro after stress and in vivo administration of GABAA and GABAB agonists. A significant increase in the density of cerebral cortex and kidney BD binding sites was observed in rats after forced swimming stress. Similar changes in both type of BD receptors were also followed when naive (stressed) and handling-habituated (unstressed) rats were used. Stress in both models was unable to change the affinity of BD receptors in cerebral cortex, but significantly lowered it in kidneys. Acute treatment of rats with muscimol (1.5 mg/kg) or (-)baclofen (5 mg/kg) resulted in marked increase in the affinity of BD binding not only in cerebral cortex but also in kidneys. After (-)baclofen treatment the number of BD binding sites was lowered in the structures studied. In a separate study mice selected according to their behavioral response to (-)baclofen (1 mg/kg) were studied. Two weeks after the selection it appeared that baclofen responders were behaviorally more "anxious" than baclofen nonresponders. The number of BD binding sites was reduced in cerebral cortex, cerebellum, heart and kidneys in baclofen responders as compared to baclofen nonresponders. In several cases the changes in peripheral BD binding sites were even more pronounced than those in central ones. The data presented here evidence that peripheral- and central-type BD receptors are regulated similarly by GABA and some models of stress. The physiological mechanisms involved in similar regulation of central- and peripheral-type BD receptors are yet unknown.

  18. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  19. Newspapers and newspaper ink contain agonists for the ah receptor.

    PubMed

    Bohonowych, Jessica E S; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T; Denison, Michael S

    2008-04-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [(3)H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed.

  20. Newspapers and Newspaper Ink Contain Agonists for the Ah Receptor

    PubMed Central

    Bohonowych, Jessica E. S.; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T.; Denison, Michael S.

    2010-01-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [3H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed. PMID:18203687

  1. β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis.

    PubMed

    Vijftigschild, Lodewijk A W; Berkers, Gitte; Dekkers, Johanna F; Zomer-van Ommen, Domenique D; Matthes, Elizabeth; Kruisselbrink, Evelien; Vonk, Annelotte; Hensen, Chantal E; Heida-Michel, Sabine; Geerdink, Margot; Janssens, Hettie M; van de Graaf, Eduard A; Bronsveld, Inez; de Winter-de Groot, Karin M; Majoor, Christof J; Heijerman, Harry G M; de Jonge, Hugo R; Hanrahan, John W; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-09-01

    We hypothesized that people with cystic fibrosis (CF) who express CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations associated with residual function may benefit from G-protein coupled receptor (GPCR)-targeting drugs that can activate and enhance CFTR function.We used intestinal organoids to screen a GPCR-modulating compound library and identified β2-adrenergic receptor agonists as the most potent inducers of CFTR function.β2-Agonist-induced organoid swelling correlated with the CFTR genotype, and could be induced in homozygous CFTR-F508del organoids and highly differentiated primary CF airway epithelial cells after rescue of CFTR trafficking by small molecules. The in vivo response to treatment with an oral or inhaled β2-agonist (salbutamol) in CF patients with residual CFTR function was evaluated in a pilot study. 10 subjects with a R117H or A455E mutation were included and showed changes in the nasal potential difference measurement after treatment with oral salbutamol, including a significant improvement of the baseline potential difference of the nasal mucosa (+6.35 mV, p<0.05), suggesting that this treatment might be effective in vivo Furthermore, plasma that was collected after oral salbutamol treatment induced CFTR activation when administered ex vivo to organoids.This proof-of-concept study suggests that organoids can be used to identify drugs that activate CFTR function in vivo and to select route of administration.

  2. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist.

    PubMed

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-08-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.

  3. Short-term desensitization of muscarinic cholinergic receptors in mouse neuroblastoma cells: selective loss of agonist low-affinity and pirenzepine high-affinity binding sites

    SciTech Connect

    Cioffi, C.L.; el-Fakahany, E.E.

    1986-09-01

    The effects of brief incubation with carbamylcholine on subsequent binding of (/sup 3/H)N-methylscopolamine were investigated in mouse neuroblastoma cells (clone N1E-115). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one which is readily susceptible to regulation by receptor agonists, whereas the other is resistant in this regard. In control cells, both pirenzepine and carbamylcholine interacted with high- and low-affinity subsets of muscarinic receptors. Computer-assisted analysis of the competition between pirenzepine and carbamylcholine with (/sup 3/H)N-methylscopolamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine low-affinity and agonist high-affinity binding sites. Furthermore, there was an excellent correlation between the ability of various muscarinic receptor agonists to induce a decrease in consequent (/sup 3/H)N-methylscopolamine binding and their efficacy in stimulating cyclic GMP synthesis in these cells. Thus, only the agonists that are known to recognize the receptor's low-affinity conformation in order to elicit increases in cyclic GMP levels were capable of diminishing ligand binding. Taken together, our present results suggest that the receptor population that is sensitive to regulation by agonists includes both the pirenzepine high-affinity and the agonist low-affinity receptor binding states. In addition, the sensitivity of these receptor subsets to rapid regulation by agonists further implicates their involvement in desensitization of muscarinic receptor-mediated cyclic GMP formation.

  4. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent

    PubMed Central

    Oh, Eun Ju; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Kim, Su Yeon; Chang, Sung Eun; Hwang, Jae Sung

    2016-01-01

    BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B) agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2) and microphthalmia-associated transcription factor (MITF) in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA) and cAMP response element-binding protein (CREB) activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders. PMID:27077852

  5. Therapeutic applications of TRAIL receptor agonists in cancer and beyond

    PubMed Central

    Amarante-Mendes, Gustavo P.; Griffith, Thomas S.

    2016-01-01

    TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings — ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future. PMID:26343199

  6. Agonist photoaffinity label for the. beta. -adrenergic receptor

    SciTech Connect

    Resek, J.F.; Ruoho, A.E.

    1987-05-01

    An iodinated photosensitive derivative of norepinephrine, N-(p-azido-m-iodophenethylamidoisobutyryl)norepinephrine (NAIN), has been synthesized and characterized. Carrier-free radioiodinated NAIN ((/sup 125/I)-NAIN) was used at 1-2 x 10/sup -9/ M to photoaffinity label the ..beta..-adrenergic receptor in guinea pig lung membranes. SDS-PAGE analysis of (-)-alprenolol (10/sup -5/M) protectable (/sup 125/I)-NAIN labeling showed the same molecular weight polypeptide (65 kDa) that was specifically derivatized with the antagonist photolabel, (/sup 125/I)-IABP. Specific labeling of the ..beta..-adrenergic receptor with (/sup 125/I)-NAIN was dependent on the presence of MgCl/sub 2/ and the absence of guanyl nucleotide. GTP..gamma..S (10/sup -4/ M) abolished specific receptor labeling by (/sup 125/I)-NAIN. N-ethylmaleimide (2 mm) in the presence of (/sup 125/I)-NAIN protected against the guanyl nucleotide effect. These data are consistent with photolabeling by (/sup 125/I)-NAIN while the agonist, receptor, and GTP binding protein are in a high affinity complex.

  7. Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor.

    PubMed

    Taylor, Lewis; Christou, Ivy; Kapellos, Theodore S; Buchan, Alice; Brodermann, Maximillian H; Gianella-Borradori, Matteo; Russell, Angela; Iqbal, Asif J; Greaves, David R

    2015-06-02

    Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2(-/-) macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field.

  8. Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor

    PubMed Central

    Taylor, Lewis; Christou, Ivy; Kapellos, Theodore S.; Buchan, Alice; Brodermann, Maximillian H.; Gianella-Borradori, Matteo; Russell, Angela; Iqbal, Asif J.; Greaves, David R.

    2015-01-01

    Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2-/- macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field. PMID:26033291

  9. Novel selective glucocorticoid receptor agonists (SEGRAs) with a covalent warhead for long-lasting inhibition.

    PubMed

    Ryabtsova, Oksana; Joossens, Jurgen; Van Der Veken, Pieter; Vanden Berghe, Wim; Augustyns, Koen; De Winter, Hans

    2016-10-15

    The synthesis and in vitro properties of six analogues of the selective glucocorticoid receptor (GR) agonist GSK866, bearing a warhead for covalent linkage to the glucocorticoid receptor, is described.

  10. Effects of 5-HT4 receptor agonists and antagonists in learning.

    PubMed

    Meneses, A; Hong, E

    1997-03-01

    In the present work, the effects of pre- or post-training (ip) injection of BIMU1 and BIMU8 (5-HT4 agonists) were figured out in the autoshaping learning task. Furthermore, the post-training effects of these agonists after treatment with SDZ 205-557 and GR 125487D (5-HT4 antagonists) or p-Chloroamphetamine (PCA) were also explored. Animals were individually trained in a lever-press response on the autoshaping task and 24 hours later were tested. The results showed that pre-training injection of BIMU1 (5 20 mg/Kg) or BIMU8 (20 mg/Kg) increased the CR; in contrast, the post-training administration of BIMU1 (10-20 mg/Kg) or BIMU8 (5 and 20 mg/Kg) decreased it. Further experiments revealed that the post-training injections of SDZ 205-557 (1.0-10.0 mg/Kg) or GR 125487D (0.39-1.56 mg/Kg) by themselves did not alter the CR. When BIMU1 or BIMU8 was administered to rats pretreated with SDZ 205-557 (10 mg/Kg) or GR 125487D (0.78 mg/Kg), the decrement induced by 5-HT4 the agonists was reversed; in contrast, the administration of PCA failed to modify the CR or the agonist-induced responses. The findings showed that the pre-training stimulation of 5-HT4 receptors enhanced the acquisition of CR, while, post-training activation of 5-HT4 receptors, impaired the consolidation of learning. The latter effect was not altered by PCA pretreatment. The data show that 5-HT4 receptors are involved in the acquisition and consolidation of learning. It seems that postsynaptic 5-HT4 receptors are involved in the latter effect.

  11. CPG-7909 (PF-3512676, ProMune): toll-like receptor-9 agonist in cancer therapy.

    PubMed

    Murad, Yanal M; Clay, Timothy M; Lyerly, H Kim; Morse, Michael A

    2007-08-01

    Stimulation of toll-like receptor (TLR)9 activates human plasmacytoid dendritic cells and B cells, and induces potent innate immune responses in preclinical tumor models and in patients. CpG oligodeoxynucleotides (ODNs) are TLR9 agonists that show promising results as vaccine adjuvants and in the treatment of cancers, infections, asthma and allergy. PF-3512676 (ProMune) was developed as a TLR9 agonist for the treatment of cancer as monotherapy and as an adjuvant in combination with chemo- and immunotherapy. Phase I and II trials have tested this drug in several hematopoietic and solid tumors. Pfizer has initiated Phase III trials to test PF-3512676 in combination with standard chemotherapy for non-small-cell lung cancer.

  12. Biased signaling by peptide agonists of protease activated receptor 2.

    PubMed

    Jiang, Yuhong; Yau, Mei-Kwan; Kok, W Mei; Lim, Junxian; Wu, Kai-Chen; Liu, Ligong; Hill, Timothy A; Suen, Jacky Y; Fairlie, David P

    2017-02-07

    Protease activated receptor 2 (PAR2) is associated with metabolism, obesity, inflammatory, respiratory and gastrointestinal disorders, pain, cancer and other diseases. The extracellular N-terminus of PAR2 is a common target for multiple proteases, which cleave it at different sites to generate different N-termini that activate different PAR2-mediated intracellular signaling pathways. There are no synthetic PAR2 ligands that reproduce the same signaling profiles and potencies as proteases. Structure-activity relationships here for 26 compounds spanned a signaling bias over 3 log units, culminating in three small ligands as biased agonist tools for interrogating PAR2 functions. DF253 (2f-LAAAAI-NH2) triggered PAR2-mediated calcium release (EC50 2 μM) but not ERK1/2 phosphorylation (EC50 > 100 μM) in CHO cells transfected with hPAR2. AY77 (Isox-Cha-Chg-NH2) was a more potent calcium-biased agonist (EC50 40 nM, Ca2+; EC50 2 μM, ERK1/2), while its analogue AY254 (Isox-Cha-Chg-A-R-NH2) was an ERK-biased agonist (EC50 2 nM, ERK1/2; EC50 80 nM, Ca2+). Signaling bias led to different functional responses in human colorectal carcinoma cells (HT29). AY254, but not AY77 or DF253, attenuated cytokine-induced caspase 3/8 activation, promoted scratch-wound healing and induced IL-8 secretion, all via PAR2-ERK1/2 signaling. Different ligand components were responsible for different PAR2 signaling and functions, clues that can potentially lead to drugs that modulate different pathway-selective cellular and physiological responses.

  13. Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. II. Chronic effects of ethanol

    SciTech Connect

    Buck, K.J.; Harris, R.A. )

    1990-05-01

    Mice were made tolerant to and dependent on ethanol by administration of a liquid diet. Gamma-aminobutyric acid (GABA) receptor-dependent uptake of 36Cl- by mouse cortical microsacs was used to study the actions of benzodiazepine (BZ) agonists and inverse agonists. Chronic exposure to ethanol attenuated the ability of a BZ agonist, flunitrazepam, to augment muscimol-stimulated uptake of 36Cl- and enhanced the actions of BZ inverse agonists, Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo(1,4)-benzodiazepine - 3-carboxylate) and DMCM (methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate), to inhibit GABAA receptor-operated chloride channels. Augmentation of chloride flux by pentobarbital was not reduced by chronic ethanol exposure. Attenuation of flunitrazepam efficacy was transient and returned to control levels within 6 to 24 hr after withdrawal from ethanol, but increased sensitivity to Ro15-4513 was observed as long as 8 days after withdrawal. Chronic exposure to ethanol did not alter (3H)SR 95531 (2-(3'-carbethoxy-2'propyl)-3-amino-6-p-methoxyphenylpyridazinium bromide) binding to low-affinity GABAA receptors or muscimol stimulation of chloride flux; and did not alter (3H)Ro15-4513 or (3H)flunitrazepam binding to central BZ receptors or allosteric modulation of this binding by muscimol (i.e., muscimol-shift). These results suggest that chronic exposure to ethanol reduces coupling between BZ agonist sites and the chloride channel, and may be responsible for the development of cross-tolerance between ethanol and BZ agonists. In contrast, coupling between BZ inverse agonist sites and the chloride channel is increased.

  14. Trial Watch: Toll-like receptor agonists in oncological indications.

    PubMed

    Aranda, Fernando; Vacchelli, Erika; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Henrik Ter Meulen, Jan; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.

  15. Agonistic behavior in males and females: effects of an estrogen receptor beta agonist in gonadectomized and gonadally intact mice

    PubMed Central

    Allen, Amy E. Clipperton; Cragg, Cheryl L.; Wood, Alexis J.; Pfaff, Donald W.; Choleris, Elena

    2010-01-01

    Summary Affiliative and agonistic social interactions are mediated by gonadal hormones. Research with estrogen receptor alpha (ERα) or beta (ERβ) knockout (KO) mice show that long-term inactivation of ERα decreases, while inactivation of ERβ increases, male aggression. Opposite effects were found in female αERKO and βERKO mice. The role of acute activation of ERα or ERβ in the agonistic responses of adult non-KO mice is unknown. We report here the effects of the ERβ selective agonist WAY-200070 on agonistic and social behavior in gonadally intact and gonadectomized (gonadex) male and female CD-1 mice towards a gonadex, same-sex intruder. All 15 min resident-intruder tests were videotaped for comprehensive behavioral analysis. Separate analyses assessed: 1) effects of WAY-200070 on each sex and gonadal condition; 2) differences between sexes, and between gonadally intact and gonadex mice, in untreated animals. Results show that in gonadally intact male and female mice WAY-200070 increased agonistic behaviors such as pushing down and aggressive grooming, while leaving attacks unaffected. In untreated mice, males attacked more than females, and gonadex animals showed less agonistic behavior than same-sex, gonadally intact mice. Overall, our detailed behavioral analysis suggested that in gonadally intact male and female mice, ERβ mediates patterns of agonistic behavior that are not directly involved in attacks. This suggests that specific aspects of aggressive behavior are acutely mediated by ERβ in adult mice. Our results also showed that, in resident-intruder tests, female mice spend as much time in intrasexual agonistic interactions as males, but use agonistic behaviors that involve extremely low levels of direct attacks. This non-attack aggression in females is increased by acute activation of ERβ. Thus, acute activation of ERβ similarly mediates agonistic behavior in adult male and female CD-1 mice. PMID:20129736

  16. Use of microdoses for induction of buprenorphine treatment with overlapping full opioid agonist use: the Bernese method

    PubMed Central

    Hämmig, Robert; Kemter, Antje; Strasser, Johannes; von Bardeleben, Ulrich; Gugger, Barbara; Walter, Marc; Dürsteler, Kenneth M; Vogel, Marc

    2016-01-01

    Background Buprenorphine is a partial µ-opioid receptor agonist used for maintenance treatment of opioid dependence. Because of the partial agonism and high receptor affinity, it may precipitate withdrawal symptoms during induction in persons on full µ-opioid receptor agonists. Therefore, current guidelines and drug labels recommend leaving a sufficient time period since the last full agonist use, waiting for clear and objective withdrawal symptoms, and reducing pre-existing full agonist therapies before administering buprenorphine. However, even with these precautions, for many patients the induction of buprenorphine is a difficult experience, due to withdrawal symptoms. Furthermore, tapering of the full agonist bears the risk of relapse to illicit opioid use. Cases We present two cases of successful initiation of buprenorphine treatment with the Bernese method, ie, gradual induction overlapping with full agonist use. The first patient began buprenorphine with overlapping street heroin use after repeatedly experiencing relapse, withdrawal, and trauma reactivation symptoms during conventional induction. The second patient was maintained on high doses of diacetylmorphine (ie, pharmaceutical heroin) and methadone during induction. Both patients tolerated the induction procedure well and reported only mild withdrawal symptoms. Discussion Overlapping induction of buprenorphine maintenance treatment with full µ-opioid receptor agonist use is feasible and may be associated with better tolerability and acceptability in some patients compared to the conventional method of induction. PMID:27499655

  17. PPAR Agonists for the Prevention and Treatment of Lung Cancer

    PubMed Central

    Banno, Asoka

    2017-01-01

    Lung cancer is the most common and most fatal of all malignancies worldwide. Furthermore, with more than half of all lung cancer patients presenting with distant metastases at the time of initial diagnosis, the overall prognosis for the disease is poor. There is thus a desperate need for new prevention and treatment strategies. Recently, a family of nuclear hormone receptors, the peroxisome proliferator-activated receptors (PPARs), has attracted significant attention for its role in various malignancies including lung cancer. Three PPARs, PPARα, PPARβ/δ, and PPARγ, display distinct biological activities and varied influences on lung cancer biology. PPARα activation generally inhibits tumorigenesis through its antiangiogenic and anti-inflammatory effects. Activated PPARγ is also antitumorigenic and antimetastatic, regulating several functions of cancer cells and controlling the tumor microenvironment. Unlike PPARα and PPARγ, whether PPARβ/δ activation is anti- or protumorigenic or even inconsequential currently remains an open question that requires additional investigation. This review of current literature emphasizes the multifaceted effects of PPAR agonists in lung cancer and discusses how they may be applied as novel therapeutic strategies for the disease. PMID:28316613

  18. Differential role of protein kinase C in desensitization of muscarinic receptor induced by phorbol esters and receptor agonists

    SciTech Connect

    Lai, Wi Sheung.

    1989-01-01

    PKC, a phorbol ester receptor, copurified with specific binding sites of ({sup 3}H)phorbol-12,13,-dibutyrate (({sup 3}H)PDBu). The specific binding of ({sup 3}H)PDBu to intact cells was saturable to a single class of binding sites. The PKC and phorbol ester receptors in N1E-115 cells can be down regulated by prolonged phorbol ester incubation. Phorbol 12-myristate 13-acetate (PMA) suppressed muscarinic receptor-mediated cyclic GMP response in a time-dependent and a concentration-dependent fashion and the suppressive effect of PMA could be attenuated by a protein kinase inhibitor, H-7, as well as by down-regulation of the PKC through long-term incubation with PDBu. Exposure of the cells to the muscarinic agonist carbamylcholine also desensitized subsequent CBC-mediated cyclic GMP response. However, pretreatment with carbamylcholine did not desensitize histamine-induced cyclic GMP formation while treatment with PMA suppressed this histamine-mediated response. Preincubation of the cells with CBC, but not with phorbol ester, resulted in down-regulation of muscarinic receptors. The loss of muscarinic receptors induced by agonist even occurred when the phosphoinositide hydrolysis response was suppressed.

  19. Uterine fibroid shrinkage after short-term use of selective progesterone receptor modulator or gonadotropin-releasing hormone agonist

    PubMed Central

    Lee, Min Jin; Seong, Seok Ju; Kim, Mi-La; Jung, Yong Wook; Kim, Mi Kyoung; Bae, Hyo Sook; Kim, Da Hee; Hwang, Ji Young

    2017-01-01

    Objective The aim of this study was to evaluate the effect of short-term use of selective progesterone receptor modulator (SPRM) or gonadotropin-releasing hormone (GnRH) agonist on uterine fibroid shrinkage among Korean women. Methods This retrospective study involved 101 women with symptomatic uterine fibroids who received ulipristal acetate (SPRM, n=51) and leuprolide acetate (GnRH agonist, n=50) for 3 months between November 2013 and February 2015. The fibroid volume was measured both before and after treatment using ultrasonography, computed tomography, and magnetic resonance imaging. The outcomes were compared between the SPRM and GnRH agonist groups. Results The median rate of fibroid volume reduction after SPRM treatment was 12.4% (IQR −14.5% to 40.5%) which was significantly lower than the reduction rate observed after GnRH agonist treatment (median 34.9%, IQR 14.7% to 48.6%, P=0.004). 19 of 51 (37.3%) patients with SPRM treatment did not show any response of volume shrinkage, while 7 of 50 (14.0%) women with GnRH agonist showed no response (P=0.007). Conclusion Short-term SPRM treatment yields lower volume reduction than GnRH agonist treatment in Korean women with symptomatic fibroids. Further large-scale randomized trials are needed to confirm our findings. PMID:28217674

  20. Crystal Structures of the Nuclear Receptor, Liver Receptor Homolog 1, Bound to Synthetic Agonists.

    PubMed

    Mays, Suzanne G; Okafor, C Denise; Whitby, Richard J; Goswami, Devrishi; Stec, Józef; Flynn, Autumn R; Dugan, Michael C; Jui, Nathan T; Griffin, Patrick R; Ortlund, Eric A

    2016-12-02

    Liver receptor homolog 1 (NR5A2, LRH-1) is an orphan nuclear hormone receptor that regulates diverse biological processes, including metabolism, proliferation, and the resolution of endoplasmic reticulum stress. Although preclinical and cellular studies demonstrate that LRH-1 has great potential as a therapeutic target for metabolic diseases and cancer, development of LRH-1 modulators has been difficult. Recently, systematic modifications to one of the few known chemical scaffolds capable of activating LRH-1 failed to improve efficacy substantially. Moreover, mechanisms through which LRH-1 is activated by synthetic ligands are entirely unknown. Here, we use x-ray crystallography and other structural methods to explore conformational changes and receptor-ligand interactions associated with LRH-1 activation by a set of related agonists. Unlike phospholipid LRH-1 ligands, these agonists bind deep in the pocket and do not interact with residues near the mouth nor do they expand the pocket like phospholipids. Unexpectedly, two closely related agonists with similar efficacies (GSK8470 and RJW100) exhibit completely different binding modes. The dramatic repositioning is influenced by a differential ability to establish stable face-to-face π-π-stacking with the LRH-1 residue His-390, as well as by a novel polar interaction mediated by the RJW100 hydroxyl group. The differing binding modes result in distinct mechanisms of action for the two agonists. Finally, we identify a network of conserved water molecules near the ligand-binding site that are important for activation by both agonists. This work reveals a previously unappreciated complexity associated with LRH-1 agonist development and offers insights into rational design strategies.

  1. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    SciTech Connect

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment

  2. Inhibitory effects of peroxisome proliferator-activated receptor γ agonists on collagen IV production in podocytes.

    PubMed

    Li, Yanjiao; Shen, Yachen; Li, Min; Su, Dongming; Xu, Weifeng; Liang, Xiubin; Li, Rongshan

    2015-07-01

    Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists have beneficial effects on the kidney diseases through preventing microalbuminuria and glomerulosclerosis. However, the mechanisms underlying these effects remain to be fully understood. In this study, we investigate the effects of PPAR-γ agonist, rosiglitazone (Rosi) and pioglitazone (Pio), on collagen IV production in mouse podocytes. The endogenous expression of PPAR-γ was found in the primary podocytes and can be upregulated by Rosi and Pio, respectively, detected by RT-PCR and Western blot. PPAR-γ agonist markedly blunted the increasing of collagen IV expression and extraction in podocytes induced by TGF-β. In contrast, adding PPAR-γ antagonist, GW9662, to podocytes largely prevented the inhibition of collagen IV expression from Pio treatment. Our data also showed that phosphorylation of Smad2/3 enhanced by TGF-β in a time-dependent manner was significantly attenuated by adding Pio. The promoter region of collagen IV gene contains one putative consensus sequence of Smad-binding element (SBE) by promoter analysis, Rosi and Pio significantly ameliorated TGF-β-induced SBE4-luciferase activity. In conclusion, PPAR-γ activation by its agonist, Rosi or Pio, in vitro directly inhibits collagen IV expression and synthesis in primary mouse podocytes. The suppression of collagen IV production was related to the inhibition of TGF-β-driven phosphorylation of Smad2/3 and decreased response activity of SBEs of collagen IV in PPAR-γ agonist-treated mouse podocytes. This represents a novel mechanistic support regarding PPAR-γ agonists as podocyte protective agents.

  3. Recent advances in the development of farnesoid X receptor agonists

    PubMed Central

    Carey, Elizabeth J.; Lindor, Keith D.

    2015-01-01

    Farnesoid X receptors (FXRs) are nuclear hormone receptors expressed in high amounts in body tissues that participate in bilirubin metabolism including the liver, intestines, and kidneys. Bile acids (BAs) are the natural ligands of the FXRs. FXRs regulate the expression of the gene encoding for cholesterol 7 alpha-hydroxylase, which is the rate-limiting enzyme in BA synthesis. In addition, FXRs play a critical role in carbohydrate and lipid metabolism and regulation of insulin sensitivity. FXRs also modulate live growth and regeneration during liver injury. Preclinical studies have shown that FXR activation protects against cholestasis-induced liver injury. Moreover, FXR activation protects against fatty liver injury in animal models of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), and improved hyperlipidemia, glucose intolerance, and insulin sensitivity. Obeticholic acid (OCA), a 6α-ethyl derivative of the natural human BA chenodeoxycholic acid (CDCA) is the first-in-class selective FXR agonist that is ~100-fold more potent than CDCA. Preliminary human clinical trials have shown that OCA is safe and effective. In a phase II clinical trial, administration of OCA was well-tolerated, increased insulin sensitivity and reduced markers of liver inflammation and fibrosis in patients with type II diabetes mellitus and NAFLD. In two clinical trials of OCA in patients with primary biliary cirrhosis (PBC), a progressive cholestatic liver disease, OCA significantly reduced serum alkaline phosphatase (ALP) levels, an important disease marker that correlates well with clinical outcomes of patients with PBC. Together, these studies suggest that FXR agonists could potentially be used as therapeutic tools in patients suffering from nonalcoholic fatty and cholestatic liver diseases. Larger and Longer-term studies are currently ongoing. PMID:25705637

  4. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer's disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer's disease carrying different clinical APP/PS1 mutations, i.e. the 'London' (hAPPLon/PS1A246E) and 'Swedish' mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD.

  5. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer’s Disease

    PubMed Central

    Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer’s disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer’s disease carrying different clinical APP/PS1 mutations, i.e. the ‘London’ (hAPPLon/PS1A246E) and ‘Swedish’ mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD. PMID:27421117

  6. Combining a GLP-1 receptor agonist and basal insulin: study evidence and practical considerations.

    PubMed

    Carris, Nicholas W; Taylor, James R; Gums, John G

    2014-12-01

    Most patients with diabetes mellitus require multiple medications to achieve glycemic goals. Considering this and the increasing incidence of type 2 diabetes worldwide, the need for effective combination therapy is pressing. Basal insulin and glucagon-like peptide 1 (GLP-1) receptor agonists are frequently used to treat type 2 diabetes. Though both classes of medication are exclusively injectable, which may cause initial hesitation from providers, evidence for their combined use is substantial. This review summarizes the theoretical benefit, supporting evidence, and implementation of a combined basal insulin-GLP-1 receptor agonist regimen. Basal insulin added to a GLP-1 receptor agonist reduces hemoglobin A1c (HbA1c) without weight gain or significantly increased hypoglycemia. A GLP-1 receptor agonist added to basal insulin reduces HbA1c and body weight. Compared with the addition of meal-time insulin to basal insulin, a GLP-1 receptor agonist produces similar or greater reduction in HbA1c, weight loss instead of weight gain, and less hypoglycemia. Gastrointestinal adverse events are common with GLP-1 receptor agonists, especially during initiation and titration. However, combination with basal insulin is not expected to augment expected adverse events that come with using a GLP-1 receptor agonist. Basal insulin can be added to a GLP-1 receptor agonist with a slow titration to target goal fasting plasma glucose. In patients starting a GLP-1 receptor agonist, the dose of basal insulin should be decreased by 20 % in patients with an HbA1c ≤8 %. The evidence from 15 randomized prospective studies supports the combined use of a GLP-1 receptor agonist with basal insulin in a broad range of patients with uncontrolled type 2 diabetes.

  7. The dopamine D1 receptor agonist SKF-82958 effectively increases eye blinking count in common marmosets.

    PubMed

    Kotani, Manato; Kiyoshi, Akihiko; Murai, Takeshi; Nakako, Tomokazu; Matsumoto, Kenji; Matsumoto, Atsushi; Ikejiri, Masaru; Ogi, Yuji; Ikeda, Kazuhito

    2016-03-01

    Eye blinking is a spontaneous behavior observed in all mammals, and has been used as a well-established clinical indicator for dopamine production in neuropsychiatric disorders, including Parkinson's disease and Tourette syndrome [1,2]. Pharmacological studies in humans and non-human primates have shown that dopamine agonists/antagonists increase/decrease eye blinking rate. Common marmosets (Callithrix jacchus) have recently attracted a great deal of attention as suitable experimental animals in the psychoneurological field due to their more developed prefrontal cortex than rodents, easy handling compare to other non-human primates, and requirement for small amounts of test drugs. In this study, we evaluated the effects of dopamine D1-4 receptors agonists on eye blinking in common marmosets. Our results show that the dopamine D1 receptor agonist SKF-82958 and the non-selective dopamine receptor agonist apomorphine significantly increased common marmosets eye blinking count, whereas the dopamine D2 agonist (+)-PHNO and the dopamine D3 receptor agonist (+)-PD-128907 produced somnolence in common marmosets resulting in a decrease in eye blinking count. The dopamine D4 receptor agonists PD-168077 and A-41297 had no effect on common marmosets' eye blinking count. Finally, the dopamine D1 receptor antagonist SCH 39166 completely blocked apomorphine-induced increase in eye blinking count. These results indicate that eye blinking in common marmosets may be a useful tool for in vivo screening of novel dopamine D1 receptor agonists as antipsychotics.

  8. A novel treatment of global cerebral ischaemia with a glycine partial agonist.

    PubMed

    Von Lubitz, D K; Lin, R C; McKenzie, R J; Devlin, T M; McCabe, R T; Skolnick, P

    1992-08-14

    Chronic treatment of gerbils with 1-aminocyclopropanecarboxylic acid (a high affinity, partial agonist at strychnine-insensitive glycine receptors) resulted in a 3-fold increase in survival, a significant improvement in neurological status, and an extensive protection of vulnerable brain regions following severe forebrain ischaemia. A bolus of 1-aminocyclopropanecarboxylic acid 30 min prior to ischaemia did not further improve outcome compared to gerbils receiving their last injection 24 h prior to ischaemia. These findings are consistent with the hypothesis that chronic treatment with a glycine partial agonist desensitizes the N-methyl-D-aspartate receptor complex. Pharmacological intervention at the strychnine-insensitive glycine receptor may be an effective means of ameliorating the consequences of neuronal degeneration caused by excitotoxic phenomena.

  9. Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time

    PubMed Central

    Guo, Dong; Mulder-Krieger, Thea; IJzerman, Adriaan P; Heitman, Laura H

    2012-01-01

    BACKGROUND AND PURPOSE The adenosine A2A receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A2A receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A2A receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A2A receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A2A receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A2A receptor ligands at their receptor. A correlation was observed between the receptor residence time of A2A receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A2A receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A2A receptor lies within their different residence times at this receptor. PMID:22324512

  10. Platelet-activating factor receptor agonists mediate xeroderma pigmentosum A photosensitivity.

    PubMed

    Yao, Yongxue; Harrison, Kathleen A; Al-Hassani, Mohammed; Murphy, Robert C; Rezania, Samin; Konger, Raymond L; Travers, Jeffrey B

    2012-03-16

    To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa-/-) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-α production in Xpa-/- mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity.

  11. Collybolide is a novel biased agonist of κ-opioid receptors with potent antipruritic activity

    PubMed Central

    Gupta, Achla; Gomes, Ivone; Bobeck, Erin N.; Fakira, Amanda K.; Massaro, Nicholas P.; Sharma, Indrajeet; Cavé, Adrien; Hamm, Heidi E.; Parello, Joseph

    2016-01-01

    Among the opioid receptors, the κ-opioid receptor (κOR) has been gaining considerable attention as a potential therapeutic target for the treatment of complex CNS disorders including depression, visceral pain, and cocaine addiction. With an interest in discovering novel ligands targeting κOR, we searched natural products for unusual scaffolds and identified collybolide (Colly), a nonnitrogenous sesquiterpene from the mushroom Collybia maculata. This compound has a furyl-δ-lactone core similar to that of Salvinorin A (Sal A), another natural product from the plant Salvia divinorum. Characterization of the molecular pharmacological properties reveals that Colly, like Sal A, is a highly potent and selective κOR agonist. However, the two compounds differ in certain signaling and behavioral properties. Colly exhibits 10- to 50-fold higher potency in activating the mitogen-activated protein kinase pathway compared with Sal A. Taken with the fact that the two compounds are equipotent for inhibiting adenylyl cyclase activity, these results suggest that Colly behaves as a biased agonist of κOR. Behavioral studies also support the biased agonistic activity of Colly in that it exhibits ∼10-fold higher potency in blocking non–histamine-mediated itch compared with Sal A, and this difference is not seen in pain attenuation by these two compounds. These results represent a rare example of functional selectivity by two natural products that act on the same receptor. The biased agonistic activity, along with an easily modifiable structure compared with Sal A, makes Colly an ideal candidate for the development of novel therapeutics targeting κOR with reduced side effects. PMID:27162327

  12. Identification of a Novel Non-retinoid Pan Inverse Agonist of the Retinoic Acid Receptors

    PubMed Central

    Busby, Scott A.; Kumar, Naresh; Kuruvilla, Dana S.; Istrate, Monica A.; Conkright, Juliana J.; Wang, Yongjun; Kamenecka, Theodore M.; Cameron, Michael D.; Roush, William R.; Burris, Thomas P.; Griffin, Patrick R.

    2011-01-01

    Retinoids are potent forms of vitamin A and are involved in a broad range of physiological processes and the pharmacological effects of retinoids are primarily mediated by the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Several natural and synthetic RAR modulators have proven to be clinically useful for a number of therapeutic indications including cancer, psoriasis, and diabetes. Unfortunately, these agents lead to a number of significant side effects. Most synthetic retinoid ligands are based on the retinoid scaffold and thus have similarities to the natural ligand with all previously disclosed RAR ligands having a carboxylic acid that makes a critical ionic bridge within the ligand binding domain of the receptors. The potential therapeutic value offered from RAR modulation provides the impetus to identify novel ligands based on unique scaffolds that may offer improved toxicity and pharmacokinetic profiles. Here we describe the identification of an atypical RAR inverse agonist that represents the first non-acid, non-retinoid direct modulator of RAR receptor subfamily. SR-0065 functions as a pan-RAR inverse agonist suppressing the basal activity of RARα, RARβ, and RARγ as well as inhibiting agonist induced RAR activity. SR-0065 treatment enhanced receptor interaction with a peptide representative of the corepressor SMRT and in cells SR-0065 enhances recruitment of SMRT to RARγ. The acid form of SR-0065, SR-1758, was inactive in all assays. Thus, SR-0065 represents a new class of non-acid, non-retinoid RAR modulator that may be used as a point to initiate development of improved RAR-targeted drugs. PMID:21381756

  13. Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases.

    PubMed

    Wallukat, Gerd; Schimke, Ingolf

    2014-05-01

    Agonistic autoantibodies (AABs) against G-protein-coupled receptor (GPCR) are present mainly in diseases of the cardiovascular system or in diseases associated with cardiovascular disturbances. The increasing knowledge about the role of autoantibodies against G-protein-coupled receptor (GPCR-AABs) as pathogenic drivers, the resulting development of strategies aimed at their removal or neutralization, and the evidenced patient benefit associated with such therapies have created the need for a summary of GPCR-AAB-associated diseases. Here, we summarize the present knowledge about GPCR-AABs in cardiovascular diseases. The identity of the GPCR-AABs and their prevalence in each of several specific cardiovascular diseases are documented. The structure of GPCR is also briefly discussed. Using this information, differences between classic agonists and GPCR-AABs in their GPCR binding and activation are presented and the resulting pathogenic consequences are discussed. Furthermore, treatment strategies that are currently under study, most of which are aimed at the removal and in vivo neutralization of GPCR-AABs, are indicated and their patient benefits discussed. In this context, immunoadsorption using peptides/proteins or aptamers as binders are introduced. The use of peptides or aptamers for in vivo neutralization of GPCR-AABs is also described. Particular attention is given to the GPCR-AABs directed against the adrenergic beta1-, beta2-, and α1-receptor as well as the muscarinic receptor M2, angiotensin II-angiotensin receptor type I, endothelin1 receptor type A, angiotensin (1-7) Mas-receptor, and 5-hydroxytryptamine receptor 4. Among the diseases associated with GPCR-AABs, special focus is given to idiopathic dilated cardiomyopathy, Chagas' cardiomyopathy, malignant and pulmonary hypertension, and kidney diseases. Relationships of GPCR-AABs are indicated to glaucoma, peripartum cardiomyopathy, myocarditis, pericarditis, preeclampsia, Alzheimer's disease, Sj

  14. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells

    PubMed Central

    Shen, Minqian; Shi, Haifei

    2016-01-01

    Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC). Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2), estrogen receptor-α (ER-α) selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER) selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients. PMID:26982332

  15. Impact of GLP-1 Receptor Agonists on Major Gastrointestinal Disorders for Type 2 Diabetes Mellitus: A Mixed Treatment Comparison Meta-Analysis

    PubMed Central

    Sun, Feng; Yu, Kai; Yang, Zhirong; Wu, Shanshan; Zhang, Yuan; Shi, Luwen; Ji, Linong; Zhan, Siyan

    2012-01-01

    Aim. We aimed to integrate evidence from all randomized controlled trials (RCTs) and assess the impact of different doses of exenatide or liraglutide on major gastrointestinal adverse events (GIAEs) in type 2 diabetes (T2DM). Methods. RCTs evaluating different doses of exenatide and liraglutide against placebo or an active comparator with treatment duration ≥4 weeks were searched and reviewed. A total of 35, 32 and 28 RCTs met the selection criteria evaluated for nausea, vomiting, and diarrhea, respectively. Pairwise random-effects meta-analyses and mixed treatment comparisons (MTC) of all RCTs were performed. Results. All GLP-1 dose groups significantly increased the probability of nausea, vomiting and diarrhea relative to placebo and conventional treatment. MTC meta-analysis showed that there was 99.2% and 85.0% probability, respectively, that people with exenatide 10 μg twice daily (EX10BID) was more vulnerable to nausea and vomiting than those with other treatments. There was a 78.90% probability that liraglutide 1.2 mg once daily (LIR1.2) has a higher risk of diarrhea than other groups. A dose-dependent relationship of exenatide and liraglutide on GIAEs was observed. Conclusions. Our MTC meta-analysis suggests that patients should be warned about these GIAEs in early stage of treatment by GLP-1s, especially by EX10BID and LIR1.2, to promote treatment compliance. PMID:23365557

  16. Dihydromorphine-peptide hybrids with delta receptor agonistic and mu receptor antagonistic actions

    SciTech Connect

    Smith, C.B.; Medzihradsky, F.; Woods, J.H.

    1986-03-05

    The actions of two morphine derivatives with short peptide side chains were evaluated upon the contraction of the isolated mouse vas deferens and upon displacement of /sup 3/H-etorphine from rat brain membranes. NIH-9833 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-phenylalanyl-L-leucine ethyl ester HCl) was a potent agonist upon the vas deferens. Its EC50 for inhibition of the twitch was 1.2 +/- 0.1 nM. Both naltrexone (10/sup -7/ M) a relatively nonselective opioid antagonist, and ICI-174864 (10/sup -/' M) a highly selective delta receptor antagonist, blocked the actions of NIH-9833 which indicates that this drug is a delta receptor agonist. In contrast, NIH-9835 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-glycyl-L-phenylalanyl-L-leucine ethyl ester HCl), which differs from NIH-9835 by the presence of a single amino acid residue, was devoid of opioid agonistic activity but was a potent antagonist of the inhibitory actions on the vas deferens of morphine and sufentanil. NIH-9833 and NIH-9835 were potent displacers of /sup 3/H-etorphine from rat cerebral membranes with EC50's of 0.58 nM and 1.7 nM, respectively. The observation that addition of a single glycyl group changes a dihydromorphine-peptide analog from a potent delta receptor agonist to an equally potent mu receptor antagonist suggests that the two receptor sites might be structurally quite similar.

  17. The serotonin 5-HT₁A receptor agonist tandospirone improves executive function in common marmosets.

    PubMed

    Baba, Satoko; Murai, Takeshi; Nakako, Tomokazu; Enomoto, Takeshi; Ono, Michiko; Shimizu, Isao; Ikeda, Kazuhito

    2015-01-01

    Previous pilot clinical studies have shown that the serotonin 5-HT1A receptor agonist tandospirone has beneficial effect on cognitive deficits associated with schizophrenia. In the present study, we evaluated the cognitive efficacy of tandospirone, given alone or in combination with the antipsychotic blonanserin, risperidone or haloperidol, on executive function in marmosets using the object retrieval with detour (ORD) task. Treatment with tandospirone alone at 20 and 40 mg/kg increased the number of correct responses in the difficult trial, while risperidone (0.3mg/kg) and haloperidol (0.3mg/kg) decreased the number of correct responses in this trial. On the other hand, blonanserin (0.1-0.3mg/kg), an atypical antipsychotic highly selective for dopamine D2/D3 and serotonin 5-HT2A receptors, did not affect the number of correct responses in both the easy and difficult trials. Co-treatment with tandospirone (20mg/kg) and risperidone (0.1-0.3mg/kg) or haloperidol (0.1-0.3mg/kg) did not improve animals' performance in the difficult trial. However, co-treatment with tandospirone and blonanserin (0.1-0.3mg/kg) increased the number of correct responses in the difficult trial. In addition, treatment with the dopamine D1 receptor agonist SKF-81297 at 1mg/kg increased marmosets correct responses in the difficult trial. These results suggest that tandospirone is a promising candidate for the treatment of cognitive deficits associated with schizophrenia and that adjunctive treatment with tandospirone and blonanserin is more appropriate for cognitive deficits than combination therapy with tandospirone and risperidone or haloperidol. The results of this study also indicate that the putative mechanism of action of tandospirone might be related to enhancement of dopamine neurotransmission via activation of the 5-HT1A receptor.

  18. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    SciTech Connect

    Lin, Shengchen; Han, Ying; Shi, Yuzhe; Rong, Hui; Zheng, Songyang; Jin, Shikan; Lin, Shu-Yong; Lin, Sheng-Cai; Li, Yong

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.

  19. α7-nicotinic acetylcholine receptor agonists for cognitive enhancement in schizophrenia.

    PubMed

    Freedman, Robert

    2014-01-01

    α7-Nicotinic acetylcholine receptors have emerged as a potential therapeutic target for the treatment of neurocognitive dysfunctions in schizophrenia that are often resistant to existing antipsychotic drugs. Molecular evidence for involvement in schizophrenia of CHRNA7, the gene for the receptor subunit, in the neurobiology of deficits in attention is a critical rationale for the clinical study of α7-nicotinic receptor agonists to improve neurocognition. Initial clinical trials show enhancement of inhibitory neuron function related to sensory gating and increased attention and working memory, as well as improvement in negative symptoms such as anhedonia and alogia. Further development of this therapeutic strategy requires assessment of interactions with patients' heavy cigarette smoking and the relationship of this mechanism to the therapeutic effects of clozapine and olanzapine, both highly effective therapeutics with significant side effects.

  20. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Gαq pathway.

    PubMed

    Thompson, Aiysha; Kanamarlapudi, Venkateswarlu

    2015-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is a G-protein-coupled receptor (GPCR) and an important target in the treatment of type 2 diabetes mellitus (T2DM). Upon stimulation with agonist, the GLP-1R signals through both Gαs and Gαq coupled pathways to stimulate insulin secretion. The agonist-induced GLP-1R internalisation has recently been shown to be important for insulin secretion. However, the molecular mechanisms underlying GLP-1R internalisation remain unknown. The aim of this study was to determine the role of GLP-1R downstream signalling pathways in its internalisation. Agonist-induced human GLP-1R (hGLP-1R) internalisation and activity were examined using a number of techniques including immunoblotting, ELISA, immunofluorescence and luciferase assays to determine cAMP production, intracellular Ca(2+) accumulation and ERK phosphorylation. Agonist-induced hGLP-1R internalisation is dependent on caveolin-1 and dynamin. Inhibition of the Gαq pathway but not the Gαs pathway affected hGLP-1R internalisation. Consistent with this, hGLP-1R mutant T149M and small-molecule agonists (compound 2 and compound B), which activate only the Gαs pathway, failed to induce internalisation of the receptor. Chemical inhibitors of the Gαq pathway, PKC and ERK phosphorylation significantly reduced agonist-induced hGLP-1R internalisation. These inhibitors also suppressed agonist-induced ERK1/2 phosphorylation demonstrating that the phosphorylated ERK acts downstream of the Gαq pathway in the hGLP-1R internalisation. In summary, agonist-induced hGLP-1R internalisation is mediated by the Gαq pathway. The internalised hGLP-1R stimulates insulin secretion from pancreatic β-cells, indicating the importance of GLP-1 internalisation for insulin secretion.

  1. Identification and characterization of ZEL-H16 as a novel agonist of the histamine H3 receptor.

    PubMed

    Shi, Ying; Sheng, Rong; Zhong, Tingting; Xu, Yu; Chen, Xiaopan; Yang, Dong; Sun, Yi; Yang, Fenyan; Hu, Yongzhou; Zhou, Naiming

    2012-01-01

    The histamine H3 receptor (H3R) has been recognized as a promising target for the treatment of various central and peripheral nervous system diseases. In this study, a non-imidazole compound, ZEL-H16, was identified as a novel histamine H3 receptor agonist. ZEL-H16 was found to bind to human H3R with a Ki value of approximately 2.07 nM and 4.36 nM to rat H3R. Further characterization indicated that ZEL-H16 behaved as a partial agonist on the inhibition of forskolin-stimulated cAMP accumulation (the efficacy was 60% of that of histamine) and activation of ERK1/2 signaling (the efficacy was 50% of that of histamine) at H3 receptors, but acted as a full agonist just like histamin in the guinea-pig ileum contraction assay. These effects were blocked by pertussis toxin and H3 receptor specific antagonist thioperamide. ZEL-H16 showed no agonist or antagonist activities at the cloned human histamine H1, H2, and H4 receptors and other biogenic amine GPCRs in the CRE-driven reporter assay. Furthermore, our present data demonstrated that treatment of ZEL-H16 resulted in intensive H3 receptor internalization and delayed recycling to the cell surface as compared to that of control with treatment of histamine. Thus, ZEL-H16 is a novel and potent nonimidazole agonist of H3R, which might serve as a pharmacological tool for future investigations or as possible therapeutic agent of H3R.

  2. Cardiovascular selectivity of adenosine receptor agonists in anaesthetized dogs.

    PubMed Central

    Gerencer, R. Z.; Finegan, B. A.; Clanachan, A. S.

    1992-01-01

    1. In order to determine the relevance of adenosine (Ado) receptor classification obtained from in vitro methods to the cardiovascular actions of Ado agonists in vivo, the cardiovascular effects of adenosine 5'-monophosphate (AMP), N6-cyclohexyladenosine (CHA, 400 fold A1-selective), 5'-N-ethyl-carboxamidoadenosine (NECA, A1 approximately A2) and 2-phenylaminoadenosine (PAA, 5 fold A2-selective) were compared in open-chest, fentanyl-pentobarbitone anaesthetized dogs. 2. Graded doses of CHA (10 to 1000 micrograms kg-1), NECA (0.5 to 100 micrograms kg-1) or PAA (0.1 to 20 micrograms kg-1) were administered intravenously and changes in haemodynamics and myocardial contractility were assessed 10 min following each dose. The effects of graded infusions of AMP (200 to 1000 micrograms kg-1 min-1) were also evaluated. 3. AMP and each of the Ado analogues (NECA > PAA > CHA) increased the systemic vascular conductance index (SVCI) in a dose-dependent manner and reduced mean arterial pressure (MAP). At doses causing similar increases in SVCI, these agonists caused (i) similar reflex increases in heart rate (HR) and cardiac index (CI) and decreases in AV conduction interval (AVi) and (ii) similar increases in coronary vascular conductance (CVC). 4. After cardiac autonomic blockade with atropine (0.2 mg kg-1) and propranolol (1 mg kg-1), AMP, CHA and PAA still increased SVCI and CVC and decreased MAP. CHA and PAA had no marked effects on HR, CI or AVi. As in the absence of cardiac autonomic blockade, equieffective vasodilator doses of CHA and PAA had identical effects on CVC, CI and AVi.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1467827

  3. Exposure to D2-like dopamine receptor agonists inhibits swimming in Daphnia magna.

    PubMed

    Barrozo, Enrico R; Fowler, David A; Beckman, Matthew L

    2015-10-01

    Daphnia are freshwater crustaceans that have been used for decades in ecotoxicology research. Despite the important role that Daphnia have played in environmental toxicology studies, very little is known about the neurobiology of Daphnia. Although many studies have investigated the swimming movements of these "water fleas", few studies have examined the underlying neurochemical basis for these movements. To characterize the locomotor effect of drugs in Daphnia, a two-dimensional video imaging tool was developed and animal tracking was performed with freely available software, CTRAX. Due to the central role that dopamine plays in the movement of animals, we sought to determine the role of dopamine receptor signaling in Daphnia movement by characterizing the effect of ten drugs that are agonists or antagonists of dopamine receptors. At 1, 2, and 6h of treatment with a 10μM drug, several dopamine receptor agonists with documented effects on the D2-like class of receptors decreased the movement. Further, we determined behavioral inhibition values (IC50) at 1h of treatment for (1R,3S)-1-(aminomethyl)-3-phenyl-3,4-dihydro-1H-isochromene-5,6-diol (A68930) to be 1.4μM and for bromocriptine to be 6.6μM. This study describes a new method to study Daphnia swimming and establishes this organism as a useful model for studies of dopaminergic signaling. Specifically, this study shows that a dopamine receptor signaling pathway, mediated by putative D2-like receptors, is involved in the control of Daphnia swimming behavior. Due to its ease of use and its rich motor program we propose that Daphnia should be considered for future studies of dopamine neuron toxicity and protection.

  4. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists

    PubMed Central

    De Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; Di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela

    2017-01-01

    Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders. PMID:28233865

  5. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists

    NASA Astrophysics Data System (ADS)

    de Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela

    2017-02-01

    Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders.

  6. Evidence that antipsychotic drugs are inverse agonists at D2 dopamine receptors.

    PubMed

    Hall, D A; Strange, P G

    1997-06-01

    1. The effects of a number of D2-like dopamine receptor antagonists have been determined on forskolin-stimulated cyclic AMP accumulation in Chinese hamster ovary (CHO) cells expressing the human D2short dopamine receptor (CHO-D2S cells). 2. Dopamine inhibited the effect of forskolin (as expected for a D2 receptor). However, all of the antagonists tested, apart from UH232 and (-)-butaclamol, were able to increase cyclic AMP accumulation above the forskolin control level. (+)-Butaclamol elicited a similar stimulation of forskolin-stimulated cyclic AMP accumulation in a CHO cell line expressing human D2long dopamine receptors whereas it exhibited no stimulating effect on forskolin-stimulated cyclic AMP accumulation in untransfected CHO-K1 cells. 3. There was a strong correlation between the EC50 values of these compounds for potentiation of cyclic AMP accumulation and their Ki values from radioligand binding experiments in CHO-D2S cells. 4. The effects of both (+)-butaclamol and dopamine in CHO-D2S cells were inhibited by pre-treatment with pertussis toxin indicating a role for Gi/Go proteins. 5. UH232 did not significantly affect forskolin-stimulated cyclic AMP accumulation but this substance was able to inhibit the effects of both dopamine and (+)-butaclamol in a concentration-dependent manner. Thus the effects of (+)-butaclamol on forskolin-stimulated cyclic AMP accumulation are mediated directly via the D2 receptor rather than by reversal of the effects of an endogenous agonist. 6. These data suggest that the D2 dopamine receptor antagonists tested here, many of which are used clinically as antipsychotic drugs, are in fact inverse agonists at human D2 dopamine receptors.

  7. The Protective Role of PAC1-Receptor Agonist Maxadilan in BCCAO-Induced Retinal Degeneration.

    PubMed

    Vaczy, A; Reglodi, D; Somoskeoy, T; Kovacs, K; Lokos, E; Szabo, E; Tamas, A; Atlasz, T

    2016-10-01

    A number of studies have proven that pituitary adenylate cyclase activating polypeptide (PACAP) is protective in neurodegenerative diseases. Permanent bilateral common carotid artery occlusion (BCCAO) causes severe degeneration in the rat retina. In our previous studies, protective effects were observed with PACAP1-38, PACAP1-27, and VIP but not with their related peptides, glucagon, or secretin in BCCAO. All three PACAP receptors (PAC1, VPAC1, VPAC2) appear in the retina. Molecular and immunohistochemical analysis demonstrated that the retinoprotective effects are most probably mainly mediated by the PAC1 receptor. The aim of the present study was to investigate the retinoprotective effects of a selective PAC1-receptor agonist maxadilan in BCCAO-induced retinopathy. Wistar rats were used in the experiment. After performing BCCAO, the right eye was treated with intravitreal maxadilan (0.1 or 1 μM), while the left eye was injected with vehicle. Sham-operated rats received the same treatment. Two weeks after the operation, retinas were processed for standard morphometric and molecular analysis. Intravitreal injection of 0.1 or 1 μM maxadilan caused significant protection in the thickness of most retinal layers and the number of cells in the GCL compared to the BCCAO-operated eyes. In addition, 1 μM maxadilan application was more effective than 0.1 μM maxadilan treatment in the ONL, INL, IPL, and the entire retina (OLM-ILM). Maxadilan treatment significantly decreased cytokine expression (CINC-1, IL-1α, and L-selectin) in ischemia. In summary, our histological and molecular analysis showed that maxadilan, a selective PAC1 receptor agonist, has a protective role in BCCAO-induced retinal degeneration, further supporting the role of PAC1 receptor conveying the retinoprotective effects of PACAP.

  8. Blast traumatic brain injury induced cognitive deficits are attenuated by pre- or post-injury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4

    PubMed Central

    Tweedie, David; Rachmany, Lital; Rubovitch, Vardit; Li, Yazhou; Holloway, Harold W.; Lehrmann, Elin; Zhang, Yongqing; Becker, Kevin G.; Perez, Evelyn; Hoffer, Barry J.; Pick, Chaim G.; Greig, Nigel H.

    2015-01-01

    Background Blast traumatic brain injury (B-TBI) affects military and civilian personnel. Presently there are no approved drugs for blast brain injury. Methods Exendin-4, administered subcutaneously, was evaluated as a pre-treatment (48 hours) and post-injury treatment (2 hours) on neurodegeneration, behaviors and gene expressions in a murine open field model of blast injury. Results B-TBI induced neurodegeneration, changes in cognition and genes expressions linked to dementia disorders. Exendin-4, administered pre- or post-injury ameliorated B-TBI-induced neurodegeneration at 72 hours, memory deficits from days 7–14 and attenuated genes regulated by blast at day 14 post-injury. Conclusions The present data suggest shared pathological processes between concussive and B-TBI, with endpoints amenable to beneficial therapeutic manipulation by exendin-4. B-TBI-induced dementia-related gene pathways and cognitive deficits in mice somewhat parallel epidemiological studies of Barnes and co-workers who identified a greater risk in US military veterans who experienced diverse TBIs, for dementia in later life. PMID:26327236

  9. Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist.

    PubMed

    Stoddart, Leigh A; Vernall, Andrea J; Briddon, Stephen J; Kellam, Barrie; Hill, Stephen J

    2015-11-01

    Fluorescence based probes provide a novel way to study the dynamic internalization process of G protein-coupled receptors (GPCRs). Recent advances in the rational design of fluorescent ligands for GPCRs have been used here to generate new fluorescent agonists containing tripeptide linkers for the adenosine A3 receptor. The fluorescent agonist BY630-X-(D)-A-(D)-A-G-ABEA was found to be a highly potent agonist at the adenosine A3 receptor in both reporter gene (pEC50 = 8.48 ± 0.09) and internalization assays (pEC50 = 7.47 ± 0.11). Confocal imaging studies showed that BY630-X-(D)-A-(D)-A-G-ABEA was internalized with A3 linked to yellow fluorescent protein, which was blocked by the competitive antagonist MRS1220. Internalization of untagged adenosine A3 could also be visualized with BY630-X-(D)-A-(D)-A-G-ABEA treatment. Further, BY630-X-(D)-A-(D)-A-G-ABEA stimulated the formation of receptor-arrestin3 complexes and was found to localize with these intracellular complexes. This highly potent agonist with excellent imaging properties should be a valuable tool to study receptor internalization. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.

  10. Cannabinoid receptor interacting protein suppresses agonist-driven CB1 receptor internalization and regulates receptor replenishment in an agonist-biased manner.

    PubMed

    Blume, Lawrence C; Leone-Kabler, Sandra; Luessen, Deborah J; Marrs, Glen S; Lyons, Erica; Bass, Caroline E; Chen, Rong; Selley, Dana E; Howlett, Allyn C

    2016-11-01

    Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1 R) distal C-terminus-associated protein that modulates CB1 R signaling via G proteins, and CB1 R down-regulation but not desensitization (Blume et al. [2015] Cell Signal., 27, 716-726; Smith et al. [2015] Mol. Pharmacol., 87, 747-765). In this study, we determined the involvement of CRIP1a in CB1 R plasma membrane trafficking. To follow the effects of agonists and antagonists on cell surface CB1 Rs, we utilized the genetically homogeneous cloned neuronal cell line N18TG2, which endogenously expresses both CB1 R and CRIP1a, and exhibits a well-characterized endocannabinoid signaling system. We developed stable CRIP1a-over-expressing and CRIP1a-siRNA-silenced knockdown clones to investigate gene dose effects of CRIP1a on CB1 R plasma membrane expression. Results indicate that CP55940 or WIN55212-2 (10 nM, 5 min) reduced cell surface CB1 R by a dynamin- and clathrin-dependent process, and this was attenuated by CRIP1a over-expression. CP55940-mediated cell surface CB1 R loss was followed by a cycloheximide-sensitive recovery of surface receptors (30-120 min), suggesting the requirement for new protein synthesis. In contrast, WIN55212-2-mediated cell surface CB1 Rs recovered only in CRIP1a knockdown cells. Changes in CRIP1a expression levels did not affect a transient rimonabant (10 nM)-mediated increase in cell surface CB1 Rs, which is postulated to be as a result of rimonabant effects on 'non-agonist-driven' internalization. These studies demonstrate a novel role for CRIP1a in agonist-driven CB1 R cell surface regulation postulated to occur by two mechanisms: 1) attenuating internalization that is agonist-mediated, but not that in the absence of exogenous agonists, and 2) biased agonist-dependent trafficking of de novo synthesized receptor to the cell surface.

  11. Alcohol-heightened aggression in mice: attenuation by 5-HT1A receptor agonists.

    PubMed

    Miczek, K A; Hussain, S; Faccidomo, S

    1998-09-01

    One of the critical mechanisms by which alcohol heightens aggression involves forebrain serotonin (5-HT) systems, possibly via actions on 5-HT1A receptors. The present experiments tested the hypothesis that activating 5-HT1A receptors by selective agonists will block the aggression-heightening effects of ethanol. Initially, the selective antagonist WAY 100635 was used to assess whether or not the changes in aggressive behavior after treatment with 8-OH-DPAT and flesinoxan result from action at the 5-HT1A receptors. Resident male CFW mice engaged in aggressive behavior (i.e. attack bites, sideways threats, tail rattle) during 5-min confrontations with a group-housed intruder male. Quantitative analysis of the behavioral repertoire revealed systematic reductions in all salient elements of aggressive behavior after treatment with 8-OH-DPAT (0.1-0.3 mg/kg, i.p.) or flesinoxan (0.1-1.0 mg/kg, i.p.). The 5-HT1A agonists also reduced motor activities such as walking, rearing and grooming, although to a lesser degree. Pretreatment with the antagonist WAY 100635 (0.1 mg/kg, i.p.) shifted the agonist dose-effect curves for behavioral effects to the right. In a further experiment, oral ethanol (1.0 g/kg, p.o.) increased the frequency of attacks in excess of 2 SD from their mean vehicle level of attacks in 19 out of 76 resident mice. Low doses of 8-OH-DPAT (0.03-0.3 mg/kg) and flesinoxan (0.1, 0.3, 0.6 mg/kg), given before the ethanol treatment, attenuated the alcohol-heightened aggression in a dose-dependent fashion. By contrast, these low 5-HT1A agonist doses affected motor activity in ethanol-treated resident mice to a lesser degree, suggesting behavioral specificity of these anti-aggressive effects. The current results support the hypothesized significant role of 5-HT1A receptors in the aggression-heightening effects of alcohol. If these effects are in fact due to action at somatodendritic 5-HT1A autoreceptors, then the anti-aggressive effects would be associated with

  12. Intrinsic Relative Activities of Opioid Agonists in Activating Gα proteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  13. PPARgamma agonists as therapeutics for the treatment of Alzheimer's disease.

    PubMed

    Landreth, Gary; Jiang, Qingguang; Mandrekar, Shweta; Heneka, Michael

    2008-07-01

    Alzheimer's disease (AD) is characterized by the deposition of beta-amyloid within the brain parenchyma and is accompanied by the impairment of neuronal metabolism and function, leading to extensive neuronal loss. The disease involves the perturbation of synaptic function, energy, and lipid metabolism. The development of amyloid plaques results in the induction of a microglial-mediated inflammatory response. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor whose biological actions are to regulate glucose and lipid metabolism and suppress inflammatory gene expression. Thus, agonists of this receptor represent an attractive therapeutic target for AD. There is now an extensive body of evidence that has demonstrated the efficacy of PPARgamma agonists in ameliorating disease-related pathology and improved learning and memory in animal models of AD. Recent clinical trials of the PPARgamma agonist rosiglitazone have shown significant improvement in memory and cognition in AD patients. Thus, PPARgamma represents an important new therapeutic target in treating AD.

  14. Mechanical stress activates NMDA receptors in the absence of agonists.

    PubMed

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K; Sachs, Frederick; Hua, Susan Z

    2017-01-03

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca(2+) entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca(2+) influx. Extracellular Mg(2+) at 2 mM did not significantly affect the shear induced Ca(2+) influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI.

  15. Mechanical stress activates NMDA receptors in the absence of agonists

    PubMed Central

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K.; Sachs, Frederick; Hua, Susan Z.

    2017-01-01

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca2+ influx. Extracellular Mg2+ at 2 mM did not significantly affect the shear induced Ca2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI. PMID:28045032

  16. Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA4/GPR120).

    PubMed

    Sparks, Steven M; Chen, Grace; Collins, Jon L; Danger, Dana; Dock, Steven T; Jayawickreme, Channa; Jenkinson, Stephen; Laudeman, Christopher; Leesnitzer, M Anthony; Liang, Xi; Maloney, Patrick; McCoy, David C; Moncol, David; Rash, Vincent; Rimele, Thomas; Vulimiri, Padmaja; Way, James M; Ross, Sean

    2014-07-15

    The exploration of a diarylsulfonamide series of free fatty acid receptor 4 (FFA4/GPR120) agonists is described. This work led to the identification of selective FFA4 agonist 8 (GSK137647A) and selective FFA4 antagonist 39. The in vitro profile of compounds 8 and 39 is presented herein.

  17. Novel Small Molecule Glucagon-Like Peptide-1 Receptor Agonist Stimulates Insulin Secretion in Rodents and From Human Islets

    PubMed Central

    Sloop, Kyle W.; Willard, Francis S.; Brenner, Martin B.; Ficorilli, James; Valasek, Kathleen; Showalter, Aaron D.; Farb, Thomas B.; Cao, Julia X.C.; Cox, Amy L.; Michael, M. Dodson; Gutierrez Sanfeliciano, Sonia Maria; Tebbe, Mark J.; Coghlan, Michael J.

    2010-01-01

    OBJECTIVE The clinical effectiveness of parenterally-administered glucagon-like peptide-1 (GLP-1) mimetics to improve glucose control in patients suffering from type 2 diabetes strongly supports discovery pursuits aimed at identifying and developing orally active, small molecule GLP-1 receptor agonists. The purpose of these studies was to identify and characterize novel nonpeptide agonists of the GLP-1 receptor. RESEARCH DESIGN AND METHODS Screening using cells expressing the GLP-1 receptor and insulin secretion assays with rodent and human islets were used to identify novel molecules. The intravenous glucose tolerance test (IVGTT) and hyperglycemic clamp characterized the insulinotropic effects of compounds in vivo. RESULTS Novel low molecular weight pyrimidine-based compounds that activate the GLP-1 receptor and stimulate glucose-dependent insulin secretion are described. These molecules induce GLP-1 receptor-mediated cAMP signaling in HEK293 cells expressing the GLP-1 receptor and increase insulin secretion from rodent islets in a dose-dependent manner. The compounds activate GLP-1 receptor signaling, both alone or in an additive fashion when combined with the endogenous GLP-1 peptide; however, these agonists do not compete with radiolabeled GLP-1 in receptor-binding assays. In vivo studies using the IVGTT and the hyperglycemic clamp in Sprague Dawley rats demonstrate increased insulin secretion in compound-treated animals. Further, perifusion assays with human islets isolated from a donor with type 2 diabetes show near-normalization of insulin secretion upon compound treatment. CONCLUSIONS These studies characterize the insulinotropic effects of an early-stage, small molecule GLP-1 receptor agonist and provide compelling evidence to support pharmaceutical optimization. PMID:20823098

  18. Desensitization of functional µ-opioid receptors increases agonist off-rate.

    PubMed

    Williams, John T

    2014-07-01

    Desensitization of µ-opioid receptors (MORs) develops over 5-15 minutes after the application of some, but not all, opioid agonists and lasts for tens of minutes after agonist removal. The decrease in function is receptor selective (homologous) and could result from 1) a reduction in receptor number or 2) a decrease in receptor coupling. The present investigation used photolysis of two caged opioid ligands to examine the kinetics of MOR-induced potassium conductance before and after MOR desensitization. Photolysis of a caged antagonist, carboxynitroveratryl-naloxone (caged naloxone), blocked the current induced by a series of agonists, and the time constant of decline was significantly decreased after desensitization. The increase in the rate of current decay was not observed after partial blockade of receptors with the irreversible antagonist, β-chlornaltrexamine (β-CNA). The time constant of current decay after desensitization was never more rapid than 1 second, suggesting an increased agonist off-rate rather than an increase in the rate of channel closure downstream of the receptor. The rate of G protein-coupled K(+) channel (GIRK) current activation was examined using photolysis of a caged agonist, carboxynitrobenzyl-tyrosine-[Leu(5)]-enkephalin. After acute desensitization or partial irreversible block of MORs with β-CNA, there was an increase in the time it took to reach a peak current. The decrease in the rate of agonist-induced GIRK conductance was receptor selective and dependent on receptor number. The results indicate that opioid receptor desensitization reduced the number of functional receptor and that the remaining active receptors have a reduced agonist affinity.

  19. Identification of Ecdysone Hormone Receptor Agonists as a Therapeutic Approach for Treating Filarial Infections

    PubMed Central

    Mhashilkar, Amruta S.; Vankayala, Sai L.; Liu, Canhui; Kearns, Fiona; Mehrotra, Priyanka; Tzertzinis, George; Palli, Subba R.; Woodcock, H. Lee; Unnasch, Thomas R.

    2016-01-01

    Background A homologue of the ecdysone receptor has previously been identified in human filarial parasites. As the ecdysone receptor is not found in vertebrates, it and the regulatory pathways it controls represent attractive potential chemotherapeutic targets. Methodology/ Principal Findings Administration of 20-hydroxyecdysone to gerbils infected with B. malayi infective larvae disrupted their development to adult stage parasites. A stable mammalian cell line was created incorporating the B. malayi ecdysone receptor ligand-binding domain, its heterodimer partner and a secreted luciferase reporter in HEK293 cells. This was employed to screen a series of ecdysone agonist, identifying seven agonists active at sub-micromolar concentrations. A B. malayi ecdysone receptor ligand-binding domain was developed and used to study the ligand-receptor interactions of these agonists. An excellent correlation between the virtual screening results and the screening assay was observed. Based on both of these approaches, steroidal ecdysone agonists and the diacylhydrazine family of compounds were identified as a fruitful source of potential receptor agonists. In further confirmation of the modeling and screening results, Ponasterone A and Muristerone A, two compounds predicted to be strong ecdysone agonists stimulated expulsion of microfilaria and immature stages from adult parasites. Conclusions The studies validate the potential of the B. malayi ecdysone receptor as a drug target and provide a means to rapidly evaluate compounds for development of a new class of drugs against the human filarial parasites. PMID:27300294

  20. Fluorescence characteristics of hydrophobic partial agonist probes of the cholecystokinin receptor.

    PubMed

    Harikumar, Kaleeckal G; Pinon, Delia I; Miller, Laurence J

    2006-04-01

    Fluorescence spectroscopic studies are powerful tools for the evaluation of receptor structure and the dynamic changes associated with receptor activation. Here, we have developed two chemically distinct fluorescent probes of the cholecystokinin (CCK) receptor by attaching acrylodan or a nitrobenzoxadiazole moiety to the amino terminus of a partial agonist CCK analogue. These two probes were able to bind to the CCK receptor specifically and with high affinity, and were able to elicit only submaximal intracellular calcium responses typical of partial agonists. The fluorescence characteristics of these probes were compared with those previously reported for structurally-related full agonist and antagonist probes. Like the previous probes, the partial agonist probes exhibited longer fluorescence lifetimes and increased anisotropy when bound to the receptor than when free in solution. The receptor-bound probes were not easily quenched by potassium iodide, suggesting that the fluorophores were protected from the extracellular aqueous milieu. The fluorescence characteristics of the partial agonist probes were quite similar to those of the analogous full agonist probes and quite distinct from the analogous antagonist probes. These data suggest that the partially activated conformational state of this receptor is more closely related to its fully active state than to its inactive state.

  1. Kisspeptin receptor agonist (FTM080) increased plasma concentrations of luteinizing hormone in anestrous ewes

    PubMed Central

    Daniel, Joseph A.; Amelse, Lisa L.; Tanco, Valeria M.; Chameroy, Kelly A.; Schrick, F. Neal

    2015-01-01

    Kisspeptin receptor (KISS1R) agonists with increased half-life and similar efficacy to kisspeptin in vitro may provide beneficial applications in breeding management of many species. However, many of these agonists have not been tested in vivo. These studies were designed to test and compare the effects of a KISS1R agonist (FTM080) and kisspeptin on luteinizing hormone (LH) in vivo. In experiment 1 (pilot study), sheep were treated with FTM080 (500 pmol/kg BW) or sterile water (VEH) intravenosuly. Blood was collected every 15 min before (1 h) and after (1 h) treatment. In experiment 2, sheep were treated with KP-10 (human Metastin 45-54; 500 pmol/kg BW), one of three dosages of FTM080 (500 (FTM080:500), 2500 (FTM080:2500), or 5000 (FTM080:5000) pmol/kg BW), or VEH intravenously. Blood was collected every 15 min before (1 h) and after (4 h) treatment. In experiment 1, FTM080:500 increased (P < 0.05) plasma LH concentrations when compared to VEH. The area under the curve (AUC) of LH following FTM080:500 treatment was also increased (P < 0.05). In experiment 2, plasma LH concentrations increased (P < 0.05) following treatment with KP-10 and FTM080:5000 when compared to VEH and FTM080:500. The AUC of LH following KP-10 was greater than (P < 0.05) all other treatments and the AUC of LH following FTM080:5000 was greater than (P < 0.05) all treatments except KP-10. These data provide evidence to suggest that FTM080 stimulates the gonadotropic axis of ruminants in vivo. Any increased half-life and comparable efficacy of FTM080 to KP-10 in vitro does not appear to translate to in vivo in sheep. PMID:26587345

  2. Hydrogen/Deuterium Exchange Reveals Distinct Agonist/Partial Agonist Receptor Dynamics within the intact Vitamin D Receptor/Retinoid X Receptor Heterodimer

    PubMed Central

    Zhang, Jun; Chalmers, Michael J.; Stayrook, Keith R.; Burris, Lorri L.; Garcia-Ordonez, Ruben D.; Pascal, Bruce D.; Burris, Thomas P.; Dodge, Jeffery A.; Griffin, Patrick R.

    2010-01-01

    Summary Regulation of nuclear receptor (NR) activity is driven by alterations in the conformational dynamics of the receptor upon ligand binding. Previously we demonstrated that hydrogen/deuterium exchange (HDX) can be applied to determine novel mechanism of action of PPARγ ligands and in predicting tissue specificity of selective estrogen receptor modulators. Here we applied HDX to probe the conformational dynamics of the ligand binding domain (LBD) of the vitamin D receptor (VDR) upon binding its natural ligand 1α,25-dihydroxyvitamin D3 (1,25D3), and two analogs, alfacalcidol and ED-71. Comparison of HDX profiles from ligands in complex with the LBD with full-length receptor bound to its cognate receptor retinoid X receptor (RXR) revealed unique receptor dynamics that could not be inferred from static crystal structures. These results demonstrate that ligands modulate the dynamics of the heterodimer interface as well as providing insight into the role of AF-2 dynamics in the action of VDR partial agonists. PMID:20947021

  3. Regulation of adiponectin receptor 1 in human hepatocytes by agonists of nuclear receptors

    SciTech Connect

    Neumeier, Markus; Weigert, Johanna; Schaeffler, Andreas; Weiss, Thomas; Kirchner, Stefan; Laberer, Sabine; Schoelmerich, Juergen; Buechler, Christa . E-mail: christa.buechler@klinik.uni-regensburg.de

    2005-09-02

    The adiponectin receptors AdipoR1 and AdipoR2 have been identified to mediate the insulin-sensitizing effects of adiponectin. Although AdipoR2 was suggested to be the main receptor for this adipokine in hepatocytes, AdipoR1 protein is highly abundant in primary human hepatocytes and hepatocytic cell lines. Nuclear receptors are main regulators of lipid metabolism and activation of peroxisome proliferator-activated receptor {alpha} and {gamma}, retinoid X receptor (RXR), and liver X receptor (LXR) by specific ligands may influence AdipoR1 abundance. AdipoR1 protein is neither altered by RXR or LXR agonists nor by pioglitazone. In contrast, fenofibric acid reduces AdipoR1 whereas hepatotoxic troglitazone upregulates AdipoR1 protein in HepG2 cells. Taken together this work shows for the first time that AdipoR1 protein is expressed in human hepatocytes but that it is not a direct target gene of nuclear receptors. Elevated AdipoR1 induced by hepatotoxic troglitazone may indicate a role of this receptor in adiponectin-mediated beneficial effects in liver damage.

  4. The atypical antidepressant and neurorestorative agent tianeptine is a μ-opioid receptor agonist.

    PubMed

    Gassaway, M M; Rives, M-L; Kruegel, A C; Javitch, J A; Sames, D

    2014-07-15

    Current pharmacological treatments of depression and related disorders suffer from major problems, such as a low rate of response, slow onset of therapeutic effects, loss of efficacy over time and serious side effects. Therefore, there is an urgent need to explore new therapeutic approaches that address these issues. Interestingly, the atypical antidepressant tianeptine already meets in part these clinical goals. However, in spite of three decades of basic and clinical investigations, the molecular target of tianeptine, as well as its mechanism of action, remains elusive. Herein, we report the characterization of tianeptine as a μ-opioid receptor (MOR) agonist. Using radioligand binding and cell-based functional assays, including bioluminescence resonance energy transfer-based assays for G-protein activation and cAMP accumulation, we identified tianeptine as an efficacious MOR agonist (K(i Human) of 383±183 nM and EC(50 Human) of 194±70 nM  and EC(50 Mouse) of 641±120 nM for G-protein activation). Tianeptine was also a full δ-opioid receptor (DOR) agonist, although with much lower potency (EC(50 Human) of 37.4±11.2 μM and EC(50 Mouse) of 14.5±6.6  μM for G-protein activation). In contrast, tianeptine was inactive at the κ-opioid receptor (KOR, both human and rat). On the basis of these pharmacological data, we propose that activation of MOR (or dual activation of MOR and DOR) could be the initial molecular event responsible for triggering many of the known acute and chronic effects of this agent, including its antidepressant and anxiolytic actions.

  5. The atypical antidepressant and neurorestorative agent tianeptine is a μ-opioid receptor agonist

    PubMed Central

    Gassaway, M M; Rives, M-L; Kruegel, A C; Javitch, J A; Sames, D

    2014-01-01

    Current pharmacological treatments of depression and related disorders suffer from major problems, such as a low rate of response, slow onset of therapeutic effects, loss of efficacy over time and serious side effects. Therefore, there is an urgent need to explore new therapeutic approaches that address these issues. Interestingly, the atypical antidepressant tianeptine already meets in part these clinical goals. However, in spite of three decades of basic and clinical investigations, the molecular target of tianeptine, as well as its mechanism of action, remains elusive. Herein, we report the characterization of tianeptine as a μ-opioid receptor (MOR) agonist. Using radioligand binding and cell-based functional assays, including bioluminescence resonance energy transfer-based assays for G-protein activation and cAMP accumulation, we identified tianeptine as an efficacious MOR agonist (Ki Human of 383±183 nM and EC50 Human of 194±70 nM  and EC50 Mouse of 641±120 nM for G-protein activation). Tianeptine was also a full δ-opioid receptor (DOR) agonist, although with much lower potency (EC50 Human of 37.4±11.2 μM and EC50 Mouse of 14.5±6.6  μM for G-protein activation). In contrast, tianeptine was inactive at the κ-opioid receptor (KOR, both human and rat). On the basis of these pharmacological data, we propose that activation of MOR (or dual activation of MOR and DOR) could be the initial molecular event responsible for triggering many of the known acute and chronic effects of this agent, including its antidepressant and anxiolytic actions. PMID:25026323

  6. Electrophysiological perspectives on the therapeutic use of nicotinic acetylcholine receptor partial agonists.

    PubMed

    Papke, Roger L; Trocmé-Thibierge, Caryn; Guendisch, Daniela; Al Rubaiy, Shehd Abdullah Abbas; Bloom, Stephen A

    2011-05-01

    Partial agonist therapies rely variously on two hypotheses: the partial agonists have their effects through chronic low-level receptor activation or the partial agonists work by decreasing the effects of endogenous or exogenous full agonists. The relative significance of these activities probably depends on whether acute or chronic effects are considered. We studied nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus laevis oocytes to test a model for the acute interactions between acetylcholine (ACh) and weak partial agonists. Data were best-fit to a basic competition model that included an additional factor for noncompetitive inhibition. Partial agonist effects were compared with the nAChR antagonist bupropion in prolonged bath application experiments that were designed to mimic prolonged drug exposure typical of therapeutic drug delivery. A primary effect of prolonged application of nicotine was to decrease the response of all nAChR subtypes to acute applications of ACh. In addition, nicotine, cytisine, and varenicline produced detectable steady-state activation of α4β2* [(α4)(2)(β2)(3), (α4)(3)(β2)(2), and (α4)(2)(β2)(2)α5)] receptor subtypes that was not seen with other test compounds. Partial agonists produced no detectable steady-state activation of α7 nAChR, but seemed to show small potentiation of ACh-evoked responses; however, "run-up" of α7 ACh responses was also sometimes observed under control conditions. Potential off-target effects of the partial agonists therefore included the modulation of α7 responses by α4β2 partial agonists and decreases in α4β2* responses by α7-selective agonists. These data indicate the dual effects expected for α4β2* partial agonists and provide models and insights for utility of partial agonists in therapeutic development.

  7. A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing.

    PubMed

    Eiri, Daren M; Nieh, James C

    2012-06-15

    A nicotinic acetylcholine receptor agonist, imidacloprid, impairs memory formation in honey bees and has general effects on foraging. However, little is known about how this agonist affects two specific aspects of foraging: sucrose responsiveness (SR) and waggle dancing (which recruits nestmates). Using lab and field experiments, we tested the effect of sublethal doses of imidacloprid on (1) bee SR with the proboscis extension response assay, and (2) free-flying foragers visiting and dancing for a sucrose feeder. Bees that ingested imidacloprid (0.21 or 2.16 ng bee(-1)) had higher sucrose response thresholds 1 h after treatment. Foragers that ingested imidacloprid also produced significantly fewer waggle dance circuits (10.5- and 4.5-fold fewer for 50% and 30% sucrose solutions, respectively) 24 h after treatment as compared with controls. However, there was no significant effect of imidacloprid on the sucrose concentrations that foragers collected at a feeder 24 h after treatment. Thus, imidacloprid temporarily increased the minimum sucrose concentration that foragers would accept (short time scale, 1 h after treatment) and reduced waggle dancing (longer time scale, 24 h after treatment). The effect of time suggests different neurological effects of imidacloprid resulting from the parent compound and its metabolites. Waggle dancing can significantly increase colony food intake, and thus a sublethal dose (0.21 ng bee(-1), 24 p.p.b.) of this commonly used pesticide may impair colony fitness.

  8. Repression of gamma-aminobutyric acid type A receptor alpha1 polypeptide biosynthesis requires chronic agonist exposure.

    PubMed

    Miranda, J D; Barnes, E M

    1997-06-27

    Although it is well established that the number of gamma-aminobutyric acid type A (GABAA) receptors declines in cortical neurons exposed to GABAA receptor agonists, the mechanisms responsible for this use-dependent down-regulation remain unclear. Two hypotheses have been proposed: (i) agonist-evoked sequestration and degradation of surface GABAA receptors and (ii) repression of receptor subunit biosynthesis. We have addressed this problem using [35S]Met/Cys pulse-chase labeling of chick cortical neurons in culture and immunoprecipitation and immunoblotting with an antibody (RP4) directed against a GABAA receptor alpha1-(331-381) fusion protein. Exposure of the cells to GABA or isoguvacine for 2 h to 4 days had no effect on the initial rate of 35S incorporation into the GABAA receptor 51-kDa alpha1 polypeptide, but this rate declined by 33% after a 7-day treatment. This is consistent with a previous report (Baumgartner, B. J., Harvey, R. J., Darlison, M. G., and Barnes, E. M. (1994) Mol. Brain Res. 26, 9-17) that a 7-day GABA treatment of this preparation produced a 45% reduction in the alpha1 subunit mRNA level, while a 4-day exposure had no detectable effect. On the other hand, after a 4-day exposure to these agonists, a 30% reduction in the level of the alpha1 polypeptide was observed on immunoblots, similar to that found previously for down-regulation of GABAA receptor ligand-binding sites. Thus, the de novo synthesis of GABAA receptor alpha1 subunits is subject to a delayed use-dependent repression that was observed after, rather than before, the decline in neuronal levels of the polypeptide. Pulse-chase experiments showed a monophasic degradation of the GABAA receptor 35S-alpha1 subunit with a t1/2 = 7.7 h, a process that was unaffected by the addition of GABA to neurons during the chase period. These nascent 35S-labeled polypeptides are presumably diluted into the neuronal pool of unlabeled unassembled alpha1 subunits, which was found to exceed by a 4:1 molar

  9. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  10. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    PubMed

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  11. Potent achiral agonists of the ghrelin (growth hormone secretagogue) receptor. Part I: Lead identification.

    PubMed

    Heightman, Tom D; Scott, Jackie S; Longley, Mark; Bordas, Vincent; Dean, David K; Elliott, Richard; Hutley, Gail; Witherington, Jason; Abberley, Lee; Passingham, Barry; Berlanga, Manuela; de Los Frailes, Maite; Wise, Alan; Powney, Ben; Muir, Alison; McKay, Fiona; Butler, Sharon; Winborn, Kim; Gardner, Christopher; Darton, Jill; Campbell, Colin; Sanger, Gareth

    2007-12-01

    High throughput screening combined with efficient datamining and parallel synthesis led to the discovery of a novel series of indolines showing potent in vitro ghrelin receptor agonist activity and acceleration of gastric emptying in rats.

  12. Adenosine A(3) receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Vacek, Antonín; Streitová, Denisa

    2007-07-01

    The present study was performed to define the optimum conditions of the stimulatory action of the adenosine A(3) receptor agonist, N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), on bone marrow hematopoiesis in mice. Effects of 2-day treatment with IB-MECA given at single doses of 200nmol/kg twice daily were investigated in normal mice and in mice whose femoral bone marrow cells were either depleted or regenerating after pretreatment with the cytotoxic drug 5-fluorouracil. Morphological criteria were used to determine the proliferation state of the granulocytic and erythroid cell systems. Significant negative correlation between the control proliferation state and the increase of cell proliferation after IB-MECA treatment irrespective of the cell lineage investigated was found. The results suggest the homeostatic character of the induced stimulatory effects and the need to respect the functional state of the target tissue when investigating effects of adenosine receptor agonists under in vivo conditions.

  13. Relaxant Effects of the Selective Estrogen Receptor Modulator, Bazedoxifene, and Estrogen Receptor Agonists in Isolated Rabbit Basilar Artery.

    PubMed

    Castelló-Ruiz, María; Salom, Juan B; Fernández-Musoles, Ricardo; Burguete, María C; López-Morales, Mikahela A; Arduini, Alessandro; Jover-Mengual, Teresa; Hervás, David; Torregrosa, Germán; Alborch, Enrique

    2016-10-01

    We have previously shown that the selective estrogen receptor modulator, bazedoxifene, improves the consequences of ischemic stroke. Now we aimed to characterize the effects and mechanisms of action of bazedoxifene in cerebral arteries. Male rabbit isolated basilar arteries were used for isometric tension recording and quantitative polymerase chain reaction. Bazedoxifene relaxed cerebral arteries, as 17-β-estradiol, 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol [estrogen receptor (ER) α agonist], and G1 [G protein-coupled ER (GPER) agonist] did it (4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol > bazedoxifene = G1 > 17-β-estradiol). 2,3-Bis(4-hydroxyphenyl)-propionitrile (ERβ agonist) had no effect. Expression profile of genes encoding for ERα (ESR1), ERβ (ESR2), and GPER was GPER > ESR1 > ESR2. As to the endothelial mechanisms, endothelium removal, N-nitro-L-arginine methyl ester, and indomethacin, did not modify the relaxant responses to bazedoxifene. As to the K channels, both a high-K medium and the Kv blocker, 4-aminopyridine, inhibited the bazedoxifene-induced relaxations, whereas tetraethylammonium (nonselective K channel blocker), glibenclamide (selective KATP blocker) or iberiotoxin (selective KCa blocker) were without effect. Bazedoxifene also inhibited both Ca- and Bay K8644-elicited contractions. Therefore, bazedoxifene induces endothelium-independent relaxations of cerebral arteries through (1) activation of GPER and ERα receptors; (2) increase of K conductance through Kv channels; and (3) inhibition of Ca entry through L-type Ca channels. Such a profile is compatible with the beneficial effects of estrogenic compounds (eg, SERMs) on vascular function and, specifically, that concerning the brain. Therefore, bazedoxifene could be useful in the treatment of cerebral disorders in which the cerebrovascular function is compromised (eg, stroke).

  14. Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins.

    PubMed

    Melkes, Barbora; Hejnova, Lucie; Novotny, Jiri

    2016-12-01

    There are some indications that biased μ-opioid ligands may diversely affect μ-opioid receptor (MOR) properties. Here, we used confocal fluorescence recovery after photobleaching (FRAP) to study the regulation by different MOR agonists of receptor movement within the plasma membrane of HEK293 cells stably expressing a functional yellow fluorescent protein (YFP)-tagged μ-opioid receptor (MOR-YFP). We found that the lateral mobility of MOR-YFP was increased by (D-Ala(2),N-MePhe(4),Gly(5)-ol)-enkephalin (DAMGO) and to a lesser extent also by morphine but decreased by endomorphin-2. Interestingly, cholesterol depletion strongly enhanced the ability of morphine to elevate receptor mobility but significantly reduced or even eliminated the effect of DAMGO and endomorphin-2, respectively. Moreover, the ability of DAMGO and endomorphin-2 to influence MOR-YFP movement was diminished by pertussis toxin treatment. The results obtained by agonist-stimulated [(35)S]GTPγS binding assays indicated that DAMGO exhibited higher efficacy than morphine and endomorphin-2 did and that the efficacy of DAMGO, contrary to the latter agonists, was enhanced by cholesterol depletion. Overall, our study provides clear evidence that biased MOR agonists diversely affect receptor mobility in plasma membranes as well as MOR/G protein coupling and that the regulatory effect of different ligands depends on the membrane cholesterol content. These findings help to delineate the fundamental properties of MOR regarding their interaction with biased MOR ligands and cognate G proteins.

  15. Topical Administration of GLP-1 Receptor Agonists Prevents Retinal Neurodegeneration in Experimental Diabetes.

    PubMed

    Hernández, Cristina; Bogdanov, Patricia; Corraliza, Lidia; García-Ramírez, Marta; Solà-Adell, Cristina; Arranz, José A; Arroba, Ana I; Valverde, Angela M; Simó, Rafael

    2016-01-01

    Retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR). Since glucagon-like peptide 1 (GLP-1) exerts neuroprotective effects in the central nervous system and the retina is ontogenically a brain-derived tissue, the aims of the current study were as follows: 1) to examine the expression and content of GLP-1 receptor (GLP-1R) in human and db/db mice retinas; 2) to determine the retinal neuroprotective effects of systemic and topical administration (eye drops) of GLP-1R agonists in db/db mice; and 3) to examine the underlying neuroprotective mechanisms. We have found abundant expression of GLP-1R in the human retina and retinas from db/db mice. Moreover, we have demonstrated that systemic administration of a GLP-1R agonist (liraglutide) prevents retinal neurodegeneration (glial activation, neural apoptosis, and electroretinographical abnormalities). This effect can be attributed to a significant reduction of extracellular glutamate and an increase of prosurvival signaling pathways. We have found a similar neuroprotective effect using topical administration of native GLP-1 and several GLP-1R agonists (liraglutide, lixisenatide, and exenatide). Notably, this neuroprotective action was observed without any reduction in blood glucose levels. These results suggest that GLP-1R activation itself prevents retinal neurodegeneration. Our results should open up a new approach in the treatment of the early stages of DR.

  16. Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy.

    PubMed

    Gallo, S; Gatti, S; Sala, V; Albano, R; Costelli, P; Casanova, E; Comoglio, P M; Crepaldi, T

    2014-04-17

    Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), mainly activates prosurvival pathways, including protection from apoptosis. In this work, we investigated the cardioprotective mechanisms of Met activation by agonist monoclonal antibodies (mAbs). Cobalt chloride (CoCl2), a chemical mimetic of hypoxia, was used to induce cardiac damage in H9c2 cardiomyoblasts, which resulted in reduction of cell viability by (i) caspase-dependent apoptosis and (ii) - surprisingly - autophagy. Blocking either apoptosis with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethylketone or autophagosome formation with 3-methyladenine prevented loss of cell viability, which suggests that both processes contribute to cardiomyoblast injury. Concomitant treatment with Met-activating antibodies or HGF prevented apoptosis and autophagy. Pro-autophagic Redd1, Bnip3 and phospho-AMPK proteins, which are known to promote autophagy through inactivation of the mTOR pathway, were induced by CoCl2. Mechanistically, Met agonist antibodies or HGF prevented the inhibition of mTOR and reduced the flux of autophagosome formation. Accordingly, their anti-autophagic function was completely blunted by Temsirolimus, a specific mTOR inhibitor. Targeted Met activation was successful also in the setting of low oxygen conditions, in which Met agonist antibodies or HGF demonstrated anti-apoptotic and anti-autophagic effects. Activation of the Met pathway is thus a promising novel therapeutic tool for ischaemic injury.

  17. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy.

    PubMed

    Iribarren, Kristina; Bloy, Norma; Buqué, Aitziber; Cremer, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Špíšek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-03-01

    Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy.

  18. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy

    PubMed Central

    Iribarren, Kristina; Bloy, Norma; Buqué, Aitziber; Cremer, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Špíšek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    ABSTRACT Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy. PMID:27141345

  19. The partial 5-HT1A receptor agonist buspirone enhances neurogenesis in the opossum (Monodelphis domestica).

    PubMed

    Grabiec, Marta; Turlejski, Kris; Djavadian, Rouzanna L

    2009-06-01

    We demonstrate for the first time that neurogenesis in the adult Monodelphis opossum has a typical mammalian pattern and occurs only in the dentate gyrus (DG) and subventricular zone (SVZ) of the lateral ventricles. In these two brain regions neurogenesis is present throughout the lifespan, although its rate is reduced by half in the old age. Treatment with buspirone, a partial 5-HT1A receptor agonist which is used in human clinic as an anxiolytic agent, boosts proliferation in the SVZ and DG in both adult and aged opossums. The neuronal phenotype dominates among newly generated cells in both non-treated and buspirone-treated opossums. We suggest that if functional importance of adult neurogenesis is in improving olfactory discrimination and generation of hippocampus-dependent memory, both spatial and emotional, then administration of drugs increasing the rate of neurogenesis via activation of 5-HT1A receptors may be a valuable aid in combating problems of the advanced age.

  20. Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function

    PubMed Central

    Perroy, Julie; Walwyn, Wendy M.; Smith, Monique L.; Vicente-Sanchez, Ana; Segura, Laura; Bana, Alia; Kieffer, Brigitte L.; Evans, Christopher J.

    2016-01-01

    Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor–Ca2+ channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. SIGNIFICANCE STATEMENT Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560

  1. Synthesis of quinolinomorphinan-4-ol derivatives as δ opioid receptor agonists.

    PubMed

    Ida, Yoshihiro; Nemoto, Toru; Hirayama, Shigeto; Fujii, Hideaki; Osa, Yumiko; Imai, Masayuki; Nakamura, Takashi; Kanemasa, Toshiyuki; Kato, Akira; Nagase, Hiroshi

    2012-01-15

    The previously reported morphinan derivative SN-28 showed high selectivity and agonist activity for the δ opioid receptor. In the course of examining the structure-activity relationship of SN-28 derivatives, the derivatives with the 4-hydroxy group (SN-24, 26, 27) showed higher selectivities for the δ receptor over the μ receptor than the corresponding SN-28 derivatives with the 3-hydroxy group (SN-11, 23, 28). Derivatives with the 4-hydroxy group showed potent agonist activities for the δ receptor in the [(35)S]GTPγS binding assay. Although the 17-cyclopropylmethyl derivative (SN-11) with a 3-hydroxy group showed the lowest selectivity for the δ receptor among the morphinan derivatives, the agonist activity toward the δ receptor was the most potent for candidates with the 3-hydroxy group.

  2. The discovery of biaryl carboxamides as novel small molecule agonists of the motilin receptor.

    PubMed

    Westaway, Susan M; Brown, Samantha L; Conway, Elizabeth; Heightman, Tom D; Johnson, Christopher N; Lapsley, Kate; Macdonald, Gregor J; MacPherson, David T; Mitchell, Darren J; Myatt, James W; Seal, Jon T; Stanway, Steven J; Stemp, Geoffrey; Thompson, Mervyn; Celestini, Paolo; Colombo, Andrea; Consonni, Alessandra; Gagliardi, Stefania; Riccaboni, Mauro; Ronzoni, Silvano; Briggs, Michael A; Matthews, Kim L; Stevens, Alexander J; Bolton, Victoria J; Boyfield, Izzy; Jarvie, Emma M; Stratton, Sharon C; Sanger, Gareth J

    2008-12-15

    Optimisation of urea (5), identified from high throughput screening and subsequent array chemistry, has resulted in the identification of pyridine carboxamide (33) which is a potent motilin receptor agonist possessing favourable physicochemical and ADME profiles. Compound (33) has demonstrated prokinetic-like activity both in vitro and in vivo in the rabbit and therefore represents a promising novel small molecule motilin receptor agonist for further evaluation as a gastroprokinetic agent.

  3. Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists

    SciTech Connect

    Thompson, Scott K.; Washburn, David G.; Frazee, James S.; Madauss, Kevin P.; Hoang, Tram H.; Lapinski, Leahann; Grygielko, Eugene T.; Glace, Lindsay E.; Trizna, Walter; Williams, Shawn P.; Duraiswami, Chaya; Bray, Jeffrey D.; Laping, Nicholas J.

    2010-09-03

    Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.

  4. Effects of an intrathecally administered benzodiazepine receptor agonist, antagonist and inverse agonist on morphine-induced inhibition of a spinal nociceptive reflex.

    PubMed Central

    Moreau, J. L.; Pieri, L.

    1988-01-01

    1. The effects of an intrathecally administered benzodiazepine receptor (BZR) agonist (midazolam, up to 50 micrograms), antagonist (flumazenil, Ro 15-1788, 5 micrograms) and inverse agonist (Ro 19-4603, 15 micrograms) on nociception and on morphine-induced antinociception were studied in rats. 2. By themselves, none of these compounds significantly altered pain threshold. 3. The BZR agonist midazolam enhanced the morphine-induced antinociceptive effect whereas the antagonist flumazenil did not alter it. In contrast, the BZR inverse agonist Ro 19-4603 decreased the morphine-induced antinociceptive effect. 4. Naloxone (1 mg kg-1 i.p.) completely reversed all these effects. 5. These results demonstrate that BZR agonists and inverse agonists are able to affect, by allosteric up- or down-modulation of gamma-aminobutyric acidA (GABAA)-receptors, the transmission of nociceptive information at the spinal cord level, when this transmission is depressed by mu-opioid receptor activation. PMID:2898960

  5. Intrathecal administration of nociceptin/orphanin FQ receptor agonists in rats: A strategy to relieve chemotherapy-induced neuropathic hypersensitivity.

    PubMed

    Micheli, Laura; Di Cesare Mannelli, Lorenzo; Rizzi, Anna; Guerrini, Remo; Trapella, Claudio; Calò, Girolamo; Ghelardini, Carla

    2015-11-05

    Oxaliplatin and paclitaxel are considered central components in the treatment of colorectal and breast cancer, respectively. The development of neuropathy during chronic treatment represents the major dose-limiting side effect that leads to discontinuation or interruption of therapies. The management of neuropathy is a challenge to individuate innovative therapeutic strategies based on new targets and correct routes of administration. We evaluated the hypersensitivity reliever effect of different opioid receptor agonists in rat models of oxaliplatin and paclitaxel-induced neuropathy. Compounds were spinally infused by intrathecal catheter. In oxaliplatin-treated rats, 0.3 nmol morphine induced the reversion of the mechanical hypersensitivity (Paw-pressure test), nociceptin/orphanin FQ (N/OFQ; 0.3-3 nmol) significantly increased the pain threshold without reaching the values of the control animals. The N/OFQ peptide (NOP) receptor full agonist UFP-112 reverted pain threshold alterations at lower dosage (0.1 nmol) vs morphine and N/OFQ, the partial agonist UFP-113 (0.1-1 nmol) was similar to N/OFQ. The higher efficacy of morphine vs N/OFQ was highlighted also in paclitaxel-treated rats. The mechanical hypersensitivity was fully reverted by 0.1 nmol UFP-112 and UFP-113. In conclusion, intrathecal μ opioid peptide (MOP) and NOP receptor agonists relieved chemotherapy-induced neuropathic pain. The synthetic peptides showed valuable potency and efficacy suggesting the NOP system as an exploitable target.

  6. δ-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice

    PubMed Central

    Pradhan, Amynah A; Smith, Monique L; Zyuzin, Jekaterina; Charles, Andrew

    2014-01-01

    Background and Purpose Migraine is an extraordinarily common brain disorder for which treatment options continue to be limited. Agonists that activate the δ-opioid receptor may be promising for the treatment of migraine as they are highly effective for the treatment of chronic rather than acute pain, do not induce hyperalgesia, have low abuse potential and have anxiolytic and antidepressant properties. The aim of this study was to investigate the therapeutic potential of δ-opioid receptor agonists for migraine by characterizing their effects in mouse migraine models. Experimental Approach Mechanical hypersensitivity was assessed in mice treated with acute and chronic doses of nitroglycerin (NTG), a known human migraine trigger. Conditioned place aversion to NTG was also measured as a model of migraine-associated negative affect. In addition, we assessed evoked cortical spreading depression (CSD), an established model of migraine aura, in a thinned skull preparation. Key Results NTG evoked acute and chronic mechanical and thermal hyperalgesia in mice, as well as conditioned place aversion. Three different δ-opioid receptor agonists, SNC80, ARM390 and JNJ20788560, significantly reduced NTG-evoked hyperalgesia. SNC80 also abolished NTG-induced conditioned place aversion, suggesting that δ-opioid receptor activation may also alleviate the negative emotional state associated with migraine. We also found that SNC80 significantly attenuated CSD, a model that is considered predictive of migraine preventive therapies. Conclusions and Implications These data show that δ-opioid receptor agonists modulate multiple basic mechanisms associated with migraine, indicating that δ-opioid receptors are a promising therapeutic target for this disorder. PMID:24467301

  7. CB(1) receptor allosteric modulators display both agonist and signaling pathway specificity.

    PubMed

    Baillie, Gemma L; Horswill, James G; Anavi-Goffer, Sharon; Reggio, Patricia H; Bolognini, Daniele; Abood, Mary E; McAllister, Sean; Strange, Phillip G; Stephens, Gary J; Pertwee, Roger G; Ross, Ruth A

    2013-02-01

    We have previously identified allosteric modulators of the cannabinoid CB(1) receptor (Org 27569, PSNCBAM-1) that display a contradictory pharmacological profile: increasing the specific binding of the CB(1) receptor agonist [(3)H]CP55940 but producing a decrease in CB(1) receptor agonist efficacy. Here we investigated the effect one or both compounds in a broad range of signaling endpoints linked to CB(1) receptor activation. We assessed the effect of these compounds on CB(1) receptor agonist-induced [(35)S]GTPγS binding, inhibition, and stimulation of forskolin-stimulated cAMP production, phosphorylation of extracellular signal-regulated kinases (ERK), and β-arrestin recruitment. We also investigated the effect of these allosteric modulators on CB(1) agonist binding kinetics. Both compounds display ligand dependence, being significantly more potent as modulators of CP55940 signaling as compared with WIN55212 and having little effect on [(3)H]WIN55212 binding. Org 27569 displays biased antagonism whereby it inhibits: agonist-induced guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding, simulation (Gα(s)-mediated), and inhibition (Gα(i)-mediated) of cAMP production and β-arrestin recruitment. In contrast, it acts as an enhancer of agonist-induced ERK phosphorylation. Alone, the compound can act also as an allosteric agonist, increasing cAMP production and ERK phosphorylation. We find that in both saturation and kinetic-binding experiments, the Org 27569 and PSNCBAM-1 appeared to influence only orthosteric ligand maximum occupancy rather than affinity. The data indicate that the allosteric modulators share a common mechanism whereby they increase available high-affinity CB(1) agonist binding sites. The receptor conformation stabilized by the allosterics appears to induce signaling and also selectively traffics orthosteric agonist signaling via the ERK phosphorylation pathway.

  8. Usefulness of ambulatory blood pressure monitoring to assess the melanocortin receptor agonist bremelanotide

    PubMed Central

    White, William B.; Myers, Martin G.; Jordan, Robert; Lucas, Johna

    2017-01-01

    Background: Melanocortin receptor agonists that bind to the melanocortin receptor 4 may cause increases in blood pressure (BP). Bremelanotide is an on-demand, subcutaneous melanocortin-receptor agonist that binds to the melanocortin receptor 4 and is being developed for the treatment of female sexual dysfunction. Methods: We studied the effects of bremelanotide administration on ambulatory BP and heart rate (HR), in a randomized, double-blind, placebo-controlled, and parallel-arm trial of three doses of bremelanotide (0.75, 1.25, and 1.75 mg) in 397 premenopausal women with female sexual dysfunction with normotension or controlled hypertension. Pharmacokinetic exposure was assessed in conjunction with ambulatory BP measurements. Results: Increases in ambulatory SBP relative to placebo of 2.4 and 3.0 mmHg (1.25 mg; P values: 0.029 and 0.076) and 3.1 and 3.2 mmHg (1.75 mg; P values: 0.006 and 0.027), respectively, occurred following two doses, separated by 24 h at the 0 to 4-h postdose interval; peak increases typically lasted less than 15 min. Similar increases in the DBP were observed. Increases in BP were accompanied by reductions in HR during the 0–4-h interval for the 1.75-mg dose (−4.6 to −4.7 bpm; P < 0.001). Twenty-six participants discontinued after randomization due to prespecified increases in BP but the proportions were similar among the four treatment groups. Conclusion: These data show that ambulatory monitoring was a useful methodology to detect small, transient increases in ambulatory BP accompanied by reductions in HR following bremelanotide. Results of this trial led to appropriate in-clinic BP monitoring during the larger clinical development trials of this agent for female sexual dysfunction. PMID:27977473

  9. Use-dependent inhibition of P2X3 receptors by nanomolar agonist.

    PubMed

    Pratt, Emily B; Brink, Thaddeus S; Bergson, Pamela; Voigt, Mark M; Cook, Sean P

    2005-08-10

    P2X3 receptors desensitize within 100 ms of channel activation, yet recovery from desensitization requires several minutes. The molecular basis for this slow rate of recovery is unknown. We designed experiments to test the hypothesis that this slow recovery is attributable to the high affinity (< 1 nM) of desensitized P2X3 receptors for agonist. We found that agonist binding to the desensitized state provided a mechanism for potent inhibition of P2X3 current. Sustained applications of 0.5 nM ATP inhibited > 50% of current to repetitive applications of P2X3 agonist. Inhibition occurred at 1000-fold lower agonist concentrations than required for channel activation and showed strong use dependence. No inhibition occurred without previous activation and desensitization. Our data are consistent with a model whereby inhibition of P2X3 by nanomolar [agonist] occurs by the rebinding of agonist to desensitized channels before recovery from desensitization. For several ATP analogs, the concentration required to inhibit P2X3 current inversely correlated with the rate of recovery from desensitization. This indicates that the affinity of the desensitized state and recovery rate primarily depend on the rate of agonist unbinding. Consistent with this hypothesis, unbinding of [32P]ATP from desensitized P2X3 receptors mirrored the rate of recovery from desensitization. As expected, disruption of agonist binding by site-directed mutagenesis increased the IC50 for inhibition and increased the rate of recovery.

  10. Yawning and locomotor behavior induced by dopamine receptor agonists in mice and rats.

    PubMed

    Li, Su-Min; Collins, Gregory T; Paul, Noel M; Grundt, Peter; Newman, Amy H; Xu, Ming; Grandy, David K; Woods, James H; Katz, Jonathan L

    2010-05-01

    Dopaminergic (DA) agonist-induced yawning in rats seems to be mediated by DA D3 receptors, and low doses of several DA agonists decrease locomotor activity, an effect attributed to presynaptic D2 receptors. Effects of several DA agonists on yawning and locomotor activity were examined in rats and mice. Yawning was reliably produced in rats, and by the cholinergic agonist, physostigmine, in both the species. However, DA agonists were ineffective in producing yawning in Swiss-Webster or DA D2R and DA D3R knockout or wild-type mice. The drugs significantly decreased locomotor activity in rats at one or two low doses, with activity returning to control levels at higher doses. In mice, the drugs decreased locomotion across a 1000-10 000-fold range of doses, with activity at control levels (U-91356A) or above control levels [(+/-)-7-hydroxy-2-dipropylaminotetralin HBr, quinpirole] at the highest doses. Low doses of agonists decreased locomotion in all mice except the DA D2R knockout mice, but were not antagonized by DA D2R or D3R antagonists (L-741 626, BP 897, or PG01037). Yawning does not provide a selective in-vivo indicator of DA D3R agonist activity in mice. Decreases in mouse locomotor activity by the DA agonists seem to be mediated by D2 DA receptors.

  11. Prolonging Survival of Corneal Transplantation by Selective Sphingosine-1-Phosphate Receptor 1 Agonist

    PubMed Central

    Gao, Min; Liu, Yong; Xiao, Yang; Han, Gencheng; Jia, Liang; Wang, Liqiang; Lei, Tian; Huang, Yifei

    2014-01-01

    Corneal transplantation is the most used therapy for eye disorders. Although the cornea is somewhat an immune privileged organ, immune rejection is still the major problem that reduces the success rate. Therefore, effective chemical drugs that regulate immunoreactions are needed to improve the outcome of corneal transplantations. Here, a sphingosine-1-phosphate receptor 1 (S1P1) selective agonist was systematically evaluated in mouse allogeneic corneal transplantation and compared with the commonly used immunosuppressive agents. Compared with CsA and the non-selective sphingosine 1-phosphate (S1P) receptor agonist FTY720, the S1P1 selective agonist can prolong the survival corneal transplantation for more than 30 days with a low immune response. More importantly, the optimal dose of the S1P1 selective agonist was much less than non-selective S1P receptor agonist FTY720, which would reduce the dose-dependent toxicity in drug application. Then we analyzed the mechanisms of the selected S1P1 selective agonist on the immunosuppression. The results shown that the S1P1 selective agonist could regulate the distribution of the immune cells with less CD4+ T cells and enhanced Treg cells in the allograft, moreover the expression of anti-inflammatory cytokines TGF-β1 and IL-10 unregulated which can reduce the immunoreactions. These findings suggest that S1P1 selective agonist may be a more appropriate immunosuppressive compound to effectively prolong mouse allogeneic corneal grafts survival. PMID:25216235

  12. The atypical dopamine D1 receptor agonist SKF 83959 induces striatal Fos expression in rats.

    PubMed

    Wirtshafter, David; Osborn, Catherine V

    2005-12-28

    The effects of dopamine D1 receptor agonists are often presumed to result from an activation of adenylyl cyclase, but dopamine D1 receptors may also be linked to other signal transduction cascades and the relative importance of these various pathways is currently unclear. SKF 83959 is an agonist at dopamine D1 receptors linked to phospholipase C, but has been reported to be an antagonist at receptors linked to adenylyl cyclase. The current report demonstrates that SKF 83959 induces pronounced, nonpatchy, expression of the immediate-early gene product Fos in the striatum of intact rats which can be converted to a patchy pattern by pretreatment with the dopamine D2-like receptor agonist quinpirole. In rats with unilateral 6-hydroxydopamine lesions SKF 83959 induces strong behavioral rotation and a greatly potentiated Fos response. All of the responses to SKF 83959, in both intact and dopamine-depleted animals, can be blocked by pretreatment with the dopamine D1 receptor antagonist SCH-23390. In intact subjects, SKF 83959 induced Fos expression less potently than the standard dopamine D1 receptor agonist SKF 82958, but the two drugs were approximately equipotent in deinnervated animals. These results demonstrate for the first time that possession of full efficacy at dopamine D1 receptors linked to adenylyl cyclase is not a necessary requirement for the induction of striatal Fos expression in intact animals and suggest that alternative signal transduction pathways may play a role in dopamine agonist induced Fos expression, especially in dopamine-depleted subjects.

  13. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  14. Effects of dopamine D1 receptor full agonists in rats trained to discriminate SKF 38393.

    PubMed

    Gleason, S D; Witkin, J M

    2004-02-01

    Although the dopaminergic pharmacology of the D1 receptor full agonists, dinapsoline, dihydrexidine and the prodrug ABT-431 have been studied, no information is available on the ability of these agonists to substitute for the D1 agonist SKF 38393 in rats trained to discriminate this compound from vehicle. The present study was designed to characterize the potential D1 discriminative stimulus effects of these compounds. The selective dopamine D1-receptor agonists dihydrexidine [(+/-)-trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a] phenanthridine hydrochloride], ABT-431 [(-)-trans-9,10-diacetyloxy-2-propyl-4,5,5a,6,7,11b-hexahydro-3-thia-5-azacyclopent-1-ena[c]phenanthrene hydrochloride], the diacetyl prodrug derivative of A-86929, and dinapsoline [9-dihydroxy-2,3,7,11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline] were studied in rats trained to discriminate racemic SKF 38393 [(+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol], a selective D1 receptor partial agonist from vehicle. All of the agonists substituted fully for the discriminative stimulus effects of SKF 38393. The rank order of potency for substitution was ABT-431 > dinapsoline > dihydrexidine > SKF 38393. The D1 receptor antagonist, SCH 23390, blocked the discriminative stimulus effects of SKF 38393. The D3/D2-receptor agonist PD 128,907 [S(+)-(4aR,10bR)-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]-benzopyrano[4,3-b]-1,4-oxazin-9-ol] did not substitute up to doses that produced profound rate-suppressant effects. Thus, consistent with their D1 receptor pharmacology, the full D1-receptor agonists substituted completely for the discriminative stimulus of SKF 38393.

  15. Cabergoline, dopamine D2 receptor agonist, prevents neuronal cell death under oxidative stress via reducing excitotoxicity.

    PubMed

    Odaka, Haruki; Numakawa, Tadahiro; Adachi, Naoki; Ooshima, Yoshiko; Nakajima, Shingo; Katanuma, Yusuke; Inoue, Takafumi; Kunugi, Hiroshi

    2014-01-01

    Several lines of evidence demonstrate that oxidative stress is involved in the pathogenesis of neurodegenerative diseases, including Parkinson's disease. Potent antioxidants may therefore be effective in the treatment of such diseases. Cabergoline, a dopamine D2 receptor agonist and antiparkinson drug, has been studied using several cell types including mesencephalic neurons, and is recognized as a potent radical scavenger. Here, we examined whether cabergoline exerts neuroprotective effects against oxidative stress through a receptor-mediated mechanism in cultured cortical neurons. We found that neuronal death induced by H₂O₂ exposure was inhibited by pretreatment with cabergoline, while this protective effect was eliminated in the presence of a dopamine D2 receptor inhibitor, spiperone. Activation of ERK1/2 by H₂O₂ was suppressed by cabergoline, and an ERK signaling pathway inhibitor, U0126, similarly protected cortical neurons from cell death. This suggested the ERK signaling pathway has a critical role in cabergoline-mediated neuroprotection. Furthermore, increased extracellular levels of glutamate induced by H₂O₂, which might contribute to ERK activation, were reduced by cabergoline, while inhibitors for NMDA receptor or L-type Ca²⁺ channel demonstrated a survival effect against H₂O₂. Interestingly, we found that cabergoline increased expression levels of glutamate transporters such as EAAC1. Taken together, these results suggest that cabergoline has a protective effect on cortical neurons via a receptor-mediated mechanism including repression of ERK1/2 activation and extracellular glutamate accumulation induced by H₂O₂.

  16. Antinociceptive effects of novel melatonin receptor agonists in mouse models of abdominal pain

    PubMed Central

    Chen, Chunqiu; Fichna, Jakub; Laudon, Moshe; Storr, Martin

    2014-01-01

    AIM: To characterize the antinociceptive action of the novel melatonin receptor (MT) agonists, Neu-P11 and Neu-P12 in animal models of visceral pain. METHODS: Visceral pain was induced by intracolonic (ic) application of mustard oil or capsaicin solution or by intraperitoneal (ip) administration of acetic acid. Neu-P11, Neu-P12, or melatonin were given ip or orally and their effects on pain-induced behavioral responses were evaluated. To identify the receptors involved, the non-selective MT1/MT2 receptor antagonist luzindole, the MT2 receptor antagonist 4-P-PDOT, or the μ-opioid receptor antagonist naloxone were injected ip or intracerebroventricularly (icv) prior to the induction of pain. RESULTS: Orally and ip administered melatonin, Neu-P11, and Neu-P12 reduced pain responses in a dose-dependent manner. Neu-P12 was more effective and displayed longer duration of action compared to melatonin. The antinociceptive effects of Neu-P11 or Neu-P12 were antagonized by ip or icv. administered naloxone. Intracerebroventricularly, but not ip administration of luzindole or 4-P-PDOT blocked the antinociceptive actions of Neu-P11 or Neu-P12. CONCLUSION: Neu-P12 produced the most potent and long-lasting antinociceptive effect. Further development of Neu-P12 for future treatment of abdominal pain seems promising. PMID:24574803

  17. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    SciTech Connect

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini; Hollenberg, Morley D.; Hauer-Jensen, Martin

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 days after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.

  18. Modulation of hippocampal excitability by 5-HT4 receptor agonists persists in a transgenic model of Alzheimer's disease.

    PubMed

    Spencer, J P; Brown, J T; Richardson, J C; Medhurst, A D; Sehmi, S S; Calver, A R; Randall, A D

    2004-01-01

    5-HT(4) receptors are widely distributed in both peripheral and central nervous systems where they couple, via a G-protein, to the activation of adenylate cyclase. In the brain, the highest 5-HT(4) receptor densities are found in the limbic system, including the hippocampus and frontal cortex. It has been suggested that activation of these receptors may be of therapeutic benefit in diseases that produce cognitive deficits such as Alzheimer's disease (AD). Previous electrophysiological studies have shown that the 5-HT(4) agonist, Zacopride, can increase population spike amplitude recorded in region CA1 of rat hippocampal slices in a cyclic AMP (cAMP)/cAMP-dependent protein kinase A-dependent manner. We report here that the 5-HT(4) agonist, Prucalopride, and the 5-HT(4) partial agonist, SL65.0155, produce a similar effect in rat hippocampal slices and that the specific 5-HT(4) antagonist, GR113808, blocks these effects. To investigate the potential use of 5-HT(4) agonists in the treatment of AD, Prucalopride was applied to hippocampal slices from a transgenic mouse line that overexpresses the Abeta peptide. Despite the deficit in synaptic transmission present in these mice, the percentage increase of the CA1 population spike induced by Prucalopride was the same as that observed in wild-type mice. These data support 5-HT(4) receptors as a target for cognitive enhancement and suggest that a partial agonist would be sufficient to produce benefits, while reducing potential peripheral side effects. In addition, we show that 5-HT(4) receptors remain functional in the presence of excess Abeta peptide and may therefore be a useful target in AD.

  19. Dipeptidylpeptidase-4 (DPP-4) inhibitors are favourable to glucagon-like peptide-1 (GLP-1) receptor agonists: yes.

    PubMed

    Scheen, André J

    2012-03-01

    The pharmacological treatment of type 2 diabetes (T2DM) is becoming increasingly complex, especially since the availability of incretin-based therapies. Compared with other glucose-lowering strategies, these novel drugs offer some advantages such as an absence of weight gain and a negligible risk of hypoglycaemia and, possibly, better cardiovascular and β-cell protection. The physician has now multiple choices to manage his/her patient after secondary failure of metformin, and the question whether it is preferable to add an oral dipeptidylpeptidase-4 (DPP-4) inhibitor (gliptin) or an injectable glucagon-like peptide-1 (GLP-1) receptor agonist will emerge. Obviously, DPP-4 inhibitors offer several advantages compared with GLP-1 receptor agonists, especially regarding easiness of use, tolerance profile and cost. However, because they can only increase endogenous GLP-1 concentrations to physiological (rather than pharmacological) levels, they are less potent to improve glucose control, promote weight reduction ("weight neutrality") and reduce blood pressure compared to GLP-1 receptor agonists. Of note, none of the two classes have proven long-term safety and positive impact on diabetic complications yet. The role of DPP-4 inhibitors and GLP-1 receptor agonists in the therapeutic armamentarium of T2DM is rapidly evolving, but their respective potential strengths and weaknesses should be better defined in long-term head-to-head comparative controlled trials. Instead of trying to answer the question whether DPP-4 inhibitors are favourable to GLP-1 receptor agonists (or vice versa), it is probably more clinically relevant to look at which T2DM patient will benefit more from one or the other therapy considering all his/her individual clinical characteristics ("personalized medicine").

  20. AVE 0991, a non-peptide Mas-receptor agonist, facilitates penile erection.

    PubMed

    da Costa Gonçalves, Andrey C; Fraga-Silva, Rodrigo A; Leite, Romulo; Santos, Robson A S

    2013-03-01

    The renin-angiotensin system plays a crucial role in erectile function. It has been shown that elevated levels of angiotensin II contribute to the development of erectile dysfunction both in humans and in aminals. On the contrary, the heptapeptide angiotensin-(1-7) appears to mediate penile erection by activation of the Mas receptor. Recently, we have shown that the erectile function of Mas gene-deleted mice was substantially reduced, which was associated with a marked increase in fibrous tissue in the corpus cavernosum. We have hypothesized that the synthetic non-peptide Mas agonist, AVE 0991, would potentiate penile erectile function. We showed that intracavernosal injection of AVE 0991 potentiated the erectile response of anaesthetized Wistar rats, measured as the ratio between corpus cavernosum pressure and mean arterial pressure, upon electrical stimulation of the major pelvic ganglion. The facilitatory effect of AVE 0991 on erectile function was dose dependent and completely blunted by the nitric oxide synthesis inhibitor, l-NAME. Importantly, concomitant intracavernosal infusion of the specific Mas receptor blocker, A-779, abolished the effect of AVE 0991. We demonstrated that AVE 0991 potentiates the penile erectile response through Mas in an NO-dependent manner. Importantly, these results suggest that Mas agonists, such as AVE 0991, might have significant therapeutic benefits for the treatment of erectile dysfunction.

  1. Effects of glucagon-like peptide-1 receptor agonists on body weight: a meta-analysis.

    PubMed

    Monami, Matteo; Dicembrini, Ilaria; Marchionni, Niccolò; Rotella, Carlo M; Mannucci, Edoardo

    2012-01-01

    Glucagon-Like Peptide-1 receptor agonists (GLP-1RAs), approved as glucose-lowering drugs for the treatment of type 2 diabetes, have also been shown to reduce body weight. An extensive Medline, Cochrane database, and Embase search for "exenatide," "liraglutide," "albiglutide," "semaglutide," and "lixisenatide" was performed, collecting all randomized clinical trials on humans up to December 15, 2011, with a duration of at least 24 weeks, comparing GLP-1 receptor agonists with either placebo or active drugs. Twenty two (7,859 patients) and 7 (2,416 patients) trials with available results on body weight at 6 and 12 months, respectively, were included. When compared with placebo, GLP-1RAs determine a reduction of BMI at 6 months of -1.0 [-1.3; -0.6] kg/m(2). Considering the average BMI at baseline (32.4 kg/m(2)) these data means a weight reduction of about 3% at 6 months. This result could seem modest from a clinical standpoint; however, it could be affected by many factors contributing to an underestimation of the effect of GLP-1RA on body weight, such as non adequate doses, inclusion criteria, efficacy of GLP-1RA on reducing glycosuria, and association to non-pharmacological interventions not specifically aimed to weight reduction.

  2. Effects of Glucagon-Like Peptide-1 Receptor Agonists on Body Weight: A Meta-Analysis

    PubMed Central

    Monami, Matteo; Dicembrini, Ilaria; Marchionni, Niccolò; Rotella, Carlo M.; Mannucci, Edoardo

    2012-01-01

    Glucagon-Like Peptide-1 receptor agonists (GLP-1RAs), approved as glucose-lowering drugs for the treatment of type 2 diabetes, have also been shown to reduce body weight. An extensive Medline, Cochrane database, and Embase search for “exenatide,” “liraglutide,” “albiglutide,” “semaglutide,” and “lixisenatide” was performed, collecting all randomized clinical trials on humans up to December 15, 2011, with a duration of at least 24 weeks, comparing GLP-1 receptor agonists with either placebo or active drugs. Twenty two (7,859 patients) and 7 (2,416 patients) trials with available results on body weight at 6 and 12 months, respectively, were included. When compared with placebo, GLP-1RAs determine a reduction of BMI at 6 months of −1.0 [−1.3; −0.6] kg/m2. Considering the average BMI at baseline (32.4 kg/m2) these data means a weight reduction of about 3% at 6 months. This result could seem modest from a clinical standpoint; however, it could be affected by many factors contributing to an underestimation of the effect of GLP-1RA on body weight, such as non adequate doses, inclusion criteria, efficacy of GLP-1RA on reducing glycosuria, and association to non-pharmacological interventions not specifically aimed to weight reduction. PMID:22675341

  3. [Albiglutide (Eperzan): a new once-weekly agonist of glucagon-like peptide-1 receptors].

    PubMed

    Scheen, A J

    2015-04-01

    Albiglutide (Eperzan) is a new once-weekly agonist of Glucagon-Like Peptide-1 (GLP-1) receptors that is indicated in the treatment of type 2 diabetes. Two doses are available, 30 mg and 50 mg, to be injected subcutaneously once a week. It has been extensively evaluated in the HARMONY programme of eight large randomised controlled trials that were performed at different stages of type 2 diabetes, in comparison with placebo or an active comparator. The endocrine and metabolic effects of albiglutide are similar to those of other GLP-1 receptor agonists: stimulation of insulin secretion (incretin effect) and inhibition of glucagon secretion, both in a glucose-dependent manner, retardation of gastric emptying and increase of satiety. These effects lead to a reduction in glycated haemoglobin (HbA(1c)) levels, combined with a weight reduction. The overall tolerance profile is good. Albiglutide is currently reimbursed in Belgium after failure (HbA(1c) > 7.5%) of and in combination with a dual therapy with metformin and a sulfonylurea as well as in combination with a basal insulin (with or without oral antidiabetic drugs). To avoid hypoglycaemia, a reduction in the dose of sulfonylurea or insulin may be recommended. A once-weekly administration should increase patient's acceptance of injectable therapy and improve compliance.

  4. GLP-1 receptor agonists: effects on the progression of non-alcoholic fatty liver disease.

    PubMed

    Liu, Jia; Wang, Guang; Jia, Yumei; Xu, Yuan

    2015-05-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and its incidence has been increasing recently. In addition to hepatic complications, NAFLD is also recognized as an independent risk factor for cardiovascular disease. Unfortunately, the current therapies for NAFLD display variable efficacy; a novel and effective drug is urgently needed. Glucagon-like peptide-1 (GLP-1), a receptor agonist is a new drug approved for treating type 2 diabetes. Recently, these types of agents have shown a novel therapeutic effect on NAFLD. However, the mechanisms of GLP-1 receptor agonists on the treatment of NAFLD have not yet been explained precisely. Recent studies have demonstrated that GLP-1 reverses the progression of NAFLD not only indirectly through an incretin effect that improves key parameters involved in NAFLD, but also a direct effect on lipid metabolism of hepatocytes and inflammation in liver. In this review, we provided an overview of the role and mechanisms of GLP-1 in the therapy of NAFLD.

  5. [N-allyl-Dmt1]-endomorphins are micro-opioid receptor antagonists lacking inverse agonist properties.

    PubMed

    Marczak, Ewa D; Jinsmaa, Yunden; Li, Tingyou; Bryant, Sharon D; Tsuda, Yuko; Okada, Yoshio; Lazarus, Lawrence H

    2007-10-01

    [N-allyl-Dmt1]-endomorphin-1 and -2 ([N-allyl-Dmt1]-EM-1 and -2) are new selective micro-opioid receptor antagonists obtained by N-alkylation with an allyl group on the amino terminus of 2',6'-dimethyl-L-tyrosine (Dmt) derivatives. To further characterize properties of these compounds, their intrinsic activities were assessed by functional guanosine 5'-O-(3-[35S]thiotriphosphate) binding assays and forskolin-stimulated cyclic AMP accumulation in cell membranes obtained from vehicle, morphine, and ethanol-treated SK-N-SH cells and brain membranes isolated from naive and morphine-dependent mice; their mode of action was compared with naloxone or naltrexone, which both are standard nonspecific opioid-receptor antagonists. [N-allyl-Dmt1]-EM-1 and -2 were neutral antagonists under all of the experimental conditions examined, in contrast to naloxone and naltrexone, which behave as neutral antagonists only in membranes from vehicle-treated cells and mice but act as inverse agonists in membranes from morphine- and ethanol-treated cells as well as morphine-treated mice. Both endomorphin analogs inhibited the naloxone- and naltrexone-elicited withdrawal syndromes from acute morphine dependence in mice. This suggests their potential therapeutic application in the treatment of drug addiction and alcohol abuse without the adverse effects observed with inverse agonist alkaloid-derived compounds that produce severe withdrawal symptoms.

  6. The effects of dopamine receptor 1 and 2 agonists and antagonists on sexual and aggressive behaviors in male green anoles

    PubMed Central

    Smith, Alexandra N.

    2017-01-01

    The propensity to exhibit social behaviors during interactions with same-sex and opposite-sex conspecifics is modulated by various neurotransmitters, including dopamine. Dopamine is a conserved neurotransmitter among vertebrates and dopaminergic receptors are also highly conserved among taxa. Activation of D1 and D2 dopamine receptor subtypes has been shown to modulate social behaviors, especially in mammalian and avian studies. However, the specific behavioral functions of these receptors vary across taxa. In reptiles there have been few studies examining the relationship between dopaminergic receptors and social behaviors. We therefore examined the effects of D1 and D2 agonists and antagonists on sexual and aggressive behaviors in the male green anole lizard (Anolis carolinensis). Treatment with high doses of both D1 and D2 agonists was found to impair both sexual and aggressive behaviors. However, the D1 agonist treatment was also found to impair motor function, suggesting that those effects were likely nonspecific. Lower doses of both agonists and antagonists failed to affect social behaviors. These findings provide some evidence for D2 receptor regulation of social behaviors, but in contrast with previous research, these effects are all inhibitory and no effects were found for manipulations of D1 receptors. A potential reason for the lack of more widespread effects on social behaviors using moderate or low drug doses is that systemic injection of drugs resulted in effects throughout the whole brain, thus affecting counteracting circuits which negated one another, making measurable changes in behavioral output difficult to detect. Future studies should administer drugs directly into brain regions known to regulate sexual and aggressive behaviors. PMID:28187160

  7. The effects of dopamine receptor 1 and 2 agonists and antagonists on sexual and aggressive behaviors in male green anoles.

    PubMed

    Smith, Alexandra N; Kabelik, David

    2017-01-01

    The propensity to exhibit social behaviors during interactions with same-sex and opposite-sex conspecifics is modulated by various neurotransmitters, including dopamine. Dopamine is a conserved neurotransmitter among vertebrates and dopaminergic receptors are also highly conserved among taxa. Activation of D1 and D2 dopamine receptor subtypes has been shown to modulate social behaviors, especially in mammalian and avian studies. However, the specific behavioral functions of these receptors vary across taxa. In reptiles there have been few studies examining the relationship between dopaminergic receptors and social behaviors. We therefore examined the effects of D1 and D2 agonists and antagonists on sexual and aggressive behaviors in the male green anole lizard (Anolis carolinensis). Treatment with high doses of both D1 and D2 agonists was found to impair both sexual and aggressive behaviors. However, the D1 agonist treatment was also found to impair motor function, suggesting that those effects were likely nonspecific. Lower doses of both agonists and antagonists failed to affect social behaviors. These findings provide some evidence for D2 receptor regulation of social behaviors, but in contrast with previous research, these effects are all inhibitory and no effects were found for manipulations of D1 receptors. A potential reason for the lack of more widespread effects on social behaviors using moderate or low drug doses is that systemic injection of drugs resulted in effects throughout the whole brain, thus affecting counteracting circuits which negated one another, making measurable changes in behavioral output difficult to detect. Future studies should administer drugs directly into brain regions known to regulate sexual and aggressive behaviors.

  8. Selection of multiple agonist antibodies from intracellular combinatorial libraries reveals that cellular receptors are functionally pleiotropic.

    PubMed

    Yea, Kyungmoo; Xie, Jia; Zhang, Hongkai; Zhang, Wei; Lerner, Richard A

    2015-06-01

    The main purpose of this perspective is to build on the unexpected outcomes of previous laboratory experiments using antibody agonists to raise questions concerning how activation of a given receptor can be involved in inducing differentiation of cells along different pathways some of which may even derive from different lineages. While not yet answered, the question illustrates how the advent of agonists not present in nature may give a different dimension to the important problem of signal transduction. Thus, if one studies a natural agonist-receptor system one can learn details about its signal transduction pathway. However, if one has a set of orthogonal agonists, one may learn about the yet undiscovered potential of the system that, in the end, may necessitate refinements to the currently used models. Thus, we wonder why receptors conventionally linked to a given pathway induce a different pattern of differentiation when agonized in another way.

  9. Pramipexole Derivatives as Potent and Selective Dopamine D3 Receptor Agonists with Improved Human Microsomal Stability

    PubMed Central

    Jiang, Cheng; Levant, Beth; Li, Xiaoqin; Zhao, Ting; Wen, Bo; Luo, Ruijuan; Sun, Duxin

    2014-01-01

    We report herein the synthesis and evaluation of a series of new pramipexole derivatives as highly potent and selective dopamine-3 (D3) receptor agonists. A number of these new compounds bind to the D3 receptor with subnanomolar affinities and show excellent selectivity (>10,000) for the D3 receptor over the D1 and D2 receptors. Compound 23 for example, binds to the D3 receptor with a Ki value of 0.53 nM and shows a selectivity of >20,000 over the D2 receptor and the D1 receptor in the binding assays using a rat brain preparation. It has excellent stability in human liver microsomes and in vitro functional assays showed it to be a full agonist for the human D3 receptor. PMID:25338762

  10. [Effects of agonists and antagonists of benzodiazepine, GABA and NMDA receptors, on caffeine-induced seizures in mice].

    PubMed

    Inano, S

    1992-08-01

    In mice, tonic convulsive seizure induced by intravenous administration of caffeine (adenosine A1, A2 receptors antagonist) was significantly potentiated by any one of L-PIA (adenosine A1 receptor agonist), NECA (adenosine A2 receptor agonist) and 2-ClAd (adenosine A1, A2 receptors agonist). The caffeine-induced seizure was unaffected by diazepam (benzodiazepine receptor agonist), but was inhibited by Ro 15-1788 (antagonist or partial agonist). beta-DMCM (antagonist or inverse agonist) increased the seizure. Muscimol (GABA-a receptor agonist), baclofen (GABA-b receptor agonist) and AOAA (GABA transaminase inhibitor) did not show significant effect on caffeine-induced convulsion. Bicuculline (GABA-a receptor antagonist) and picrotoxin (chloride channel blocker) significantly potentiated the convulsion at the doses which did not induce it. Caffeine-induced convulsion was potentiated by NMDA with its non-convulsive dose. CPP (competitive NMDA receptor antagonist) and MK-801 (non-competitive NMDA receptor antagonist) significantly inhibited the seizures. These results suggest that caffeine-induced seizure is not caused by blockade of adenosine receptors. Caffeine may act to beta-carboline sensitive benzodiazepine receptor (Type 1) which has no linkage with GABA-a receptor. Furthermore, it is implied that caffeine plays some role at NMDA receptor calcium ion channel complex.

  11. Antipsychotic-like effect of the muscarinic acetylcholine receptor agonist BuTAC in non-human primates.

    PubMed

    Andersen, Maibritt B; Croy, Carrie Hughes; Dencker, Ditte; Werge, Thomas; Bymaster, Frank P; Felder, Christian C; Fink-Jensen, Anders

    2015-01-01

    Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R)-6-(3-butylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane (BuTAC) exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects of BuTAC in primates. To this end, we investigated the effects of BuTAC on d-amphetamine-induced behaviour in antipsychotic-naive Cebus paella monkeys. Possible adverse events of BuTAC, were evaluated in the same monkeys as well as in monkeys sensitized to antipsychotic-induced extrapyramidal side effects. The present data suggests that, the muscarinic receptor ligand BuTAC exhibits antipsychotic-like behaviour in primates. The behavioural data of BuTAC as well as the new biochemical data further substantiate the rationale for the use of muscarinic M1/M2/M4-preferring receptor agonists as novel pharmacological tools in the treatment of schizophrenia.

  12. Identification of New Agonists and Antagonists of the Insect Odorant Receptor Co-Receptor Subunit

    PubMed Central

    Chen, Sisi; Luetje, Charles W.

    2012-01-01

    Background Insects detect attractive and aversive chemicals using several families of chemosensory receptors, including the OR family of olfactory receptors, making these receptors appealing targets for the control of insects. Insect ORs are odorant-gated ion channels, comprised of at least one common subunit (the odorant receptor co-receptor subunit, Orco) and at least one variable odorant specificity subunit. Each of the many ORs of an insect species is activated or inhibited by an unique set of odorants that interact with the variable odorant specificity subunits, making the development of OR directed insect control agents complex and laborious. However, several N-,2-substituted triazolothioacetamide compounds (VUAA1, VU0450667 and VU0183254) were recently shown to act directly on the highly conserved Orco subunit, suggesting that broadly active compounds can be developed. We have explored the chemical space around the VUAA1 structure in order to identify new Orco ligands. Principal Findings We screened ORs from several insect species, using heterologous expression in Xenopus oocytes and an electrophysiological assay, with a panel of 22 compounds structurally related to VUAA1. By varying the nitrogen position in the pyridine ring and altering the moieties decorating the phenyl ring, we identified two new agonists and a series of competitive antagonists. Screening smaller compounds, similar to portions of the VUAA1 structure, also yielded competitive antagonists. Importantly, we show that Orco antagonists inhibit odorant activation of ORs from several insect species. Detailed examination of one antagonist demonstrated inhibition to be through a non-competitive mechanism. Conclusions A similar pattern of agonist and antagonist sensitivity displayed by Orco subunits from different species suggests a highly conserved binding site structure. The susceptibility to inhibition of odorant activation by Orco antagonism is conserved across disparate insect species

  13. Biperiden enhances L-DOPA methyl ester and dopamine D(l) receptor agonist SKF-82958 but antagonizes D(2)/D(3) receptor agonist rotigotine antihemiparkinsonian actions.

    PubMed

    Domino, Edward F; Ni, Lisong

    2008-12-03

    The effects of biperiden (0, 100, and 320 microg/kg), a selective muscarinic M(1)/M(4) receptor cholinergic antagonist, were studied alone and in combination with those of L-DOPA methyl ester (16.7 mg/kg), a selective dopamine D(1) receptor agonist SKF-82958 (74.8 microg/kg), or a selective D(2)/D(3) receptor agonist rotigotine (32 microg/kg) on circling behavior in MPTP induced hemiparkinsonian monkeys. The doses selected were given i.m. in approximately equieffective doses to produce contraversive circling. Biperiden alone with 5% dextrose vehicle produced a slight increase in contraversive circling in a dose related manner. When combined with L-DOPA methyl ester, it enhanced contraversive circling and decreased ipsiversive circling. When biperiden was combined with SKF-82958, contraversive circling also was enhanced and ipsiversive circling decreased. Exactly the opposite was observed with the combination of biperiden and rotigotine. The results indicate a dramatic difference in effects of a prototypic muscarinic M(1)/M(4) receptor cholinergic antagonist in combination with prototypic full dopamine D(1) or D(2)/D(3) receptor agonists. Biperiden interactions with L-DOPA methyl ester were more predominantly D(l) than D(2)/D(3) receptor-like in this animal model of hemiparkinsonism.

  14. Modulation of breast cancer cell viability by a cannabinoid receptor 2 agonist, JWH-015, is calcium dependent

    PubMed Central

    Hanlon, Katherine E; Lozano-Ondoua, Alysia N; Umaretiya, Puja J; Symons-Liguori, Ashley M; Chandramouli, Anupama; Moy, Jamie K; Kwass, William K; Mantyh, Patrick W; Nelson, Mark A; Vanderah, Todd W

    2016-01-01

    Introduction Cannabinoid compounds, both nonspecific as well as agonists selective for either cannabinoid receptor 1 (CB1) or cannabinoid receptor 2 (CB2), have been shown to modulate the tumor microenvironment by inducing apoptosis in tumor cells in several model systems. The mechanism of this modulation remains only partially delineated, and activity induced via the CB1 and CB2 receptors may be distinct despite significant sequence homology and structural similarity of ligands. Methods The CB2-selective agonist JWH-015 was used to investigate mechanisms downstream of CB2 activation in mouse and human breast cancer cell lines in vitro and in a murine mammary tumor model. Results JWH-015 treatment significantly reduced primary tumor burden and metastasis of luciferase-tagged murine mammary carcinoma 4T1 cells in immunocompetent mice in vivo. Furthermore, JWH-015 reduced the viability of murine 4T1 and human MCF7 mammary carcinoma cells in vitro by inducing apoptosis. JWH-015-mediated reduction of breast cancer cell viability was not dependent on Gαi signaling in vitro or modified by classical pharmacological blockade of CB1, GPR55, TRPV1, or TRPA1 receptors. JWH-015 effects were calcium dependent and induced changes in MAPK/ERK signaling. Conclusion The results of this work characterize the actions of a CB2-selective agonist on breast cancer cells in a syngeneic murine model representing how a clinical presentation of cancer progression and metastasis may be significantly modulated by a G-protein-coupled receptor. PMID:27186076

  15. JWH-133, a Selective Cannabinoid CB₂ Receptor Agonist, Exerts Toxic Effects on Neuroblastoma SH-SY5Y Cells.

    PubMed

    Wojcieszak, Jakub; Krzemień, Wojciech; Zawilska, Jolanta B

    2016-04-01

    Endocannabinoid system plays an important role in the regulation of diverse physiological functions. Although cannabinoid type 2 receptors (CB2) are involved in the modulation of immune system in peripheral tissues, recent findings demonstrated that they are also expressed in the central nervous system and could constitute a new target for the treatment of neurodegenerative disorders. At present, very little is known about the potential effects of CB2-mimetic drugs on neuronal cells. This study aimed to examine whether JWH-133, a selective CB2 receptor agonist, affects the survival of SH-SY5Y neuroblastoma cell line, a widely used experimental in vitro model to study mechanisms of toxicity and protection in nigral dopaminergic neurons. Cell viability was assessed using two complementary methods: MTT test measuring mitochondrial activity and LDHe test indicating disruption of cell membrane integrity. In addition, cell proliferation was measured using BrdU incorporation assay. JWH-133 (10-40 μM) induced a concentration-dependent decrease of SH-SY5Y cell viability and proliferation rate. Using AM-630, a reverse agonist of CB2 receptors, as well as Z-VAD-FMK, a pan-caspase inhibitor, we demonstrated that the cytotoxic effect of JWH-133 presumably was not mediated by activation of CB2 receptors or by caspase pathway. Results of this work suggest that agonists of CB2 receptors when administered in multiple/high doses may induce neuronal damage.

  16. Paradoxical relationship between RAVE (relative activity versus endocytosis) values of several opioid receptor agonists and their liability to cause dependence

    PubMed Central

    Wang, Yu-hua; Sun, Jian-feng; Tao, Yi-min; Xu, Xue-jun; Chi, Zhi-qiang; Liu, Jing-gen

    2010-01-01

    Aim: To examine the relationship between the RAVE (relative activity versus endocytosis) values of opiate agonists and their dependence liability by studying several potent analgesics with special profiles in the development of physical and psychological dependence. Methods: The effects of (−)-cis-(3R,4S,2′R) ohmefentanyl (F9202), (+)-cis-(3R,4S,2′S) ohmefentanyl (F9204), dihydroetorphine (DHE) and morphine on [35S]GTPγS binding, forskolin-stimulated cAMP accumulation, and receptor internalization were studied in CHO cells stably expressing HA-tagged μ-opioid receptors (CHO-HA-MOR). cAMP overshoot in response to the withdrawal of these compound treatments was also tested. Results: All four agonists exhibited the same rank order of activity in stimulation of [35S]GTPγS binding, inhibition of adenylyl cyclase (AC) and induction of receptor internalization: DHE>F9204>F9202>morphine. Based on these findings and the previous in vivo analgesic data obtained from our and other laboratories, the RAVE values of the four agonists were calculated. The rank order of RAVE values was morphine>F9202>F9204>DHE. For the induction of cAMP overshoot, the rank order was F9202≥morphine>F9204≥DHE. Conclusion: Taken in combination with previous findings of these compounds' liability to develop dependence, the present study suggests that the agonist with the highest RAVE value seems to have a relatively greater liability to develop psychological dependence relative to the agonist with the lowest RAVE value. However, the RAVE values of these agonists are not correlated with their probability of developing physical dependence or inducing cAMP overshoot, a cellular hallmark of dependence. PMID:20228826

  17. Current issues in GLP-1 receptor agonist therapy for type 2 diabetes.

    PubMed

    Bloomgarden, Zachary T; Blonde, Lawrence; Garber, Alan J; Wysham, Carol H

    2012-01-01

    The clinical management of hyperglycemia in patients with type 2 diabetes mellitus (T2DM) is guided not only by published treatment algorithms, but also by consideration of recent evidence and through consultation with colleagues and experts. Recent studies have dramatically increased the amount of information regarding the use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs). Topics that may be of particular interest to clinicians who treat T2DM patients include relative glycemic control efficacy of GLP-1 RAs, use of GLP-1 RAs across T2DM progression and in combination with insulin, recent data regarding GLP-1 RA safety, nonglycemic actions of GLP-1 RAs, including weight effects, and impact of GLP-1 RAs on patient quality of life and treatment satisfaction. The following review includes expert consideration of these topics with emphasis on recent, relevant reports to illustrate current perspectives.

  18. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta(2)-receptor agonist

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Easton, Thomas G.; Etlinger, Joseph D.

    1988-01-01

    The effects of a beta(2)-receptor agonist, clenbuterol, and a beta(2) antagonist, butoxamine, on the skeletal muscle fibers of rats were investigated. It was found that chronic treatment of rats with clenbuterol caused hypertrophy of histochemically identified fast-twitch, but not slow-twitch, fibers within the soleus, while in the extensor digitorum longus the mean areas of both fiber types were increased; in both muscles, the ratio of the number of fast-twitch to slow-twitch fibers was increased. In contrast, a treatment with butoxamine caused a reduction of the fast-twitch fiber size in both muscles, and the ratio of the fast-twitch to slow-twitch fibers was decreased.

  19. GABAB receptor-positive modulators: enhancement of GABAB receptor agonist effects in vivo.

    PubMed

    Koek, Wouter; France, Charles P; Cheng, Kejun; Rice, Kenner C

    2010-10-01

    In vivo effects of GABA(B) receptor-positive modulators suggest that they have therapeutic potential for treating central nervous system disorders such as anxiety, depression, and drug abuse. Although these effects generally are thought to be mediated by positive modulation of GABA(B) receptors, such modulation has been examined primarily in vitro. The present study was aimed at further examining the in vivo positive modulatory properties of the GABA(B) receptor-positive modulators, 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl) phenol (CGP7930) and (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF). Both compounds enhanced loss of righting induced by baclofen in mice. However, CGP7930 was less effective and rac-BHFF was less potent for enhancing loss of righting induced by γ-hydroxybutyrate (GHB), which, like baclofen, has GABA(B) receptor agonist properties. In contrast with baclofen- and GHB-induced loss of righting, the hypothermic effects of baclofen and GHB were not enhanced by rac-BHFF but were enhanced by CGP7930 only at doses that produced hypothermia when given alone. CGP7930-induced hypothermia was not attenuated by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348), at doses that blocked baclofen-induced hypothermia, and was not increased by the nitric-oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester, at doses that increased the hypothermic effects of baclofen and GHB. The results provide evidence that CGP7930 and rac-BHFF act in vivo as positive modulators at GABA(B) receptors mediating loss of righting, but not at GABA(B) receptors mediating hypothermia. Conceivably, CGP7930, but not rac-BHFF, acts as an allosteric agonist at these latter receptors. Taken together, the results provide further evidence of pharmacologically distinct GABA(B) receptor subtypes, possibly allowing for a more selective therapeutic interference with the GABA(B) system.

  20. Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria

    PubMed Central

    Brust, Tarsis F.; Morgenweck, Jenny; Kim, Susy A.; Rose, Jamie H.; Locke, Jason L.; Schmid, Cullen L.; Zhou, Lei; Stahl, Edward L.; Cameron, Michael D.; Scarry, Sarah M.; Aubé, Jeffrey; Jones, Sara R.; Martin, Thomas J.; Bohn, Laura M.

    2016-01-01

    Agonists targeting the kappa opioid receptor (KOR) have been promising therapeutic candidates because of their efficacy for treating intractable itch and relieving pain. Unlike typical opioid narcotics, KOR agonists do not produce euphoria or lead to respiratory suppression or overdose. However, they do produce dysphoria and sedation, side effects that have precluded their clinical development as therapeutics. KOR signaling can be fine-tuned to preferentially activate certain pathways over others, such that agonists can bias signaling so that the receptor signals through G proteins rather than other effectors such as βarrestin2. We evaluated a newly developed G protein signaling–biased KOR agonist in preclinical models of pain, pruritis, sedation, dopamine regulation, and dysphoria. We found that triazole 1.1 retained the antinociceptive and antipruritic efficacies of a conventional KOR agonist, yet it did not induce sedation or reductions in dopamine release in mice, nor did it produce dysphoria as determined by intracranial self-stimulation in rats. These data demonstrated that biased agonists may be used to segregate physiological responses downstream of the receptor. Moreover, the findings suggest that biased KOR agonists may present a means to treat pain and intractable itch without the side effects of dysphoria and sedation and with reduced abuse potential. PMID:27899527

  1. Ascorbic acid enables reversible dopamine receptor /sup 3/H-agonist binding

    SciTech Connect

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-11-16

    The effects of ascorbic acid on dopaminergic /sup 3/H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the /sup 3/H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total /sup 3/H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable /sup 3/H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable /sup 3/H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of /sup 3/H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific /sup 3/H-agonist binding to dopamine receptors.

  2. Superagonist, Full Agonist, Partial Agonist, and Antagonist Actions of Arylguanidines at 5-Hydroxytryptamine-3 (5-HT3) Subunit A Receptors.

    PubMed

    Alix, Katie; Khatri, Shailesh; Mosier, Philip D; Casterlow, Samantha; Yan, Dong; Nyce, Heather L; White, Michael M; Schulte, Marvin K; Dukat, Małgorzata

    2016-11-16

    Introduction of minor variations to the substitution pattern of arylguanidine 5-hydroxytryptamine-3 (5-HT3) receptor ligands resulted in a broad spectrum of functionally-active ligands from antagonist to superagonist. For example, (i) introduction of an additional Cl-substituent(s) to our lead full agonist N-(3-chlorophenyl)guanidine (mCPG, 2; efficacy % = 106) yielded superagonists 7-9 (efficacy % = 186, 139, and 129, respectively), (ii) a positional isomer of 2, p-Cl analog 11, displayed partial agonist actions (efficacy % = 12), and (iii) replacing the halogen atom at the meta or para position with an electron donating OCH3 group or a stronger electron withdrawing (i.e., CF3) group resulted in antagonists 13-16. We posit based on combined mutagenesis, crystallographic, and computational analyses that for the 5-HT3 receptor, the arylguanidines that are better able to simultaneously engage the primary and complementary subunits, thus keeping them in close proximity, have greater agonist character while those that are deficient in this ability are antagonists.

  3. Coupling between agonist and chloride ionophore sites of the GABA(A) receptor: agonist/antagonist efficacy of 4-PIOL.

    PubMed

    Rabe, H; Picard, R; Uusi-Oukari, M; Hevers, W; Lüddens, H; Korpi, E R

    2000-12-15

    Eight gamma-aminobutyric acid (GABA) mimetics were tested on their ability to differentiate native GABA(A) receptor subtypes present in various rat brain regions. In rat brain cryostat sections, little regional variations by the agonistic actions of muscimol, thiomuscimol, 4,5,6,7-tetrahydroisoazolo(5,4-c)pyridin-3-ol, piperidine-4-sulphonic acid, taurine and beta-alanine on [35S]t-butylbicyclophosphorothionate ([35S]TBPS) binding to GABA(A) receptor channels were found. They were very similar to those found for GABA itself and indicated no direct correlation with single subunit distributions for any of these compounds. Only the low-efficacy GABA mimetic 5-(4-piperidyl)isoxazol-3-ol (4-PIOL) acted like a weak partial agonist or antagonist depending on the brain area. As the cerebellar granule cell layer was relatively insensitive to both modes of action, we tested 4-PIOL in recombinant alpha1beta2gamma2 (widespread major subtype) and alpha6beta2gamma2 (cerebellar granule cell restricted) receptors where it had different effects on GABA-modulated [35S]TBPS binding and on electrophysiological responses. 4-PIOL may thus serve as a potential lead for receptor subtype selective compounds.

  4. GABAergic involvement in motor effects of an adenosine A(2A) receptor agonist in mice.

    PubMed

    Khisti, R T; Chopde, C T; Abraham, E

    2000-04-03

    Adenosine A(2A) agonists are known to induce catalepsy and inhibit dopamine mediated motor hyperactivity. An antagonistic interaction between adenosine A(2A) and dopamine D(2) receptors is known to regulate GABA-mediated neurotransmission in striatopallidal neurons. Stimulation of adenosine A(2A) and dopamine D(2) receptors has been shown to increase and inhibit GABA release respectively in pallidal GABAergic neurons. However, the role of GABAergic neurotransmission in the motor effects of adenosine A(2A) receptors is not yet known. Therefore in the present study the effect of GABAergic agents on adenosine A(2A) receptor agonist (NECA- or CGS 21680) induced catalepsy and inhibition of amphetamine elicited motor hyperactivity was examined. Pretreatment with GABA, the GABA(A) agonist muscimol or the GABA(B) agonist baclofen potentiated whereas the GABA(A) antagonist bicuculline attenuated NECA- or CGS 21680-induced catalepsy. However, the GABA(B) antagonists phaclophen and delta-aminovaleric acid had no effect. Administration of NECA or CGS 21680 not only reduced spontaneous locomotor activity but also antagonized amphetamine elicited motor hyperactivity. These effects of NECA and CGS 21680 were potentiated by GABA or muscimol and antagonized by bicuculline. These findings provide behavioral evidence for the role of GABA in the motor effects of adenosine A(2A) receptor agonists. Activation of adenosine A(2A) receptors increases GABA release which could reduce dopaminergic tone and induce catalepsy or inhibit amphetamine mediated motor hyperactivity.

  5. Insights into differential modulation of receptor function by hinge region using novel agonistic lutropin receptor and inverse agonistic thyrotropin receptor antibodies.

    PubMed

    Majumdar, Ritankar; Railkar, Reema; Dighe, Rajan R

    2012-03-23

    We report two antibodies, scFv 13B1 and MAb PD1.37, against the hinge regions of LHR and TSHR, respectively, which have similar epitopes but different effects on receptor function. While neither of them affected hormone binding, with marginal effects on hormone response, scFv 13B1 stimulated LHR in a dose-dependent manner, whereas MAb PD1.37 acted as an inverse agonist of TSHR. Moreover, PD1.37 could decrease the basal activity of hinge region CAMs, but had varied effects on those present in ECLs, whereas 13B1 was refractory to any CAMs in LHR. Using truncation mutants and peptide phage display, we compared the differential roles of the hinge region cysteine box-2/3 as well as the exoloops in the activation of these two homologus receptors.

  6. Agonist signalling properties of radiotracers used for imaging of dopamine D2/3 receptors

    PubMed Central

    2014-01-01

    Background Dopamine D2/3 receptor (D2/3R) agonist radiopharmaceuticals are considered superior to antagonists to detect dopamine release, e.g. induced by amphetamines. Agonists bind preferentially to the high-affinity state of the dopamine D2R, which has been proposed as the reason why agonists are more sensitive to detect dopamine release than antagonist radiopharmaceuticals, but this theory has been challenged. Interestingly, not all agonists similarly activate the classic cyclic adenosine mono phosphate (cAMP) and the ?-arrestin-2 pathway, some stimulate preferentially one of these pathways; a phenomenon called biased agonism. Because these pathways can be affected separately by pathologies or drugs (including dopamine releasers), it is important to know how agonist radiotracers act on these pathways. Therefore, we characterized the intracellular signalling of the well-known D2/3R agonist radiopharmaceuticals NPA and PHNO and of several novel D2/3R agonists. Methods cAMP accumulation and ?-arrestin-2 recruitment were measured on cells expressing human D2R. Results All tested agonists showed (almost) full agonism in both pathways. Conclusions The tested D2/3R agonist radiopharmaceuticals did not exhibit biased agonism in vitro. Consequently, it is likely that drugs (including psychostimulants like amphetamines) and/or pathologies that influence the cAMP and/or the ?-arrestin-2 pathway may influence the binding of these radiopharmaceuticals. PMID:25977878

  7. Selective Estrogen Receptor Modulators: Cannabinoid Receptor Inverse Agonists with Differential CB1 and CB2 Selectivity

    PubMed Central

    Franks, Lirit N.; Ford, Benjamin M.; Prather, Paul L.

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are used to treat estrogen receptor (ER)-positive breast cancer and osteoporosis. Interestingly, tamoxifen and newer classes of SERMs also exhibit cytotoxic effects in cancers devoid of ERs, indicating a non-estrogenic mechanism of action. Indicative of a potential ER-independent target, reports demonstrate that tamoxifen binds to cannabinoid receptors (CBRs) with affinity in the low μM range and acts as an inverse agonist. To identify cannabinoids with improved pharmacological properties relative to tamoxifen, and further investigate the use of different SERM scaffolds for future cannabinoid drug development, this study characterized the affinity and activity of SERMs in newer structural classes at CBRs. Fourteen SERMs from five structurally distinct classes were screened for binding to human CBRs. Compounds from four of five SERM classes examined bound to CBRs. Subsequent studies fully characterized CBR affinity and activity of one compound from each class. Ospemifine (a triphenylethylene) selectively bound to CB1Rs, while bazedoxifine (an indole) bound to CB2Rs with highest affinity. Nafoxidine (a tetrahydronaphthalene) and raloxifene (RAL; a benzothiaphene) bound to CB1 and CB2Rs non-selectively. All four compounds acted as inverse agonists at CB1 and CB2Rs, reducing basal G-protein activity with IC50 values in the nM to low μM range. Ospemifine, bazedoxifene and RAL also acted as inverse agonists to elevate basal intracellular cAMP levels in intact CHO-hCB2 cells. The four SERMs examined also acted as CB1 and CB2R antagonists in the cAMP assay, producing rightward shifts in the concentration-effect curve of the CBR agonist CP-55,940. In conclusion, newer classes of SERMs exhibit improved pharmacological characteristics (e.g., in CBR affinity and selectivity) relative to initial studies with tamoxifen, and thus suggest that different SERM scaffolds may be useful for development of safe and selective drugs acting

  8. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

    PubMed

    Matsumoto, Yasuhiko; Ishii, Masaki; Ishii, Kenichi; Miyaguchi, Wataru; Horie, Ryo; Inagaki, Yoshinori; Hamamoto, Hiroshi; Tatematsu, Ken-ichiro; Uchino, Keiro; Tamura, Toshiki; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2014-12-12

    We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists.

  9. Effects of nicotinic acetylcholine receptor agonists on cognition in rhesus monkeys with a chronic cocaine self-administration history.

    PubMed

    Gould, Robert W; Garg, Pradeep K; Garg, Sudha; Nader, Michael A

    2013-01-01

    Cocaine use is associated with impaired cognitive function, which may negatively impact treatment outcomes. One pharmacological strategy to improve cognition involves nicotinic acetylcholine receptor (nAChR) stimulation. However, the effects of chronic cocaine exposure on nAChR distribution and function have not been characterized. Thus, one goal of this study was to examine nAChR availability in rhesus monkeys with an extensive cocaine self-administration history (n = 4; ~6 years, mean intake, 1463 mg/kg) compared to age-matched cocaine-naive control monkeys (n = 5). Using [¹¹C]-nicotine and positron emission tomography (PET) imaging, cocaine-experienced monkeys showed significantly higher receptor availability in the hippocampus compared to cocaine-naive monkeys. A second goal was to examine the effects of nAChR agonists on multiple domains of cognitive performance in these same monkeys. For these studies, working memory was assessed using a delayed match-to-sample (DMS) task, associative learning and behavioral flexibility using stimulus discrimination and reversal learning tasks. When administered acutely, the nonselective high-efficacy agonist nicotine, the low-efficacy α4β2* subtype-selective agonist varenicline and the high-efficacy α7 subtype-selective agonist, PNU-282987 significantly improved DMS performance in both cocaine-naive and cocaine-experienced monkeys. Individual doses of nicotine and varenicline that engendered maximum cognitive enhancing effects on working memory did not affect discrimination or reversal learning, while PNU-282987 disrupted reversal learning in the cocaine-naive monkeys. These findings indicate that a cocaine self-administration history influenced nAChR distribution and the effects of nAChR agonists on cognitive performance, including a reduced sensitivity to the disrupting effects on reversal learning. The cognitive enhancing effects of nAChR agonists may be beneficial in combination with behavioral treatments for

  10. Analysis of the agonist activity of fenoldopam (SKF 82526) at the vascular 5-HT2 receptor.

    PubMed Central

    Christie, M. I.; Harper, D.; Smith, G. W.

    1992-01-01

    1. The 5-HT2 receptor agonist activity of fenoldopam (SKF 82526) was characterized in the rabbit isolated aorta preparation. 2. Fenoldopam was an agonist at the vascular 5-HT2 receptor with lower affinity and efficacy than the naturally occurring agonist 5-hydroxytryptamine (5-HT). Fenoldopam had an affinity (pKA) of 5.84 +/- 0.04 and efficacy (tau) of 0.57 +/- 0.04, whereas 5-HT had a pKA of 6.65 +/- 0.12 and tau of 2.66 +/- 0.41. 3. The constrictor effects of fenoldopam and 5-HT were competitively antagonized by the 5-HT2 antagonist, ketanserin, with pKB values of 8.81 +/- 0.11 and 8.83 +/- 0.10 respectively. 4. Prior incubation with fenoldopam produced a concentration-related rightward shift of a subsequent 5-HT concentration-response curve. This inhibition was specific for 5-HT since constrictor responses to angiotensin II were unaffected. 5. This study indicates that the D1 receptor agonist, fenoldopam, acts as an agonist at the vascular 5-HT2 receptor, but with an affinity and efficacy less than that of the naturally occurring agonist, 5-HT. PMID:1361397

  11. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists

    PubMed Central

    Hiranita, Takato; Kopajtic, Theresa A.; Rice, Kenner C.; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H.; McCurdy, Christopher R.

    2016-01-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  12. Homeostatic action of adenosine A3 and A1 receptor agonists on proliferation of hematopoietic precursor cells.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Streitová, Denisa; Vacek, Antonín

    2008-07-01

    Two adenosine receptor agonists, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and N6-cyclopentyladenosine (CPA), which selectively activate adenosine A3 and A1 receptors, respectively, were tested for their ability to influence proliferation of granulocytic and erythroid cells in femoral bone marrow of mice using morphological criteria. Agonists were given intraperitoneally to mice in repeated isomolar doses of 200 nmol/kg. Three variants of experiments were performed to investigate the action of the agonists under normal resting state of mice and in phases of cell depletion and subsequent regeneration after treatment with the cytotoxic drug 5-fluorouracil. In the case of granulopoiesis, IB-MECA 1) increased by a moderate but significant level proliferation of cells under normal resting state; 2) strongly increased proliferation of cells in the cell depletion phase; but 3) did not influence cell proliferation in the regeneration phase. CPA did not influence cell proliferation under normal resting state and in the cell depletion phase, but strongly suppressed the overshooting cell proliferation in the regeneration phase. The stimulatory effect of IB-MECA on cell proliferation of erythroid cells was observed only when this agonist was administered during the cell depletion phase. CPA did not modulate erythroid proliferation in any of the functional states investigated, probably due to the lower demand for cell production as compared with granulopoiesis. The results indicate opposite effects of the two adenosine receptor agonists on proliferation of hematopoietic cells and suggest the plasticity and homeostatic role of the adenosine receptor expression.

  13. Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus.

    PubMed

    Olesen, Emma T B; Rützler, Michael R; Moeller, Hanne B; Praetorius, Helle A; Fenton, Robert A

    2011-08-02

    In the kidney, the actions of vasopressin on its type-2 receptor (V2R) induce increased water reabsorption alongside polyphosphorylation and membrane targeting of the water channel aquaporin-2 (AQP2). Loss-of-function mutations in the V2R cause X-linked nephrogenic diabetes insipidus. Treatment of this condition would require bypassing the V2R to increase AQP2 membrane targeting, but currently no specific pharmacological therapy is available. The present study examined specific E-prostanoid receptors for this purpose. In vitro, prostaglandin E2 (PGE2) and selective agonists for the E-prostanoid receptors EP2 (butaprost) or EP4 (CAY10580) all increased trafficking and ser-264 phosphorylation of AQP2 in Madin-Darby canine kidney cells. Only PGE2 and butaprost increased cAMP and ser-269 phosphorylation of AQP2. Ex vivo, PGE2, butaprost, or CAY10580 increased AQP2 phosphorylation in isolated cortical tubules, whereas PGE2 and butaprost selectively increased AQP2 membrane accumulation in kidney slices. In vivo, a V2R antagonist caused a severe urinary concentrating defect in rats, which was greatly alleviated by treatment with butaprost. In conclusion, EP2 and EP4 agonists increase AQP2 phosphorylation and trafficking, likely through different signaling pathways. Furthermore, EP2 selective agonists can partially compensate for a nonfunctional V2R, providing a rationale for new treatment strategies for hereditary nephrogenic diabetes insipidus.

  14. A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats.

    PubMed

    Choi, In-Young; Lee, Jae-Chul; Ju, Chung; Hwang, Sunyoung; Cho, Geum-Sil; Lee, Hyuk Woo; Choi, Won Jun; Jeong, Lak Shin; Kim, Won-Ki

    2011-10-01

    A3 adenosine receptor (A3AR) is recognized as a novel therapeutic target for ischemic injury; however, the mechanism underlying anti-ischemic protection by the A3AR agonist remains unclear. Here, we report that 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyl-4'-thioadenosine (LJ529), a selective A3AR agonist, reduces inflammatory responses that may contribute to ischemic cerebral injury. Postischemic treatment with LJ529 markedly reduced cerebral ischemic injury caused by 1.5-hour middle cerebral artery occlusion, followed by 24-hour reperfusion in rats. This effect was abolished by the simultaneous administration of the A3AR antagonist MRS1523, but not the A2AAR antagonist SCH58261. LJ529 prevented the infiltration/migration of microglia and monocytes occurring after middle cerebral artery occlusion and reperfusion, and also after injection of lipopolysaccharides into the corpus callosum. The reduced migration of microglia by LJ529 could be related with direct inhibition of chemotaxis and down-regulation of spatiotemporal expression of Rho GTPases (including Rac, Cdc42, and Rho), rather than by biologically relevant inhibition of inflammatory cytokine/chemokine release (eg, IL-1β, TNF-α, and MCP-1) or by direct inhibition of excitotoxicity/oxidative stress (not affected by LJ529). The present findings indicate that postischemic activation of A3AR and the resultant reduction of inflammatory response should provide a promising therapeutic strategy for the treatment of ischemic stroke.

  15. γ-Hydroxybutyric acid (GHB) is not an agonist of extrasynaptic GABAA receptors.

    PubMed

    Connelly, William M; Errington, Adam C; Crunelli, Vincenzo

    2013-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous compound and a drug used clinically to treat the symptoms of narcolepsy. GHB is known to be an agonist of GABAB receptors with millimolar affinity, but also binds with much higher affinity to another site, known as the GHB receptor. While a body of evidence has shown that GHB does not bind to GABAA receptors widely, recent evidence has suggested that the GHB receptor is in fact on extrasynaptic α4β1δ GABAA receptors, where GHB acts as an agonist with an EC50 of 140 nM. We investigated three neuronal cell types that express a tonic GABAA receptor current mediated by extrasynaptic receptors: ventrobasal (VB) thalamic neurons, dentate gyrus granule cells and striatal medium spiny neurons. Using whole-cell voltage clamp in brain slices, we found no evidence that GHB (10 µM) induced any GABAA receptor mediated current in these cell types, nor that it modulated inhibitory synaptic currents. Furthermore, a high concentration of GHB (3 mM) was able to produce a GABAB receptor mediated current, but did not induce any other currents. These results suggest either that GHB is not a high affinity agonist at native α4β1δ receptors, or that these receptors do not exist in classical areas associated with extrasynaptic currents.

  16. Development of selective agonists and antagonists of P2Y receptors

    PubMed Central

    Ivanov, Andrei A.; de Castro, Sonia; Harden, T. Kendall; Ko, Hyojin

    2008-01-01

    Although elucidation of the medicinal chemistry of agonists and antagonists of the P2Y receptors has lagged behind that of many other members of group A G protein-coupled receptors, detailed qualitative and quantitative structure–activity relationships (SARs) were recently constructed for several of the subtypes. Agonists selective for P2Y1, P2Y2, and P2Y6 receptors and nucleotide antagonists selective for P2Y1 and P2Y12 receptors are now known. Selective nonnucleotide antagonists were reported for P2Y1, P2Y2, P2Y6, P2Y11, P2Y12, and P2Y13 receptors. At the P2Y1 and P2Y12 receptors, nucleotide agonists (5′-diphosphate derivatives) were converted into antagonists of nanomolar affinity by altering the phosphate moieties, with a focus particularly on the ribose conformation and substitution pattern. Nucleotide analogues with conformationally constrained ribose-like rings were introduced as selective receptor probes for P2Y1 and P2Y6 receptors. Screening chemically diverse compound libraries has begun to yield new lead compounds for the development of P2Y receptor antagonists, such as competitive P2Y12 receptor antagonists with antithrombotic activity. Selective agonists for the P2Y4, P2Y11, and P2Y13 receptors and selective antagonists for P2Y4 and P2Y14 receptors have not yet been identified. The P2Y14 receptor appears to be the most restrictive of the class with respect to modification of the nucleobase, ribose, and phosphate moieties. The continuing process of ligand design for the P2Y receptors will aid in the identification of new clinical targets. PMID:18600475

  17. The effects of the 5-HT(6) receptor agonist EMD and the 5-HT(7) receptor agonist AS19 on memory formation.

    PubMed

    Meneses, A; Perez-Garcia, G; Liy-Salmeron, G; Flores-Galvez, D; Castillo, C; Castillo, E

    2008-12-16

    Growing evidence indicates that 5-hydrohytryptamine (5-HT) receptors mediate learning and memory. Particularly interesting are 5-HT(6) and 5-HT(7) receptors, which are localized in brain areas involved in memory formation. Interestingly, recently selective 5-HT(6) and 5-HT(7) receptor agonists and antagonists have become available. Previous evidence indicates that 5-HT(6) or 5-HT(7) receptors antagonists had no effects, improved memory formation and/or reversed amnesia. Herein, the effects of EMD (a 5-HT(6) receptor agonist) and AS19 (a 5-HT(7) receptor agonist) in the associative learning task of autoshaping were studied. Post-training systemic administration of EMD (1-10 mg/kg) or AS19 (1-10 mg/kg) were tested in short-term memory (STM) and long-term memory (LTM). Results showed that only EMD 5.0mg/kg impaired both STM and LTM. AS19 at 1-10 mg/kg significantly impaired STM but not LTM. In those groups used to test only LTM, EMD impaired it; while AS19 improved LTM. Moreover, in the interaction experiments, the STM EMD-impairment effect was partially reversed by the selective 5-HT(6) receptor antagonist SB-399885 (10 mg/kg). The STM AS19-impairment effect (5.0 mg/kg) was not altered by the selective 5-HT(1A) antagonist WAY 100635 (0.3 mg/kg) but reversed by the selective 5-HT(7) receptor antagonist SB-269970 (10.0 mg/kg). The AS19-SB-269970 combination impaired LTM. Taken together these data suggest that the stimulation of 5-HT(6) impaired both STM and LTM. 5-HT(7) receptors stimulation impaired STM but improved LTM. And these results are discussed in the context of their possible neural bases.

  18. Successful treatment of dopamine dysregulation syndrome with dopamine D2 partial agonist antipsychotic drug.

    PubMed

    Mizushima, Jin; Takahata, Keisuke; Kawashima, Noriko; Kato, Motoichiro

    2012-07-07

    Dopamine dysregulation syndrome (DDS) consists of a series of complications such as compulsive use of dopaminergic medications, aggressive or hypomanic behaviors during excessive use, and withdrawal states characterized by dysphoria and anxiety, caused by long-term dopaminergic treatment in patients with Parkinson's disease (PD). Although several ways to manage DDS have been suggested, there has been no established treatment that can manage DDS without deterioration of motor symptoms. In this article, we present a case of PD in whom the administration of the dopamine D2 partial agonistic antipsychotic drug aripiprazole improved DDS symptoms such as craving and compulsive behavior without worsening of motor symptoms. Considering the profile of this drug as a partial agonist at D2 receptors, it is possible that it exerts its therapeutic effect on DDS by modulating the dysfunctional dopamine system.

  19. Novel Aryl Hydrocarbon Receptor Agonist Suppresses Migration and Invasion of Breast Cancer Cells

    PubMed Central

    Mohafez, Omar; Hairul-Islam, Villianur Ibrahim; Alzahrani, Abdullah; Bani Ismail, Mohammad; Thirugnanasambantham, Krishnaraj

    2016-01-01

    Background Despite the remarkable progress to fight against breast cancer, metastasis remains the dominant cause of treatment failure and recurrence. Therefore, control of invasiveness potential of breast cancer cells is crucial. Accumulating evidences suggest Aryl hydrocarbon receptor (Ahr), a helix-loop-helix transcription factor, as a promising target to control migration and invasion in breast cancer cells. Thus, an Ahr-based exploration was performed to identify a new Ahr agonist with inhibitory potentials on cancer cell motility. Methods For prediction of potential interactions between Ahr and candidate molecules, bioinformatics analysis was carried out. The interaction of the selected ligand with Ahr and its effects on migration and invasion were examined in vitro using the MDA-MB-231 and T47D cell lines. The silencing RNAs were transfected into cells by electroporation. Expressions of microRNAs (miRNAs) and coding genes were quantified by real-time PCR, and the protein levels were detected by western blot. Results The in silico and in vitro results identified Flavipin as a novel Ahr agonist. It induces formation of Ahr/Ahr nuclear translocator (Arnt) heterodimer to promote the expression of cytochrome P450 family 1 subfamily A member 1 (Cyp1a1). Migration and invasion of MDA-MB-231 and T47D cells were inhibited with Flavipin treatment in an Ahr-dependent fashion. Interestingly, Flavipin suppressed the pro-metastatic factor SRY-related HMG-box4 (Sox4) by inducing miR-212/132 cluster. Moreover, Flavipin inhibited growth and adhesion of both cell lines by suppressing gene expressions of B-cell lymphoma 2 (Bcl2) and integrinα4 (ITGA4). Conclusion Taken together, the results introduce Flavipin as a novel Ahr agonist, and provide first evidences on its inhibitory effects on cancer cell motility, suggesting Flavipin as a candidate to control cell invasiveness in breast cancer patients. PMID:27907195

  20. LHRH Agonists for the Treatment of Prostate Cancer: 2012

    PubMed Central

    Lepor, Herbert; Shore, Neal D

    2012-01-01

    The most recent guidelines on prostate cancer screening from the American Urological Association (2009), the National Comprehensive Cancer Network (2011), and the European Association of Urology (2011), as well as treatment and advances in disease monitoring, have increased the androgen deprivation therapy (ADT) population and the duration of ADT usage as the first-line treatment for metastatic prostate cancer. According to the European Association of Urology, gonadotropin-releasing hormone (GnRH) agonists have become the leading therapeutic option for ADT because they avoid the physical and psychological discomforts associated with orchiectomy. However, GnRH agonists display several shortcomings, including testosterone (T) surge (“clinical flare”) and microsurges. T surge delays the intended serologic endpoint of T suppression and may exacerbate clinical symptoms. Furthermore, ADT manifests an adverse-event spectrum that can impact quality of life with its attendant well-documented morbidities. Strategies to improve ADT tolerability include a holistic management approach, improved diet and exercise, and more specific monitoring to detect and prevent T depletion toxicities. Intermittent ADT, which allows hormonal recovery between treatment periods, has become increasingly utilized as a methodology for improving quality of life while not diminishing chronic ADT efficacy, and may also provide healthcare cost savings. This review assesses the present and potential future role of GnRH agonists in prostate cancer and explores strategies to minimize the adverse-event profile for patients receiving ADT. PMID:23172994

  1. LHRH Agonists for the Treatment of Prostate Cancer: 2012.

    PubMed

    Lepor, Herbert; Shore, Neal D

    2012-01-01

    The most recent guidelines on prostate cancer screening from the American Urological Association (2009), the National Comprehensive Cancer Network (2011), and the European Association of Urology (2011), as well as treatment and advances in disease monitoring, have increased the androgen deprivation therapy (ADT) population and the duration of ADT usage as the first-line treatment for metastatic prostate cancer. According to the European Association of Urology, gonadotropin-releasing hormone (GnRH) agonists have become the leading therapeutic option for ADT because they avoid the physical and psychological discomforts associated with orchiectomy. However, GnRH agonists display several shortcomings, including testosterone (T) surge ("clinical flare") and microsurges. T surge delays the intended serologic endpoint of T suppression and may exacerbate clinical symptoms. Furthermore, ADT manifests an adverse-event spectrum that can impact quality of life with its attendant well-documented morbidities. Strategies to improve ADT tolerability include a holistic management approach, improved diet and exercise, and more specific monitoring to detect and prevent T depletion toxicities. Intermittent ADT, which allows hormonal recovery between treatment periods, has become increasingly utilized as a methodology for improving quality of life while not diminishing chronic ADT efficacy, and may also provide healthcare cost savings. This review assesses the present and potential future role of GnRH agonists in prostate cancer and explores strategies to minimize the adverse-event profile for patients receiving ADT.

  2. Rate constants of agonist binding to muscarinic receptors in rat brain medulla. Evaluation by competition kinetics

    SciTech Connect

    Schreiber, G.; Henis, Y.I.; Sokolovsky, M.

    1985-07-25

    The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-(TH)piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. Our findings also suggest that isomerization of the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.

  3. Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists.

    PubMed Central

    Mahfoudi, A; Roulet, E; Dauvois, S; Parker, M G; Wahli, W

    1995-01-01

    The estrogen receptor (ER) stimulates transcription of target genes by means of its two transcriptional activation domains, AF-1 in the N-terminal part of the receptor and AF-2 in its ligand-binding domain. AF-2 activity is dependent upon a putative amphipathic alpha-helix between residues 538 and 552 in the mouse ER. Point mutagenesis of conserved hydrophobic residues within this region reduces estrogen-dependent transcriptional activation without affecting hormone and DNA binding significantly. Here we show that these mutations dramatically alter the pharmacology of estrogen antagonists. Both tamoxifen and ICI 164,384 behave as strong agonists in HeLa cells expressing the ER mutants. In contrast to the wild-type ER, the mutant receptors maintain nuclear localization and DNA-binding activity after ICI 164,384 treatment. Structural alterations in AF-2 caused by gene mutations such as those described herein or by estrogen-independent signaling pathways may account for the insensitivity of some breast cancers to tamoxifen treatment. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7753783

  4. Dopamine D3 receptor-preferring agonist enhances the subjective effects of cocaine in humans.

    PubMed

    Newton, Thomas F; Haile, Colin N; Mahoney, James J; Shah, Ravi; Verrico, Christopher D; De La Garza, Richard; Kosten, Thomas R

    2015-11-30

    Pramipexole is a D3 dopamine receptor-preferring agonist indicated for the treatment of Parkinson disease. Studies associate pramipexole with pathological gambling and impulse control disorders suggesting a role for D3 receptors in reinforcement processes. Clinical studies showed pramipexole decreased cocaine craving and reversed central deficits in individuals with cocaine use disorder. Preclinical studies have shown acute administration of pramipexole increases cocaine's reinforcing effects whereas other reports suggest chronic pramipexole produces tolerance to cocaine. In a randomized, double-blind, placebo-controlled study we examined the impact of pramipexole treatment on the subjective effects produced by cocaine in volunteers with cocaine use disorder. Volunteers received pramipexole titrated up to 3.0mg/d or placebo over 15 days. Participants then received intravenous cocaine (0, 20 and 40mg) on day 15. Cardiovascular and subjective effects were obtained with visual analog scales at time points across the session. Pramipexole alone increased peak heart rate following saline and diastolic blood pressure following cocaine. Pramipexole produced upwards of two-fold increases in positive subjective effects ratings following cocaine. These results indicate that chronic D3 receptor activation increases the subjective effects of cocaine in humans. Caution should be used when prescribing pramipexole to patients that may also use cocaine.

  5. The dopamine D(1) receptor agonist SKF-82958 serves as a discriminative stimulus in the rat.

    PubMed

    Haile, C N; Carey, G; Varty, G B; Coffin, V L

    2000-01-28

    We examined the discriminative stimulus effects of the high-efficacy dopamine D(1) receptor agonist (+/-)6-chloro-7, 8-dihydroxy-3-ally1-phenyl-2,3,4,5-tetrahydro-1H-3benzazepine++ + hydrobromide (SKF-82958) in rats trained to discriminate SKF-82958 (0.03 mg/kg) from vehicle in a two-lever food-reinforced drug discrimination task. SKF-82958 produced dose-related increases in responding to the SKF-82958 appropriate lever with full substitution occurring at the training dose. Pretreatment with the dopamine D(1)/D(5) receptor antagonist (-)-trans-6,7,7a,8,9, 13b-hexahydro-3-chloro-2hydroxy-N-methyl-5H-benzo-[d]naphtho -¿2, 1-b¿azepine (SCH-39166) (0.01 mg/kg) attenuated the discriminative stimulus effects of SKF-82958. Pretreatment with the dopamine D(2) receptor antagonist raclopride (0.03 mg/kg) had no effect. The high-efficacy dopamine D(1) receptor agonist R(+)6chloro-7, 8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF-81297) fully substituted for SKF-82958, whereas the low-efficacy dopamine D(1) receptor agonist (+/-)1-phenyl-2,3,4, 5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride (SKF-38393) produced only partial substitution. The dopamine D(2) receptor agonist trans-(+/-)-4,4a,5,6,7,8,8a, 9-octahydro-5-propyl-1H-propyl-1H-pyrazolo[3,4-g]quinoline dihydrochloride (quinpirole) and the indirect dopamine agonist cocaine did not substitute fully for the SKF-82958 discriminative stimulus cue. These results demonstrate that the high-efficacy dopamine D(1) receptor agonist SKF-82958 can serve as an effective discriminative stimulus in the rat, and that these effects are mediated by a dopamine D(1)-like receptor mechanism.

  6. Discovery and Characterization of Biased Allosteric Agonists of the Chemokine Receptor CXCR3.

    PubMed

    Milanos, Lampros; Brox, Regine; Frank, Theresa; Poklukar, Gašper; Palmisano, Ralf; Waibel, Reiner; Einsiedel, Jürgen; Dürr, Maximilian; Ivanović-Burmazović, Ivana; Larsen, Olav; Hjortø, Gertrud Malene; Rosenkilde, Mette Marie; Tschammer, Nuska

    2016-03-10

    In this work we report a design, synthesis, and detailed functional characterization of unique strongly biased allosteric agonists of CXCR3 that contain tetrahydroisoquinoline carboxamide cores. Compound 11 (FAUC1036) is the first strongly biased allosteric agonist of CXCR3 that selectively induces weak chemotaxis and leads to receptor internalization and the β-arrestin 2 recruitment with potency comparable to that of the chemokine CXCL11 without any activation of G proteins. A subtle structural change (addition of a methoxy group, 14 (FAUC1104)) led to a contrasting biased allosteric partial agonist that activated solely G proteins, induced chemotaxis, but failed to induce receptor internalization or β-arrestin 2 recruitment. Concomitant structure-activity relationship studies indicated very steep structure-activity relationships, which steer the ligand bias between the β-arrestin 2 and G protein pathway. Overall, the information presented provides a powerful platform for further development and rational design of strongly biased allosteric agonists of CXCR3.

  7. NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids

    PubMed Central

    Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  8. Antidiabetic properties of the histamine H3 receptor protean agonist proxyfan.

    PubMed

    Henry, Melanie B; Zheng, Shuqin; Duan, Chenxia; Patel, Bhuneshwari; Vassileva, Galya; Sondey, Christopher; Lachowicz, Jean; Hwa, Joyce J

    2011-03-01

    Proxyfan is a histamine H3 receptor protean agonist that can produce a spectrum of pharmacological effects including agonist, inverse agonist, and antagonist. We have discovered that proxyfan (10 mg/kg orally) significantly improved glucose excursion after an ip glucose tolerance test in either lean or high-fat/cholesterol diet-induced obese mice. It also reduced plasma glucose levels comparable to that of metformin (300 mg/kg orally) in a nongenetic type 2 diabetes mouse model. The dose-dependent decrease in glucose excursion correlated with inhibition of ex vivo H3 receptor binding in the cerebral cortex. In addition, glucose levels were significantly reduced compared with vehicle-treated mice after intracerebroventricular administration of proxyfan, suggesting the involvement of central H3 receptors. Proxyfan-induced reduction of glucose excursion was not observed in the H3 receptor knockout mice, suggesting that proxyfan mediates this effect through H3 receptors. Proxyfan reduced glucose excursion by significantly increasing plasma insulin levels in a glucose-independent manner. However, no difference in insulin sensitivity was observed in proxyfan-treated mice. The H1 receptor antagonist chlorpheniramine and the H2 receptor antagonist zolantidine had modest effects on glucose excursion, and neither inhibited the glucose excursion reduced by proxyfan. The H3 receptor antagonist/inverse agonist, thioperamide, had weaker effects on glucose excursion compared with proxyfan, whereas the H3 receptor agonist imetit did not affect glucose excursion. In conclusion, these findings demonstrate, for the first time, that manipulation of central histamine H3 receptor by proxyfan can significantly improve glucose excursion by increasing plasma insulin levels via a glucose-independent mechanism.

  9. Peripheral Administration of a Long-Acting Peptide Oxytocin Receptor Agonist Inhibits Fear-Induced Freezing

    PubMed Central

    Modi, Meera E.; Majchrzak, Mark J.; Fonseca, Kari R.; Doran, Angela; Osgood, Sarah; Vanase-Frawley, Michelle; Feyfant, Eric; McInnes, Heather; Darvari, Ramin; Buhl, Derek L.

    2016-01-01

    Oxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non–brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability. PF-06478939 was generated with only increased stability to disambiguate changes to selectivity versus stability. The efficacy of these compounds in evoking behavioral effects was tested in a conditioned fear paradigm. Both central and peripheral administration of PF1 inhibited freezing in response to a conditioned fear stimulus. Peripheral administration of PF1 resulted in a sustained level of plasma concentrations for greater than 20 hours but no detectable accumulation in brain tissue, suggesting that plasma or cerebrospinal fluid exposure was sufficient to evoke behavioral effects. Behavioral efficacy of peripherally administered OT receptor agonists on conditioned fear response opens the door to potential peripheral mechanisms in other behavioral paradigms, whether they are mediated by direct peripheral activation or feed-forward responses. Compound PF1 is freely available as a tool compound to further explore the role of peripheral OT in behavioral response. PMID:27217590

  10. Quantum dot-based screening system for discovery of g protein-coupled receptor agonists.

    PubMed

    Lee, Junghan; Kwon, Yong-Jun; Choi, Youngseon; Kim, Hi Chul; Kim, Keumhyun; Kim, JinYeop; Park, Sun; Song, Rita

    2012-07-09

    Cellular imaging has emerged as an important tool to unravel biological complexity and to accelerate the drug-discovery process, including cell-based screening, target identification, and mechanism of action studies. Recently, semiconductor nanoparticles known as quantum dots (QDs) have attracted great interest in cellular imaging applications due to their unique photophysical properties such as size, tunable optical property, multiplexing capability, and photostability. Herein, we show that QDs can also be applied to assay development and eventually to high-throughput/content screening (HTS/HCS) for drug discovery. We have synthesized QDs modified with PEG and primary antibodies to be used as fluorescent probes for a cell-based HTS system. The G protein-coupled receptor (GPCR) family is known to be involved in most major diseases. We therefore constructed human osteosarcoma (U2OS) cells that specifically overexpress two types of differently tagged GPCRs: influenza hemagglutinin (HA) peptide-tagged κ-opioid receptors (κ-ORs) and GFP-tagged A3 adenosine receptors (A3AR). In this study, we have demonstrated that 1) anti-HA antibody-conjugated QDs could specifically label HA-tagged κ-ORs, 2) subsequent treatment of QD-tagged GPCR agonists allowed agonist-induced translocation to be monitored in real time, 3) excellent emission spectral properties of QD permitted the simultaneous detection of two GPCRs in one cell, and 4) the robust imaging capabilities of the QD-antibody conjugates could lead to reproducible quantitative data from high-content cellular images. These results suggest that the present QD-based GPCR inhibitor screening system can be a promising platform for further drug screening applications.

  11. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury

    SciTech Connect

    Goto, Hiromasa; Nomiyama, Takashi; Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Komiya, Koji; Arakawa, Masayuki; Jin, Wen Long; Kanazawa, Akio; Kawamori, Ryuzo; Fujitani, Yoshio; Hirose, Takahisa; Watada, Hirotaka

    2011-02-04

    Research highlights: {yields} Exendin-4 reduces neointimal formation after vascular injury in a mouse model. {yields} Exendin-4 dose not alter metabolic parameters in non-diabetic, non-obese mouse model. {yields} Exendin-4 reduces PDGF-induced cell proliferation in cultured SMCs. {yields} Exendin-4 may reduces neointimal formation after vascular injury at least in part through its direct action on SMCs. -- Abstract: Glucagon-like peptide-1 is a hormone secreted by L cells of the small intestine and stimulates glucose-dependent insulin response. Glucagon-like peptide-1 receptor agonists such as exendin-4 are currently used in type 2 diabetes, and considered to have beneficial effects on the cardiovascular system. To further elucidate the effect of glucagon-like peptide-1 receptor agonists on cardiovascular diseases, we investigated the effects of exendin-4 on intimal thickening after endothelial injury. Under continuous infusion of exendin-4 at 24 nmol/kg/day, C57BL/6 mice were subjected to endothelial denudation injury of the femoral artery. Treatment of mice with exendin-4 reduced neointimal formation at 4 weeks after arterial injury without altering body weight or various metabolic parameters. In addition, in vitro studies of isolated murine, rat and human aortic vascular smooth muscle cells showed the expression of GLP-1 receptor. The addition of 10 nM exendin-4 to cultured smooth muscle cells significantly reduced their proliferation induced by platelet-derived growth factor. Our results suggested that exendin-4 reduced intimal thickening after vascular injury at least in part by the suppression of platelet-derived growth factor-induced smooth muscle cells proliferation.

  12. The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat.

    PubMed

    Stanhope, K J; Mirza, N R; Bickerdike, M J; Bright, J L; Harrington, N R; Hesselink, M B; Kennett, G A; Lightowler, S; Sheardown, M J; Syed, R; Upton, R L; Wadsworth, G; Weiss, S M; Wyatt, A

    2001-11-01

    The muscarinic receptor agonist xanomeline was examined and compared with the antipsychotics clozapine and/or haloperidol in the following in vivo rat models: apomorphine-induced disruption of prepulse inhibition (PPI), amphetamine-induced hyperlocomotion, and the conditioned emotional response (CER) test. The effects of xanomeline were also assessed ex vivo on dopamine turnover in the rat medial prefrontal cortex. Under conditions of varying dose and prepulse intensity, xanomeline, like haloperidol, had no effect on PPI. In contrast, the muscarinic receptor antagonist scopolamine and the muscarinic receptor agonist pilocarpine both induced significant dose-dependent deficits in PPI. Haloperidol and xanomeline, but not pilocarpine, dose dependently reversed apomorphine-induced disruption of PPI. Thus, xanomeline induced a clear antipsychotic-like effect in PPI, whereas pilocarpine appeared to induce a psychotomimetic-like effect. Xanomeline attenuated amphetamine-induced hyperactivity at doses that had no effect on spontaneous activity, possibly indicating a separation between attenuation of limbic hyperdopaminergic function and the induction of hypolocomotion. Haloperidol and clozapine also reversed amphetamine-induced hyperlocomotion, but at similar doses to those that reduced spontaneous locomotion. Clozapine, but not haloperidol had an anxiolytic-like effect in the CER test. The effects of xanomeline in the CER test were similar to those of clozapine, although at the anxiolytic dose it tended to disrupt baseline levels of lever pressing. Finally, haloperidol, clozapine, pilocarpine, and xanomeline, all induced an increase in dopamine turnover in medial prefrontal cortex. The antipsychotic-like effects of xanomeline in the animal models used here suggest that it may be a useful treatment for psychosis.

  13. Angiotensin AT2 receptor agonist prevents salt-sensitive hypertension in obese Zucker rats

    PubMed Central

    Ali, Quaisar; Patel, Sanket

    2015-01-01

    High-sodium intake is a risk factor for the pathogenesis of hypertension, especially in obesity. The present study is designed to investigate whether angiotensin type 2 receptor (AT2R) activation with selective agonist C21 prevents high-sodium diet (HSD)-induced hypertension in obese animals. Male obese rats were treated with AT2R agonist C21 (1 mg·kg−1·day−1, oral) while maintained on either normal-sodium diet (NSD; 0.4%) or HSD (4%) for 2 wk. Radiotelemetric recording showed a time-dependent increase in systolic blood pressure in HSD-fed obese rats, being maximal increase (∼27 mmHg) at day 12 of the HSD regimen. C21 treatment completely prevented the increase in blood pressure of HSD-fed rats. Compared with NSD controls, HSD-fed obese rats had greater natriuresis/diuresis and urinary levels of nitrates, and these parameters were further increased by C21 treatment. Also, C21 treatment improved glomerular filtration rate in HSD-fed rats. HSD-fed rats expressed higher level of cortical ANG II, which was reduced to 50% by C21 treatment. HSD feeding and/or C21 treatment had no effects on cortical renin activity and the expression of angiotensin-converting enzyme (ACE) and chymase, which are ANG II-producing enzymes. However, ANG(1–7) concentration and ACE2 activity in the renal cortex were reduced by HSD feeding, and C21 treatment rescued both the parameters. Also, C21 treatment reduced the cortical expression of AT1R in HSD-fed rats, but had no effect of AT2R expression. We conclude that chronic treatment with the AT2R agonist C21 prevents salt-sensitive hypertension in obese rats, and a reduction in the renal ANG II/AT1R and enhanced ACE2/ANG(1–7) levels may play a potential role in this phenomenon. PMID:25855512

  14. Angiotensin AT2 receptor agonist prevents salt-sensitive hypertension in obese Zucker rats.

    PubMed

    Ali, Quaisar; Patel, Sanket; Hussain, Tahir

    2015-06-15

    High-sodium intake is a risk factor for the pathogenesis of hypertension, especially in obesity. The present study is designed to investigate whether angiotensin type 2 receptor (AT2R) activation with selective agonist C21 prevents high-sodium diet (HSD)-induced hypertension in obese animals. Male obese rats were treated with AT2R agonist C21 (1 mg·kg(-1)·day(-1), oral) while maintained on either normal-sodium diet (NSD; 0.4%) or HSD (4%) for 2 wk. Radiotelemetric recording showed a time-dependent increase in systolic blood pressure in HSD-fed obese rats, being maximal increase (∼27 mmHg) at day 12 of the HSD regimen. C21 treatment completely prevented the increase in blood pressure of HSD-fed rats. Compared with NSD controls, HSD-fed obese rats had greater natriuresis/diuresis and urinary levels of nitrates, and these parameters were further increased by C21 treatment. Also, C21 treatment improved glomerular filtration rate in HSD-fed rats. HSD-fed rats expressed higher level of cortical ANG II, which was reduced to 50% by C21 treatment. HSD feeding and/or C21 treatment had no effects on cortical renin activity and the expression of angiotensin-converting enzyme (ACE) and chymase, which are ANG II-producing enzymes. However, ANG(1-7) concentration and ACE2 activity in the renal cortex were reduced by HSD feeding, and C21 treatment rescued both the parameters. Also, C21 treatment reduced the cortical expression of AT1R in HSD-fed rats, but had no effect of AT2R expression. We conclude that chronic treatment with the AT2R agonist C21 prevents salt-sensitive hypertension in obese rats, and a reduction in the renal ANG II/AT1R and enhanced ACE2/ANG(1-7) levels may play a potential role in this phenomenon.

  15. Sphingosine-1-Phosphate Receptor-1 Selective Agonist Enhances Collateral Growth and Protects against Subsequent Stroke

    PubMed Central

    Ichijo, Masahiko; Ishibashi, Satoru; Li, Fuying; Yui, Daishi; Miki, Kazunori; Mizusawa, Hidehiro; Yokota, Takanori

    2015-01-01

    Background and Purpose Collateral growth after acute occlusion of an intracranial artery is triggered by increasing shear stress in preexisting collateral pathways. Recently, sphingosine-1-phosphate receptor-1 (S1PR1) on endothelial cells was reported to be essential in sensing fluid shear stress. Here, we evaluated the expression of S1PR1 in the hypoperfused mouse brain and investigated the effect of a selective S1PR1 agonist on leptomeningeal collateral growth and subsequent ischemic damage after focal ischemia. Methods In C57Bl/6 mice (n = 133) subjected to unilateral common carotid occlusion (CCAO) and sham surgery. The first series examined the time course of collateral growth, cell proliferation, and S1PR1 expression in the leptomeningeal arteries after CCAO. The second series examined the relationship between pharmacological regulation of S1PR1 and collateral growth of leptomeningeal anastomoses. Animals were randomly assigned to one of the following groups: LtCCAO and daily intraperitoneal (ip) injection for 7 days of an S1PR1 selective agonist (SEW2871, 5 mg/kg/day); sham surgery and daily ip injection for 7 days of SEW2871 after surgery; LtCCAO and daily ip injection for 7 days of SEW2871 and an S1PR1 inverse agonist (VPC23019, 0.5 mg/kg); LtCCAO and daily ip injection of DMSO for 7 days after surgery; and sham surgery and daily ip injection of DMSO for 7 days. Leptomeningeal anastomoses were visualized 14 days after LtCCAO by latex perfusion method, and a set of animals underwent subsequent permanent middle cerebral artery occlusion (pMCAO) 7days after the treatment termination. Neurological functions 1hour, 1, 4, and 7days and infarction volume 7days after pMCAO were evaluated. Results In parallel with the increase in S1PR1 mRNA levels, S1PR1 expression colocalized with endothelial cell markers in the leptomeningeal arteries, increased markedly on the side of the CCAO, and peaked 7 days after CCAO. Mitotic cell numbers in the leptomeningeal arteries

  16. Discovery and dimeric approach of novel Natriuretic Peptide Receptor A (NPR-A) agonists.

    PubMed

    Iwaki, Takehiko; Oyama, Yoshiaki; Tomoo, Toshiyuki; Tanaka, Taisaku; Okamura, Yoshihiko; Sugiyama, Masako; Yamaki, Akira; Furuya, Mayumi

    2017-03-15

    Novel agonists of the Natriuretic Peptide Receptor A (NPR-A) were obtained through random screening and subsequent structural modification of triazine derivatives. The key structural feature to improve in vitro activity was the dimerization of triazine monomer derivatives. The non peptide derivative 7c and 13a showed highly potent NPR-A agonistic activity in vitro and diuretic activity in vivo. These results implied that non-peptidic small molecules open the possibility of new therapy for congestive heart failure.

  17. Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. I. Acute effects of ethanol

    SciTech Connect

    Buck, K.J.; Harris, R.A. )

    1990-05-01

    Acute exposure to ethanol was found to enhance the ability of a benzodiazepine (BZ) inverse agonist, methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), to reduce muscimol-activated 36Cl- uptake by membranes isolated from mouse cerebral cortex. Pretreatment in vivo with a hypnotic dose of ethanol (but not a subhypnotic dose), or exposure to a corresponding concentration in vitro, was effective. This increase in sensitivity of gamma-aminobutyric acid receptor-operated chloride channels to the actions of DMCM was due to an increase in both the potency and efficacy of DMCM. Sensitization to DMCM was reversible and was not observed 24 hr after a single injection of ethanol. Pretreatment with ethanol (10, 50 and 100 mM) in vitro produced sensitization to DMCM in a concentration-dependent manner, similar to that produced by in vivo exposure; this increase in sensitivity did not develop if the membranes were pretreated with ethanol at 0 degrees C. Similarly, in vitro exposure to pentobarbital (200 microM) or flunitrazepam (1 microM) enhanced the actions of the inverse agonist Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo(1,5a)(1,4)BZ-3- carboxylate). Acute ethanol exposure did not alter low-affinity gamma-aminobutyric acidA receptor binding or muscimol action, or the ability of a BZ agonist, flunitrazepam, to augment muscimol-activated chloride flux. Ethanol exposure did not alter (3H)flumazenil (Ro15-1788) binding to central BZ receptors, its displacement by DMCM or allosteric modulation of DMCM binding by muscimol (muscimol-shift).

  18. Pharmacokinetic and pharmacodynamic properties of intravenous fenoldopam, a dopamine1-receptor agonist, in hypertensive patients.

    PubMed Central

    Weber, R R; McCoy, C E; Ziemniak, J A; Frederickson, E D; Goldberg, L I; Murphy, M B

    1988-01-01

    1 The pharmacokinetic properties of intravenous fenoldopam, a selective dopamine1-receptor agonist, were studied in 10 patients with essential hypertension. 2 Reduction in blood pressure was linearly related to the log fenoldopam plasma concentration (r = 0.69) and the log fenoldopam infusion rate (r = 0.71). 3 The mean elimination half-life (+/- s. e. mean) was 9.8 +/- 1.0 min. The total body clearance was 30.3 +/- 2.3 ml kg-1 min-1 and the volume of distribution was 582 +/- 62 ml kg-1. 4 The rapid onset of action, short elimination half-life, linear dose-response relationship, and ease of administration suggest that fenoldopam may have a role where parenteral treatment of hypertension is required. PMID:2897206

  19. Peroxisome Proliferator–Activated ReceptorAgonists Prevent In Vivo Remodeling of Human Artery Induced by Alloreactive T Cells

    PubMed Central

    Tobiasova, Zuzana; Zhang, Lufeng; Yi, Tai; Qin, Linfeng; Manes, Thomas D.; Kulkarni, Sanjay; Lorber, Marc I.; Rodriguez, Frederick C.; Choi, Je-Min; Tellides, George; Pober, Jordan S.; Kawikova, Ivana; Bothwell, Alfred L.M.

    2012-01-01

    Background Ligands activating the transcription factor peroxisome proliferator–activated receptor-γ (PPARγ) have antiinflammatory effects. Vascular rejection induced by allogeneic T cells can be responsible for acute and chronic graft loss. Studies in rodents suggest that PPARγ agonists may inhibit graft vascular rejection, but human T-cell responses to allogeneic vascular cells differ from those in rodents, and the effects of PPARγ in human transplantation are unknown. Methods and Results We tested the effects of PPARγ agonists on human vascular graft rejection using a model in which human artery is interposed into the abdominal aorta of immunodeficient mice, followed by adoptive transfer of allogeneic (to the artery donor) human peripheral blood mononuclear cells. Interferon-γ–dependent rejection ensues within 4 weeks, characterized by intimal thickening, T-cell infiltrates, and vascular cell activation, a response resembling clinical intimal arteritis. The PPARγ agonists 15-deoxy-prostaglandin-J2, ciglitazone, and pioglitazone reduced intimal expansion, intimal infiltration of CD45RO+ memory T cells, and plasma levels of inflammatory cytokines. The PPARγ antagonist GW9662 reversed the protective effects of PPARγ agonists, confirming the involvement of PPARγ-mediated pathways. In vitro, pioglitazone inhibited both alloantigen-induced proliferation and superantigen-induced transendothelial migration of memory T cells, indicating the potential mechanisms of PPARγ effects. Conclusion Our results suggest that PPARγ agonists inhibit allogeneic human memory T cell responses and may be useful for the treatment of vascular graft rejection. PMID:21690493

  20. Recent advances in the role of toll-like receptors and TLR agonists in immunotherapy for human glioma.

    PubMed

    Deng, Shuanglin; Zhu, Shan; Qiao, Yuan; Liu, Yong-Jun; Chen, Wei; Zhao, Gang; Chen, Jingtao

    2014-12-01

    Gliomas are extremely aggressive brain tumors with a very poor prognosis. One of the more promising strategies for the treatment of human gliomas is targeted immunotherapy where antigens that are unique to the tumors are exploited to generate vaccines. The approach, however, is complicated by the fact that human gliomas escape immune surveillance by creating an immune suppressed microenvironment. In order to oppose the glioma imposed immune suppression, molecules and pathways involved in immune cell maturation, expansion, and migration are under intensive clinical investigation as adjuvant therapy. Toll-like receptors (TLRs) mediate many of these functions in immune cell types, and TLR agonists, thus, are currently primary candidate molecules to be used as important adjuvants in a variety of cancers. In animal models for glioma, TLR agonists have exhibited antitumor properties by facilitating antigen presentation and stimulating innate and adaptive immunity. In clinical trials, several TLR agonists have achieved survival benefit, and many more trials are recruiting or ongoing. However, a second complicating factor is that TLRs are also expressed on cancer cells where they can participate instead in a variety of tumor promoting activities including cell growth, proliferation, invasion, migration, and even stem cell maintenance. TLR agonists can, therefore, possibly play dual roles in tumor biology. Here, how TLRs and TLR agonists function in glioma biology and in anti-glioma therapies is summarized in an effort to provide a current picture of the sophisticated relationship of glioma with the immune system and the implications for immunotherapy.

  1. A Systematic Approach to Identify Biased Agonists of the Apelin Receptor through High-Throughput Screening.

    PubMed

    McAnally, Danielle; Siddiquee, Khandaker; Sharir, Haleli; Qi, Feng; Phatak, Sharangdhar; Li, Jian-Liang; Berg, Eric; Fishman, Jordan; Smith, Layton

    2017-03-01

    Biased agonists are defined by their ability to selectively activate distinct signaling pathways of a receptor, and they hold enormous promise for the development of novel drugs that specifically elicit only the desired therapeutic response and avoid potential adverse effects. Unfortunately, most high-throughput screening (HTS) assays are designed to detect signaling of G protein-coupled receptors (GPCRs) downstream of either G protein or β-arrestin-mediated signaling but not both. A comprehensive drug discovery program seeking biased agonists must employ assays that report on the activity of each compound at multiple discrete pathways, particularly for HTS campaigns. Here, we report a systematic approach to the identification of biased agonists of human apelin receptor (APJ). We synthesized 448 modified versions of apelin and screened them against a cascade of cell-based assays, including intracellular cAMP and β-arrestin recruitment to APJ, simultaneously. The screen yielded potent and highly selective APJ agonists. Representative hits displaying preferential signaling via either G-protein or β-arrestin were subjected to a battery of confirmation assays. These biased agonists will be useful as tools to probe the function and pharmacology of APJ and provide proof of concept of our systematic approach to the discovery of biased ligands. This approach is likely universally applicable to the search for biased agonists of GPCRs.

  2. Alpha/sub 1/ receptor coupling events initiated by methoxy-substituted tolazoline partial agonists

    SciTech Connect

    Wick, P.; Keung, A.; Deth, R.

    1986-03-01

    A series of mono- and dimethyoxy substituted tolazoline derivatives, known to be partial agonists at the alpha/sub 1/ receptor, were compared with the ..cap alpha../sub 1/ selective full agonist phenylephrine (PE) on isolated strips of rabbit aorta Agonist activity was evaluated in contraction, /sup 45/Ca influx, /sup 45/Ca efflux, and /sup 32/P-Phospholipid labelling studies. Maximum contractile responses for the 2-, 3-, and 3, 5- methoxy substituted tolazoline derivatives (10/sup -5/M) were 53.8, 67.6 and 99.7% of the PE (10/sup -5/M) response respectively. These same partial agonists caused a stimulation of /sup 45/Ca influx to the extent of 64, 86, and 95% of the PE response respectively. In /sup 45/Ca efflux studies, (a measure of the intracellular Ca/sup +2/ release) the tolazolines caused: 30%, 63%, and 78% of the PE stimulated level. /sup 32/P-Phosphatidic acid (PA) labelling was measured as an index of PI turnover after ..cap alpha../sub 1/ receptor stimulation. Compared to PE, the 2-, 3-, and 3,5- methoxy substituted tolazoline derivatives caused 22, 46, and 72% PA labelling. The above values are all in reasonable accord with the rank order or agonist activity shown in maximum contractile responses. The results of this investigation suggest that partial agonists stimulate ..cap alpha.. receptor coupling events at a level which is quantitatively comparable to their potencies in causing contraction of arterial smooth muscle.

  3. Analysis of full and partial agonists binding to beta2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes.

    PubMed

    Katritch, Vsevolod; Reynolds, Kimberly A; Cherezov, Vadim; Hanson, Michael A; Roth, Christopher B; Yeager, Mark; Abagyan, Ruben

    2009-01-01

    The 2.4 A crystal structure of the beta(2)-adrenergic receptor (beta(2)AR) in complex with the high-affinity inverse agonist (-)-carazolol provides a detailed structural framework for the analysis of ligand recognition by adrenergic receptors. Insights into agonist binding and the corresponding conformational changes triggering G-protein coupled receptor (GPCR) activation mechanism are of special interest. Here we show that while the carazolol pocket captured in the beta(2)AR crystal structure accommodates (-)-isoproterenol and other agonists without steric clashes, a finite movement of the flexible extracellular part of TM-V helix (TM-Ve) obtained by receptor optimization in the presence of docked ligand can further improve the calculated binding affinities for agonist compounds. Tilting of TM-Ve towards the receptor axis provides a more complete description of polar receptor-ligand interactions for full and partial agonists, by enabling optimal engagement of agonists with two experimentally identified anchor sites, formed by Asp113/Asn312 and Ser203/Ser204/Ser207 side chains. Further, receptor models incorporating a flexible TM-V backbone allow reliable prediction of binding affinities for a set of diverse ligands, suggesting potential utility of this approach to design of effective and subtype-specific agonists for adrenergic receptors. Systematic differences in capacity of partial, full and inverse agonists to induce TM-V helix tilt in the beta(2)AR model suggest potential role of TM-V as a conformational "rheostat" involved in the whole spectrum of beta(2)AR responses to small molecule signals.

  4. Studies Toward the Pharmacophore of Salvinorin A, a Potent Kappa Opioid Receptor Agonist

    PubMed Central

    Munro, Thomas A.; Rizzacasa, Mark A.; Roth, Bryan L.; Toth, Beth A.; Yan, Feng

    2009-01-01

    Salvinorin A (1), from the sage Salvia divinorum, is a potent and selective kappa opioid receptor (KOR) agonist. We screened other salvinorins and derivatives for binding affinity and functional activity at opioid receptors. Our results suggest that the methyl ester and furan ring are required for activity, but that the lactone and ketone functionalities are not. Other salvinorins showed negligible binding affinity at the KOR. None of the compounds bound to mu or delta opioid receptors. PMID:15658846

  5. Studies toward the pharmacophore of salvinorin A, a potent kappa opioid receptor agonist.

    PubMed

    Munro, Thomas A; Rizzacasa, Mark A; Roth, Bryan L; Toth, Beth A; Yan, Feng

    2005-01-27

    Salvinorin A (1), from the sage Salvia divinorum, is a potent and selective kappa opioid receptor (KOR) agonist. We screened other salvinorins and derivatives for binding affinity and functional activity at opioid receptors. Our results suggest that the methyl ester and furan ring are required for activity but that the lactone and ketone functionalities are not. Other salvinorins showed negligible binding affinity at the KOR. None of the compounds bound to mu or delta opioid receptors.

  6. Opiate agonist-induced re-distribution of Wntless, a mu-opioid receptor interacting protein, in rat striatal neurons.

    PubMed

    Reyes, B A S; Vakharia, K; Ferraro, T N; Levenson, R; Berrettini, W H; Van Bockstaele, E J

    2012-01-01

    Wntless (WLS), a mu-opioid receptor (MOR) interacting protein, mediates Wnt protein secretion that is critical for neuronal development. We investigated whether MOR agonists induce re-distribution of WLS within rat striatal neurons. Adult male rats received either saline, morphine or [d-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO) directly into the lateral ventricles. Following thirty minutes, brains were extracted and tissue sections were processed for immunogold silver detection of WLS. In saline-treated rats, WLS was distributed along the plasma membrane and within the cytoplasmic compartment of striatal dendrites as previously described. The ratio of cytoplasmic to total dendritic WLS labeling was 0.70±0.03 in saline-treated striatal tissue. Morphine treatment decreased this ratio to 0.48±0.03 indicating a shift of WLS from the intracellular compartment to the plasma membrane. However, following DAMGO treatment, the ratio was 0.85±0.05 indicating a greater distribution of WLS intracellularly. The difference in the re-distribution of the WLS following different agonist exposure may be related to DAMGO's well known ability to induce internalization of MOR in contrast to morphine, which is less effective in producing receptor internalization. Furthermore, these data are consistent with our hypothesis that MOR agonists promote dimerization of WLS and MOR, thereby preventing WLS from mediating Wnt secretion. In summary, our findings indicate differential agonist-induced trafficking of WLS in striatal neurons following distinct agonist exposure. Adaptations in WLS trafficking may represent a novel pharmacological target in the treatment of opiate addiction and/or pain.

  7. Toll-like receptor 2 agonist exacerbates renal injury in diabetic mice

    PubMed Central

    Li, Fanglin; Zhang, Ningyu; Li, Zhiming; Deng, Lihua; Zhang, Jianjie; Zhou, Yunfeng

    2017-01-01

    Inflammation is implicated in the pathogenesis of diabetic nephropathy (DN). Toll-like receptor 2 (TLR2) is a ligand-activated membrane-bound receptor, which induces an inflammatory response, thus serving a crucial role in the pathogenesis of DN. The present study aimed to determine whether a TLR2 agonist, Pam3CysSK4, modulates the development of DN. A mouse model of DN was induced using streptozotocin (STZ) and, following the confirmation of hyperglycemia, mice were treated with or without Pam3CysSK4. Pathological and functional markers, including the activation of nuclear factor (NF)-κB, expression of TLR2, inflammatory infiltration, myeloid differentiation primary response gene 88 and monocyte chemoattractant protein-1 were assessed. STZ-treated mice exhibited elevated blood glucose levels and increased serum creatinine levels, which increased further following Pam3CysSK4 treatment. In addition, Pam3CysSK4 treatment was observed to increase podocyte foot process formation. Furthermore, STZ-induced renal glomerular sclerosis was significantly exacerbated in Pam3CysSK4-treated mice. Pam3CysSK4-treated mice also exhibited increased levels of collagen IV following renal immunostaining, associated with increased macrophage infiltration. Renal expression of TLR2 was markedly elevated in STZ-induced mice; this was further increased in Pam3CysSK4-treated mice, accompanied by upregulation of proinflammatory genes and activation of NF-κB. This indicates that enhanced renal expression of TLR2 is associated with inflammatory infiltration in DN and demonstrates that renal injury was exacerbated by the TLR2 agonist in diabetic mice.

  8. Investigational peptide and peptidomimetic μ and δ opioid receptor agonists in the relief of pain

    PubMed Central

    Giri, Aswini Kumar; Hruby, Victor J

    2014-01-01

    Introduction Current methods for treating prolonged and neuropathic pain are inadequate and lead to toxicities that greatly diminish quality of life. Therefore, new approaches to the treatment of pain states are needed to address these problems. Areas covered The review primarily reviews approaches that have been taken in the peer-reviewed literature of multivalent ligands that interact with both μ and δ opioid receptors as agonists, and in some cases, also with pharmacophores for antagonist ligands that interact with other receptors as antagonists to block pain. Expert opinion Although there are a number of drugs currently on the market for the treatment of pain; none of them are 100% successful. In the authors’ opinion, it is clear that new directions and modalities are needed to better address the treatment of prolonged and neuropathic pain; one drug or class clearly is not the answer for all pain therapy. Undoubtedly, there are many different phenotypes of prolonged and neuropathic pain and this should be one avenue to further develop appropriate therapies. PMID:24329035

  9. Design, synthesis, and biological evaluation of new 5-HT4 receptor agonists: application as amyloid cascade modulators and potential therapeutic utility in Alzheimer's disease.

    PubMed

    Russo, Olivier; Cachard-Chastel, Marthe; Rivière, Céline; Giner, Mireille; Soulier, Jean-Louis; Berthouze, Magali; Richard, Tristan; Monti, Jean-Pierre; Sicsic, Sames; Lezoualc'h, Frank; Berque-Bestel, Isabelle

    2009-04-23

    Serotonin 5-HT(4) receptor (5-HT(4)R) agonists are of particular interest for the treatment of Alzheimer's disease because of their ability to ameliorate cognitive deficits and to modulate production of amyloid beta-protein (Abeta). However, despite the range of 5-HT(4)R agonists synthesized to date, potent and selective 5-HT(4)R agonists are still lacking. In the present study, two libraries of molecules based on the scaffold of ML10302, a highly specific and partial 5-HT(4)R agonist, were efficiently prepared by parallel supported synthesis and their binding affinities and agonist activities evaluated. Furthermore, we showed that, in vivo, the two best candidates exhibited neuroprotective activity by increasing the level of the soluble form of the amyloid precursor protein (sAPPalpha) in the cortex and hippocampus of mice. Interestingly, one of these compounds could also inhibit Abeta fibril formation in vitro.

  10. Reversion of muscarinic autoreceptor agonist-induced acetylcholine decrease and learning impairment by dynorphin A (1–13), an endogenous κ-opioid receptor agonist

    PubMed Central

    Hiramatsu, Masayuki; Murasawa, Hiroyasu; Mori, Hiromasa; Kameyama, Tsutomu

    1998-01-01

    We investigated whether carbachol, a muscarinic receptor agonist, induces learning and memory impairment, and if so, dynorphin A (1–13), an endogenous κ-opioid receptor agonist, ameliorates the impairment of learning and memory induced by carbachol, by use of a step-through type passive avoidance task.Carbachol induced a dose-related dual response. Carbachol (1.66 pmol per rat) administered directly into the hippocampus significantly shortened the step-through latency, while lower (0.166 pmol per rat) and higher (16.6 pmol per rat) doses of carbachol did not induce learning or memory impairment.Dynorphin A (1–13) (0.5 nmol per rat, i.c.v.) administered 5 min after carbachol injection significantly reversed carbachol-induced impairment of learning and memory.Perfusion with carbachol (3×10−4 M) significantly decreased acetylcholine release in the hippocampus during perfusion as determined by in vivo brain microdialysis. This decrease in acetylcholine release was suppressed by co-perfusion with a low dose of atropine (10−7 M).Dynorphin A (1–13) (0.5 nmol per rat, i.c.v.) immediately before carbachol perfusion completely blocked this decrease in extracellular acetylcholine concentration induced by carbachol.These antagonistic effects of dynorphin A (1–13) were abolished by treatment with nor-binaltorphimine (5.44 nmol per rat, i.c.v.), a selective κ-opioid receptor antagonist, 5 min before dynorphin A (1–13) treatment.These results suggest that the neuropeptide dynorphin A (1–13) ameliorates the carbachol-induced impairment of learning and memory, accompanied by attenuation of the reductions in acetylcholine release which may be associated with dysfunction of presynaptic cholinergic neurones via κ-opioid receptors. PMID:9535021

  11. The Neurotensin-1 Receptor Agonist PD149163 Blocks Fear-Potentiated Startle

    PubMed Central

    Shilling, Paul D.; Feifel, David

    2014-01-01

    Preliminary evidence suggests that the neuropeptide, neurotensin (NT) may regulate fear/anxiety circuits. We investigated the effects of PD149163, a NT-1 receptor agonist, on fear-potentiated startle (FPS). Sprague Dawley rats were trained to associate a white light with a mild foot shock. In one experiment, animals were treated with either subcutaneous vehicle or PD149163 (0.01, 0.1 or 1.0 mg/kg) twenty-four hours after training. Twenty minutes later their acoustic startle response in the presence or absence of the white light was tested. In a second experiment, saline and 1.0 mg/kg PD149163 were tested using a separate group of rats. In the first experiment, PD149163 produced a non-significant decrease in baseline acoustic startle at all three doses. As expected, saline treated rats exhibited significant FPS. An ANOVA of percentage FPS revealed no significant effect of treatment group overall but the high dose group did not display FPS strongly suggesting an FPS effect at this dose. This finding was confirmed in the second experiment where the high dose of PD149163 reduced percent FPS relative to saline (P<0.05). These data suggest that systemically administered NT-1 agonists modulate the neural circuitry that regulates fear and anxiety to produce dose-dependent anxiolytic-like effects on FPS. PMID:18577396

  12. Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)α agonist fenofibrate and the PPARγ agonist pioglitazone

    PubMed Central

    Syversen, Unni; Stunes, Astrid K; Gustafsson, Björn I; Obrant, Karl J; Nordsletten, Lars; Berge, Rolf; Thommesen, Liv; Reseland, Janne E

    2009-01-01

    Background All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARγ agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARα agonist fenofibrate (FENO) and the PPARγ agonist pioglitazone (PIO) on bone in intact female rats. Methods Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied. Results The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1. Conclusion We show opposite skeletal effects of PPARα and γ agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARα activation. PMID:19331671

  13. Synthesis of iboga-like isoquinuclidines: Dual opioid receptors agonists having antinociceptive properties.

    PubMed

    Banerjee, Tuhin Suvro; Paul, Sibasish; Sinha, Surajit; Das, Sumantra

    2014-11-01

    Some novel iboga-analogues consisting of benzofuran moiety and dehydroisoquinuclidine ring connected by -CH2-, (CH2)2 and (CH2)3 linkers have been synthesized with the view to develop potential antinociceptive drugs. The compounds 14 and 21 showed binding at the μ-opioid receptor (MOR), while the compound 11a exhibited dual affinities at both MOR and κ-opioid receptor (KOR). MAP kinase activation indicated all three compounds have opioid agonistic properties. The presence of a double bond and endo-methylcarboxylate group in the dehydroisoquinuclidine ring and the benzofuran and methylene spacer appeared to be essential for opioid receptor binding. Further studies demonstrated 11a caused significant antinociception in mice in the hot-plate test which was comparable to that produced by morphine. The compound 11a was also found to be nontremorigenic unlike various iboga congeners. This study identifies a new pharmacophore which may lead to the development of suitable substitute of morphine in the treatment of pain.

  14. Potency and characterization of estrogen-receptor agonists in United Kingdom estuarine sediments.

    PubMed

    Thomas, Kevin V; Balaam, Jan; Hurst, Mark; Nedyalkova, Zoya; Mekenyan, Ovanes

    2004-02-01

    The activity of estrogen-receptor (ER) agonists in sediments collected from the United Kingdom (UK) estuaries was assessed using the in vitro recombinant yeast estrogen screen (YES assay). The YES assay was successfully used to determine the in vitro ER agonist potency of pore waters and solvent extracts of sediments collected from UK estuaries. Estrogen-receptor agonists were detected in 66% of the pore water samples and in 91% of the sediment solvent extracts tested. The pore waters tested had ER agonist potencies from less than 2 to 68 ng 17beta-estradiol (E2) L(-1), whereas sediment extracts had potencies from less than 0.2 to 13 microg E2 kg(-1). A toxicity identification evaluation approach using bioassay-directed fractionation was used in an attempt to identify the ER agonists in extracts of sediments collected from the Tyne and Tees estuaries (UK). Gas chromatography-mass spectrometry was used to provide lists of compounds in the fractions obtained that were evaluated for known ER agonist activity using published data and an ER quantitative structure-activity relationship model. Toxicity identification evaluation characterization failed to identify any ER agonists in pore water extracts; however, three compounds in sediment solvent extracts were identified as ER agonists. Nonylphenol, cinnarizine, and cholesta-4,6-dien-3-one were identified in the sample collected from the Tyne estuary. Important ER agonist substances that contaminate marine sediments remain unidentified. The present study as well as previous work on effluents point toward the involvement of natural products in the estrogenic burdens of marine sediments. Further work is required to establish the relative contribution of natural products and anthropogenic chemicals to current environmental impacts in the context of the Oslo and Paris Commission strategy to eliminate hazardous substances by 2020.

  15. Identification of an extracellular segment of the oxytocin receptor providing agonist-specific binding epitopes.

    PubMed

    Hawtin, S R; Howard, H C; Wheatley, M

    2001-03-01

    The effects of the peptide hormone oxytocin are mediated by oxytocin receptors (OTRs) expressed by the target tissue. The OTR is a member of the large family of G-protein-coupled receptors. Defining differences between the interaction of agonists and antagonists with the OTR at the molecular level is of fundamental importance, and is addressed in this study. Using truncated and chimaeric receptor constructs, we establish that a small 12-residue segment in the distal portion of the N-terminus of the human OTR provides important epitopes which are required for agonist binding. In contrast, this segment does not contribute to the binding site for antagonists, whether peptide or non-peptide. It does, however, have a role in agonist-induced OTR signalling. Oxytocin is also an agonist at the vasopressin V(1a) receptor (V(1a)R). A chimaeric receptor (V(1a)R(N)-OTR) was engineered in which the N-terminus of the OTR was substituted by the corresponding, but unrelated, sequence from the N-terminus of the V(1a)R. We show that the V(1a)R N-terminus present in V(1a)R(N)-OTR fully restored both agonist binding and intracellular signalling to a dysfunctional truncated OTR construct. The N-terminal segment does not, however, contribute to receptor-selective agonism between the OTR and the V(1a)R. Our data establish a key role for the distal N-terminus of the OTR in providing agonist-specific binding epitopes.

  16. Discovery of Novel Potent and Selective Agonists at the Melanocortin-3 Receptor.

    PubMed

    Carotenuto, Alfonso; Merlino, Francesco; Cai, Minying; Brancaccio, Diego; Yousif, Ali Munaim; Novellino, Ettore; Hruby, Victor J; Grieco, Paolo

    2015-12-24

    The melanocortin receptors 3 and 4 control energy homeostasis, food-intake behavior, and correlated pathophysiological conditions. The melanocortin-4 receptor (MC4R) has been broadly investigated. In contrast, the knowledge related to physiological roles of the melanocortin-3 receptor (MC3R) is lacking because of the limited number of known MC3R selective ligands. Here, we report the design, synthesis, biological activity, conformational analysis, and docking with receptors of two potent and selective agonists at the human MC3 receptor.

  17. Distinct activities of GABA agonists at synaptic- and extrasynaptic-type GABAA receptors

    PubMed Central

    Mortensen, Martin; Ebert, Bjarke; Wafford, Keith; Smart, Trevor G

    2010-01-01

    The activation characteristics of synaptic and extrasynaptic GABAA receptors are important for shaping the profile of phasic and tonic inhibition in the central nervous system, which will critically impact on the activity of neuronal networks. Here, we study in isolation the activity of three agonists, GABA, muscimol and 4,5,6,7-tetrahydoisoxazolo[5,4-c]pyridin-3(2H)-one (THIP), to further understand the activation profiles of α1β3γ2, α4β3γ2 and α4β3δ receptors that typify synaptic- and extrasynaptic-type receptors expressed in the hippocampus and thalamus. The agonists display an order of potency that is invariant between the three receptors, which is reliant mostly on the agonist dissociation constant. At δ subunit-containing extrasynaptic-type GABAA receptors, both THIP and muscimol additionally exhibited, to different degrees, superagonist behaviour. By comparing whole-cell and single channel currents induced by the agonists, we provide a molecular explanation for their different activation profiles. For THIP at high concentrations, the unusual superagonist behaviour on α4β3δ receptors is a consequence of its ability to increase the duration of longer channel openings and their frequency, resulting in longer burst durations. By contrast, for muscimol, moderate superagonist behaviour was caused by reduced desensitisation of the extrasynaptic-type receptors. The ability to specifically increase the efficacy of receptor activation, by selected exogenous agonists over that obtained with the natural transmitter, may prove to be of therapeutic benefit under circumstances when synaptic inhibition is compromised or dysfunctional. PMID:20176630

  18. Pharmacological profile of DA-6886, a novel 5-HT4 receptor agonist to accelerate colonic motor activity in mice.

    PubMed

    Lee, Min Jung; Cho, Kang Hun; Park, Hyun Min; Sung, Hyun Jung; Choi, Sunghak; Im, Weonbin

    2014-07-15

    DA-6886, the gastrointestinal prokinetic benzamide derivative is a novel 5-HT4 receptor agonist being developed for the treatment of constipation-predominant irritable bowel syndrome (IBS-C). The purpose of this study was to characterize in vitro and in vivo pharmacological profile of DA-6886. We used various receptor binding assay, cAMP accumulation assay, organ bath experiment and colonic transit assay in normal and chemically constipated mice. DA-6886 exhibited high affinity and selectivity to human 5-HT4 receptor splice variants, with mean pKi of 7.1, 7.5, 7.9 for the human 5-HT4a, 5-HT4b and 5-HT4d, respectively. By contrast, DA-6886 did not show significant affinity for several receptors including dopamine D2 receptor, other 5-HT receptors except for 5-HT2B receptor (pKi value of 6.2). The affinity for 5-HT4 receptor was translated into functional agonist activity in Cos-7 cells expressing 5-HT4 receptor splice variants. Furthermore, DA-6886 induced relaxation of the rat oesophagus preparation (pEC50 value of 7.4) in a 5-HT4 receptor antagonist-sensitive manner. The evaluation of DA-6886 in CHO cells expressing hERG channels revealed that it inhibited hERG channel current with an pIC50 value of 4.3, indicating that the compound was 1000-fold more selective for the 5-HT4 receptor over hERG channels. In the normal ICR mice, oral administration of DA-6886 (0.4 and 2mg/kg) resulted in marked stimulation of colonic transit. Furthermore, in the loperamide-induced constipation mouse model, 2mg/kg of DA-6886 significantly improved the delay of colonic transit, similar to 10mg/kg of tegaserod. Taken together, DA-6886 is a highly potent and selective 5-HT4 receptor agonist to accelerate colonic transit in mice, which might be therapeutic agent having a favorable safety profile in the treatment of gastrointestinal motor disorders such as IBS-C and chronic constipation.

  19. Potentiation of insulin secretion and improvement of glucose intolerance by combining a novel G protein-coupled receptor 40 agonist DS-1558 with glucagon-like peptide-1 receptor agonists.

    PubMed

    Nakashima, Ryutaro; Yano, Tatsuya; Ogawa, Junko; Tanaka, Naomi; Toda, Narihiro; Yoshida, Masao; Takano, Rieko; Inoue, Masahiro; Honda, Takeshi; Kume, Shoen; Matsumoto, Koji

    2014-08-15

    G protein-coupled receptor 40 (GPR40) is a Gq-coupled receptor for free fatty acids predominantly expressed in pancreatic β-cells. In recent years, GPR40 agonists have been investigated for use as novel therapeutic agents in the treatment of type 2 diabetes. We discovered a novel small molecule GPR40 agonist, (3S)-3-ethoxy-3-(4-{[(1R)-4-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]oxy}phenyl)propanoic acid (DS-1558). The GPR40-mediated effects of DS-1558 on glucose-stimulated insulin secretion were evaluated in isolated islets from GPR40 knock-out and wild-type (littermate) mice. The GPR40-mediated effects on glucose tolerance and insulin secretion were also confirmed by an oral glucose tolerance test in these mice. Furthermore, oral administration of DS-1558 (0.03, 0.1 and 0.3mg/kg) significantly and dose-dependently improved hyperglycemia and increased insulin secretion during the oral glucose tolerance test in Zucker fatty rats, the model of insulin resistance and glucose intolerance. Next, we examined the combination effects of DS-1558 with glucagon like peptide-1 (GLP-1). DS-1558 not only increased the glucose-stimulated insulin secretion by GLP-1 but also potentiated the maximum insulinogenic effects of GLP-1 after an intravenous glucose injection in normal Sprague Dawley rats. Furthermore, the glucose lowering effects of exendin-4, a GLP-1 receptor agonist, were markedly potentiated by the DS-1558 (3mg/kg) add-on in diabetic db/db mice during an intraperitoneal glucose tolerance test. In conclusion, our results indicate that add-on GPR40 agonists to GLP-1 related agents might be a potential treatment compared to single administration of these compounds. Therefore the combinations of these agents are a novel therapeutic option for type 2 diabetes.

  20. LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis

    PubMed Central

    Ceroi, Adam; Masson, David; Roggy, Anne; Roumier, Christophe; Chagué, Cécile; Gauthier, Thierry; Philippe, Laure; Lamarthée, Baptiste; Angelot-Delettre, Fanny; Bonnefoy, Francis; Perruche, Sylvain; Biichle, Sabeha; Preudhomme, Claude; Macintyre, Elisabeth; Lagrost, Laurent; Garnache-Ottou, Francine

    2016-01-01

    Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate–binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach. PMID:27702801

  1. Number and locations of agonist binding sites required to activate homomeric Cys-loop receptors.

    PubMed

    Rayes, Diego; De Rosa, María José; Sine, Steven M; Bouzat, Cecilia

    2009-05-06

    Homo-pentameric Cys-loop receptors contain five identical agonist binding sites, each formed at a subunit interface. To determine the number and locations of binding sites required to generate a stable active state, we constructed a receptor subunit with a mutation that disables the agonist binding site and a reporter mutation that alters unitary conductance and coexpressed mutant and nonmutant subunits. Although receptors with a range of different subunit compositions are produced, patch-clamp recordings reveal that the amplitude of each single-channel opening event reports the number and, for certain subunit combinations, the locations of subunits with intact binding sites. We find that receptors with three binding sites at nonconsecutive subunit interfaces exhibit maximal mean channel open time, receptors with binding sites at three consecutive or two nonconsecutive interfaces exhibit intermediate open time, and receptors with binding sites at two consecutive or one interface exhibit brief open time. Macroscopic recordings after rapid application of agonist reveal that channel activation slows and the extent of desensitization decreases as the number of binding sites per receptor decreases. The overall results provide a framework for defining mechanisms of activation and drug modulation for homo-pentameric Cys-loop receptors.

  2. Cabergoline, Dopamine D2 Receptor Agonist, Prevents Neuronal Cell Death under Oxidative Stress via Reducing Excitotoxicity

    PubMed Central

    Odaka, Haruki; Numakawa, Tadahiro; Adachi, Naoki; Ooshima, Yoshiko; Nakajima, Shingo; Katanuma, Yusuke; Inoue, Takafumi; Kunugi, Hiroshi

    2014-01-01

    Several lines of evidence demonstrate that oxidative stress is involved in the pathogenesis of neurodegenerative diseases, including Parkinson's disease. Potent antioxidants may therefore be effective in the treatment of such diseases. Cabergoline, a dopamine D2 receptor agonist and antiparkinson drug, has been studied using several cell types including mesencephalic neurons, and is recognized as a potent radical scavenger. Here, we examined whether cabergoline exerts neuroprotective effects against oxidative stress through a receptor-mediated mechanism in cultured cortical neurons. We found that neuronal death induced by H2O2 exposure was inhibited by pretreatment with cabergoline, while this protective effect was eliminated in the presence of a dopamine D2 receptor inhibitor, spiperone. Activation of ERK1/2 by H2O2 was suppressed by cabergoline, and an ERK signaling pathway inhibitor, U0126, similarly protected cortical neurons from cell death. This suggested the ERK signaling pathway has a critical role in cabergoline-mediated neuroprotection. Furthermore, increased extracellular levels of glutamate induced by H2O2, which might contribute to ERK activation, were reduced by cabergoline, while inhibitors for NMDA receptor or L-type Ca2+ channel demonstrated a survival effect against H2O2. Interestingly, we found that cabergoline increased expression levels of glutamate transporters such as EAAC1. Taken together, these results suggest that cabergoline has a protective effect on cortical neurons via a receptor-mediated mechanism including repression of ERK1/2 activation and extracellular glutamate accumulation induced by H2O2. PMID:24914776

  3. Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}

    SciTech Connect

    Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien; Jia, Yaoyao; Han, Xiang Hua; Lee, Dong-Ho; Lee, Hak-Ju; Hwang, Bang Yeon; Lee, Sung-Joon

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening with approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.

  4. Spinal administration of a delta opioid receptor agonist attenuates hyperalgesia and allodynia in a rat model of neuropathic pain.

    PubMed

    Holdridge, Sarah V; Cahill, Catherine M

    2007-08-01

    Neuropathic (NP) pain is a debilitating chronic pain disorder considered by some to be inherently resistant to therapy with traditional analgesics. Indeed, micro opioid receptor (OR) agonists show reduced therapeutic benefit and their long term use is hindered by the high incidence of adverse effects. However, pharmacological and physiological evidence increasingly suggests a role for deltaOR agonists in modulating NP pain symptoms. In this study, we examined the antihyperalgesic and antiallodynic effects of the spinally administered deltaOR agonist, d-[Ala(2), Glu(4)]deltorphin II (deltorphin II), as well as the changes in deltaOR expression, in rats following chronic constriction injury (CCI) of the sciatic nerve. Rats with CCI exhibited cold hyperalgesia and mechanical allodynia over a 14-day testing period. Intrathecal administration of deltorphin II reversed cold hyperalgesia on day 14 and dose-dependently attenuated mechanical allodynia. The effects of deltorphin II were mediated via activation of the deltaOR as the effect was antagonized by co-treatment with the delta-selective antagonist, naltrindole. Western blotting experiments revealed no changes in deltaOR protein in the dorsal spinal cord following CCI. Taken together, these data demonstrate the antihyperalgesic and antiallodynic effectiveness of a spinally administered deltaOR agonist following peripheral nerve injury and support further investigation of deltaORs as potential therapeutic targets in the treatment of NP pain.

  5. Adenosine-A1 receptor agonist induced hyperalgesic priming type II.

    PubMed

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-03-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala, N-Me-Phe, Gly-ol]-enkephalin acetate salt) induces a model of transition to chronic pain that we have termed type II hyperalgesic priming. Similar to type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, type II hyperalgesic priming differs from type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that, as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N-cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced type II hyperalgesic priming. In this study, we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms, as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor.

  6. Adenosine-A1 Receptor Agonist Induced Hyperalgesic Priming Type II

    PubMed Central

    Araldi, Dioneia; Ferrari, Luiz F.; Levine, Jon D.

    2016-01-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt) induces a model of the transition to chronic pain that we have termed Type II hyperalgesic priming. Similar to Type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, Type II hyperalgesic priming differs from Type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N6-Cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced Type II hyperalgesic priming. In this study we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced Type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the Type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  7. The glycine transport inhibitor sarcosine is an NMDA receptor co-agonist that differs from glycine

    PubMed Central

    Zhang, Hai Xia; Hyrc, Krzysztof; Thio, Liu Lin

    2009-01-01

    Sarcosine is an amino acid involved in one-carbon metabolism and a promising therapy for schizophrenia because it enhances NMDA receptor (NMDAR) function by inhibiting glycine uptake. The structural similarity between sarcosine and glycine led us to hypothesize that sarcosine is also an agonist like glycine. We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons. We found that sarcosine is an NMDAR co-agonist at the glycine binding site. However, sarcosine differed from glycine because less NMDAR desensitization occurred with sarcosine than with glycine as the co-agonist. This finding led us to examine whether the physiological effects of NMDAR activation with these two co-agonists are the same. The difference in desensitization probably accounts for rises in intracellular Ca2+, as assessed by the fluorescent indicator fura-FF, being larger when NMDAR activation occurred with sarcosine than with glycine. In addition, Ca2+-activated K+ currents following NMDAR activation were larger with sarcosine than with glycine. Compared to glycine, NMDAR-mediated autaptic currents decayed faster with sarcosine suggesting that NMDAR deactivation also differs with these two co-agonists. Despite these differences, NMDAR-dependent neuronal death as assessed by propidium iodide was similar with both co-agonists. The same was true for neuronal bursting. Thus, sarcosine may enhance NMDAR function by more than one mechanism and may have different effects from other NMDAR co-agonists. PMID:19433577

  8. Pharmacological Profiles of Alpha 2 Adrenergic Receptor Agonists Identified Using Genetically Altered Mice and Isobolographic Analysis

    PubMed Central

    Fairbanks, Carolyn A.; Stone, Laura S.; Wilcox, George L.

    2009-01-01

    Endogenous, descending noradrenergic fibers convey powerful analgesic control over spinal afferent circuitry mediating the rostrad transmission of pain signals. These fibers target alpha 2 adrenergic receptors (α2ARs) on both primary afferent terminals and secondary neurons, and their activation mediates substantial inhibitory control over this transmission, rivaling that of opioid receptors which share similar a similar pattern of distribution. The terminals of primary afferent nociceptive neurons and secondary spinal dorsal horn neurons express α2AAR and α2CAR subtypes, respectively. Spinal delivery of these agents serves to reduce their side effects, which are mediated largely at supraspinal sites, by concentrating the drugs at the spinal level. Targeting these spinal α2ARs with one of five selective therapeutic agonists, clonidine, dexmedetomidine, brimonidine, ST91 and moxonidine, produces significant antinociception that can work in concert with opioid agonists to yield synergistic antinociception. Application of several genetically altered mouse lines had facilitated identification of the primary receptor subtypes that likely mediate the antinociceptive effects of these agents. This review provides first an anatomical description of the localization of the three subtypes in the central nervous system, second a detailed account of the pharmacological history of each of these six primary agonists, and finally a comprehensive report of the specific interactions of other GPCR agonists with each of the six principal α2AR agonists featured. PMID:19393691

  9. 2-Dialkynyl derivatives of (N)-methanocarba nucleosides: 'Clickable' A(3) adenosine receptor-selective agonists.

    PubMed

    Tosh, Dilip K; Chinn, Moshe; Yoo, Lena S; Kang, Dong Wook; Luecke, Hans; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-01-15

    We modified a series of (N)-methanocarba nucleoside 5'-uronamides to contain dialkyne groups on an extended adenine C2 substituent, as synthetic intermediates leading to potent and selective A(3) adenosine receptor (AR) agonists. The proximal alkyne was intended to promote receptor recognition, and the distal alkyne reacted with azides to form triazole derivatives (click cycloaddition). Click chemistry was utilized to couple an octadiynyl A(3)AR agonist to azido-containing fluorescent, chemically reactive, biotinylated, and other moieties with retention of selective binding to the A(3)AR. A bifunctional thiol-reactive crosslinking reagent was introduced. The most potent and selective novel compound was a 1-adamantyl derivative (K(i) 6.5nM), although some of the click products had K(i) values in the range of 200-400nM. Other potent, selective derivatives (K(i) at A(3)AR innM) were intended as possible receptor affinity labels: 3-nitro-4-fluorophenyl (10.6), alpha-bromophenacyl (9.6), thiol-reactive isothiazolone (102), and arylisothiocyanate (37.5) derivatives. The maximal functional effects in inhibition of forskolin-stimulated cAMP were measured, indicating that this class of click adducts varied from partial to full A(3)AR agonist compared to other widely used agonists. Thus, this strategy provides a general chemical approach to linking potent and selective A(3)AR agonists to reporter groups of diverse structure and to carrier moieties.

  10. N-formyl peptide receptors in human neutrophils display distinct membrane distribution and lateral mobility when labeled with agonist and antagonist

    PubMed Central

    1993-01-01

    Receptors for bacterial N-formyl peptides are instrumental for neutrophil chemotactic locomotion and activation at sites of infection. As regulatory mechanisms for signal transduction, both rapid coupling of the occupied receptor to cytoskeletal components, and receptor lateral redistribution, have been suggested (Jesaitis et al., 1986, 1989). To compare the distribution and lateral diffusion of the nonactivated and activated neutrophil N-formyl-peptide receptor, before internalization, we used a new fluorescent N-formyl-peptide receptor antagonist, tertbutyloxycarbonyl-Phe(D)-Leu-Phe(D)-Leu-Phe-OH (Boc- FLFLF, 0.1-1 microM), and the fluorescent receptor agonist formyl-Nle- Leu-Phe-Nle-Tyr-Lys (fnLLFnLYK, 0.1-1 microM). Fluorescent Boc-FLFLF did not elicit an oxidative burst in the neutrophil at 37 degrees C, as assessed by chemiluminescence and reduction of p-nitroblue tetrazolium chloride, but competed efficiently both with formyl-methionyl-leucyl- phenylalanine (fMLF) and fnLLFnLYK. It was not internalized, as evidenced by confocal microscopy and acid elution of surface bound ligand. The lateral mobility characteristics of the neutrophil fMLF receptor were investigated with the technique of FRAP. The diffusion coefficient (D) was similar for antagonist- and agonist-labeled receptors (D approximately 5 x 10(-10) cm2/s), but the fraction of mobile receptors was significantly lower in agonist- compared to antagonist-labeled cells, approximately 40% in contrast to approximately 60%. This reduction in receptor mobile fraction was slightly counteracted, albeit not significantly, by dihydrocytochalasin B (dhcB, 5 microM). To block internalization of agonist-labeled receptors, receptor mobility measurements were done at 14 degrees C. At this temperature, confocal microscopy revealed clustering of receptors in response to agonist binding, compared to a more uniform receptor distribution in antagonist-labeled cells. The pattern of agonist- induced receptor clustering was

  11. Sleep-promoting action of IIK7, a selective MT2 melatonin receptor agonist in the rat

    PubMed Central

    Fisher, Simon P.; Sugden, David

    2009-01-01

    Several novel melatonin receptor agonists, in addition to various formulations of melatonin itself, are either available or in development for the treatment of insomnia. Melatonin is thought to exert its effects principally through two high affinity, G-protein coupled receptors, MT1 and MT2, though it is not known which subtype is responsible for the sleep-promoting action. The present study used radiotelemetry to record EEG and EMG in un-restrained freely moving rats to monitor the sleep-wake behaviour and examined the acute sleep-promoting activity of an MT2 receptor subtype selective melatonin analog, IIK7. IIK7 is a full agonist at the MT2 receptor subtype but a partial agonist at the MT1 receptor and has ∼90-fold higher affinity for MT2 than MT1. Like melatonin, IIK7 (10 mg/kg i.p.) significantly reduced NREM sleep onset latency and transiently increased the time spent in NREM sleep, but did not alter REM sleep latency or the amount of REM sleep. An analysis of the EEG power spectrum showed no change in delta (1–4 Hz) or theta activity (5–8 Hz) following IIK7 administration. Core body temperature was slightly decreased (∼0.3 °C) by IIK7 compared to vehicle-treated rats. The acute and transient changes in the sleep-wake cycle mimic the changes seen with melatonin and suggest that its sleep-promoting activity is mediated by activation of the MT2 receptor subtype. PMID:19429170

  12. BMS-933043, a Selective α7 nAChR Partial Agonist for the Treatment of Cognitive Deficits Associated with Schizophrenia.

    PubMed

    King, Dalton; Iwuagwu, Christiana; Cook, Jim; McDonald, Ivar M; Mate, Robert; Zusi, F Christopher; Hill, Matthew D; Fang, Haiquan; Zhao, Rulin; Wang, Bei; Easton, Amy E; Miller, Regina; Post-Munson, Debra; Knox, Ronald J; Gallagher, Lizbeth; Westphal, Ryan; Molski, Thaddeus; Fan, Jingsong; Clarke, Wendy; Benitex, Yulia; Lentz, Kimberley A; Denton, Rex; Morgan, Daniel; Zaczek, Robert; Lodge, Nicholas J; Bristow, Linda J; Macor, John E; Olson, Richard E

    2017-03-09

    The therapeutic treatment of negative symptoms and cognitive dysfunction associated with schizophrenia is a significant unmet medical need. Preclinical literature indicates that α7 neuronal nicotinic acetylcholine (nACh) receptor agonists may provide an effective approach to treating cognitive dysfunction in schizophrenia. We report herein the discovery and evaluation of 1c (BMS-933043), a novel and potent α7 nACh receptor partial agonist with high selectivity against other nicotinic acetylcholine receptor subtypes (>100-fold) and the 5-HT3A receptor (>300-fold). In vivo activity was demonstrated in a preclinical model of cognitive impairment, mouse novel object recognition. BMS-933043 has completed Phase I clinical trials.

  13. The cannabinoid CB2 receptor-specific agonist AM1241 increases pentylenetetrazole-induced seizure severity in Wistar rats.

    PubMed

    de Carvalho, Cristiane R; Hoeller, Alexandre A; Franco, Pedro L C; Martini, Athos P S; Soares, Flávia M S; Lin, Katia; Prediger, Rui D; Whalley, Benjamin J; Walz, Roger

    2016-11-01

    The potential efficacy of cannabinoid receptor ligands for the treatment of epilepsy remains controversial; cannabis components that act via cannabinoid type 1 (CB1) receptors produce anticonvulsant effects in animal models despite treatment with the CB receptor agonist reliably inducing convulsions in various species. Moreover, the potential role of cannabinoid receptor type 2 (CB2) to modulate seizures remains under-investigated. This study assessed the effects of the selective CB2 receptor agonist, AM1241, on pentylenetetrazole (PTZ)-induced seizures in rats. A stereotactically placed guide cannula was surgically implanted into the right lateral ventricle in adult Wistar rats which, 5-6days later, received an acute intracerebroventricular (i.c.v.) microinfusion of AM1241 (0.01, 1 or 10μg/2μl or vehicle) 5min before intraperitoneal (i.p.) injection of PTZ (70mg/kg). Rats were observed for 30min and the seizure severity behavior measured using a modified Racine's scale. Additional groups of rats were pretreated with a single low dose of the selective CB2 receptor antagonist, AM630 (dose 1mg/kg; i.p.), or vehicle, 30min prior to i.c.v. microinfusion of AM1241 (1μg/2μl). AM1241 administration significantly increased tonic-clonic seizure incidence and severity while also decreasing the onset of generalized seizures (AM1241 1 and 10μg/2μl). Pretreatment with AM630 prevented the proconvulsant effects of AM1241. This study shows, for the first time, that selective activation of CB2 receptors can increase generalized seizure susceptibility and suggests that pathological hyperexcitability phenomena can be differentially regulated by targeting CB1 and CB2 receptors.

  14. Nociceptin/orphanin FQ receptor agonists attenuate L-DOPA-induced dyskinesias.

    PubMed

    Marti, Matteo; Rodi, Donata; Li, Qin; Guerrini, Remo; Fasano, Stefania; Morella, Ilaria; Tozzi, Alessandro; Brambilla, Riccardo; Calabresi, Paolo; Simonato, Michele; Bezard, Erwan; Morari, Michele

    2012-11-14

    In the present study we investigated whether the neuropeptide nociceptin/orphanin FQ (N/OFQ), previously implicated in the pathogenesis of Parkinson's disease, also affects L-DOPA-induced dyskinesia. In striatal slices of naive rodents, N/OFQ (0.1-1 μm) prevented the increase of ERK phosphorylation and the loss of depotentiation of synaptic plasticity induced by the D1 receptor agonist SKF38393 in spiny neurons. In vivo, exogenous N/OFQ (0.03-1 nmol, i.c.v.) or a synthetic N/OFQ receptor agonist given systemically (0.01-1 mg/Kg) attenuated dyskinesias expression in 6-hydroxydopamine hemilesioned rats primed with L-DOPA, without causing primary hypolocomotive effects. Conversely, N/OFQ receptor antagonists worsened dyskinesia expression. In vivo microdialysis revealed that N/OFQ prevented dyskinesias simultaneously with its neurochemical correlates such as the surge of nigral GABA and glutamate, and the reduction of thalamic GABA. Regional microinjections revealed that N/OFQ attenuated dyskinesias more potently and effectively when microinjected in striatum than substantia nigra (SN) reticulata, whereas N/OFQ receptor antagonists were ineffective in striatum but worsened dyskinesias when given in SN. Quantitative autoradiography showed an increase in N/OFQ receptor binding in striatum and a reduction in SN of both unprimed and dyskinetic 6-hydroxydopamine rats, consistent with opposite adaptive changes of N/OFQ transmission. Finally, the N/OFQ receptor synthetic agonist also reduced dyskinesia expression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated dyskinetic macaques without affecting the global parkinsonian score. We conclude that N/OFQ receptor agonists may represent a novel strategy to counteract L-DOPA-induced dyskinesias. Their action is possibly mediated by upregulated striatal N/OFQ receptors opposing the D1 receptor-mediated overactivation of the striatonigral direct pathway.

  15. Basal insulin combined incretin mimetic therapy with glucagon-like protein 1 receptor agonists as an upcoming option in the treatment of type 2 diabetes: a practical guide to decision making

    PubMed Central

    Fleischmann, Holger

    2014-01-01

    The combination of basal insulin and glucagon-like protein 1 receptor agonists (GLP-1 RAs) is a new intriguing therapeutic option for patients with type 2 diabetes. In our daily practice we abbreviate this therapeutic concept with the term BIT (basal insulin combined incretin mimetic therapy) in a certain analogy to BOT (basal insulin supported oral therapy). In most cases BIT is indeed an extension of BOT, if fasting, prandial or postprandial blood glucose values have not reached the target range. In our paper we discuss special features of combinations of short- or prandial-acting and long- or continuous-acting GLP-1 RAs like exenatide, lixisenatide and liraglutide with basal insulin in relation to different glycemic targets. Overall it seems appropriate to use a short-acting GLP-1 RA if, after the near normalization of fasting blood glucose with BOT, the prandial or postprandial values are elevated. A long-acting GLP-1 RA might well be given, if fasting blood glucose values are the problem. Based on pathophysiological findings, recent clinical studies and our experience with BIT and BOT as well as BOTplus we developed chart-supported algorithms for decision making, including features and conditions of patients. The development of these practical tools was guided by the need for a more individualized antidiabetic therapy and the availability of the new BIT principle. PMID:25419451

  16. The glucagon‐like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents

    PubMed Central

    Vallöf, Daniel; Maccioni, Paola; Colombo, Giancarlo; Mandrapa, Minja; Jörnulf, Julia Winsa; Egecioglu, Emil; Engel, Jörgen A.

    2015-01-01

    Abstract The incretin hormone, glucagon‐like peptide 1 (GLP‐1), regulates gastric emptying, glucose‐dependent stimulation of insulin secretion and glucagon release, and GLP‐1 analogs are therefore approved for treatment of type II diabetes. GLP‐1 receptors are expressed in reward‐related areas such as the ventral tegmental area and nucleus accumbens, and GLP‐1 was recently shown to regulate several alcohol‐mediated behaviors as well as amphetamine‐induced, cocaine‐induced and nicotine‐induced reward. The present series of experiments were undertaken to investigate the effect of the GLP‐1 receptor agonist, liraglutide, on several alcohol‐related behaviors in rats that model different aspects of alcohol use disorder in humans. Acute liraglutide treatment suppressed the well‐documented effects of alcohol on the mesolimbic dopamine system, namely alcohol‐induced accumbal dopamine release and conditioned place preference in mice. In addition, acute administration of liraglutide prevented the alcohol deprivation effect and reduced alcohol intake in outbred rats, while repeated treatment of liraglutide decreased alcohol intake in outbred rats as well as reduced operant self‐administration of alcohol in selectively bred Sardinian alcohol‐preferring rats. Collectively, these data suggest that GLP‐1 receptor agonists could be tested for treatment of alcohol dependence in humans. PMID:26303264

  17. Differential agonist sensitivity of glycine receptor alpha2 subunit splice variants.

    PubMed

    Miller, Paul S; Harvey, Robert J; Smart, Trevor G

    2004-09-01

    1. The glycine receptor (GlyR) alpha2A and alpha2B splice variants differ by a dual, adjacent amino acid substitution from alpha2A(V58,T59) to alpha2B(I58,A59) in the N-terminal extracellular domain. 2. Comparing the effects of the GlyR agonists, glycine, beta-alanine and taurine, on the GlyR alpha2 isoforms, revealed a significant increase in potency for all three agonists at the alpha2B variant. 3. The sensitivities of the splice variants to the competitive antagonist, strychnine, and to the biphasic modulator Zn(2+), were comparable. In contrast, the allosteric inhibitor picrotoxin was more potent on GlyR alpha2A compared to GlyR alpha2B receptors. 4. Coexpression of alpha2A or alpha2B subunits with the GlyR beta subunit revealed that the higher agonist potencies observed with the alpha2B homomer were retained for the alpha2Bbeta heteromer. 5. The identical sensitivity to strychnine combined with a reduction in the maximum current induced by the partial agonist taurine at the GlyR alpha2A homomer, suggested that the changed sensitivity to agonists is in accordance with a modulation of agonist efficacy rather than agonist affinity. 6. An effect on agonist efficacy was also supported by using a structural model of the GlyR, localising the region of splice variation to the proposed docking region between GlyR loop 2 and the TM2-3 loop, an area associated with channel activation. 7. The existence of a spasmodic mouse phenotype linked to a GlyR alpha1(A52S) mutation, the equivalent position to the source of the alpha2 splice variation, raises the possibility that the GlyR alpha2 splice variants may be responsible for distinct roles in neuronal function.

  18. Characterization of methadone as a β-arrestin-biased μ-opioid receptor agonist

    PubMed Central

    Doi, Seira; Mori, Tomohisa; Uzawa, Naoki; Arima, Takamichi; Takahashi, Tomoyuki; Uchida, Masashi; Yawata, Ayaka; Narita, Michiko; Uezono, Yasuhito; Suzuki, Tsutomu

    2016-01-01

    Background Methadone is a unique µ-opioid receptor agonist. Although several researchers have insisted that the pharmacological effects of methadone are mediated through the blockade of NMDA receptor, the underlying mechanism by which methadone exerts its distinct pharmacological effects compared to those of other µ-opioid receptor agonists is still controversial. In the present study, we further investigated the pharmacological profile of methadone compared to those of fentanyl and morphine as measured mainly by the discriminative stimulus effect and in vitro assays for NMDA receptor binding, µ-opioid receptor-internalization, and µ-opioid receptor-mediated β-arrestin recruitment. Results We found that fentanyl substituted for the discriminative stimulus effects of methadone, whereas a relatively high dose of morphine was required to substitute for the discriminative stimulus effects of methadone in rats. Under these conditions, the non-competitive NMDA receptor antagonist MK-801 did not substitute for the discriminative stimulus effects of methadone. In association with its discriminative stimulus effect, methadone failed to displace the receptor binding of MK801 using mouse brain membrane. Methadone and fentanyl, but not morphine, induced potent µ-opioid receptor internalization accompanied by the strong recruitment of β-arrestin-2 in µ-opioid receptor-overexpressing cells. Conclusions These results suggest that methadone may, at least partly, produce its pharmacological effect as a β-arrestin-biased µ-opioid receptor agonist, similar to fentanyl, and NMDA receptor blockade is not the main contributor to the pharmacological profile of methadone. PMID:27317580

  19. Melatonin and Melatonin Agonists as Adjunctive Treatments in Bipolar Disorders.

    PubMed

    Geoffroy, Pierre Alexis; Etain, Bruno; Franchi, Jean-Arthur Micoulaud; Bellivier, Frank; Ritter, Philipp

    2015-01-01

    Bipolar disorders (BD) present with abnormalities of circadian rhythmicity and sleep homeostasis, even during phases of remission. These abnormalities are linked to the underlying neurobiology of genetic susceptibility to BD. Melatonin is a pineal gland secreted neurohormone that induces circadian-related and sleep-related responses. Exogenous melatonin has demonstrated efficacy in treating primary insomnia, delayed sleep phase disorder, improving sleep parameters and overall sleep quality, and some psychiatric disorders like autistic spectrum disorders. In order to evaluate the efficacy of melatonin among patients with BD, this comprehensive review emphasizes the abnormal melatonin function in BD, the rationale of melatonin action in BD, the available data about the exogenous administration of melatonin, and melatonin agonists (ramelteon and tasimelteon), and recommendations of use in patients with BD. There is a scientific rationale to propose melatonin-agonists as an adjunctive treatment of mood stabilizers in treating sleep disorders in BD and thus to possibly prevent relapses when administered during remission phases. We emphasized the need to treat insomnia, sleep delayed latencies and sleep abnormalities in BD that are prodromal markers of an emerging mood episode and possible targets to prevent future relapses. An additional interesting adjunctive therapeutic effect might be on preventing metabolic syndrome, particularly in patients treated with antipsychotics. Finally, melatonin is well tolerated and has little dependence potential in contrast to most available sleep medications. Further studies are expected to be able to produce stronger evidence-based therapeutic guidelines to confirm and delineate the routine use of melatonin-agonists in the treatment of BD.

  20. Agonistic induction of a covalent dimer in a mutant of natriuretic peptide receptor-A documents a juxtamembrane interaction that accompanies receptor activation.

    PubMed

    Labrecque, J; Deschênes, J; McNicoll, N; De Léan, A

    2001-03-16

    The natriuretic peptide receptor-A (NPR-A) is composed of an extracellular domain with a ligand binding site, a transmembrane-spanning domain, a kinase homology domain, and a guanylyl cyclase domain. In response to agonists (atrial natriuretic peptide (ANP) and brain natriuretic peptide), the kinase homology domain-mediated guanylate cyclase repression is removed, which allows the production of cyclic GMP. Previous work from our laboratory strongly indicated that agonists are exerting their effects through the induction of a juxtamembrane dimeric contact. However, a direct demonstration of this mechanism remains to be provided. As a tool, we are now using the properties of a new mutation, D435C. It introduces a cysteine at a position in NPR-A corresponding to a supplementary cysteine found in NPR-C6, another receptor of this family (a disulfide-linked dimer). Although this D435C mutation only leads to trace levels of NPR-A disulfide-linked dimer at basal state, covalent dimerization can be induced by a treatment with rat ANP or with other agonists. The NPR-A(D435C) mutant has not been subjected to significant structural alterations, since it shares with the wild type receptor a similar dose-response pattern of cellular guanylyl cyclase activation. However, a persistent activation accompanies NPR-A(D435C) dimer formation after the removal of the inducer agonist. On the other hand, a construction where the intracellular domain of NPR-A(D435C) has been truncated (DeltaKC(D435C)) displays a spontaneous and complete covalent dimerization. In addition, the elimination of the intracellular domain in wild type DeltaKC and DeltaKC(D435C) is associated with an increase of agonist binding affinity, this effect being more pronounced with the weak agonist pBNP. Also, a D435C secreted extracellular domain remains unlinked even after incubation with rat ANP. In summary, these results demonstrate, in a dynamic fashion, the agonistic induction of a dimeric contact in the

  1. Nelotanserin, a novel selective human 5-hydroxytryptamine2A inverse agonist for the treatment of insomnia.

    PubMed

    Al-Shamma, Hussien A; Anderson, Christen; Chuang, Emil; Luthringer, Remy; Grottick, Andrew J; Hauser, Erin; Morgan, Michael; Shanahan, William; Teegarden, Bradley R; Thomsen, William J; Behan, Dominic

    2010-01-01

    5-Hydroxytryptamine (5-HT)(2A) receptor inverse agonists are promising therapeutic agents for the treatment of sleep maintenance insomnias. Among these agents is nelotanserin, a potent, selective 5-HT(2A) inverse agonist. Both radioligand binding and functional inositol phosphate accumulation assays suggest that nelotanserin has low nanomolar potency on the 5-HT(2A) receptor with at least 30- and 5000-fold selectivity compared with 5-HT(2C) and 5-HT(2B) receptors, respectively. Nelotanserin dosed orally prevented (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 5-HT(2A) agonist)-induced hypolocomotion, increased sleep consolidation, and increased total nonrapid eye movement sleep time and deep sleep, the latter marked by increases in electroencephalogram (EEG) delta power. These effects on rat sleep were maintained after repeated subchronic dosing. In healthy human volunteers, nelotanserin was rapidly absorbed after oral administration and achieved maximum concentrations 1 h later. EEG effects occurred within 2 to 4 h after dosing, and were consistent with vigilance-lowering. A dose response of nelotanserin was assessed in a postnap insomnia model in healthy subjects. All doses (up to 40 mg) of nelotanserin significantly improved measures of sleep consolidation, including decreases in the number of stage shifts, number of awakenings after sleep onset, microarousal index, and number of sleep bouts, concomitant with increases in sleep bout duration. Nelotanserin did not affect total sleep time, or sleep onset latency. Furthermore, subjective pharmacodynamic effects observed the morning after dosing were minimal and had no functional consequences on psychomotor skills or memory. These studies point to an efficacy and safety profile for nelotanserin that might be ideally suited for the treatment of sleep maintenance insomnias.

  2. Agonistic anti-CD137 antibody treatment leads to antitumor response in mice with liver cancer.

    PubMed

    Gauttier, Vanessa; Judor, Jean-Paul; Le Guen, Valentin; Cany, Jeannette; Ferry, Nicolas; Conchon, Sophie

    2014-12-15

    Immunotherapy is a promising strategy against hepatocellular carcinoma (HCC). We assessed the therapeutic effects of stimulating CD137, a member of the TNF receptor family, with agonistic monoclonal antibodies (mAb). Agonistic anti-CD137 mAb treatment was tested on two in situ models of HCC in immunocompetent mice. We also studied the mediators involved at different time points. In an orthotopic HCC the treatment consistently leads to complete tumor regression in 40-60% of animals. The protection is long lasting in the animals responding to the treatment, which can reject a second tumor challenge more than 3 months after treatment and eradication of the first malignancy. The main mediators of the effect are T lymphocytes and NK cells, demonstrated through depletion experiments. In addition, adoptive transfer of splenocytes prepared from anti-CD137 mAb-treated and -cured mice to naive mice allowed them to, in turn, reject the tumor. The efficacy of anti-CD137 mAb treatment is associated with early, sustained recruitment of iNOS-positive macrophages within tumor nodules. Moreover, in the absence of treatment, tumor development is accompanied by infiltration by myeloid derived suppressor cells (MDSC) and regulatory T lymphocytes. In mice responding to the anti-CD137 mAb treatment, this infiltration is very limited, and a combination treatment with a depletion of MDSC leads to the recovery of 80% of the mice. These results demonstrate that agonistic anti-CD137 mAb is a promising therapeutic strategy for anti-tumor immunity stimulation against HCC.

  3. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor

    PubMed Central

    Schrage, R; Seemann, WK; Klöckner, J; Dallanoce, C; Racké, K; Kostenis, E; De Amici, M; Holzgrabe, U; Mohr, K

    2013-01-01

    Background and Purpose Artificial agonists may have higher efficacy for receptor activation than the physiological agonist. Until now, such ‘superagonism’ has rarely been reported for GPCRs. Iperoxo is an extremely potent muscarinic receptor agonist. We hypothesized that iperoxo is a ‘superagonist’. Experimental Approach Signalling of iperoxo and newly synthesized structural analogues was compared with that of ACh at label-free M2 muscarinic receptors applying whole cell dynamic mass redistribution, measurement of G-protein activation, evaluation of cell surface agonist binding and computation of operational efficacies. Key Results In CHO-hM2 cells, iperoxo significantly exceeds ACh in Gi/Gs signalling competence. In the orthosteric loss-of-function mutant M2-Y1043.33A, the maximum effect of iperoxo is hardly compromised in contrast to ACh. ‘Superagonism’ is preserved in the physiological cellular context of MRC-5 human lung fibroblasts. Structure–signalling relationships including iperoxo derivatives with either modified positively charged head group or altered tail suggest that ‘superagonism’ of iperoxo is mechanistically based on parallel activation of the receptor protein via two orthosteric interaction points. Conclusion and Implications Supraphysiological agonist efficacy at muscarinic M2 ACh receptors is demonstrated for the first time. In addition, a possible underlying molecular mechanism of GPCR ‘superagonism’ is provided. We suggest that iperoxo-like orthosteric GPCR activation is a new avenue towards a novel class of receptor activators. Linked Article This article is commented on by Langmead and Christopoulos, pp. 353–356 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12142 PMID:23062057

  4. Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling.

    PubMed

    Loram, Lisa C; Taylor, Frederick R; Strand, Keith A; Harrison, Jacqueline A; Rzasalynn, Rachael; Sholar, Paige; Rieger, Jayson; Maier, Steven F; Watkins, Linda R

    2013-10-01

    A single intrathecal dose of adenosine 2A receptor (A2AR) agonist was previously reported to produce a multi-week reversal of allodynia in a chronic constriction injury (CCI) model of neuropathic pain. We aimed to determine if this long-term reversal was induced by A2AR agonism versus more generalized across adenosine receptor subtypes, and begin to explore the intracellular signaling cascades involved. In addition, we sought to identify whether the enduring effect could be extended to other models of neuropathic pain. We tested an A1R and A2BR agonist in CCI and found the same long duration effect with A2BR but not A1R agonism. An A2AR agonist (ATL313) produced a significant long-duration reversal of mechanical allodynia induced by long established CCI (administered 6 weeks after surgery), spinal nerve ligation and sciatic inflammatory neuropathy. To determine if ATL313 had a direct effect on glia, ATL313 was coadministered with lipopolysaccharide to neonatal microglia and astrocytes in vitro. ATL313 significantly attenuated TNFα production in both microglia and astrocytes but had no effect on LPS induced IL-10. Protein kinase C significantly reversed the ATL313 effects on TNFα in vitro in microglia and astrocytes, while a protein kinase A inhibitor only effected microglia. Both intrathecal PKA and PKC inhibitors significantly reversed the effect of the A2AR agonist on neuropathic allodynia. Therefore, A2AR agonists administered IT remain an exciting novel target for the treatment of neuropathic pain.

  5. Activation of the gut calcium-sensing receptor by peptide agonists reduces rapid elevation of plasma glucose in response to oral glucose load in rats.

    PubMed

    Muramatsu, Maya; Hira, Tohru; Mitsunaga, Arimi; Sato, Eri; Nakajima, Shingo; Kitahara, Yoshiro; Eto, Yuzuru; Hara, Hiroshi

    2014-06-15

    The calcium-sensing receptor (CaSR) is expressed in various tissues, including the gastrointestinal tract. To investigate the role of gut CaSR on glycemic control, we examined whether single oral administration of CaSR agonist peptides affected the glycemic response in rats. Glucose tolerance tests were performed under oral or duodenal administration of various CaSR agonist peptides (γGlu-Cys, protamine, and poly-d-lysine hydrobromide) in conscious rats. Involvement of CaSR was determined by using a CaSR antagonist. Signaling pathways underlying CaSR agonist-modified glycemia were investigated using gut hormone receptor antagonists. The gastric emptying rate after the administration of CaSR agonist peptides was measured by the phenol red recovery method. Oral and duodenal administration of CaSR agonist peptides attenuated glycemic responses under the oral glucose tolerance test, but the administration of casein did not. The promotive effect on glucose tolerance was weakened by luminal pretreatment with a CaSR antagonist. Treatment with a 5-HT3 receptor antagonist partially diminished the glucose-lowering effect of peptides. Furthermore, the gastric emptying rate was decreased by duodenal administration of CaSR agonist peptides. These results demonstrate that activation of the gut CaSR by peptide agonists promotes glucose tolerance in conscious rats. 5-HT3 receptor and the delayed gastric emptying rate appear to be involved in the glucose-lowering effect of CaSR agonist peptides. Thus, activation of gut CaSR by dietary peptides reduces glycemic responses so that gut CaSR may be a potential target for the improvement of postprandial glycemia.

  6. THIP and isoguvacine are partial agonists of GABA-stimulated benzodiazepine receptor binding.

    PubMed

    Karobath, M; Lippitsch, M

    1979-10-15

    The effects of THIP and isoguvacine on 3H-flunitrazepam binding to washed membranes prepared from the cerebral cortex of adult rats have been examined. THIP, which has only minimal stimulatory effects on benzodiazepine (BZ) receptor binding, has been found to inhibit the stimulation induced by small concentrations (2 microM) of exogenous GABA. While isoguvacine stimulates BZ receptor binding, although to a smaller extent than GABA, it also antagonizes the stimulation of BZ receptor binding induced by GABA. Thus THIP and isoguvacine exhibit the properties of a partial agonist of GABA-stimulated BZ receptor binding.

  7. 3-Methylcholanthrene and other aryl hydrocarbon receptor agonists directly activate estrogen receptor alpha.

    PubMed

    Abdelrahim, Maen; Ariazi, Eric; Kim, Kyounghyun; Khan, Shaheen; Barhoumi, Rola; Burghardt, Robert; Liu, Shengxi; Hill, Denise; Finnell, Richard; Wlodarczyk, Bogdan; Jordan, V Craig; Safe, Stephen

    2006-02-15

    3-Methylcholanthrene (3MC) is an aryl hydrocarbon receptor (AhR) agonist, and it has been reported that 3MC induces estrogenic activity through AhR-estrogen receptor alpha (ER alpha) interactions. In this study, we used 3MC and 3,3',4,4',5-pentachlorobiphenyl (PCB) as prototypical AhR ligands, and both compounds activated estrogen-responsive reporter genes/gene products (cathepsin D) in MCF-7 breast cancer cells. The estrogenic responses induced by these AhR ligands were inhibited by the antiestrogen ICI 182780 and by the transfection of a small inhibitory RNA for ER alpha but were not affected by the small inhibitory RNA for AhR. These results suggest that 3MC and PCB directly activate ER alpha, and this was confirmed in a competitive ER alpha binding assay and in a fluorescence resonance energy transfer experiment in which PCB and 3MC induced CFP-ER alpha/YFP-ER alpha interactions. In a chromatin immunoprecipitation assay, PCB and 3MC enhanced ER alpha (but not AhR) association with the estrogen-responsive region of the pS2 gene promoter. Moreover, in AhR knockout mice, 3MC increased uterine weights and induced expression of cyclin D1 mRNA levels. These results show that PCB and 3MC directly activate ER alpha-dependent transactivation and extend the number of ligands that activate both AhR and ER alpha.

  8. Serotonin Receptor Agonist 5-Nonyloxytryptamine Alters the Kinetics of Reovirus Cell Entry

    PubMed Central

    Mainou, Bernardo A.; Ashbrook, Alison W.; Smith, Everett Clinton; Dorset, Daniel C.; Denison, Mark R.

    2015-01-01

    ABSTRACT Mammalian orthoreoviruses (reoviruses) are nonenveloped double-stranded RNA viruses that infect most mammalian species, including humans. Reovirus binds to cell surface glycans, junctional adhesion molecule A (JAM-A), and the Nogo-1 receptor (depending on the cell type) and enters cells by receptor-mediated endocytosis. Within the endocytic compartment, reovirus undergoes stepwise disassembly, which is followed by release of the transcriptionally active viral core into the cytoplasm. In a small-molecule screen to identify host mediators of reovirus infection, we found that treatment of cells with 5-nonyloxytryptamine (5-NT), a prototype serotonin receptor agonist, diminished reovirus cytotoxicity. 5-NT also blocked reovirus infection. In contrast, treatment of cells with methiothepin mesylate, a serotonin antagonist, enhanced infection by reovirus. 5-NT did not alter cell surface expression of JAM-A or attachment of reovirus to cells. However, 5-NT altered the distribution of early endosomes with a concomitant impairment of reovirus transit to late endosomes and a delay in reovirus disassembly. Consistent with an inhibition of viral disassembly, 5-NT treatment did not alter infection by in vitro-generated infectious subvirion particles, which bind to JAM-A but bypass a requirement for proteolytic uncoating in endosomes to infect cells. We also found that treatment of cells with 5-NT decreased the infectivity of alphavirus chikungunya virus and coronavirus mouse hepatitis virus. These data suggest that serotonin receptor signaling influences cellular activities that regulate entry of diverse virus families and provides a new, potentially broad-spectrum target for antiviral drug development. IMPORTANCE Identification of well-characterized small molecules that modulate viral infection can accelerate development of antiviral therapeutics while also providing new tools to increase our understanding of the cellular processes that underlie virus-mediated cell

  9. Synthesis and opioid receptor affinity of morphinan and benzomorphan derivatives: mixed kappa agonists and mu agonists/antagonists as potential pharmacotherapeutics for cocaine dependence.

    PubMed

    Neumeyer, J L; Bidlack, J M; Zong, R; Bakthavachalam, V; Gao, P; Cohen, D J; Negus, S S; Mello, N K

    2000-01-13

    This report concerns the synthesis and preliminary pharmacological evaluation of a novel series of kappa agonists related to the morphinan (-)-cyclorphan (3a) and the benzomorphan (-)-cyclazocine (2) as potential agents for the pharmacotherapy of cocaine abuse. Recent evidence suggests that agonists acting at kappa opioid receptors may modulate the activity of dopaminergic neurons and alter the neurochemical and behavioral effects of cocaine. We describe the synthesis and chemical characterization of a series of morphinans 3a-c, structural analogues of cyclorphan [(-)-3-hydroxy-N-cyclopropylmethylmorphinan S(+)-mandelate, 3a], the 10-ketomorphinans 4a,b, and the 8-ketobenzomorphan 1b. Binding experiments demonstrated that the cyclobutyl analogue 3b [(-)-3-hydroxy-N-cyclobutylmethylmorphinan S(+)-mandelate, 3b, MCL-101] of cyclorphan (3a) had a high affinity for mu, delta, and kappa opioid receptors in guinea pig brain membranes. Both 3a,b were approximately 2-fold more selective for the kappa receptor than for the mu receptor. However 3b (the cyclobutyl analogue) was 18-fold more selective for the kappa receptor in comparison to the delta receptor, while cyclorphan (3a) had only 4-fold greater affinity for the kappa receptor in comparison to the delta receptor. These findings were confirmed in the antinociceptive tests (tail-flick and acetic acid writhing) in mice, which demonstrated that cyclorphan (3a) produced antinociception that was mediated by the delta receptor while 3b did not produce agonist or antagonist effects at the delta receptor. Both 3a,b had comparable kappa agonist properties. 3a,b had opposing effects at the mu receptor: 3b was a mu agonist whereas 3a was a mu antagonist.

  10. Differences in acute anorectic effects of long-acting GLP-1 receptor agonists in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-acting glucagon-like peptide-1 receptor (GLP-1R) agonists have both glucose- and weight-lowering effects. The brain is poised to mediate both of these actions since GLP-1Rs are present in key areas known to control weight and glucose. Although some research has been performed on the effects of ...

  11. Differential Effects of Cannabinoid Receptor Agonist on Social Discrimination and Contextual Fear in Amygdala and Hippocampus

    ERIC Educational Resources Information Center

    Segev, Amir; Akirav, Irit

    2011-01-01

    We examined whether the cannabinoid receptor agonist WIN55,212-2 (WIN; 5 [mu]g/side) microinjected into the hippocampus or the amygdala would differentially affect memory processes in a neutral vs. an aversive task. In the aversive contextual fear task, WIN into the basolateral amygdala impaired fear acquisition/consolidation, but not retrieval.…

  12. Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.

    PubMed

    Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P

    2016-11-10

    On the basis of the structural similarity of our previous 5-HT2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT2A, 5-HT2B, and 5-HT2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.

  13. Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid red...

  14. Dopamine D1 receptor-agonist interactions: A mutagenesis and homology modeling study.

    PubMed

    Mente, Scot; Guilmette, Edward; Salafia, Michelle; Gray, David

    2015-01-01

    The dopamine D1 receptor is a G protein-coupled receptor that regulates intracellular signaling via agonist activation. Although the number of solved GPCR X-ray structures has been steadily increasing, still no structure of the D1 receptor exists. We have used site-directed mutagenesis of 12 orthosteric vicinity residues of possible importance to G protein-coupled activation to examine the function of prototypical orthosteric D1 agonists and partial agonists. We find that residues from four different regions of the D1 receptor make significant contributions to agonist function. All compounds studied, which are catechol-amines, are found to interact with the previously identified residues: the conserved D103(3.32), as well as the trans-membrane V serine residues. Additional key interactions are found for trans-membrane VI residues F288(6.51), F289(6.52) and N292(6.55), as well as the extra-cellular loop residue L190(ECL2). Molecular dynamics simulations of a D1 homology model have been used to help put the ligand-residue interactions into context. Finally, we considered the rescaling of fold-shift data as a method to account for the change in the size of the mutated side-chain and found that this rescaling helps to relate the calculated ligand-residue energies with observed experimental fold-shifts.

  15. Discovery and characterization of novel small-molecule CXCR4 receptor agonists and antagonists

    PubMed Central

    Mishra, Rama K.; Shum, Andrew K.; Platanias, Leonidas C.; Miller, Richard J.; Schiltz, Gary E.

    2016-01-01

    The chemokine CXCL12 (SDF-1) and its cognate receptor CXCR4 are involved in a large number of physiological processes including HIV-1 infectivity, inflammation, tumorigenesis, stem cell migration, and autoimmune diseases. While previous efforts have identified a number of CXCR4 antagonists, there have been no small molecule agonists reported. Herein, we describe the identification of a novel series of CXCR4 modulators, including the first small molecules to display agonist behavior against this receptor, using a combination of structure- and ligand-based virtual screening. These agonists produce robust calcium mobilization in human melanoma cell lines which can be blocked by the CXCR4-selective antagonist AMD3100. We also demonstrate the ability of these new agonists to induce receptor internalization, ERK activation, and chemotaxis, all hallmarks of CXCR4 activation. Our results describe a new series of biologically relevant small molecules that will enable further study of the CXCR4 receptor and may contribute to the development of new therapeutics. PMID:27456816

  16. Molecular determinants of agonist selectivity in glutamate-gated chloride channels which likely explain the agonist selectivity of the vertebrate glycine and GABAA-ρ receptors.

    PubMed

    Blarre, Thomas; Bertrand, Hugues-Olivier; Acher, Francine C; Kehoe, JacSue

    2014-01-01

    Orthologous Cys-loop glutamate-gated chloride channels (GluClR's) have been cloned and described electrophysiologically and pharmacologically in arthropods and nematodes (both members of the invertebrate ecdysozoan superphylum). Recently, GluClR's from Aplysia californica (a mollusc from the lophotrochozoan superphylum) have been cloned and similarly studied. In spite of sharing a common function, the ecdysozoan and lophotrochozoan receptors have been shown by phylogenetic analyses to have evolved independently. The recent crystallization of the GluClR from C. elegans revealed the binding pocket of the nematode receptor. An alignment of the protein sequences of the nematode and molluscan GluClRs showed that the Aplysia receptor does not contain all of the residues defining the binding mode of the ecdysozoan receptor. That the two receptors have slightly different binding modes is not surprising since earlier electrophysiological and pharmacological experiments had suggested that they were differentially responsive to certain agonists. Knowledge of the structure of the C. elegans GluClR has permitted us to generate a homology model of the binding pocket of the Aplysia receptor. We have analyzed the differences between the two binding modes and evaluated the relative significance of their non-common residues. We have compared the GluClRs electrophysiologically and pharmacologically and we have used site-directed mutagenesis on both receptor types to test predictions made from the model. Finally, we propose an explanation derived from the model for why the nematode receptors are gated only by glutamate, whereas the molluscan receptors can also be activated by β-alanine, GABA and taurine. Like the Aplysia receptor, the vertebrate glycine and GABAA-ρ receptors also respond to these other agonists. An alignment of the sequences of the molluscan and vertebrate receptors shows that the reasons we have given for the ability of the other agonists to activate the Aplysia

  17. Gene expression in hypothalamus, liver and adipose tissues and food intake reponse to melanocortin-4 receptor (MC4R) agonist in pigs expressing MC4R mutations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptional profiling was used to identify genetic mechanisms that respond to alpha- melanocortin stimulating hormone (MSH), a melanocortin-3 and 4-receptor (MC3/4-R) agonist. Three MC4R genotypes (2 homozygous and the heterozygous for MC4R) were selected. Six pigs per genotype per treatment wer...

  18. Dacarbazine and the agonistic TRAIL receptor-2 antibody lexatumumab induce synergistic anticancer effects in melanoma.

    PubMed

    Engesæter, Birgit; Engebraaten, Olav; Flørenes, Vivi Ann; Mælandsmo, Gunhild Mari

    2012-01-01

    Mapatumumab and lexatumumab (targeting death receptor 4 (DR4) and 5 (DR5), respectively) are agonistic TRAIL receptor antibodies that induce apoptosis in a wide range of cancer cells. The potency of mapatumumab and lexatumumab was assessed in mono therapy protocols, and the ability to sensitize for dacarbazine (DTIC) treatment was explored in ten different melanoma cell lines. Our data indicated that melanoma cell lines tend to be resistant to mapatumumab, most likely due to low expression of DR4, while a dose dependent response to lexatumumab was observed. Combining DTIC and lexatumumab induced an additive or synergistic effect on cell death in the various melanoma cell lines. The synergistic effect observed in the FEMX-1 cell line was related to enhanced cleavage of Bid in parallel with elevated expression of the pro-apoptotic proteins Bim, Bax and Bak. Furthermore, the anti-apoptotic proteins Bcl-XL, cIAP-1, XIAP and livin were down regulated. Cleavage of Bid and down regulation of cIAP-2 and livin were observed in vivo. Altogether, these data suggest a change in the balance between pro- and anti-apoptotic proteins favoring induction of apoptosis. In the more therapy resistant cell line, HHMS, no changes in the pro- and anti-apoptotic proteins were observed. FEMX-1 xenografts treated with DTIC and lexatumumab showed reduced growth and increased level of apoptosis compared to the control groups, providing arguments for further evaluation of this combination in melanoma patients.

  19. Choosing between GLP-1 Receptor Agonists and DPP-4 Inhibitors: A Pharmacological Perspective

    PubMed Central

    Brown, Dominique Xavier; Evans, Marc

    2012-01-01

    In recent years the incretin therapies have provided a new treatment option for patients with type 2 diabetes mellitus (T2DM). The incretin therapies focus on the increasing levels of the two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This results in increased glucose dependent insulin synthesis and release. GLP-1 receptor agonists such as liraglutide and exenatide exert an intrinsic biological effect on GLP-1 receptors directly stimulating the release of insulin from pancreatic beta cells. DPP-4 inhibitors such as sitagliptin and linagliptin prevent the inactivation of endogenous GLP-1 and GIP through competitive inhibition of the DPP-4 enzyme. Both incretin therapies have good safety and tolerability profiles and interact minimally with a number of medications commonly prescribed in T2DM. This paper focuses on the pharmacological basis by which the incretin therapies function and how this knowledge can inform and benefit clinical decisions. Each individual incretin agent has benefits and pitfalls relating to aspects such as glycaemic and nonglycaemic efficacy, safety and tolerability, ease of administration, and cost. Overall, a personalized medicine approach has been found to be favourable, tailoring the incretin agent to benefit and suit patient's needs such as renal impairment (RI) or hepatic impairment (HI). PMID:23125920

  20. Melanocortin MC₄ receptor agonists counteract late inflammatory and apoptotic responses and improve neuronal functionality after cerebral ischemia.

    PubMed

    Spaccapelo, Luca; Bitto, Alessandra; Galantucci, Maria; Ottani, Alessandra; Irrera, Natasha; Minutoli, Letteria; Altavilla, Domenica; Novellino, Ettore; Grieco, Paolo; Zaffe, Davide; Squadrito, Francesco; Giuliani, Daniela; Guarini, Salvatore

    2011-11-30

    Indirect evidence indicates that, in cerebral ischemia, melanocortins have neuroprotective effects likely mediated by MC₄ receptors. To gain direct insight into the role of melanocortin MC₄ receptors in ischemic stroke, we investigated the effects of a highly selective MC₄ receptor agonist. Gerbils were subjected to transient global cerebral ischemia by occluding both common carotid arteries for 10 min. In saline-treated stroke animals, an impairment in learning and memory occurred that, at day 11 after stroke, was associated with hippocampus up-regulation of tumor necrosis factor-α (TNF-α), BAX, activated extracellular signal-regulated kinases (ERK1/2), c-jun N-terminal kinases (JNK1/2) and caspase-3, down-regulation of Bcl-2, and neuronal loss. Treatment for 11days with the selective melanocortin MC₄ receptor agonist RO27-3225, as well as with the well known non-selective [Nle⁴,D-Phe⁷]α-melanocyte-stimulating hormone (NDP-α-MSH) as a reference non-selective melanocortin, counteracted the inflammatory and apoptotic responses, as indicated by the changes in TNF-α, BAX, ERK1/2, JNK1/2, caspase-3 and Bcl-2 protein expression. Furthermore, melanocortin treatment reduced neuronal loss and dose-dependently improved learning and memory. These positive effects were associated with overexpression of Zif268, an immediate early gene involved in injury repair, synaptic plasticity and memory formation. Pharmacological blockade of MC₄ receptors with the selective MC₄ receptor antagonist HS024 prevented all effects of RO27-3225 and NDP-α-MSH. These data give direct evidence that stimulation of MC₄ receptors affords neuroprotection and promotes functional recovery from stroke, by counteracting prolonged and/or recurrent inflammatory and apoptotic responses, and likely by triggering brain repair pathways.

  1. Discovery and Cardioprotective Effects of the First Non-Peptide Agonists of the G Protein-Coupled Prokineticin Receptor-1

    PubMed Central

    Urayama, Kyoji; Nishi, Toshishide; Kurose, Hitoshi; Tafi, Andrea; Ribeiro, Nigel; Désaubry, Laurent; Nebigil, Canan G.

    2015-01-01

    Prokineticins are angiogenic hormones that activate two G protein-coupled receptors: PKR1 and PKR2. PKR1 has emerged as a critical mediator of cardiovascular homeostasis and cardioprotection. Identification of non-peptide PKR1 agonists that contribute to myocardial repair and collateral vessel growth hold promises for treatment of heart diseases. Through a combination of in silico studies, medicinal chemistry, and pharmacological profiling approaches, we designed, synthesized, and characterized the first PKR1 agonists, demonstrating their cardioprotective activity against myocardial infarction (MI) in mice. Based on high throughput docking protocol, 250,000 compounds were computationally screened for putative PKR1 agonistic activity, using a homology model, and 10 virtual hits were pharmacologically evaluated. One hit internalizes PKR1, increases calcium release and activates ERK and Akt kinases. Among the 30 derivatives of the hit compound, the most potent derivative, IS20, was confirmed for its selectivity and specificity through genetic gain- and loss-of-function of PKR1. Importantly, IS20 prevented cardiac lesion formation and improved cardiac function after MI in mice, promoting proliferation of cardiac progenitor cells and neovasculogenesis. The preclinical investigation of the first PKR1 agonists provides a novel approach to promote cardiac neovasculogenesis after MI. PMID:25831128

  2. Effects of A1 receptor agonist/antagonist on spontaneous seizures in pilocarpine-induced epileptic rats.

    PubMed

    Amorim, Beatriz Oliveira; Hamani, Clement; Ferreira, Elenn; Miranda, Maísa Ferreira; Fernandes, Maria José S; Rodrigues, Antonio M; de Almeida, Antônio-Carlos G; Covolan, Luciene

    2016-08-01

    Adenosine is an endogenous anticonvulsant that activates pre- and postsynaptic adenosine A1 receptors. A1 receptor agonists increase the latency for the development of seizures and status epilepticus following pilocarpine administration. Although hippocampal adenosine is increased in the chronic phase of the pilocarpine model, it is not known whether the modulation of A1 receptors may influence the frequency of spontaneous recurrent seizures (SRS). Here, we tested the hypothesis that the A1 receptor agonist RPia ([R]-N-phenylisopropyladenosine) and the A1 antagonist DPCPX (8-Cyclopentyl-1,3-dipropylxanthine) administered to chronic pilocarpine epileptic rats would respectively decrease and increase the frequency of SRS and hippocampal excitability. Four months after Pilo-induced SE, chronic epileptic rats were video-monitored for the recording of SRS before (basal) and after a 2-week treatment with RPia (25μg/kg) or DPCPX (50μg/kg). Following sacrifice, brain slices were studied with electrophysiology. We found that rats given RPia had a 93% nonsignificant reduction in the frequency of seizures compared with their own pretreatment baseline. In contrast, the administration of DPCPX resulted in an 87% significant increase in seizure rate. Nontreated epileptic rats had a similar frequency of seizures along the study. Corroborating our behavioral data, in vitro recordings showed that slices from animals previously given DPCPX had a shorter latency to develop epileptiform activity, longer and higher DC shifts, and higher spike amplitude compared with slices from nontreated Pilo controls. In contrast, smaller spike amplitude was recorded in slices from animals given RPia. In summary, the administration of A1 agonists reduced hippocampal excitability but not the frequency of spontaneous recurrent seizures in chronic epileptic rats, whereas A1 receptor antagonists increased both.

  3. The dopamine D1 receptor agonist SKF 38393 improves temporal order memory performance in maternally deprived rats.

    PubMed

    Lejeune, Stéphanie; Dourmap, Nathalie; Martres, Marie-Pascale; Giros, Bruno; Daugé, Valérie; Naudon, Laurent

    2013-11-01

    Previously, we showed that maternal deprivation (MD) (3h/day, postnatal-day 1-14) impaired the performance at adulthood in the object temporal order memory task (TMT) that principally implicates the medial prefrontal cortex (mPFC). Dopamine (DA) transmission in the PFC may play a critical role in the achievement of the TMT. Here, to investigate whether MD could results in dysfunction of the DA system in the mPFC, we assessed in this region the tissue contents and extracellular levels of DA and its metabolites, as the density of D1 receptor. Besides we examined whether an agonist of the DA receptor D1, the SKF38393, could have a beneficial effect on the performance of deprived (D) rats in the TMT. We observed that MD induced a significant reduction of the extracellular level of DOPAC in the mPFC and in the density of the D1 receptor in the anterior cingulate cortex, a sub-region of mPFC. On the other hand, we observed that an acute systemic injection of a D1 receptor agonist, SKF38393, was effective to correct the memory deficiency of D rats in the TMT, when administered before the retrieval phase. We showed that a stress suffered by rats during the perinatal period led to dysfunction of the adult DA system, possibly triggering greater vulnerability to cognitive and mood disorders. Interestingly, an acute administration of a D1 receptor agonist in adulthood was sufficient to improve the deficit in the temporal memory. A better understanding of this phenomenon would permit the development of treatments adapted to patients with a history of early traumatic experiences.

  4. Agonist actions of neonicotinoids on nicotinic acetylcholine receptors expressed by cockroach neurons.

    PubMed

    Tan, Jianguo; Galligan, James J; Hollingworth, Robert M

    2007-07-01

    The agonist actions of seven commercial neonicotinoid insecticides and nicotine were studied on nicotinic acetylcholine receptors (nAChRs) expressed by neurons isolated from the three thoracic ganglia of the American cockroach, Periplaneta americana. Single electrode voltage clamp recording was used to measure agonist-induced inward currents. Acetylcholine, nicotine and all neonicotinoids tested, except thiamethoxam, caused inward currents which were blocked reversibly by methyllycaconitine, a nAChR antagonist. Based on maximum inward currents, neonicotinoids could be divided into two subgroups: (1) those with a heterocyclic ring in their electronegative pharmacophore moiety (i.e. nicotine, imidacloprid and thiacloprid) were relatively weak partial agonists causing only 20-25% of the maximum ACh current and (2) open chain compounds (i.e. acetamiprid, dinotefuran, nitenpyram, and clothiandin) which were much more effective agonists producing 60-100% of the maximum ACh current. These compounds also elicited different symptoms of poisoning in American cockroaches with excitatory responses evident for the low efficacy agonists but depressive and paralytic responses predominating for the most efficacious agonists. No correlation was observed between agonist affinity and efficacy on these nAChRs. Thiamethoxam, even at 100 microM, failed to cause an inward current and showed no competitive interaction with other neonicotinoids on nAChRs, indicating that it is not a direct-acting agonist or antagonist. Despite the probable presence of multiple subtypes of nAChRs on cockroach neurons, competition studies between neonicotinoids did not reveal evidence that separate binding sites exist for the tested compounds. The size of inward currents induced by co-application of neonicotinoid pairs at equal concentration (100 microM) were predominantly determined by the one with higher binding affinity as indicated by EC(50) values, rather than by the one with higher binding efficacy as

  5. The most effective influence of 17-(3-ethoxypropyl) substituent on the binding affinity and the agonistic activity in KNT-127 derivatives, δ opioid receptor agonists.

    PubMed

    Nemoto, Toru; Ida, Yoshihiro; Iihara, Yusuke; Nakajima, Ryo; Hirayama, Shigeto; Iwai, Takashi; Fujii, Hideaki; Nagase, Hiroshi

    2013-12-15

    We investigated the structure-activity relationship of KNT-127 (opioid δ agonist) derivatives with various 17-substituents which are different in length and size. The 17-substituent in KNT-127 derivatives exerted a great influence on the affinity and agonistic activity for the δ receptor. While the compounds with electron-donating 17-substituents showed higher affinities for the δ receptor than those with electron-withdrawing groups, KNT-127 derivatives with 17-fluoroalkyl groups (the high electron-withdrawing groups) showed high selectivities for the δ receptor among evaluated compounds. In addition, the basicity of nitrogen as well as the structure of the 17-N substituent such as the length and configuration at an asymmetric carbon atom contributed to agonist properties for the δ receptor. Thus, the analog with a 17-(3-ethoxypropyl) group showed the best selectively and potent agonistic activity for the δ receptor among KNT-127 derivatives. These findings should be useful for designing novel δ selective agonists.

  6. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  7. Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor

    PubMed Central

    2015-01-01

    Human cannabinoid type 1 (CB1) G-protein coupled receptor is a potential therapeutic target for obesity. The previously predicted and experimentally validated ensemble of ligand-free conformations of CB1 [Scott, C. E. et al. Protein Sci.2013, 22, 101−11323184890; Ahn, K. H. et al. Proteins2013, 81, 1304–131723408552] are used here to predict the binding sites for known CB1-selective inverse agonists including rimonabant and its seven known derivatives. This binding pocket, which differs significantly from previously published models, is used to identify 16 novel compounds expected to be CB1 inverse agonists by exploiting potential new interactions. We show experimentally that two of these compounds exhibit inverse agonist properties including inhibition of basal and agonist-induced G-protein coupling activity, as well as an enhanced level of CB1 cell surface localization. This demonstrates the utility of using the predicted binding sites for an ensemble of CB1 receptor structures for designing new CB1 inverse agonists. PMID:26633590

  8. Agonist selectivity in the oxytocin/vasopressin receptor family: new insights and challenges.

    PubMed

    Chini, B; Manning, M

    2007-08-01

    The design and development of selective agonists acting at the OT (oxytocin)/AVP (vasopressin) receptors has been and continues to be a difficult task because of the great similarity among the different receptor subtypes as well as the high degree of chemical similarity between the active ligands. In recent decades, at least a thousand synthetic peptides have been synthesized and examined for their ability to bind to and activate the different OT/AVP receptors; an effort that has led to the identification of several receptor subtype-selective agonists in the rat. However, owing to species differences between rat and human AVP/OT receptors, these peptides do not exhibit the same selectivities in human receptor assays. Furthermore, the discovery of receptor promiscuity, which is the ability of a single receptor subtype to couple to several different G-proteins, has led to the definition of a completely new class of compounds, referred to here as coupling-selective ligands, which may activate, within a single receptor subtype, only a specific signalling pathway. Finally, the accumulating evidence that GPCRs (G-protein-coupled receptors) do not function as monomers, but as dimers/oligomers, opens up the design of another class of specific ligands, bivalent ligands, in which two agonist and/or antagonist moieties are joined by a spacer of the appropriate length to allow the simultaneous binding at the two subunits within the dimer. The pharmacological properties and selectivity profiles of these bivalent ligands, which remain to be investigated, could lead to highly novel research tools and potential therapeutic agents.

  9. Activation of I2-imidazoline receptors enhances supraspinal morphine analgesia in mice: a model to detect agonist and antagonist activities at these receptors

    PubMed Central

    Sánchez-Blázquez, Pilar; Boronat, M Assumpció; Olmos, Gabriel; García-Sevilla, Jesús A; Garzón, Javier

    2000-01-01

    This work investigates the receptor acted upon by imidazoline compounds in the modulation of morphine analgesia. The effects of highly selective imidazoline ligands on the supraspinal antinociception induced by morphine in mice were determined.Intracerebroventricular (i.c.v.) or subcutaneous (s.c.) administration of ligands selective for the I2-imidazoline receptor, 2-BFI, LSL 60101, LSL 61122 and aganodine, and the non selective ligand agmatine, increased morphine antinociception in a dose-dependent manner. Neither moxonidine, a mixed I1-imidazoline and α2-adrenoceptor agonist, RX821002, a potent α2-adrenoceptor antagonist that displays low affinity at I2-imidazoline receptors, nor the selective non-imidazoline α2-adrenoceptor antagonist RS-15385-197, modified the analgesic responses to morphine.Administration of pertussis toxin (0.25 μg per mouse, i.c.v.) 6 days before the analgesic test blocked the ability of the I2-imidazoline ligands to potentiate morphine antinociception.The increased effect of morphine induced by I2-imidazoline ligands (agonists) was completely reversed by idazoxan and BU 224. Identical results were obtained with IBI, which alkylates I2-imidazoline binding sites. Thus, both agonist and antagonist properties of imidazoline ligands at the I2-imidazoline receptors were observed.Pre-treatment (30 min) with deprenyl, an irreversible inhibitor of monoamine oxidase B (IMAO-B), produced an increase of morphine antinociception. Clorgyline, an irreversible IMAO-A, given 30 min before morphine did not alter the effect of the opioid. At longer intervals (24 h) a single dose of either clorgyline or deprenyl reduced the density of I2-imidazoline receptors and prevented the I2-mediated potentiation of morphine analgesia.These results demonstrate functional interaction between I2-imidazoline and opioid receptors. The involvement of Gi-Go transducer proteins in this modulatory effect is also suggested. PMID:10781010

  10. Effects of 5-HT1A Receptor Stimulation on D1 Receptor Agonist-Induced Striatonigral Activity and Dyskinesia in Hemiparkinsonian Rats

    PubMed Central

    2013-01-01

    Accumulating evidence supports the value of 5-HT1A receptor (5-HT1AR) agonists for dyskinesias that arise with long-term L-DOPA therapy in Parkinson’s disease (PD). Yet, how 5-HT1AR stimulation directly influences the dyskinetogenic D1 receptor (D1R)-expressing striatonigral pathway remains largely unknown. To directly examine this, one cohort of hemiparkinsonian rats received systemic injections of Vehicle + Vehicle, Vehicle + the D1R agonist SKF81297 (0.8 mg/kg), or the 5-HT1AR agonist ±8-OH-DPAT (1.0 mg/kg) + SKF81297. Rats were examined for changes in abnormal involuntary movements (AIMs), rotations, striatal preprodynorphin (PPD), and glutamic acid decarboxylase (GAD; 65 and 67) mRNA via RT-PCR. In the second experiment, hemiparkinsonian rats received intrastriatal pretreatments of Vehicle (aCSF), ±8-OH-DPAT (7.5 mM), or ±8-OH-DPAT + the 5-HT1AR antagonist WAY100635 (4.6 mM), followed by systemic Vehicle or SKF81297 after which AIMs, rotations, and extracellular striatal glutamate and nigral GABA efflux were measured by in vivo microdialysis. Results revealed D1R agonist-induced AIMs were reduced by systemic and intrastriatal 5-HT1AR stimulation while rotations were enhanced. Although ±8-OH-DPAT did not modify D1R agonist-induced increases in striatal PPD mRNA, the D1R/5-HT1AR agonist combination enhanced GAD65 and GAD67 mRNA. When applied locally, ±8-OH-DPAT alone diminished striatal glutamate levels while the agonist combination increased nigral GABA efflux. Thus, presynaptic 5-HT1AR stimulation may attenuate striatal glutamate levels, resulting in diminished D1R-mediated dyskinetic behaviors, but maintain or enhance striatal postsynaptic factors ultimately increasing nigral GABA levels and rotational activity. The current findings offer a novel mechanistic explanation for previous results concerning 5-HT1AR agonists for the treatment of dyskinesia. PMID:23496922

  11. Agonist-mediated assembly of the crustacean methyl farnesoate receptor

    PubMed Central

    Kakaley, Elizabeth K. Medlock; Wang, Helen Y.; LeBlanc, Gerald A.

    2017-01-01

    The methyl farnesoate receptor (MfR) orchestrates aspects of reproduction and development such as male sex determination in branchiopod crustaceans. Phenotypic endpoints regulated by the receptor have been well-documented, but molecular interactions involved in receptor activation remain elusive. We hypothesized that the MfR subunits, methoprene-tolerant transcription factor (Met) and steroid receptor coactivator (SRC), would be expressed coincident with the timing of sex programming of developing oocytes by methyl farnesoate in daphnids. We also hypothesized that methyl farnesoate activates MfR assembly. Met mRNA was expressed rhythmically during the reproductive cycle, with peak mRNA accumulation just prior period of oocytes programming of sex. Further, we revealed evidence that Met proteins self-associate in the absence of methyl farnesoate, and that the presence of methyl farnesoate stimulates dissociation of Met multimers with subsequent association with SRC. Results demonstrated that the Met subunit is highly dynamic in controlling the action of methyl farnesoate through temporal variation in its expression and availability for receptor assembly. PMID:28322350

  12. Studies on the pharmacology of the novel histamine H3 receptor agonist Sch 50971.

    PubMed

    Hey, J A; Aslanian, R; Bolser, D C; Chapman, R W; Egan, R W; Rizzo, C A; Shih, N Y; Fernandez, X; McLeod, R L; West, R; Kreutner, W

    1998-09-01

    Experiments were performed to characterize the pharmacology of Sch 50971 ((+)-trans-4-(4(R)-methyl-3(R)-pyrolidinyl)-1H-imidazole dihydrochloride, CAS 167610-28-8), a novel histamine H3 receptor agonist. The activity of Sch 50971 was compared with that of (R)-alpha-methylhistamine (CAS 75614-87-8), a potent and moderately selective agonist of histamine H3 receptors, in a series of in vitro and in vivo assays. Sch 50971 is a high affinity, selective H3 receptor agonist in vitro and in vivo. Sch 50971 inhibits [3H]-N-alpha-methylhistamine (CAS 673-50-7) binding to the histamine H3 receptor in human brain (Ki = 5.0 nmol/l) and guinea pig brain (Ki = 2.5 nmol/l). Sch 50971 also inhibits electric field stimulated guinea pig ileum contractions (pD2 = 7.47) and decreases [3H]-norepinephrine (CAS 51-41-2) release (pD2 = 7.48) from guinea pig pulmonary artery by activation of presynaptic inhibitory H3 receptors. The in vitro effects of Sch 50971 are antagonized by low concentrations of a selective H3 antagonist, thioperamide (CAS 106243-16-7). Sch 50971 has low affinity (IC50's > 10 mumol/l) for histamine H1, dopamine D1 and D2, serotonin 5-HT2 and muscarinic cholinergic receptors. It also does not exhibit histamine H2-antagonist activity. In guinea pigs and cats, Sch 50971 exhibits in vivo H3 agonist activity. Sch 50971 inhibits sympathetic hypertension evoked by stimulation of the medulla oblongata in anesthetized guinea pigs (ED30 = 0.3 mg/kg i.v., ED30 = 1.0 mg/kg i.d.). Sch 50971 also inhibits the effects of sympathetic nerve stimulation on nasal resistance in cats. In these assays, Sch 50971 exhibits an efficacy and potency comparable to H3-agonist (R)-alpha-methylhistamine. However, under in vivo conditions, Sch 50971 does not exhibit histamine H1-mediated responses that are seen with (R)-alpha-methylhistamine at doses close to those that produce H3 effects. Therefore, Sch 50971 is a novel, potent and selective agonist of histamine H3 receptors with an improved in

  13. Pungency of TRPV1 agonists is directly correlated with kinetics of receptor activation and lipophilicity.

    PubMed

    Ursu, Daniel; Knopp, Kelly; Beattie, Ruth E; Liu, Bin; Sher, Emanuele

    2010-09-01

    TRPV1 (transient receptor potential vanilloid 1) is a ligand-gated ion channel expressed predominantly in nociceptive primary afferents that plays a key role in pain processing. In vivo activation of TRPV1 receptors by natural agonists like capsaicin is associated with a sharp and burning pain, frequently described as pungency. To elucidate the mechanisms underlying pungency we investigated a series of TRPV1 agonists that included both pungent and non-pungent compounds covering a large range of potencies. Pungency of capsaicin, piperine, arvanil, olvanil, RTX (resiniferatoxin) and SDZ-249665 was evaluated in vivo, by determining the increase in the number of eye wipes caused by direct instillation of agonist solutions into the eye. Agonist-induced calcium fluxes were recorded using the FLIPR technique in a recombinant, TRPV1-expressing cell line. Current-clamp recordings were performed in rat DRG (dorsal root ganglia) neurons in order to assess the consequences of TRPV1 activation on neuronal excitability. Using the eye wipe assay the following rank of pungency was obtained: capsaicin>piperine>RTX>arvanil>olvanil>SDZ-249665. We found a strong correlation between kinetics of calcium flux, pungency and lipophilicity of TRPV1 agonists. Current-clamp recordings confirmed that the rate of receptor activation translates in the ability of agonists to generate action potentials in sensory neurons. We have demonstrated that the lipophilicity of the compounds is directly related to the kinetics of TRPV1 activation and that the latter influences their ability to trigger action potentials in sensory neurons and, ultimately, pungency.

  14. The Use of Anchored Agonists of Phagocytic Receptors for Cancer Immunotherapy: B16-F10 Murine Melanoma Model

    PubMed Central

    Janotová, Tereza; Jalovecká, Marie; Auerová, Marie; Švecová, Ivana; Bruzlová, Pavlína; Maierová, Veronika; Kumžáková, Zuzana; Čunátová, Štěpánka; Vlčková, Zuzana; Caisová, Veronika; Rozsypalová, Petra; Lukáčová, Katarína; Vácová, Nikol; Wachtlová, Markéta; Salát, Jiří; Lieskovská, Jaroslava; Kopecký, Jan; Ženka, Jan

    2014-01-01

    The application of the phagocytic receptor agonists in cancer immunotherapy was studied. Agonists (laminarin, molecules with terminal mannose, N-Formyl-methioninyl-leucyl-phenylalanine) were firmly anchored to the tumor cell surface. When particular agonists of phagocytic receptors were used together with LPS (Toll-like receptor agonist), high synergy causing tumour shrinkage and a temporary or permanent disappearance was observed. Methods of anchoring phagocytic receptor agonists (charge interactions, anchoring based on hydrophobic chains, covalent bonds) and various regimes of phagocytic agonist/LPS mixture applications were tested to achieve maximum therapeutic effect. Combinations of mannan/LPS and f-MLF/LPS (hydrophobic anchors) in appropriate (pulse) regimes resulted in an 80% and 60% recovery for mice, respectively. We propose that substantial synergy between agonists of phagocytic and Toll-like receptors (TLR) is based on two events. The TLR ligand induces early and massive inflammatory infiltration of tumors. The effect of this cell infiltrate is directed towards tumor cells, bearing agonists of phagocytic receptors on their surface. The result of these processes was effective killing of tumor cells. This novel approach represents exploitation of innate immunity mechanisms for treating cancer. PMID:24454822

  15. Insights into the structural basis of endogenous agonist activation of family B G protein-coupled receptors.

    PubMed

    Dong, Maoqing; Gao, Fan; Pinon, Delia I; Miller, Laurence J

    2008-06-01

    Agonist drugs targeting the glucagon-like peptide-1 (GLP1) receptor represent important additions to the clinical management of patients with diabetes mellitus. In the current report, we have explored whether the recently described concept of a receptor-active endogenous agonist sequence within the amino terminus of the secretin receptor may also be applicable to the GLP1 receptor. If so, this could provide a lead for the development of additional small molecule agonists targeting this and other important family members. Indeed, the region of the GLP1 receptor analogous to that containing the active WDN within the secretin receptor was found to possess full agonist activity at the GLP1 receptor. The minimal fragment within this region that had full agonist activity was NRTFD. Despite having no primary sequence identity with the WDN, it was also active at the secretin receptor, where it had similar potency and efficacy to WDN, suggesting common structural features. Molecular modeling demonstrated that an intradomain salt bridge between the side chains of arginine and aspartate could yield similarities in structure with cyclic WDN. This directly supports the relevance of the endogenous agonist concept to the GLP1 receptor and provides new insights into the rational development and refinement of new types of drugs activating this important receptor.

  16. Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation

    PubMed Central

    Yunn, Na-Oh; Koh, Ara; Han, Seungmin; Lim, Jong Hun; Park, Sehoon; Lee, Jiyoun; Kim, Eui; Jang, Sung Key; Berggren, Per-Olof; Ryu, Sung Ho

    2015-01-01

    Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors. PMID:26245346

  17. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists.

    PubMed

    Pless, Stephan A; Dibas, Mohammed I; Lester, Henry A; Lynch, Joseph W

    2007-12-07

    Models describing the structural changes mediating Cys loop receptor activation generally give little attention to the possibility that different agonists may promote activation via distinct M2 pore-lining domain structural rearrangements. We investigated this question by comparing the effects of different ligands on the conformation of the external portion of the homomeric alpha1 glycine receptor M2 domain. Conformational flexibility was assessed by tethering a rhodamine fluorophore to cysteines introduced at the 19' or 22' positions and monitoring fluorescence and current changes during channel activation. During glycine activation, fluorescence of the label attached to R19'C increased by approximately 20%, and the emission peak shifted to lower wavelengths, consistent with a more hydrophobic fluorophore environment. In contrast, ivermectin activated the receptors without producing a fluorescence change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus, results from two separate labeled residues support the conclusion that the glycine receptor M2 domain responds with distinct conformational changes to activation by different agonists.

  18. Positron-labeled dopamine agonists for probing the high affinity states of dopamine subtype 2 receptors.

    PubMed

    Hwang, Dah-Ren; Narendran, Raj; Laruelle, Marc

    2005-01-01

    It is well documented that guanidine nucleotide-coupled dopamine subtype 2 receptors (D2) are configured in high and low affinity states for the dopamine agonist in vitro. However, it is still unclear whether these functional states exist in vivo. We hypothesized that positron-labeled D2 agonist and Positron Emission Tomography can be used to probe these functional states noninvasively. Recently, we demonstrated in nonhuman primates that N-[11C]propyl-norapomorphine (NPA), a full D2 agonist, is a suitable tracer for imaging the high affinity states of D2 receptors in vivo. We also developed kinetic modeling method to derive receptor parameters, such as binding potential (BP) and specific uptake ratios (V3''). When coupled with a dopamine releasing drug, amphetamine, NPA was found to be more sensitive than antagonist tracers, such as [11C]raclopride (RAC), to endogenous dopamine concentration changes (by about 42%). This finding suggests that NPA is a superior tracer for reporting endogenous DA concentration. In addition, the difference of the BP or V3'' of NPA and RAC under control and amphetamine challenge conditions could be used to estimate the functional states of D2 receptors in vivo. On the basis of our findings and the assumptions that NPA binds only to the high affinity states and RAC binds equally to both affinity states, we proposed that about 70% of the D2 receptors are configured in the high affinity states in vivo.

  19. Inhibition of experimental auto-immune uveitis by the A3 adenosine receptor agonist CF101.

    PubMed

    Bar-Yehuda, Sara; Luger, Dror; Ochaion, Avivit; Cohen, Shira; Patokaa, Renana; Zozulya, Galina; Silver, Phyllis B; de Morales, Jose Maria Garcia Ruiz; Caspi, Rachel R; Fishman, Pnina

    2011-11-01

    Uveitis is an inflammation of the middle layer of the eye with a high risk of blindness. The Gi protein associated A3 adenosine receptor (A3AR) is highly expressed in inflammatory cells whereas low expression is found in normal cells. CF101 is a highly specific agonist at the A3AR known to induce a robust anti-inflammatory effect in different experimental animal models. The CF101 mechanism of action entails down-regulation of the NF-κB-TNF-α signaling pathway, resulting in inhibition of pro-inflammatory cytokine production and apoptosis of inflammatory cells. In this study the effect of CF101 on the development of retinal antigen interphotoreceptor retinoid-binding protein (IRBP)-induced experimental autoimmune uveitis (EAU) was assessed. Oral treatment with CF101 (10 µg/kg, twice daily), initiated upon disease onset, improved uveitis clinical score measured by fundoscopy and ameliorated the pathological manifestations of the disease. Shortly after treatment with CF101 A3AR expression levels were down-regulated in the lymph node and spleen cells pointing towards receptor activation. Downstream events included a decrease in PI3K and STAT-1 and proliferation inhibition of IRPB auto-reactive T cells ex vivo. Inhibition of interleukin-2, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) production and up-regulation of interleukin-10 was found in cultured splenocytes derived from CF101-treated animals. Overall, the present study data point towards a marked anti-inflammatory effect of CF101 in EAU and support further exploration of this small molecule drug for the treatment of uveitis.

  20. Potent complement C3a receptor agonists derived from oxazole amino acids: Structure-activity relationships.

    PubMed

    Singh, Ranee; Reed, Anthony N; Chu, Peifei; Scully, Conor C G; Yau, Mei-Kwan; Suen, Jacky Y; Durek, Thomas; Reid, Robert C; Fairlie, David P

    2015-12-01

    Potent ligands for the human complement C3a receptor (C3aR) were developed from the almost inactive tripeptide Leu-Ala-Arg corresponding to the three C-terminal residues of the endogenous peptide agonist C3a. The analogous Leu-Ser-Arg was modified by condensing the serine side chain with the leucine carbonyl with elimination of water to form leucine-oxazole-arginine. Subsequent elaboration with a variety of N-terminal amide capping groups produced agonists as potent as human C3a itself in stimulating Ca(2+) release from human macrophages. Structure-activity relationships are discussed.