Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens
2013-01-01
The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496
Molecular Recognition at Purine and Pyrimidine Nucleotide (P2) Receptors
Jacobson, Kenneth A.; Constanzi, Stefano; Ohno, Michihiro; Joshi, Bhalchandra V.; Besada, Pedro; Xu, Bin; Tchilibon, Susanna
2015-01-01
In comparison to other classes of cell surface receptors, the medicinal chemistry at P2X (ligand-gated ion channels) and P2Y (G protein-coupled) nucleotide receptors has been relatively slow to develop. Recent effort to design selective agonists and antagonists based on a combination of library screening, empirical modification of known ligands, and rational design have led to the introduction of potent antagonists of the P2X1 (derivatives of pyridoxal phosphates and suramin), P2X3 (A-317491), P2X7 (derivatives of the isoquinoline KN-62), P2Y1 (nucleotide analogues MRS 2179 and MRS 2279), P2Y2 (thiouracil derivatives such as AR-C126313), and P2Y12 (nucleotide/nucleoside analogues AR-C69931X and AZD6140) receptors. A variety of native agonist ligands (ATP, ADP, UTP, UDP, and UDP-glucose) are currently the subject of structural modification efforts to improve selectivity. MRS2365 is a selective agonist for P2Y1 receptors. The dinucleotide INS 37217 potently activates the P2Y2 receptor. UTP-γ-S and UDP-β-S are selective agonists for P2Y2/P2Y4 and P2Y6 receptors, respectively. The current knowledge of the structures of P2X and P2Y receptors, is derived mainly from mutagenesis studies. Site-directed mutagenesis has shown that ligand recognition in the human P2Y1 receptor involves individual residues of both the TMs (3, 5, 6, and 7), as well as EL 2 and 3. The binding of the negatively-charged phosphate moiety is dependent on positively charged lysine and arginine residues near the exofacial side of TMs 3 and 7. PMID:15078212
Mosberg, Henry I.; Yeomans, Larisa; Harland, Aubrie A.; Bender, Aaron M.; Sobczyk-Kojiro, Katarzyna; Anand, Jessica P.; Clark, Mary J.; Jutkiewicz, Emily M.; Traynor, John R.
2013-01-01
We have previously described opioid peptidomimetic, 1, employing a tetrahydroquinoline scaffold and modeled on a series of cyclic tetrapeptide opioid agonists. We have recently described modifications to these peptides that confer a mu opioid receptor (MOR) agonist, delta opioid receptor (DOR) antagonist profile, which has been shown to reduce the development of tolerance to the analgesic actions of MOR agonists. Several such bifunctional ligands have been reported, but none has been demonstrated to cross the blood brain barrier. Here we describe the transfer of structural features that evoked MOR agonist/DOR antagonist behavior in the cyclic peptides to the tetrahydroquinoline scaffold and show that the resulting peptidomimetics maintain the desired pharmacological profile. Further, the 4R diastereomer of 1 was fully efficacious and approximately equipotent to morphine in the mouse warm water tail withdrawal assay following intraperitoneal administration and thus a promising lead for the development of opioid analgesics with reduced tolerance. PMID:23419026
Hulshof, Janneke W; Casarosa, Paola; Menge, Wiro M P B; Kuusisto, Leena M S; van der Goot, Henk; Smit, Martine J; de Esch, Iwan J P; Leurs, Rob
2005-10-06
US28 is a human cytomegalovirus (HCMV) encoded G-protein-coupled receptor that signals in a constitutively active manner. Recently, we identified 1 [5-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-2,2-diphenylpentanenitrile] as the first reported nonpeptidergic inverse agonist for a viral-encoded chemokine receptor. Interestingly, this compound is able to partially inhibit the viral entry of HIV-1. In this study we describe the synthesis of 1 and several of its analogues and unique structure-activity relationships for this first class of small-molecule ligands for the chemokine receptor US28. Moreover, the compounds have been pharmacologically characterized as inverse agonists on US28. By modification of lead structure 1, it is shown that a 4-phenylpiperidine moiety is essential for affinity and activity. Other structural features of 1 are shown to be of less importance. These compounds define the first SAR of ligands on a viral GPCR (US28) and may therefore serve as important tools to investigate the significance of US28-mediated constitutive activity during viral infection.
Findeisen, Maria; Rathmann, Daniel; Beck-Sickinger, Annette G
2011-06-06
Selectivity is a major issue in closely related multiligand/multireceptor systems. In this study we investigated the RFamide systems of hNPFF₁R and hNPFF₂R that bind the endogenous peptide hormones NPFF, NPAF, NPVF, and NPSF. By use of a systematic approach, we characterized the role of the C-terminal dipeptide with respect to agonistic properties using synthesized [Xaa 7]NPFF and [Xaa 8]NPFF analogues. We were able to identify only slight differences in potency upon changing the position of Arg 7, as all modifications resulted in identical behavior at the NPFF₁R and NPFF₂R. However, the C-terminal Phe 8 was able to be replaced by Trp or His with only a minor loss in potency at the NPFF₂R relative to the NPFF₁R. Analogues with shorter side chains, such as α-amino-4-guanidino butyric acid ([Agb 7]NPFF) or phenylglycine ([Phg 8]NPFF), decreased efficacy for the NPFF₁ R to 25-31 % of the maximal response, suggesting that these agonist-receptor complexes are more susceptible to structural modifications. In contrast, mutations to the conserved Asp 6.59 residue in the third extracellular loop of both receptors revealed a higher sensitivity toward the hNPFF₂R receptor than toward hNPFF₁R. These data provide new insight into the subtype-specific agonistic activation of the NPFF₁ and NPFF(2) receptors that are necessary for the development of selective agonists. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wilczynski, Andrzej; Wilson, Krista R; Scott, Joseph W; Edison, Arthur S; Haskell-Luevano, Carrie
2005-04-21
The melanocortin receptor system consists of endogenous agonists, antagonists, G-protein coupled receptors, and auxiliary proteins that are involved in the regulation of complex physiological functions such as energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. Herein, we report the structure-activity relationship (SAR) of a new chimeric hAGRP-melanocortin agonist peptide template Tyr-c[beta-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) that was characterized using amino acids previously reported in other melanocortin agonist templates. Twenty peptides were examined in this study, and six peptides were selected for (1)H NMR and computer-assisted molecular modeling structural analysis. The most notable results include the identification that modification of the chimeric template at the His position with Pro and Phe resulted in ligands that were nM mouse melanocortin-3 receptor (mMC3R) antagonists and nM mouse melanocortin-4 receptor (mMC4R) agonists. The peptides Tyr-c[beta-Asp-His-DPhe-Ala-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) and Tyr-c[beta-Asp-His-DNal(1')-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) resulted in 730- and 560-fold, respectively, mMC4R versus mMC3R selective agonists that also possessed nM agonist potency at the mMC1R and mMC5R. Structural studies identified a reverse turn occurring in the His-DPhe-Arg-Trp domain, with subtle differences observed that may account for the differences in melanocortin receptor pharmacology. Specifically, a gamma-turn secondary structure involving the DPhe(4) in the central position of the Tyr-c[beta-Asp-Phe-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) peptide may differentiate the mixed mMC3R antagonist and mMC4R agonist pharmacology.
Riba, P; Tóth, Z; Hosztafi, S; Friedmann, T; Fürst, S
2003-01-01
The agonistic and antagonistic properties of N-cyclopropylmethyl (N-CPM) morphine derivatives were observed in mouse vas deferens (MVD), longitudinal muscle of guinea pig ileum (GPI) and rabbit vas deferens (LVD). In MVD the K(e) values of the titled compounds (N-CPM-morphine, N-CPM-isomorphine, N-CPM-dihydromorphine, N-CPM-dihydroisomorpPhine, N-CPM-dihydromorphone and naltrexone) were measured for mu-, kappa- and delta-receptors using normorphine, ethylketocyclazocine (EKC) and D-Pen2-D-Pen5-enkephaline (DPDPE) as selective agonists on the receptors, respectively. For mu-receptors of MVD the tested compounds showed similar affinity. For kappa-receptors the non-iso-6-OH derivatives possessed much less affinity than the iso-derivatives. Similar difference could be observed for delta-receptors. The agonistic activities of these compounds in MVD were observed to be between 0-20% of the inhibition of muscle contractions. In GPI the compounds except naltrexone possessed strong agonistic activities effectively antagonized by nor-binaltorphimine (nor-BNI) (K(e) of nor-BNI was 0.23 nM) suggesting that they were strong kappa-receptor agonists. We investigated these agents in LVD too, which contains kappa-receptors, but they did not produce any agonist potencies. It raises the possibility that the kappa-receptor subtypes of LVD and MVD are different from the kappa-receptor subtype of GPI or the vasa deferentia contain much fewer kappa-receptors than GPI and the intrinsic activities of these compounds are too small to reach the 50% inhibition of the contractions.
Todorovic, Aleksandar; Ericson, Mark D; Palusak, Ryan D; Sorensen, Nicholas B; Wood, Michael S; Xiang, Zhimin; Haskell-Luevano, Carrie
2016-07-20
The melanocortin system has been implicated in the regulation of various physiological functions including melanogenesis, steroidogenesis, energy homeostasis, and feeding behavior. Five melanocortin receptors have been identified to date and belong to the family of G protein-coupled receptors (GPCR). Post-translational modification of the proopiomelanocortin (POMC) prohormone leads to the biosynthesis of the endogenous melanocortin agonists, including α-melanocyte stimulating hormone (α-MSH), β-MSH, γ-MSH, and adrenocorticotropic hormone (ACTH). All the melanocortin agonists derived from the POMC prohormone contain a His-Phe-Arg-Trp tetrapeptide sequence that has been implicated in eliciting the pharmacological responses at the melanocortin receptors. Herein, an alanine (Ala) positional scan is reported for the endogenous α-MSH ligand and the synthetic, more potent, NDP-MSH peptide (Ac-Ser(1)-Tyr(2)-Ser(3)-Nle(4)-Glu(5)-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH2) at the cloned mouse melanocortin receptors to test the assumption that the structure-activity relationships of one ligand would apply to the other. Several residues outside of the postulated pharmacophore altered potency at the melanocortin receptors, most notably the 1560-, 37-, and 15-fold potency loss when the Glu(5) position of α-MSH was substituted with Ala at the mMC1R, mMC3R, and mMC4R, respectively. Importantly, the altered potencies due to Ala substitutions in α-MSH did not necessarily correlate with equivalent Ala substitutions in NDP-MSH, indicating that structural modifications and corresponding biological activities in one of these melanocortin ligands may not be predictive for the other agonist.
Modification of opiate agonist binding by pertussis toxin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abood, M.E.; Lee, N.M.; Loh, H.H.
1986-03-05
Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in /sup 3/(H)-DADLE binding as compared with membranes treated identically without toxin.more » This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding.« less
Structure and biological activity of endogenous and synthetic agonists of GPR119
NASA Astrophysics Data System (ADS)
Tyurenkov, I. N.; Ozerov, A. A.; Kurkin, D. V.; Logvinova, E. O.; Bakulin, D. A.; Volotova, E. V.; Borodin, D. D.
2018-02-01
A G-protein-coupled receptor, GPR119, is a promising pharmacological target for a new class of hypoglycaemic drugs with an original mechanism of action, namely, increase in the glucose-dependent incretin and insulin secretion. In 2005, the first ligands were found and in the subsequent years, a large number of GPR119 agonists were synthesized in laboratories in various countries; the safest and most promising agonists have entered phase I and II clinical trials as agents for the treatment of type 2 diabetes mellitus and obesity. The review describes the major endogenous GPR119 agonists and the main trends in the design and modification of synthetic structures for increasing the hypoglycaemic activity. The data on synthetic agonists are arranged according to the type of the central core of the molecules. The bibliography includes 104 references.
Liu, Yue; Canal, Clinton E; Cordova-Sintjago, Tania C; Zhu, Wanying; Booth, Raymond G
2017-01-18
While exploring the structure-activity relationship of 4-phenyl-2-dimethylaminotetralins (PATs) at serotonin 5-HT 2C receptors, we discovered that relatively minor modification of PAT chemistry impacts function at 5-HT 2C receptors. In HEK293 cells expressing human 5-HT 2C-INI receptors, for example, (-)-trans-3'-Br-PAT and (-)-trans-3'-Cl-PAT are agonists regarding Gα q -inositol phosphate signaling, whereas (-)-trans-3'-CF 3 -PAT is an inverse agonist. To investigate the ligand-receptor interactions that govern this change in function, we performed site-directed mutagenesis of 14 amino acids of the 5-HT 2C receptor based on molecular modeling and reported G protein-coupled receptor crystal structures, followed by molecular pharmacology studies. We found that S3.36, T3.37, and F5.47 in the orthosteric binding pocket are critical for affinity (K i ) of all PATs tested, we also found that F6.44, M6.47, C7.45, and S7.46 are primarily involved in regulating EC/IC 50 functional potencies of PATs. We discovered that when residue S5.43, N6.55, or both are mutated to alanine, (-)-trans-3'-CF 3 -PAT switches from inverse agonist to agonist function, and when N6.55 is mutated to leucine, (-)-trans-3'-Br-PAT switches from agonist to inverse agonist function. Notably, most point-mutations that affected PAT pharmacology did not significantly alter affinity (K D ) of the antagonist radioligand [ 3 H]mesulergine, but every mutation tested negatively impacted serotonin binding. Also, amino acid mutations differentially affected the pharmacology of other commercially available 5-HT 2C ligands tested. Collectively, the data show that functional outcomes shared by different ligands are mediated by different amino acids and that some 5-HT 2C receptor residues important for pharmacology of one ligand are not necessarily important for another ligand.
Giampietro, Letizia; Ammazzalorso, Alessandra; Giancristofaro, Antonella; Lannutti, Fabio; Bettoni, Giancarlo; De Filippis, Barbara; Fantacuzzi, Marialuigia; Maccallini, Cristina; Petruzzelli, Michele; Morgano, Annalisa; Moschetta, Antonio; Amoroso, Rosa
2009-10-22
A series of 2-heteroarylthioalkanoic acids were synthesized through systematic structural modifications of clofibric acid and evaluated for human peroxisome proliferator-activated receptor alpha (PPARalpha) transactivation activity, with the aim of obtaining new hypolipidemic compounds. Some thiophene and benzothiazole derivatives showing a good activation of the receptor alpha were screened for activity against the PPARgamma isoform. The gene induction of selected compounds was also investigated in the human hepatoma cell line.
Misu, Ryosuke; Oishi, Shinya; Yamada, Ai; Yamamura, Takashi; Matsuda, Fuko; Yamamoto, Koki; Noguchi, Taro; Ohno, Hiroaki; Okamura, Hiroaki; Ohkura, Satoshi; Fujii, Nobutaka
2014-10-23
Neurokinin B (NKB) regulates the release of gonadotropin-releasing hormone (GnRH) via activation of the neurokinin-3 receptor (NK3R). We evaluated the biological stability of NK3R selective agonists to develop novel NK3R agonists to regulate reproductive functions. On the basis of degradation profiles, several peptidomimetic derivatives were designed. The modification of senktide with (E)-alkene dipeptide isostere generated a novel potent NK3R agonist with high stability and prolonged bioactivity.
Structure-Function of α1-Adrenergic Receptors
Perez, Dianne M.
2007-01-01
Summary The Easson-Stedman hypothesis provided the rationale for the first studies of drug design for the α1-adrenergic receptor. Through chemical modifications of the catecholamine core structure, the need was established for a protonated amine, a β-hydroxyl on a chiral center, and an aromatic ring with substitutions capable of hydrogen bonding. After the receptors were cloned and three α1-adrenergic receptor subtypes were discovered, drug design became focused on the analysis of receptor structure and new interactions were uncovered. It became clear that α1 and β-adrenergic receptors did not share stringent homology in the ligand-binding pocket but this difference has allowed for more selective drug design. Novel discoveries on allosterism and agonist trafficking may be used in the future design of therapeutics with fewer side effects. This review will explore past and current knowledge of the structure-function of the α1-adrenergic receptor subtypes. PMID:17052695
Singh, Anamika; Dirain, Marvin; Witek, Rachel; Rocca, James R.; Edison, Arthur S; Haskell-Luevano, Carrie
2013-01-01
The melanocortin-3 (MC3) and melanocortin-4 (MC4) receptors regulate energy homeostasis, food intake, and associated physiological conditions. The MC4R has been studied extensively. Less is known about specific physiological roles of the MC3R. A major obstacle to this lack of knowledge is attributed to a limited number of identified MC3R selective ligands. We previously reported a spatial scanning approach of a 10-membered thioether-heterocycle ring incorporated into a chimeric peptide template that identified a lead nM MC4R ligand. Based upon those results, 17 compounds were designed and synthesized that focused upon modification in the pharmacophore domain. Notable results include the identification of a 0.13 nM potent 5800-fold mMC3R selective antagonist/slight partial agonist versus a 760 nM mMC4R full agonist (ligand 11). Biophysical experiments (2D 1H NMR and computer assisted molecular modeling) of this ligand resulted in the identification of an inverse γ-turn secondary structure in the ligand pharmacophore domain. PMID:23432160
Ogawa, Seiji; Watanabe, Toshihide; Moriyuki, Kazumi; Goto, Yoshikazu; Yamane, Shinsaku; Watanabe, Akio; Tsuboi, Kazuma; Kinoshita, Atsushi; Okada, Takuya; Takeda, Hiroyuki; Tani, Kousuke; Maruyama, Toru
2016-05-15
The modification of the novel G protein-biased EP2 agonist 1 has been investigated to improve its G protein activity and develop a better understanding of its structure-functional selectivity relationship (SFSR). The optimization of the substituents on the phenyl ring of 1, followed by the inversion of the hydroxyl group on the cyclopentane moiety led to compound 9, which showed a 100-fold increase in its G protein activity compared with 1 without any increase in β-arrestin recruitment. Furthermore, SFSR studies revealed that the combination of meta and para substituents on the phenyl moiety was crucial to the functional selectivity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cho, Sung Jin; Jensen, Niels H.; Kurome, Toru; Kadari, Sudhakar; Manzano, Michael L.; Malberg, Jessica E.; Caldarone, Barbara; Roth, Bryan L.; Kozikowski, Alan P.
2009-01-01
We report here the design, synthesis, and pharmacological properties of a series of compounds related to tranylcypromine (9), which itself was discovered as a lead compound in a high-throughput screening campaign. Starting from 9, which shows modest activity as a 5-HT2C agonist, a series of 1-aminomethyl-2-phenylcyclopropanes was investigated as 5-HT2C agonists through iterative structural modifications. Key pharmacophore feature of this new class of ligands is a 2-aminomethyl-trans-cyclopropyl side chain attached to a substituted benzene ring. Among the tested compounds, several were potent and efficacious 5-HT2C receptor agonists with selectivity over both 5-HT2A and 5-HT2B receptors in functional assays. The most promising compound is 37 with 120- and 14-fold selectivity over 5-HT2A and 5-HT2B, respectively (EC50 = 585, 65, and 4.8 nM at the 2A, 2B, and 2C subtypes, respectively). In animal studies, compound 37 (10–60 mg/kg) decreased immobility time in the mouse forced swim test. PMID:19284718
Reverse Induced Fit-Driven MAS-Downstream Transduction: Looking for Metabotropic Agonists.
Pernomian, Larissa; Gomes, Mayara S; de Paula da Silva, Carlos H Tomich; Rosa, Joaquin M C
2017-01-01
Protective effects of MAS activation have spurred clinical interests in developing MAS agonists. However, current bases that drive this process preclude that physiological concentrations of peptide MAS agonists induce an atypical signaling that does not reach the metabotropic efficacy of constitutive activation. Canonical activation of MAS-coupled G proteins is only achieved by supraphysiological concentrations of peptide MAS agonists or physiological concentrations of chemically modified analogues. These pleiotropic differences are because of two overlapped binding domains: one non-metabotropic site that recognizes peptide agonists and one metabotropic domain that recognizes modified analogues. It is feasible that supraphysiological concentrations of peptide MAS agonists undergo to chemical modifications required for binding to metabotropic domain. Receptor oligomerization enhances pharmacological parameters coupled to metabotropic signaling. The formation of receptor-signalosome complex makes the transduction of agonists more adaptive. Considering the recent identification of MAS-signalosome, we aimed to postulate the reverse induced fit hypothesis in which MAS-signalosome would trigger chemical modifications required for agonists bind to MAS metabotropic domain. Here we cover rational perspectives for developing novel metabotropic MAS agonists in the view of the reverse induced-fit hypothesis. Predicting a 3D model of MAS metabotropic domain may guide the screening of chemical modifications required for metabotropic efficacy. Pharmacophore-based virtual screening would select potential metabotropic MAS agonists from virtual libraries from human proteome. Rational perspectives that consider reverse induced fit hypothesis during MAS activation for developing metabotropic MAS agonists represents the best approach in providing MAS ligands with constitutive efficacy at physiological concentrations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Rosenson, Robert S.; Wright, R. Scott; Farkouh, Michael; Plutzky, Jorge
2014-01-01
Clinical trials of cardiovascular disease (CVD) prevention in patients with type 2 diabetes mellitus primarily have been directed at the modification of a single major risk factor; however, in trials that enroll patients with and without diabetes, the absolute risk in CVD events remains higher in patients with diabetes. Efforts to reduce the macrovascular and microvascular residual risk have been directed toward a multifactorial CVD risk-factor modification; nonetheless, long-term complications remain high. Dual-peroxisome proliferator–activated receptor (PPAR) α/γ agonists may offer opportunities to lower macrovascular and microvascular complications of type 2 diabetes mellitus beyond the reductions achieved with conventional risk-factor modification. The information presented elucidates the differentiation of compound-specific vs class-effect properties of PPARs as the basis for future development of a new candidate molecule. Prior experience with thiazolidinediones, an approved class of PPARγ agonists, and glitazars, investigational class of dual-PPARα/γ agonists, also provides important lessons about the risks and benefits of targeting a nuclear receptor while revealing some of the future challenges for regulatory approval. PMID:23137497
Holder, Jerry Ryan; Xiang, Zhimin; Bauzo, Rayna M; Haskell-Luevano, Carrie
2003-01-01
The melanocortin pathway is involved in the regulation of several physiological functions including skin pigmentation, steroidogenesis, obesity, energy homeostasis, and exocrine gland function. This melanocortin pathway consists of five known G-protein coupled receptors, endogenous agonists derived from the proopiomelanocortin (POMC) gene transcript, the endogenous antagonists Agouti and the Agouti-related protein (AGRP) and signals through the intracellular cAMP signal transduction pathway. The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) located in the brain are implicated as participating in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). All the endogenous (POMC-derived) melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp." Herein, we report 12 tetrapeptides, based upon the template Ac-His(6)-DPhe(7)-Arg(8)-Trp(9)-NH(2) (alpha-MSH numbering) that have been modified at the Arg(8) position by neutral, basic, or acidic amino acid side chains. These peptides have been pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. The most notable results of this study include the observation that removal of the guanidinyl side chain moiety results in decreased melanocortin receptor potency, but that this Arg(8) side chain is not critical for melanocortin receptor agonist activity. Additionally, incorporation of the homoArg(8) residue results in 56-fold MC4R versus MC3R selectivity, and the Orn(8) residue results in 123-fold MC4R versus MC5R and 63-fold MC5R versus MC3R selectivity. Copyright 2002 Elsevier Science Inc.
Cauli, Omar; Pinna, Annalisa; Morelli, Micaela
2005-12-01
The effects of caffeine, an antagonist of adenosine A(1) and A(2A) receptors, are significantly influenced by modifications in dopamine transmission. Administration of caffeine to unilaterally 6-hydroxydopamine-lesioned rats induces ipsilateral turning behaviour in rats never exposed to a dopamine receptor agonist, whereas contralateral turning is elicited if rats are repeatedly primed with a dopamine receptor agonist. In this study, rats unilaterally lesioned with 6-hydroxydopamine and subchronically treated with an intermittent administration of caffeine (15 mg/kg) or vehicle, were administered, 3 days after discontinuations of the treatment, with the dopamine D(1) receptor agonist 1-phenyl 1,2,3,4,5-tetrahydro(1H)-3-benzazepine-7,8-diolhydrochloride (SKF 38393), the D(2)/D(3) receptor agonist quinpirole, the D(2) receptor agonist R(-)-propylnorapomorphine or the dopamine precursor L-3,4-dihydroxyphenyl-alanine. Administration of SKF 38393 (1.5 mg/kg) or L-3,4-dihydroxyphenyl-alanine (6 mg/kg), but not quinpirole (0.15 mg/kg) or R(-)-propylnorapomorphine (0.01 mg/kg), induced a significantly higher contralateral turning behaviour in rats subchronically treated with caffeine than in vehicle-pretreated rats. The results show that repeated intermittent caffeine exposure enhances the motor stimulant effects elicited by dopamine agonists by a preferential sensitization of dopamine D(1) receptors.
Ramos-Álvarez, Irene; Mantey, Samuel A.; Nakamura, Taichi; Nuche-Berenguer, Bernardo; Moreno, Paola; Moody, Terry W.; Maderdrut, Jerome L.; Coy, David H.; Jensen, Robert T.
2015-01-01
Pituitary adenylate-cyclase-activating polypeptide (PACAP) has widespread physiological/pathophysiological actions and there is increased interest for its use therapeutically, especially in the CNS (neuroprotection). Unfortunately, no selective PACAP-analogs exist for PACAP-preferring PAC1-receptors, primarily because of its high sequence identity to VIP and particularly, because of the inability of structure-function studies to separate the pharmacophore of PAC1-R from VPAC1-R, which has high affinity for PACAP and VIP. The present study attempted to develop PAC1-R-selective agonists primarily by making conformationally-restricted PACAP -analogs in positions important for receptor-selectivity/affinity. Forty-six PACAP-related-analogs were synthesized with substitutions in positions 1–4, 14–17, 20–22 ,28,34,38 and receptor-selectivity determined in PAC1-R,VPAC1-R,VPAC2-R-transfected or native cells from binding or cAMP-generation experiments. Fifteen PACAP-analogs had 6–78-fold higher affinities for PAC1-R than VPAC1-R and 13 were agonists. Although binding-affinities correlated significantly with agonist potency, the degree of receptor-spareness varied markedly for the different PACAP-analogs, resulting in selective potencies for activating the PAC1 receptor over the VPAC1 receptor from 0- to-103-fold. In addition, a number of PACAP-analogs were identified that had high selectivity for PAC1-R over VPAC2-R as well as PACAP-analogs that could prove more useful therapeutically because of substitutions known to extend their half-lives (substitutions at potential sites of proteolysis and attachment of long-chain fatty acids). This study provides for the first time a separation of the pharmacophores for PAC1-R and VPAC1-R, resulting in PACAP-related analogs that are PAC1-R-preferring. Some of these analogs, or their modifications, could prove useful as therapeutic agents for various diseases. PMID:25698233
Eardley, D; McGee, R
1985-08-07
Substance P stimulates substance P receptors but also inhibits ion conductance through nicotinic acetylcholine receptors. Substance P analogs, classified as agonists or antagonists based on their actions on smooth muscle, were tested to determine if they also could act at nicotinic receptors on the pheochromocytoma, PC12. All of the analogs tested, [D-Pro2, D-Trp7,9]SP, [D-Arg1, D-Pro2, D-Trp7,9, Leu11]SP, [pGlu5, MePhe8, Sar9]SP-(5-11), and [D-Pro4, D-Trp7,9,10]SP-(4-11), inhibited agonist-induced uptake of 86Rb+ through the nicotinic receptors at concentrations quite similar to those required for action at substance P receptors on smooth muscle. Thus, the chemical modifications in the analogs do not substantially alter their ability to inhibit nicotinic receptors.
Cyclic mu-opioid receptor ligands containing multiple N-methylated amino acid residues.
Adamska-Bartłomiejczyk, Anna; Janecka, Anna; Szabó, Márton Richárd; Cerlesi, Maria Camilla; Calo, Girolamo; Kluczyk, Alicja; Tömböly, Csaba; Borics, Attila
2017-04-15
In this study we report the in vitro activities of four cyclic opioid peptides with various sequence length/macrocycle size and N-methylamino acid residue content. N-Methylated amino acids were incorporated and cyclization was employed to enhance conformational rigidity to various extent. The effect of such modifications on ligand structure and binding properties were studied. The pentapeptide containing one endocyclic and one exocyclic N-methylated amino acid displayed the highest affinity to the mu-opioid receptor. This peptide was also shown to be a full agonist, while the other analogs failed to activate the mu opioid receptor. Results of molecular docking studies provided rationale for the explanation of binding properties on a structural basis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Late-stage optimization of a tercyclic class of S1P3-sparing, S1P1 receptor agonists.
Horan, Joshua C; Kuzmich, Daniel; Liu, Pingrong; DiSalvo, Darren; Lord, John; Mao, Can; Hopkins, Tamara D; Yu, Hui; Harcken, Christian; Betageri, Raj; Hill-Drzewi, Melissa; Patenaude, Lori; Patel, Monica; Fletcher, Kimberly; Terenzzio, Donna; Linehan, Brian; Xia, Heather; Patel, Mita; Studwell, Debbie; Miller, Craig; Hickey, Eugene; Levin, Jeremy I; Smith, Dustin; Kemper, Raymond A; Modis, Louise K; Bannen, Lynne C; Chan, Diva S; Mac, Morrison B; Ng, Stephanie; Wang, Yong; Xu, Wei; Lemieux, René M
2016-01-15
Poor solubility and cationic amphiphilic drug-likeness were liabilities identified for a lead series of S1P3-sparing, S1P1 agonists originally developed from a high-throughput screening campaign. This work describes the subsequent optimization of these leads by balancing potency, selectivity, solubility and overall molecular charge. Focused SAR studies revealed favorable structural modifications that, when combined, produced compounds with overall balanced profiles. The low brain exposure observed in rat suggests that these compounds would be best suited for the potential treatment of peripheral autoimmune disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Berthouze, Magali; Venkataramanan, Vidya; Li, Yi; Shenoy, Sudha K
2009-06-17
Agonist-induced ubiquitination of the beta(2) adrenergic receptor (beta(2)AR) functions as an important post-translational modification to sort internalized receptors to the lysosomes for degradation. We now show that this ubiquitination is reversed by two deubiquitinating enzymes, ubiquitin-specific proteases (USPs) 20 and 33, thus, inhibiting lysosomal trafficking when concomitantly promoting receptor recycling from the late-endosomal compartments as well as resensitization of recycled receptors at the cell surface. Dissociation of constitutively bound endogenously expressed USPs 20 and 33 from the beta(2)AR immediately after agonist stimulation and reassociation on prolonged agonist treatment allows receptors to first become ubiquitinated and then deubiquitinated, thus, providing a 'trip switch' between degradative and recycling pathways at the late-endosomal compartments. Thus, USPs 20 and 33 serve as novel regulators that dictate both post-endocytic sorting as well as the intensity and extent of beta(2)AR signalling from the cell surface.
CHANG, H.; YANACHKOV, I. B.; DIX, E. J.; LI, Y. F.; BARNARD, M. R.; WRIGHT, G. E.; MICHELSON, A. D.; FRELINGER, A. L.
2017-01-01
Summary Background Diadenosine 5′,5‴-P1,P4-tetraphosphate (Ap4A), a natural compound stored in platelet dense granules, inhibits ADP-induced platelet aggregation. Ap4A inhibits the platelet ADP receptors P2Y1 and P2Y12, is a partial agonist of P2Y12, and is a full agonist of the platelet ATP-gated ion channel P2X1. Modification of the Ap4A tetraphosphate backbone enhances inhibition of ADP-induced platelet aggregation. However, the effects of these Ap4A analogs on human platelet P2Y1, P2Y12 and P2X1 are unclear. Objective To determine the agonist and antagonist activities of diadenosine tetraphosphate analogs towards P2Y1, P2Y12, and P2X1. Methods We synthesized the following Ap4A analogs: P1,P4-dithiotetraphosphate; P2,P3-chloromethylenetetraphosphate; P1-thio-P2,P3-chloromethylenetetraphosphate; and P1,P4-dithio-P2,P3-chloromethylenetetraphosphate. We then measured the effects of these analogs on: (i) ADP-induced platelet aggregation; (ii) P2Y1-mediated changes in cytosolic Ca2+; (iii) P2Y12-mediated changes in vasodilator-stimulated phosphoprotein phosphorylation; and (iv) P2X1-mediated entry of extracellular Ca2+. Results Ap4A analogs with modifications in the phosphate backbone inhibited both P2Y1 and P2Y12, and showed no agonist activity towards these receptors. The dithio modification increased inhibition of P2Y1, P2Y12, and platelet aggregation, whereas the chloromethylene modification increased inhibition of P2Y12 and platelet aggregation, but decreased P2Y1 inhibition. Combining the dithio and chloromethylene modifications increased P2Y1 and P2Y12 inhibition. As compared with Ap4A, each modification decreased agonist activity towards P2X1, and the dual modification completely eliminated P2X1 agonist activity. Conclusions As compared with Ap4A, tetraphosphate backbone analogs of Ap4A have diminished activity towards P2X1 but inhibit both P2Y1 and P2Y12 and, with greater potency, inhibit ADP-induced platelet aggregation. Thus, diadenosine tetraphosphate analogs with dual receptor selectivity may have potential as antiplatelet drugs. PMID:23083103
Váradi, András; Marrone, Gina F; Eans, Shainnel O; Ganno, Michelle L; Subrath, Joan J; Le Rouzic, Valerie; Hunkele, Amanda; Pasternak, Gavril W; McLaughlin, Jay P; Majumdar, Susruta
2015-11-18
3-Iodobenzoyl naltrexamine (IBNtxA) is a potent analgesic belonging to the pharmacologically diverse 6β-amidoepoxymorphinan group of opioids. We present the synthesis and pharmacological evaluation of five analogs of IBNtxA. The scaffold of IBNtxA was modified by removing the 14-hydroxy group, incorporating a 7,8 double bond and various N-17 alkyl substituents. The structural modifications resulted in analogs with picomolar affinities for opioid receptors. The lead compound (MP1104) was found to exhibit approximately 15-fold greater antinociceptive potency (ED50 = 0.33 mg/kg) compared with morphine, mediated through the activation of kappa- and delta-opioid receptors. Despite its kappa agonism, this lead derivative did not cause place aversion or preference in mice in a place-conditioning assay, even at doses 3 times the analgesic ED50. However, pretreatment with the lead compound prevented the reward behavior associated with cocaine in a conditioned place preference assay. Together, these results suggest the promise of dual acting kappa- and delta-opioid receptor agonists as analgesics and treatments for cocaine addiction.
The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism.
Wootten, Denise; Reynolds, Christopher A; Smith, Kevin J; Mobarec, Juan C; Koole, Cassandra; Savage, Emilia E; Pabreja, Kavita; Simms, John; Sridhar, Rohan; Furness, Sebastian G B; Liu, Mengjie; Thompson, Philip E; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M
2016-06-16
Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
May, Jesse A; Sharif, Najam A; McLaughlin, Marsha A; Chen, Hwang-Hsing; Severns, Bryon S; Kelly, Curtis R; Holt, William F; Young, Richard; Glennon, Richard A; Hellberg, Mark R; Dean, Thomas R
2015-11-25
Recently, it has been reported that 5-HT2 receptor agonists effectively reduce intraocular pressure (IOP) in a nonhuman primate model of glaucoma. Although 1-[(2S)-2-aminopropyl]indazol-6-ol (AL-34662) was shown to have good efficacy in this nonhuman primate model of ocular hypertension as well as a desirable physicochemical and permeability profile, subsequently identified cardiovascular side effects in multiple species precluded further clinical evaluation of this compound. Herein, we report selected structural modifications that resulted in the identification of (8R)-1-[(2S)-2-aminopropyl]-8,9-dihydro-7H-pyrano[2,3-g]indazol-8-ol (13), which displayed an acceptable profile to support advancement for further preclinical evaluation as a candidate for proof-of-concept studies in humans.
Base modification strategies to modulate immune stimulation by an siRNA.
Valenzuela, Rachel Anne P; Suter, Scott R; Ball-Jones, Alexi A; Ibarra-Soza, José M; Zheng, Yuxuan; Beal, Peter A
2015-01-19
Immune stimulation triggered by siRNAs is one of the major challenges in the development of safe RNAi-based therapeutics. Within an immunostimulatory siRNA sequence, this hurdle is commonly addressed by using ribose modifications (e.g., 2'-OMe or 2'-F), which results in decreased cytokine production. However, as immune stimulation by siRNAs is a sequence-dependent phenomenon, recognition of the nucleobases by the trigger receptor(s) is also likely. Here, we use the recently published crystal structures of Toll-like receptor 8 (TLR8) bound to small-molecule agonists to generate computational models for ribonucleotide binding by this immune receptor. Our modeling suggested that modification of either the Watson-Crick or Hoogsteen face of adenosine would disrupt nucleotide/TLR8 interactions. We employed chemical synthesis to alter either the Watson-Crick or Hoogsteen face of adenosine and evaluated the effect of these modifications in an siRNA guide strand by measuring the immunostimulatory and RNA interference properties. For the siRNA guide strand tested, we found that modifying the Watson-Crick face is generally more effective at blocking TNFα production in human peripheral blood mononuclear cells (PBMCs) than modification at the Hoogsteen edge. We also observed that modifications near the 5'-end were more effective at blocking cytokine production than those placed at the 3'-end. This work advances our understanding of how chemical modifications can be used to optimize siRNA performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Weiss, Dahlia R; Ahn, SeungKirl; Sassano, Maria F; Kleist, Andrew; Zhu, Xiao; Strachan, Ryan; Roth, Bryan L; Lefkowitz, Robert J; Shoichet, Brian K
2013-05-17
A prospective, large library virtual screen against an activated β2-adrenergic receptor (β2AR) structure returned potent agonists to the exclusion of inverse-agonists, providing the first complement to the previous virtual screening campaigns against inverse-agonist-bound G protein coupled receptor (GPCR) structures, which predicted only inverse-agonists. In addition, two hits recapitulated the signaling profile of the co-crystal ligand with respect to the G protein and arrestin mediated signaling. This functional fidelity has important implications in drug design, as the ability to predict ligands with predefined signaling properties is highly desirable. However, the agonist-bound state provides an uncertain template for modeling the activated conformation of other GPCRs, as a dopamine D2 receptor (DRD2) activated model templated on the activated β2AR structure returned few hits of only marginal potency.
Arnatt, Christopher K; Zhang, Yan
2013-07-01
G protein-coupled estrogen receptor (GPER) has been shown to be important in several disease states such as estrogen sensitive cancers. While several selective ligands have been identified for the receptor, little is known about how they interact with GPER and how their structures influence their activity. Specifically, within one series of ligands, whose structure varied only at one position, the replacement of a hydrogen atom with an acetyl group changed a potent antagonist into a potent agonist. In this study, two GPER homology models were constructed based on the x-ray crystal structures of both the active and inactive β 2 -adrenergic receptors (β 2 AR) in an effort to characterize the differences of binding modes between agonists and antagonists to the receptor, and to understand their activity in relation to their structures. The knowledge attained in this study is expected to provide valuable information on GPER ligands structure activity relationship to benefit future rational design of potent agonists and antagonists of the receptor for potential therapeutic applications.
Arnatt, Christopher K.; Zhang, Yan
2015-01-01
G protein-coupled estrogen receptor (GPER) has been shown to be important in several disease states such as estrogen sensitive cancers. While several selective ligands have been identified for the receptor, little is known about how they interact with GPER and how their structures influence their activity. Specifically, within one series of ligands, whose structure varied only at one position, the replacement of a hydrogen atom with an acetyl group changed a potent antagonist into a potent agonist. In this study, two GPER homology models were constructed based on the x-ray crystal structures of both the active and inactive β2-adrenergic receptors (β2AR) in an effort to characterize the differences of binding modes between agonists and antagonists to the receptor, and to understand their activity in relation to their structures. The knowledge attained in this study is expected to provide valuable information on GPER ligands structure activity relationship to benefit future rational design of potent agonists and antagonists of the receptor for potential therapeutic applications. PMID:26229572
Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.
Weichert, Dietmar; Stanek, Markus; Hübner, Harald; Gmeiner, Peter
2016-06-15
Aiming to discover dual-acting β2 adrenergic/dopamine D2 receptor ligands, a structure-guided approach for the evolution of GPCR agonists that address multiple targets was elaborated. Starting from GPCR crystal structures, we describe the design, synthesis and biological investigation of a defined set of compounds leading to the identification of the benzoxazinone (R)-3, which shows agonist properties at the adrenergic β2 receptor and substantial G protein-promoted activation at the D2 receptor. This directed approach yielded molecular probes with tuned dual activity. The congener desOH-3 devoid of the benzylic hydroxyl function was shown to be a β2 adrenergic antagonist/D2 receptor agonist with Ki values in the low nanomolar range. The compounds may serve as a promising starting point for the investigation and treatment of neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Selvaraman, Nagamani; Selvam, Saravana Kumar; Muthusamy, Karthikeyan
2016-08-01
Non-secosteroidal ligands are well-known vitamin D receptor (VDR) agonists. In this study, we described a combined QM/MM to define the protein-ligand interaction energy a strong positive correlation in both QM-MM interaction energy and binding free energy against the biological activity. The molecular dynamics simulation study was performed, and specific interactions were extensively studied. The molecular docking results and surface analysis shed light on steric and electrostatic complementarities of these non-secosteroidal ligands to VDR. Finally, the drug likeness properties were also calculated and found within the acceptable range. The results show that bulky group substitutions in side chain decrease the VDR activity, whereas a small substitution increased it. Functional analyses of H393A and H301A mutations substantiate their roles in the VDR agonistic and antagonistic activities. Apart from the His393 and His301, two other amino acids in the hinge region viz. Ser233 and Arg270 acted as an electron donor/acceptor specific to the agonist in the distinct ligand potency. The results from this study disclose the binding mechanism of VDR agonists and structural modifications required to improve the selectivity. © 2016 John Wiley & Sons A/S.
Tosh, Dilip K; Janowsky, Aaron; Eshleman, Amy J; Warnick, Eugene; Gao, Zhan-Guo; Chen, Zhoumou; Gizewski, Elizabeth; Auchampach, John A; Salvemini, Daniela; Jacobson, Kenneth A
2017-04-13
We have repurposed (N)-methanocarba adenosine derivatives (A 3 adenosine receptor (AR) agonists) to enhance radioligand binding allosterically at the human dopamine (DA) transporter (DAT) and inhibit DA uptake. We extended the structure-activity relationship of this series with small N 6 -alkyl substitution, 5'-esters, deaza modifications of adenine, and ribose restored in place of methanocarba. C2-(5-Halothien-2-yl)-ethynyl 5'-methyl 9 (MRS7292) and 5'-ethyl 10 (MRS7232) esters enhanced binding at DAT (EC 50 ∼ 35 nM) and at the norepinephrine transporter (NET). 9 and 10 were selective for DAT compared to A 3 AR in the mouse but not in humans. At DAT, the binding of two structurally dissimilar radioligands was enhanced; NET binding of only one radioligand was enhanced; SERT radioligand binding was minimally affected. 10 was more potent than cocaine at inhibiting DA uptake (IC 50 = 107 nM). Ribose analogues were weaker in DAT interaction than the corresponding bicyclics. Thus, we enhanced the neurotransmitter transporter activity of rigid nucleosides while reducing A 3 AR affinity.
Harland, Aubrie A; Yeomans, Larisa; Griggs, Nicholas W; Anand, Jessica P; Pogozheva, Irina D; Jutkiewicz, Emily M; Traynor, John R; Mosberg, Henry I
2015-11-25
In a previously described peptidomimetic series, we reported the development of bifunctional μ-opioid receptor (MOR) agonist and δ-opioid receptor (DOR) antagonist ligands with a lead compound that produced antinociception for 1 h after intraperitoneal administration in mice. In this paper, we expand on our original series by presenting two modifications, both of which were designed with the following objectives: (1) probing bioavailability and improving metabolic stability, (2) balancing affinities between MOR and DOR while reducing affinity and efficacy at the κ-opioid receptor (KOR), and (3) improving in vivo efficacy. Here, we establish that, through N-acetylation of our original peptidomimetic series, we are able to improve DOR affinity and increase selectivity relative to KOR while maintaining the desired MOR agonist/DOR antagonist profile. From initial in vivo studies, one compound (14a) was found to produce dose-dependent antinociception after peripheral administration with an improved duration of action of longer than 3 h.
Agonists and antagonists for P2 receptors
Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman
2015-01-01
Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423
Operational models of pharmacological agonism.
Black, J W; Leff, P
1983-12-22
The traditional receptor-stimulus model of agonism began with a description of drug action based on the law of mass action and has developed by a series of modifications, each accounting for new experimental evidence. By contrast, in this paper an approach to modelling agonism is taken that begins with the observation that experimental agonist-concentration effect, E/[A], curves are commonly hyperbolic and develops using the deduction that the relation between occupancy and effect must be hyperbolic if the law of mass action applies at the agonist-receptor level. The result is a general model that explicitly describes agonism by three parameters: an agonist-receptor dissociation constant, KA; the total receptor concentration, [R0]; and a parameter, KE, defining the transduction of agonist-receptor complex, AR, into pharmacological effect. The ratio, [R0]/KE, described here as the 'transducer ratio', tau, is a logical definition for the efficacy of an agonist in a system. The model may be extended to account for non-hyperbolic E/[A] curves with no loss of meaning. Analysis shows that an explicit formulation of the traditional receptor-stimulus model is one particular form of the general model but that it is not the simplest. An alternative model is proposed, representing the cognitive and transducer functions of a receptor, that describes agonist action with one fewer parameter than the traditional model. In addition, this model provides a chemical definition of intrinsic efficacy making this parameter experimentally accessible in principle. The alternative models are compared and contrasted with regard to their practical and conceptual utilities in experimental pharmacology.
Singh, Anamika; Tala, Srinivasa R; Flores, Viktor; Freeman, Katie; Haskell-Luevano, Carrie
2015-05-14
The melanocortin-3 and -4 receptors are expressed in the brain and play key roles in regulating feeding behavior, metabolism, and energy homeostasis. In the present study, incorporation of β(3)-amino acids into a melanocortin tetrapeptide template was investigated. Four linear α/β(3)-hybrid tetrapeptides were designed with the modifications at the Phe, Arg, and Trp residues in the agonist sequence Ac-His-dPhe-Arg-Trp-NH2. The most potent mouse melanocortin-4 receptor (mMC4R) agonist, Ac-His-dPhe-Arg-β(3)hTrp-NH2 (8) showed 35-fold selectivity versus the mMC3R. The study presented here has identified a new template with heterogeneous backbone for designing potent and selective melanocortin receptor ligands.
2015-01-01
The melanocortin-3 and -4 receptors are expressed in the brain and play key roles in regulating feeding behavior, metabolism, and energy homeostasis. In the present study, incorporation of β3-amino acids into a melanocortin tetrapeptide template was investigated. Four linear α/β3-hybrid tetrapeptides were designed with the modifications at the Phe, Arg, and Trp residues in the agonist sequence Ac-His-dPhe-Arg-Trp-NH2. The most potent mouse melanocortin-4 receptor (mMC4R) agonist, Ac-His-dPhe-Arg-β3hTrp-NH2 (8) showed 35-fold selectivity versus the mMC3R. The study presented here has identified a new template with heterogeneous backbone for designing potent and selective melanocortin receptor ligands. PMID:26005535
Structure and dynamics of a constitutively active neurotensin receptor
Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo; ...
2016-12-07
Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecularmore » dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. In conclusion, the loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist.« less
Structure and dynamics of a constitutively active neurotensin receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo
Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecularmore » dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. In conclusion, the loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist.« less
Structure and dynamics of a constitutively active neurotensin receptor
Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo; Botos, Istvan; White, Courtney F.; Du, Haijuan; Vaidehi, Nagarajan; Grisshammer, Reinhard
2016-01-01
Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecular dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. The loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist. PMID:27924846
Joseph, Christine G; Wang, Xiang S; Scott, Joseph W; Bauzo, Rayna M; Xiang, Zhimin; Richards, Nigel G; Haskell-Luevano, Carrie
2004-12-30
The agouti-related protein (AGRP) is an endogenous antagonist of the centrally expressed melanocortin receptors. The melanocortin-4 receptor (MC4R) is involved in energy homeostasis, food intake, sexual function, and obesity. The endogenous hAGRP protein is 132 amino acids in length, possesses five disulfide bridges at the C-terminus of the molecule, and is expressed in the hypothalamus of the brain. We have previously reported that a monocyclic hAGRP(103-122) peptide is an antagonist at the melanocortin receptors expressed in the brain. Stereochemical inversion from the endogenous l- to d-isomers of single or multiple amino acid modifications in this monocyclic truncated hAGRP sequence resulted in molecules that are converted from melanocortin receptor antagonists into melanocortin receptor agonists. The Asp-Pro-Ala-Ala-Thr-Ala-Tyr-cyclo[Cys-Arg-DPhe-DPhe-Asn-Ala-Phe-Cys]-Tyr-Ala-Arg-Lys-Leu peptide resulted in a 60 nM melanocortin-1 receptor agonist that is 100-fold selective versus the mMC4R, 1000-fold selective versus the mMC3R, and ca. 180-fold selective versus the mMC5R. In attempts to identify putative ligand-receptor interactions that may be participating in the agonist induced stimulation of the MC4R, selected ligands were docked into a homology molecular model of the mMC4R. These modeling studies have putatively identified hAGRP ligand DArg111-mMC4RAsn115 (TM3) and the hAGRP DPhe113-mMC4RPhe176 (TM4) interactions as important for agonist activity.
Scott, Alison J; Oyler, Benjamin L; Goodlett, David R; Ernst, Robert K
2017-11-01
Strategies utilizing Toll-like receptor 4 (TLR4) agonists for treatment of cancer, infectious diseases, and other targets report promising results. Potent TLR4 antagonists are also gaining attention as therapeutic leads. Though some principles for TLR4 modulation by lipid A have been described, a thorough understanding of the structure-activity relationship (SAR) is lacking. Only through a complete definition of lipid A-TLR4 SAR is it possible to predict TLR4 signaling effects of discrete lipid A structures, rendering them more pharmacologically relevant. A limited 'toolbox' of lipid A-modifying enzymes has been defined and is largely composed of enzymes from mesophile human and zoonotic pathogens. Expansion of this 'toolbox' will result from extending the search into lipid A biosynthesis and modification by bacteria living at the extremes. Here, we review the fundamentals of lipid A structure, advances in lipid A uses in TLR4 modulation, and the search for novel lipid A-modifying systems in extremophile bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanism of partial agonism in AMPA-type glutamate receptors
Salazar, Hector; Eibl, Clarissa; Chebli, Miriam; Plested, Andrew
2017-01-01
Neurotransmitters trigger synaptic currents by activating ligand-gated ion channel receptors. Whereas most neurotransmitters are efficacious agonists, molecules that activate receptors more weakly—partial agonists—also exist. Whether these partial agonists have weak activity because they stabilize less active forms, sustain active states for a lesser fraction of the time or both, remains an open question. Here we describe the crystal structure of an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) ligand binding domain (LBD) tetramer in complex with the partial agonist 5-fluorowillardiine (FW). We validate this structure, and others of different geometry, using engineered intersubunit bridges. We establish an inverse relation between the efficacy of an agonist and its promiscuity to drive the LBD layer into different conformations. These results suggest that partial agonists of the AMPAR are weak activators of the receptor because they stabilize multiple non-conducting conformations, indicating that agonism is a function of both the space and time domains. PMID:28211453
Holder, Jerry Ryan; Bauzo, Rayna M; Xiang, Zhimin; Haskell-Luevano, Carrie
2002-07-04
The melanocortin pathway is an important participant in skin pigmentation, steroidogenesis, obesity, energy homeostasis and exocrine gland function. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). The melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp," and it has been well-documented that inversion of chirality of the Phe to DPhe results in a dramatic increase in melanocortin receptor potency. Herein, we report a tetrapeptide library, based upon the template Ac-His-DPhe-Arg-Trp-NH(2), consisting of 26 members that have been modified at the DPhe(7) position (alpha-MSH numbering) and pharmacologically characterized for agonist and antagonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. The most notable results of this study include the identification of the tetrapeptide Ac-His-(pI)DPhe-Arg-Trp-NH(2) that is a full nanomolar agonist at the mMC1 and mMC5 receptors, a mMC3R partial agonist with potent antagonist activity (pA(2) = 7.25, K(i) = 56 nM) and, but unexpectedly, is a potent agonist at the mMC4R (EC(50) = 25 nM). This ligand possesses novel melanocortin receptor pharmacology, as compared to previously reported peptides, and is potentially useful for in vivo studies to differentiate MC3R vs MC4R physiological roles in animal models, such as primates, where "knockout" animals are not viable options. The DNal(2') substitution for DPhe resulted in a mMC3R partial agonist with antagonist activity (pA(2) = 6.5, K(i) = 295 nM) and a mMC4R (pA(2) = 7.8, K(i) = 17 nM) antagonist possessing 60- and 425-fold decreased potency, respectively, as compared with SHU9119 at these receptors. Examination of this DNal(2')-containing tetrapeptide at the F254S and F259S mutant mMC4Rs resulted in agonist activity of this mMC4R tetrapeptide antagonist, similar to that observed for the SHU9119 peptide, supporting our previously proposed hypothesis that the Phe 254 and 259 transmembrane six receptor residues are important for differentiating melanocortin sequence-based MC4R antagonists vs the agouti-related protein (AGRP) sequence-based antagonists.
Holder, Jerry Ryan; Bauzo, Rayna M; Xiang, Zhimin; Haskell-Luevano, Carrie
2002-06-20
The melanocortin pathway is an important participant in obesity and energy homeostasis. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). The melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp", and it has been well documented that inversion of chirality of the Phe to DPhe results in a dramatic increase in melanocortin receptor potency. Herein, we report a tetrapeptide library based on the template Ac-His-DPhe-Arg-Trp-NH(2), consisting of 17 members that have been modified at the His(6) position (alpha-MSH numbering) and pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. These studies provide further experimental evidence that the His(6) position can determine MC4R versus MC3R agonist selectivity and that chemically nonreactive side chains may be substituted for the imidazole ring (generally needs to be side chain protected in synthetic schemes) in the design of MC4R-selective, small-molecule, non-peptide agonists. Specifically, the tetrapeptide containing the amino-2-naphthylcarboxylic acid (Anc) amino acid at the His position resulted in a potent agonist at the mMC4R (EC(50) = 21 nM), was a weak mMC3R micromolar antagonist (pA(2) = 5.6, K(i) = 2.5 microM), and possessed >4700-fold agonist selectivity for the MC4R versus the MC3R. Substitution of the His(6) amino acid in the tetrapeptide template by the Phe, Anc, 3-(2-thienyl)alanine (2Thi), and 3-(4-pyridinyl)alanine (4-Pal) resulted in equipotency or only up to a 7-fold decrease in potency, compared to the His(6)-containing tetrapeptide at the mMC4R, demonstrating that these amino acid side chains may be substituted for the imidazole in the design of MC4R-selective non-peptide molecules.
Structure-Activity Analysis of Biased Agonism at the Human Adenosine A3 Receptor
Baltos, Jo-Anne; Paoletta, Silvia; Nguyen, Anh T. N.; Gregory, Karen J.; Tosh, Dilip K.; Christopoulos, Arthur; Jacobson, Kenneth A.
2016-01-01
Biased agonism at G protein–coupled receptors (GPCRs) has significant implications for current drug discovery, but molecular determinants that govern ligand bias remain largely unknown. The adenosine A3 GPCR (A3AR) is a potential therapeutic target for various conditions, including cancer, inflammation, and ischemia, but for which biased agonism remains largely unexplored. We now report the generation of bias “fingerprints” for prototypical ribose containing A3AR agonists and rigidified (N)-methanocarba 5′-N-methyluronamide nucleoside derivatives with regard to their ability to mediate different signaling pathways. Relative to the reference prototypical agonist IB-MECA, (N)-methanocarba 5′-N-methyluronamide nucleoside derivatives with significant N6 or C2 modifications, including elongated aryl-ethynyl groups, exhibited biased agonism. Significant positive correlation was observed between the C2 substituent length (in Å) and bias toward cell survival. Molecular modeling suggests that extended C2 substituents on (N)-methanocarba 5′-N-methyluronamide nucleosides promote a progressive outward shift of the A3AR transmembrane domain 2, which may contribute to the subset of A3AR conformations stabilized on biased agonist binding. PMID:27136943
Probing receptor structure/function with chimeric G-protein-coupled receptors.
Yin, Dezhong; Gavi, Shai; Wang, Hsien-yu; Malbon, Craig C
2004-06-01
Owing its name to an image borrowed from Greek mythology, a chimera is seen to represent a new entity created as a composite from existing creatures or, in this case, molecules. Making use of various combinations of three basic domains of the receptors (i.e., exofacial, transmembrane, and cytoplasmic segments) that couple agonist binding into activation of effectors through heterotrimeric G-proteins, molecular pharmacology has probed the basic organization, structure/function relationships of this superfamily of heptahelical receptors. Chimeric G-protein-coupled receptors obviate the need for a particular agonist ligand when the ligand is resistant to purification or, in the case of orphan receptors, is not known. Chimeric receptors created from distant members of the heptahelical receptors enable new strategies in understanding how these receptors transduce agonist binding into receptor activation and may be able to offer insights into the evolution of G-protein-coupled receptors from yeast to humans.
Kling, Ralf C.; Tschammer, Nuska; Lanig, Harald; Clark, Timothy; Gmeiner, Peter
2014-01-01
Partial agonists exhibit a submaximal capacity to enhance the coupling of one receptor to an intracellular binding partner. Although a multitude of studies have reported different ligand-specific conformations for a given receptor, little is known about the mechanism by which different receptor conformations are connected to the capacity to activate the coupling to G-proteins. We have now performed molecular-dynamics simulations employing our recently described active-state homology model of the dopamine D2 receptor-Gαi protein-complex coupled to the partial agonists aripiprazole and FAUC350, in order to understand the structural determinants of partial agonism better. We have compared our findings with our model of the D2R-Gαi-complex in the presence of the full agonist dopamine. The two partial agonists are capable of inducing different conformations of important structural motifs, including the extracellular loop regions, the binding pocket and, in particular, intracellular G-protein-binding domains. As G-protein-coupling to certain intracellular epitopes of the receptor is considered the key step of allosterically triggered nucleotide-exchange, it is tempting to assume that impaired coupling between the receptor and the G-protein caused by distinct ligand-specific conformations is a major determinant of partial agonist efficacy. PMID:24932547
Pharmacological characterization of the new histamine H4 receptor agonist VUF 8430
Lim, Herman D; Adami, Maristella; Guaita, Elena; Werfel, Thomas; Smits, Rogier A; de Esch, Iwan JP; Bakker, Remko A; Gutzmer, Ralf; Coruzzi, Gabriella; Leurs, Rob
2009-01-01
Background and purpose: We compare the pharmacological profiles of a new histamine H4 receptor agonist 2-(2-guanidinoethyl)isothiourea (VUF 8430) with that of a previously described H4 receptor agonist, 4-methylhistamine. Experimental approach: Radioligand binding and functional assays were performed using histamine H4 receptors expressed in mammalian cell lines. Compounds were also evaluated ex vivo in monocyte-derived dendritic cells endogenously expressing H4 receptors and in vivo in anaesthetized rats for gastric acid secretion activity. Key results: Both VUF 8430 and 4-methylhistamine were full agonists at human H4 receptors with lower affinity at rat and mouse H4 receptors. Both compounds induced chemotaxis of monocyte-derived dendritic cells. VUF 8430 also showed reasonable affinity and was a full agonist at the H3 receptor. Agmatine is a metabolite of arginine, structurally related to VUF 8430, and was a H4 receptor agonist with micromolar affinity. At histamine H3 receptors, agmatine was a full agonist, whereas 4-methylhistamine was an agonist only at high concentrations. Both VUF 8430 and agmatine were inactive at H1 and H2 receptors, whereas 4-methylhistamine is as active as histamine at H2 receptors. In vivo, VUF 8430 only caused a weak secretion of gastric acid mediated by H2 receptors, whereas 4-methylhistamine, dimaprit, histamine and amthamine, at equimolar doses, induced 2.5- to 6-fold higher output than VUF 8430. Conclusions and implications: Our results suggest complementary use of 4-methylhistamine and VUF 8430 as H4 receptor agonists. Along with H4 receptor antagonists, both agonists can serve as useful pharmacological tools in studies of histamine H4 receptors. PMID:19413569
Morin, Matthew D; Wang, Ying; Jones, Brian T; Su, Lijing; Surakattula, Murali M R P; Berger, Michael; Huang, Hua; Beutler, Elliot K; Zhang, Hong; Beutler, Bruce; Boger, Dale L
2016-05-26
Herein, we report studies leading to the discovery of the neoseptins and a comprehensive examination of the structure-activity relationships (SARs) of this new class of small-molecule mouse Toll-like receptor 4 (mTLR4) agonists. The compounds in this class, which emerged from screening an α-helix mimetic library, stimulate the immune response, act by a well-defined mechanism (mouse TLR4 agonist), are easy to produce and structurally manipulate, exhibit exquisite SARs, are nontoxic, and elicit improved and qualitatively different responses compared to lipopolysaccharide, even though they share the same receptor.
Action of Molecular Switches in GPCRs - Theoretical and Experimental Studies
Trzaskowski, B; Latek, D; Yuan, S; Ghoshdastider, U; Debinski, A; Filipek, S
2012-01-01
G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called “molecular switches” buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homo- and heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor activation that could lead to design highly effective and selective allosteric or ago-allosteric drugs. PMID:22300046
Action of molecular switches in GPCRs--theoretical and experimental studies.
Trzaskowski, B; Latek, D; Yuan, S; Ghoshdastider, U; Debinski, A; Filipek, S
2012-01-01
G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called "molecular switches" buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homoand heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor activation that could lead to design highly effective and selective allosteric or ago-allosteric drugs.
Lin, Ying-Ting
2013-04-30
A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.
Structure of an agonist-bound ionotropic glutamate receptor.
Yelshanskaya, Maria V; Li, Minfen; Sobolevsky, Alexander I
2014-08-29
Ionotropic glutamate receptors (iGluRs) mediate most excitatory neurotransmission in the central nervous system and function by opening their ion channel in response to binding of agonist glutamate. Here, we report a structure of a homotetrameric rat GluA2 receptor in complex with partial agonist (S)-5-nitrowillardiine. Comparison of this structure with the closed-state structure in complex with competitive antagonist ZK 200775 suggests conformational changes that occur during iGluR gating. Guided by the structures, we engineered disulfide cross-links to probe domain interactions that are important for iGluR gating events. The combination of structural information, kinetic modeling, and biochemical and electrophysiological experiments provides insight into the mechanism of iGluR gating. Copyright © 2014, American Association for the Advancement of Science.
Hyndman, Kelly A.; Dhaun, Neeraj; Southan, Christopher; Kohan, Donald E.; Pollock, Jennifer S.; Pollock, David M.; Webb, David J.; Maguire, Janet J.
2016-01-01
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists. PMID:26956245
Function and structure in glycine receptors and some of their relatives.
Colquhoun, David; Sivilotti, Lucia G
2004-06-01
In the field of ligand-gated ion channels, recent developments, both in the knowledge of structure and in the measurement of function at the single-channel level, have allowed a sensible start to be made on understanding the relationship between structure and function in these proteins. In this review, the cases of glycine, nicotinic ACh and glutamate receptors are compared and contrasted, and problems such as how binding of agonist causes the channel to open, and why partial agonists are partial, are considered. Some observations, both structural and functional, suggest that more attention needs to be paid to conformational changes that occur before the channel opens. Such changes might account for the interaction found between subunits of the glycine receptor while it is still shut and, perhaps, the agonist-dependent structural changes seen in AMPA receptors. They might also complicate our understanding of the binding-gating problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi
2009-08-01
The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid andmore » glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.« less
Fay, Jonathan F; Farrens, David L
2012-09-28
Allosteric ligands that modulate how G protein-coupled receptors respond to traditional orthosteric drugs are an exciting and rapidly expanding field of pharmacology. An allosteric ligand for the cannabinoid receptor CB1, Org 27569, exhibits an intriguing effect; it increases agonist binding, yet blocks agonist-induced CB1 signaling. Here we explored the mechanism behind this behavior, using a site-directed fluorescence labeling approach. Our results show that Org 27569 blocks conformational changes in CB1 that accompany G protein binding and/or activation, and thus inhibit formation of a fully active CB1 structure. The underlying mechanism behind this behavior is that simultaneous binding of Org 27569 produces a unique agonist-bound conformation, one that may resemble an intermediate structure formed on the pathway to full receptor activation.
Recent advance in the design of small molecular modulators of estrogen-related receptors.
Lu, Xiaoyun; Peng, Lijie; Lv, Man; ding, Ke
2012-01-01
The estrogen-related receptors (ERRs), comprising ERRα, ERRβ and ERRγ, are the members of the nuclear receptor superfamily, which have been functionally implicated in estrogen signal pathway in various patterns. However, no natural ligand of ERRs has been identified to data, so identification of the synthetic modulators (inverse agonist and agonist) of ERRs would be highly effective in the treatment of estrogen-related pathologies, such as diabetes, breast cancer and osteoporosis. This review summarizes the structures and biological functions of ERR subtypes, and the progress in designing the small molecular modulators of ERRs as well as the detailed description of available co-crystal structures of the LBD of ERRs in three distinct states: unligand, inverse agonist bound, and agonist bound.
Palomo, Jennifer; Dietrich, Damien; Martin, Praxedis; Palmer, Gaby; Gabay, Cem
2015-11-01
The interleukin (IL)-1 family of cytokines comprises 11 members, including 7 pro-inflammatory agonists (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ) and 4 defined or putative antagonists (IL-1R antagonist (IL-1Ra), IL-36Ra, IL-37, and IL-38) exerting anti-inflammatory activities. Except for IL-1Ra, IL-1 cytokines do not possess a leader sequence and are secreted via an unconventional pathway. In addition, IL-1β and IL-18 are produced as biologically inert pro-peptides that require cleavage by caspase-1 in their N-terminal region to generate active proteins. N-terminal processing is also required for full activity of IL-36 cytokines. The IL-1 receptor (IL-1R) family comprises 10 members and includes cytokine-specific receptors, co-receptors and inhibitory receptors. The signaling IL-1Rs share a common structure with three extracellular immunoglobulin (Ig) domains and an intracellular Toll-like/IL-1R (TIR) domain. IL-1 cytokines bind to their specific receptor, which leads to the recruitment of a co-receptor and intracellular signaling. IL-1 cytokines induce potent inflammatory responses and their activity is tightly controlled at the level of production, protein processing and maturation, receptor binding and post-receptor signaling by naturally occurring inhibitors. Some of these inhibitors are IL-1 family antagonists, while others are IL-1R family members acting as membrane-bound or soluble decoy receptors. An imbalance between agonist and antagonist levels can lead to exaggerated inflammatory responses. Several genetic modifications or mutations associated with dysregulated IL-1 activity and autoinflammatory disorders were identified in mouse models and in patients. These findings paved the road to the successful use of IL-1 inhibitors in diseases that were previously considered as untreatable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei
2017-09-01
Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.
Sepe, Valentina; Renga, Barbara; Festa, Carmen; D'Amore, Claudio; Masullo, Dario; Cipriani, Sabrina; Di Leva, Francesco Saverio; Monti, Maria Chiara; Novellino, Ettore; Limongelli, Vittorio; Zampella, Angela; Fiorucci, Stefano
2014-09-25
Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1.
New benzylureas as a novel series of potent, nonpeptidic vasopressin V2 receptor agonists.
Yea, Christopher M; Allan, Christine E; Ashworth, Doreen M; Barnett, James; Baxter, Andy J; Broadbridge, Janice D; Franklin, Richard J; Hampton, Sally L; Hudson, Peter; Horton, John A; Jenkins, Paul D; Penson, Andy M; Pitt, Gary R W; Rivière, Pierre; Robson, Peter A; Rooker, David P; Semple, Graeme; Sheppard, Andy; Haigh, Robert M; Roe, Michael B
2008-12-25
Vasopressin (AVP) is a hormone that stimulates an increase in water permeability through activation of V2 receptors in the kidney. The analogue of AVP, desmopressin, has proven an effective drug for diseases where a reduction of urine output is desired. However, its peptidic nature limits its bioavailability. We report herein the discovery of potent, nonpeptidic, benzylurea derived agonists of the vasopressin V2 receptor. We describe substitutions on the benzyl group to give improvements in potency and subsequent modifications to the urea end group to provide improvements in solubility and increased oral efficacy in a rat model of diuresis. The lead compound 20e (VA106483) is reported for the first time and has been selected for clinical development.
Sandbaumhüter, Friederike A; Theurillat, Regula; Bettschart-Wolfensberger, Regula; Thormann, Wolfgang
2017-08-01
The combination of ketamine and an α 2 -receptor agonist is often used in veterinary medicine. Four different α 2 -receptor agonists, medetomidine, detomidine, xylazine, and romifidine, which differ in their chemical structure and thus in selectivity for the α 2 -receptor and in the sedative and analgesic potency, are typically employed during surgery of equines. Recovery following anesthesia with ketamine and an α 2 -receptor agonist is dependent on the α 2 -receptor agonist. This prompted us to investigate (i) the inhibition characteristics for the N-demethylation of ketamine to norketamine and (ii) the formation of the ketamine metabolites norketamine, 6-hydroxynorketamine (6HNK), and 5,6-dehydronorketamine (DHNK) in presence of the four α 2 -receptor agonists and equine liver microsomes. Samples were analyzed with enantioselective capillary electrophoresis using highly sulfated γ-cyclodextrin as chiral selector. All four α 2 -receptor agonists have an impact on the ketamine metabolism. Medetomidine was found to be the strongest inhibitor, followed by detomidine, whereas xylazine and romifidine showed almost no effect on the ketamine N-demethylation in the inhibition studies with a short-incubation period of the reaction mixture. After prolonged incubation, inhibition with xylazine and romifidine was also observed. The formation of 6HNK and DHNK is affected by all selected α 2 -receptor agonists. With medetomidine, levels of these metabolites are reduced compared to the case without an α 2 -receptor agonist. For detomidine, xylazine, and romifidine, the opposite was found. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Franks, Lirit N.; Ford, Benjamin M.; Madadi, Nikhil R.; Penthala, Narsimha R.; Crooks, Peter A.; Prather, Paul L.
2014-01-01
Our laboratory recently reported that a group of novel indole quinuclidine analogues bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analogue exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogues acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogues demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors. PMID:24858620
NASA Astrophysics Data System (ADS)
di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio
2015-11-01
Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation.
2015-01-01
The melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors are expressed in the brain and are implicated in the regulation of food intake and energy homeostasis. The endogenous agonist ligands for these receptors (α-, β-, γ-MSH and ACTH) are linear peptides with limited receptor subtype selectivity and metabolic stability, thus minimizing their use as probes to characterize the overlapping pharmacological and physiological functions of the melanocortin receptor subtypes. In the present study, an engineered template, in which the peptide backbone was modified by a heterocyclic reverse turn mimetic at the Trp7 residue, was synthesized using solid phase peptide synthesis and characterized by a β-galactosidase cAMP based reporter gene assay. The functional assay identified a ∼5 nM mouse MC4R agonist (AST3-88) with more than 50-fold selectivity over the mMC3R. Biophysical studies (2D 1H NMR spectroscopy and molecular dynamics) of AST3-88 identified a type VIII β-turn secondary structure spanning the pharmacophore domain stabilized by the intramolecular interactions between the side chains of the His and Trp residues. Enzymatic studies of AST3-88 revealed enhanced stability of AST3-88 over the α-MSH endogenous peptide in rat serum. Upon central administration of AST3-88 into rats, a decreased food intake response was observed. This is the first study to probe the in vivo physiological activity of this engineered peptide-heterocycle template. These findings advance the present knowledge of pharmacophore design for potent, selective, and metabolically stable melanocortin ligands. PMID:25141170
Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Scott K.; Washburn, David G.; Frazee, James S.
2010-09-03
Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.
Activation of single heteromeric GABAA receptor ion channels by full and partial agonists
Mortensen, Martin; Kristiansen, Uffe; Ebert, Bjarke; Frølund, Bente; Krogsgaard-Larsen, Povl; Smart, Trevor G
2004-01-01
The linkage between agonist binding and the activation of a GABAA receptor ion channel is yet to be resolved. This aspect was examined on human recombinant α1β2γ2S GABAA receptors expressed in human embryonic kidney cells using the following series of receptor agonists: GABA, isoguvacine, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), isonipecotic acid, piperidine-4-sulphonic acid (P4S), imidazole-4-acetic acid (IAA), 5-(4-piperidyl)-3-isothiazolol (thio-4-PIOL) and 5-(4-piperidyl)-3-isoxazolol (4-PIOL). Whole-cell concentration–response curves enabled the agonists to be categorized into four classes based upon their maximum responses. Single channel analyses revealed that the channel conductance of 25–27 pS was unaffected by the agonists. However, two open states were resolved from the open period distributions with mean open times reduced 5-fold by the weakest partial agonists. Using saturating agonist concentrations, estimates of the channel shutting rate, α, ranged from 200 to 600 s−1. The shut period distributions were described by three or four components and for the weakest partial agonists, the interburst shut periods increased whilst the mean burst durations and longest burst lengths were reduced relative to the full agonists. From the burst analyses, the opening rates for channel activation, β, and the total dissociation rates, k−1, for the agonists leaving the receptor were estimated. The agonist efficacies were larger for the full agonists (E ∼7−9) compared to the weak partial agonists (∼0.4–0.6). Overall, changes in agonist efficacy largely determined the different agonist profiles with contributions from the agonist affinities and the degree of receptor desensitization. From this we conclude that GABAA receptor activation does not occur in a switch-like manner since the agonist recognition sites are flexible, accommodating diverse agonist structures which differentially influence the opening and shutting rates of the ion channel. PMID:14990676
Overview of elagolix for the treatment of endometriosis.
Melis, Gian Benedetto; Neri, Manuela; Corda, Valentina; Malune, Maria Elena; Piras, Bruno; Pirarba, Silvia; Guerriero, Stefano; Orrù, Marisa; D'Alterio, Maurizio Nicola; Angioni, Stefano; Paoletti, Anna Maria
2016-05-01
Suppression of sex-steroid secretion is required in a variety of gynecological conditions. This can be achieved using gonadotropin releasing hormone (GnRH) agonists that bind pituitary gonadotropin receptors and antagonize the link-receptor of endogenous GnRH, inhibiting the mechanism of GnRH pulsatility. On the other hand, GnRH antagonists immediately reduce gonadal steroid levels, avoiding the initial stimulatory phase of the agonists. Potential benefits of GnRH antagonists over GnRH agonists include a rapid onset and reversibility of action. Older GnRH antagonists are synthetic peptides, obtained by modifications of certain amino acids in the native GnRH sequence. They require subcutaneous injections, implantation of long-acting depots. The peptide structure is responsible for histamine-related adverse events and the tendency to elicit hypersensitivity reactions. Research has worked towards the development of non-peptidic molecules exerting antagonist action on GnRH. They are available for oral administration and may have a more beneficial safety profile in comparison with peptide GnRH antagonists. This article focuses on the data of the literature about elagolix, a novel non-peptidic GnRHantagonist, in the treatment of endometriosis. Elagolix demonstrated efficacy in the management of endometriosis-associated pain and had an acceptable safety and tolerability profile. However, further studies are necessary to evaluate its non-inferiority in comparison with other endometriosis's treatments.
Structural basis for molecular recognition at serotonin receptors.
Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Gao, Xiang; Zhou, X Edward; Melcher, Karsten; Zhang, Chenghai; Bai, Fang; Yang, Huaiyu; Yang, Linlin; Jiang, Hualiang; Roth, Bryan L; Cherezov, Vadim; Stevens, Raymond C; Xu, H Eric
2013-05-03
Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.
Lacher, Svenja K; Mayer, Ralf; Sichardt, Kathrin; Nieber, Karen; Müller, Christa E
2007-01-15
A series of extracts of valerian roots (Valeriana officinalis L.) was prepared with solvents of different polarity. Polar as well as nonpolar extracts were found to interact with adenosine A(1) receptors. While polar extracts activated A(1) receptors (partial agonistic activity), nonpolar extracts showed antagonistic or inverse agonistic activity at A(1) receptors, as demonstrated by GTPgammaS binding assays at human recombinant A(1) receptors stably expressed in Chinese hamster ovary (CHO) cells. Guided by radioligand binding assays, fractionation of a lipophilic petroleum ether:diethyl ether (1:1) extract led to the isolation of isovaltrate, which was characterized as a potent, highly efficacious inverse agonist at adenosine A(1) receptors (K(i) rat A(1): 2.05 microM). In experiments at rat brain slices measuring post-synaptic potentials (PSPs) in cortical neurons, isovaltrate at least partly reversed the reduction in the PSPs induced by the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA). Isovaltrate may serve as a new lead structure for the development of inverse agonists at adenosine A(1) receptors. The common use of hydrophilic, but not lipophilic valerian extracts as mild sleep-inducing agents is consistent with the opposite actions of hydrophilic and lipophilic extracts on adenosine receptors.
Gopishetty, Bhaskar; Zhang, Suhong; Kharkar, Prashant S.; Antonio, Tamara; Reith, Maarten; Dutta, Aloke K.
2013-01-01
The goal of the present study was to explore, in our previously developed hybrid template, the effect of introduction of additional heterocyclic rings (mimicking catechol hydroxyl groups as bioisosteric replacement) on selectivity and affinity for the D3 versus D2 receptor. In addition, we wanted to explore the effect of derivatization of functional groups of the agonist binding moiety in compounds developed by us earlier from the hybrid template. Binding affinity (Ki) of the new compounds was measured with tritiated spiperone as the radioligand and HEK-293 cells expressing either D2 or D3 receptors. Functional activity of selected compounds was assessed in the GTPγS binding assay. In the imidazole series, compound 10a exhibited the highest D3 affinity whereas the indole derivative 13 exhibited similar high D3 affinity. Functionalization of the amino group in agonist (+)-9d with different sulfonamides derivatives improved the D3 affinity significantly with (+)-14f exhibiting the highest affinity. However, functionalization of the hydroxyl and amino groups of 15 and (+)-9d, known agonist and partial agonist, to sulfonate ester and amide in general modulated the affinity. In both cases loss of agonist potency resulted from such derivatization. PMID:23623679
Novel Carbonyl Analogues of Tamoxifen: Design, Synthesis, and Biological Evaluation
NASA Astrophysics Data System (ADS)
Kasiotis, Konstantinos M.; Lambrinidis, George; Fokialakis, Nikolas; Tzanetou, Evangelia N.; Mikros, Emmanuel; Haroutounian, Serkos A.
2017-09-01
Aim of this work was to provide tamoxifen analogues with enhanced estrogen receptor binding affinity. Hence, several derivatives were prepared using an efficient triarylethylenes synthetic protocol. The novel compounds bioactivity was evaluated through the determination of their receptor binding affinity and their agonist/antagonist activity against breast cancer tissue using a MCF-7 cell-based assay. Phenyl esters 6a,b and 8a,b exhibited binding affinity to both ERα and ERβ higher than 4-hydroxytamoxifen while compounds 13 and 14 have shown cellular antiestrogenic activity similar to 4-hydroxytamoxifen and the known estrogen receptor inhibitor ICI182,780. Theoretical calculations and molecular modelling were applied to investigate, support and explain the biological profile of the new compounds. The relevant data indicated an agreement between calculations and demonstrated biological activity allowing to extract useful structure-activity relationships. Results herein underline that modifications of tamoxifen structure still provide molecules with substantial activity, as portrayed in the inhibition of MCF-7 cells proliferation.
Toyota, Yosuke; Nomura, Sayaka; Makishima, Makoto; Hashimoto, Yuichi; Ishikawa, Minoru
2017-06-15
Anti-inflammatory effects of peroxisome proliferator-activated receptor gamma (PPRAγ) ligands are thought to be largely due to PPARγ-mediated transrepression. Thus, transrepression-selective PPARγ ligands without agonistic activity or with only partial agonistic activity should exhibit anti-inflammatory properties with reduced side effects. Here, we investigated the structure-activity relationships (SARs) of PPARγ agonist rosiglitazone, focusing on transrepression activity. Alkenic analogs showed slightly more potent transrepression with reduced efficacy of transactivating agonistic activity. Removal of the alkyl group on the nitrogen atom improved selectivity for transrepression over transactivation. Among the synthesized compounds, 3l exhibited stronger transrepressional activity (IC 50 : 14μM) and weaker agonistic efficacy (11%) than rosiglitazone or pioglitazone. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mixed nicotinic-muscarinic properties of the alpha9 nicotinic cholinergic receptor.
Verbitsky, M; Rothlin, C V; Katz, E; Elgoyhen, A B
2000-10-01
The rat alpha9 nicotinic acetylcholine receptor (nAChR) was expressed in Xenopus laevis oocytes and tested for its sensitivity to a wide variety of cholinergic compounds. Acetylcholine (ACh), carbachol, choline and methylcarbachol elicited agonist-evoked currents, giving maximal or near maximal responses. Both the nicotinic agonist suberyldicholine as well as the muscarinic agonists McN-A-343 and methylfurtrethonium behaved as weak partial agonists of the receptor. Most classical cholinergic compounds tested, being either nicotinic (nicotine, epibatidine, cytisine, methyllycaconitine, mecamylamine, dihydro-beta-erythroidine), or muscarinic (muscarine, atropine, gallamine, pilocarpine, bethanechol) agonists and antagonists, blocked the recombinant alpha9 receptor. Block by nicotine, epibatidine, cytisine, methyllycaconitine and atropine was overcome at high ACh concentrations, suggesting a competitive type of block. The present results indicate that alpha9 displays mixed nicotinic-muscarinic features that resemble the ones described for the cholinergic receptor of cochlear outer hair cells (OHCs). We suggest that alpha9 contains the structural determinants responsible for the pharmacological properties of the native receptor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wacker, Daniel; Fenalti, Gustavo; Brown, Monica A.
2010-11-15
G protein-coupled receptors (GPCRs) represent a large fraction of current pharmaceutical targets, and of the GPCRs, the {beta}{sub 2} adrenergic receptor ({beta}{sub 2}AR) is one of the most extensively studied. Previously, the X-ray crystal structure of {beta}{sub 2}AR has been determined in complex with two partial inverse agonists, but the global impact of additional ligands on the structure or local impacts on the binding site are not well-understood. To assess the extent of such ligand-induced conformational differences, we determined the crystal structures of a previously described engineered {beta}{sub 2}AR construct in complex with two inverse agonists: ICI 118,551 (2.8 {angstrom}),more » a recently described compound (2.8 {angstrom}) (Kolb et al, 2009), and the antagonist alprenolol (3.1 {angstrom}). The structures show the same overall fold observed for the previous {beta}{sub 2}AR structures and demonstrate that the ligand binding site can accommodate compounds of different chemical and pharmacological properties with only minor local structural rearrangements. All three compounds contain a hydroxy-amine motif that establishes a conserved hydrogen bond network with the receptor and chemically diverse aromatic moieties that form distinct interactions with {beta}{sub 2}AR. Furthermore, receptor ligand cross-docking experiments revealed that a single {beta}{sub 2}AR complex can be suitable for docking of a range of antagonists and inverse agonists but also indicate that additional ligand-receptor structures may be useful to further improve performance for in-silico docking or lead-optimization in drug design.« less
Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V
2011-01-01
BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290
Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V
2011-03-01
Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Medicinal chemistry of adenosine, P2Y and P2X receptors.
Jacobson, Kenneth A; Müller, Christa E
2016-05-01
Pharmacological tool compounds are now available to define action at the adenosine (ARs), P2Y and P2X receptors. We present a selection of the most commonly used agents to study purines in the nervous system. Some of these compounds, including A1 and A3 AR agonists, P2Y1R and P2Y12R antagonists, and P2X3, P2X4 and P2X7 antagonists, are potentially of clinical use in treatment of disorders of the nervous system, such as chronic pain, neurodegeneration and brain injury. Agonists of the A2AAR and P2Y2R are already used clinically, P2Y12R antagonists are widely used antithrombotics and an antagonist of the A2AAR is approved in Japan for treating Parkinson's disease. The selectivity defined for some of the previously introduced compounds has been revised with updated pharmacological characterization, for example, various AR agonists and antagonists were deemed A1AR or A3AR selective based on human data, but species differences indicated a reduction in selectivity ratios in other species. Also, many of the P2R ligands still lack bioavailability due to charged groups or hydrolytic (either enzymatic or chemical) instability. X-ray crystallographic structures of AR and P2YRs have shifted the mode of ligand discovery to structure-based approaches rather than previous empirical approaches. The X-ray structures can be utilized either for in silico screening of chemically diverse libraries for the discovery of novel ligands or for enhancement of the properties of known ligands by chemical modification. Although X-ray structures of the zebrafish P2X4R have been reported, there is scant structural information about ligand recognition in these trimeric ion channels. In summary, there are definitive, selective agonists and antagonists for all of the ARs and some of the P2YRs; while the pharmacochemistry of P2XRs is still in nascent stages. The therapeutic potential of selectively modulating these receptors is continuing to gain interest in such fields as cancer, inflammation, pain, diabetes, ischemic protection and many other conditions. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. Published by Elsevier Ltd.
Hashi, Hiroki; Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko
2018-04-01
Neurotensin receptor type 1 (NTSR1), a member of the G-protein-coupled receptor (GPCR) family, is naturally activated by binding of a neurotensin peptide, leading to a variety of physiological effects. The budding yeast Saccharomyces cerevisiae is a proven host organism for assaying the agonistic activation of human GPCRs. Previous studies showed that yeast cells can functionally express human NTSR1 receptor, permitting the detection of neurotensin-promoted signaling using a ZsGreen fluorescent reporter gene. However, the fluorescence intensity (sensitivity) of NTSR1-expressing yeast cells is low compared to that of yeast cells expressing other human GPCRs (e.g., human somatostatin receptors). The present study sought to increase the sensitivity of the NTSR1-expressing yeast for use as a fluorescent biosensor, including modification of the expression of human NTSR1 in yeast. Changes in the transcription, translation, and transport of the receptor are attempted by altering the promoter, consensus Kozak-like sequence, and secretion signal sequences of the NTSR1-encoding gene. The resulting yeast cells exhibited increased sensitivity to exogenously added peptide. The cells are further engineered by using cell-surface display technology to ensure that the agonistic peptides are secreted and tethered to the yeast cell wall, yielding cells with enhanced NTSR1 activation. This yeast biosensor holds promise for the identification of agonists to treat NTSR1-related diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Orwig, Kevin S; Lassetter, McKensie R; Hadden, M Kyle; Dix, Thomas A
2009-04-09
Neurotensin(8-13) and two related analogues were used as model systems to directly compare various N-terminal peptide modifications representing both commonly used and novel capping groups. Each N-terminal modification prevented aminopeptidase cleavage but surprisingly differed in its ability to inhibit cleavage at other sites, a phenomenon attributed to long-range conformational effects. None of the capping groups were inherently detrimental to human neurotensin receptor 1 (hNTR1) binding affinity or receptor agonism. Although the most stable peptides exhibited the lowest binding affinities and were the least potent receptor agonists, they produced the largest in vivo effects. Of the parameters studied only stability significantly correlated with in vivo efficacy, demonstrating that a reduction in binding affinity at NTR1 can be countered by increased in vivo stability.
Li, Xiang; Anderson, Marie; Collin, Delphine; Muegge, Ingo; Wan, John; Brennan, Debra; Kugler, Stanley; Terenzio, Donna; Kennedy, Charles; Lin, Siqi; Labadia, Mark E; Cook, Brian; Hughes, Robert; Farrow, Neil A
2017-07-14
The nuclear receptor retinoid acid receptor-related orphan receptor γt (RORγt) is a master regulator of the Th17/IL-17 pathway that plays crucial roles in the pathogenesis of autoimmunity. RORγt has recently emerged as a highly promising target for treatment of a number of autoimmune diseases. Through high-throughput screening, we previously identified several classes of inverse agonists for RORγt. Here, we report the crystal structures for the ligand-binding domain of RORγt in both apo and ligand-bound states. We show that apo RORγt adopts an active conformation capable of recruiting coactivator peptides and present a detailed analysis of the structural determinants that stabilize helix 12 (H12) of RORγt in the active state in the absence of a ligand. The structures of ligand-bound RORγt reveal that binding of the inverse agonists disrupts critical interactions that stabilize H12. This destabilizing effect is supported by ab initio calculations and experimentally by a normalized crystallographic B-factor analysis. Of note, the H12 destabilization in the active state shifts the conformational equilibrium of RORγt toward an inactive state, which underlies the molecular mechanism of action for the inverse agonists reported here. Our findings highlight that nuclear receptor structure and function are dictated by a dynamic conformational equilibrium and that subtle changes in ligand structures can shift this equilibrium in opposite directions, leading to a functional switch from agonists to inverse agonists. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Mattsson, Cecilia; Svensson, Peder; Boettcher, Henning; Sonesson, Clas
2013-05-01
To further investigate the structure-activity relationship (SAR) of the 5-hydroxytryptamine type 6 (5-HT6) receptor agonist 5-chloro-2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole (EMD386088, 6), a series of 2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles were synthesized, and in vitro affinity to, and functional activity at 5-HT6 receptors was tested. We focused on substituents made at the indole N(1)-, 2- and 5-positions and these were found to not only influence the affinity at 5-HT6 receptors but also the intrinsic activity leading to antagonists, partial agonists and full agonists. In order for a compound to demonstrate potent 5-HT6 receptor agonist properties, the indole N(1) should be unsubstituted, an alkyl group such as 2-methyl is needed and finally halogen substituents in the indole 5-position (fluoro, chloro or, bromo) were essential requirements. However, the introduction of a benzenesulfonyl group at N(1)-position switched the full agonist 6 to be a 5-HT6 receptor antagonist (30). A few compounds within the 2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles were also screened for off-targets and generally they displayed low affinity for other 5-HT subtypes and serotonin transporter protein (SERT). Copyright © 2013 Elsevier Masson SAS. All rights reserved.
A Potent and Site-Selective Agonist of TRPA1.
Takaya, Junichiro; Mio, Kazuhiro; Shiraishi, Takuya; Kurokawa, Tatsuki; Otsuka, Shinya; Mori, Yasuo; Uesugi, Motonari
2015-12-23
TRPA1 is a member of the transient receptor potential (TRP) cation channel family that is expressed primarily on sensory neurons. This chemosensor is activated through covalent modification of multiple cysteine residues with a wide range of reactive compounds including allyl isothiocyanate (AITC), a spicy component of wasabi. The present study reports on potent and selective agonists of TRPA1, discovered through screening 1657 electrophilic molecules. In an effort to validate the mode of action of hit molecules, we noted a new TRPA1-selective agonist, JT010 (molecule 1), which opens the TRPA1 channel by covalently and site-selectively binding to Cys621 (EC50 = 0.65 nM). The results suggest that a single modification of Cys621 is sufficient to open the TRPA1 channel. The TRPA1-selective probe described herein might be useful for further mechanistic studies of TRPA1 activation.
Nimczick, Martin; Pemp, Daniela; Darras, Fouad H; Chen, Xinyu; Heilmann, Jörg; Decker, Michael
2014-08-01
The design of bivalent ligands targeting G protein-coupled receptors (GPCRs) often leads to the development of new, highly selective and potent compounds. To date, no bivalent ligands for the human cannabinoid receptor type 2 (hCB₂R) of the endocannabinoid system (ECS) are described. Therefore, two sets of homobivalent ligands containing as parent structure the hCB2R selective agonist 13a and coupled at different attachment positions were synthesized. Changes of the parent structure at these positions have a crucial effect on the potency and efficacy of the ligands. However, we discovered that bivalency has an influence on the effect at both cannabinoid receptors. Moreover, we found out that the spacer length and the attachment position altered the efficacy of the bivalent ligands at the receptors by turning agonists into antagonists and inverse agonists. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ericson, Mark D; Koerperich, Zoe M; Freeman, Katie T; Fleming, Katlyn A; Haskell-Luevano, Carrie
2018-06-20
The melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R), endogenous agonists derived from the proopiomelanocortin gene transcript, and naturally-occurring antagonists agouti and agouti-related protein (AGRP) have been linked to biological pathways associated with energy homeostasis. The active tripeptide sequence of AGRP, Arg111-Phe112-Phe113, is located on a hypothesized β-hairpin loop. Herein, stereochemical modifications of the Arg-Phe-Phe sequence were examined in the octapeptide AGRP-derived macrocyclic scaffold c[Pro-Arg-Phe-Phe-Xxx-Ala-Phe-DPro], where Xxx was Asn or diaminopropionic acid (Dap). Macrocyclic peptides were synthesized with one, two, or three residues of the Arg-Phe-Phe sequence substituted with the corresponding D-isomer(s), generating a 14 compound library. While L-to-D inversions of the Arg-Phe-Phe sequence in a 20-residue AGRP-derived ligand previously resulted in agonist activity at the MC1R, MC3R, MC4R, and MC5R, only the MC1R was consistently stimulated by the macrocyclic ligands in the present study, with varying ligand potencies and efficacies observed at the MC1R. A general trend of increased MC4R antagonist potency was observed for Dap-containing compounds, while MC5R inverse agonist activity was observed for select ligands. It was observed that stereochemical modification of the Arg-Phe-Phe active tripeptide sequence was insufficient to convert melanocortin antagonist into agonists. Overall, these observations are important in the design of melanocortin ligands possessing potent and selective agonist and antagonist activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yan; Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS; Li, Guodong
2013-01-15
The farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR deficiency in mice results in cholestasis, metabolic disorders, and tumorigenesis in liver and intestine. FXR is known to contribute to pathogenesis by regulating gene transcription; however, changes in the post-transcriptional modification of proteins associated with FXR modulation have not been determined. In the current study, proteomic analysis of the livers of wild-type (WT) and FXR knockout (FXR-KO) mice treated with a FXR synthetic ligand or vehicle was performed. The results identified five proteins as novel FXR targets. Since FXR deficiency in micemore » leads to liver tumorigenesis, poly (ADP-ribose) polymerase family, member 1 (Parp1) that is important for DNA repair, was validated in the current study by quantitative real-time PCR, and 1- and 2-dimensional gel electrophoresis/western blot. The results showed that Parp1 mRNA levels were not altered by FXR genetic status or by agonist treatment. However, total Parp1 protein levels were increased in FXR-KO mice as early as 3 month old. Interestingly, total Parp1 protein levels were increased in WT mice in an age-dependent manner (from 3 to 18 months), but not in FXR-KO mice. Finally, activation of FXR in WT mice resulted in reduction of phosporylated Parp1 protein in the liver without affecting total Parp1 protein levels. In conclusion, this study reveals that FXR genetic status and agonist treatment affects basal levels and phosphorylation state of Parp1, respectively. These alterations, in turn, may be associated with the hepatobiliary alterations observed in FXR-KO mice and participate in FXR agonist-induced protection in the liver. -- Highlights: ► Proteomic analysis identified novel FXR targets. ► FXR modification altered post-translational modification of the Parp1 protein. ► Altered Parp1 function may contribute to mechanisms of FXR regulation of liver functions.« less
Potent and selective oxytocin receptor agonists without disulfide bridges.
Adachi, Yusuke; Sakimura, Katsuya; Shimizu, Yuji; Nakayama, Masaharu; Terao, Yasuko; Yano, Takahiko; Asami, Taiji
2017-06-01
Oxytocin (OT) is a neuropeptide involved in a wide variety of physiological actions, both peripherally and centrally. Many human studies have revealed the potential of OT to treat autism spectrum disorders and schizophrenia. OT interacts with the OT receptor (OTR) as well as vasopressin 1a and 1b receptors (V 1a R, V 1b R) as an agonist, and agonistic activity for V 1a R and V 1b R may have a negative impact on the therapeutic effects of OTR agonism in the CNS. An OTR-selective agonistic peptide, FE 202767, in which the structural differences from OT are a sulfide bond instead of a disulfide bond, and N-alkylglycine replacement for Pro at position 7, was reported. However, the effects of amino acid substitutions in OT have not been comprehensively investigated to compare OTR, V 1a R, and V 1b R activities. This led us to obtain a new OTR-selective analog by comprehensive amino acid substitutions of OT and replacement of the disulfide bond. A systematic amino acid scanning (Ala, Leu, Phe, Ser, Glu, or Arg) of desamino OT (dOT) at positions 2, 3, 4, 5, 7, and 8 revealed the tolerability for the substitution at positions 7 and 8. Further detailed study showed that trans-4-hydroxyproline (trans-Hyp) at position 7 and γ-methylleucine [Leu(Me)] at position 8 were markedly effective for improving receptor selectivity without decreasing the potency at the OTR. Subsequently, a combination of these amino acid substitutions with the replacement of the disulfide bond of dOT analogs with a sulfide bond (carba analog) or an amide bond (lactam analog) yielded several promising analogs, including carba-1-[trans-Hyp 7 ,Leu(Me) 8 ]dOT (14) with a higher potency (7.2pM) at OTR than that of OT and marked selectivity (>10,000-fold) over V 1a R and V 1b R. Hence, we investigated comprehensive modification of OT and obtained new OT analogs that exhibited high potency at OTR with marked selectivity. These OTR-selective agonists could be useful to investigate OTR-mediated effects on psychiatric disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.
Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P
2016-11-10
On the basis of the structural similarity of our previous 5-HT 2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT 2A , 5-HT 2B , and 5-HT 2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT 2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT 2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.
A computational model of the nicotinic acetylcholine binding site
NASA Astrophysics Data System (ADS)
Gálvez-ruano, Enrique; Iriepa-Canalda, Isabel; Morreale, Antonio; Lipkowitz, Kenny B.
1999-01-01
We have derived a model of the nicotinic acetylcholine binding site. This was accomplished by using three known agonists (acetylcholine, nicotine and epibatidine) as templates around which polypeptide side chains, found to be part of the receptor cavity from published molecular biology studies, are allowed to flow freely in molecular dynamics simulations and mold themselves around these templates. The resulting supramolecular complex should thus be a complement, both in terms of steric effects as well as electronic effects, to the agonists and it should be a good estimation of the true receptor cavity structure. The shapes of those minireceptor cavities equilibrated rapidly on the simulation time scale and their structural congruence is very high, implying that a satisfactory model of the nicotinic acetylcholine binding site has been achieved. The computational methodology was internally tested against two rigid and specific antagonists (dihydro-β-erytroidine and erysoidine), that are expected to give rise to a somewhat differently shaped binding site compared to that derived from the agonists. Using these antagonists as templates there were structural reorganizations of the initial receptor cavities leading to distinctly different cavities compared to agonists. This indicates that adequate times and temperatures were used in our computational protocols to achieve equilibrium structures for the agonists. Overall, both minireceptor geometries for agonists and antagonists are similar with the exception of one amino acid (ARG209).
Adverse Effects of GLP-1 Receptor Agonists
Filippatos, Theodosios D.; Panagiotopoulou, Thalia V.; Elisaf, Moses S.
2014-01-01
Glucagon-like peptide-1 (GLP-1) receptor agonists are a class of injective anti-diabetic drugs that improve glycemic control and many other atherosclerosis-related parameters in patients with type 2 diabetes (T2D). However, the use of this relatively new class of drugs may be associated with certain adverse effects. Concerns have been expressed regarding the effects of these drugs on pancreatic and thyroid tissue, since animal studies and analyses of drug databases indicate an association of GLP-1 receptor agonists with pancreatitis, pancreatic cancer, and thyroid cancer. However, several meta-analyses failed to confirm a cause-effect relation between GLP-1 receptor agonists and the development of these adverse effects. One benefit of GLP-1 receptor agonists is that they do not cause hypoglycemia when combined with metformin or thiazolidinediones, but the dose of concomitant sulphonylurea or insulin may have to be decreased to reduce the risk of hypoglycemic episodes. On the other hand, several case reports have linked the use of these drugs, mainly exenatide, with the occurrence of acute kidney injury, primarily through hemodynamic derangement due to nausea, vomiting, and diarrhea. The most common symptoms associated with the use of GLP-1 receptor agonists are gastrointestinal symptoms, mainly nausea. Other common adverse effects include injection site reactions, headache, and nasopharyngitis, but these effects do not usually result in discontinuation of the drug. Current evidence shows that GLP-1 receptor agonists have no negative effects on the cardiovascular risk of patients with T2D. Thus, GLP-1 receptor agonists appear to have a favorable safety profile, but ongoing trials will further assess their cardiovascular effects. The aim of this review is to analyze critically the available data regarding adverse events of GLP-1 receptor agonists in different anatomic systems published in Pubmed and Scopus. Whenever possible, certain differences between GLP-1 receptor agonists are described. The review also provides the reader with structured data that compare the rates of the most common adverse effects for each of the various GLP-1 receptor agonists. PMID:26177483
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor.
Rasmussen, Søren G F; Choi, Hee-Jung; Fung, Juan Jose; Pardon, Els; Casarosa, Paola; Chae, Pil Seok; Devree, Brian T; Rosenbaum, Daniel M; Thian, Foon Sun; Kobilka, Tong Sun; Schnapp, Andreas; Konetzki, Ingo; Sunahara, Roger K; Gellman, Samuel H; Pautsch, Alexander; Steyaert, Jan; Weis, William I; Kobilka, Brian K
2011-01-13
G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human β(2) adrenergic receptor (β(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive β(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11 Å outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.
Valdés Zurita, Francisco; Brown Vega, Nelson; Gutiérrez Cabrera, Margarita
2018-05-08
We describe the semisynthesis and biological effects of adenosine derivatives, which were anticipated to function as agonists for the A₃ receptor. Molecular docking was used to select candidate compounds. Fifteen nucleoside derivatives were obtained through nucleophilic substitutions of the N ⁶-position of the nucleoside precursor 6-chloropurine riboside by amines of different origin. All compounds were purified by column chromatography and further characterized by spectroscopic and spectrometric techniques, showing moderate yield. These molecules were then evaluated for their antiproliferative activity in human gastric cancer cells expressing the A₃ receptor. We found that the compounds obtained have antiproliferative activity and that new structural modifications can enhance their biological activity. The ADME (Absorption, Distribution, Metabolism and Excretion) properties of the most active compounds were also evaluated theoretically.
Pozvek, G; Hilton, J M; Quiza, M; Houssami, S; Sexton, P M
1997-04-01
The structure/function relationship of salmon calcitonin (sCT) analogues was investigated in heterologous calcitonin receptor (CTR) expression systems. sCT analogues with progressive amino-terminal truncations intermediate of sCT-(1-32) to sCT-(8-32) were examined for their ability to act as agonists, antagonists, or inverse agonists. Two CTR cell clones, B8-H10 and G12-E12, which express approximately 5 million and 25,000 C1b receptors/cell, respectively, were used for this study. The B8-H10 clone has an approximately 80-fold increase in basal levels of intracellular cAMP due to constitutive activation of the overexpressed receptor. In whole-cell competition binding studies, sCT-(1-32) was more potent than any of its amino-terminally truncated analogues in competition for 125I-sCT binding. In cAMP accumulation studies, sCT-(1-32) and modified analogues sCT-(2-32) and sCT-(3-32) had agonist activities. SDZ-216-710, with an amino-terminal truncation of four amino acids, behaved as a partial agonist/antagonist, whereas amino-terminal truncations of six or seven amino acid residues produced a 16-fold reduction in basal cAMP levels and attenuated the response to the agonist sCT-(1-32) in the constitutively active CTR system. This inverse agonist effect was insensitive to pertussis toxin inhibition. In contrast, the inverse agonist activity of these peptides was not observed in the nonconstitutively active CTR system, in which sCT analogues with amino-terminal truncations of four or more amino acids behaved as neutral competitive antagonists. These results suggest that the inverse agonist activity is mediated by stabilization of the inactive state of the receptor, which does not couple to G protein, and attenuates basal signaling initiated by ligand-independent activation of the effector adenylyl cyclase.
Riether, Doris; Zindell, Renee; Wu, Lifen; Betageri, Raj; Jenkins, James E; Khor, Someina; Berry, Angela K; Hickey, Eugene R; Ermann, Monika; Albrecht, Claudia; Ceci, Angelo; Gemkow, Mark J; Nagaraja, Nelamangala V; Romig, Helmut; Sauer, Achim; Thomson, David S
2015-02-01
Through a ligand-based pharmacophore model (S)-proline based compounds were identified as potent cannabinoid receptor 2 (CB2) agonists with high selectivity over the cannabinoid receptor 1 (CB1). Structure-activity relationship investigations for this compound class lead to oxo-proline compounds 21 and 22 which combine an impressive CB1 selectivity profile with good pharmacokinetic properties. In a streptozotocin induced diabetic neuropathy model, 22 demonstrated a dose-dependent reversal of mechanical hyperalgesia. Copyright © 2014 Elsevier Ltd. All rights reserved.
German, Nadezhda; Decker, Ann M; Gilmour, Brian P; Gay, Elaine A; Wiley, Jenny L; Thomas, Brian F; Zhang, Yanan
2014-09-25
The recent discovery of allosteric modulators of the CB1 receptor including PSNCBAM-1 (4) has generated significant interest in CB1 receptor allosteric modulation. Here in the first SAR study on 4, we have designed and synthesized a series of analogs focusing on modifications at two positions. Pharmacological evaluation in calcium mobilization and binding assays revealed the importance of alkyl substitution at the 2-aminopyridine moiety and electron deficient aromatic groups at the 4-chlorophenyl position for activity at the CB1 receptor, resulting in several analogs with comparable potency to 4. These compounds increased the specific binding of [(3)H]CP55,940, in agreement with previous reports. Importantly, 4 and two analogs dose-dependently reduced the Emax of the agonist curve in the CB1 calcium mobilization assays, confirming their negative allosteric modulator characteristics. Given the side effects associated with CB1 receptor orthosteric antagonists, negative allosteric modulators provide an alternative approach to modulate the pharmacologically important CB1 receptor.
Structural prerequisites for G-protein activation by the neurotensin receptor
Krumm, Brian E.; White, Jim F.; Shah, Priyanka; ...
2015-07-24
We previously determined the structure of neurotensin receptor NTSR1 in an active-like conformation with six thermostabilizing mutations bound to the peptide agonist neurotensin. This receptor was unable to activate G proteins, indicating that the mutations restricted NTSR1 to relate agonist binding to G-protein activation. Here we analyse the effect of three of those mutations (E166A 3.49, L310A 6.37, F358A 7.42) and present two structures of NTSR1 able to catalyse nucleotide exchange at Gα. The presence of F358 7.42 causes the conserved W321 6.48 to adopt a side chain orientation parallel to the lipid bilayer sealing the collapsed Na+ ion pocketmore » and linking the agonist with residues in the lower receptor part implicated in GPCR activation. In the intracellular receptor half, the bulkier L310 6.37 side chain dictates the position of R167 3.50 of the highly conserved D/ERY motif. These residues, together with the presence of E166 3.49 provide determinants for G-protein activation by NTSR1.« less
Structural prerequisites for G-protein activation by the neurotensin receptor
Krumm, Brian E.; White, Jim F.; Shah, Priyanka; Grisshammer, Reinhard
2015-01-01
We previously determined the structure of neurotensin receptor NTSR1 in an active-like conformation with six thermostabilizing mutations bound to the peptide agonist neurotensin. This receptor was unable to activate G proteins, indicating that the mutations restricted NTSR1 to relate agonist binding to G-protein activation. Here we analyse the effect of three of those mutations (E166A3.49, L310A6.37, F358A7.42) and present two structures of NTSR1 able to catalyse nucleotide exchange at Gα. The presence of F3587.42 causes the conserved W3216.48 to adopt a side chain orientation parallel to the lipid bilayer sealing the collapsed Na+ ion pocket and linking the agonist with residues in the lower receptor part implicated in GPCR activation. In the intracellular receptor half, the bulkier L3106.37 side chain dictates the position of R1673.50 of the highly conserved D/ERY motif. These residues, together with the presence of E1663.49 provide determinants for G-protein activation by NTSR1. PMID:26205105
Structural prerequisites for G-protein activation by the neurotensin receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumm, Brian E.; White, Jim F.; Shah, Priyanka
We previously determined the structure of neurotensin receptor NTSR1 in an active-like conformation with six thermostabilizing mutations bound to the peptide agonist neurotensin. This receptor was unable to activate G proteins, indicating that the mutations restricted NTSR1 to relate agonist binding to G-protein activation. Here we analyse the effect of three of those mutations (E166A 3.49, L310A 6.37, F358A 7.42) and present two structures of NTSR1 able to catalyse nucleotide exchange at Gα. The presence of F358 7.42 causes the conserved W321 6.48 to adopt a side chain orientation parallel to the lipid bilayer sealing the collapsed Na+ ion pocketmore » and linking the agonist with residues in the lower receptor part implicated in GPCR activation. In the intracellular receptor half, the bulkier L310 6.37 side chain dictates the position of R167 3.50 of the highly conserved D/ERY motif. These residues, together with the presence of E166 3.49 provide determinants for G-protein activation by NTSR1.« less
3D-Pharmacophore Identification for κ-Opioid Agonists Using Ligand-Based Drug-Design Techniques
NASA Astrophysics Data System (ADS)
Yamaotsu, Noriyuki; Hirono, Shuichi
A selective κ-opioid receptor (KOR) agonist might act as a powerful analgesic without the side effects of μ-opioid receptor-selective drugs such as morphine. The eight classes of known KOR agonists have different chemical structures, making it difficult to construct a pharmacophore model that takes them all into account. Here, we summarize previous efforts to identify the pharmacophore for κ-opioid agonists and propose a new three-dimensional pharmacophore model that encompasses the κ-activities of all classes. This utilizes conformational sampling of agonists by high-temperature molecular dynamics and pharmacophore extraction through a series of molecular superpositions.
Provasi, Davide; Artacho, Marta Camacho; Negri, Ana; Mobarec, Juan Carlos; Filizola, Marta
2011-01-01
Extensive experimental information supports the formation of ligand-specific conformations of G protein-coupled receptors (GPCRs) as a possible molecular basis for their functional selectivity for signaling pathways. Taking advantage of the recently published inactive and active crystal structures of GPCRs, we have implemented an all-atom computational strategy that combines different adaptive biasing techniques to identify ligand-specific conformations along pre-determined activation pathways. Using the prototypic GPCR β2-adrenergic receptor as a suitable test case for validation, we show that ligands with different efficacies (either inverse agonists, neutral antagonists, or agonists) modulate the free-energy landscape of the receptor by shifting the conformational equilibrium towards active or inactive conformations depending on their elicited physiological response. Notably, we provide for the first time a quantitative description of the thermodynamics of the receptor in an explicit atomistic environment, which accounts for the receptor basal activity and the stabilization of different active-like states by differently potent agonists. Structural inspection of these metastable states reveals unique conformations of the receptor that may have been difficult to retrieve experimentally. PMID:22022248
Molecular modelling studies on the ORL1-receptor and ORL1-agonists
NASA Astrophysics Data System (ADS)
Bröer, Britta M.; Gurrath, Marion; Höltje, Hans-Dieter
2003-11-01
The ORL1 ( opioid receptor like 1)- receptor is a member of the family of rhodopsin-like G protein-coupled receptors (GPCR) and represents an interesting new therapeutical target since it is involved in a variety of biomedical important processes, such as anxiety, nociception, feeding, and memory. In order to shed light on the molecular basis of the interactions of the GPCR with its ligands, the receptor protein and a dataset of specific agonists were examined using molecular modelling methods. For that purpose, the conformational space of a very potent non-peptide ORL1-receptor agonist (Ro 64-6198) with a small number of rotatable bonds was analysed in order to derive a pharmacophoric arrangement. The conformational analyses yielded a conformation that served as template for the superposition of a set of related analogues. Structural superposition was achieved by employing the program FlexS. Using the experimental binding data and the superposition of the ligands, a 3D-QSAR analysis applying the GRID/GOLPE method was carried out. After the ligand-based modelling approach, a 3D model of the ORL1-receptor has been constructed using homology modelling methods based on the crystal structure of bovine rhodopsin. A representative structure of the model taken from molecular dynamics simulations was used for a manual docking procedure. Asp-130 and Thr-305 within the ORL1-receptor model served as important hydrophilic interaction partners. Furthermore, a hydrophobic cavity was identified stabilizing the agonists within their binding site. The manual docking results were supported using FlexX, which identified the same protein-ligand interaction points.
Agnes, Richard S.; Ying, Jinfa; Kövér, Katalin E.; Lee, Yeon Sun; Davis, Peg; Ma, Shou-wu; Badghisi, Hamid; Porreca, Frank; Lai, Josephine; Hruby, Victor J.
2008-01-01
Prolonged opioid exposure increases the expression of cholecystokinin (CCK) and its receptors in the central nervous system, where CCK may attenuate the antinociceptive effects of opioids. The complex interactions between opioid and CCK may play a role in the development of opioid tolerance. We designed and synthesized cyclic disulfide peptides and determined their agonist properties at opioid receptors and antagonist properties at CCK receptors. Compound 1 (Tyr-c[D-Cys-Gly-Trp-Cys]-Asp-Phe-NH2) showed potent binding and agonist activities at δ and µ opioid receptors while displaying some binding to CCK receptors. The NMR structure of the lead compound displayed similar conformational features of opioid and CCK ligands. PMID:18502541
Interactions of ligands with active and inactive conformations of the dopamine D2 receptor.
Malmberg, A; Mohell, N; Backlund Höök, B; Johansson, A M; Hacksell, U; Nordvall, G
1998-04-10
The affinities of 19 pharmacologically diverse dopamine D2 receptor ligands were determined for the active and inactive conformations of cloned human dopamine D2 receptors expressed in Ltk cells. The agonist [3H]quinpirole was used to selectively label the guanine nucleotide-binding protein-coupled, active receptor conformation. The antagonist [3H]raclopride, in the presence of the non-hydrolysable GTP-analogue Gpp(NH)p and sodium ions and in the absence of magnesium ions, was used to label the free inactive receptor conformation. The intrinsic activities of the ligands were determined in a forskolin-stimulated cyclic AMP assay using the same cells. An excellent correlation was shown between the affinity ratios (KR/KRG) of the ligands for the two receptor conformations and their intrinsic activity (r=0.96). The ligands included eight structurally related and enantiopure 2-aminotetralin derivatives; the enantiomers of 5-hydroxy-2-(dipropylamino)tetralin, 5-methoxy-2-(dipropylamino)tetralin, 5-fluoro-2-(dipropylamino)tetralin and 2-(dipropylamino)tetralin. The (S)-enantiomers behaved as full agonists in the cyclic AMP assay and displayed a large KR/KRG ratio. The (R)-enantiomers were classified as partial agonists and had lower ratios. The structure-affinity relationships of these compounds at the active and the inactive receptor conformations were analysed separately, and used in conjunction with a homology based receptor model of the dopamine D2 receptor. This led to proposed binding modes for agonists, antagonists and partial agonists in the 2-aminotetralin series. The concepts used in this study should be of value in the design of ligands with predetermined affinity and intrinsic activity.
Structural insights into selective agonist actions of tamoxifen on human estrogen receptor alpha.
Chakraborty, Sandipan; Biswas, Pradip Kumar
2014-08-01
Tamoxifen-an anti-estrogenic ligand in breast tissues used as a first-line treatment in estrogen receptor (ER)-positive breast cancers-is associated with the development of resistance followed by resumption of tumor growth in about 30 % of cases. Whether tamoxifen assists in proliferation in such cases or whether any ligand-independent pathway to transcription exists is not fully understood; also, no ERα mutants have been detected so far that could lead to tamoxifen resistance. Using in silico conformational analysis of the ERα ligand binding domain (LBD), in the absence and presence of selective agonist (diethylstilbestrol; DES), antagonist (Faslodex; ICI), and selective estrogen receptor modulator (SERM; 4-hydroxy tamoxifen; 4-OHT) ligands, we have elucidated ligand-responsive structural modulations of the ERα-LBD dimer in its agonist and antagonist complexes to address the issue of "tamoxifen resistance". DES and ICI were found to stabilize the dimer in their agonist and antagonist conformations, respectively. The ERα-LBD dimer without the presence of any bound ligand also led to a stable structure in agonist conformation. However, binding of 4-OHT to the antagonist structure led to a flexible conformation allowing the protein to visit conformations populated by agonists as was evident from principal component analysis and radius of gyration plots. Further, the relaxed conformations of the 4-OHT bound protein exhibited a diminished size of the co-repressor binding pocket in the LBD, thus signaling a partial blockage of the co-repressor binding motif. Thus, the ability of 4-OHT-bound ERα-LBD to assume flexible conformations visited by agonists and reduced co-repressor binding surface at the LBD provide crucial structural insights into tamoxifen-resistance that complement our existing understanding.
2014-01-01
Background Opioid analgesics are the most effective drugs for the treatment of moderate to severe pain. However, they also produce several adverse effects that can complicate pain management. The μ opioid (MOP) receptor, a G protein-coupled receptor, is recognized as the opioid receptor type which primarily mediates the pharmacological actions of clinically used opioid agonists. The morphinan class of analgesics including morphine and oxycodone are of main importance as therapeutically valuable drugs. Though the natural alkaloid morphine contains a C-6-hydroxyl group and the semisynthetic derivative oxycodone has a 6-carbonyl function, chemical approaches have uncovered that functionalizing position 6 gives rise to a range of diverse activities. Hence, position 6 of N-methylmorphinans is one of the most manipulated sites, and is established to play a key role in ligand binding at the MOP receptor, efficacy, signaling, and analgesic potency. We have earlier reported on a chemically innovative modification in oxycodone resulting in novel morphinans with 6-acrylonitrile incorporated substructures. Results This study describes in vitro and in vivo pharmacological activities and signaling of new morphinans substituted in position 6 with acrylonitrile and amido functions as potent agonists and antinociceptive agents interacting with MOP receptors. We show that the presence of a 6-cyano group in N-methylmorphinans has a strong influence on the binding to the opioid receptors and post-receptor signaling. One 6-cyano-N-methylmorphinan of the series was identified as the highest affinity and most selective MOP agonist, and very potent in stimulating G protein coupling and intracellular calcium release through the MOP receptor. In vivo, this MOP agonist showed to be greatly effective against thermal and chemical nociception in mice with marked increased antinociceptive potency than the lead molecule oxycodone. Conclusion Development of such novel chemotypes by targeting position 6 provides valuable insights on ligand-receptor interaction and molecular mode of action, and may aid in identification of opioid therapeutics with enhanced analgesic properties and fewer undesirable effects. PMID:25059282
Leopoldo, Marcello; Lacivita, Enza; De Giorgio, Paola; Fracasso, Claudia; Guzzetti, Sara; Caccia, Silvio; Contino, Marialessandra; Colabufo, Nicola A; Berardi, Francesco; Perrone, Roberto
2008-09-25
Starting from the previously reported 5-HT 7 receptor agents 4-7 with N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamide structure, the 1-(2-methylthiophenyl)-, 1-(2-diphenyl)-, 1-(2-isopropylphenyl)-, and 1-(2-methoxyphenyl)piperazine derivatives 8-31 were designed with the primary aim to obtain new compounds endowed with suitable physicochemical properties for rapid and extensive penetration into the brain. The affinities for 5-HT 7, 5-HT 1A, and D 2 receptors of compounds 8-31 were assessed, and several compounds displayed 5-HT 7 receptor affinities in the nanomolar range. Among these, N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (25) showed high 5-HT 7 receptor affinity (Ki = 0.58 nM), high selectivity over 5-HT 1A and D 2 receptors (324- and 245-fold, respectively), and agonist properties (maximal effect = 82%, EC 50 = 0.60 microM). After intraperitoneal injection in mice, 25 rapidly reached the systemic circulation and entered the brain. Its brain concentration-time profile paralleled that in plasma, indicating that 25 rapidly and freely distributes across the blood-brain barrier. Compound 25 underwent N-dealkylation to the corresponding 1-arylpiperazine metabolite.
Fenwick, Michael K.; Oswald, Robert E.
2008-01-01
Glutamate receptors mediate neuronal intercommunication in the central nervous system by coupling extracellular neurotransmitter-receptor interactions to ion channel conductivity. To gain insight into structural and dynamical factors that underlie this coupling, solution NMR experiments were performed on the bi-lobed ligand-binding core of glutamate receptor 2 in complexes with a set of willardiine partial agonists. These agonists are valuable for studying structure-function relationships because their 5-position substituent size is correlated with ligand efficacy and extent of receptor desensitization whereas the substituent electronegativity is correlated with ligand potency. NMR results show that the protein backbone amide chemical shift deviations correlate mainly with efficacy and extent of desensitization. Pronounced deviations occur at specific residues in the ligand-binding site and in the two helical segments that join the lobes by a disulfide bond. Experiments detecting conformational exchange show that micro- to millisecond timescale motions also occur near the disulfide bond and vary largely with efficacy and extent of desensitization. These results thus identify regions displaying structural and dynamical dissimilarity arising from differences in ligand-protein interactions and lobe closure which may play a critical role in receptor response. Furthermore, measures of line broadening and conformational exchange for a portion of the ligand-binding site correlate with ligand EC50 data. These results do not have any correlate in the currently available crystal structures and thus provide a novel view of ligand-binding events that may be associated with agonist potency differences. PMID:18387631
Investigation of pyrazolo-sulfonamides as putative small molecule oxytocin receptor agonists.
Katte, Timothy A; Reekie, Tristan A; Werry, Eryn L; Jorgensen, William T; Boyd, Rochelle; Wong, Erick C N; Gulliver, Damien W; Connor, Mark; Kassiou, Michael
2017-08-18
The neuropeptide oxytocin has been implicated in multiple central nervous system functions in mammalian species. Increased levels have been reported to improve trust, alleviate symptoms related to autism and social phobias, and reduce social anxiety. Hoffman-La Roche published a patent claiming to have found potent small molecule oxytocin receptor agonists, smaller than the first non-peptide oxytocin agonist reported, WAY 267,464. We selected two of the more potent compounds from the patent and, in addition, created WAY 267,464 hybrid structures and determined their oxytocin and vasopressin receptor activity. Human embryonic kidney and Chinese hamster ovary cells were used for the expression of oxytocin or vasopressin 1a receptors and activity assessed via IP1 accumulation assays and calcium FLIPR assays. The results concluded that the reported compounds in the patent and the hybrid structures have no activity at the oxytocin or vasopressin 1a receptors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ligand-based receptor tyrosine kinase partial agonists: New paradigm for cancer drug discovery?
Riese, David J
2011-02-01
INTRODUCTION: Receptor tyrosine kinases (RTKs) are validated targets for oncology drug discovery and several RTK antagonists have been approved for the treatment of human malignancies. Nonetheless, the discovery and development of RTK antagonists has lagged behind the discovery and development of agents that target G-protein coupled receptors. In part, this is because it has been difficult to discover analogs of naturally-occurring RTK agonists that function as antagonists. AREAS COVERED: Here we describe ligands of ErbB receptors that function as partial agonists for these receptors, thereby enabling these ligands to antagonize the activity of full agonists for these receptors. We provide insights into the mechanisms by which these ligands function as antagonists. We discuss how information concerning these mechanisms can be translated into screens for novel small molecule- and antibody-based antagonists of ErbB receptors and how such antagonists hold great potential as targeted cancer chemotherapeutics. EXPERT OPINION: While there have been a number of important key findings into this field, the identification of the structural basis of ligand functional specificity is still of the greatest importance. While it is true that, with some notable exceptions, peptide hormones and growth factors have not proven to be good platforms for oncology drug discovery; addressing the fundamental issues of antagonistic partial agonists for receptor tyrosine kinases has the potential to steer oncology drug discovery in new directions. Mechanism based approaches are now emerging to enable the discovery of RTK partial agonists that may antagonize both agonist-dependent and -independent RTK signaling and may hold tremendous promise as targeted cancer chemotherapeutics.
Glutamate metabotropic receptors as targets for drug therapy in epilepsy.
Moldrich, Randal X; Chapman, Astrid G; De Sarro, Giovambattista; Meldrum, Brian S
2003-08-22
Metabotropic glutamate (mGlu) receptors have multiple actions on neuronal excitability through G-protein-linked modifications of enzymes and ion channels. They act presynaptically to modify glutamatergic and gamma-aminobutyric acid (GABA)-ergic transmission and can contribute to long-term changes in synaptic function. The recent identification of subtype-selective agonists and antagonists has permitted evaluation of mGlu receptors as potential targets in the treatment of epilepsy. Agonists acting on group I mGlu receptors (mGlu1 and mGlu5) are convulsant. Antagonists acting on mGlu1 or mGlu5 receptors are anticonvulsant against 3,5-dihydroxyphenylglycine (DHPG)-induced seizures and in mouse models of generalized motor seizures and absence seizures. The competitive, phenylglycine mGlu1/5 receptor antagonists generally require intracerebroventricular administration for potent anticonvulsant efficacy but noncompetitive antagonists, e.g., (3aS,6aS)-6a-naphthalen-2-ylmethyl-5-methyliden-hexahydrocyclopenta[c]furan-1-on (BAY36-7620), 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), and 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893) block generalized seizures with systemic administration. Agonists acting on group II mGlu receptors (mGlu2, mGlu3) to reduce glutamate release are anticonvulsant, e.g., 2R,4R-aminopyrrolidine-2,4-dicarboxylate [(2R,4R)-APDC], (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), and (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268). The classical agonists acting on group III mGlu receptors such as L-(+)-2-amino-4-phosphonobutyric acid, and L-serine-O-phosphate are acutely proconvulsant with some anticonvulsant activity. The more recently identified agonists (R,S)-4-phosphonophenylglycine [(R,S)-PPG] and (S)-3,4-dicarboxyphenylglycine [(S)-3,4-DCPG] and (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid [ACPT-1] are all anticonvulsant without proconvulsant effects. Studies in animal models of kindling reveal some efficacy of mGlu receptor ligands against fully kindled limbic seizures. In genetic mouse models, mGlu1/5 antagonists and mGlu2/3 agonists are effective against absence seizures. Thus, antagonists at group I mGlu receptors and agonists at groups II and III mGlu receptors are potential antiepileptic agents, but their clinical usefulness will depend on their acute and chronic side effects. Potential also exists for combining mGlu receptor ligands with other glutamatergic and non-glutamatergic agents to produce an enhanced anticonvulsant effect. This review also discusses what is known about mGlu receptor expression and function in rodent epilepsy models and human epileptic conditions.
Di Pizio, Antonella; Kruetzfeldt, Louisa-Marie; Cheled-Shoval, Shira; Meyerhof, Wolfgang; Behrens, Maik; Niv, Masha Y
2017-08-15
Bitter taste is one of the basic taste modalities, warning against consuming potential poisons. Bitter compounds activate members of the bitter taste receptor (Tas2r) subfamily of G protein-coupled receptors (GPCRs). The number of functional Tas2rs is species-dependent. Chickens represent an intriguing minimalistic model, because they detect the bitter taste of structurally different molecules with merely three bitter taste receptor subtypes. We investigated the binding modes of several known agonists of a representative chicken bitter taste receptor, ggTas2r1. Because of low sequence similarity between ggTas2r1 and crystallized GPCRs (~10% identity, ~30% similarity at most), the combination of computational approaches with site-directed mutagenesis was used to characterize the agonist-bound conformation of ggTas2r1 binding site between TMs 3, 5, 6 and 7. We found that the ligand interactions with N93 in TM3 and/or N247 in TM5, combined with hydrophobic contacts, are typically involved in agonist recognition. Next, the ggTas2r1 structural model was successfully used to identify three quinine analogues (epiquinidine, ethylhydrocupreine, quinidine) as new ggTas2r1 agonists. The integrated approach validated here may be applicable to additional cases where the sequence identity of the GPCR of interest and the existing experimental structures is low.
Myricetin: a potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist
Li, Ying; Zheng, Xuemin; Yi, Xiulin; Liu, Changxiao; Kong, Dexin; Zhang, Jianning; Gong, Min
2017-01-01
The physiologic properties of glucagon-like peptide 1 (GLP-1) make it a potent candidate drug target in the treatment of type 2 diabetes mellitus (T2DM). GLP-1 is capable of regulating the blood glucose level by insulin secretion after administration of oral glucose. The advantages of GLP-1 for the avoidance of hypoglycemia and the control of body weight are attractive despite its poor stability. The clinical efficacies of long-acting GLP-1 derivatives strongly support discovery pursuits aimed at identifying and developing orally active, small-molecule GLP-1 receptor (GLP-1R) agonists. The purpose of this study was to identify and characterize a novel oral agonist of GLP-1R (i.e., myricetin). The insulinotropic characterization of myricetin was performed in isolated islets and in Wistar rats. Long-term oral administration of myricetin demonstrated glucoregulatory activity. The data in this study suggest that myricetin might be a potential drug candidate for the treatment of T2DM as a GLP-1R agonist. Further structural modifications on myricetin might improve its pharmacology and pharmacokinetics.—Li, Y., Zheng, X., Yi, X., Liu, C., Kong, D., Zhang, J., Gong, M. Myricetin: a potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist. PMID:28270518
Li, Yangmei; Cazares, Margret; Wu, Jinhua; Houghten, Richard A; Toll, Laurence; Dooley, Colette
2016-02-11
To optimize the structure of a μ-opioid receptor ligand, analogs H-Tyr-c[D-Lys-Xxx-Tyr-Gly] were synthesized and their biological activity was tested. The analog containing a Phe(3) was identified as not only exhibiting binding affinity 14-fold higher than the original hit but also producing agonist activity 3-fold more potent than morphine. NMR study suggested that a trans conformation at D-Lys(2)-Xxx(3) is crucial for these cyclic peptides to maintain high affinity, selectivity, and functional activity toward the μ-opioid receptor.
Gingerols: a novel class of vanilloid receptor (VR1) agonists
Dedov, Vadim N; Tran, Van H; Duke, Colin C; Connor, Mark; Christie, MacDonald J; Mandadi, Sravan; Roufogalis, Basil D
2002-01-01
Gingerols, the pungent constituents of ginger, were synthesized and assessed as agonists of the capsaicin-activated VR1 (vanilloid) receptor. [6]-Gingerol and [8]-gingerol evoked capsaicin-like intracellular Ca2+ transients and ion currents in cultured DRG neurones. These effects of gingerols were blocked by capsazepine, the VR1 receptor antagonist. The potency of gingerols increased with increasing size of the side chain and with the overall hydrophobicity in the series. We conclude that gingerols represent a novel class of naturally occurring VR1 receptor agonists that may contribute to the medicinal properties of ginger, which have been known for centuries. The gingerol structure may be used as a template for the development of drugs acting as moderately potent activators of the VR1 receptor. PMID:12411409
Underwood, Christina Rye; Garibay, Patrick; Knudsen, Lotte Bjerre; Hastrup, Sven; Peters, Günther H; Rudolph, Rainer; Reedtz-Runge, Steffen
2010-01-01
GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic beta-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9-39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Aresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous alpha-helix from Thr(13) to Val(33) when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor.
Underwood, Christina Rye; Garibay, Patrick; Knudsen, Lotte Bjerre; Hastrup, Sven; Peters, Günther H.; Rudolph, Rainer; Reedtz-Runge, Steffen
2010-01-01
GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic β-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9–39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Åresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous α-helix from Thr13 to Val33 when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor. PMID:19861722
Minor Structural Change to Tertiary Sulfonamide RORc Ligands Led to Opposite Mechanisms of Action
2014-01-01
A minor structural change to tertiary sulfonamide RORc ligands led to distinct mechanisms of action. Co-crystal structures of two compounds revealed mechanistically consistent protein conformational changes. Optimized phenylsulfonamides were identified as RORc agonists while benzylsulfonamides exhibited potent inverse agonist activity. Compounds behaving as agonists in our biochemical assay also gave rise to an increased production of IL-17 in human PBMCs whereas inverse agonists led to significant suppression of IL-17 under the same assay conditions. The most potent inverse agonist compound showed >180-fold selectivity over the ROR isoforms as well as all other nuclear receptors that were profiled. PMID:25815138
Synthesis of Neoclerodane Diterpenes and Their Pharmacological Effects
NASA Astrophysics Data System (ADS)
Lovell, Kimberly M.; Prevatt-Smith, Katherine M.; Lozama, Anthony; Prisinzano, Thomas E.
Salvinorin A is a neoclerodane diterpene that has been shown to be an agonist at kappa opioid receptors. Its unique structure makes it an attractive target for synthetic organic chemists due to its seven chiral centers and diterpene scaffold. This molecule is also interesting to pharmacologists because it is a non-serotonergic hallucinogen, and the first opioid ligand discovered that lacks a basic nitrogen. There have been several total synthesis approaches to salvinorin A, and these will be detailed within this chapter. Additionally, research efforts have concentrated on structure modification of the salvinorin A scaffold through semi-synthetic methods. Most modifications have focused on the manipulation of the acetate at C-2 and the furan ring. However, chemistry has also been developed to generate analogs at the C-1 ketone, the C-4 methyl ester, and the C-17 lactone. The synthetic methodologies developed for the salvinorin A scaffold will be described, as well as specific analogs with interesting biological activities.
Ravi, R. Gnana; Kim, Hak Sung; Servos, Jörg; Zimmermann, Herbert; Lee, Kyeong; Maddileti, Savitri; Boyer, José L.; Harden, T. Kendall; Jacobson, Kenneth A.
2016-01-01
Preference for the Northern (N) ring conformation of the ribose moiety of nucleotide 5′-triphosphate agonists at P2Y1, P2Y2, P2Y4, and P2Y11 receptors, but not P2Y6 receptors, was established using a ring-constrained methanocarba (a 3.1.0-bicyclohexane) ring as a ribose substitute (Kim et al. J. Med. Chem. 2002, 45, 208–218.). We have now combined the ring-constrained (N)-methanocarba modification of adenine nucleotides with other functionalities known to enhance potency at P2 receptors. The potency of the newly synthesized analogues was determined in the stimulation of phospholipase C through activation of turkey erythrocyte P2Y1 or human P2Y1 and P2Y2 receptors stably expressed in astrocytoma cells. An (N)-methanocarba-2-methylthio-ADP analogue displayed an EC50 at the hP2Y1 receptor of 0.40 nM and was 55-fold more potent than the corresponding triphosphate and 16-fold more potent than the riboside 5′-diphosphate. 2-Cl–(N)-methanocarba-ATP and its N6-Me analogue were also highly selective, full agonists at P2Y1 receptors. The (N)-methanocarba-2-methylthio and 2-chloromonophosphate analogues were full agonists exhibiting micromolar potency at P2Y1 receptors, while the corresponding ribosides were inactive. Although β,γ-methylene-ATP was inactive at P2Y receptors, β,γ-methylene-(N)-methanocarba-ATP was a potent hP2Y1 receptor agonist with an EC50 of 160 nM and was selective versus hP2Y2 and hP2Y4 receptors. The rates of hydrolysis of Northern (N) and Southern (S) methanocarba analogues of AMP by rat 5′-ectonucleotidase were negligible. The rates of hydrolysis of the corresponding triphosphates by recombinant rat NTPDase1 and 2 were studied. Both isomers were hydrolyzed by NTPDase 1 at about half the rate of ATP hydrolysis. The (N) isomer was hardly hydrolyzed by NTPDase 2, while the (S) isomer was hydrolyzed at one-third of the rate of ATP hydrolysis. This suggests that new, more stable and selective nucleotide agonists may be designed on the basis of the (N)-conformation, which greatly enhanced potency at P2Y1 receptors. PMID:11985476
Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J.; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck
2014-01-01
The serotonin 5-HT2A receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT2A receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT2A receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT2A agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser280) located in the third intracellular loop of the 5-HT2A receptor, a region important for its desensitization. The specific phosphorylation of Ser280 by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT2A receptors at Ser280 in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser280 to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased phosphorylation of the 5-HT2A receptor in response to hallucinogenic versus nonhallucinogenic agonists, which underlies their distinct capacity to desensitize the receptor. PMID:24637012
Design and synthesis of small molecule agonists of EphA2 receptor.
Petty, Aaron; Idippily, Nethrie; Bobba, Viharika; Geldenhuys, Werner J; Zhong, Bo; Su, Bin; Wang, Bingcheng
2018-01-01
Ligand-independent activation of EphA2 receptor kinase promotes cancer metastasis and invasion. Activating EphA2 receptor tyrosine kinase with small molecule agonist is a novel strategy to treat EphA2 overexpressing cancer. In this study, we performed a lead optimization of a small molecule Doxazosin that was identified as an EphA2 receptor agonist. 33 new analogs were developed and evaluated; a structure-activity relationship was summarized based on the EphA2 activation of these derivatives. Two new derivative compounds 24 and 27 showed much improved activity compared to Doxazosin. Compound 24 possesses a bulky amide moiety, and compound 27 has a dimeric structure that is very different to the parental compound. Compound 27 with a twelve-carbon linker of the dimer activated the kinase and induced receptor internalization and cell death with the best potency. Another dimer with a six-carbon linker has significantly reduced potency compared to the dimer with a longer linker, suggesting that the length of the linker is critical for the activity of the dimeric agonist. To explore the receptor binding characteristics of the new molecules, we applied a docking study to examine how the small molecule binds to the EphA2 receptor. The results reveal that compounds 24 and 27 form more hydrogen bonds to EphA2 than Doxazosin, suggesting that they may have higher binding affinity to the receptor. Published by Elsevier Masson SAS.
Liu, Chen; Wang, Wei; Parchim, Nicholas; Irani, Roxanna A.; Blackwell, Sean; Sibai, Baha; Jin, Jianping; Kellems, Rodney E.; Xia, Yang
2014-01-01
Preeclampsia is a life-threatening pregnancy disorder that is widely believed to be triggered by impaired placental development. However, the placenta-related pathogenic factors are not fully identified and their underlying mechanisms in disease development remain unclear. Here we report that the protein level and enzyme activity of tissue transglutaminase (TG2 or tTG), the most ubiquitous member of a family of enzymes that conducts posttranslational modification of proteins by forming ε-(γ-glutamyl)-lysine isopeptide bonds, are significantly elevated in placentas of preeclamptic women. TG2 is localized in the placental syncytiotrophoblasts of preeclamptic patients where it catalyzes the isopeptide modification of the angiotensin receptor AT1. To determine the role of elevated TG2 in preeclampsia, we employed a mouse model of preeclampsia based on injection of angiotensin receptor type 1 agonistic autoantibody (AT1-AA). A pathogenic role for TG2 in preeclampsia is suggested by in vivo experiments in which cystamine, a potent transglutaminase inhibitor, or siRNA-mediated TG2 knockdown, significantly attenuated autoantibody-induced hypertension and proteinuria in pregnant mice. Cystamine treatment also prevented isopeptide modification of placental AT1 receptors in preeclamptic mice. Mechanistically, we revealed that AT1-AA stimulation enhances the interaction between AT1 receptor and TG2, and results in increased AT1 receptor stabilization via transglutaminase-mediated isopeptide modification in trophoblasts. Mutagenesis studies further demonstrated that TG2-mediated isopeptide modification of AT1 receptors prevents the ubiquitination-dependent receptor degradation. Taken together, our studies not only identify a novel pathogenic involvement of TG2 in preeclampsia but also suggest a previously unrecognized role of TG2 in the regulation of GPCR stabilization by inhibiting ubiquitination-dependent degradation. PMID:24191290
Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information
NASA Astrophysics Data System (ADS)
Paoletta, Silvia; Sabbadin, Davide; von Kügelgen, Ivar; Hinz, Sonja; Katritch, Vsevolod; Hoffmann, Kristina; Abdelrahman, Aliaa; Straßburger, Jens; Baqi, Younis; Zhao, Qiang; Stevens, Raymond C.; Moro, Stefano; Müller, Christa E.; Jacobson, Kenneth A.
2015-08-01
The G protein-coupled P2Y12 receptor (P2Y12R) is an important antithrombotic target and of great interest for pharmaceutical discovery. Its recently solved, highly divergent crystallographic structures in complex either with nucleotides (full or partial agonist) or with a nonnucleotide antagonist raise the question of which structure is more useful to understand ligand recognition. Therefore, we performed extensive molecular modeling studies based on these structures and mutagenesis, to predict the binding modes of major classes of P2Y12R ligands previously reported. Various nucleotide derivatives docked readily to the agonist-bound P2Y12R, but uncharged nucleotide-like antagonist ticagrelor required a hybrid receptor resembling the agonist-bound P2Y12R except for the top portion of TM6. Supervised molecular dynamics (SuMD) of ticagrelor binding indicated interactions with the extracellular regions of P2Y12R, defining possible meta-binding sites. Ureas, sulfonylureas, sulfonamides, anthraquinones and glutamic acid piperazines docked readily to the antagonist-bound P2Y12R. Docking dinucleotides at both agonist- and antagonist-bound structures suggested interactions with two P2Y12R pockets. Thus, our structure-based approach consistently rationalized the main structure-activity relationships within each ligand class, giving useful information for designing improved ligands.
Rosenberg, Lior Ann; Glusman, Jose Gustavo; Libersat, Frederic
2007-12-01
When stung by the parasitoid wasp Ampulex compressa, cockroaches Periplaneta americana enter a hypokinetic state that is characterized by little, if any, spontaneous locomotor activity. In the present study we investigate the effect of an octopamine receptor agonist and an antagonist on the locomotor behavior of stung and control cockroaches. We show that in cockroaches stung by a wasp the octopamine receptor agonist chlordimeform induces a significant increase in spontaneous walking. In good agreement, in control individuals an octopamine receptor antagonist significantly reduces walking activity. Adipokinetic hormone I (AKH-I) promotes spontaneous walking in controls but does not do so in stung individuals, which suggests that the venom effect is most probably not mediated by AKH-I. Dopamine receptor agonists or antagonists had no significant effect on the spontaneous walking of stung or control cockroaches, respectively. The effect of the octopamine receptor agonist was maximal when injected into the brain, suggesting that the wasp venom interferes with octopaminergic modulation of walking initiation in central structures of the cockroach brain.
Glycine receptor mechanism elucidated by electron cryo-microscopy.
Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric
2015-10-08
The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders, including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of glycine receptors has been hindered by a lack of high-resolution structures. Here we report electron cryo-microscopy structures of the zebrafish α1 GlyR with strychnine, glycine, or glycine and ivermectin (glycine/ivermectin). Strychnine arrests the receptor in an antagonist-bound closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain 'wrist' interface, and leads to rotation of the transmembrane domain towards the pore axis, occluding the ion conduction pathway. These structures illuminate the GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors.
Structure and symmetry inform gating principles of ionotropic glutamate receptors.
Zhu, Shujia; Gouaux, Eric
2017-01-01
Ionotropic glutamate receptors (iGluRs) transduce signals derived from release of the excitatory neurotransmitter glutamate from pre-synaptic neurons into excitation of post-synaptic neurons on a millisecond time-scale. In recent years, the elucidation of full-length iGluR structures of NMDA, AMPA and kainate receptors by X-ray crystallography and single particle cryo-electron microscopy has greatly enhanced our understanding of the interrelationships between receptor architecture and gating mechanism. Here we briefly review full-length iGluR structures and discuss the similarities and differences between NMDA receptors and non-NMDA iGluRs. We focus on distinct conformations, including ligand-free, agonist-bound active, agonist-bound desensitized and antagonist-bound conformations as well as modulator and auxiliary protein-bound states. These findings provide insights into structure-based mechanisms of iGluR gating and modulation which together shape the amplitude and time course of the excitatory postsynaptic potential. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.
X-ray structures define human P2X3 receptor gating cycle and antagonist action
Mansoor, Steven E.; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric
2016-01-01
Summary P2X receptors are trimeric, non-selective cation channels activated by ATP that play important roles in cardiovascular, neuronal and immune systems. Despite their central function in human physiology and as potential targets of therapeutic agents, there are no structures of human P2X receptors. Mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structure of the pore-forming transmembrane domains remain unclear. We report x-ray crystal structures of human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/desensitized and antagonist-bound closed states. The open state structure harbors an intracellular motif we term the “cytoplasmic cap”, that stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. Competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements underpinning P2X receptor gating and provide a foundation for development of new pharmacologic agents. PMID:27626375
Ateba, Sylvin Benjamin; Njamen, Dieudonné; Medjakovic, Svjetlana; Zehl, Martin; Kaehlig, Hanspeter; Jungbauer, Alois; Krenn, Liselotte
2014-08-09
Eriosema laurentii De Wild. (Leguminosae) is a plant used in Cameroon against infertility and gynecological or menopausal complaints. In our previous report, a methanol extract of its aerial parts was shown to exhibit estrogenic and aryl hydrocarbon receptor agonistic activities in vitro and to prevent menopausal symptoms in ovariectomized Wistar rats. In order to determine the major estrogen receptor α (ERα) agonists in the extract, an activity-guided fractionation was performed using the ERα yeast screen. To check whether the ERα active fractions/compounds also accounted for the aryl hydrocarbon receptor (AhR) agonistic activity of the crude methanol extract, they were further tested on the AhR yeast screen. This study led to the identification of 2'-hydroxygenistein, lupinalbin A and genistein as major estrogenic principles of the extract. 2'-hydroxygenistein and lupinalbin A were, for the first time, also shown to possess an AhR agonistic activity, whereas genistein was not active in this assay. In addition, it was possible to deduce structure-activity relationships. These results suggest that the identified compounds are the major active principles responsible for the estrogenic and AhR agonistic activities of the crude methanol extract of the aerial parts of Eriosema laurentii.
Seidel, Lisa; Zarzycka, Barbara; Zaidi, Saheem A; Katritch, Vsevolod; Coin, Irene
2017-01-01
The activation mechanism of class B G-protein-coupled receptors (GPCRs) remains largely unknown. To characterize conformational changes induced by peptide hormones, we investigated interactions of the class B corticotropin-releasing factor receptor type 1 (CRF1R) with two peptide agonists and three peptide antagonists obtained by N-truncation of the agonists. Surface mapping with genetically encoded photo-crosslinkers and pair-wise crosslinking revealed distinct footprints of agonists and antagonists on the transmembrane domain (TMD) of CRF1R and identified numerous ligand-receptor contact sites, directly from the intact receptor in live human cells. The data enabled generating atomistic models of CRF- and CRF(12-41)-bound CRF1R, further explored by molecular dynamics simulations. We show that bound agonist and antagonist adopt different folds and stabilize distinct TMD conformations, which involves bending of helices VI and VII around flexible glycine hinges. Conservation of these glycine hinges among all class B GPCRs suggests their general role in activation of these receptors. DOI: http://dx.doi.org/10.7554/eLife.27711.001 PMID:28771403
Fotsch, Christopher; Smith, Duncan M; Adams, Jeffrey A; Cheetham, Janet; Croghan, Michael; Doherty, Elizabeth M; Hale, Clarence; Jarosinski, Mark A; Kelly, Michael G; Norman, Mark H; Tamayo, Nuria A; Xi, Ning; Baumgartner, James W
2003-07-21
The solution structure of a potent melanocortin receptor agonist, Ac-Nle-cyclo[Asp-Pro-DPhe-Arg-Trp-Lys]-NH(2) (1) was calculated using distance restraints determined from 1H NMR spectroscopy. Eight of the lowest energy conformations from this study were used to identify non-peptide cores that mimic the spatial arrangement of the critical tripeptide region, DPhe-Arg-Trp, found in 1. From these studies, compound 2a, containing the cis-cyclohexyl core, was identified as a functional agonist of the melanocortin-4 receptor (MC4R) with an IC(50) and EC(50) below 10 nM. Compound 2a also showed 36- and 7-fold selectivity over MC3R and MC1R, respectively, in the binding assays. Subtle changes in cyclohexane stereochemistry and removal of functional groups led to analogues with lower affinity for the MC receptors.
Proneth, Bettina; Pogozheva, Irina D; Portillo, Federico P; Mosberg, Henry I; Haskell-Luevano, Carrie
2008-09-25
The melanocortin-3 and -4 receptors (MC3R, MC4R) have been implicated in energy homeostasis and obesity. Whereas the physiological role of the MC4R is extensively studied, little is known about the MC3R. One caveat is the limited availability of ligands that are selective for the MC3R. Previous studies identified Ac-His-DPhe(p-I)-Arg-Trp-NH 2, which possessed partial agonist/antagonist pharmacology at the mMC3R while retaining full nanomolar agonist pharmacology at the mMC4R. These data allowed for the hypothesis that the DPhe position in melanocortin tetrapeptides can be used to examine ligand side-chain determinants important for differentiation of mMC3R agonist versus antagonist activity. A series of 15 DPhe (7) modified Ac-His-DPhe (7)-Arg-Trp-NH 2 tetrapeptides has been synthesized and pharmacologically characterized. Most notable results include the identification of modifications that resulted in potent antagonists/partial agonists at the mMC3R and full, potent agonists at the mMC4R. These SAR studies provide experimental evidence that the molecular mechanism of antagonism at the mMC3R differentiates this subtype from the mMC4R.
Proneth, Bettina; Pogozheva, Irina D.; Portillo, Federico P.; Mosberg, Henry I.; Haskell-Luevano, Carrie
2010-01-01
The melanocortin-3 and -4 receptors (MC3R, MC4R) have been implicated in energy homeostasis and obesity. Whereas the physiological role of the MC4R is extensively studied, little is known about the MC3R. One caveat is the limited availability of ligands that are selective for the MC3R. Previous studies identified Ac-His-DPhe(p-I)-Arg-Trp-NH2, which possessed partial agonist/antagonist pharmacology at the mMC3R while retaining full nanomolar agonist pharmacology at the mMC4R. These data allowed for the hypothesis that the DPhe position in melanocortin tetrapeptides can be used to examine ligand side-chain determinants important for differentiation of mMC3R agonist versus antagonist activity. A series of 15 DPhe7 modified Ac-His-DPhe7-Arg-Trp-NH2 tetrapeptides has been synthesized and pharmacologically characterized. Most notable results include the identification of modifications that resulted in potent antagonists/partial agonists at the mMC3R and full, potent agonists at the mMC4R. These SAR studies provide experimental evidence that the molecular mechanism of antagonism at the mMC3R differentiates this subtype from the mMC4R. PMID:18800761
X-ray structures define human P2X(3) receptor gating cycle and antagonist action.
Mansoor, Steven E; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric
2016-10-06
P2X receptors are trimeric, non-selective cation channels activated by ATP that have important roles in the cardiovascular, neuronal and immune systems. Despite their central function in human physiology and although they are potential targets of therapeutic agents, there are no structures of human P2X receptors. The mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structures of the pore-forming transmembrane domains of these receptors remain unclear. Here we report X-ray crystal structures of the human P2X 3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/closed-pore/desensitized and antagonist-bound/closed states. The open state structure harbours an intracellular motif we term the 'cytoplasmic cap', which stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. The competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements that underlie P2X receptor gating and provide a foundation for the development of new pharmacological agents.
Structural mechanism of ligand activation in human calcium-sensing receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Yong; Mosyak, Lidia; Kurinov, Igor
2016-07-19
Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca 2+homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation.more » Our structures reveal multiple binding sites for Ca 2+and PO 4 3-ions. Both ions are crucial for structural integrity of the receptor. While Ca 2+ions stabilize the active state, PO 4 3-ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits.« less
Heifetz, Alexander; Barker, Oliver; Morris, G Benjamin; Law, Richard J; Slack, Mark; Biggin, Philip C
2013-11-19
The class A G-protein-coupled receptors (GPCRs) Orexin-1 (OX1) and Orexin-2 (OX2) are located predominantly in the brain and are linked to a range of different physiological functions, including the control of feeding, energy metabolism, modulation of neuro-endocrine function, and regulation of the sleep-wake cycle. The natural agonists for OX1 and OX2 are two neuropeptides, Orexin-A and Orexin-B, which have activity at both receptors. Site-directed mutagenesis (SDM) has been reported on both the receptors and the peptides and has provided important insight into key features responsible for agonist activity. However, the structural interpretation of how these data are linked together is still lacking. In this work, we produced and used SDM data, homology modeling followed by MD simulation, and ensemble-flexible docking to generate binding poses of the Orexin peptides in the OX receptors to rationalize the SDM data. We also developed a protein pairwise similarity comparing method (ProS) and a GPCR-likeness assessment score (GLAS) to explore the structural data generated within a molecular dynamics simulation and to help distinguish between different GPCR substates. The results demonstrate how these newly developed methods of structural assessment for GPCRs can be used to provide a working model of neuropeptide-Orexin receptor interaction.
Shen, Qing; Qian, Yuanyuan; Huang, Xiaoqin; Xu, Xuejun; Li, Wei; Liu, Jinggen; Fu, Wei
2016-04-14
The classic "message-address" concept was proposed to address the binding of endogenous peptides to the opioid receptors and was later successfully applied in the discovery of the first nonpeptide δ opioid receptor (DOR) antagonist naltrindole. By revisiting this concept, and based on the structure of tramadol, we designed a series of novel compounds that act as highly potent and selective agonists of DOR among which (-)-6j showed the highest affinity (K i = 2.7 nM), best agonistic activity (EC50 = 2.6 nM), and DOR selectivity (more than 1000-fold over the other two subtype opioid receptors). Molecular docking studies suggest that the "message" part of (-)-6j interacts with residue Asp128(3.32) and a neighboring water molecule, and the "address" part of (-)-6j packs with hydrophobic residues Leu300(7.35), Val281(6.55), and Trp284(6.58), rendering DOR selectivity. The discovery of novel compound (-)-6j, and the obtained insights into DOR-agonist binding will help us design more potent and selective DOR agonists.
Activation of muscle nicotinic acetylcholine receptor channels by nicotinic and muscarinic agonists
Akk, Gustav; Auerbach, Anthony
1999-01-01
The dose-response parameters of recombinant mouse adult neuromuscular acetylcholine receptor channels (nAChR) activated by carbamylcholine, nicotine, muscarine and oxotremorine were measured. Rate constants for agonist association and dissociation, and channel opening and closing, were estimated from single-channel kinetic analysis.The dissociation equilibrium constants were (mM): ACh (0.16)
Rauly-Lestienne, Isabelle; Boutet-Robinet, Elisa; Ailhaud, Marie-Christine; Newman-Tancredi, Adrian; Cussac, Didier
2007-10-01
5-HT(7) receptors are present in thalamus and limbic structures, and a possible role of these receptors in the pathology of schizophrenia has been evoked. In this study, we examined binding affinity and agonist/antagonist/inverse agonist properties at these receptors of a large series of antipsychotics, i.e., typical, atypical, and third generation compounds preferentially targeting D(2) and 5-HT(1A) sites. Adenylyl cyclase (AC) activity was measured in HEK293 cells stably expressing the human (h) 5-HT(7a) receptor isoform. 5-HT and 5-CT increased cyclic adenosine monophosphate level by about 20-fold whereas (+)-8-OH-DPAT, the antidyskinetic agent sarizotan, and the novel antipsychotic compound bifeprunox exhibited partial agonist properties at h5-HT(7a) receptors stimulating AC. Other compounds antagonized 5-HT-induced AC activity with pK (B) values which correlated with their pK (i) as determined by competition binding vs [(3)H]5-CT. The selective 5-HT(7) receptor ligand, SB269970, was the most potent antagonist. For antipsychotic compounds, the following rank order of antagonism potency (pK (B)) was ziprasidone > tiospirone > SSR181507 > or = clozapine > or = olanzapine > SLV-314 > SLV-313 > or = aripiprazole > or = chlorpromazine > nemonapride > haloperidol. Interestingly, pretreatment of HEK293-h5-HT(7a) cells with forskolin enhanced basal AC activity and revealed inverse agonist properties for both typical and atypical antipsychotics as well as for aripiprazole. In contrast, other novel antipsychotics exhibited diverse 5-HT(7a) properties; SLV-313 and SLV-314 behaved as quasi-neutral antagonists, SSR181507 acted as an inverse agonist, and bifeprunox as a partial agonist, as mentioned above. In conclusion, the differential properties of third generation antipsychotics at 5-HT(7) receptors may influence their antipsychotic profile.
Ethanol Inhibition of Constitutively Open N-Methyl-d-Aspartate Receptors
Xu, Minfu; Smothers, C. Thetford; Trudell, James
2012-01-01
N-Methyl-d-aspartate (NMDA) receptors gate a slow and calcium-rich component of the postsynaptic glutamate response. Like all ionotropic glutamate receptors, NMDA subunits contain a highly conserved motif (SYTANLAAF) in the transmembrane (TM) 3 domain that is critically involved in channel gating. Mutation of an alanine in this domain (A7; underlined above) results in constitutively open receptors that show reduced sensitivity to several allosteric modulators. In this study, we examined the effects of ethanol, a substance that inhibits NMDA currents via an unknown mechanism, on tonically active NMDA receptors expressed in human embryonic kidney 293 cells. Ethanol (100 mM) inhibited currents from GluN1(A7R)/GluN2A and GluN1(A7R)/GluN2B receptors by approximately 50%, whereas those from GluN1/GluN2B(A7R) receptors were reduced by less than 10%. In cysteine-substituted GluN1 and GluN2 A7 mutants, estimated ethanol IC50 values for agonist-gated currents were 101, 117, 103, and 69 mM for GluN1(A7C)/GluN2A, GluN1(A7C)/GluN2B, GluN1/GluN2A(A7C), and GluN1/GluN2B(A7C) receptors, respectively. After exposure to the thiol-modifying reagent 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET), A7C mutants showed robust agonist-independent currents and reduced sensitivity to ethanol (IC50 values of 371, 256, 715, and 958 mM, respectively, as above). In contrast, cysteine modification of the ligand-binding domain resulted in constitutively open receptors that showed robust ethanol inhibition. Ethanol inhibition of MTSET-treated GluN1(A7C) receptors was further reduced by TM3/TM4 mutations previously shown to reduce ethanol sensitivity of agonist-gated receptors. Overall, these results show that ethanol affects NMDA receptor function at a site distal from agonist binding and appears to exert greater effects via perturbation of GluN2 subunits. PMID:22005043
Toll, Lawrence; Pajak, Karolina; Plazinska, Anita; Jozwiak, Krzysztof; Jimenez, Lucita; Kozocas, Joseph A; Tanga, Mary J; Bupp, James E; Wainer, Irving W
2012-06-01
G protein-coupled receptors (GPCRs) are integral membrane proteins that change conformation after ligand binding so that they can transduce signals from an extracellular ligand to a variety of intracellular components. The detailed interaction of a molecule with a G protein-coupled receptor is a complicated process that is influenced by the receptor conformation, thermodynamics, and ligand conformation and stereoisomeric configuration. To better understand the molecular interactions of fenoterol analogs with the β(2)-adrenergic receptor, we developed a new agonist radioligand for binding assays. [(3)H](R,R')-methoxyfenoterol was used to probe the binding affinity for a series of fenoterol stereoisomers and derivatives. The results suggest that the radioligand binds with high affinity to an agonist conformation of the receptor, which represents approximately 25% of the total β(2)-adrenoceptor (AR) population as determined with the antagonist [(3)H]CGP-12177. The β(2)-AR agonists tested in this study have considerably higher affinity for the agonist conformation of the receptor, and K(i) values determined for fenoterol analogs model much better the cAMP activity of the β(2)-AR elicited by these ligands. The thermodynamics of binding are also different when interacting with an agonist conformation, being purely entropy-driven for each fenoterol isomer, rather than a mixture of entropy and enthalpy when the fenoterol isomers binding was determined using [(3)H]CGP-12177. Finally, computational modeling identified the molecular interactions involved in agonist binding and allow for the prediction of additional novel β(2)-AR agonists. The study underlines the possibility of using defined radioligand structure to probe a specific conformation of such shape-shifting system as the β(2)-adrenoceptor.
Pajak, Karolina; Plazinska, Anita; Jozwiak, Krzysztof; Jimenez, Lucita; Kozocas, Joseph A.; Tanga, Mary J.; Bupp, James E.; Wainer, Irving W.
2012-01-01
G protein-coupled receptors (GPCRs) are integral membrane proteins that change conformation after ligand binding so that they can transduce signals from an extracellular ligand to a variety of intracellular components. The detailed interaction of a molecule with a G protein-coupled receptor is a complicated process that is influenced by the receptor conformation, thermodynamics, and ligand conformation and stereoisomeric configuration. To better understand the molecular interactions of fenoterol analogs with the β2-adrenergic receptor, we developed a new agonist radioligand for binding assays. [3H](R,R′)-methoxyfenoterol was used to probe the binding affinity for a series of fenoterol stereoisomers and derivatives. The results suggest that the radioligand binds with high affinity to an agonist conformation of the receptor, which represents approximately 25% of the total β2-adrenoceptor (AR) population as determined with the antagonist [3H]CGP-12177. The β2-AR agonists tested in this study have considerably higher affinity for the agonist conformation of the receptor, and Ki values determined for fenoterol analogs model much better the cAMP activity of the β2-AR elicited by these ligands. The thermodynamics of binding are also different when interacting with an agonist conformation, being purely entropy-driven for each fenoterol isomer, rather than a mixture of entropy and enthalpy when the fenoterol isomers binding was determined using [3H]CGP-12177. Finally, computational modeling identified the molecular interactions involved in agonist binding and allow for the prediction of additional novel β2-AR agonists. The study underlines the possibility of using defined radioligand structure to probe a specific conformation of such shape-shifting system as the β2-adrenoceptor. PMID:22434858
Xiao, Kunhong; Sun, Jinpeng
2018-01-01
The discovery of β-arrestin-dependent GPCR signaling has led to an exciting new field in GPCR pharmacology: to develop "biased agonists" that can selectively target a specific downstream signaling pathway that elicits beneficial therapeutic effects without activating other pathways that elicit negative side effects. This new trend in GPCR drug discovery requires us to understand the structural and molecular mechanisms of β-arrestin-biased agonism, which largely remain unclear. We have used cutting-edge mass spectrometry (MS)-based proteomics, combined with systems, chemical and structural biology to study protein function, macromolecular interaction, protein expression and posttranslational modifications in the β-arrestin-dependent GPCR signaling. These high-throughput proteomic studies have provided a systems view of β-arrestin-biased agonism from several perspectives: distinct receptor phosphorylation barcode, multiple receptor conformations, distinct β-arrestin conformations, and ligand-specific signaling. The information obtained from these studies offers new insights into the molecular basis of GPCR regulation by β-arrestin and provides a potential platform for developing novel therapeutic interventions through GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.
NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype.
Martini, Lene; Hastrup, Hanne; Holst, Birgitte; Fraile-Ramos, Alberto; Marsh, Mark; Schwartz, Thue W
2002-07-01
Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor resulted in a chimeric protein that was expressed to some extent on the cell surface but also accumulated in transferrin-labeled recycling endosomes independently of agonist stimulation. As expected, the fusion protein was almost totally silenced with respect to agonist-induced signaling through the normal Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding against substance P and especially against antagonists with up to 1000-fold lower apparent affinity than determined in functional assays and in homologous binding assays. When the NK1 receptor was closely fused to G proteins, this phenomenon was eliminated among agonists, but the agonists still competed with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable, agonist-binding form probably best suited to structural analysis and that the receptor can display binding properties that are nearly theoretically ideal when it is forced to complex with only a single intracellular protein partner.
A2A adenosine receptor agonists and their potential therapeutic applications. An update.
Guerrero, Angel
2018-03-12
In the last 20 years, an increasing interest of medicinal chemists on the development of potent and selective agonists and antagonists of adenosine receptors has been noticed due to the large impact they have shown in a variety of important biological processes and diseases. Among these, it should be mentioned vasodilation, inflammation, cancer, wound healing, ischemia reperfusion injury, Parkinson disease, infectious diseases, and other CNS disorders. In this review, I will provide an update of the structures of the A2A agonists known, their selectivity versus other adenosine receptors, and their latest therapeutic applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Glycine receptor mechanism illuminated by electron cryo-microscopy
Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric
2015-01-01
Summary The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of GlyRs has been hindered by a dearth of high-resolution structures. Here we report electron cryo-microscopy structures of the α1 GlyR with strychnine, glycine, or glycine/ivermectin. Strychnine arrests the receptor in an antagonist-bound, closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain ‘wrist’ interface, and leads to rotation of the transmembrane domain toward the pore axis, occluding the ion conduction pathway. These structures illuminate GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198
Novel 5-aryl-1,3-dihydro-indole-2-thiones. potent, orally active progesterone receptor agonists.
Fensome, Andrew; Koko, Marci; Wrobel, Jay; Zhang, Puwen; Zhang, Zhiming; Cohen, Jeffrey; Lundeen, Scott; Rudnick, Kelly; Zhu, Yuan; Winneker, Richard
2003-04-07
During the course of our studies on 3,3-disubstituted-5-aryloxindoles derived progesterone receptor (PR) antagonists we discovered that changing the amide funtionality to a thio-amide resulted in compounds displaying potent PR agonist activity. In this communication, the synthesis, structure activity relationships (SAR) and in vivo activity of various 5-arylthio-oxindoles will be discussed.
Malo, Marcus; Persson, Ronnie; Svensson, Peder; Luthman, Kristina; Brive, Lars
2013-03-01
Prediction of 3D structures of membrane proteins, and of G-protein coupled receptors (GPCRs) in particular, is motivated by their importance in biological systems and the difficulties associated with experimental structure determination. In the present study, a novel method for the prediction of 3D structures of the membrane-embedded region of helical membrane proteins is presented. A large pool of candidate models are produced by repacking of the helices of a homology model using Monte Carlo sampling in torsion space, followed by ranking based on their geometric and ligand-binding properties. The trajectory is directed by weak initial restraints to orient helices towards the original model to improve computation efficiency, and by a ligand to guide the receptor towards a chosen conformational state. The method was validated by construction of the β1 adrenergic receptor model in complex with (S)-cyanopindolol using bovine rhodopsin as template. In addition, models of the dopamine D2 receptor were produced with the selective and rigid agonist (R)-N-propylapomorphine ((R)-NPA) present. A second quality assessment was implemented by evaluating the results from docking of a library of 29 ligands with known activity, which further discriminated between receptor models. Agonist binding and recognition by the dopamine D2 receptor is interpreted using the 3D structure model resulting from the approach. This method has a potential for modeling of all types of helical transmembrane proteins for which a structural template with sequence homology sufficient for homology modeling is not available or is in an incorrect conformational state, but for which sufficient empirical information is accessible.
May, Felicity EB
2014-01-01
The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel drugs might have utility in the management of advanced breast cancer, and biomarkers for stratification of patients likely to benefit, are discussed. Finally, the potential side effects of the novel drugs on metabolism, osteoporosis, osteo-metastasis, and cachexia are considered. PMID:24904222
Dalwadi, Dhwanil A; Schetz, John A
2017-09-01
The α -like octopamine receptors (OctR) are believed to be the evolutionary precursor to the vertebrate α 2 -adrenergic receptors ( α 2 -ARs) based upon sequence similarity and the ability to interact with norepinephrine and a number of compounds that bind with high affinity to α 2 -ARs. Barnacles and fruit flies are two prominent model marine and terrestrial representatives of the Arthropoda phylum, and although α -like OctRs have been cloned from Balanus improvisus (BiOctR) and Drosophila melanogaster (DmOctR), little is known about the structure-activity space for these important species. A diverse panel of 22 probes spanning different structural classes were employed to interrogate the structure-activity of the BiOctR and DmOctR. While BiOctR and DmOctR exhibited similar functional profiles for mammalian biogenic amine G protein-coupled receptor agonists and antagonists, some ligands had dramatically different mechanisms of action. For instance, significant differences in the efficacy for some agonists were observed, including that vertebrate biogenic amines structurally related to octopamine acted as superagonists at the DmOctR but partial agonists at the BiOctR, and the two species diverged in their sensitivities to the α 2 -AR antagonist [ 3 H]rauwolscine. Furthermore, sodium enhanced [ 3 H]rauwolscine's interactions with the BiOctR, but not at a vertebrate α 2 -AR. Molecular mechanistic studies indicate that rauwolscine interacts with the BiOctR, DmOctR, and α 2C -adrenergic receptor at an allosteric site. In addition, compounds that acted as agonists at a cloned α -like BiOctR also induced a hyperactivity response in Balanus cyprids mediated by the α -like OctR, suggesting that the receptor may serve as a higher throughput proxy for discovering compounds with potential cyprid deterrent properties. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Han, Jing; Fei, Yingying; Zhou, Feng; Chen, Xinyu; Zhang, Ying; Liu, Lin; Fu, Junjie
2018-02-01
Incretin-based therapies based on glucagon-like peptide-1 (GLP-1) receptor agonists are effective treatments of type 2 diabetes. Abundant research has focused on the development of long-acting GLP-1 receptor agonists. However, all GLP-1 receptor agonists in clinical use or development are based on human or Gila GLP-1. We have identified a potent GLP-1 receptor agonist, xGLP-1B, based on Xenopus GLP-1. To further modify the structure of xGLP-1B, alanine scanning was performed to study the structure -activity relationship of xGLP-1B. Two strategies were then employed to improve bioactivity. First, the C-terminal tail of lixisenatide was appended to cysteine-altered xGLP-1B analogues. Second, polyethylene glycol (PEG) chains with different molecular weights were conjugated with the peptides, giving a series of PEGylated conjugates. Comprehensive bioactivity studies of these conjugates were performed in vitro and in vivo. From the in vitro receptor activation potency and in vivo acute hypoglycaemic activities of conjugates 25 -36, 33 was identified as the best candidate for further biological assessments. Conjugate 33 exhibited prominent hypoglycaemic and insulinotropic activities, as well as improved pharmacokinetic profiles in vivo. The prolonged antidiabetic duration of 33 was further confirmed by pre-oral glucose tolerance tests (OGTT) and multiple OGTT. Furthermore, chronic treatment of db/db mice with 33 ameliorated non-fasting blood glucose and insulin levels, reduced HbA1c values and normalized their impaired glucose tolerance. Importantly, no in vivo toxicity was observed in mice treated with 33. Peptide 33 is a promising long-acting type 2 diabetes therapeutic deserving further investigation. © 2017 The British Pharmacological Society.
Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors
NASA Astrophysics Data System (ADS)
Dacosta, Corrie J. B.; Free, Chris R.; Sine, Steven M.
2015-08-01
α-Bungarotoxin (α-Btx) binds to the five agonist binding sites on the homopentameric α7-acetylcholine receptor, yet the number of bound α-Btx molecules required to prevent agonist-induced channel opening remains unknown. To determine the stoichiometry for α-Btx blockade, we generate receptors comprised of wild-type and α-Btx-resistant subunits, tag one of the subunit types with conductance mutations to report subunit stoichiometry, and following incubation with α-Btx, monitor opening of individual receptor channels with defined subunit stoichiometry. We find that a single α-Btx-sensitive subunit confers nearly maximal suppression of channel opening, despite four binding sites remaining unoccupied by α-Btx and accessible to the agonist. Given structural evidence that α-Btx locks the agonist binding site in an inactive conformation, we conclude that the dominant mechanism of antagonism is non-competitive, originating from conformational arrest of the binding sites, and that the five α7 subunits are interdependent and maintain conformational symmetry in the open channel state.
An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors.
Jadey, Snehal; Auerbach, Anthony
2012-07-01
In neuromuscular acetylcholine (ACh) receptor channels (AChRs), agonist molecules bind with a low affinity (LA) to two sites that can switch to high affinity (HA) and increase the probability of channel opening. We measured (by using single-channel kinetic analysis) the rate and equilibrium constants for LA binding and channel gating for several different agonists of adult-type mouse AChRs. Almost all of the variation in the equilibrium constants for LA binding was from differences in the association rate constants. These were consistently below the limit set by diffusion and were substantially different even though the agonists had similar sizes and the same charge. This suggests that binding to resting receptors is not by diffusion alone and, hence, that each binding site can undergo two conformational changes ("catch" and "hold") that connect three different structures (apo-, LA-bound, and HA-bound). Analyses of ACh-binding protein structures suggest that this binding site, too, may adopt three discrete structures having different degrees of loop C displacement ("capping"). For the agonists we tested, the logarithms of the equilibrium constants for LA binding and LA↔HA gating were correlated. Although agonist binding and channel gating have long been considered to be separate processes in the activation of ligand-gated ion channels, this correlation implies that the catch-and-hold conformational changes are energetically linked and together comprise an integrated process having a common structural basis. We propose that loop C capping mainly reflects agonist binding, with its two stages corresponding to the formation of the LA and HA complexes. The catch-and-hold reaction coordinate is discussed in terms of preopening states and thermodynamic cycles of activation.
An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors
Jadey, Snehal
2012-01-01
In neuromuscular acetylcholine (ACh) receptor channels (AChRs), agonist molecules bind with a low affinity (LA) to two sites that can switch to high affinity (HA) and increase the probability of channel opening. We measured (by using single-channel kinetic analysis) the rate and equilibrium constants for LA binding and channel gating for several different agonists of adult-type mouse AChRs. Almost all of the variation in the equilibrium constants for LA binding was from differences in the association rate constants. These were consistently below the limit set by diffusion and were substantially different even though the agonists had similar sizes and the same charge. This suggests that binding to resting receptors is not by diffusion alone and, hence, that each binding site can undergo two conformational changes (“catch” and “hold”) that connect three different structures (apo-, LA-bound, and HA-bound). Analyses of ACh-binding protein structures suggest that this binding site, too, may adopt three discrete structures having different degrees of loop C displacement (“capping”). For the agonists we tested, the logarithms of the equilibrium constants for LA binding and LA↔HA gating were correlated. Although agonist binding and channel gating have long been considered to be separate processes in the activation of ligand-gated ion channels, this correlation implies that the catch-and-hold conformational changes are energetically linked and together comprise an integrated process having a common structural basis. We propose that loop C capping mainly reflects agonist binding, with its two stages corresponding to the formation of the LA and HA complexes. The catch-and-hold reaction coordinate is discussed in terms of preopening states and thermodynamic cycles of activation. PMID:22732309
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Yong; Xiong, Dazhi; Mosyak, Lidia
2012-10-24
Inhibitory neurotransmission is mediated primarily by GABA. The metabotropic GABA{sub B} receptor is a G protein-coupled receptor central to mammalian brain function. Malfunction of GABA{sub B} receptor has been implicated in several neurological disorders. GABA{sub B} receptor functions as a heterodimeric assembly of GBR1 and GBR2 subunits, where GBR1 is responsible for ligand-binding and GBR2 is responsible for G protein coupling. Here we demonstrate that the GBR2 ectodomain directly interacts with the GBR1 ectodomain to increase agonist affinity by selectively stabilizing the agonist-bound conformation of GBR1. We present the crystal structure of the GBR2 ectodomain, which reveals a polar heterodimericmore » interface. We also identify specific heterodimer contacts from both subunits, and GBR1 residues involved in ligand recognition. Lastly, our structural and functional data indicate that the GBR2 ectodomain adopts a constitutively open conformation, suggesting a structural asymmetry in the active state of GABA{sub B} receptor that is unique to the GABAergic system.« less
Vaidya, Aditya S; Peterson, Francis C; Yarmolinsky, Dmitry; Merilo, Ebe; Verstraeten, Inge; Park, Sang-Youl; Elzinga, Dezi; Kaundal, Amita; Helander, Jonathan; Lozano-Juste, Jorge; Otani, Masato; Wu, Kevin; Jensen, Davin R; Kollist, Hannes; Volkman, Brian F; Cutler, Sean R
2017-11-17
Increasing drought and diminishing freshwater supplies have stimulated interest in developing small molecules that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here, we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin Resistance 1 (PYR1) with low nanomolar potency. A 1.63 Å X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactin's arylnitrile mimics ABA's cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABA's carboxylate and C6 methyl groups, respectively. Isothermal titration calorimetry measurements show that cyanabactin's compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by the genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with a wide spectrum of ABA-like activities that defines subfamily IIIA receptors as key target sites for manipulating transpiration.
Gong, Hua; Weinstein, David S; Lu, Zhonghui; Duan, James J-W; Stachura, Sylwia; Haque, Lauren; Karmakar, Ananta; Hemagiri, Hemalatha; Raut, Dhanya Kumar; Gupta, Arun Kumar; Khan, Javed; Camac, Dan; Sack, John S; Pudzianowski, Andrew; Wu, Dauh-Rurng; Yarde, Melissa; Shen, Ding-Ren; Borowski, Virna; Xie, Jenny H; Sun, Huadong; D'Arienzo, Celia; Dabros, Marta; Galella, Michael A; Wang, Faye; Weigelt, Carolyn A; Zhao, Qihong; Foster, William; Somerville, John E; Salter-Cid, Luisa M; Barrish, Joel C; Carter, Percy H; Dhar, T G Murali
2018-01-15
We disclose the optimization of a high throughput screening hit to yield benzothiazine and tetrahydroquinoline sulfonamides as potent RORγt inverse agonists. However, a majority of these compounds showed potent activity against pregnane X receptor (PXR) and modest activity against liver X receptor α (LXRα). Structure-based drug design (SBDD) led to the identification of benzothiazine and tetrahydroquinoline sulfonamide analogs which completely dialed out LXRα activity and were less potent at PXR. Pharmacodynamic (PD) data for compound 35 in an IL-23 induced IL-17 mouse model is discussed along with the implications of a high Y max in the PXR assay for long term preclinical pharmacokinetic (PK) studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.
Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T
2003-01-01
The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.
Lan, Hongxiang; Teeter, Martha M; Gurevich, Vsevolod V; Neve, Kim A
2009-01-01
Dopamine D(2) and D(3) receptors are similar subtypes with distinct interactions with arrestins; the D(3) receptor mediates less agonist-induced translocation of arrestins than the D(2) receptor. The goals of this study were to compare nonphosphorylated arrestin-binding determinants in the second intracellular domain (IC2) of the D(2) and D(3) receptors to identify residues that contribute to the differential binding of arrestin to the subtypes. Arrestin 3 bound to glutathione transferase (GST) fusion proteins of the D(2) receptor IC2 more avidly than to the D(3) receptor IC2. Mutagenesis of the fusion proteins identified a residue at the C terminus of IC2, Lys149, that was important for the preferential binding of arrestin 3 to D(2)-IC2; arrestin binding to D(2)-IC2-K149C was greatly decreased compared with wild-type D(2)-IC2, whereas binding to the reciprocal mutant D(3)-IC2-C147K was enhanced compared with wild-type D(3)-IC2. Mutating this lysine in the full-length D(2) receptor to cysteine decreased the ability of the D(2) receptor to mediate agonist-induced arrestin 3 translocation to the membrane and decreased agonist-induced receptor internalization in human embryonic kidney 293 cells. The reciprocal mutation in the D(3) receptor increased receptor-mediated translocation of arrestin 3 without affecting agonist-induced receptor internalization. G protein-coupled receptor crystal structures suggest that Lys149, at the junction of IC2 and the fourth membrane-spanning helix, has intramolecular interactions that contribute to maintaining an inactive receptor state. It is suggested that the preferential agonist-induced binding of arrestin3 to the D(2) receptor over the D(3) receptor is due in part to Lys149, which could be exposed as a result of receptor activation.
NASA Astrophysics Data System (ADS)
Singh, Nidhi; Chevé, Gwénaël; Ferguson, David M.; McCurdy, Christopher R.
2006-08-01
Combined ligand-based and target-based drug design approaches provide a synergistic advantage over either method individually. Therefore, we set out to develop a powerful virtual screening model to identify novel molecular scaffolds as potential leads for the human KOP (hKOP) receptor employing a combined approach. Utilizing a set of recently reported derivatives of salvinorin A, a structurally unique KOP receptor agonist, a pharmacophore model was developed that consisted of two hydrogen bond acceptor and three hydrophobic features. The model was cross-validated by randomizing the data using the CatScramble technique. Further validation was carried out using a test set that performed well in classifying active and inactive molecules correctly. Simultaneously, a bovine rhodopsin based "agonist-bound" hKOP receptor model was also generated. The model provided more accurate information about the putative binding site of salvinorin A based ligands. Several protein structure-checking programs were used to validate the model. In addition, this model was in agreement with the mutation experiments carried out on KOP receptor. The predictive ability of the model was evaluated by docking a set of known KOP receptor agonists into the active site of this model. The docked scores correlated reasonably well with experimental p K i values. It is hypothesized that the integration of these two independently generated models would enable a swift and reliable identification of new lead compounds that could reduce time and cost of hit finding within the drug discovery and development process, particularly in the case of GPCRs.
Discovery of potent and selective small-molecule PAR-2 agonists.
Seitzberg, Jimmi Gerner; Knapp, Anne Eeg; Lund, Birgitte Winther; Mandrup Bertozzi, Sine; Currier, Erika A; Ma, Jian-Nong; Sherbukhin, Vladimir; Burstein, Ethan S; Olsson, Roger
2008-09-25
Proteinase activated receptor-2 plays a crucial role in a wide variety of conditions with a strong inflammatory component. We present the discovery and characterization of two structurally different, potent, selective, and metabolically stable small-molecule PAR-2 agonists. These ligands may be useful as pharmacological tools for elucidating the complex physiological role of the PAR-2 receptors as well as for the development of PAR-2 antagonists.
Dreier, Dominik; Latkolik, Simone; Rycek, Lukas; Schnürch, Michael; Dymáková, Andrea; Atanasov, Atanas G; Ladurner, Angela; Heiss, Elke H; Stuppner, Hermann; Schuster, Daniela; Mihovilovic, Marko D; Dirsch, Verena M
2017-10-20
The nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and its hetero-dimerization partner retinoid X receptor α (RXRα) are considered as drug targets in the treatment of diseases like the metabolic syndrome and diabetes mellitus type 2. Effort has been made to develop new agonists for PPARγ to obtain ligands with more favorable properties than currently used drugs. Magnolol was previously described as dual agonist of PPARγ and RXRα. Here we show the structure-based rational design of a linked magnolol dimer within the ligand binding domain of PPARγ and its synthesis. Furthermore, we evaluated its binding properties and functionality as a PPARγ agonist in vitro with the purified PPARγ ligand binding domain (LBD) and in a cell-based nuclear receptor transactivation model in HEK293 cells. We determined the synthesized magnolol dimer to bind with much higher affinity to the purified PPARγ ligand binding domain than magnolol (K i values of 5.03 and 64.42 nM, respectively). Regarding their potency to transactivate a PPARγ-dependent luciferase gene both compounds were equally effective. This is likely due to the PPARγ specificity of the newly designed magnolol dimer and lack of RXRα-driven transactivation activity by this dimeric compound.
Demont, Emmanuel H; Bailey, James M; Bit, Rino A; Brown, Jack A; Campbell, Colin A; Deeks, Nigel; Dowell, Simon J; Eldred, Colin; Gaskin, Pam; Gray, James R J; Haynes, Andrea; Hirst, David J; Holmes, Duncan S; Kumar, Umesh; Morse, Mary A; Osborne, Greg J; Renaux, Jessica F; Seal, Gail A L; Smethurst, Chris A; Taylor, Simon; Watson, Robert; Willis, Robert; Witherington, Jason
2016-02-11
FTY720 is the first oral small molecule approved for the treatment of people suffering from relapsing-remitting multiple sclerosis. It is a potent agonist of the S1P1 receptor, but its lack of selectivity against the S1P3 receptor has been linked to most of the cardiovascular side effects observed in the clinic. These findings have triggered intensive efforts toward the identification of a second generation of S1P3-sparing S1P1 agonists. We have recently disclosed a series of orally active tetrahydroisoquinoline (THIQ) compounds matching these criteria. In this paper we describe how we defined and implemented a strategy aiming at the discovery of selective structurally distinct follow-up agonists. This effort culminated with the identification of a series of orally active tetrahydropyrazolopyridines.
Franchini, Silvia; Sorbi, Claudia; Battisti, Umberto Maria; Tait, Annalisa; Bencheva, Leda Ivanova; Cichero, Elena; Fossa, Paola; Cilia, Antonio; Prezzavento, Orazio; Ronsisvalle, Simone; Aricò, Giuseppina; Benassi, Luisa; Vaschieri, Cristina; Azzoni, Paola; Magnoni, Cristina; Brasili, Livio
2017-11-22
A new series of spirocyclic σ receptor (σR) ligands were prepared and studied. Most were found to have a high affinity and selectivity for σ 1 R; three compounds were shown to be σ 1 R agonists, while another proved to be the only σ 1 R antagonist. Only one of the σ 1 R agonists (BS148) also exhibited σ 2 R selectivity and was able to inhibit the growth of metastatic malignant melanoma cell lines without affecting normal human melanocytes. The antiproliferative activity of this compound suggested an σ 2 R agonist profile. Further, preliminary investigations indicated that the mechanism of metastatic malignant melanoma cell death induced by BS148 is due, at least in part, to apoptosis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Z Y; Håkanson, R
1993-04-08
Tachykinin analogues, claimed to be selective NK1, NK2 and NK3 receptor agonists, contracted the isolated rabbit iris sphincter muscle in a concentration-dependent manner. The contractions were not modified by the enkephalinase inhibitor thiorphan and the angiotensin-converting enzyme inhibitor captopril (10(-5) M of each). The pD2 values for (Sar9,Met(O2)11)SP (NK1 receptor agonist), (Nle10)NKA(4-10) (NK2 receptor agonist) and (MePhe7)NKB (NK3 receptor agonist) were 8.3, 6.1 and 8.2, respectively. (Sar9,Met(O2)11)SP was the most efficacious of the three agonists. The results are compatible with the presence of NK1 and NK3 receptors. The low pD2 value for the NK2 agonist may reflect a lack of NK2 receptors and interaction of the NK2 agonist with NK1 receptors. The contraction caused by the NK1 receptor agonist was inhibited competitively by the highly selective NK1 receptor antagonist (+/-) CP-96,345; the pA2 value was 5.5. Also the contraction caused by the NK2 receptor agonist was inhibited competitively by (+/-) CP-96,345 with a pA2 value of 5.7, supporting the view that the two agonists (Sar9,Met(O2)11)SP and (Nle10)NKA(4-10) interact with the same receptor. The selective NK2 receptor antagonist actinomycin D did not affect the contraction caused by the NK2 receptor agonist. We conclude that the rabbit iris sphincter muscle contains NK1 and probably NK3 receptors. We obtained no evidence for the presence of NK2 receptors.
Xu, Bo; Vasile, Silvana; Østergaard, Søren; Paulsson, Johan F; Pruner, Jasna; Åqvist, Johan; Wulff, Birgitte S; Gutiérrez-de-Terán, Hugo; Larhammar, Dan
2018-04-01
Understanding the agonist-receptor interactions in the neuropeptide Y (NPY)/peptide YY (PYY) signaling system is fundamental for the design of novel modulators of appetite regulation. We report here the results of a multidisciplinary approach to elucidate the binding mode of the native peptide agonist PYY to the human Y 2 receptor, based on computational modeling, peptide chemistry and in vitro pharmacological analyses. The preserved binding orientation proposed for full-length PYY and five analogs, truncated at the amino terminus, explains our pharmacological results where truncations of the N-terminal proline helix showed little effect on peptide affinity. This was followed by receptor mutagenesis to investigate the roles of several receptor positions suggested by the modeling. As a complement, PYY-(3-36) analogs were synthesized with modifications at different positions in the common PYY/NPY C-terminal fragment ( 32 TRQRY 36 -amide). The results were assessed and interpreted by molecular dynamics and Free Energy Perturbation (FEP) simulations of selected mutants, providing a detailed map of the interactions of the PYY/NPY C-terminal fragment with the transmembrane cavity of the Y 2 receptor. The amidated C-terminus would be stabilized by polar interactions with Gln288 6.55 and Tyr219 5.39 , while Gln130 3.32 contributes to interactions with Q 34 in the peptide and T 32 is close to the tip of TM7 in the receptor. This leaves the core, α -helix of the peptide exposed to make potential interactions with the extracellular loops. This model agrees with most experimental data available for the Y 2 system and can be used as a basis for optimization of Y 2 receptor agonists. Copyright © 2018 by The Author(s).
Characterization of the hypothermic effects of imidazoline I2 receptor agonists in rats
Thorn, David A; An, Xiao-Fei; Zhang, Yanan; Pigini, Maria; Li, Jun-Xu
2012-01-01
BACKGROUND AND PURPOSE Imidazoline I2 receptors have been implicated in several CNS disorders. Although several I2 receptor agonists have been described, no simple and sensitive in vivo bioassay is available for studying I2 receptor ligands. This study examined I2 receptor agonist-induced hypothermia as a functional in vivo assay of I2 receptor agonism. EXPERIMENTAL APPROACH Different groups of rats were used to examine the effects of I2 receptor agonists on the rectal temperature and locomotion. The pharmacological mechanisms were investigated by combining I2 receptor ligands and different antagonists. KEY RESULTS All the selective I2 receptor agonists examined (2-BFI, diphenyzoline, phenyzoline, CR4056, tracizoline, BU224 and S22687, 3.2–56 mg·kg–1, i.p.) dose-dependently and markedly decreased the rectal temperature (hypothermia) in rats, with varied duration of action. Pharmacological mechanism of the observed hypothermia was studied by combining the I2 receptor agonists (2-BFI, BU224, tracizoline and diphenyzoline) with imidazoline I2 receptor/ α2 adrenoceptor antagonist idazoxan, selective I1 receptor antagonist efaroxan, α2 adrenoceptor antagonist/5-HT1A receptor agonist yohimbine. Idazoxan but not yohimbine or efaroxan attenuated the hypothermic effects of 2-BFI, BU224, tracizoline and diphenyzoline, supporting the I2 receptor mechanism. In contrast, both idazoxan and yohimbine attenuated hypothermia induced by the α2 adrenoceptor agonist clonidine. Among all the I2 receptor agonists studied, only S22687 markedly increased the locomotor activity in rats. CONCLUSIONS AND IMPLICATIONS Imidazoline I2 receptor agonists can produce hypothermic effects, which are primarily mediated by I2 receptors. These data suggest that I2 receptor agonist-induced hypothermia is a simple and sensitive in vivo assay for studying I2 receptor ligands. PMID:22324428
Tulapurkar, M E; Laubinger, W; Nahum, V; Fischer, B; Reiser, G
2004-01-01
P2Y-nucleotide receptors represent important targets for drug development. The lack of stable and receptor specific agonists, however, has prevented successful therapeutic applications. A novel series of P-boronated ATP derivatives (ATP-α-B) were synthesized by substitution of a nonbridging O at Pα with a BH3 group. This introduces a chiral center, thus resulting in diastereoisomers. In addition, at C2 of the adenine ring a further substitution was made (Cl- or methylthio-). The pairs of diastereoisomers were denoted here as A and B isomers. Here, we tested the receptor subtype specificity of these analogs on HEK 293 cells stably expressing rat P2Y1 and rat P2Y2 receptors, respectively, both attached to the fluorescent marker protein GFP (rP2Y1-GFP, rP2Y2-GFP). We investigated agonist-induced receptor endocytosis, [Ca2+]i rise and arachidonic acid (AA) release. Agonist-induced endocytosis of rP2Y1-GFP was more pronounced for the A isomers than the corresponding B counterparts for all ATP-α-B analogs. Both 2-MeS-substituted diastereoisomers induced a greater degree of agonist-induced receptor endocytosis as compared to the 2-Cl-substituted derivatives. Endocytosis results are in accordance with the potency to induce Ca2+ release by these compounds in HEK 293 cells stably transfected with rP2Y1. In case of rP2Y2-GFP, the borano-nucleotides were very weak agonists in comparison to UTP and ATP in terms of Ca2+ release, AA release and in inducing receptor endocytosis. The different ATP-α-B derivatives and also the diastereoisomers were equally ineffective. Thus, the new agonists may be considered as potent and highly specific agonist drug candidates for P2Y1 receptors. The difference in activity of the ATP analogs at P2Y receptors could be used as a tool to investigate structural differences between P2Y receptor subtypes. PMID:15197109
Pei, Fen; Jin, Hongwei; Zhou, Xin; Xia, Jie; Sun, Lidan; Liu, Zhenming; Zhang, Liangren
2015-11-01
Toll-like receptor 8 agonists, which activate adaptive immune responses by inducing robust production of T-helper 1-polarizing cytokines, are promising candidates for vaccine adjuvants. As the binding site of toll-like receptor 8 is large and highly flexible, virtual screening by individual method has inevitable limitations; thus, a comprehensive comparison of different methods may provide insights into seeking effective strategy for the discovery of novel toll-like receptor 8 agonists. In this study, the performance of knowledge-based pharmacophore, shape-based 3D screening, and combined strategies was assessed against a maximum unbiased benchmarking data set containing 13 actives and 1302 decoys specialized for toll-like receptor 8 agonists. Prior structure-activity relationship knowledge was involved in knowledge-based pharmacophore generation, and a set of antagonists was innovatively used to verify the selectivity of the selected knowledge-based pharmacophore. The benchmarking data set was generated from our recently developed 'mubd-decoymaker' protocol. The enrichment assessment demonstrated a considerable performance through our selected three-layer virtual screening strategy: knowledge-based pharmacophore (Phar1) screening, shape-based 3D similarity search (Q4_combo), and then a Gold docking screening. This virtual screening strategy could be further employed to perform large-scale database screening and to discover novel toll-like receptor 8 agonists. © 2015 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Córdova-Sintjago, Tania C.; Liu, Yue; Booth, Raymond G.
2015-02-01
To understand molecular determinants for ligand activation of the serotonin 5-HT2C G protein-coupled receptor (GPCR), a drug target for obesity and neuropsychiatric disorders, a 5-HT2C homology model was built according to an adrenergic β2 GPCR (β2AR) structure and validated using a 5-HT2B GPCR crystal structure. The models were equilibrated in a simulated phosphatidyl choline membrane for ligand docking and molecular dynamics studies. Ligands included (2S, 4R)-(-)-trans-4-(3'-bromo- and trifluoro-phenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalene-2-amine (3'-Br-PAT and 3'-CF3-PAT), a 5-HT2C agonist and inverse agonist, respectively. Distinct interactions of 3'-Br-PAT and 3'-CF3-PAT at the wild-type (WT) 5-HT2C receptor model were observed and experimental 5-HT2C receptor mutagenesis studies were undertaken to validate the modelling results. For example, the inverse agonist 3'-CF3-PAT docked deeper in the WT 5-HT2C binding pocket and altered the orientation of transmembrane helices (TM) 6 in comparison to the agonist 3'-Br-PAT, suggesting that changes in TM orientation that result from ligand binding impact function. For both PATs, mutation of 5-HT2C residues S3.36, T3.37, and F5.47 to alanine resulted in significantly decreased affinity, as predicted from modelling results. It was concluded that upon PAT binding, 5-HT2C residues T3.37 and F5.47 in TMs 3 and 5, respectively, engage in inter-helical interactions with TMs 4 and 6, respectively. The movement of TMs 5 and 6 upon agonist and inverse agonist ligand binding observed in the 5-HT2C receptor modelling studies was similar to movements reported for the activation and deactivation of the β2AR, suggesting common mechanisms among aminergic neurotransmitter GPCRs.
Wu, Xi-Shan; Wang, Rui; Xing, Yan-Li; Xue, Xiao-Qian; Zhang, Yan; Lu, Yong-Zhi; Song, Yu; Luo, Xiao-Yu; Wu, Chun; Zhou, Yu-Lai; Jiang, Jian-Qin; Xu, Yong
2016-11-01
Retinoic acid receptor-related orphan nuclear receptors (RORs) are orphan nuclear receptors that show constitutive activity in the absence of ligands. Among 3 subtypes of RORs, RORc is a promising therapeutic target for the treatment of Th17-mediated autoimmune diseases. Here, we report novel RORc inverse agonists discovered through structure-based drug design. Based on the structure of compound 8, a previously described agonist of RORa, a series of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives were designed and synthesized. The interaction between the compounds and RORc was detected at molecular level using AlphaScreen assay. The compounds were further examined in 293T cells transfected with RORc and luciferase reporter gene. Thermal stability shift assay was used to evaluate the effects of the compounds on protein stability. A total of 27 derivatives were designed and synthesized. Among them, the compound 22b was identified as the most potent RORc inverse agonist. Its IC 50 values were 2.39 μmol/L in AlphaScreen assay, and 0.82 μmol/L in inhibition of the cell-based luciferase reporter activity. Furthermore, the compound 22b displayed a 120-fold selectivity for RORc over other nuclear receptors. Moreover, a molecular docking study showed that the structure-activity relationship was consistent with the binding mode of compound 22b in RORc. 4-(4-(Benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives are promising candidates for the treatment of Th17-mediated autoimmune diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi
2018-03-23
Conditions such as hypertension and renal allograft rejection are accompanied by chronic, agonist-independent, signalling by angiotensin II AT 1 receptors. The current treatment paradigm for these diseases entails the preferred use of inverse agonist AT 1 receptor blockers (ARBs). However, variability in the inverse agonist activities of common biphenyl-tetrazole ARBs for the active state of AT 1 receptors often leads to treatment failure. Therefore, characterization of robust inverse agonist ARBs for the active state of AT 1 receptors is necessary. To identify the robust inverse agonist for active state of AT 1 receptors and its molecular mechanism, we performed site-directed mutagenesis, competition binding assay, inositol phosphate production assay and molecular modelling for both ground-state wild-type AT 1 receptors and active-state N111G mutant AT 1 receptors. Although candesartan and telmisartan exhibited weaker inverse agonist activity for N111G- compared with WT-AT 1 receptors, only eprosartan exhibited robust inverse agonist activity for both N111G- and WT- AT 1 receptors. Specific ligand-receptor contacts for candesartan and telmisartan are altered in the active-state N111G- AT 1 receptors compared with the ground-state WT-AT 1 receptors, suggesting an explanation of their attenuated inverse agonist activity for the active state of AT 1 receptors. In contrast, interactions between eprosartan and N111G-AT 1 receptors were not significantly altered, and the inverse agonist activity of eprosartan was robust. Eprosartan may be a better therapeutic option than other ARBs. Comparative studies investigating eprosartan and other ARBs for the treatment of diseases caused by chronic, agonist-independent, AT 1 receptor activation are warranted. © 2018 The British Pharmacological Society.
Kuzmin, Alexander; Kreek, Mary Jeanne; Bakalkin, Georgy; Liljequist, Sture
2007-04-01
Effects of the opioid receptor like-1 (ORL-1) receptor agonist Ro 64-6198 (0.1, 0.3, and 1.0 mg/kg intraperitoneally (i.p.)) on operant ethanol self-administration and activation of self-administration by ethanol deprivation were studied in male Wistar rats. Acute administration of Ro 64-6198 caused a dose-dependent reduction of ethanol self-administration. In comparison, the opioid antagonist naltrexone (0.1, 0.3, and 1.0 mg/kg i.p.) inhibited ethanol self-administration at all doses tested. Ethanol deprivation for 10 days significantly increased ethanol self-administration during the first 2 days after deprivation. Daily pretreatment with Ro 64-6198 (0.3 mg/kg) or naltrexone (0.3 mg/kg) during the last 3 days of ethanol deprivation abolished the deprivation-induced increase in ethanol intake. Thus, stimulation of the ORL-1 receptors by Ro 64-6198 reduced the acute reinforcing effects of ethanol and prevented relapse-like behavior in the ethanol-deprivation model in a similar manner as a blockade of opioid receptors by naltrexone. Ro 64-6198 at 0.1 and 0.3 mg/kg doses did not alter self-administration of 0.2% saccharin solution, indicating an apparent selectivity of this compound in modification of ethanol reward. These findings add further support to the idea that Ro 64-6198 and potentially other synthetic ORL-1 receptor agonists are as effective as naltrexone in blocking the actions of ethanol important for its addictive potential in animal experiments, and therefore may have therapeutic value in the treatment of alcoholism.
μ Opioid receptor: novel antagonists and structural modeling
NASA Astrophysics Data System (ADS)
Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela
2016-02-01
The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.
Costa, Lara; Sardone, Lara M.; Lacivita, Enza; Leopoldo, Marcello; Ciranna, Lucia
2015-01-01
Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD) in wild-type (wt) and in Fmr1 KO mice, a mouse model of Fragile X Syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X Syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices. Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X Syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions. The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of Fragile X Syndrome. PMID:25814945
Watanabe, Yoshikazu; Hayashida, Kohei; Saito, Daisuke; Takahashi, Toshihiro; Sakai, Junichi; Nakata, Eriko; Kanda, Takashi; Iwai, Takashi; Hirayama, Shigeto; Fujii, Hideaki; Yamakawa, Tomio; Nagase, Hiroshi
2017-08-01
We designed and synthesized novel δ opioid receptor (DOR) agonists 3a-i with an azatricyclodecane skeleton, which was a novel structural class of DOR agonists. Among them, 3b exhibited high values of binding affinity and potent agonistic activity for the DOR that were approximately equivalent to those of 2 which bore an oxazatricyclodecane skeleton. In vitro assays using the blood-brain barrier (BBB) permeability test kit supported the idea that 3b achieved an excellent BBB permeability by converting an oxygen atom of 2 to a carbon atom (methylene group) in the core skeleton. As a result, 3b showed potent antinociceptive effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural insights into μ-opioid receptor activation
Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A. J.; Laeremans, Toon; Feinberg, Evan N.; Sanborn, Adrian L.; Kato, Hideaki E.; Livingston, Kathryn E.; Thorsen, Thor S.; Kling, Ralf; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M.; Traynor, John R.; Weis, William I.; Steyaert, Jan; Dror, Ron O.; Kobilka, Brian K.
2015-01-01
Summary Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To understand the structural basis for μOR activation, we obtained a 2.1 Å X-ray crystal structure of the μOR bound to the morphinan agonist BU72 and stabilized by a G protein-mimetic camelid-antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2 adrenergic receptor (β2AR) and the M2 muscarinic receptor (M2R). Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three GPCRs. PMID:26245379
Reyes-Alcaraz, Arfaxad; Lee, Yoo-Na; Son, Gi Hoon; Kim, Nam Hoon; Kim, Dong-Kyu; Yun, Seongsik; Kim, Dong-Hoon; Hwang, Jong-Ik; Seong, Jae Young
2016-02-24
The novel neuropeptide spexin (SPX) was discovered to activate galanin receptor 2 (GALR2) and 3 (GALR3) but not galanin receptor 1 (GALR1). Although GALR2 is known to display a function, particularly in anxiety, depression, and appetite regulation, the further determination of its function would benefit from a more stable and selective agonist that acts only at GALR2. In the present study, we developed a GALR2-specific agonist with increased stability in serum. As galanin (GAL) showed a low affinity to GALR3, the residues in SPX were replaced with those in GAL, revealing that particular mutations such as Gln5 → Asn, Met7 → Ala, Lys11 → Phe, and Ala13 → Pro significantly decreased potencies toward GALR3 but not toward GALR2. Quadruple (Qu) mutation of these residues still retained potency to GALR2 but totally abolished the potency to both GALR3 and GALR1. The first amino acid modifications or D-Asn1 substitution significantly increased the stability when they are incubated in 100% fetal bovine serum. Intracerebroventricular administration of the mutant peptide with D-Asn1 and quadruple substitution (dN1-Qu) exhibited an anxiolytic effect in mice. Taken together, the GALR2-specific agonist with increased stability can greatly help delineation of GALR2-mediated functions and be very useful for treatments of anxiety disorder.
NASA Astrophysics Data System (ADS)
Calderon, Silvia N.
The discovery of the selective delta (δ) opioid agonists SNC 80 and BW373U86, which possess a diarylmethylpiperazine structure unique among opioids, represented a major advance in the field of δ-opioid ligands. Extensive research has recently been performed to uncover the structure-activity relationships (SAR) of this class of ligands, thereby providing valuable tools for the pharmacological characterization of the δ opioid receptor. This review focuses on the SAR of this unique series of ligands, and provides an overview of the various chemical routes that have been developed and optimized through the years to allow the syntheses of these ligands on a multigram scale. The search for selective δ opioid agonists and antagonists, as well as for those with mixed opioid agonist properties with potential therapeutic value, continues. Several questions regarding the interaction at the molecular level of diphenylmethylpiperazine derivatives and related analogs with opioid receptors and in particular with the δ opioid system still remain unanswered. Indeed, the development and pharmacological characterization of novel nonpeptidic δ opioid ligands remains an active area of research, as it may provide a better understanding of the role of this receptor in multiple disease states and disorders.
Hewage, Chandralal M; Jiang, Lu; Parkinson, John A; Ramage, Robert; Sadler, Ian H
2002-03-01
In a previous report we have shown that the endothelin-B receptor-selective linear endothelin peptide, ET-1[Cys (Acm)1,15, Ala3, Leu7, Aib11], folds into an alpha-helical conformation in a methanol-d3/water co-solvent [Hewage et al. (1998) FEBS Lett., 425, 234-238]. To study the requirements for the structure-activity relationships, truncated analogues of this peptide were subjected to further studies. Here we report the solution conformation of ET7-21[Leu7, Aib11, Cys(Acm)15], in a methanol-d3/water co-solvent at pH 3.6, by NMR spectroscopic and molecular modelling studies. Further truncation of this short peptide results in it displaying poor agonist activity. The modelled structure shows that the peptide folds into an alpha-helical conformation between residues Lys9-His16, whereas the C-terminus prefers no fixed conformation. This truncated linear endothelin analogue is pivotal for designing endothelin-B receptor agonists.
Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu
2014-10-27
The evaluation of virtual ligand screening methods is of major importance to ensure their reliability. Taking into account the agonist/antagonist pharmacological profile should improve the quality of the benchmarking data sets since ligand binding can induce conformational changes in the nuclear receptor structure and such changes may vary according to the agonist/antagonist ligand profile. We indeed found that splitting the agonist and antagonist ligands into two separate data sets for a given nuclear receptor target significantly enhances the quality of the evaluation. The pharmacological profile of the ligand bound in the binding site of the target structure was also found to be an additional critical parameter. We also illustrate that active compound data sets for a given pharmacological activity can be used as a set of experimentally validated decoy ligands for another pharmacological activity to ensure a reliable and challenging evaluation of virtual screening methods.
Structure and dynamics of AMPA receptor GluA2 in resting, pre-open and desensitized states
Dürr, Katharina L.; Chen, Lei; Stein, Richard A.; De Zorzi, Rita; MihaelaFolea, I.; Walz, Thomas; Mchaourab, Hassane S.; Gouaux, Eric
2014-01-01
Summary Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory signaling in the nervous system. Despite the profound importance of iGluRs in the nervous system, little is known about the structures and dynamics of intact receptors in distinct functional states. Here we elucidate the structures of the intact GluA2 AMPA receptor in an apo resting/closed state, in an activated/pre-open state bound with the partial agonists and a positive allosteric modulator and in a desensitized/closed state in complex with FW alone. To probe the conformational properties of these states, we carried out double electron-electron resonance experiments on cysteine mutants and cryo-electron microscopy studies. We show how agonist binding modulates the conformation of the ligand binding domain 'layer' of the intact receptors and how, upon desensitization, the receptor undergoes large conformational rearrangements of amino-terminal and ligand-binding domains. We define mechanistic principles by which to understand antagonism, activation and desensitization in AMPA iGluRs. PMID:25109876
Zwart, Ruud; Reed, Hannah; Sher, Emanuele
2018-01-01
Muscarinic acetylcholine M1 receptors play an important role in synaptic plasticity in the hippocampus and cortex. Potentiation of NMDA receptors as a consequence of muscarinic acetylcholine M1 receptor activation is a crucial event mediating the cholinergic modulation of synaptic plasticity, which is a cellular mechanism for learning and memory. In Alzheimer's disease, the cholinergic input to the hippocampus and cortex is severely degenerated, and agonists or positive allosteric modulators of M1 receptors are therefore thought to be of potential use to treat the deficits in cognitive functions in Alzheimer's disease. In this study we developed a simple system in which muscarinic modulation of NMDA receptors can be studied in vitro. Human M1 receptors and NR1/2B NMDA receptors were co-expressed in Xenopus oocytes and various muscarinic agonists were assessed for their modulatory effects on NMDA receptor-mediated responses. As expected, NMDA receptor-mediated responses were potentiated by oxotremorine-M, oxotremorine or xanomeline when the drugs were applied between subsequent NMDA responses, an effect which was fully blocked by the muscarinic receptor antagonist atropine. However, in oocytes expressing NR1/2B NMDA receptors but not muscarinic M1 receptors, oxotremorine-M co-applied with NMDA also resulted in a potentiation of NMDA currents and this effect was not blocked by atropine, demonstrating that oxotremorine-M is able to directly potentiate NMDA receptors. Oxotremorine, which is a close analogue of oxotremorine-M, and xanomeline, a chemically distinct muscarinic agonist, did not potentiate NMDA receptors by this direct mechanism. Comparing the chemical structures of the three different muscarinic agonists used in this study suggests that the tri-methyl ammonium moiety present in oxotremorine-M is important for the compound's interaction with NMDA receptors. Copyright © 2017 Elsevier Inc. All rights reserved.
2015-01-01
Understanding the thermodynamics of binding of a lead compound to a receptor can provide valuable information for drug design. The binding of compounds, particularly partial agonists, to subtypes of the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor is, in some cases, driven by increases in entropy. Using a series of partial agonists based on the structure of the natural product, willardiine, we show that the charged state of the ligand determines the enthalpic contribution to binding. Willardiines have uracil rings with pKa values ranging from 5.5 to 10. The binding of the charged form is largely driven by enthalpy, while that of the uncharged form is largely driven by entropy. This is due at least in part to changes in the hydrogen bonding network within the binding site involving one water molecule. This work illustrates the importance of charge to the thermodynamics of binding of agonists and antagonists to AMPA receptors and provides clues for further drug discovery. PMID:24850223
Żmudzki, Paweł; Satała, Grzegorz; Chłoń-Rzepa, Grażyna; Bojarski, Andrzej J; Kazek, Grzegorz; Siwek, Agata; Gryboś, Anna; Głuch-Lutwin, Monika; Wesołowska, Anna; Pawłowski, Maciej
2016-10-01
In our previous papers, we have reported that some 8-amino-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione derivatives possessed high affinity and displayed agonistic, partial agonistic, or antagonistic activity for serotonin 5-HT 1A and dopamine D 2 receptors. In order to examine further the influence of the substituent in the position 8 of the purine moiety and the influence of the xanthine core on the affinity for serotonin 5-HT 1A , 5-HT 2A , 5-HT 6 , 5-HT 7 , and dopamine D 2 receptors, two series of 1-arylpiperazynylalkyl derivatives of 8-amino-3,7-dimethyl-1H-purine-2,6(3H,7H)-dione were synthesized. All the final compounds were investigated in in vitro competition binding experiments for the serotonin 5-HT 1A , 5-HT 2A , 5-HT 6 , 5-HT 7 , and dopamine D 2 receptors. The structure-affinity relationships for this group of compounds were discussed. For selected compounds, the functional assays for the 5-HT 1A and D 2 receptors were carried out. The results of the assays indicated that these groups of derivatives possessed antagonistic activity for 5-HT 1A receptors and agonistic, partial agonistic, or antagonistic activity for D 2 receptors. In total, 26 new compounds were synthesized, 20 of which were tested in in vitro binding experiments and 5 were tested in in vitro functional assays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Glycine Transport Inhibitor Sarcosine Is an Inhibitory Glycine Receptor Agonist
Zhang, Hai Xia; Lyons-Warren, Ariel; Thio, Liu Lin
2009-01-01
Summary Sarcosine is an endogenous amino acid that is a competitive inhibitor of the type I glycine transporter (GlyT1), an N-methyl-D-aspartate receptor (NMDAR) co-agonist, and an important intermediate in one-carbon metabolism. Its therapeutic potential for schizophrenia further underscores its clinical importance. The structural similarity between sarcosine and glycine and sarcosine's ability to serve as an NMDAR co-agonist led us to examine whether sarcosine is also an agonist at the inhibitory glycine receptor (GlyR). We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons and found that sarcosine evoked a dose-dependent, strychnine sensitive, Cl- current that cross-inhibited glycine currents. Sarcosine evoked this current with Li+ in the extracellular solution to block GlyT1, in neurons treated with the essentially irreversible GlyT1 inhibitor N[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine (NFPS), and in neurons plated in the absence of glia. These results indicate that the sarcosine currents did not result from GlyT1 inhibition or heteroexchange. We conclude that sarcosine is a GlyR agonist. PMID:19619564
The glycine transport inhibitor sarcosine is an inhibitory glycine receptor agonist.
Zhang, Hai Xia; Lyons-Warren, Ariel; Thio, Liu Lin
2009-01-01
Sarcosine is an endogenous amino acid that is a competitive inhibitor of the type I glycine transporter (GlyT1), an N-methyl-d-aspartate receptor (NMDAR) co-agonist, and an important intermediate in one-carbon metabolism. Its therapeutic potential for schizophrenia further underscores its clinical importance. The structural similarity between sarcosine and glycine and sarcosine's ability to serve as an NMDAR co-agonist led us to examine whether sarcosine is also an agonist at the inhibitory glycine receptor (GlyR). We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons and found that sarcosine evoked a dose-dependent, strychnine sensitive, Cl(-) current that cross-inhibited glycine currents. Sarcosine evoked this current with Li(+) in the extracellular solution to block GlyT1, in neurons treated with the essentially irreversible GlyT1 inhibitor N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS), and in neurons plated in the absence of glia. These results indicate that the sarcosine currents did not result from GlyT1 inhibition or heteroexchange. We conclude that sarcosine is a GlyR agonist.
Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; De Maeyer, J H; Stanghellini, V
2012-04-01
The nonselective 5-HT(4) receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT(4) agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) and ATI-7505 (naronapride) were identified through a systematic search of the Cochrane Library, Medline, Embase and Toxfile. Abstracts from UEGW 2006-2008 and DDW 2008-2010 were searched for these drug names, and pharmaceutical companies approached to provide unpublished data. Retrieved articles on pharmacokinetics, human pharmacodynamics and clinical data with these 5-HT(4) agonists, are reviewed and summarised nonsystematically. Articles relating to cardiac safety and tolerability of these agents, including any relevant case reports, are reported systematically. Two nonselective 5-HT(4) agonists had reports of cardiovascular AEs: cisapride (QT prolongation) and tegaserod (ischaemia). Interactions with, respectively, the hERG cardiac potassium channel and 5-HT(1) receptor subtypes have been suggested to account for these effects. No cardiovascular safety concerns were reported for the newer, selective 5-HT(4) agonists prucalopride, velusetrag, naronapride, or for nonselective 5-HT(4) agonists with no hERG or 5-HT(1) affinity (renzapride, clebopride, mosapride). 5-HT(4) agonists for GI disorders differ in chemical structure and selectivity for 5-HT(4) receptors. Selectivity for 5-HT(4) over non-5-HT(4) receptors may influence the agent's safety and overall risk-benefit profile. Based on available evidence, highly selective 5-HT(4) agonists may offer improved safety to treat patients with impaired GI motility. © 2012 Blackwell Publishing Ltd.
Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; Maeyer, J H; Stanghellini, V
2012-01-01
Summary Background The nonselective 5-HT4 receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). Aim To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT4 agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Methods Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) and ATI-7505 (naronapride) were identified through a systematic search of the Cochrane Library, Medline, Embase and Toxfile. Abstracts from UEGW 2006–2008 and DDW 2008–2010 were searched for these drug names, and pharmaceutical companies approached to provide unpublished data. Results Retrieved articles on pharmacokinetics, human pharmacodynamics and clinical data with these 5-HT4 agonists, are reviewed and summarised nonsystematically. Articles relating to cardiac safety and tolerability of these agents, including any relevant case reports, are reported systematically. Two nonselective 5-HT4 agonists had reports of cardiovascular AEs: cisapride (QT prolongation) and tegaserod (ischaemia). Interactions with, respectively, the hERG cardiac potassium channel and 5-HT1 receptor subtypes have been suggested to account for these effects. No cardiovascular safety concerns were reported for the newer, selective 5-HT4 agonists prucalopride, velusetrag, naronapride, or for nonselective 5-HT4 agonists with no hERG or 5-HT1 affinity (renzapride, clebopride, mosapride). Conclusions 5-HT4 agonists for GI disorders differ in chemical structure and selectivity for 5-HT4 receptors. Selectivity for 5-HT4 over non-5-HT4 receptors may influence the agent's safety and overall risk–benefit profile. Based on available evidence, highly selective 5-HT4 agonists may offer improved safety to treat patients with impaired GI motility. PMID:22356640
Molecular recognition at adenine nucleotide (P2) receptors in platelets.
Jacobson, Kenneth A; Mamedova, Liaman; Joshi, Bhalchandra V; Besada, Pedro; Costanzi, Stefano
2005-04-01
Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the G (q)-coupled P2Y (1) subtype and the G (i)-coupled P2Y (12) subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y (1) receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y (12) receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X (1) receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although alpha,beta-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X (1) receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X (1) receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y (1) receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.
Expression of mammalian beta-adrenergic receptors in Xenopus laevis oocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahouth, S.W.; Malbon, C.C.
1987-05-01
Xenopus laevis oocytes are a useful transcription and expression system for DNA and RNA, respectively. Total cellular RNA was extracted from mouse lymphoma S49 cells and poly(A)/sup +/mRNA prepared by affinity chromatography of RNA on oligo(dT) cellulose. The membranes of S49 cells contain beta-adrenergic receptors that display pharmacological characteristics of beta/sub 2/-subtype. Xenopus laevis oocytes were injected with 50 ng of mRNA/oocyte. Expression of beta-adrenergic receptors in oocytes incubated for 30 hr after microinjection was assessed in membranes by radioligand binding using (/sup 3/H) dihydroalprenolol. The injected oocytes displayed 0.34 fmol receptor/oocyte as compared to 0.02 fmol receptor/oocyte in themore » control oocytes. The affinity of beta-adrenergic receptors in injected oocytes for this radioligand was 2 nM, a value similar to the affinity of beta-adrenergic receptors for DHA in S49 cell membranes. The potency of beta-adrenergic agonists in competing for DHA binding to oocytes membranes was isoproterenol > epinephrine > norepineprine, indicating that the expressed beta-adrenergic receptors were of the beta/sub 2/-subtype. The K/sub I/ of these agonists for the beta-adrenergic receptor in oocyte membranes was 0.03, 0.15 and 1.2 ..mu..M, respectively. The role of post-translational modification in dictating receptor subtype is analyzed using mRNA of beta/sub 1/- as well as beta/sub 2/-adrenergic receptors.« less
Chen, Derek E; Willick, Darryl L; Ruckel, Joseph B; Floriano, Wely B
2015-01-01
Directed evolution is a technique that enables the identification of mutants of a particular protein that carry a desired property by successive rounds of random mutagenesis, screening, and selection. This technique has many applications, including the development of G protein-coupled receptor-based biosensors and designer drugs for personalized medicine. Although effective, directed evolution is not without challenges and can greatly benefit from the development of computational techniques to predict the functional outcome of single-point amino acid substitutions. In this article, we describe a molecular dynamics-based approach to predict the effects of single amino acid substitutions on agonist binding (salicin) to a human bitter taste receptor (hT2R16). An experimentally determined functional map of single-point amino acid substitutions was used to validate the whole-protein molecular dynamics-based predictive functions. Molecular docking was used to construct a wild-type agonist-receptor complex, providing a starting structure for single-point substitution simulations. The effects of each single amino acid substitution in the functional response of the receptor to its agonist were estimated using three binding energy schemes with increasing inclusion of solvation effects. We show that molecular docking combined with molecular mechanics simulations of single-point mutants of the agonist-receptor complex accurately predicts the functional outcome of single amino acid substitutions in a human bitter taste receptor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miletich, R.S.
The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and /sup 3/H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by ..cap alpha..-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period,more » phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S/sub 2/ episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. /sup 3/H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system.« less
Identification of Novel Synthetic Toll-like Receptor 2 Agonists by High Throughput Screening*
Guan, Yue; Omueti-Ayoade, Katherine; Mutha, Sarita K.; Hergenrother, Paul J.; Tapping, Richard I.
2010-01-01
Toll-like receptors (TLRs) play a central role in host defense by inducing inflammatory and adaptive immune responses following infection. Drugs that target TLRs are of considerable interest as potential inflammatory regulators, vaccine adjuvants, and novel immunotherapeutics. TLR2, in cooperation with either TLR1 or TLR6, mediates responses to a wide variety of microbial products as well as products of host tissue damage. In an effort to understand the structural basis of TLR2 recognition and uncover novel TLR2 agonists, a synthetic chemical library of 24,000 compounds was screened using an IL-8-driven luciferase reporter in cells expressing these human receptors. The screening yielded several novel TLR2-dependent activators that utilize TLR1, TLR6, or both as co-receptors. These novel small molecule compounds are aromatic in nature and structurally unrelated to any known TLR2 agonists. The three most potent compounds do not exhibit synergistic activity, nor do they act as pseudoantagonists toward natural TLR2 activators. Interestingly, two of the compounds exhibit species specificity and are inactive toward murine peritoneal macrophages. Mutational analysis reveals that although the central extracellular region of TLR1 is required for stimulation, there are subtle differences in the mechanism of stimulation mediated by the synthetic compounds in comparison with natural lipoprotein agonists. The three most potent compounds activate cells in the nanomolar range and stimulate cytokine production from human peripheral blood monocytes. Our results confirm the utility of high throughput screens to uncover novel synthetic TLR2 agonists that may be of therapeutic benefit. PMID:20504771
Gorbunov, Evgeniy A; Ertuzun, Irina A; Kachaeva, Evgeniya V; Tarasov, Sergey A; Epstein, Oleg I
2015-01-01
Experimentally and clinically, it was shown that released-active form of antibodies to S100 protein (RAF of Abs to S100) exerts a wide range of pharmacological activities: anxiolytic, antiasthenic, antiaggressive, stress-protective, antihypoxic, antiischemic, neuroprotective, and nootropic. The purpose of this study was to determine the influence of RAF of Abs to S100 on major neurotransmitter systems (serotoninergic, GABAergic, dopaminergic, and on sigma receptors as well) which are possibly involved in its mechanism of pharmacological activity. Radioligand binding assays were used for assessment of the drug influence on ligand–receptor interaction. [35S]GTPγS binding assay, cyclic adenosine monophosphate HTRF™, cellular dielectric spectroscopy assays, and assays based on measurement of intracellular concentration of Ca2+ ions were used for assessment of agonist or antagonist properties of the drug toward receptors. RAF of Abs to S100 increased radioligand binding to 5-HT1F, 5-HT2B, 5-HT2Cedited, 5-HT3, and to D3 receptors by 142.0%, 131.9%, 149.3%, 120.7%, and 126.3%, respectively. Also, the drug significantly inhibited specific binding of radioligands to GABAB1A/B2 receptors by 25.8%, and to both native and recombinant human sigma1 receptors by 75.3% and 40.32%, respectively. In the functional assays, it was shown that the drug exerted antagonism at 5-HT1B, D3, and GABAB1A/B2 receptors inhibiting agonist-induced responses by 23.24%, 32.76%, and 30.2%, respectively. On the contrary, the drug exerted an agonist effect at 5-HT1A receptors enhancing receptor functional activity by 28.0%. The pharmacological profiling of RAF of Abs to S100 among 27 receptor provides evidence for drug-related modification of major neurotransmitter systems. PMID:26604768
Wu, Xi-shan; Wang, Rui; Xing, Yan-li; Xue, Xiao-qian; Zhang, Yan; Lu, Yong-zhi; Song, Yu; Luo, Xiao-yu; Wu, Chun; Zhou, Yu-lai; Jiang, Jian-qin; Xu, Yong
2016-01-01
Aim: Retinoic acid receptor-related orphan nuclear receptors (RORs) are orphan nuclear receptors that show constitutive activity in the absence of ligands. Among 3 subtypes of RORs, RORc is a promising therapeutic target for the treatment of Th17-mediated autoimmune diseases. Here, we report novel RORc inverse agonists discovered through structure-based drug design. Methods: Based on the structure of compound 8, a previously described agonist of RORa, a series of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives were designed and synthesized. The interaction between the compounds and RORc was detected at molecular level using AlphaScreen assay. The compounds were further examined in 293T cells transfected with RORc and luciferase reporter gene. Thermal stability shift assay was used to evaluate the effects of the compounds on protein stability. Results: A total of 27 derivatives were designed and synthesized. Among them, the compound 22b was identified as the most potent RORc inverse agonist. Its IC50 values were 2.39 μmol/L in AlphaScreen assay, and 0.82 μmol/L in inhibition of the cell-based luciferase reporter activity. Furthermore, the compound 22b displayed a 120-fold selectivity for RORc over other nuclear receptors. Moreover, a molecular docking study showed that the structure-activity relationship was consistent with the binding mode of compound 22b in RORc. Conclusion: 4-(4-(Benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives are promising candidates for the treatment of Th17-mediated autoimmune diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis. PMID:27374490
Morphine-like Opiates Selectively Antagonize Receptor-Arrestin Interactions*
Molinari, Paola; Vezzi, Vanessa; Sbraccia, Maria; Grò, Cristina; Riitano, Daniela; Ambrosio, Caterina; Casella, Ida; Costa, Tommaso
2010-01-01
The addictive potential of opioids may be related to their differential ability to induce G protein signaling and endocytosis. We compared the ability of 20 ligands (sampled from the main chemical classes of opioids) to promote the association of μ and δ receptors with G protein or β-arrestin 2. Receptor-arrestin binding was monitored by bioluminescence resonance energy transfer (BRET) in intact cells, where pertussis toxin experiments indicated that the interaction was minimally affected by receptor signaling. To assess receptor-G protein coupling without competition from arrestins, we employed a cell-free BRET assay using membranes isolated from cells expressing luminescent receptors and fluorescent Gβ1. In this system, the agonist-induced enhancement of BRET (indicating shortening of distance between the two proteins) was Gα-mediated (as shown by sensitivity to pertussis toxin and guanine nucleotides) and yielded data consistent with the known pharmacology of the ligands. We found marked differences of efficacy for G protein and arrestin, with a pattern suggesting more restrictive structural requirements for arrestin efficacy. The analysis of such differences identified a subset of structures showing a marked discrepancy between efficacies for G protein and arrestin. Addictive opiates like morphine and oxymorphone exhibited large differences both at δ and μ receptors. Thus, they were effective agonists for G protein coupling but acted as competitive enkephalins antagonists (δ) or partial agonists (μ) for arrestin. This arrestin-selective antagonism resulted in inhibition of short and long term events mediated by arrestin, such as rapid receptor internalization and down-regulation. PMID:20189994
Kaczanowska, Katarzyna; Camacho Hernandez, Gisela Andrea; Bendiks, Larissa; Kohs, Larissa; Cornejo-Bravo, Jose Manuel; Harel, Michal; Finn, M G; Taylor, Palmer
2017-03-15
Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4β2-nAChR, and a serotonin receptor (5-HT 3A R), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 μM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC 50 values of 70 nM and K d values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4β2-nAChR or 5-HT3AR at concentrations up to 10 μM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.
Selective androgen receptor modulators: in pursuit of tissue-selective androgens.
Omwancha, Josephat; Brown, Terry R
2006-10-01
The androgen receptor mediates the androgenic and anabolic activity of the endogenous steroids testosterone and 5alpha-dihydrotestosterone. Current knowledge of the androgen receptor protein structure, and the molecular mechanisms surrounding the binding properties and activities of agonists and antagonists has led to the design and development of novel nonsteroidal ligands with selected tissue-specific androgen receptor agonist and antagonist activities. The activity of these compounds, termed selective androgen receptor modulators (SARMs), is directed toward the maintenance or enhancement of anabolic effects on bone and muscle with minimal androgenic effects on prostate growth. SARMs are of potential therapeutic value in the treatment of male hypogonadism, osteoporosis, frailty and muscle wasting, burn injury and would healing, anemia, mood and depression, benign prostatic hyperplasia and prostate cancer.
Brown, Dean G; Brown, Giles A; Centrella, Paolo; Certel, Kaan; Cooke, Robert M; Cuozzo, John W; Dekker, Niek; Dumelin, Christoph E; Ferguson, Andrew; Fiez-Vandal, Cédric; Geschwindner, Stefan; Guié, Marie-Aude; Habeshian, Sevan; Keefe, Anthony D; Schlenker, Oliver; Sigel, Eric A; Snijder, Arjan; Soutter, Holly T; Sundström, Linda; Troast, Dawn M; Wiggin, Giselle; Zhang, Jing; Zhang, Ying; Clark, Matthew A
2018-06-01
The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.
Zhang, Xuqing; Li, Xiaojie; Allan, George F; Sbriscia, Tifanie; Linton, Olivia; Lundeen, Scott G; Sui, Zhihua
2007-08-09
A novel series of pyrazolines 2 have been designed, synthesized, and evaluated by in vivo screening as tissue-selective androgen receptor modulators (SARMs). Structure-activity relationships (SAR) were investigated at the R1 to R6 positions as well as the core pyrazoline ring and the anilide linker. Overall, strong electron-withdrawing groups at the R1 and R2 positions and a small group at the R5 and R6 position are optimal for AR agonist activity. The (S)-isomer of 7c exhibits more potent AR agonist activity than the corresponding (R)-isomer. (S)-7c exhibited an overall partial androgenic effect but full anabolic effect via oral administration in castrated rats. It demonstrated a noticeable antiandrogenic effect on prostate in intact rats with endogenous testosterone. Thus, (S)-7c is a tissue-selective nonsteroidal androgen receptor modulator with agonist activity on muscle and mixed agonist and antagonist activity on prostate.
Valdizán, Elsa Maria; Castro, Elena; Pazos, Angel
2010-08-01
5-HT1A receptors couple to different Go/Gi proteins in order to mediate a wide range of physiological actions. While activation of post-synaptic 5-HT1A receptors is mainly related to inhibition of adenylyl cyclase activity, functionality of autoreceptors located in raphe nuclei has been classically ascribed to modifications of the activity of potassium and calcium channels. In order to evaluate the possible existence of agonist-directed trafficking for 5-HT1A autoreceptors in the rat dorsal raphe nucleus, we studied their activation by two agonists with a different profile of efficacy [(+)8-OH-DPAT and buspirone], addressing simultaneously the identification of the specific Galpha subtypes ([35S]GTPgammaS labelling and immunoprecipitation) involved and the subsequent changes in cAMP formation. A significant increase (32%, p<0.05) in (+)8-OH-DPAT-induced [35S]GTPgammaS labelling of immunoprecipitates was obtained with anti-Galphai3 antibodies but not with anti-Galphao, anti-Galphai1, anti-Galphai2, anti-Galphaz or anti-Galphas antibodies. In contrast, in the presence of buspirone, significant [35S]GTPgammaS labelling of immunoprecipitates was obtained with anti-Galphai3 (50%, p<0.01), anti-Galphao (32%, p<0.01) and anti-Galphai2 (29%, p<0.05) antibodies, without any labelling with anti-Galphai1, anti-Galphaz or anti-Galphas. The selective 5-HT1A antagonist WAY 100635 blocked the labelling induced by both agonists. Furthermore, (+)8-OH-DPAT failed to modify forskolin-stimulated cAMP accumulation, while buspirone induced a dose-dependent, WAY 100635-sensitive, inhibition of this response (Imax 30.8+/-4.9, pIC50 5.95+/-0.46). These results demonstrate the existence of an agonist-dependency pattern of G-protein coupling and transduction for 5-HT1A autoreceptors in native brain tissue. These data also open new perspectives for the understanding of the differential profiles of agonist efficacy in pre- vs. post-synaptic 5-HT1A receptor-associated responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J.V.; Lukas, R.J.; Bennett, E.L.
The agonist binding affinity of nicotinic acetylcholine receptor (nAChR) from Torpedo californica electroplax, as inferred from ability of agonist to inhibit specific curaremimetic neurotoxin binding to nAChR, is sensitive to the duration of exposure to agonist. The concentration of carbachol necessary to prevent one-half of toxin binding over a 30 min incubation with nAChR (K/sub 30/) is 10 ..mu..M when toxin and carbachol are simultaneously added to membrane-bound nAChR, and 3 ..mu..M when nAChR are pretreated with carbachol for 30 min prior to the addition of toxin. These alterations in agonist affinity may be mimicked by modification of nAChR thiolmore » groups. Affinity of nAChR for carbachol is decreased following treatment with dithiothreitol (DTT). Dithio-bis-nitrobenzoic acid treatment of DTT-reduced membranes yields K/sub 30/ values of 5 ..mu..M for carbachol, while N-ethylmaleimide treatment of DTT-reduced nAChR produces nAChR with reduced affinity for carbachol, reflected to K/sub 30/ values of about 400 ..mu..M. In the absence of Ca/sup + +/, K/sub 30/ values for carbachol binding to native and DTT-reduced nAChR are diminished 3 to 6 fold. These affinity alterations are not observed with d-tubocurarine (antagonist) binding to nAChR. Thus, Ca/sup + +/ and the oxidation state of nAChR thiols appear to affect the affinity of nAChR for agonists (but not antagonists), and may therefore be related to agonist-mediated events in receptor activation and/or desensitization.« less
Sternfeld, F; Guiblin, A R; Jelley, R A; Matassa, V G; Reeve, A J; Hunt, P A; Beer, M S; Heald, A; Stanton, J A; Sohal, B; Watt, A P; Street, L J
1999-02-25
The design, synthesis, and biological evaluation of a novel series of 3-[2-(pyrrolidin-1-yl)ethyl]indoles with excellent selectivity for h5-HT1D (formerly 5-HT1Dalpha) receptors over h5-HT1B (formerly 5-HT1Dbeta) receptors are described. Clinically effective antimigraine drugs such as Sumatriptan show little selectivity between h5-HT1D and h5-HT1B receptors. The differential expression of h5-HT1D and h5-HT1B receptors in neural and vascular tissue prompted an investigation of whether a compound selective for the h5-HT1D subtype would have the same clinical efficacy but with reduced side effects. The pyrrolidine 3b was initially identified as having 9-fold selectivity for h5-HT1D over h5-HT1B receptors. Substitution of the pyrrolidine ring of 3b with methylbenzylamine groups gave compounds with nanomolar affinity for the h5-HT1D receptor and 100-fold selectivity with respect to h5-HT1B receptors. Modification of the indole 5-substituent led to the oxazolidinones 24a,b with up to 163-fold selectivity for the h5-HT1D subtype and improved selectivity over other serotonin receptors. The compounds were shown to be full agonists by measurement of agonist-induced [35S]GTPgammaS binding in CHO cells expressed with h5-HT receptors. This study suggests that the h5-HT1D and h5-HT1B receptors can be differentiated by appropriate substitution of the ligand in the region which binds to the aspartate residue and reveals a large binding pocket in the h5-HT1D receptor domain which is absent for the h5-HT1B receptor. The compounds described herein will be important tools to delineate the role of h5-HT1D receptors in migraine.
Pillaiyar, Thanigaimalai; Köse, Meryem; Sylvester, Katharina; Weighardt, Heike; Thimm, Dominik; Borges, Gleice; Förster, Irmgard; von Kügelgen, Ivar; Müller, Christa E
2017-05-11
The G i protein-coupled receptor GPR84, which is activated by (hydroxy)fatty acids, is highly expressed on immune cells. Recently, 3,3'-diindolylmethane was identified as a heterocyclic, nonlipid-like GPR84 agonist. We synthesized a broad range of diindolylmethane derivatives by condensation of indoles with formaldehyde in water under microwave irradiation. The products were evaluated at the human GPR84 in cAMP and β-arrestin assays. Structure-activity relationships (SARs) were steep. 3,3'-Diindolylmethanes bearing small lipophilic residues at the 5- and/or 7-position of the indole rings displayed the highest activity in cAMP assays, the most potent agonists being di(5-fluoro-1H-indole-3-yl)methane (38, PSB-15160, EC 50 80.0 nM) and di(5,7-difluoro-1H-indole-3-yl)methane (57, PSB-16671, EC 50 41.3 nM). In β-arrestin assays, SARs were different, indicating biased agonism. The new compounds were selective versus related fatty acid receptors and the arylhydrocarbon receptor. Selected compounds were further investigated and found to display an ago-allosteric mechanism of action and increased stability in comparison to the lead structure.
Estrogenic and serotonergic butenolides from the leaves of Piper hispidum Swingle (Piperaceae)
Michel, Joanna L; Chen, Yegao; Zhang, Hongjie; Huang, Yue; Krunic, Alecjev; Orjala, Jimmy; Veliz, Mario; Soni, Kapil K.; Soejarto, Djaja Doel; Caceres, Armando; Perez, Alice; Mahady, Gail B
2010-01-01
Ethnopharmacological relevance Our previous work has demonstrated that several plants in the Piperaceae family are commonly used by the Q’eqchi Maya of Livingston, Guatemala to treat amenorrhea, dysmenorrhea, and pain. Extracts of Piper hispidum Swingle (Piperaceae), bound to the estrogen (ER) and serotonin (5-HT7) receptors. Aim of the study To investigate the estrogenic and serotonergic activities of P. hispidum extracts in functionalized assays, identify the active chemical constituents in the leaf extract, and test these compounds as agonists or antagonists of ER and 5-HT7. Materials and methods The effects of the P. hispidum leaf extracts were investigated in estrogen reporter gene and endogenous gene assays in MCF-7 cells to determine if the extracts acted as an estrogen agonist or antagonist. In addition, the active compounds were isolated using ER- and 5-HT7 receptor bioassay-guided fractionation. The structures of the purified compounds were identified using high-resolution LC-MS and NMR spectroscopic methods. The ER- and 5-HT7-agonist effects of the purified chemical constituents were tested in a 2ERE-reporter gene assay in MCF-7 cells and in serotonin binding and functionalized assays. Results Three butenolides including one new compound (1) were isolated from the leaves of P. hispidum, and their structures were determined. Compound 1 bound to the serotonin receptor 5-HT7 with IC50 values of 16.1 and 8.3 μM, respectively, and using GTP shift assays, compound 1 was found to be a partial agonist of the 5-HT7 receptor. The P. hispidum leaf extracts, as well as compounds 2 and 3 enhanced the expression of estrogen responsive reporter and endogenous genes in MCF-7 cells, demonstrating estrogen agonist effects. Conclusions Extracts of P. hispidum act as agonists of the ER and 5-HT7 receptors. Compound 1, a new natural product, identified as 9, 10-methylenedioxy-5,6-Z-fadyenolide, was isolated as the 5-HT7 agonist. Compounds 2 and 3 are reported for the first time in P. hispidum, and identified as the estrogen agonists. No inhibition of CYP450 was observed for any of these compounds in concentrations up to 1 μM. These activities are consistent with the Q’eqchi traditional use of the plant for the treatment of disorders associated with the female reproductive cycle. PMID:20304039
Estrogenic and serotonergic butenolides from the leaves of Piper hispidum Swingle (Piperaceae).
Michel, Joanna L; Chen, Yegao; Zhang, Hongjie; Huang, Yue; Krunic, Aleksej; Orjala, Jimmy; Veliz, Mario; Soni, Kapil K; Soejarto, Djaja Doel; Caceres, Armando; Perez, Alice; Mahady, Gail B
2010-05-27
Our previous work has demonstrated that several plants in the Piperaceae family are commonly used by the Q'eqchi Maya of Livingston, Guatemala to treat amenorrhea, dysmenorrhea, and pain. Extracts of Piper hispidum Swingle (Piperaceae), bound to the estrogen (ER) and serotonin (5-HT7) receptors. To investigate the estrogenic and serotonergic activities of Piper hispidum extracts in functionalized assays, identify the active chemical constituents in the leaf extract, and test these compounds as agonists or antagonists of ER and 5-HT7. The effects of the Piper hispidum leaf extracts were investigated in estrogen reporter gene and endogenous gene assays in MCF-7 cells to determine if the extracts acted as an estrogen agonist or antagonist. In addition, the active compounds were isolated using ER- and 5-HT7 receptor bioassay-guided fractionation. The structures of the purified compounds were identified using high-resolution LC-MS and NMR spectroscopic methods. The ER- and 5-HT7-agonist effects of the purified chemical constituents were tested in a 2ERE-reporter gene assay in MCF-7 cells and in serotonin binding and functionalized assays. Three butenolides including one new compound (1) were isolated from the leaves of Piper hispidum, and their structures were determined. Compound 1 bound to the serotonin receptor 5-HT(7) with IC(50) values of 16.1 and 8.3 microM, respectively, and using GTP shift assays, Compound 1 was found to be a partial agonist of the 5-HT(7) receptor. The Piper hispidum leaf extracts, as well as Compounds 2 and 3 enhanced the expression of estrogen responsive reporter and endogenous genes in MCF-7 cells, demonstrating estrogen agonist effects. Extracts of Piper hispidum act as agonists of the ER and 5-HT(7) receptors. Compound 1, a new natural product, identified as 9,10-methylenedioxy-5,6-Z-fadyenolide, was isolated as the 5-HT(7) agonist. Compounds 2 and 3 are reported for the first time in Piper hispidum, and identified as the estrogen agonists. No inhibition of CYP450 was observed for any of these compounds in concentrations up to 1 microM. These activities are consistent with the Q'eqchi traditional use of the plant for the treatment of disorders associated with the female reproductive cycle. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations
Liu, Lu Tian; Xu, Yan; Tang, Pei
2010-01-01
Inhibition of N-methyl-D-aspartate (NMDA) receptors has been viewed as a primary cause of xenon anesthesia, yet the mechanism is unclear. Here, we investigated interactions between xenon and the ligand-binding domain (LBD) of a NMDA receptor and examined xenon-induced structural and dynamical changes that are relevant to functional changes of the NMDA receptor. Several comparative molecular dynamics simulations were performed on two X-ray structures representing the open- and closed-cleft LBD of the NMDA receptor. We identified plausible xenon action sites in the LBD, including those nearby agonist sites, in the hinge region, and at the interface between two subunits. The xenon binding energy varies from −5.3 to −0.7 kcal/mol. Xenon's effect on the NMDA receptor is conformation-dependent and is produced through both competitive and non-competitive mechanisms. Xenon can promote cleft opening in the absence of agonists and consequently stabilizes the closed channel. Xenon can also bind at the interface of two subunits, alter the inter-subunit interaction, and lead to a reduction of the distance between GT-links. This reduction corresponds to a rearrangement of the channel toward a direction of pore size decreasing, implying a closed or desensitized channel. In addition to these non-competitive actions, xenon was found to weaken the glutamate binding, which could lead to low agonist efficacy and appear as competitive inhibition. PMID:20560662
Burkholder, Timothy P; Cunningham, Brian E; Clayton, Joshua R; Lander, Peter A; Brown, Matthew L; Doti, Robert A; Durst, Gregory L; Montrose-Rafizadeh, Chahrzad; King, Constance; Osborne, Harold E; Amos, Robert M; Zink, Richard W; Stramm, Lawrence E; Burris, Thomas P; Cardona, Guemalli; Konkol, Debra L; Reidy, Charles; Christe, Michael E; Genin, Michael J
2015-04-01
The design, synthesis, and structure activity relationships for a novel series of indoles as potent, selective, thyroid hormone receptor β (TRβ) agonists is described. Compounds with >50× binding selectivity for TRβ over TRα were generated and evaluation of compound 1c from this series in a model of dyslipidemia demonstrated positive effects on plasma lipid endpoints in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.
Identification of M-CSF agonists and antagonists
Pandit, Jayvardhan [Mystic, CT; Jancarik, Jarmila [Walnut Creek, CA; Kim, Sung-Hou [Moraga, CA; Koths, Kirston [El Cerrito, CA; Halenbeck, Robert [San Rafael, CA; Fear, Anna Lisa [Oakland, CA; Taylor, Eric [Oakland, CA; Yamamoto, Ralph [Martinez, CA; Bohm, Andrew [Armonk, NY
2000-02-15
The present invention is directed to methods for crystallizing macrophage colony stimulating factor. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.
Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity
Curreli, Francesca; Kwon, Young Do; Zhang, Hongtao; ...
2015-08-24
Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here in this paper, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diversemore » subtypes of clinical isolates (IC 50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.« less
Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curreli, Francesca; Kwon, Young Do; Zhang, Hongtao
Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here in this paper, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diversemore » subtypes of clinical isolates (IC 50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.« less
Coopman, K.; Wallis, R.; Robb, G.; Brown, A. J. H.; Wilkinson, G. F.; Timms, D.
2011-01-01
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9–39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9–39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues. PMID:21868452
Benyhe, S; Márki, A; Nachtsheim, Corina; Holzgrabe, Ulrike; Borsodi, Anna
2003-01-01
Previous pharmacological results have suggested that members of the heterocyclic bicyclo[3.3.1]nonan-9-one-like compounds are potent kappa-opioid receptor specific agonists. One lead molecule of this series. called compound 1 (dimethyl 7-methyl-2,4-di-2-pyridyl-3.7-diazabicyclo[3.3.1]nonan-9-one-1,5-dicarboxylate) exhibited high affinity for [3H]ethylketocyclazocine and [3H]U-69.593 binding sites in guinea pig cerebellar membranes which known to be a good source for kappa1 receptors. It was shown by molecular modelling that heterocyclic bicyclo[3.3.1]nonan-9-ones fit very well with the structure of ketazocine, a prototypic kappa-selective benzomorphan compound; when compared to the arylacetamide structure of U-69.593, a specific kappa1-receptor agonist, a similar geometry was found with a slightly different distribution of the charges. It is postulated, that the essential structural skeleton involved in the opioid activity is an aryl-propyl-amine element distributed along the N7-C6-C5-C4-aryl bonds.
Fay, Jonathan F.; Farrens, David L.
2015-01-01
G protein-coupled receptors (GPCRs) are surprisingly flexible molecules that can do much more than simply turn on G proteins. Some even exhibit biased signaling, wherein the same receptor preferentially activates different G-protein or arrestin signaling pathways depending on the type of ligand bound. Why this behavior occurs is still unclear, but it can happen with both traditional ligands and ligands that bind allosterically outside the orthosteric receptor binding pocket. Here, we looked for structural mechanisms underlying these phenomena in the marijuana receptor CB1. Our work focused on the allosteric ligand Org 27569, which has an unusual effect on CB1—it simultaneously increases agonist binding, decreases G-protein activation, and induces biased signaling. Using classical pharmacological binding studies, we find that Org 27569 binds to a unique allosteric site on CB1 and show that it can act alone (without need for agonist cobinding). Through mutagenesis studies, we find that the ability of Org 27569 to bind is related to how much receptor is in an active conformation that can couple with G protein. Using these data, we estimated the energy differences between the inactive and active states. Finally, site-directed fluorescence labeling studies show the CB1 structure stabilized by Org 27569 is different and unique from that stabilized by antagonist or agonist. Specifically, transmembrane helix 6 (TM6) movements associated with G-protein activation are blocked, but at the same time, helix 8/TM7 movements are enhanced, suggesting a possible mechanism for the ability of Org 27569 to induce biased signaling. PMID:26100912
Dallanoce, Clelia; De Amici, Marco; Barocelli, Elisabetta; Bertoni, Simona; Roth, Bryan L; Ernsberger, Paul; De Micheli, Carlo
2007-12-15
A set of novel heterocyclic ligands (6-27) structurally related to Oxotremorine 2 was designed, synthesized and tested at muscarinic receptor subtypes (mAChRs). In the binding experiments at cloned human receptors (hm1-5), compounds 7 and 15 evidenced a remarkable affinity and selectivity for the hm2 subtype. The in vitro functional assays, performed on a selected group of derivatives at M(1), M(2), and M(3) tissue preparations, singled out the 3-butynyloxy-5-methylisoxazole trimethylammonium salt 7 as a potent unselective muscarinic agonist [pEC(50): 7.40 (M(1)), 8.18 (M(2)), and 8.14 (M(3))], whereas its 5-phenyl analogue 12 behaved as a muscarinic antagonist, slightly selective for the M(1) subtype [pK(B): 6.88 (M(1)), 5.95 (M(2)), 5.53 (M(3))]. Moreover, the functional data put in evidence that the presence of the piperidine ring may generate a functional selectivity, e.g., an M(1) antagonist/M(2) partial agonist/M(3) full agonist profile (compound 21), at variance with the corresponding quaternary ammonium salt (compound 22) which behaved as a muscarinic agonist at all M(1-3) receptors, with an appreciable selectivity for the cardiac M(2) receptors.
Sun, Chang-Li; Geng, Chang-An; Huang, Xiao-Yan; Ma, Yun-Bao; Zheng, Xiao-Hong; Yang, Tong-Hua; Chen, Xing-Long; Yin, Xiu-Juan; Zhang, Xue-Mei; Chen, Ji-Jun
2017-06-01
5-Hydroxytryptamine 2C (5-HT 2C ) receptor is one of the major targets of anti-obesity agents, due to its role in regulation of appetite. In the present study, the 70% EtOH extract of the roots of Bupleurum chinense was revealed to have agonistic activity on 5-HT 2C receptor, and the subsequent bioassay-guided isolation led to identification of several saikosaponins as the active constituents with 5-HT 2C receptor agonistic activity in vitro and anti-obesity activity in vivo. The new compound, 22-oxosaikosaponin d (1), was determined by extensive spectroscopic analyses (HR-ESI-MS, IR, and 1D and 2D NMR). The primary structure-activity relationship study suggested that the intramolecular ether bond between C-13 and C-28 and the number of sugars at C-3 position were closely related to the 5-HT 2C receptor agonistic activity. Saikosaponin a (3), the main saponin in B. chinense, showed obviously agonistic activity on 5-HT 2C receptor with an EC 50 value of 21.08 ± 0.33 μmol·L -1 in vitro and could reduce food intake by 39.1% and 69.2%, and weight gain by 13.6% and 16.4%, respectively, at 3.0 and 6.0 mg·kg -1 in vivo. This investigation provided valuable information for the potential use of B. chinense as anti-obesity agent. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking
Ong, E W; Xue, L; Olmstead, M C; Cahill, C M
2015-01-01
BACKGROUND AND PURPOSE The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors. EXPERIMENTAL APPROACH Using primary cultures of dorsal root ganglia neurons, we measured the co-localization of endogenous DOP receptors with post-endocytic compartments following both prolonged and acute agonist treatments. KEY RESULTS A departure from the constitutive trafficking pathway was observed following acute DOP receptor agonist-induced internalization by deltorphin II. That is, the DOP receptor underwent distinct agonist-induced post-endocytic sorting. Following prolonged morphine treatment, constitutive DOP receptor trafficking was augmented. SNC80 following prolonged morphine treatment also caused non-constitutive DOP receptor agonist-induced post-endocytic sorting. The μ opioid receptor (MOP receptor) agonist DAMGO induced DOP receptor internalization and trafficking following prolonged morphine treatment. Finally, all of the alterations to DOP receptor trafficking induced by both DOP and MOP receptor agonists were inhibited or absent when those agonists were co-administered with a DOP receptor antagonist, SDM-25N. CONCLUSIONS AND IMPLICATIONS The results support the hypothesis that prolonged morphine treatment induces the formation of MOP–DOP receptor interactions and subsequent augmentation of the available cell surface DOP receptors, at least some of which are in the form of a MOP/DOP receptor species. The pharmacology and trafficking of this species appear to be unique compared to those of its individual constituents. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24819092
Zhang, Jun; Hao, Qing-Qing; Liu, Xin; Jing, Zhi; Jia, Wen-Qing; Wang, Shu-Qing; Xu, Wei-Ren; Cheng, Xian-Chao; Wang, Run-Ling
2017-01-01
Telmisartan, a bifunctional agent of blood pressure lowering and glycemia reduction, was previously reported to antagonize angiotensin II type 1 (AT1) receptor and partially activate peroxisome proliferator-activated receptor γ (PPARγ) simultaneously. Through the modification to telmisartan, researchers designed and obtained imidazo-\\pyridine derivatives with the IC50s of 0.49∼94.1 nM against AT1 and EC50s of 20∼3640 nM towards PPARγ partial activation. For minutely inquiring the interaction modes with the relevant receptor and analyzing the structure-activity relationships, molecular docking and 3D-QSAR (Quantitative structure-activity relationships) analysis of these imidazo-\\pyridines on dual targets were conducted in this work. Docking approaches of these derivatives with both receptors provided explicit interaction behaviors and excellent matching degree with the binding pockets. The best CoMFA (Comparative Molecular Field Analysis) models exhibited predictive results of q2=0.553, r2=0.954, SEE=0.127, r2pred=0.779 for AT1 and q2=0.503, r2=1.00, SEE=0.019, r2pred=0.604 for PPARγ, respectively. The contour maps from the optimal model showed detailed information of structural features (steric and electrostatic fields) towards the biological activity. Combining the bioisosterism with the valuable information from above studies, we designed six molecules with better predicted activities towards AT1 and PPARγ partial activation. Overall, these results could be useful for designing potential dual AT1 antagonists and partial PPARγ agonists. PMID:28445965
Zhang, Jun; Hao, Qing-Qing; Liu, Xin; Jing, Zhi; Jia, Wen-Qing; Wang, Shu-Qing; Xu, Wei-Ren; Cheng, Xian-Chao; Wang, Run-Ling
2017-04-11
Telmisartan, a bifunctional agent of blood pressure lowering and glycemia reduction, was previously reported to antagonize angiotensin II type 1 (AT1) receptor and partially activate peroxisome proliferator-activated receptor γ (PPARγ) simultaneously. Through the modification to telmisartan, researchers designed and obtained imidazo-\\pyridine derivatives with the IC50s of 0.49~94.1 nM against AT1 and EC50s of 20~3640 nM towards PPARγ partial activation. For minutely inquiring the interaction modes with the relevant receptor and analyzing the structure-activity relationships, molecular docking and 3D-QSAR (Quantitative structure-activity relationships) analysis of these imidazo-\\pyridines on dual targets were conducted in this work. Docking approaches of these derivatives with both receptors provided explicit interaction behaviors and excellent matching degree with the binding pockets. The best CoMFA (Comparative Molecular Field Analysis) models exhibited predictive results of q2=0.553, r2=0.954, SEE=0.127, r2pred=0.779 for AT1 and q2=0.503, r2=1.00, SEE=0.019, r2pred=0.604 for PPARγ, respectively. The contour maps from the optimal model showed detailed information of structural features (steric and electrostatic fields) towards the biological activity. Combining the bioisosterism with the valuable information from above studies, we designed six molecules with better predicted activities towards AT1 and PPARγ partial activation. Overall, these results could be useful for designing potential dual AT1 antagonists and partial PPARγ agonists.
Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor.
Miao, Yinglong; McCammon, J Andrew
2016-10-25
G-protein-coupled receptors (GPCRs) recognize ligands of widely different efficacies, from inverse to partial and full agonists, which transduce cellular signals at differentiated levels. However, the mechanism of such graded activation remains unclear. Using the Gaussian accelerated molecular dynamics (GaMD) method that enables both unconstrained enhanced sampling and free energy calculation, we have performed extensive GaMD simulations (∼19 μs in total) to investigate structural dynamics of the M 2 muscarinic GPCR that is bound by the full agonist iperoxo (IXO), the partial agonist arecoline (ARC), and the inverse agonist 3-quinuclidinyl-benzilate (QNB), in the presence or absence of the G-protein mimetic nanobody. In the receptor-nanobody complex, IXO binding leads to higher fluctuations in the protein-coupling interface than ARC, especially in the receptor transmembrane helix 5 (TM5), TM6, and TM7 intracellular domains that are essential elements for GPCR activation, but less flexibility in the receptor extracellular region due to stronger binding compared with ARC. Two different binding poses are revealed for ARC in the orthosteric pocket. Removal of the nanobody leads to GPCR deactivation that is characterized by inward movement of the TM6 intracellular end. Distinct low-energy intermediate conformational states are identified for the IXO- and ARC-bound M 2 receptor. Both dissociation and binding of an orthosteric ligand are observed in a single all-atom GPCR simulation in the case of partial agonist ARC binding to the M 2 receptor. This study demonstrates the applicability of GaMD for exploring free energy landscapes of large biomolecules and the simulations provide important insights into the GPCR functional mechanism.
Heusler, Peter; Newman-Tancredi, Adrian; Castro-Fernandez, Annabelle; Cussac, Didier
2007-03-01
The D(2) dopaminergic receptor represents a major target of antipsychotic drugs. Using the coupling of the human D(2long) (hD(2L)) receptor to G protein-coupled inward rectifier potassium (GIRK) channels in Xenopus laevis oocytes, we examined the activity of antipsychotic agents of different classes - typical, atypical, and a "new generation" of compounds, exhibiting a preferential D(2) and 5-HT(1A) receptor profile. When the hD(2L) receptor was coexpressed with GIRK channels, a series of reference compounds exhibited full agonist (dopamine, and quinpirole), partial agonist (apomorphine, (-)3-PPP, and (+)-UH232) or inverse agonist (raclopride, and L741626) properties. Sarizotan exhibited only very weak partial agonist action. At higher levels of receptor cRNA injected per oocyte, both partial agonist activity and inverse agonist properties were generally more pronounced. The inverse agonist action of L741626 was reversed by interaction with sarizotan, thus confirming the constitutive activity of wild-type hD(2L) receptors in the oocyte expression system. When antipsychotic agents were tested for their actions at the hD(2L) receptor, typical (haloperidol) as well as atypical (nemonapride, ziprasidone, and clozapine) compounds acted as inverse agonists. In contrast, among D(2)/5-HT(1A) antipsychotics, only SLV313 and F15063 behaved as inverse agonists, whilst the other members of this group (bifeprunox, SSR181507 and the recently marketed antipsychotic, aripiprazole) exhibited partial agonist properties. Thus, the X. laevis oocyte expression system highlights markedly different activity of antipsychotics at the hD(2L) receptor. These differential properties may translate to distinct therapeutic potential of these compounds.
Allosteric nature of P2X receptor activation probed by photoaffinity labelling
Bhargava, Y; Rettinger, J; Mourot, A
2012-01-01
BACKGROUND AND PURPOSE In P2X receptors, agonist binding at the interface between neighbouring subunits is efficiently transduced to ion channel gating. However, the relationship between binding and gating is difficult to study because agonists continuously bind and unbind. Here, we covalently incorporated agonists in the binding pocket of P2X receptors and examined how binding site occupancy affects the ability of the channel to gate. EXPERIMENTAL APPROACH We used a strategy for tethering agonists to their ATP-binding pocket, while simultaneously probing ion channel gating using electrophysiology. The agonist 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP), a photoaffinity analogue of ATP, enabled us to trap rat homomeric P2X2 receptor and a P2X2/1 receptor chimera in different agonist-bound states. UV light was used to control the degree of covalent occupancy of the receptors. KEY RESULTS Irradiation of the P2X2/1 receptor chimera – BzATP complex resulted in a persistent current that lasted even after extensive washout, consistent with photochemical tethering of the agonist BzATP and trapping of the receptors in an open state. Partial labelling with BzATP primed subsequent agonist binding and modulated gating efficiency for both full and partial agonists. CONCLUSIONS AND IMPLICATIONS Our photolabelling strategy provides new molecular insights into the activation mechanism of the P2X receptor. We show here that priming with full agonist molecules leads to an increase in gating efficiency after subsequent agonist binding. PMID:22725669
Kasuga, Jun-ichi; Yamasaki, Daisuke; Araya, Yoko; Nakagawa, Aya; Makishima, Makoto; Doi, Takefumi; Hashimoto, Yuichi; Miyachi, Hiroyuki
2006-12-15
A series of alpha-alkyl-substituted phenylpropanoic acids was prepared as dual agonists of peroxisome proliferator-activated receptors alpha and delta (PPARalpha/delta). Structure-activity relationship studies indicated that the shape of the linking group and the shape of the substituent at the distal benzene ring play key roles in determining the potency and the selectivity of PPAR subtype transactivation. Structure-activity relationships among the amide series (10) and the reversed amide series (13) are similar, but not identical, especially in the case of the compounds bearing a bulky hydrophobic substituent at the distal benzene ring, indicating that the hydrophobic tail part of the molecules in these two series binds at somewhat different positions in the large binding pocket of PPAR. alpha-Alkyl-substituted phenylpropanoic acids of (S)-configuration were identified as potent human PPARalpha/delta dual agonists. Representative compounds exhibited marked nuclear receptor selectivity for PPARalpha and PPARdelta. Subtype-selective PPAR activation was also examined by analysis of the mRNA expression of PPAR-regulated genes.
Lundquist, Joseph T; Harnish, Douglas C; Kim, Callain Y; Mehlmann, John F; Unwalla, Rayomand J; Phipps, Kristin M; Crawley, Matthew L; Commons, Thomas; Green, Daniel M; Xu, Weixin; Hum, Wah-Tung; Eta, Julius E; Feingold, Irene; Patel, Vikram; Evans, Mark J; Lai, Kehdih; Borges-Marcucci, Lisa; Mahaney, Paige E; Wrobel, Jay E
2010-02-25
In an effort to develop orally active farnesoid X receptor (FXR) agonists, a series of tetrahydroazepinoindoles with appended solubilizing amine functionalities were synthesized. The crystal structure of the previously disclosed FXR agonist, 1 (FXR-450), aided in the design of compounds with tethered solubilizing functionalities designed to reach the solvent cavity around the hFXR receptor. These compounds were soluble in 0.5% methylcellulose/2% Tween-80 in water (MC/T) for oral administration. In vitro and in vivo optimization led to the identification of 14dd and 14cc, which in a dose-dependent fashion regulated low density lipoprotein cholesterol (LDLc) in low density lipoprotein receptor knockout (LDLR(-/-)) mice. Compound 14cc was dosed in female rhesus monkeys for 4 weeks at 60 mg/kg daily in MC/T vehicle. After 7 days, triglyceride (TG) levels and very low density lipoprotein cholesterol (VLDLc) levels were significantly decreased and LDLc was decreased 63%. These data are the first to demonstrate the dramatic lowering of serum LDLc levels by a FXR agonist in primates and supports the potential utility of 14cc in treating dyslipidemia in humans beyond just TG lowering.
Saitoh, Akiyoshi; Nagase, Hiroshi
2016-10-28
The pharmacology of the delta opioid receptor (DOR) has lagged, mainly due to the lack of an agonist with high potency and selectivity in vivo. The DOR is now receiving increasing attention, and there has been progress in the synthesis of better novel ligands. The discovery of a selective receptor DOR antagonist, naltrindole (NTI), stimulated the design and synthesis of (±)TAN-67, which was designed based on the message-address concept and the accessory site theory. Intensive studies using (±)TAN-67 determined the DOR-mediated various pharmacological effects, such as antinociceptive effects for painful diabetic neuropathy and cardiovascular protective effects. We improved the agonist activity of TAN-67 to afford SN-28, which was modified to KNT-127, a novel compound that improved the blood-brain barrier permeability. In addition, KNT-127 showed higher selectivity for the DOR and had potent agonist activity following systemic administration. Interestingly, KNT-127 produced no convulsive effects, unlike prototype DOR agonists. The KNT-127 type derivatives with a quinolinomorphinan structure are expected to be promising candidates for the development of therapeutic DOR agonists.
Xie, Xiang-Qun; Chowdhury, Ananda
2013-01-01
Structural biology of GPCRs has made significant progress upon recently developed technologies for GPCRs expression/purification and elucidation of GPCRs crystal structures. The crystal structures provide a snapshot of the receptor structural disposition of GPCRs itself or with cocrystallized ligands, and the results are congruent with biophysical and computer modeling studies reported about GPCRs conformational and dynamics flexibility, regulated activation, and the various stabilizing interactions, such as "molecular switches." The molecular switches generally constitute the most conserved domains within a particular GPCR superfamily. Often agonist-induced receptor activation proceeds by the disruption of majority of these interactions, while antagonist and inverse agonist act as blockers and structural stabilizers, respectively. Several elegant studies, particularly for the β2AR, have demonstrated the relationship between ligand structure, receptor conformational changes, and corresponding pharmacological outcomes. Thus, it is of great importance to understand GPCRs activation related to cell signaling pathways. Herein, we summarize the steps to produce functional GPCRs, generate suitably fluorescent labeled GPCRs and the procedure to use that to understand if ligand-induced activation can proceed by activation of the GPCRs via ionic lock switch and/or rotamer toggle switch mechanisms. Such understanding of ligand structure and mechanism of receptor activation will provide great insight toward uncovering newer pathways of GPCR activation and aid in structure-based drug design. Copyright © 2013 Elsevier Inc. All rights reserved.
Purohit, Prasad
2011-01-01
The extent to which agonists activate synaptic receptor-channels depends on both the intrinsic tendency of the unliganded receptor to open and the amount of agonist binding energy realized in the channel-opening process. We examined mutations of the nicotinic acetylcholine receptor transmitter binding site (α subunit loop B) with regard to both of these parameters. αGly147 is an “activation” hinge where backbone flexibility maintains high values for intrinsic gating, the affinity of the resting conformation for agonists and net ligand binding energy. αGly153 is a “deactivation” hinge that maintains low values for these parameters. αTrp149 (between these two glycines) serves mainly to provide ligand binding energy for gating. We propose that a concerted motion of the two glycine hinges (plus other structural elements at the binding site) positions αTrp149 so that it provides physiologically optimal binding and gating function at the nerve-muscle synapse. PMID:21115636
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schkeryantz, Jeffery M.; Chen, Qi; Ho, Joseph D.
Here, L-2-Amino-4-phosphonobutyric acid (L-AP4) is a known potent and selective agonist for the Group III mGlu receptors. However, it does not show any selectivity among the individual group III mGlu subtypes. In order to understand the molecular basis for this group selectivity, we solved the first human mGlu8 amino terminal domain (ATD) crystal structures in complex with L-glu and L-AP4. In comparison with other published L-glu-bound mGlu ATD structures, we have observed L-glu binds in a significantly different manner in mGlu1. Furthermore, these new structures provided evidence that both the electronic and steric nature of the distal phosphate of L-AP4more » contribute to its exquisite Group III functional agonist potency and selectivity.« less
Modifications of Antiepileptic Drugs for Improved Tolerability and Efficacy
Landmark, Cecilie Johannessen; Johannessen, Svein I.
2008-01-01
Introduction A large number of antiepileptic drugs (AEDs) are available today, but they may not be satisfactory regarding clinical efficacy, tolerance, toxicity or pharmacokinetic properties. The purpose of this review is to focus upon the rationale behind the chemical modifications of several recently marketed AEDs or drugs in development and to categorize them according to the main purposes for the improvements: better efficacy or tolerability accompanied by improved pharmacokinetic properties. Material and Method AEDs that have been chemically modified to new derivatives during the last years are reviewed based on recent publications and PubMed-searches. Results and Discussion Improvement in pharmacokinetic parameters may affect both tolerability and efficacy. Modifications to improve tolerability include various valproate analogues, divided into aliphatic amides, cyclic derivatives or amino acid conjugates. Furthermore, there are the carbamazepine analogues oxcarbazepine and eslicarbazepine, the felbamate analogues fluorofelbamate and carisbamate (RWJ 33369), and the lamotrigine analogue JZP-4. The levetiracetam analogues brivaracetam and seletracetam and the derivatives of gabapentin, pregabalin and XP13512, have improved selectivity compared to their parent compounds. Other new drugs have new mechanisms of action related to GABA and glutamate receptors; the glutamate antagonists like topiramate (talampanel and NS-1209), and GABAA receptor agonists, benzodiazepine or progesterone analogues (ELB-139 and ganaxolone). Conclusion Further challenges for development of new AEDs include investigations of target molecules affected by pathophysiological processes and detailed structure-activity relationships with focus on stereoselectivity. These potential drugs may become of importance in future drug therapy in epilepsy and other CNS disorders. PMID:19787095
NASA Astrophysics Data System (ADS)
de Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela
2017-02-01
Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders.
Naydenova, Emilia; Todorov, Petar; Zamfirova, Rositza
2015-01-01
The heptadecapeptide nociceptin, also called orphanin FQ (N/OFQ), is the endogenous agonist of the N/OFQ peptide receptor (NOP receptor) and is involved in several central nervous system pathways, such as nociception, reward, tolerance, and feeding. The discovery of small molecule ligands for NOP is being actively pursued for several therapeutic applications. This review presents overview of the several recently reported NOP ligands (agonists and antagonists), with an emphasis of the structural features that may be important for modulating the intrinsic activity of these ligands. In addition, a brief account on the characterization of newly synthesized ligands of NOP receptor with aminophosphonate moiety and β-tryptophan analogues will be presented. © 2015 Elsevier Inc. All rights reserved.
Identification and mechanism of ABA receptor antagonism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melcher, Karsten; Xu, Yong; Ng, Ley-Moy
2010-11-11
The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2more » to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.« less
Design and Synthesis of Selective Estrogen Receptor beta Agonists and Their Pharmacology
NASA Astrophysics Data System (ADS)
Perera, K. L. Iresha Sampathi
Estrogens (17beta-estradiol, E2) have garnered considerable attention in influencing cognitive process in relation to phases of the menstrual cycle, aging and menopausal symptoms. However, hormone replacement therapy can have deleterious effects leading to breast and endometrial cancer, predominantly mediated by estrogen receptor-alpha (ERalpha) the major isoform present in the mammary gland and uterus. Further evidence supports a dominant role of estrogen receptor-beta (ERbeta) for improved cognitive effects such as enhanced hippocampal signaling and memory consolidation via estrogen activated signaling cascades. Creation of the ERbeta selective ligands is challenging due to high structural similarity of both receptors. Thus far, several ERbeta selective agonists have been developed, however, none of these have made it to clinical use due to their lower selectivity or considerable side effects. The research in this dissertation involved the design of non-steroidal ERbeta selective agonists for hippocampal memory consolidation. The step-wise process to achieve the ultimate goal of this research includes: (1) design and synthesis of (4-hydroxyphenyl)cyclohexyl or cycloheptyl derivatives, (2) in vitro biological evaluation of synthesized compounds to identify highly potent and selective candidates, and (3) in vivo biological evaluation of selected candidates for hippocampal memory consolidation. Several (4-hydroxyphenyl)cyclohexyl or cycloheptyl derivatives were synthesized having structural alterations on both aromatic and cyclohexyl/heptyl ring scaffolds. ERbeta agonist potency was initially evaluated in TR-FRET ERbeta ligand binding assay and compounds having high potency were re-evaluated in functional cell based assays for potency and ERbeta vs. ERalpha selectivity. Two compounds from each series, ISP 163-PK4 and ISP 358-2 were identified as most selective ERbeta agonists. Both compounds revealed high metabolic stability, solubility and no cross reactivity towards other nuclear receptors. In vivo efficiency of ISP 358-2 was evaluated in ovariectomized mice (C57BL/6) with object recognition (OR) and object placement (OP) tasks. The results indicate improved memory consolidation at 100 pg/ hemisphere and 0.5 mg/Kg via DH infusion and IP injection respectively. The information learned from this project serves as a foundation for development of other cycloheptyl/hexyl based ERbeta agonists or antagonists having acceptable pharmacological profiles.
Nock, Berthold A; Charalambidis, David; Sallegger, Werner; Waser, Beatrice; Mansi, Rosalba; Nicolas, Guillaume P; Ketani, Eleni; Nikolopoulou, Anastasia; Fani, Melpomeni; Reubi, Jean-Claude; Maina, Theodosia
2018-04-12
We have previously reported on the gastrin releasing peptide receptor (GRPR) antagonist [ 99m Tc]1, ([ 99m Tc]demobesin 1, 99m Tc-[N 4 '-diglycolate-dPhe 6 ,Leu-NHEt 13 ]BBN(6-13)). [ 99m Tc]1 has shown superior biological profile compared to analogous agonist-based 99m Tc-radioligands. We herein present a small library of [ 99m Tc]1 mimics generated after structural modifications in (a) the linker ([ 99m Tc]2, [ 99m Tc]3, [ 99m Tc]4), (b) the peptide chain ([ 99m Tc]5, [ 99m Tc]6), and (c) the C-terminus ([ 99m Tc]7 or [ 99m Tc]8). The effects of above modifications on the biological properties of analogs were studied in PC-3 cells and tumor-bearing SCID mice. All analogs showed subnanomolar affinity for the human GRPR, while most receptor-affine 4 and 8 behaved as potent GRPR antagonists in a functional internalization assay. In mice bearing PC-3 tumors, [ 99m Tc]1-[ 99m Tc]6 exhibited GRPR-specific tumor uptake, rapidly clearing from normal tissues. [ 99m Tc]4 displayed the highest tumor uptake (28.8 ± 4.1%ID/g at 1 h pi), which remained high even after 24 h pi (16.3 ± 1.8%ID/g), well surpassing that of [ 99m Tc]1 (5.4 ± 0.7%ID/g at 24 h pi).
Chen, Ying; Broad, Lisa M; Phillips, Keith G; Zwart, Ruud
2012-01-01
BACKGROUND AND PURPOSE Partial agonists selective for α4β2 nicotinic ACh receptors have been developed for smoking cessation as they induce weak activation of native α4β2* receptors and inhibit effect of nicotine. However, it is unclear whether at brain functions there is an existence of receptor reserve that allows weak receptor activation to induce maximum physiological effects. We assessed the extent of α4β2 partial agonist-induced increase of firing rate in dopaminergic neurons and evaluated the influence of receptor reserve. EXPERIMENTAL APPROACH The relative maximal effects and potencies of six nicotinic agonists were assessed on recombinant human α4β2 and α7 receptors expressed in mammalian cell lines by measuring calcium influx. Agonist-induced increase of the spontaneous firing rate of dopaminergic neurons was recorded using microelectrodes in the ventral tegmental area of rat brain slices. KEY RESULTS All α4β2 partial and full agonists increased the firing rate concentration-dependently. Their sensitivity to subtype-selective antagonists showed predominant activation of native α4β2* receptors. However, partial agonists with relative maximal effects as low as 33% on α4β2 receptors maximally increased the firing rate and induced additional depolarization block of firing, demonstrating that partial activation of receptors caused the maximum increase in firing rate in the presence of a receptor reserve. CONCLUSIONS AND IMPLICATIONS Partial α4β2 agonists induced relatively enhanced effects on the firing rate of dopaminergic neurons, and the effect was mainly attributed to the existence of native α4β2* receptor reserve. The results have implications in the understanding of physiological effects and therapeutic efficacies of α4β2 partial agonists. PMID:21838750
Specific neurokinin receptors mediate plasma extravasation in the rat knee joint.
Lam, F. Y.; Ferrell, W. R.
1991-01-01
1 Plasma extravasation in the rat knee joint was induced by intra-articular injection of neurokinins and specific neurokinin receptor agonists. 2 Pronounced plasma extravasation was produced by substance P (SP, 4-185 microM) and to a lesser extent by neurokinin-B (NKB, 83-413 microM), whereas neurokinin-A (NKA, 88-440 microM) and calcitonin gene-related peptide (CGRP, 26-130 microM) had no significant effect. 3 The specific neurokinin1 receptor agonist [Sar9, Met(O2)11]-substance P (NK1 agonist) in doses of 0.4-70 microM appeared to be more potent than SP in eliciting plasma extravasation. The neurokinin2 receptor agonist [Nle10]-neurokinin A4-10 (NK2 agonist) was not effective at 70 microM but produced a small and significant effect at 330 microM, whereas the neurokinin3 receptor agonist [MePhe7]-neurokinin B (NK3 agonist) was without effect at 40 microM or 400 microM. 4 Injections of SP or NKA into the synovial cavity of the rat knee were equally effective in producing marked plasma extravasation in remote sites such as the forelimb and hindlimb paws. 5 Co-administration experiments showed that the effects of SP were synergistic with NKA or the NK1 receptor agonist, but not with CGRP or the NK2 receptor agonist. 6 The rank order of potency was NK1 agonist greater than or equal to SP greater than NKB greater than NK2 agonist suggesting that NK1 receptors mediate plasma extravasation in the rat knee joint. PMID:1715229
Dupré, Clémence; Bruno, Olivier; Bonnaud, Anne; Giganti, Adeline; Nosjean, Olivier; Legros, Céline; Boutin, Jean A
2018-01-05
Melatonin receptors belong to the family of G-protein coupled receptors. Agonist-induced receptor activation is terminated with the recruitment of β-arrestin, which leads to receptor internalization. Furthermore, agonist binding induces a shift in cellular shape that translates into a change in the electric impedance of the cell. In the present study, we employed engineered cells to study these internalization-related processes in the context of the two melatonin receptors, MT 1 and MT 2 . To assess these three receptor internalization-related functions and validate the results, we employed four classical ligands of melatonin receptors: the natural agonist melatonin; the super-agonist 2-iodo-melatonin and the two antagonists luzindole and 4-phenyl-2-propionamidotetralin. The assessments confirmed the nature of the agonistic ligands but showed that 4-phenyl-2-propionamidotetralin, a described antagonist, is a biased partial agonist at MT 2 with poorer affinity for MT 1 . The methods are now available to be applied to any receptor system for which multiple signaling pathways must be evaluated for new molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
Haslach, Erica M; Huang, Huisuo; Dirain, Marvin; Debevec, Ginamarie; Geer, Phaedra; Santos, Radleigh G; Giulianotti, Marc A; Pinilla, Clemencia; Appel, Jon R; Doering, Skye R; Walters, Michael A; Houghten, Richard A; Haskell-Luevano, Carrie
2014-06-12
Human obesity has been linked to genetic factors and single nucleotide polymorphisms (SNPs). Melanocortin-4 receptor (MC4R) SNPs have been associated with up to 6% frequency in morbidly obese children and adults. A potential therapy for individuals possessing such genetic modifications is the identification of molecules that can restore proper receptor signaling and function. These compounds could serve as personalized medications improving quality of life issues as well as alleviating diseases symptoms associated with obesity including type 2 diabetes. Several hMC4 SNP receptors have been pharmacologically characterized in vitro to have a decreased, or a lack of response, to endogenous agonists such as α-, β-, and γ2-melanocyte stimulating hormones (MSH) and adrenocorticotropin hormone (ACTH). Herein we report the use of a mixture based positional scanning combinatorial tetrapeptide library to discover molecules with nM full agonist potency and efficacy to the L106P, I69T, I102S, A219V, C271Y, and C271R hMC4Rs. The most potent compounds at all these hMC4R SNPs include Ac-His-(pI)DPhe-Tic-(pNO2)DPhe-NH2, Ac-His-(pCl)DPhe-Tic-(pNO2)DPhe-NH2, Ac-His-(pCl)DPhe-Arg-(pI)Phe-NH2, and Ac-Arg-(pCl)DPhe-Tic-(pNO2)DPhe-NH2, revealing new ligand pharmacophore models for melanocortin receptor drug design strategies.
2015-01-01
Human obesity has been linked to genetic factors and single nucleotide polymorphisms (SNPs). Melanocortin-4 receptor (MC4R) SNPs have been associated with up to 6% frequency in morbidly obese children and adults. A potential therapy for individuals possessing such genetic modifications is the identification of molecules that can restore proper receptor signaling and function. These compounds could serve as personalized medications improving quality of life issues as well as alleviating diseases symptoms associated with obesity including type 2 diabetes. Several hMC4 SNP receptors have been pharmacologically characterized in vitro to have a decreased, or a lack of response, to endogenous agonists such as α-, β-, and γ2-melanocyte stimulating hormones (MSH) and adrenocorticotropin hormone (ACTH). Herein we report the use of a mixture based positional scanning combinatorial tetrapeptide library to discover molecules with nM full agonist potency and efficacy to the L106P, I69T, I102S, A219V, C271Y, and C271R hMC4Rs. The most potent compounds at all these hMC4R SNPs include Ac-His-(pI)DPhe-Tic-(pNO2)DPhe-NH2, Ac-His-(pCl)DPhe-Tic-(pNO2)DPhe-NH2, Ac-His-(pCl)DPhe-Arg-(pI)Phe-NH2, and Ac-Arg-(pCl)DPhe-Tic-(pNO2)DPhe-NH2, revealing new ligand pharmacophore models for melanocortin receptor drug design strategies. PMID:24517312
Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors.
Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel
2015-02-01
Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [(3)H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. [(3)H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. © 2014 The British Pharmacological Society.
Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors
Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel
2015-01-01
Background and Purpose Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). Experimental Approach The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [3H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. Key Results [3H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Conclusions and Implications Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. PMID:25339241
The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex
Yao, Xiao Jie; Vélez Ruiz, Gisselle; Whorton, Matthew R.; Rasmussen, Søren G. F.; DeVree, Brian T.; Deupi, Xavier; Sunahara, Roger K.; Kobilka, Brian
2009-01-01
G protein-coupled receptors (GPCRs) mediate the majority of physiologic responses to hormones and neurotransmitters. However, many GPCRs exhibit varying degrees of agonist-independent G protein activation. This phenomenon is referred to as basal or constitutive activity. For many of these GPCRs, drugs classified as inverse agonists can suppress basal activity. There is a growing body of evidence that basal activity is physiologically relevant, and the ability of a drug to inhibit basal activity may influence its therapeutic properties. However, the molecular mechanism for basal activation and inhibition of basal activity by inverse agonists is poorly understood and difficult to study, because the basally active state is short-lived and represents a minor fraction of receptor conformations. Here, we investigate basal activation of the G protein Gs by the β2 adrenergic receptor (β2AR) by using purified receptor reconstituted into recombinant HDL particles with a stoichiometric excess of Gs. The β2AR is site-specifically labeled with a small, environmentally sensitive fluorophore enabling direct monitoring of agonist- and Gs-induced conformational changes. In the absence of an agonist, the β2AR and Gs can be trapped in a complex by enzymatic depletion of guanine nucleotides. Formation of the complex is enhanced by the agonist isoproterenol, and it rapidly dissociates on exposure to concentrations of GTP and GDP found in the cytoplasm. The inverse agonist ICI prevents formation of the β2AR-Gs complex, but has little effect on preformed complexes. These results provide insights into G protein-induced conformational changes in the β2AR and the structural basis for ligand efficacy. PMID:19470481
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einstein, Monica; Akiyama, Taro E.; Castriota, Gino A.
2008-08-01
Despite their proven antidiabetic efficacy, widespread use of peroxisome proliferator-activated receptor (PPAR){gamma} agonists has been limited by adverse cardiovascular effects. To overcome this shortcoming, selective PPAR{gamma} modulators (SPPAR{gamma}Ms) have been identified that have antidiabetic efficacy comparable with full agonists with improved tolerability in preclinical species. The results of structural studies support the proposition that SPPAR{gamma}Ms interact with PPAR{gamma} differently from full agonists, thereby providing a physical basis for their novel activities. Herein, we describe a novel PPAR{gamma} ligand, SPPAR{gamma}M2. This compound was a partial agonist in a cell-based transcriptional activity assay, with diminished adipogenic activity and an attenuated gene signaturemore » in cultured human adipocytes. X-ray cocrystallography studies demonstrated that, unlike rosiglitazone, SPPAR{gamma}M2 did not interact with the Tyr473 residue located within helix 12 of the ligand binding domain (LBD). Instead, SPPAR{gamma}M2 was found to bind to and activate human PPAR{gamma} in which the Tyr473 residue had been mutated to alanine (hPPAR{gamma}Y473A), with potencies similar to those observed with the wild-type receptor (hPPAR{gamma}WT). In additional studies, we found that the intrinsic binding and functional potencies of structurally distinct SPPAR{gamma}Ms were not diminished by the Y473A mutation, whereas those of various thiazolidinedione (TZD) and non-TZD PPAR{gamma} full agonists were reduced in a correlative manner. These results directly demonstrate the important role of Tyr473 in mediating the interaction of full agonists but not SPPAR{gamma}Ms with the PPAR{gamma} LBD, thereby providing a precise molecular determinant for their differing pharmacologies.« less
Ward, Alexander H; Siegwart, John T; Frost, Michael R; Norton, Thomas T
2017-01-01
We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 µL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development.
Ward, Alexander H.; Siegwart, John T.; Frost, Michael R.; Norton, Thomas T.
2017-01-01
We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 μL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development. PMID:28304244
Tachykinin receptors in the circular muscle of the guinea-pig ileum.
Maggi, C A; Patacchini, R; Giachetti, A; Meli, A
1990-12-01
1. We have studied the mechanical response of circular strips of the guinea-pig ileum to tachykinins and characterized the receptors involved by means of receptor-selective agonists. 2. The strips responded to both substance P (SP) and neurokinin A (NKA), as well as to [Pro9]-SP sulphone (selective NK1-receptor agonist), [beta Ala8]-NKA(4-10) (selective NK2-receptor agonist) and [MePhe7]-neurokinin B (selective NK3-receptor agonist). The ED50s of the various peptides (calculated as the concentration of agonist which produced 50% of the response to 10 microM carbachol) were similar, in the range of 40-200 nM, i.e. no clearcut rank order of potency was evident. 3. The response to a submaximal (10 nM) concentration of SP or NKA was unaffected in the presence of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 4. The response to the NK1-agonist was totally atropine-resistant, but was reduced (about 30% inhibition) by tetrodotoxin. The response to the NK3-receptor agonist was halved by atropine and abolished by tetrodotoxin. The response to the NK2-agonist was unaffected by either atropine or tetrodotoxin. 5. The response to the selective NK2-agonist was unchanged after desensitization of NK1- or NK3-receptors. 6. The response to the NK2-selective agonist was strongly inhibited by [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10) (MEN 10,207) a selective NK2-receptor antagonist which did not modify the response to the NK1-selective agonist. 7. Our findings indicate that all the three known types of tachykinin receptors mediate the contractile response of the circular muscle of the guinea-pig ileum to peptides of this family. The response to activation of NK3-receptors is totally neurogenic and partially mediated by endogenous acetylcholine, the response to activation of NK1-receptors is partly neurogenic and largely myogenic and the response to activation of NK2-receptors is totally myogenic.
Shu, Hong-Jin; Bracamontes, John; Taylor, Amanda; Wu, Kyle; Eaton, Megan M; Akk, Gustav; Manion, Brad; Evers, Alex S; Krishnan, Kathiresan; Covey, Douglas F; Zorumski, Charles F; Steinbach, Joe Henry; Mennerick, Steven
2012-01-01
BACKGROUND AND PURPOSE GABAA receptors mediate both synaptic and extrasynaptic actions of GABA. In several neuronal populations, α4 and δ subunits are key components of extrasynaptic GABAA receptors that strongly influence neuronal excitability and could mediate the effects of neuroactive agents including neurosteroids and ethanol. However, these receptors can be difficult to study in native cells and recombinant δ subunits can be difficult to express in heterologous systems. EXPERIMENTAL APPROACH We engineered concatemeric (fused) subunits to ensure δ and α4 subunit expression. We tested the pharmacology of the concatemeric receptors, compared with a common synaptic-like receptor subunit combination (α1 +β2 +γ2L), and with free-subunit α4/δ receptors, expressed in Xenopus oocytes. KEY RESULTS δ-β2 −α4 +β2-α4 cRNA co-injected into Xenopus oocytes resulted in GABA-gated currents with the expected pharmacological properties of α4/δ-containing receptors. Criteria included sensitivity to agonists of different efficacy, sensitivity to the allosteric activator pentobarbital, and modulation of agonist responses by DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridine-3-yl benzamide; a δ-selective positive modulator), furosemide, and Zn2+. We used the concatemers to examine neurosteroid sensitivity of extrasynaptic-like, δ-containing receptors. We found no qualitative differences between extrasynaptic-like receptors and synaptic-like receptors in the actions of either negative or positive neurosteroid modulators of receptor function. Quantitative differences were explained by the partial agonist effects of the natural agonist GABA and by a mildly increased sensitivity to low steroid concentrations. CONCLUSIONS AND IMPLICATIONS The neurosteroid structure-activity profile for α4/δ-containing extrasynaptic receptors is unlikely to differ from that of synaptic-like receptors such as α1/β2/γ2-containing receptors. PMID:21950777
Use of muscarinic agonists in the treatment of Sjögren's syndrome.
Fox, R I; Konttinen, Y; Fisher, A
2001-12-01
Two muscarinic agonists (pilocarpine and cevimeline) have recently been approved for the treatment of symptoms of xerostomia in Sjögren's syndrome (SS). These agents stimulate the M1 and M3 receptors present on salivary glands, leading to increased secretory function. The use of these agents emphasizes the importance of neuroendocrine mechanisms in SS, which is considered an autoimmune disorder. We review recent studies on the release of cytokines and metalloproteinases in SS-affected glands and their influence on the release of and response to neurotransmitters. Also, we review the structure and function of muscarinic receptors as they may relate to SS and the potential use of novel muscarinic agonists in SS. (c)2001 Elsevier Science.
Novel fentanyl-based dual μ/δ-opioid agonists for the treatment of acute and chronic pain.
Podolsky, Alexander T; Sandweiss, Alexander; Hu, Jackie; Bilsky, Edward J; Cain, Jim P; Kumirov, Vlad K; Lee, Yeon Sun; Hruby, Victor J; Vardanyan, Ruben S; Vanderah, Todd W
2013-12-18
Approximately one third of the adult U.S. population suffers from some type of on-going, chronic pain annually, and many more will have some type of acute pain associated with trauma or surgery. First-line therapies for moderate to severe pain include prescriptions for common mu opioid receptor agonists such as morphine and its various derivatives. The epidemic use, misuse and diversion of prescription opioids have highlighted just one of the adverse effects of mu opioid analgesics. Alternative approaches include novel opioids that target delta or kappa opioid receptors, or compounds that interact with two or more of the opioid receptors. Here we report the pharmacology of a newly synthesized bifunctional opioid agonist (RV-Jim-C3) derived from combined structures of fentanyl and enkephalin in rodents. RV-Jim-C3 has high affinity binding to both mu and delta opioid receptors. Mice and rats were used to test RV-Jim-C3 in a tailflick test with and without opioid selective antagonist for antinociception. RV-Jim-C3 was tested for anti-inflammatory and antihypersensitivity effects in a model of formalin-induced flinching and spinal nerve ligation. To rule out motor impairment, rotarod was tested in rats. RV-Jim-C3 demonstrates potent-efficacious activity in several in vivo pain models including inflammatory pain, antihyperalgesia and antiallodynic with no significant motor impairment. This is the first report of a fentanyl-based structure with delta and mu opioid receptor activity that exhibits outstanding antinociceptive efficacy in neuropathic pain, reducing the propensity of unwanted side effects driven by current therapies that are unifunctional mu opioid agonists. © 2013. Published by Elsevier Inc. All rights reserved.
Novel fentanyl-based dual μ/δ-opioid agonists for the treatment of acute and chronic pain
Podolsky, Alexander T.; Sandweiss, Alexander; Hu, Jackie; Bilsky, Edward J; Cain, Jim P; Kumirov, Vlad K.; Lee, Yeon Sun; Hruby, Victor J; Vardanyan, Ruben S.; Vanderah, Todd W.
2014-01-01
Approximately one third of the adult U.S. population suffers from some type of on-going, chronic pain annually, and many more will have some type of acute pain associated with trauma or surgery. First-line therapies for moderate to severe pain include prescriptions for common mu opioid receptor agonists such as morphine and its various derivatives. The epidemic use, misuse and diversion of prescription opioids has highlighted just one of the adverse effects of mu opioid analgesics. Alternative approaches include novel opioids that target delta or kappa opioid receptors, or compounds that interact with two or more of the opioid receptors. Aims Here we report the pharmacology of a newly synthesized bifunctional opioid agonist (RV-Jim-C3) derived from combined structures of fentanyl and enkephalin in rodents. RV-Jim-C3 has high affinity binding to both mu and delta opioid receptors. Main Methods Mice and rats were used to test RV-Jim-C3 in a tailflick test with and without opioid selective antagonist for antinociception. RV-Jim-C3 was tested for anti-inflammatory and antihypersensitivity effects in a model of formalin-induced flinching and spinal nerve ligation. To rule out motor impairment, rotarod was tested in rats. Key findings RV-Jim-C3 demonstrates potent-efficacious activity in several in vivo pain models including inflammatory pain, antihyperalgesia and antiallodynic with no significant motor impairment. Significance This is the first report of a fentanyl-based structure with delta and mu opioid receptor activity that exhibits outstanding antinociceptive efficacy in neuropathic pain, reducing the propensity of unwanted side effects driven by current therapies that are unifunctional mu opioid agonists. PMID:24084045
Perroy, Julie; Walwyn, Wendy M.; Smith, Monique L.; Vicente-Sanchez, Ana; Segura, Laura; Bana, Alia; Kieffer, Brigitte L.; Evans, Christopher J.
2016-01-01
Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor–Ca2+ channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. SIGNIFICANCE STATEMENT Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560) preferentially recruit arrestin 3 and, surprisingly, KO of arrestin 3 produces acute tolerance and impaired receptor resensitization to these agonists. Arrestin 3 is in pre-engaged complexes with the delta opioid receptor at the cell membrane and low-internalizing agonists promote this interaction. This study reveals a novel role for arrestin 3 as a facilitator of receptor resensitization. PMID:27013682
Kerr, Karen P; Thai, Binh; Coupar, Ian M
2000-01-01
The tachykinin receptor present in the guinea-pig oesophageal mucosa that mediates contractile responses of the muscularis mucosae has been characterized, using functional in vitro experiments. The NK1 receptor-selective agonist, [Sar9(O2)Met11]SP and the NK3 receptor-selective agonists, [MePhe7]-NKB and senktide, produced no response at submicromolar concentrations. The NK2 receptor-selective agonists, [Nle10]-NKA(4–10), and GR 64,349 produced concentration-dependent contractile effects with pD2 values of 8.20±0.16 and 8.30±0.15, respectively. The concentration-response curve to the non-selective agonist, NKA (pD2=8.13±0.04) was shifted significantly rightwards only by the NK2 receptor-selective antagonist, GR 159,897 and was unaffected by the NK1 receptor-selective antagonist, SR 140,333 and the NK3 receptor-selective antagonist, SB 222,200. The NK2 receptor-selective antagonist, GR 159,897, exhibited an apparent competitive antagonism against the NK2 receptor-selective agonist, GR 64,349 (apparent pKB value=9.29±0.16) and against the non-selective agonist, NKA (apparent pKB value=8.71±0.19). The NK2 receptor-selective antagonist, SR 48,968 exhibited a non-competitive antagonism against the NK2 receptor-selective agonist, [Nle10]-NKA(4–10). The pKB value was 10.84±0.19. It is concluded that the guinea-pig isolated oesophageal mucosa is a useful preparation for studying the effects of NK2 receptor-selective agonists and antagonists as the contractile responses to various tachykinins are mediated solely by NK2 receptors. PMID:11090121
Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking.
Ong, E W; Xue, L; Olmstead, M C; Cahill, C M
2015-01-01
The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors. Using primary cultures of dorsal root ganglia neurons, we measured the co-localization of endogenous DOP receptors with post-endocytic compartments following both prolonged and acute agonist treatments. A departure from the constitutive trafficking pathway was observed following acute DOP receptor agonist-induced internalization by deltorphin II. That is, the DOP receptor underwent distinct agonist-induced post-endocytic sorting. Following prolonged morphine treatment, constitutive DOP receptor trafficking was augmented. SNC80 following prolonged morphine treatment also caused non-constitutive DOP receptor agonist-induced post-endocytic sorting. The μ opioid receptor (MOP receptor) agonist DAMGO induced DOP receptor internalization and trafficking following prolonged morphine treatment. Finally, all of the alterations to DOP receptor trafficking induced by both DOP and MOP receptor agonists were inhibited or absent when those agonists were co-administered with a DOP receptor antagonist, SDM-25N. The results support the hypothesis that prolonged morphine treatment induces the formation of MOP-DOP receptor interactions and subsequent augmentation of the available cell surface DOP receptors, at least some of which are in the form of a MOP/DOP receptor species. The pharmacology and trafficking of this species appear to be unique compared to those of its individual constituents. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
NASA Astrophysics Data System (ADS)
Haslak, Zeynep Pinar; Bozkurt, Esra; Dutagaci, Bercem; De Proft, Frank; Aviyente, Viktorya; De Vleeschouwer, Freija
2018-02-01
The activation of N-methyl-D-aspartate receptors is found to be intimately associated with neurodegenerative diseases which make them promising therapeutic targets. Despite the significantly increasing multidisciplinary interests centred on this ionotropic channel, design of new ligands with intended functional activity remains a great challenge. In this article, a computational study based on density functional theory is presented to understand the structural factors of ligands determining their function as antagonists and partial agonists. With this aim, the GluN1 subunit is chosen as being one of the essential components in the activation mechanism, and quantum chemical calculations are implemented for 30 antagonists and 30 partial agonists known to bind to this subunit with different binding affinities. Several quantum chemical descriptors are investigated which might unlock the difference between antagonists and partial agonists.
Coldwell, Martyn C; Boyfield, Izzy; Brown, Tony; Hagan, Jim J; Middlemiss, Derek N
1999-01-01
The aim of the present study was to characterize functional responses to ropinirole, its major metabolites in man (SKF-104557 (4-[2-(propylamino)ethyl]-2-(3H) indolone), SKF-97930 (4-carboxy-2-(3H) indolone)) and other dopamine receptor agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in Chinese hamster ovary cells using microphysiometry.All the receptor agonists tested (ropinirole, SKF-104557, SKF-97930, bromocriptine, lisuride, pergolide, pramipexole, talipexole, dopamine) increased extracellular acidification rate in Chinese hamster ovary clones expressing the human D2, D3 or D4 receptor. The pEC50s of ropinirole at hD2, hD3 and hD4 receptors were 7.4, 8.4 and 6.8, respectively. Ropinirole is therefore at least 10 fold selective for the human dopamine D3 receptor over the other D2 receptor family members.At the hD2 and hD3 dopamine receptors all the compounds tested were full agonists as compared to quinpirole. Talipexole and the ropinirole metabolite, SKF-104557, were partial agonists at the hD4 receptor.Bromocriptine and lisuride had a slow onset of agonist action which precluded determination of EC50s.The rank order of agonist potencies was dissimilar to the rank order of radioligand binding affinities at each of the dopamine receptor subtypes. Functional selectivities of the dopamine receptor agonists, as measured in the microphysiometer, were less than radioligand binding selectivities.The results show that ropinirole is a full agonist at human D2, D3 and D4 dopamine receptors. SKF-104557 the major human metabolite of ropinirole, had similar radioligand binding affinities to, but lower functional potencies than, the parent compound. PMID:10455328
Tachykinin receptors in the circular muscle of the guinea-pig ileum.
Maggi, C. A.; Patacchini, R.; Giachetti, A.; Meli, A.
1990-01-01
1. We have studied the mechanical response of circular strips of the guinea-pig ileum to tachykinins and characterized the receptors involved by means of receptor-selective agonists. 2. The strips responded to both substance P (SP) and neurokinin A (NKA), as well as to [Pro9]-SP sulphone (selective NK1-receptor agonist), [beta Ala8]-NKA(4-10) (selective NK2-receptor agonist) and [MePhe7]-neurokinin B (selective NK3-receptor agonist). The ED50s of the various peptides (calculated as the concentration of agonist which produced 50% of the response to 10 microM carbachol) were similar, in the range of 40-200 nM, i.e. no clearcut rank order of potency was evident. 3. The response to a submaximal (10 nM) concentration of SP or NKA was unaffected in the presence of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 4. The response to the NK1-agonist was totally atropine-resistant, but was reduced (about 30% inhibition) by tetrodotoxin. The response to the NK3-receptor agonist was halved by atropine and abolished by tetrodotoxin. The response to the NK2-agonist was unaffected by either atropine or tetrodotoxin. 5. The response to the selective NK2-agonist was unchanged after desensitization of NK1- or NK3-receptors. 6. The response to the NK2-selective agonist was strongly inhibited by [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10) (MEN 10,207) a selective NK2-receptor antagonist which did not modify the response to the NK1-selective agonist. 7. Our findings indicate that all the three known types of tachykinin receptors mediate the contractile response of the circular muscle of the guinea-pig ileum to peptides of this family.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1707710
Minireview: More Than Just a Hammer: Ligand “Bias” and Pharmaceutical Discovery
2014-01-01
Conventional orthosteric drug development programs targeting G protein-coupled receptors (GPCRs) have focused on the concepts of agonism and antagonism, in which receptor structure determines the nature of the downstream signal and ligand efficacy determines its intensity. Over the past decade, the emerging paradigms of “pluridimensional efficacy” and “functional selectivity” have revealed that GPCR signaling is not monolithic, and that ligand structure can “bias” signal output by stabilizing active receptor states in different proportions than the native ligand. Biased ligands are novel pharmacologic entities that possess the unique ability to qualitatively change GPCR signaling, in effect creating “new receptors” with distinct efficacy profiles driven by ligand structure. The promise of biased agonism lies in this ability to engender “mixed” effects not attainable using conventional agonists or antagonists, promoting therapeutically beneficial signals while antagonizing deleterious ones. Indeed, arrestin pathway-selective agonists for the type 1 parathyroid hormone and angiotensin AT1 receptors, and G protein pathway-selective agonists for the GPR109A nicotinic acid and μ-opioid receptors, have demonstrated unique, and potentially therapeutic, efficacy in cell-based assays and preclinical animal models. Conversely, activating GPCRs in “unnatural” ways may lead to downstream biological consequences that cannot be predicted from prior knowledge of the actions of the native ligand, especially in the case of ligands that selectively activate as-yet poorly characterized G protein-independent signaling networks mediated via arrestins. Although much needs to be done to realize the clinical potential of functional selectivity, biased GPCR ligands nonetheless appear to be important new additions to the pharmacologic toolbox. PMID:24433041
Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor.
Yang, Zhenlin; Han, Shuo; Keller, Max; Kaiser, Anette; Bender, Brian J; Bosse, Mathias; Burkert, Kerstin; Kögler, Lisa M; Wifling, David; Bernhardt, Guenther; Plank, Nicole; Littmann, Timo; Schmidt, Peter; Yi, Cuiying; Li, Beibei; Ye, Sheng; Zhang, Rongguang; Xu, Bo; Larhammar, Dan; Stevens, Raymond C; Huster, Daniel; Meiler, Jens; Zhao, Qiang; Beck-Sickinger, Annette G; Buschauer, Armin; Wu, Beili
2018-04-01
Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology 1,2 . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y 1 , Y 2 , Y 4 and Y 5 receptors, with different affinity and selectivity 3 . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y 1 receptor (Y 1 R) 4 . A number of peptides and small-molecule compounds have been characterized as Y 1 R antagonists and have shown clinical potential in the treatment of obesity 4 , tumour 1 and bone loss 5 . However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability 6 . Here we report crystal structures of the human Y 1 R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y 1 R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y 1 R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y 1 R can enable structure-based drug discovery that targets NPY receptors.
CHARACTERIZATION OF THE DISCRIMINATIVE STIMULUS EFFECTS OF LORCASERIN IN RATS
Serafine, Katherine M.; Rice, Kenner C.; France, Charles P.
2016-01-01
Lorcaserin is approved by the Food and Drug Administration for treating obesity and is under consideration for treating substance use disorders; it has agonist properties at serotonin (5-HT)2C receptors and might also have agonist properties at other 5-HT receptor subtypes. This study used drug discrimination to investigate the mechanism(s) of action of lorcaserin. Male Sprague-Dawley rats discriminated 0.56 mg/kg i.p. lorcaserin from saline while responding under a fixed-ratio 5 schedule for food. Lorcaserin (0.178–1.0 mg/kg) dose-dependently increased lorcaserin-lever responding. The 5-HT2C receptor agonist mCPP and the 5-HT2A receptor agonist DOM each occasioned greater than 90% lorcaserin-lever responding in seven of eight rats. The 5-HT1A receptor agonist 8-OH-DPAT occasioned greater than 90% lorcaserin-lever responding in four of seven rats. The 5-HT2C receptor selective antagonist SB 242084 attenuated lorcaserin-lever responding in all eight rats and the 5-HT2A receptor selective antagonist MDL 100907 attenuated lorcaserin-lever responding in six of seven rats. These results suggest that, in addition to agonist properties at 5-HT2C receptors, lorcaserin also has agonist properties at 5-HT2A and 5-HT1A receptors. Because some drugs with 5-HT2A receptor agonist properties are abused, it is important to fully understand the behavioral effects of lorcaserin while considering its potential for treating substance use disorders. PMID:27640338
Agonism and Antagonism at the Insulin Receptor
Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre
2012-01-01
Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584
Ettrup, Anders; Hansen, Martin; Santini, Martin A; Paine, James; Gillings, Nic; Palner, Mikael; Lehel, Szabolcs; Herth, Matthias M; Madsen, Jacob; Kristensen, Jesper; Begtrup, Mikael; Knudsen, Gitte M
2011-04-01
Positron emission tomography (PET) imaging of serotonin 2A (5-HT(2A)) receptors with agonist tracers holds promise for the selective labelling of 5-HT(2A) receptors in their high-affinity state. We have previously validated [(11)C]Cimbi-5 and found that it is a 5-HT(2A) receptor agonist PET tracer. In an attempt to further optimize the target-to-background binding ratio, we modified the chemical structure of the phenethylamine backbone and carbon-11 labelling site of [(11)C]Cimbi-5 in different ways. Here, we present the in vivo validation of nine novel 5-HT(2A) receptor agonist PET tracers in the pig brain. Each radiotracer was injected intravenously into anaesthetized Danish Landrace pigs, and the pigs were subsequently scanned for 90 min in a high-resolution research tomography scanner. To evaluate 5-HT(2A) receptor binding, cortical nondisplaceable binding potentials (BP(ND)) were calculated using the simplified reference tissue model with the cerebellum as a reference region. After intravenous injection, all compounds entered the brain and distributed preferentially into the cortical areas, in accordance with the known 5-HT(2A) receptor distribution. The largest target-to-background binding ratio was found for [(11)C]Cimbi-36 which also had a high brain uptake compared to its analogues. The cortical binding of [(11)C]Cimbi-36 was decreased by pretreatment with ketanserin, supporting 5-HT(2A) receptor selectivity in vivo. [(11)C]Cimbi-82 and [(11)C]Cimbi-21 showed lower cortical BP(ND), while [(11)C]Cimbi-27, [(11)C]Cimbi-29, [(11)C]Cimbi-31 and [(11)C]Cimbi-88 gave rise to cortical BP(ND) similar to that of [(11)C]Cimbi-5. [(11)C]Cimbi-36 is currently the most promising candidate for investigation of 5-HT(2A) receptor agonist binding in the living human brain with PET.
Synthesis and structure-activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists.
Hansen, Martin; Phonekeo, Karina; Paine, James S; Leth-Petersen, Sebastian; Begtrup, Mikael; Bräuner-Osborne, Hans; Kristensen, Jesper L
2014-03-19
N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor.
Schürer, Stephan C.; Brown, Steven J.; Cabrera, Pedro Gonzales; Schaeffer, Marie-Therese; Chapman, Jacqueline; Jo, Euijung; Chase, Peter; Spicer, Tim; Hodder, Peter; Rosen, Hugh
2008-01-01
We have studied the Sphingosine 1-phosphate (S1P) receptor system to better understand why certain molecular targets within a closely related family are much more tractable when identifying compelling chemical leads. Five medically important G protein-coupled receptors for S1P regulate heart rate, coronary artery caliber, endothelial barrier integrity, and lymphocyte trafficking. Selective S1P receptor agonist probes would be of great utility to study receptor subtype-specific function. Through systematic screening of the same libraries, we identified novel selective agonists chemotypes for each of the S1P1 and S1P3 receptors. uHTS for S1P1 was more effective than for S1P3, with many selective, low nanomolar hits of proven mechanism emerging for. Receptor structure modeling and ligand docking reveal differences between the receptor binding pockets, which are the basis for sub-type selectivity. Novel selective agonists interact primarily in the hydrophobic pocket of the receptor in the absence of head-group interactions. Chemistry-space and shape-based analysis of the screening libraries in combination with the binding models explain the observed differential hit rates and enhanced efficiency for lead discovery for S1P1 vs. S1P3 in this closely related receptor family. PMID:18590333
Stimulation of ANP secretion by 2-Cl-IB-MECA through A(3) receptor and CaMKII.
Yuan, Kuichang; Bai, Guang Yi; Park, Woo Hyun; Kim, Sung Zoo; Kim, Suhn Hee
2008-12-01
Adenosine is a potent mediator of myocardial protection against hypertrophy via A(1) or A(3) receptors that may be partly related to atrial natriuretic peptide (ANP) release. However, little is known about the possible involvement of the A(3) receptor on ANP release. We studied the effects of the A(3) receptor on atrial functions and its modification in hypertrophied atria. A selective A(3) receptor agonist, 2-chloro-N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide (2-CI-IB-MECA), was perfused into isolated, beating rat atria with and without receptor modifiers. 2-CI-IB-MECA dose-dependently increased the ANP secretion, which was blocked by the A(3) receptor antagonist, but the increased atrial contractility and decreased cAMP levels induced by 30muM 2-CI-IB-MECA were not affected. The 100muM 2-(1-hexylnyl)-N-methyladenosine (HEMADO) and N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide (IB-MECA), A(3) receptor agonist, also stimulated the ANP secretion without positive inotropy. The potency for the stimulation of ANP secretion was 2-CI-IB-MECA>IB-MECA=HEMADO. The inhibition of the ryanodine receptor or calcium/calmodulin-dependent kinase II (CaMKII) attenuated 2-CI-IB-MECA-induced ANP release, positive inotropy, and translocation of extracellular fluid. However, the inhibition of L-type Ca(2+) channels, sarcoplasmic reticulum Ca(2+)-reuptake, phospholipase C or inositol 1,4,5-triphosphate receptors did not affect these parameters. 2-CI-IB-MECA decreased cAMP level, which was blocked only with an inhibitor of CaMKII or adenylyl cyclase. These results suggest that 2-CI-IB-MECA increases the ANP secretion mainly via A(3) receptor activation and positive inotropy by intracellular Ca(2+) regulation via the ryanodine receptor and CaMKII.
Iguchi, Yusuke; Yamaguchi, Masafumi; Sato, Hiroyuki; Kihira, Kenji; Nishimaki-Mogami, Tomoko; Une, Mizuho
2010-01-01
TGR5 is a G protein-coupled receptor that is activated by bile acids, resulting in an increase in cAMP levels and the subsequent modulation of energy expenditure in brown adipose tissue and muscle. Therefore, the development of a TGR5-specific agonist could lead to the prevention and treatment of various metabolic disorders related to obesity. In the present study, we evaluated the ability of bile alcohols, which are structurally and physiologically similar to bile acids and are produced as the end products of cholesterol catabolism in evolutionarily primitive vertebrates, to act as TGR5 agonists. In a cell-based reporter assay and a cAMP production assay performed in vitro, most bile alcohols with a side chain containing hydroxyl group(s) were highly efficacious agonists for TGR5 comparable to its most potent ligand in the naturally occurring bile acid, lithocholic acid. However, the abilities of the bile alcohols to activate TGR5 varied with the position and number of the hydroxyl substituent in the side chain. Additionally, the conformation of the steroidal nucleus of bile alcohols is also important for its activity as a TGR5 agonist. Thus, we have provided new insights into the structure-activity relationships of bile alcohols as TGR5 agonists. PMID:20023205
Xiang, Zhimin; Pogozheva, Irina D; Sorenson, Nicholas B; Wilczynski, Andrzej M; Holder, Jerry Ryan; Litherland, Sally A; Millard, William J; Mosberg, Henry I; Haskell-Luevano, Carrie
2007-07-17
The melanocortin pathway, specifically the melanocortin-4 receptor and the cognate endogenous agonist and antagonist ligands, have been strongly implicated in the regulation of energy homeostasis and satiety. Genetic studies of morbidly obese human patients and normal weight control patients have resulted in the discovery of over 70 human melanocortin-4 receptor (MC4R) polymorphisms observed as both heterozygous and homozygous forms. A number of laboratories have been studying these hMC4R polymorphisms attempting to understand the molecular mechanism(s) that might explain the obese human phenotype. Herein, we have studied 13 polymorphic hMC4Rs that have been identified to possess statistically significant decreased endogenous agonist potency with synthetic peptides and small molecules attempting to identify ligands that can pharmacologically rescue the hMC4R polymorphic agonist response. The ligands examined in this study include NDP-MSH, MTII, Ac-His-DPhe-Arg-Trp-NH2 (JRH887-9), Ac-Anc-DPhe-Arg-Trp-NH2 (amino-2-naphtylcarboxylic acid, Anc, JRH420-12), Ac-His-(pI)DPhe-Arg-Trp-NH2 (JRH322-18), chimeric AGRP-melanocortin based ligands (Tyr-c[Cys-His-DPhe-Arg-Trp-Asn-Ala-Phe-Cys]-Tyr-NH2, AMW3-130 and Ac-mini-(His-DPhe-Arg-Trp)-hAGRP-NH2, AMW3-106), and the small molecules JB25 and THIQ. The hMC4R polymorphisms included in this study are S58C, N97D, I102S, L106P, S127L, T150I, R165Q, R165W, L250Q, G252S, C271Y, Y287Stop, and I301T. These studies resulted in the NDP-MSH, MTII, AMW3-130, THIQ, and AMW3-106 ligands possessing nanomolar to subnanomolar agonist potency at the hMC4R polymorphisms examined in this study. Thus, these ligands could generically rescue the potency and stimulatory response of the abnormally functioning hMC4Rs studied and may provide tools to further clarify the molecular mechanism(s) involving these receptor modifications.
The future of type 1 cannabinoid receptor allosteric ligands.
Alaverdashvili, Mariam; Laprairie, Robert B
2018-02-01
Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.
Singh, Anamika; Wilczynski, Andrzej; Holder, Jerry R.; Witek, Rachel M.; Dirain, Marvin L.; Xiang, Zhimin; Edison, Arthur S.; Haskell-Luevano, Carrie
2011-01-01
Using a solid-phase synthetic approach, a bioactive reverse turn heterocyclic was incorporated into a cyclic peptide template to probe melanocortin receptor potency and ligand structural conformations. The five melanocortin receptor isoforms (MC1R-MC5R) are G-protein coupled receptors (GPCRs) that are regulated by endogenous agonists and antagonists. This pathway is involved in pigmentation, weight, and energy homeostasis. Herein, we report novel analogues of the chimeric AGRP-melanocortin peptide template integrated with a small molecule moiety to probe the structural and functional consequences of the core His-Phe-Arg-Trp peptide domain using a reverse-turn heterocycle. A series of six compounds are reported that result in inactive to full agonists with nM potency. Biophysical structural analysis [2D 1H NMR and computer-assisted molecular modeling (CAMM)] were performed on selected analogues, resulting in the identification that these peptide-small molecule hybrids possessed increased flexibility and fewer discrete conformational families as compared to the reference peptide and result in a novel template for further structure-function studies. PMID:21306168
Przewłocka, B; Stala, L; Lasoń, W; Przewłocki, R
1983-01-01
The effects of various opiate receptor agonists on the seizure threshold after an intravenous infusion of pentylenetetrazol were investigated in rats. The mu- and epsilon-receptor agonists, morphine (20-40 micrograms) and beta-endorphin (5-10 micrograms) show proconvulsant properties towards clonic and tonic seizures. The delta-receptor agonist (D-Ala2,D-Leu5-enkephalin, DADL 5-40 micrograms) and alpha-neoendorphin (20-40 micrograms) show pro- and anticonvulsant properties towards clonic and tonic seizures, respectively. Anticonvulsant properties of DADL are possibly due to its action on the spinal cord, since after the intrathecal injection this effect is still observed. Similarities between DADL and alpha-neoendorphin suggest that they may act through the same receptor. The kappa-receptor agonist dynorphin A (5-20 micrograms) and its degradation-resistant analogue D-Arg-dynorphin1-13 (10 micrograms) show significant anticonvulsant properties. Our present results suggest that the kappa-receptor agonist dynorphin may act physiologically as an endogenous anticonvulsant, in contrast to other opioid peptides.
Leopoldo, Marcello; Lacivita, Enza; Berardi, Francesco; Perrone, Roberto; Hedlund, Peter B.
2010-01-01
Since its discovery in the 1940s in serum, the mammalian intestinal mucosa, and in the central nervous system, serotonin (5-HT) has been shown to be involved in virtually all cognitive and behavioral human functions, and alterations in its neurochemistry have been implicated in the etiology of a plethora of neuropsychiatric disorders. The cloning of 5-HT receptor subtypes has been of importance in enabling them to be classified as specific protein molecules encoded by specific genes. The 5-HT7 receptor is the most recently classified member of the serotonin receptor family. Since its identification, it has been the subject of intense research efforts driven by its presence in functionally relevant regions of the brain. The availability of some selective antagonists and agonists, in combination with genetically modified mice lacking the 5-HT7 receptor, has allowed for a better understanding of the pathophysiological role of this receptor. This paper reviews data on localization and pharmacological properties of the 5-HT7 receptor, and summarizes the results of structure-activity relationship studies aimed at the discovery of selective 5-HT7 receptor ligands. Additionally, an overview of the potential therapeutic applications of 5-HT7 receptor agonists and antagonists in central nervous system disorders is presented. PMID:20923682
2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor
Hanuš, Lumír; Abu-Lafi, Saleh; Fride, Ester; Breuer, Aviva; Vogel, Zvi; Shalev, Deborah E.; Kustanovich, Irina; Mechoulam, Raphael
2001-01-01
Two types of endogenous cannabinoid-receptor agonists have been identified thus far. They are the ethanolamides of polyunsaturated fatty acids—arachidonoyl ethanolamide (anandamide) is the best known compound in the amide series—and 2-arachidonoyl glycerol, the only known endocannabinoid in the ester series. We report now an example of a third, ether-type endocannabinoid, 2-arachidonyl glyceryl ether (noladin ether), isolated from porcine brain. The structure of noladin ether was determined by mass spectrometry and nuclear magnetic resonance spectroscopy and was confirmed by comparison with a synthetic sample. It binds to the CB1 cannabinoid receptor (Ki = 21.2 ± 0.5 nM) and causes sedation, hypothermia, intestinal immobility, and mild antinociception in mice. It binds weakly to the CB2 receptor (Ki > 3 μM). PMID:11259648
Agonist-Directed Desensitization of the β2-Adrenergic Receptor
Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M.; Wu, Qi; Fang, Ye
2011-01-01
The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level. PMID:21541288
Loeffler, George; Hurst, Donald; Penn, Ashley; Yung, Kathryn
2012-09-01
Designer drugs are synthetic compounds that contain modified molecular structures of illegal or controlled substances. They are produced clandestinely with the intent to elicit effects similar to controlled substances while circumventing existing drug laws. Two classes of designer drugs that have risen to recent prominence are "spice," synthetic cannabinoid receptor agonists that mimic the effect of tetrahydrocannabinol, the active ingredient in cannabis, and "bath salts," synthetic cathinones, stimulants structurally related to amphetamines that have effects similar to cocaine and methamphetamine. Although these substances have only gained prominence recently, service members of the U.S. armed forces have not been immune to spice and bath salt abuse. These substances are often perceived as safe and are available via the Internet, in head shops and from dealers. Spice and bath salt abuse is increasingly associated with serious medical and psychiatric problems. Military health care providers must be familiar with these important new classes of drugs. This article discusses the background, current civilian and military legal status, clinical effects, pharmacology, and clinical management of synthetic cannabinoid receptor agonists and synthetic cathinones.
Pan, Shi; Sharma, Pawan; Shah, Sushrut D; Deshpande, Deepak A
2017-07-01
Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases. Copyright © 2017 the American Physiological Society.
Identification of novel selective V2 receptor non-peptide agonists.
Del Tredici, Andria L; Vanover, Kim E; Knapp, Anne E; Bertozzi, Sine M; Nash, Norman R; Burstein, Ethan S; Lameh, Jelveh; Currier, Erika A; Davis, Robert E; Brann, Mark R; Mohell, Nina; Olsson, Roger; Piu, Fabrice
2008-10-30
Peptides with agonist activity at the vasopressin V(2) receptor are used clinically to treat fluid homeostasis disorders such as polyuria and central diabetes insipidus. Of these peptides, the most commonly used is desmopressin, which displays poor bioavailability as well as potent activity at the V(1b) receptor, with possible stress-related adverse effects. Thus, there is a strong need for the development of small molecule chemistries with selective V(2) receptor agonist activity. Using the functional cell-based assay Receptor Selection and Amplification Technology (R-SAT((R))), a screening effort identified three small molecule chemotypes (AC-94544, AC-88324, and AC-110484) with selective agonist activity at the V(2) receptor. One of these compounds, AC-94544, displayed over 180-fold selectivity at the V(2) receptor compared to related vasopressin and oxytocin receptors and no activity at 28 other G protein-coupled receptors (GPCRs). All three compounds also showed partial agonist activity at the V(2) receptor in a cAMP accumulation assay. In addition, in a rat model of central diabetes insipidus, AC-94544 was able to significantly reduce urine output in a dose-dependent manner. Thus, AC-94544, AC-88324, and AC-110484 represent novel opportunities for the treatment of disorders associated with V(2) receptor agonist deficiency.
Characterization of the discriminative stimulus effects of lorcaserin in rats.
Serafine, Katherine M; Rice, Kenner C; France, Charles P
2016-09-01
Lorcaserin is approved by the Food and Drug Administration for treating obesity and is under consideration for treating substance use disorders; it has agonist properties at serotonin (5-HT)2C receptors and might also have agonist properties at other 5-HT receptor subtypes. This study used drug discrimination to investigate the mechanism(s) of action of lorcaserin. Male Sprague-Dawley rats discriminated 0.56 mg/kg i.p. lorcaserin from saline while responding under a fixed-ratio 5 schedule for food. Lorcaserin (0.178-1.0 mg/kg) dose-dependently increased lorcaserin-lever responding. The 5-HT2C receptor agonist mCPP and the 5-HT2A receptor agonist DOM each occasioned greater than 90% lorcaserin-lever responding in seven of eight rats. The 5-HT1A receptor agonist 8-OH-DPAT occasioned greater than 90% lorcaserin-lever responding in four of seven rats. The 5-HT2C receptor selective antagonist SB 242084 attenuated lorcaserin-lever responding in all eight rats and the 5-HT2A receptor selective antagonist MDL 100907 attenuated lorcaserin-lever responding in six of seven rats. These results suggest that, in addition to agonist properties at 5-HT2C receptors, lorcaserin also has agonist properties at 5-HT2A and 5-HT1A receptors. Because some drugs with 5-HT2A receptor agonist properties are abused, it is important to fully characterize the behavioral effects of lorcaserin while considering its potential for treating substance use disorders. © 2016 Society for the Experimental Analysis of Behavior.
Tang, Hsin-Chieh; Chen, Calvin Yu-Chian
2014-01-01
Glucagon-like peptide-1 (GLP-1) is a promising target for diabetes mellitus (DM) therapy and reduces the occurrence of diabetes due to obesity. However, GLP-1 will be hydrolyzed soon by the enzyme dipeptidyl peptidase-4 (DPP-4). We tried to design small molecular drugs for GLP-1 receptor agonist from the world's largest traditional Chinese medicine (TCM) Database@Taiwan. According to docking results of virtual screening, we selected 2 TCM compounds, wenyujinoside and 28-deglucosylchikusetsusaponin IV, for further molecular dynamics (MD) simulation. GLP-1 was assigned as the control compound. Based on the results of root mean square deviation (RMSD), solvent accessible surface (SAS), mean square deviation (MSD), Gyrate, total energy, root mean square fluctuation (RMSF), matrices of smallest distance of residues, database of secondary structure assignment (DSSP), cluster analysis, and distance of H-bond, we concluded that all the 3 compounds could bind and activate GLP-1 receptor by computational simulation. Wenyujinoside and 28-deglucosylchikusetsusaponin IV were the TCM compounds that could be GLP-1 receptor agonists. PMID:24891870
Tang, Hsin-Chieh; Chen, Calvin Yu-Chian
2014-01-01
Glucagon-like peptide-1 (GLP-1) is a promising target for diabetes mellitus (DM) therapy and reduces the occurrence of diabetes due to obesity. However, GLP-1 will be hydrolyzed soon by the enzyme dipeptidyl peptidase-4 (DPP-4). We tried to design small molecular drugs for GLP-1 receptor agonist from the world's largest traditional Chinese medicine (TCM) Database@Taiwan. According to docking results of virtual screening, we selected 2 TCM compounds, wenyujinoside and 28-deglucosylchikusetsusaponin IV, for further molecular dynamics (MD) simulation. GLP-1 was assigned as the control compound. Based on the results of root mean square deviation (RMSD), solvent accessible surface (SAS), mean square deviation (MSD), Gyrate, total energy, root mean square fluctuation (RMSF), matrices of smallest distance of residues, database of secondary structure assignment (DSSP), cluster analysis, and distance of H-bond, we concluded that all the 3 compounds could bind and activate GLP-1 receptor by computational simulation. Wenyujinoside and 28-deglucosylchikusetsusaponin IV were the TCM compounds that could be GLP-1 receptor agonists.
Guo, Dong; Mulder-Krieger, Thea; IJzerman, Adriaan P; Heitman, Laura H
2012-01-01
BACKGROUND AND PURPOSE The adenosine A2A receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A2A receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A2A receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A2A receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A2A receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A2A receptor ligands at their receptor. A correlation was observed between the receptor residence time of A2A receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A2A receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A2A receptor lies within their different residence times at this receptor. PMID:22324512
Nonsteroidal selective androgen receptor modulators enhance female sexual motivation.
Jones, Amanda; Hwang, Dong Jin; Duke, Charles B; He, Yali; Siddam, Anjaiah; Miller, Duane D; Dalton, James T
2010-08-01
Women experience a decline in estrogen and androgen levels after natural or surgically induced menopause, effects that are associated with a loss of sexual desire and bone mineral density. Studies in our laboratories have shown the beneficial effects of selective androgen receptor modulators (SARMs) in the treatment of osteoporosis and muscle wasting in animal models. A series of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-cyano-3-trifluoromethyl-phenyl)-propionamide analogs was synthesized to evaluate the effects of B-ring substitutions on in vitro and in vivo pharmacologic activity, especially female sexual motivation. The androgen receptor (AR) relative binding affinities ranged from 0.1 to 26.5% (relative to dihydrotestosterone) and demonstrated a range of agonist activity at 100 nM. In vivo pharmacologic activity was first assessed by using male rats. Structural modifications to the B-ring significantly affected the selectivity of the SARMs, demonstrating that single-atom substitutions can dramatically and unexpectedly influence activity in androgenic (i.e., prostate) and anabolic (i.e., muscle) tissues. (S)-N-(4-cyano-3-trifluoromethyl-phenyl)-3-(3-fluoro,4-chlorophenoxy)-2-hydroxy-2-methyl-propanamide (S-23) displayed full agonist activity in androgenic and anabolic tissues; however, the remaining SARMs were more prostate-sparing, selectively maintaining the size of the levator ani muscle in castrated rats. The partner-preference paradigm was used to evaluate the effects of SARMs on female sexual motivation. With the exception of two four-halo substituted analogs, the SARMs increased sexual motivation in ovariectomized rats, with potency and efficacy comparable with testosterone propionate. These results indicate that the AR is important in regulating female libido given the nonaromatizable nature of SARMs and it could be a superior alternative to steroidal testosterone preparations in the treatment of hypoactive sexual desire disorder.
Nonsteroidal Selective Androgen Receptor Modulators Enhance Female Sexual Motivation
Jones, Amanda; Hwang, Dong Jin; Duke, Charles B.; He, Yali; Siddam, Anjaiah; Miller, Duane D.
2010-01-01
Women experience a decline in estrogen and androgen levels after natural or surgically induced menopause, effects that are associated with a loss of sexual desire and bone mineral density. Studies in our laboratories have shown the beneficial effects of selective androgen receptor modulators (SARMs) in the treatment of osteoporosis and muscle wasting in animal models. A series of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-cyano-3-trifluoromethyl-phenyl)-propionamide analogs was synthesized to evaluate the effects of B-ring substitutions on in vitro and in vivo pharmacologic activity, especially female sexual motivation. The androgen receptor (AR) relative binding affinities ranged from 0.1 to 26.5% (relative to dihydrotestosterone) and demonstrated a range of agonist activity at 100 nM. In vivo pharmacologic activity was first assessed by using male rats. Structural modifications to the B-ring significantly affected the selectivity of the SARMs, demonstrating that single-atom substitutions can dramatically and unexpectedly influence activity in androgenic (i.e., prostate) and anabolic (i.e., muscle) tissues. (S)-N-(4-cyano-3-trifluoromethyl-phenyl)-3-(3-fluoro,4-chlorophenoxy)-2-hydroxy-2-methyl-propanamide (S-23) displayed full agonist activity in androgenic and anabolic tissues; however, the remaining SARMs were more prostate-sparing, selectively maintaining the size of the levator ani muscle in castrated rats. The partner-preference paradigm was used to evaluate the effects of SARMs on female sexual motivation. With the exception of two four-halo substituted analogs, the SARMs increased sexual motivation in ovariectomized rats, with potency and efficacy comparable with testosterone propionate. These results indicate that the AR is important in regulating female libido given the nonaromatizable nature of SARMs and it could be a superior alternative to steroidal testosterone preparations in the treatment of hypoactive sexual desire disorder. PMID:20444881
The metabotropic glutamate receptors: structure, activation mechanism and pharmacology.
Pin, Jean-Philippe; Acher, Francine
2002-06-01
The metabotropic glutamate receptors are G-protein coupled receptors (GPCR) involved in the regulation of many synapses, including most glutamatergic fast excitatory synapses. Eight subtypes have been identified that can be classified into three groups. The molecular characterization of these receptors revealed proteins much more complex than any other GPCRs. They are composed of a Venus Flytrap (VFT) module where glutamate binds, connected to a heptahelical domain responsible for G-protein coupling. Recent data including the structure of the VFT module determined with and without glutamate, indicate that these receptors function as dimers. Moreover a number of intracellular proteins can regulate their targeting and transduction mechanism. Such structural features of mGlu receptors offer multiple possibilities for synthetic compounds to modulate their activity. In addition to agonists and competitive antagonists acting at the glutamate binding site, a number of non-competitive antagonists with inverse agonist activity, and positive allosteric modulators have been discovered. These later compounds share specific properties that make them good candidates for therapeutic applications. First, their non-amino acid structure makes them pass more easily the blood brain barrier. Second, they are much more selective than any other compound identified so far, being the first subtype selective molecules. Third, for the negative modulators, their non competitive mechanism of action makes them relatively unaffected by high concentrations of glutamate that may be present in disease states (e.g. stroke, epilepsy, neuropathic pain, etc.). Fourth, like the benzodiazepines acting at the GABA(A) receptors, the positive modulators offer a new way to increase the activity of these receptors in vivo, with a low risk of inducing their desensitization. The present review article focuses on the specific structural features of these receptors and highlights the various possibilities these offer for drug development.
Durdagi, Serdar; Salmas, Ramin Ekhteiari; Stein, Matthias; Yurtsever, Mine; Seeman, Philip
2016-02-17
We have recently reported G-protein coupled receptor (GPCR) model structures for the active and inactive states of the human dopamine D2 receptor (D2R) using adrenergic crystal structures as templates. Since the therapeutic concentrations of dopamine agonists that suppress the release of prolactin are the same as those that act at the high-affinity state of the D2 receptor (D2High), D2High in the anterior pituitary gland is considered to be the functional state of the receptor. In addition, the therapeutic concentrations of anti-Parkinson drugs are also related to the dissociation constants in the D2High form of the receptor. The discrimination between the high- and low-affinity (D2Low) components of the D2R is not obvious and requires advanced computer-assisted structural biology investigations. Therefore, in this work, the derived D2High and D2Low receptor models (GPCR monomer and dimer three-dimensional structures) are used as drug-binding targets to investigate binding interactions of dopamine and apomorphine. The study reveals a match between the experimental dissociation constants of dopamine and apomorphine at their high- and low-affinity sites of the D2 receptor in monomer and dimer and their calculated dissociation constants. The allosteric receptor-receptor interaction for dopamine D2R dimer is associated with the accessibility of adjacent residues of transmembrane region 4. The measured negative cooperativity between agonist ligand at dopamine D2 receptor is also correctly predicted using the D2R homodimerization model.
Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J
1998-08-21
Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical' antipsychotic agents displayed antagonist properties at h5-HT1A sites with generally much lower affinity than at hD2 dopamine receptors. It is suggested that agonist activity at 5-HT1A receptors may be of utility for certain antipsychotic agents.
Identification of endogenous surrogate ligands for human P2Y receptors through an in silico search.
Hiramoto, Takeshi; Nonaka, Yosuke; Inoue, Kazuko; Yamamoto, Takefumi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Gohda, Keigo; Fujita, Norihisa
2004-05-01
G protein-coupled receptors (GPCRs) are distributed widely throughout the human body, and nearly 50% of current medicines act on a GPCR. GPCRs are considered to consist of seven transmembrane alpha-helices that form an alpha-helical bundle in which agonists and antagonists bind. A 3D structure of the target GPCR is indispensable for designing novel medicines acting on a GPCR. We have previously constructed the 3D structure of human P2Y(1) (hP2Y(1)) receptor, a GPCR, by homology modeling with the 3D structure of bovine rhodopsin as a template. In the present study, we have employed an in silico screening for compounds that could bind to the hP2Y(1)-receptor model using AutoDock 3.0. We selected 21 of the 30 top-ranked compounds, and by measuring intracellular Ca(2+) concentration, we identified 12 compounds that activated or blocked the hP2Y(1) receptor stably expressed in recombinant CHO cells. 5-Phosphoribosyl-1-pyrophosphate (PRPP) was found to activate the hP2Y(1) receptor with a low ED(50) value of 15 nM. The Ca(2+) assays showed it had no significant effect on P2Y(2), P2Y(6), or P2X(2) receptors, but acted as a weak agonist on the P2Y(12) receptor. This is the first study to rationally identify surrogate ligands for the P2Y-receptor family.
Varghese, Leila N; Defour, Jean-Philippe; Pecquet, Christian; Constantinescu, Stefan N
2017-01-01
A well-functioning hematopoietic system requires a certain robustness and flexibility to maintain appropriate quantities of functional mature blood cells, such as red blood cells and platelets. This review focuses on the cytokine receptor that plays a significant role in thrombopoiesis: the receptor for thrombopoietin (TPO-R; also known as MPL). Here, we survey the work to date to understand how this receptor functions at a molecular level throughout its lifecycle, from traffic to the cell surface, dimerization and binding cognate cytokine via its extracellular domain, through to its subsequent activation of associated Janus kinases and initiation of downstream signaling pathways, as well as the regulation of these processes. Atomic level resolution structures of TPO-R have remained elusive. The identification of disease-causing mutations in the receptor has, however, offered some insight into structure and function relationships, as has artificial means of receptor activation, through TPO mimetics, transmembrane-targeting receptor agonists, and engineering in dimerization domains. More recently, a novel activation mechanism was identified whereby mutated forms of calreticulin form complexes with TPO-R via its extracellular N-glycosylated domain. Such complexes traffic pathologically in the cell and persistently activate JAK2, downstream signal transducers and activators of transcription (STATs), and other pathways. This pathologic TPO-R activation is associated with a large fraction of human myeloproliferative neoplasms.
Kroker, Katja S; Rast, Georg; Rosenbrock, Holger
2011-12-05
Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in clinical development for treatment of memory impairment of Alzheimer's disease patients. These are α4β2 and α7 nicotinic acetylcholine receptor agonists which are believed to enhance cholinergic and glutamatergic neurotransmission, respectively. In order to gain a better insight into the mechanistic role of these two nicotinic acetylcholine receptors in learning and memory, we investigated the effects of the α4β2 nicotinic acetylcholine receptor agonist TC-1827 and the α7 nicotinic acetylcholine receptor partial agonist SSR180711 on hippocampal long-term potentiation (LTP), a widely accepted cellular experimental model of memory formation. Generally, LTP is distinguished in an early and a late form, the former being protein-synthesis independent and the latter being protein-synthesis dependent. TC-1827 was found to increase early LTP in a bell-shaped dose dependent manner, but did not affect late LTP. In contrast, the α7 nicotinic acetylcholine receptor partial agonist SSR180711 showed enhancing effects on both early and late LTP in a bell-shaped manner. Furthermore, SSR180711 not only increased early LTP, but also transformed it into late LTP, which was not observed with the α4β2 nicotinic acetylcholine receptor agonist. Therefore, based on these findings α7 nicotinic acetylcholine receptor (partial) agonists appear to exhibit stronger efficacy on memory improvement than α4β2 nicotinic acetylcholine receptor agonists. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhang, Chen; Zhang, Tuo; Zou, Juan; Miller, Cassandra Lynn; Gorkhali, Rakshya; Yang, Jeong-Yeh; Schilmiller, Anthony; Wang, Shuo; Huang, Kenneth; Brown, Edward M; Moremen, Kelley W; Hu, Jian; Yang, Jenny J
2016-05-01
Ca(2+)-sensing receptors (CaSRs) modulate calcium and magnesium homeostasis and many (patho)physiological processes by responding to extracellular stimuli, including divalent cations and amino acids. We report the first crystal structure of the extracellular domain (ECD) of human CaSR bound with Mg(2+) and a tryptophan derivative ligand at 2.1 Å. The structure reveals key determinants for cooperative activation by metal ions and aromatic amino acids. The unexpected tryptophan derivative was bound in the hinge region between two globular ECD subdomains, and represents a novel high-affinity co-agonist of CaSR. The dissection of structure-function relations by mutagenesis, biochemical, and functional studies provides insights into the molecular basis of human diseases arising from CaSR mutations. The data also provide a novel paradigm for understanding the mechanism of CaSR-mediated signaling that is likely shared by the other family C GPCR [G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor] members and can facilitate the development of novel CaSR-based therapeutics.
NASA Astrophysics Data System (ADS)
Felsing, Daniel E.
Clinical data show that activation of 5-HT2C G protein-coupled receptors (GPCRs) can treat obesity (lorcaserin/BelviqRTM) and psychotic disorders (aripiprazole/Abilify.), including schizophrenia. 5-HT2C GPCRs are members of the 5-HT2 sub-family of 5-HT GPCRs, which include 5-HT2A, 5-HT2B, and 5-HT 2C GPCRs. 5-HT2C is structurally similar to 5-HT2A and 5-HT2B GPCRs, but activation of 5-HT2A and/or 5-HT 2B causes deleterious effects, including hallucinations and cardiac valvulopathy. Thus, there is a challenge to develop drugs that selectively activate only 5-HT2C. Prolonged activation of GPCRs by agonists reduces their function via a regulatory process called desensitization. This has clinical relevance, as 45% of drugs approved by the FDA target GPCRs, and agonist drugs (e.g., morphine) typically lose efficacy over time due to desensitization, which invites tolerance. Agonists that cause less desensitization may show extended clinical efficacy as well as a more acceptable clinical dose range. We hypothesized that structurally distinct agonists of the 5-HT2C receptor may cause varying degrees of desensitization by stabilizing unique 5-HT2C receptor conformations. Discovery of 5-HT2C agonists that exhibit minimal desensitization is therapeutically relevant for the pharmacotherapeutic treatment of chronic diseases such as obesity and psychotic disorders. The 5-HT7 receptor has recently been discovered as a druggable target, and selective activation of the 5-HT7 receptor has been shown to alleviate locomotor deficits in mouse models of Rett Syndrome. Additionally, buspirone has been shown to display therapeutically relevant affinity at 5-HT 1A and is currently in phase II clinical trials to treat stereotypy in children with autism. The 5-PAT chemical scaffold shows high affinity towards the 5-HT7 and 5-HT1A receptors. Modulations around the 5-phenyl moiety were able to improve selectivity in binding towards the 5-HT 7 receptor, whereas modulations of the alkyl chains bonded to the vital basic nitrogen modulated 5-HT1A selectivity. The lead candidate, (+)-o-F-5-PAT, was shown effective in attenuating three separate murine models of stereotypy and two models of drug-induced hyperlocomotion. Therefore, the 5-PAT chemical scaffold is a unique chemical scaffold enabling discrimination of therapeutic function of the 5-HT7 and 5-HT 1A receptors in vivo..
NASA Astrophysics Data System (ADS)
Filizola, Marta; Villar, Hugo O.; Loew, Gilda H.
2001-04-01
Compounds that bind with significant affinity to the opioid receptor types, δ, μ, and κ, with different combinations of activation and inhibition at these three receptors could be promising behaviorally selective agents. Working on this hypothesis, the chemical moieties common to three different sets of opioid receptor agonists with significant affinity for each of the three receptor types δ, μ, or κ were identified. Using a distance analysis approach, common geometric arrangements of these chemical moieties were found for selected δ, μ, or κ opioid agonists. The chemical and geometric commonalities among agonists at each opioid receptor type were then compared with a non-specific opioid recognition pharmacophore recently developed. The comparison provided identification of the additional requirements for activation of δ, μ, and κ opioid receptors. The distance analysis approach was able to clearly discriminate κ-agonists, while global molecular properties for all compounds were calculated to identify additional requirements for activation of δ and μ receptors. Comparisons of the combined geometric and physicochemical properties calculated for each of the three sets of agonists allowed the determination of unique requirements for activation of each of the three opioid receptors. These results can be used to improve the activation selectivity of known opioid agonists and as a guide for the identification of novel selective opioid ligands with potential therapeutic usefulness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina-Molina, José-Manuel, E-mail: molinajm@ugr.es; Amaya, Esperanza; Grimaldi, Marina
Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA andmore » its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes. - Highlights: • We investigated the agonist/antagonist activities of BPS, BPF, BPA, TCBPA and TBBPA. • The direct interaction of these compounds with hERα, hERβ, hAR and hPXR was studied. • BPA congeners and derivatives were found to disrupt multiple NRs. • Further evaluation of their role as endocrine-disrupting chemicals is needed.« less
Identification of novel IP receptor agonists using historical ligand biased chemical arrays.
McKeown, Stephen C; Charlton, Steven J; Cox, Brian; Fitch, Helen; Howson, Christopher D; Leblanc, Catherine; Meyer, Arndt; Rosethorne, Elizabeth M; Stanley, Emily
2014-05-15
By considering published structural information we have designed high throughput biaryl lipophilic acid arrays leveraging facile chemistry to expedite their synthesis. We rapidly identified multiple hits which were of suitable IP agonist potency. These relatively simple and strategically undecorated molecules present an ideal opportunity for optimization towards our target candidate profile. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kinsella, Gemma K.; Rozas, Isabel; Watson, Graeme W.
2005-06-01
Adrenoceptors are members of the important G protein coupled receptor family for which the detailed mechanism of activation remains unclear. In this study, we have combined docking and molecular dynamics simulations to model the ligand induced effect on an homology derived human α1A adrenoceptor. Analysis of agonist/α1A adrenoceptor complex interactions focused on the role of the charged amine group, the aromatic ring, the N-methyl group of adrenaline, the beta hydroxyl group and the catechol meta and para hydroxyl groups of the catecholamines. The most critical interactions for the binding of the agonists are consistent with many earlier reports and our study suggests new residues possibly involved in the agonist-binding site, namely Thr-174 and Cys-176. We further observe a number of structural changes that occur upon agonist binding including a movement of TM-V away from TM-III and a change in the interactions of Asp-123 of the conserved DRY motif. This may cause Arg-124 to move out of the TM helical bundle and change the orientation of residues in IC-II and IC-III, allowing for increased affinity of coupling to the G-protein.
Tice, Colin M; Noto, Paul B; Fan, Kristi Yi; Zhao, Wei; Lotesta, Stephen D; Dong, Chengguo; Marcus, Andrew P; Zheng, Ya-Jun; Chen, Guozhou; Wu, Zhongren; Van Orden, Rebecca; Zhou, Jing; Bukhtiyarov, Yuri; Zhao, Yi; Lipinski, Kerri; Howard, Lamont; Guo, Joan; Kandpal, Geeta; Meng, Shi; Hardy, Andrew; Krosky, Paula; Gregg, Richard E; Leftheris, Katerina; McKeever, Brian M; Singh, Suresh B; Lala, Deepak; McGeehan, Gerard M; Zhuang, Linghang; Claremon, David A
2016-10-15
Liver X receptor (LXR) agonists have been reported to lower brain amyloid beta (Aβ) and thus to have potential for the treatment of Alzheimer's disease. Structure and property based design led to the discovery of a series of orally bioavailable, brain penetrant LXR agonists. Oral administration of compound 18 to rats resulted in significant upregulation of the expression of the LXR target gene ABCA1 in brain tissue, but no significant effect on Aβ levels was detected. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Shizhong; Bock, Elisabeth; Berezin, Vladimir
2010-05-26
Fibroblast growth factor receptors (FGFRs) interact with their cognate ligands, FGFs, and with a number of cell adhesion molecules (CAMs), such as the neural cell adhesion molecule (NCAM), mediating a wide range of events during the development and maintenance of the nervous system. Determination of protein structure, in silico modeling and biological studies have recently resulted in the identification of FGFR binding peptides derived from various FGFs and NCAM mimicking the effects of these molecules with regard to their neuritogenic and neuroprotective properties. This review focuses on recently developed functional peptide agonists of FGFR with possible therapeutic potential.
Camafort-Babkowski, Miguel
2013-08-17
Anti-diabetic drugs have, in addition to their well-known glucose lowering-effect, different effects in the rest of cardiovascular factors that are associated with diabetes mellitus. Glucagon-like peptide-1 (GLP-1) receptor agonists have recently been incorporated to the therapeutic arsenal of type 2 diabetes mellitus. The objective of this review is to summarize the available evidence on the effect of the GLP-1 receptor agonists on different cardiovascular risk factors, mediated by the effect of GLP-1 receptor agonists on the control of hyperglycaemia and the GLP-1 receptor agonists effect on other cardiovascular risk factors (weight control, blood pressure control, lipid profile and all other cardiovascular risk biomarkers). In addition, we present the emerging evidence with regards to the impact that GLP-1 receptor agonists therapy could have in the reduction of cardiovascular events and the currently ongoing studies addressing this issue. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Caged Naloxone Reveals Opioid Signaling Deactivation Kinetics
Banghart, Matthew R.; Shah, Ruchir C.; Lavis, Luke D.
2013-01-01
The spatiotemporal dynamics of opioid signaling in the brain remain poorly defined. Photoactivatable opioid ligands provide a means to quantitatively measure these dynamics and their underlying mechanisms in brain tissue. Although activation kinetics can be assessed using caged agonists, deactivation kinetics are obscured by slow clearance of agonist in tissue. To reveal deactivation kinetics of opioid signaling we developed a caged competitive antagonist that can be quickly photoreleased in sufficient concentrations to render agonist dissociation effectively irreversible. Carboxynitroveratryl-naloxone (CNV-NLX), a caged analog of the competitive opioid antagonist NLX, was readily synthesized from commercially available NLX in good yield and found to be devoid of antagonist activity at heterologously expressed opioid receptors. Photolysis in slices of rat locus coeruleus produced a rapid inhibition of the ionic currents evoked by multiple agonists of the μ-opioid receptor (MOR), but not of α-adrenergic receptors, which activate the same pool of ion channels. Using the high-affinity peptide agonist dermorphin, we established conditions under which light-driven deactivation rates are independent of agonist concentration and thus intrinsic to the agonist-receptor complex. Under these conditions, some MOR agonists yielded deactivation rates that are limited by G protein signaling, whereas others appeared limited by agonist dissociation. Therefore, the choice of agonist determines which feature of receptor signaling is unmasked by CNV-NLX photolysis. PMID:23960100
Hagan, R M; Ireland, S J; Jordan, C C; Beresford, I J; Deal, M J; Ward, P
1991-06-01
The pharmacological profiles of two novel neurokinin agonists have been investigated. delta Ava[L-Pro9,N-MeLeu10]SP(7-11) (GR73632) and [Lys3,Gly8-R-gamma-lactam-Leu9] NKA(3-10) (GR64349) are potent and selective agonists at NK-1 and NK-2 receptors respectively. In the guinea-pig isolated trachea preparation, contractions induced by these agonists were largely unaffected by inclusion of peptidase inhibitors in the bathing medium, indicating that these agonists are resistant to metabolism by peptidases. In the anaesthetised guinea-pig, both agonists were more potent bronchoconstrictor agents than either NKA or the SP analogue, SP methylester. In the anaesthetised rat, the NK-1 agonist, GR73632 was more potent than SP, NKA or NKB at causing the histamine-independent extravasation of plasma proteins into the skin after intradermal administration. The NK-2 agonist, GR64349 and the NK-3 agonist, senktide were without significant effect in this model. These agonists are useful tools for characterizing neurokinin receptor-mediated actions both in vitro and in vivo.
Zhang, Xuqing; Allan, George F; Tannenbaum, Pamela; Sbriscia, Tifanie; Linton, Olivia; Lai, Muh-Tsann; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Lundeen, Scott G; Sui, Zhihua
2013-03-01
Selective androgen receptor modulators (SARMs) are androgens with tissue-selective activity. SARMs that have anabolic activity on muscle while having minimal stimulatory activity on prostate are classified as SARM agonists. They can be used to prevent the loss of lean body mass that is associated with cancer, immunodeficiency, renal disease and aging. They may also have anabolic activity on bone; thus, unlike estrogens, they may reverse the loss of bone strength associated with aging or hypogonadism. Our in-house effort on SARM program discovers a nonsteroidal androgen receptor ligand with a unique imidazolopyrazole moiety in its structure. In vitro, this compound is a weak androgen receptor binder and a weak androgen agonist. Despite this, in orchidectomized mature rats it is an effective SARM agonist, with an ED(50) on levator ani muscle of 3.3mg/kg and an ED(50) on ventral prostate of >30mg/kg. It has its maximal effect on muscle at the dose of 10mg/kg. In addition, this compound has mixed agonistic and antagonistic activities on prostate, reducing the weight of that tissue in intact rats by 22% at 10mg/kg. The compound does not have significant effect on gonadotropin levels or testosterone levels in both orchidectomized and intact male rats. It does not have notable progestin, estrogen or glucocorticoid agonistic or antagonistic activity in rats. In a female sexual behavior model, it improves the sexual desire of ovariectomized female rats for sexually mature intact males over nonsexually ovariectomized females. Overall, the imidazolopyrazole is a potent prostate-sparing candidate for development as a SARM agonist with an appropriate pharmacological profile for clinical benefit in muscle-wasting conditions and female sexual function disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interact...
The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interact...
Strekalova, Elena; Malin, Dmitry; Rajanala, Harisha; Cryns, Vincent L
2017-06-01
Despite robust antitumor activity in diverse preclinical models, TNF-related apoptosis-inducing ligand (TRAIL) receptor agonists have not demonstrated efficacy in clinical trials, underscoring the need to identify agents that enhance their activity. We postulated that the metabolic stress induced by the diabetes drug metformin would sensitize breast cancer cells to TRAIL receptor agonists. Human triple (estrogen receptor, progesterone receptor, and HER2)-negative breast cancer (TNBC) cell lines were treated with TRAIL receptor agonists (monoclonal antibodies or TRAIL peptide), metformin, or the combination. The effects on cell survival, caspase activation, and expression of TRAIL receptors and the antiapoptotic protein XIAP were determined. In addition, XIAP was silenced by RNAi in TNBC cells and the effects on sensitivity to TRAIL were determined. The antitumor effects of metformin, TRAIL, or the combination were evaluated in an orthotopic model of metastatic TNBC. Metformin sensitized diverse TNBC cells to TRAIL receptor agonists. Metformin selectively enhanced the sensitivity of transformed breast epithelial cells to TRAIL receptor agonist-induced caspase activation and apoptosis with little effect on untransformed breast epithelial cells. These effects of metformin were accompanied by robust reductions in the protein levels of XIAP, a negative regulator of TRAIL-induced apoptosis. Silencing XIAP in TNBC cells mimicked the TRAIL-sensitizing effects of metformin. Metformin also enhanced the antitumor effects of TRAIL in a metastatic murine TNBC model. Our findings indicate that metformin enhances the activity of TRAIL receptor agonists, thereby supporting the rationale for additional translational studies combining these agents.
Gao, Zhan-Guo; Jacobson, Kenneth A
2008-04-01
Structurally diverse ligands were studied in A(3) adenosine receptor (AR)-mediated beta-arrestin translocation in engineered CHO cells. The agonist potency and efficacy were similar, although not identical, to their G protein signaling. However, differences have also been found. MRS542, MRS1760, and other adenosine derivatives, A(3)AR antagonists in cyclic AMP assays, were partial agonists in beta-arrestin translocation, indicating possible biased agonism. The xanthine 7-riboside DBXRM, a full agonist, was only partially efficacious in beta-arrestin translocation. DBXRM was shown to induce a lesser extent of desensitization compared with IB-MECA. In kinetic studies, MRS3558, a potent and selective A(3)AR agonist, induced beta-arrestin translocation significantly faster than IB-MECA and Cl-IB-MECA. Non-nucleoside antagonists showed similar inhibitory potencies as previously reported. PTX pretreatment completely abolished ERK1/2 activation, but not arrestin translocation. Thus, lead candidates for biased agonists at the A(3)AR have been identified with this arrestin-translocation assay, which promises to be an effective tool for ligand screening.
Is there an effect of ghrelin/ghrelin analogs on cancer? A systematic review
Sever, Sakine; White, Donna L
2016-01-01
Ghrelin is a hormone with multiple physiologic functions, including promotion of growth hormone release, stimulation of appetite and regulation of energy homeostasis. Treatment with ghrelin/ghrelin-receptor agonists is a prospective therapy for disease-related cachexia and malnutrition. In vitro studies have shown high expression of ghrelin in cancer tissue, although its role including its impact in cancer risk and progression has not been established. We performed a systematic literature review to identify peer-reviewed human or animal in vivo original research studies of ghrelin, ghrelin-receptor agonists, or ghrelin genetic variants and the risk, presence, or growth of cancer using structured searches in PubMed database as well as secondary searches of article reference lists, additional reviews and meta-analyses. Overall, 45 (73.8%) of the 61 studies reviewed, including all 11 involving exogenous ghrelin/ghrelin-receptor agonist treatment, reported either a null (no statistically significant difference) or inverse association of ghrelin/ghrelin-receptor agonists or ghrelin genetic variants with cancer risk, presence or growth; 10 (16.7%) studies reported positive associations; and 6 (10.0%) reported both negative or null and positive associations. Differences in serum ghrelin levels in cancer cases vs controls (typically lower) were reported for some but not all cancers. The majority of in vivo studies showed a null or inverse association of ghrelin with risk and progression of most cancers, suggesting that ghrelin/ghrelin-receptor agonist treatment may have a favorable safety profile to use for cancer cachexia. Additional large-scale prospective clinical trials as well as basic bioscientific research are warranted to further evaluate the safety and benefits of ghrelin treatment in patients with cancer. PMID:27552970
Agonist-induced modulation of inverse agonist efficacy at the beta 2-adrenergic receptor.
Chidiac, P; Nouet, S; Bouvier, M
1996-09-01
Sustained stimulation of several G protein-coupled receptors is known to lead to a reduction in the signaling efficacy. This phenomenon, named agonist-induced desensitization, has been best studied for the beta 2-adrenergic receptor (AR) and is characterized by a decreased efficacy of beta-adrenergic agonists to stimulate the adenylyl cyclase activity. Recently, several beta-adrenergic ligands were found to inhibit the spontaneous agonist-independent activity of the beta 2AR. These compounds, termed inverse agonists, have different inhibitory efficacies, ranging from almost neutral antagonists to full inverse agonists. The current study was undertaken to determine whether, as is the case for agonists, desensitization can affect the efficacies of inverse agonists. Agonist-promoted desensitization of the human beta 2AR expressed in Sf9 cells potentiated the inhibitory actions of the inverse agonists, with the extent of the potentiation being inversely proportional to their intrinsic activity. For example, desensitization increased the inhibitory action of the weak inverse agonist labetalol by 29%, whereas inhibition of the spontaneous activity by the strong inverse agonist timolol was not enhanced by the desensitizing stimuli. Interestingly, dichloroisoproterenol acted stochastically as either a weak partial agonist or a weak inverse agonist in control conditions but always behaved as an inverse agonist after desensitization. These data demonstrate that like for agonists, the efficacies of inverse agonists can be modulated by a desensitizing treatment. Also, the data show that the initial state of the receptor can determine whether a ligand behaves as a partial agonist or an inverse agonist.
Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M
1997-06-25
Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.
Webb, Thomas R; Jiang, Luyong; Sviridov, Sergey; Venegas, Ruben E; Vlaskina, Anna V; McGrath, Douglas; Tucker, John; Wang, Jian; Deschenes, Alain; Li, Rongshi
2007-01-01
We report the further application of a novel approach to template and ligand design by the synthesis of agonists of the melanocortin receptor. This design method uses the conserved structural data from the three-dimensional conformations of beta-turn peptides to design rigid nonpeptide templates that mimic the orientation of the main chain C-alpha atoms in a peptide beta-turn. We report details on a new synthesis of derivatives of template 1 that are useful for the synthesis of exploratory libraries. The utility of this technique is further exemplified by several iterative rounds of high-throughput synthesis and screening, which result in new partially optimized nonpeptide agonists for several melanocortin receptors.
A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor
Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G
2015-01-01
Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584
Richards, M; van Giersbergen, P; Zimmermann, A; Lesur, B; Hoflack, J
1997-10-01
Activation of endogenous neurotensin (NT) receptors and P2-purinoceptors expressed by human colonic adenocarcinoma HT-29 cells increased extracellular acidification rates that were detected in the microphysiometer. NT (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu), NT[8-13] (Arg-Arg-Pro-Tyr-Ile-Leu), NT[9-13] (Arg-Pro-Tyr-Ile-Leu), and NT1 (N alpha methyl-Arg-Lys-Pro-Trp-Tle-Leu [Tle = tert-leucine]) were full agonists, whereas XL 775 (N-[N-[2-[3-[[6-amino-1-oxo-2-[[(phenylmethoxy)carbonyl]-amino]hex yl]amino]phenyl]-3-(4-hydroxyphenyl)-1-oxo-2-propenyl]-L-isoleucyl]-L-le ucine) was a partial agonist for activating NT receptors expressed by HT-29 cells. Desensitization induced by NT was rapid and monophasic with 85% of the initial response lost by a 30-s exposure. Once initiated, the rate and extent of desensitization were similar for different concentrations of a given agonist, for agonists of different potencies, and for agonists of different efficacies, which suggests that desensitization may be independent of receptor occupancy or agonist efficacy. Resensitization was a much slower process, requiring 60 min before the full agonist response to NT was recovered. ATP, via P2-purinoceptors, also activated cellular acidification rates in a concentration-dependent manner. ATP induced a biphasic desensitization of purinoceptors with a loss of ca. 50% of the initial stimulation detectable between 30 and 90 s of exposure to the agonist. Desensitization of NT receptors did not influence the activation of P2-purinoceptors by ATP, suggesting there was no heterologous desensitization between the two types of receptors. Superfusion with NT receptor agonists for 15 min at concentrations that did not elicit changes in extracellular acidification rates blocked, in a concentration-dependent manner, the agonist response induced by 100 nM NT. This may reflect sequestration of the receptor. These results suggest that the high agonist affinity state of NT receptors may modulate receptor sequestration, whereas activation of the low agonist affinity state may be linked to cellular metabolism. Comparison of our results with published data found differences as well as similarities of NT responses among three lines of HT-29 cells.
Donthamsetti, Prashant; Quejada, Jose Rafael; Javitch, Jonathan A; Gurevich, Vsevolod V; Lambert, Nevin A
2015-09-01
G protein-coupled receptors (GPCRs) represent ∼25% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which are involved in differential signaling pathways. Because functionally selective or biased ligands activate one of these two pathways, they may be superior medications for certain diseases states. The identification of such ligands requires robust drug screening assays for both G protein and arrestin activity. This unit describes protocols for two bioluminescence resonance energy transfer (BRET)-based assays used to monitor arrestin recruitment to GPCRs. One assay requires modification of GPCRs by fusion to a BRET donor or acceptor moiety, whereas the other can detect arrestin recruitment to unmodified GPCRs. Copyright © 2015 John Wiley & Sons, Inc.
Donthamsetti, Prashant; Quejada, Jose Rafael; Javitch, Jonathan A.; Gurevich, Vsevolod V.; Lambert, Nevin A.
2015-01-01
G protein-coupled receptors (GPCRs) represent ~25% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which are involved in differential signaling pathways. Functionally selective or biased ligands activate one of these two pathways and may be superior medications for certain diseases states. The identification of these ligands requires robust drug screening assays for both G protein and arrestin activity. Here we describe in detail the technical aspects of two bioluminescence resonance energy (BRET)-based assays that can be used to monitor arrestin recruitment to GPCRs. One assay requires modification of GPCRs by fusion to a BRET donor or acceptor moiety, whereas the other can detect recruitment of arrestin to unmodified GPCRs. PMID:26331887
Tala, Srinivasa R; Singh, Anamika; Lensing, Cody J; Schnell, Sathya M; Freeman, Katie T; Rocca, James R; Haskell-Luevano, Carrie
2018-05-16
The melanocortin system is involved in the regulation of complex physiological functions, including energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. The five melanocortin receptors that belong to the superfamily of G protein-coupled receptors (GPCRs) are regulated by endogenously expressed agonists and antagonists. The aim of this study was to explore the potential of replacing the disulfide bridge in chimeric AGRP-melanocortin peptide Tyr-c[Cys-His-d-Phe-Arg-Trp-Asn-Ala-Phe-Cys]-Tyr-NH 2 (1) with 1,2,3-triazole moieties. A series of 1,2,3-triazole-bridged peptidomimetics were designed, synthesized, and pharmacologically evaluated at the mouse melanocortin receptors. The ligands possessed nanomolar to micromolar agonist cAMP signaling potency. A key finding was that the disulfide bond in peptide 1 can be replaced with the monotriazole ring with minimal effect on the functional activity at the melanocortin receptors. The 1,5-disubstituted triazole-bridged peptide 6 showed equipotent functional activity at the mMC3R and modest 5-fold decreased agonist potency at the mMC4R compared to those of 1. Interestingly, the 1,4- and 1,5-disubstituted isomers of the triazole ring resulted in different selectivities at the receptor subtypes, indicating subtle structural features that may be exploited in the generation of selective melanocortin ligands. Introducing cyclic and acyclic bis-triazole moieties into chimeric AGRP template 1 generally decreased agonist activity. These results will be useful for the further design of neuronal chemical probes for the melanocortin receptors as well as in other receptor systems.
Aikawa, Katsuji; Asano, Moriteru; Ono, Koji; Habuka, Noriyuki; Yano, Jason; Wilson, Keith; Fujita, Hisashi; Kandori, Hitoshi; Hara, Takahito; Morimoto, Megumi; Santou, Takashi; Yamaoka, Masuo; Nakayama, Masaharu; Hasuoka, Atsushi
2017-07-01
We previously reported that 4-(pyrrolidin-1-yl)benzonitrile derivative 1b was a selective androgen receptor modulator (SARM) that exhibited anabolic effects on organs such as muscles and the central nervous system (CNS), but neutral effects on the prostate. From further modification, we identified that 4-(5-oxopyrrolidine-1-yl)benzonitrile derivative 2a showed strong AR binding affinity with improved metabolic stabilities. Based on these results, we tried to enhance the AR agonistic activities by modifying the substituents of the 5-oxopyrrolidine ring. As a consequence, we found that 4-[(2S,3S)-2-ethyl-3-hydroxy-5-oxopyrrolidin-1-yl]-2-(trifluoromethyl)benzonitrile (2f) had ideal SARM profiles in Hershberger assay and sexual behavior induction assay. Furthermore, 2f showed good pharmacokinetic profiles in rats, dogs, monkeys, excellent nuclear selectivity and acceptable toxicological profiles. We also determined its binding mode by obtaining the co-crystal structures with AR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coldwell, M C; Boyfield, I; Brown, A M; Stemp, G; Middlemiss, D N
1999-01-01
This study characterized pharmacologically the functional responses to agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) zreceptors separately expressed in cloned cells using the cytosensor microphysiometer. Dopaminergic receptor agonists caused increases in extracellular acidification rate in adherent Chinese hamster ovary (CHO) clones expressing hD2, hD3 or hD4 receptors. Acidification rate responses to agonists in other cell lines expressing these receptors were smaller than those in adherent CHO cells. The time courses and maximum increases in acidification rate of the agonist responses in adherent CHO cells were different between the three dopamine receptor clones. Responses were blocked by pretreatment of cells with pertussis toxin or amiloride analogues. Most agonists had full intrinsic activity at each of the dopamine receptor subtypes, as compared to quinpirole, however both enantiomers of UH-232 and (−)3-PPP were partial agonists in this assay system. The functional potency of full agonists at each of the three receptors expressed in CHO cells was either higher than, or similar to, the apparent inhibition constants (Ki) determined in [125I]-iodosulpride competition binding studies. Functional selectivities of the agonists were less than radioligand binding selectivities. The rank orders of agonist potencies and selectivities were similar, but not identical, to the rank orders of radioligand binding affinities and selectivities. The dopamine receptor antagonists, iodosulpride and clozapine, had no effect on basal acidification rates but inhibited acidification responses in CHO cells to quinpirole in an apparently competitive manner. Antagonist potencies closely matched their radioligand binding affinities in these cells. PMID:10455259
Wang, Qingqing; Imam, Mustapha Umar; Yida, Zhang; Wang, Fudi
2017-01-01
Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the nuclear receptor superfamily of ligand-inducible transcription factors that regulate adipogenesis, lipid metabolism, cell proliferation, inflammation and insulin sensitization. Abnormalities in PPARγ signaling have been associated with obesity, diabetes and cancer. The use of agonists to manage these diseases has been limited by their side effects. Accordingly, dual or pan agonists targeting the PPARα or PPARα and PPARδ, respectively, in addition to the PPARγ have been developed to overcome these side effects. This review details the shared PPARγ-dependent mechanisms between obesity-related cancers and diabetes and their potential therapeutic values. We performed a systematic literature search through pubmed, Scopus and google scholar for articles on PPARγ-dependent signaling in diabetes or cancer. There is growing co-occurrence of obesity-related cancers and diabetes, necessitating the use of effective therapies with the least amount of side effects for concurrent management of these diseases, by targeting potentially shared PPARγ-dependent mechanisms including abnormalities of the wnt/β-catenin, lysosomal acid lipase, inflammatory and cell cycle pathways, and the plasminogen activator system. Taking advantage of the multiple docking sites of the PPARγ and the pleiotropic nature of its signaling, structure-activity relationship and molecular docking studies have provided insights into designer PPARγ agonists or dual PPARα/γ agonists that modulate PPARγ signaling and negate side effects of full PPARγ agonists. Effective therapies, possibly devoid of side effects, for concurrent management of obesity-related cancers and diabetes can be developed through diligent structure-activity and molecular docking studies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Intermediate closed state for glycine receptor function revealed by cysteine cross-linking.
Prevost, Marie S; Moraga-Cid, Gustavo; Van Renterghem, Catherine; Edelstein, Stuart J; Changeux, Jean-Pierre; Corringer, Pierre-Jean
2013-10-15
Pentameric ligand-gated ion channels (pLGICs) mediate signal transmission by coupling the binding of extracellular ligands to the opening of their ion channel. Agonist binding elicits activation and desensitization of pLGICs, through several conformational states, that are, thus far, incompletely characterized at the structural level. We previously reported for GLIC, a prokaryotic pLGIC, that cross-linking of a pair of cysteines at both sides of the extracellular and transmembrane domain interface stabilizes a locally closed (LC) X-ray structure. Here, we introduced the homologous pair of cysteines on the human α1 glycine receptor. We show by electrophysiology that cysteine cross-linking produces a gain-of-function phenotype characterized by concomitant constitutive openings, increased agonist potency, and equalization of efficacies of full and partial agonists. However, it also produces a reduction of maximal currents at saturating agonist concentrations without change of the unitary channel conductance, an effect reversed by the positive allosteric modulator propofol. The cross-linking thus favors a unique closed state distinct from the resting and longest-lived desensitized states. Fitting the data according to a three-state allosteric model suggests that it could correspond to a LC conformation. Its plausible assignment to a gating intermediate or a fast-desensitized state is discussed. Overall, our data show that relative movement of two loops at the extracellular-transmembrane interface accompanies orthosteric agonist-mediated gating.
Ghoshal, Anirban; Kumar, Ajeet; Yugandhar, Doddapaneni; Sona, Chandan; Kuriakose, Sunu; Nagesh, Kommu; Rashid, Mamunur; Singh, Sandeep K; Wahajuddin, Muhammad; Yadav, Prem N; Srivastava, Ajay K
2018-05-25
Four series of structurally related β-lactams, 2,5-pyrrolidinediones, azaspirodecatrienediones (ASDT) and dihydropyrroloquinoxalinetriones (DPQT) were synthesized by utilizing post-Ugi modifications in one-pot, and their activity towards human histamine-3 receptor (H3R) was evaluated. Out of 94 compounds, screened against histamine-3 receptor (H3R), 21 compounds showed high H3R selective agonist property with EC 50 values ranging from 187 nM to 0.1 nM, whereas none of the compound was found to have the affinity towards other receptors of histamine family such as histamine H1, H2, and H4 receptor. All active compounds have no assay interference activity as determined by in-silico analysis and receptor independent luciferase assay and cell cytotoxicity assay. Given the important role of H3R in hypophagia, we also evaluated the in vivo effect of the representative compound 6k on the cumulative food intake in diet induce obese C57BL6/J mice. Interestingly, we observed that single dose administration (20 mg/kg, intraperitoneal injection) of 6k significantly suppressed cumulative food intake, while no significant effect was observed at 10 mg/kg. These results suggest that β-lactams, 2,5-pyrrolidinediones, azaspirodecatrienediones (ASDT) and dihydropyrroloquinoxalinetriones (DPQT) could be useful for the development of anti-obesity candidate drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Plazinska, Anita; Kolinski, Michal; Wainer, Irving W; Jozwiak, Krzysztof
2013-11-01
The β2 adrenergic receptor (β2-AR) has become a model system for studying the ligand recognition process and mechanism of the G protein coupled receptors activation. In the present study stereoisomers of fenoterol and some of its derivatives (N = 94 molecules) were used as molecular probes to identify differences in stereo-recognition interactions between β2-AR and structurally similar agonists. The present study aimed at determining the 3D molecular models of the fenoterol derivative-β2-AR complexes. Molecular models of β2-AR have been developed by using the crystal structure of the human β2-AR T4 lysozyme fusion protein with bound (S)-carazolol (PDB ID: 2RH1) and more recently reported structure of a nanobody-stabilized active state of the β2-AR with the bound full agonist BI-167107 (PDB ID: 3P0G). The docking procedure allowed us to study the similarities and differences in the recognition binding site(s) for tested ligands. The agonist molecules occupied the same binding region, between TM III, TM V, TM VI and TM VII. The residues identified by us during docking procedure (Ser203, Ser207, Asp113, Lys305, Asn312, Tyr308, Asp192) were experimentally indicated in functional and biophysical studies as being very important for the agonist-receptor interactions. Moreover, the additional space, an extension of the orthosteric pocket, was identified and described. Furthermore, the molecular dynamics simulations were used to study the molecular mechanism of interaction between ligands ((R,R')- and (S,S')-fenoterol) and β2-AR. Our research offers new insights into the ligand stereoselective interaction with one of the most important GPCR member. This study may also facilitate the design of improved selective medications, which can be used to treat, prevent and control heart failure symptoms.
Scheffel, Corinna; Niessen, Karin V; Rappenglück, Sebastian; Wanner, Klaus T; Thiermann, Horst; Worek, Franz; Seeger, Thomas
2018-09-01
Organophosphorus compounds, including nerve agents and pesticides, exert their toxicity through irreversible inhibition of acetylcholinesterase (AChE) resulting in an accumulation of acetylcholine and functional impairment of muscarinic and nicotinic acetylcholine receptors. Current therapy comprises oximes to reactivate AChE and atropine to antagonize effects induced by muscarinic acetylcholine receptors. Nicotinic malfunction leading to depression of the central and peripheral respiratory system is not directly treated calling for alternative therapeutic interventions. In the present study, we investigated the electrophysiological properties of the human nAChR subtype α7 (hα7-nAChR) and the functional effect of the 4-tert-butyl bispyridinium (BP) compound MB327 and of a series of novel substituted bispyridinium compounds on the receptors by an automated patch clamp technique. Activation of hα7-nAChRs was induced by nicotine and acetylcholine demonstrating rapid cationic influx up to 100μM. Agonist-induced currents decayed within a few milliseconds revealing fast desensitization of the receptors. Application of higher agonist concentrations led to a decline of current amplitudes which seemed to be due to increasing receptor desensitization. When 100μM of agonist was coapplied with low concentrations of the well characterized α7-specific positive allosteric modulator PNU-120596 (1μM-10μM), the maximum response and duration of nAChR activation were markedly augmented indicating an elongated mean open-time of receptors and prevention of receptor desensitization. However, co-application of increasing PNU-120596 concentrations (>10μM) with agonist induced a decline of potentiated current responses. Although less pronounced than PNU-120596, six of the twenty tested substituted BP compounds, in particular those with a substituent at 3-position and 4-position at the pyridinium moieties, were found to potentiate current responses of hα7-nAChRs, most pronounced MB327.This effect was clearly depended on the presence of the agonist indicating a positive allosteric mechanism of these compounds. Besides potentiation at low concentrations, these compounds seem to interact at different binding sites on hα7-nAChRs since enhancement decreased at high concentrations. The residual fourteen BP compounds, possessing either an isopropyl-group or more than one group at the pyridinium moiety, antagonized nicotinic currents exhibiting IC 50 of low up to high micromolar concentrations (∼1μM-300μM). Copyright © 2017 Elsevier B.V. All rights reserved.
Functional map of arrestin binding to phosphorylated opsin, with and without agonist.
Peterhans, Christian; Lally, Ciara C M; Ostermaier, Martin K; Sommer, Martha E; Standfuss, Jörg
2016-06-28
Arrestins desensitize G protein-coupled receptors (GPCRs) and act as mediators of signalling. Here we investigated the interactions of arrestin-1 with two functionally distinct forms of the dim-light photoreceptor rhodopsin. Using unbiased scanning mutagenesis we probed the individual contribution of each arrestin residue to the interaction with the phosphorylated apo-receptor (Ops-P) and the agonist-bound form (Meta II-P). Disruption of the polar core or displacement of the C-tail strengthened binding to both receptor forms. In contrast, mutations of phosphate-binding residues (phosphosensors) suggest the phosphorylated receptor C-terminus binds arrestin differently for Meta II-P and Ops-P. Likewise, mutations within the inter-domain interface, variations in the receptor-binding loops and the C-edge of arrestin reveal different binding modes. In summary, our results indicate that arrestin-1 binding to Meta II-P and Ops-P is similarly dependent on arrestin activation, although the complexes formed with these two receptor forms are structurally distinct.
Molecular Determinants of Magnolol Targeting Both RXRα and PPARγ
Chen, Lili; Chen, Jing; Hu, Lihong; Jiang, Hualiang; Shen, Xu
2011-01-01
Nuclear receptors retinoic X receptor α (RXRα) and peroxisome proliferator activated receptor γ (PPARγ) function potently in metabolic diseases, and are both important targets for anti-diabetic drugs. Coactivation of RXRα and PPARγ is believed to synergize their effects on glucose and lipid metabolism. Here we identify the natural product magnolol as a dual agonist targeting both RXRα and PPARγ. Magnolol was previously reported to enhance adipocyte differentiation and glucose uptake, ameliorate blood glucose level and prevent development of diabetic nephropathy. Although magnolol can bind and activate both of these two nuclear receptors, the transactivation assays indicate that magnolol exhibits biased agonism on the transcription of PPAR-response element (PPRE) mediated by RXRα:PPARγ heterodimer, instead of RXR-response element (RXRE) mediated by RXRα:RXRα homodimer. To further elucidate the molecular basis for magnolol agonism, we determine both the co-crystal structures of RXRα and PPARγ ligand-binding domains (LBDs) with magnolol. Structural analyses reveal that magnolol adopts its two 5-allyl-2-hydroxyphenyl moieties occupying the acidic and hydrophobic cavities of RXRα L-shaped ligand-binding pocket, respectively. While, two magnolol molecules cooperatively accommodate into PPARγ Y-shaped ligand-binding pocket. Based on these two complex structures, the key interactions for magnolol activating RXRα and PPARγ are determined. As the first report on the dual agonist targeting RXRα and PPARγ with receptor-ligand complex structures, our results are thus expected to help inspect the potential pharmacological mechanism for magnolol functions, and supply useful hits for nuclear receptor multi-target ligand design. PMID:22140563
Agonist trapped in ATP-binding sites of the P2X2 receptor.
Jiang, Ruotian; Lemoine, Damien; Martz, Adeline; Taly, Antoine; Gonin, Sophie; Prado de Carvalho, Lia; Specht, Alexandre; Grutter, Thomas
2011-05-31
ATP-gated P2X receptors are trimeric ion channels, as recently confirmed by X-ray crystallography. However, the structure was solved without ATP and even though extracellular intersubunit cavities surrounded by conserved amino acid residues previously shown to be important for ATP function were proposed to house ATP, the localization of the ATP sites remains elusive. Here we localize the ATP-binding sites by creating, through a proximity-dependent "tethering" reaction, covalent bonds between a synthesized ATP-derived thiol-reactive P2X2 agonist (NCS-ATP) and single cysteine mutants engineered in the putative binding cavities of the P2X2 receptor. By combining whole-cell and single-channel recordings, we report that NCS-ATP covalently and specifically labels two previously unidentified positions N140 and L186 from two adjacent subunits separated by about 18 Å in a P2X2 closed state homology model, suggesting the existence of at least two binding modes. Tethering reaction at both positions primes subsequent agonist binding, yet with distinct functional consequences. Labeling of one position impedes subsequent ATP function, which results in inefficient gating, whereas tethering of the other position, although failing to produce gating by itself, enhances subsequent ATP function. Our results thus define a large and dynamic intersubunit ATP-binding pocket and suggest that receptors trapped in covalently agonist-bound states differ in their ability to gate the ion channel.
Synthesis and Biological Activity of 2',3'-iso-Aryl-abscisic Acid Analogs.
Wan, Chuan; Wang, Mingan; Yang, Dongyan; Han, Xiaoqiang; Che, Chuanliang; Ding, Shanshan; Xiao, Yumei; Qin, Zhaohai
2017-12-15
2',3'- iso -Benzoabscisic acid ( iso -PhABA), an excellent selective abscisic acid (ABA) analog, was developed in our previous work. In order to find its more structure-activity information, some structural modifications were completed in this paper, including the substitution of phenyl ring and replacing the ring with heterocycles. Thus, 16 novel analogs of iso -PhABA were synthesized and screened with three bioassays, Arabidopsis and lettuce seed germination and rice seedling elongation. Some of them, i.e., 2',3'- iso -pyridoabscisic acid ( iso -PyABA) and 2',3'- iso -franoabscisic acid ( iso -FrABA), displayed good bioactivities that closed to iso -PhABA and natural (+)-ABA. Some others, for instance, substituted- iso -PhABA, exhibited certain selectivity to different physiological process when compared to iso -PhABA or (+)-ABA. These analogs not only provided new candidates of ABA-like synthetic plant growth regulators (PGRs) for practical application, but also new potential selective agonist/antagonist for probing the specific function of ABA receptors.
Jorgensen, Rasmus; Kubale, Valentina; Vrecl, Milka; Schwartz, Thue W; Elling, Christian E
2007-07-01
The glucagon-like peptide (GLP)-1 receptor is a promising target for the treatment of type 2 diabetes and obesity, and there is great interest in characterizing the pharmacology of the GLP-1 receptor and its ligands. In the present report, we have applied bioluminescence resonance energy transfer assays to measure agonist-induced recruitment of betaarrestins and G-protein-coupled receptor kinase (GRK) 2 to the GLP-1 receptor in addition to traditional measurements of second messenger generation. The peptide hormone oxyntomodulin is described in the literature as a full agonist on the glucagon and GLP-1 receptors. Surprisingly, despite being full agonists in GLP-1 receptor-mediated cAMP accumulation, oxyntomodulin and glucagon were observed to be partial agonists in recruiting betaarrestins and GRK2 to the GLP-1 receptor. We suggest that oxyntomodulin and glucagon are biased ligands on the GLP-1 receptor.
Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.
Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi
2016-05-03
Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.
Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors
Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi
2016-01-01
Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raggenbass, M.; Tribollet, E.; Dreifuss, J.J.
1987-11-01
Extracellular recordings were obtained from single neurons located in the lateral septum, an area known to receive a vasopressinergic innervation in the rat brain. Approximately half of the neurons tested responded to 8-L-arginine vasopressin (AVP) by a marked increase in firing rate at concentrations greater than 1 nM. The effect of vasopressin was blocked by synthetic structural analogues possessing antagonistic properties on peripheral vasopressin and oxytocin receptors. Oxytocin was much less potent than vasopressin in firing septal neurons, and a selective oxytocic agonist was totally ineffective. The action of vasopressin on neuronal firing was mimicked by the vasopressor agonist (2-phenylalanine,8-ornithine)vasotocinmore » but not by the selective antidiuretic agonist 1-deamino(8-D-arginine)vasopressin. In a parallel study, sites that bind (/sup 3/H)AVP at low concentration (1.5 nM) were found by in vitro autoradiography in the lateral septum. Adjacent sections were also incubated with 1.5 mM (/sup 3/H)AVP and, in addition, with 100 nM (2-phenylalanine,8-ornithine)vasotocin or 1-deamino(8-D-arginine)vasopressin--i.e., the same compounds as those used for the electrophysiological study. Results showed that the vasopressor agonist, but not the antidiuretic agonist, displaced (/sup 3/H)AVP, thus indicating that the vasopressin binding sites detected by autoradiography in the septum were V1 (vasopressor type) rather than V2 (antidiuretic type) receptors. Based on the electrophysiological evidence, we conclude that these receptors, when occupied, lead to increased firing of lateral septal neurons.« less
Structure of the full-length TRPV2 channel by cryo-EM
NASA Astrophysics Data System (ADS)
Huynh, Kevin W.; Cohen, Matthew R.; Jiang, Jiansen; Samanta, Amrita; Lodowski, David T.; Zhou, Z. Hong; Moiseenkova-Bell, Vera Y.
2016-03-01
Transient receptor potential (TRP) proteins form a superfamily Ca2+-permeable cation channels regulated by a range of chemical and physical stimuli. Structural analysis of a `minimal' TRP vanilloid subtype 1 (TRPV1) elucidated a mechanism of channel activation by agonists through changes in its outer pore region. Though homologous to TRPV1, other TRPV channels (TRPV2-6) are insensitive to TRPV1 activators including heat and vanilloids. To further understand the structural basis of TRPV channel function, we determined the structure of full-length TRPV2 at ~5 Å resolution by cryo-electron microscopy. Like TRPV1, TRPV2 contains two constrictions, one each in the pore-forming upper and lower gates. The agonist-free full-length TRPV2 has wider upper and lower gates compared with closed and agonist-activated TRPV1. We propose these newly revealed TRPV2 structural features contribute to diversity of TRPV channels.
Structure of the full-length TRPV2 channel by cryo-EM
Huynh, Kevin W.; Cohen, Matthew R.; Jiang, Jiansen; Samanta, Amrita; Lodowski, David T.; Zhou, Z. Hong; Moiseenkova-Bell, Vera Y.
2016-01-01
Transient receptor potential (TRP) proteins form a superfamily Ca2+-permeable cation channels regulated by a range of chemical and physical stimuli. Structural analysis of a ‘minimal' TRP vanilloid subtype 1 (TRPV1) elucidated a mechanism of channel activation by agonists through changes in its outer pore region. Though homologous to TRPV1, other TRPV channels (TRPV2–6) are insensitive to TRPV1 activators including heat and vanilloids. To further understand the structural basis of TRPV channel function, we determined the structure of full-length TRPV2 at ∼5 Å resolution by cryo-electron microscopy. Like TRPV1, TRPV2 contains two constrictions, one each in the pore-forming upper and lower gates. The agonist-free full-length TRPV2 has wider upper and lower gates compared with closed and agonist-activated TRPV1. We propose these newly revealed TRPV2 structural features contribute to diversity of TRPV channels. PMID:27021073
Structure of the full-length TRPV2 channel by cryo-EM.
Huynh, Kevin W; Cohen, Matthew R; Jiang, Jiansen; Samanta, Amrita; Lodowski, David T; Zhou, Z Hong; Moiseenkova-Bell, Vera Y
2016-03-29
Transient receptor potential (TRP) proteins form a superfamily Ca(2+)-permeable cation channels regulated by a range of chemical and physical stimuli. Structural analysis of a 'minimal' TRP vanilloid subtype 1 (TRPV1) elucidated a mechanism of channel activation by agonists through changes in its outer pore region. Though homologous to TRPV1, other TRPV channels (TRPV2-6) are insensitive to TRPV1 activators including heat and vanilloids. To further understand the structural basis of TRPV channel function, we determined the structure of full-length TRPV2 at ∼5 Å resolution by cryo-electron microscopy. Like TRPV1, TRPV2 contains two constrictions, one each in the pore-forming upper and lower gates. The agonist-free full-length TRPV2 has wider upper and lower gates compared with closed and agonist-activated TRPV1. We propose these newly revealed TRPV2 structural features contribute to diversity of TRPV channels.
Politi, Regina; Rusyn, Ivan; Tropsha, Alexander
2016-01-01
The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure-Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R2=0.55 and CCR=0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R2=0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. PMID:25058446
Emerging drugs for neuropathic pain.
Gilron, Ian; Dickenson, Anthony H
2014-09-01
Neuropathic pain is a costly and disabling condition, which affects up to 8% of the population. Available therapies often provide incomplete pain relief and treatment-related side effects are common. Preclinical neuropathic pain models have facilitated identification of several promising targets, which have progressed to human clinical phases of evaluation. A systematic database search yielded 25 new molecular entities with specified pharmacological mechanisms that have reached Phase II or III clinical trials. These include calcium channel antagonists, vanilloid receptor antagonists, potassium channel agonists, NMDA antagonists, novel opioid receptor agonists, histamine H3 receptor antagonists, a novel sodium channel antagonist, serotonin modulators, a novel acetylcholine receptor agonist, α-2b adrenoreceptor agonist, cannabinoid CB2 receptor agonist, nitric oxide synthase inhibitor, orexin receptor antagonist, angiotensin II 2 antagonist, imidazoline I2 receptor agonist, apoptosis inhibitor and fatty acid amide hydrolase inhibitor. Although the diversity of pharmacological mechanisms of interest emphasise the complexity of neuropathic pain transmission, the considerable number of agents under development reflect a continued enthusiasm in drug development for neuropathic pain. Ongoing enhancements in methodology of both preclinical and clinical research and closer translation in both directions are expected to more efficiently identify new agents, which will improve the management of neuropathic pain.
Norepinephrine Triggers Metaplasticity of LTP by Increasing Translation of Specific mRNAs
ERIC Educational Resources Information Center
Maity, Sabyasachi; Rah, Sean; Sonenberg, Nahum; Gkogkas, Christos G.; Nguyen, Peter V.
2015-01-01
Norepinephrine (NE) is a key modulator of synaptic plasticity in the hippocampus, a brain structure crucially involved in memory formation. NE boosts synaptic plasticity mostly through initiation of signaling cascades downstream from beta (ß)-adrenergic receptors (ß-ARs). Previous studies demonstrated that a ß-adrenergic receptor agonist,…
Mechanisms of inverse agonist action at D2 dopamine receptors
Roberts, David J; Strange, Philip G
2005-01-01
Mechanisms of inverse agonist action at the D2(short) dopamine receptor have been examined. Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [3H]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. Competition of inverse agonists versus [3H]NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. Ki values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. Kcoupled and Kuncoupled were statistically different for the set of compounds tested (ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. These observations were supported by simulations of these competition experiments according to the extended ternary complex model. Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [35S]GTPγS binding to varying degrees in concentration–response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (−)-sulpiride was unaffected. These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism. PMID:15735658
Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, Esam E; Jakubík, Jan
2015-07-01
We mutated key amino acids of the human variant of the M1 muscarinic receptor that target ligand binding, receptor activation, and receptor-G protein interaction. We compared the effects of these mutations on the action of two atypical M1 functionally preferring agonists (N-desmethylclozapine and xanomeline) and two classical non-selective orthosteric agonists (carbachol and oxotremorine). Mutations of D105 in the orthosteric binding site and mutation of D99 located out of the orthosteric binding site decreased affinity of all tested agonists that was translated as a decrease in potency in accumulation of inositol phosphates and intracellular calcium mobilization. Mutation of D105 decreased the potency of the atypical agonist xanomeline more than that of the classical agonists carbachol and oxotremorine. Mutation of the residues involved in receptor activation (D71) and coupling to G-proteins (R123) completely abolished the functional responses to both classical and atypical agonists. Our data show that both classical and atypical agonists activate hM1 receptors by the same molecular switch that involves D71 in the second transmembrane helix. The principal difference among the studied agonists is rather in the way they interact with D105 in the orthosteric binding site. Furthermore, our data demonstrate a key role of D105 in xanomeline wash-resistant binding and persistent activation of hM1 by wash-resistant xanomeline. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jones, Brian W; Hinkle, Patricia M
2008-07-01
Arrestin binding to agonist-occupied phosphorylated G protein-coupled receptors typically increases the affinity of agonist binding, increases resistance of receptor-bound agonist to removal with high acid/salt buffer, and leads to receptor desensitization and internalization. We tested whether thyrotropin-releasing hormone (TRH) receptors lacking phosphosites in the C-terminal tail could form stable and functional complexes with arrestin. Fibroblasts from mice lacking arrestins 2 and 3 were used to distinguish between arrestin-dependent and -independent effects. Arrestin did not promote internalization or desensitization of a receptor that had key Ser/Thr phosphosites mutated to Ala (4Ala receptor). Nevertheless, arrestin greatly increased acid/salt resistance and the affinity of 4Ala receptor for TRH. Truncation of 4Ala receptor just distal to the key phosphosites (4AlaStop receptor) abolished arrestin-dependent acid/salt resistance but not the effect of arrestin on agonist affinity. Arrestin formed stable complexes with activated wild-type and 4Ala receptors but not with 4AlaStop receptor, as measured by translocation of arrestin-green fluorescent protein to the plasma membrane or chemical cross-linking. An arrestin mutant that does not interact with clathrin and AP2 did not internalize receptor but still promoted high affinity TRH binding, acid/salt resistance, and desensitization. A sterically restricted arrestin mutant did not cause receptor internalization or desensitization but did promote acid/salt resistance and high agonist affinity. The results demonstrate that arrestin binds to proximal or distal phosphosites in the receptor tail. Arrestin binding at either site causes increased agonist affinity and acid/salt resistance, but only the proximal phosphosites evoke the necessary conformational changes in arrestin for receptor desensitization and internalization.
Tallent, M; Liapakis, G; O'Carroll, A M; Lolait, S J; Dichter, M; Reisine, T
1996-04-01
The somatostatin receptor subtypes SSTR2 and SSTR5 mediate distinct endocrine and exocrine functions of somatostatin and may also be involved in mediating the neuromodulatory actions of somatostatin in the brain. To investigate whether these receptors couple to voltage-sensitive Ca2+ channels, SSTR2 and SSTR5 selective agonists were tested for their effects on AtT-20 cells using whole cell patch clamp techniques. The SSTR2 selective agonist MK 678 inhibited Ca2+ currents in AtT-20 cells. The effects of MK 678 were reversible and blocked by pertussis toxin pretreatment, suggesting that SSTR2 couples to the L-type Ca2+ channels via G proteins. Other SSTR2-selective agonists, including BIM 23027 and NC8-12, were able to inhibit the Ca2+ currents in these cells. The SSTR5 selective agonist BIM 23052 also inhibited the Ca2+ currents in these cells and this effect was reversible and blocked by pertussis toxin treatment. The ability of SSTR5 to mediate inhibition of the Ca2+ current was greatly attenuated by pretreatment with the SSTR5-selective agonist BIM 23052, whereas SSTR2-mediated inhibition of the Ca2+ current was not altered by pretreatment with the SSTR2-selective agonist MK 678. Thus, the SSTR2 and SSTR5 couplings to the Ca2+ current are differentially regulated. The peptide L362,855, which we previously have shown to have high affinity for the cloned SSTR5, had minimal effects on Ca2+ currents in AtT-20 cells at concentrations up to 100 nM and did not alter the ability of MK 678 to inhibit Ca2+ currents. However, it completely antagonized the effects of the SSTR5-selective agonist BIM 23052 on the Ca2+ currents. L362,855 is an antagonist/partial agonist at SSTR5 since it can reduce Ca2+ currents in these cells at concentrations above 100 nM. L362,855 is also an antagonist/partial agonist at the cloned rat SSTR5 expressed in CHO cells since it is able to block the inhibition of cAMP accumulation induced by somatostatin at concentrations below 100 nM but at higher concentrations can inhibit cAMP formation itself. Structural analysis of L362,855 reveals that only a single hydroxyl group at residue seven in the peptide is needed to convert the compound from an antagonist/partial agonist to a full agonist at SSTR5. These studies reveal that two different somatostatin receptor subtypes, SSTR2 and SSTR5, can mediate the inhibition of an L-type Ca2+ channel in AtT-20 cells by somatostatin. The receptor subtype responses can be distinguished by selective agonists and antagonists and are regulated differently by agonist pretreatment. The inhibition of Ca2+ influx into endocrine cells and neurons may be a major cellular mechanism by which somatostatin modulates hormone and neurotransmitter release. Our results reveal that at least two receptor subtypes can mediate this cellular response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Kennedy, Lawrence J.; Shi, Yan
2010-04-12
An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and 410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystalmore » structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.« less
Structure-based drug design for G protein-coupled receptors.
Congreve, Miles; Dias, João M; Marshall, Fiona H
2014-01-01
Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed. © 2014 Elsevier B.V. All rights reserved.
Neurokinin receptor modulation of respiratory activity in the rabbit.
Bongianni, Fulvia; Mutolo, Donatella; Cinelli, Elenia; Pantaleo, Tito
2008-06-01
The respiratory role of neurokinin (NK) receptors was investigated in alpha-chloralose-urethane-anaesthetized, vagotomized, paralysed and artificially ventilated rabbits by using bilateral microinjections (30-50 nL) of NK receptor agonists and antagonists. Microinjections were performed in a region located just caudal to the rostral expiratory neurons. This region displayed features similar to those of the pre-Bötzinger complex (pre-BötC) of adult cats and rats, and proved to produce excitatory respiratory effects in response to microinjections of D,L-homocysteic acid. We used as agonists (0.1, 0.5 and 5 mM) substance P (SP), the NK1 receptor agonists [Sar(9), Met(O2)(11)]-SP and GR 73632, the NK2 receptor agonist NKA, the NK3 receptor agonist senktide, and as antagonists (5 mM) the NK1 receptor antagonist CP-99,994 and the NK2 receptor antagonist MEN 10376. SP always increased respiratory frequency, but NK1 receptor agonists did not change respiratory variables. NKA and senktide at 5 mm increased respiratory frequency. CP-99,994 caused increases in respiratory frequency and did not antagonize the effects of SP. MEN 10376 prevented the respiratory responses induced by NKA and reduced those provoked by SP. SP or the NK1 receptor agonists (5 mM) injected (1 microL) into the IV ventricle caused marked excitatory effects on respiration. The results suggest that NK2 and NK3, but not NK1, receptors are involved in the excitatory modulation of inspiratory activity within the investigated region and are consistent with the notion that the pre-BötC neurons are important components of the inspiratory rhythm-generating mechanisms.
Bednarek, Maria A; MacNeil, Tanya; Tang, Rui; Fong, Tung M; Cabello, M Angeles; Maroto, Marta; Teran, Ana
2007-05-01
Alpha-melanotropin, Ac-Ser(1)-Tyr-Ser-Met-Glu-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2)(1), is a non-selective endogenous agonist for the melanocortin receptor 5; the receptor present in various peripheral tissues and in the brain, cortex and cerebellum. Most of the synthetic analogs of alphaMSH, including a broadly used and more potent the NDP-alphaMSH peptide, Ac-Ser(1)-Tyr-Ser-Nle(4)-Glu-His(6)-D-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2), are also not particularly selective for MC5R. To elucidate physiological functions of the melanocortin receptor 5 in rodents and humans, the receptor subtype selective research tools are needed. We report herein syntheses and pharmacological evaluation in vitro of several analogs of NDP-alphaMSH which are highly potent and specific agonists for the human MC5R. The new linear peptides, of structures and solubility properties similar to those of the endogenous ligand alphaMSH, are exemplified by compound 7, Ac-Ser(1)-Tyr-Ser-Met-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2) (Oic: octahydroindole-2-COOH, 4,4'-Bip: 4,4'-biphenylalanine, Pip: pipecolic acid), shortly NODBP-alphaMSH, which has an IC(50)=0.74 nM (binding assay) and EC(50)=0.41 (cAMP production assay) at hMC5R nM and greater than 3500-fold selectivity with respect to the melanocortin receptors 1b, 3 and 4. A shorter peptide derived from NODBP-alphaMSH: Ac-Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9) -NH(2) (17) was measured to be an agonist only 10-fold less potent at hMC5R than the full length parent peptide. In the structure of this smaller analog, the Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8) segment was found to be critical for high agonist potency, while the C-terminal Trp(9) residue was shown to be required for high hMC5R selectivity versus hMC1b,3,4R.
Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors
Farroni, Jeffrey S; McCool, Brian A
2004-01-01
Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology. PMID:15301692
Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors.
Farroni, Jeffrey S; McCool, Brian A
2004-08-09
Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The beta-amino acid taurine possessed 30-50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for beta-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology.
Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.
Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E
1998-11-01
Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT.
Small-molecule agonists for the glucagon-like peptide 1 receptor
Knudsen, Lotte Bjerre; Kiel, Dan; Teng, Min; Behrens, Carsten; Bhumralkar, Dilip; Kodra, János T.; Holst, Jens J.; Jeppesen, Claus B.; Johnson, Michael D.; de Jong, Johannes Cornelis; Jorgensen, Anker Steen; Kercher, Tim; Kostrowicki, Jarek; Madsen, Peter; Olesen, Preben H.; Petersen, Jacob S.; Poulsen, Fritz; Sidelmann, Ulla G.; Sturis, Jeppe; Truesdale, Larry; May, John; Lau, Jesper
2007-01-01
The peptide hormone glucagon-like peptide (GLP)-1 has important actions resulting in glucose lowering along with weight loss in patients with type 2 diabetes. As a peptide hormone, GLP-1 has to be administered by injection. Only a few small-molecule agonists to peptide hormone receptors have been described and none in the B family of the G protein coupled receptors to which the GLP-1 receptor belongs. We have discovered a series of small molecules known as ago-allosteric modulators selective for the human GLP-1 receptor. These compounds act as both allosteric activators of the receptor and independent agonists. Potency of GLP-1 was not changed by the allosteric agonists, but affinity of GLP-1 for the receptor was increased. The most potent compound identified stimulates glucose-dependent insulin release from normal mouse islets but, importantly, not from GLP-1 receptor knockout mice. Also, the compound stimulates insulin release from perfused rat pancreas in a manner additive with GLP-1 itself. These compounds may lead to the identification or design of orally active GLP-1 agonists. PMID:17213325
Manabe, Noriaki; Wong, Banny S; Camilleri, Michael
2010-06-01
Gastrointestinal (GI) dysmotility is an important mechanism in functional GI disorders (FGIDs) including constipation, irritable bowel syndrome, functional dyspepsia, and gastroparesis. 5-hydroxytryptamine(4) (5-HT(4)) receptors are targets for the treatment of GI motility disorders. However, older 5-HT(4) receptor agonists had limited clinical success because they were associated with changes in the function of the cardiac HERG potassium channel. We conducted a PubMed search using the following key words alone or in combination: 5-HT(4), safety, toxicity, pharmacokinetics, pharmacodynamics, clinical trial, cardiac, hERG, arrhythmia, potassium current, elderly, prucalopride, ATI-7505, and velusetrag (TD-5108), to review mechanisms of action, clinical efficacy, safety and tolerability of three new-generation 5-HT(4) receptor agonists. Prucalopride, ATI-7505, and velusetrag (TD-5108) are highly selective, high-affinity 5-HT(4) receptor agonists that are devoid of action on other receptors within their therapeutic range. Their efficacy has been demonstrated in pharmacodynamic studies which demonstrate acceleration of colonic transit and, to a variable degree, in clinical trials that significantly relieve chronic constipation. Currently available evidence shows that the new 5-HT(4) receptor agonists have safe cardiac profiles. New-generation 5-HT(4) receptor agonists and future drugs targeting organ-specific splice variants are promising approaches to treat GI dysmotility, particularly colonic diseases.
Saleh, Noureldin; Ibrahim, Passainte; Saladino, Giorgio; Gervasio, Francesco Luigi; Clark, Timothy
2017-05-22
A generally applicable metadynamics scheme for predicting the free energy profile of ligand binding to G-protein-coupled receptors (GPCRs) is described. A common and effective collective variable (CV) has been defined using the ideally placed and highly conserved Trp6.48 as a reference point for ligand-GPCR distance measurement and the common orientation of GPCRs in the cell membrane. Using this single CV together with well-tempered multiple-walker metadynamics with a funnel-like boundary allows an efficient exploration of the entire ligand binding path from the extracellular medium to the orthosteric binding site, including vestibule and intermediate sites. The protocol can be used with X-ray structures or high-quality homology models (based on a high-quality template and after thorough refinement) for the receptor and is universally applicable to agonists, antagonists, and partial and reverse agonists. The root-mean-square error (RMSE) in predicted binding free energies for 12 diverse ligands in five receptors (a total of 23 data points) is surprisingly small (less than 1 kcal mol -1 ). The RMSEs for simulations that use receptor X-ray structures and homology models are very similar.
Discrimination between olfactory receptor agonists and non-agonists.
Topin, Jérémie; de March, Claire A; Charlier, Landry; Ronin, Catherine; Antonczak, Serge; Golebiowski, Jérôme
2014-08-11
A joint approach combining free-energy calculations and calcium-imaging assays on the broadly tuned human 1G1 olfactory receptor is reported. The free energy of binding of ten odorants was computed by means of molecular-dynamics simulations. This state function allows separating the experimentally determined eight agonists from the two non-agonists. This study constitutes a proof-of-principle for the computational deorphanization of olfactory receptors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Differential agonist sensitivity of glycine receptor α2 subunit splice variants
Miller, Paul S; Harvey, Robert J; Smart, Trevor G
2004-01-01
The glycine receptor (GlyR) α2A and α2B splice variants differ by a dual, adjacent amino acid substitution from α2AV58,T59 to α2BI58,A59 in the N-terminal extracellular domain. Comparing the effects of the GlyR agonists, glycine, β-alanine and taurine, on the GlyR α2 isoforms, revealed a significant increase in potency for all three agonists at the α2B variant. The sensitivities of the splice variants to the competitive antagonist, strychnine, and to the biphasic modulator Zn2+, were comparable. In contrast, the allosteric inhibitor picrotoxin was more potent on GlyR α2A compared to GlyR α2B receptors. Coexpression of α2A or α2B subunits with the GlyR β subunit revealed that the higher agonist potencies observed with the α2B homomer were retained for the α2Bβ heteromer. The identical sensitivity to strychnine combined with a reduction in the maximum current induced by the partial agonist taurine at the GlyR α2A homomer, suggested that the changed sensitivity to agonists is in accordance with a modulation of agonist efficacy rather than agonist affinity. An effect on agonist efficacy was also supported by using a structural model of the GlyR, localising the region of splice variation to the proposed docking region between GlyR loop 2 and the TM2-3 loop, an area associated with channel activation. The existence of a spasmodic mouse phenotype linked to a GlyR α1A52S mutation, the equivalent position to the source of the α2 splice variation, raises the possibility that the GlyR α2 splice variants may be responsible for distinct roles in neuronal function. PMID:15302677
Eniafe, Gabriel O; Metibemu, Damilohun S; Omotuyi, Olaposi I; Ogunleye, Adewale J; Inyang, Olumide K; Adelakun, Niyi S; Adeniran, Yakubu O; Adewumi, Bamidele; Enejoh, Ojochenemi A; Osunmuyiwa, Joseph O; Shodehinde, Sidiqat A; Oyeneyin, Oluwatoba E
2018-01-01
Asthma is an inflammatory disease of the airway that poses a major threat to human health. With increase industrialization in the developed and developing countries, the incidence of asthma is on the rise. The β2-adrenergic receptor is an important target in designing anti-asthmatic drugs. The synthetic agonists of the β2-adrenergic receptor used over the years proved effective, but with indispensable side effects, thereby limiting their therapeutic use on a long-term scale. Inverse agonists of this receptor, although initially contraindicated, had been reported to have long-term beneficial effects. Phytochemicals from Agemone mexicana were screened against the human β2-adrenergic receptor in the agonist, inverse agonist, covalent agonist, and the antagonist conformations. Molecular docking of the phyto-constituents showed that the plant constituents bind better to the inverse agonist bound conformation of the protein, and revealed two flavanones; eriodictyol and hesperitin, with lower free energy (ΔG) values and higher affinities to the inverse agonist bound receptor than the co-crystallized ligand. Eriodictyol and hesperitin bind with the glide score of -10.684 and - 9.958 kcal/mol respectively, while the standard compound ICI-118551, binds with glide score of -9.503 kcal/mol. Further interaction profiling at the protein orthosteric site and ADME/Tox screening confirmed the drug-like properties of these compounds.
Mixed Kappa/Mu Opioid Receptor Agonists: The 6β-Naltrexamines
Cami-Kobeci, Gerta; Neal, Adrian P.; Bradbury, Faye A.; Purington, Lauren C.; Aceto, Mario D.; Harris, Louis S.; Lewis, John W.; Traynor, John R.; Husbands, Stephen M.
2011-01-01
Ligands from the naltrexamine series have consistently demonstrated agonist activity at kappa opioid receptors (KOR), with varying activity at the mu opioid receptor (MOR). Various 6β-cinnamoylamino derivatives were made with the aim of generating ligands with a KOR agonist/MOR partial agonist profile, as ligands with this activity may be of interest as treatment agents for cocaine abuse. The ligands all displayed the desired high affinity, non-selective binding in vitro and in the functional assays were high efficacy KOR agonists with some partial agonist activity at MOR. Two of the new ligands (12a, 12b) have been evaluated in vivo, with 12a acting as a KOR agonist, and therefore somewhat similar to the previously evaluated analogues 3–6, while 12b displayed predominant MOR agonist activity. PMID:19253970
Kindling and withdrawal changes at the benzodiazepine receptor.
Little, H J; Nutt, D J; Taylor, S C
1987-01-01
Drugs acting at benzodiazepine receptors can have two types of pharmacological profile: benzodiazepine agonists are anxiolytic, anticonvulsant and sedative, whilst benzo diazepine inverse agonists cause anxiety and convulsions. In 1982 we showed that a benzo diazepine antagonist, Ro 15-1788, prevented the effects of both types of compound at doses without intrinsic activity in the tests used. We put forward the hypothesis that the benzo diazepine receptor complex could undergo two possible conformational changes, resulting in increases (benzodiazepine agonists) or decreases (benzodiazepine inverse agonists) in the effects of the inhibitory transmitter γ-aminobutyric acid (GABA). This concept has been widely accepted. We have now studied the effects of inverse agonists after chronic treatment with inverse agonists themselves and with benzodiazepine agonists, in order to see if tolerance develops (as seen with the agonists) or whether an opposite change occurs.
Discovery of Peripheral κ-Opioid Receptor Agonists as Novel Analgesics.
Suzuki, Shinya; Sugawara, Yuji; Inada, Hideaki; Tsuji, Riichiro; Inoue, Atsushi; Tanimura, Ryuji; Shimozono, Rieko; Konno, Mitsuhiro; Ohyama, Tomofumi; Higashi, Eriko; Sakai, Chizuka; Kawai, Koji
2017-01-01
κ-Opioid receptor agonists with high selectivity over the μ-opioid receptor and peripheral selectivity are attractive targets in the development of drugs for pain. We have previously attempted to create novel analgesics with peripheral selective κ-opioid receptor agonist on the basis of TRK-820. In this study, we elucidated the biological properties of 17-hydroxy-cyclopropylmethyl and 10α-hydroxy derivatives. These compounds were found to have better κ-opioid receptor selectivity and peripheral selectivity than TRK-820.
Bouchelet, Isabelle; Case, Bruce; Olivier, André; Hamel, Edith
2000-01-01
Using subtype-selective 5-HT1 receptor agonists and/or the 5-HT1 receptor antagonist GR127935, we characterized in vitro the 5-HT receptor that mediates the contraction of human and bovine cerebral arteries. Further, we investigated which sumatriptan-sensitive receptors are present in human coronary artery by reverse-transcriptase polymerase chain reaction (RT–PCR). Agonists with affinity at the 5-HT1B receptor, such as sumatriptan, alniditan and/or IS-159, elicited dose-dependent contraction in both human and bovine cerebral arteries. They behaved as full agonists at the sumatriptan-sensitive 5-HT1 receptors in both species. In contrast, PNU-109291 and LY344864, selective agonists at 5-HT1D and 5-HT1F receptors, respectively, were devoid of any significant vasocontractile activity in cerebral arteries, or did not affect the sumatriptan-induced vasocontraction. The rank order of agonist potency was similar in both species and could be summarized as 5-HT=alniditan>sumatriptan=IS-159>>>PNU-109291=LY344864. In bovine cerebral arteries, the 5-HT1 receptor antagonist GR127935 dose-dependently inhibited the vasoconstrictions elicited by both 5-HT and sumatriptan, with respective pA2 values of 8.0 and 8.6. RT–PCR studies in human coronary arteries showed a strong signal for the 5-HT1B receptor while message for the 5-HT1F receptor was weak and less frequently detected. Expression of 5-HT1D receptor mRNA was not detected in any sample. The present results demonstrate that the triptan-induced contraction in brain vessels is mediated exclusively by the 5-HT1B receptor, which is also present in a majority of human coronary arteries. These results suggest that selective 5-HT1D and 5-HT1F receptor agonists might represent new antimigraine drugs devoid of cerebro- and cardiovascular effects. PMID:10711348
Ohtani, Norimasa; Masaki, Eiji
2016-01-01
Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats. Male Sprague-Dawley rats (250-300 g) were anesthetized with sevoflurane and an intrathecal (IT) catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole), or a D2-like receptor antagonist (sulpiride) was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision. Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect. A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold.
De Marco, Rossella; Bedini, Andrea; Spampinato, Santi; Cavina, Lorenzo; Pirazzoli, Edoardo; Gentilucci, Luca
2016-10-13
Recently, the tryptophan-containing noncationizable opioid peptides emerged with atypical structure and unexpected in vivo activity. Herein, we describe analogs of the naturally occurring mixed κ/μ-ligand c[Phe-d-Pro-Phe-Trp] 1 (CJ-15,208). Receptor affinity, selectivity, and agonism/antagonism varied upon enlarging macrocycle size, giving the μ-agonist 9 or the δ-antagonist 10 characterized by low nanomolar affinity. In particular, the μ-agonist c[β-Ala-d-Pro-Phe-Trp] 9 was shown to elicit potent antinociception in a mouse model of visceral pain upon systemic administration.
Gim, Hyo Jin; Li, Hua; Lee, Eun; Ryu, Jae-Ha; Jeon, Raok
2013-01-15
A series of carbazole or phenoxazine containing alkoxyindole-3-acetic acid analogs were prepared as PPARγ/δ agonists and their transactivation activities for PPAR receptor subtypes (α, γ and δ) were investigated. Structure-activity relationship studies disclosed the effect of the lipophilic tail, attaching position of the alkoxy group and N-benzyl substitution at indole. Compound 1b was the most potent for PPARδ and 3b for PPARγ. Molecular modeling suggested two different binding modes of our alkoxyindole-3-acetic acid analogs providing the insight into their PPAR activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Huang, Xi-Ping; Nagy, Peter I; Williams, Frederick E; Peseckis, Steven M; Messer, William S
1999-01-01
Conserved amino acids, such as Thr in transmembrane domains (TM) V and Asn in TM VI of muscarinic receptors, may be important in agonist binding and/or receptor activation. In order to determine the functional roles of Thr192 and Asn382 in human M1 receptors in ligand binding and receptor activation processes, we created and characterized mutant receptors with Thr192 or Asn382 substituted by Ala.HM1 wild-type (WT) and mutant receptors [HM1(Thr192Ala) and HM1(Asn382Ala)] were stably expressed in A9 L cells. The Kd values for 3H-(R)-QNB and Ki values for other classical muscarinic antagonists were similar at HM1(WT) and HM1(Thr192Ala) mutant receptors, yet higher at HM1(Asn382Ala) mutant receptors. Carbachol exhibited lower potency and efficacy in stimulating PI hydrolysis via HM1(Thr192Ala) mutant receptors, and intermediate agonist activity at the HM1(Asn382Ala) mutant receptors.The Asn382 residue in TM VI but not the Thr192 residue in TM V of the human M1 receptor appears to participate directly in antagonist binding. Both Thr192 and Asn382 residues are involved differentially in agonist binding and/or receptor activation processes, yet the Asn382 residue is less important than Thr192 in agonist activation of M1 receptors.Molecular modelling studies indicate that substitution of Thr192 or Asn382 results in the loss of hydrogen-bond interactions and changes in the agonist binding mode associated with an increase in hydrophobic interactions between ligand and receptor. PMID:10188986
D1 receptor agonist improves sleep-wake parameters in experimental parkinsonism.
Hyacinthe, Carole; Barraud, Quentin; Tison, François; Bezard, Erwan; Ghorayeb, Imad
2014-03-01
Both excessive daytime sleepiness (EDS) and rapid eye movement (REM) sleep deregulation are part of Parkinson's disease (PD) non-motor symptoms and may complicate dopamine replacement therapy. We report here that dopamine agonists act differentially on sleep architecture in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine macaque monkey. Continuous sleep and wake electroencephalographic monitoring revealed no effect of the selective dopamine D2 receptor agonist quinpirole on EDS, whereas the selective dopamine D1 receptor agonist SKF38393 efficiently alleviated EDS and restored REM sleep to baseline values. The present results question the relevance of abandoning D1 receptor agonist treatment in PD as it might actually improve sleep-related disorders. Copyright © 2013 Elsevier Inc. All rights reserved.
Matousek, P; Novotný, J; Svoboda, P
2004-01-01
Low-density membrane-domain fractions were prepared from S49 lymphoma cells and clone e2m11 of HEK293 cells expressing a large number of thyrotropin-releasing hormone receptor (TRH-R) and G(11)alpha by flotation on sucrose density gradients. The intact cell structure was broken by detergent-extraction, alkaline-treatment or drastic homogenization. Three types of low-density membranes were resolved by two-dimensional electrophoresis and analyzed for G(s)alpha (S49) or G(q)alpha/G11) (e2m11) content. Four individual immunoblot signals of Gsalpha protein were identified in S49 lymphoma cells indicating complete resolution of the long G(s)alpha L+/-ser and short G(s)alpha S+/-ser variants of G(s)alpha. All these were diminished by prolonged agonist (isoprenaline) stimulation. In e2m11-HEK cells, five different immunoblot signals were detected indicating post-translational modification of G proteins of G(q)alpha/G(11)alpha family. The two major spots corresponding to exogenously (over)expressed G(11)alpha and endogenous G(q)alpha were reduced; the minor spots diminished by hormonal stimulation. Parallel analysis by silver staining of the total protein content indicated that no major changes in protein composition occurred under these conditions. Our data thus indicate that agonist-stimulation of target cells results in down-regulation of all different members of G(s) and G(q)/G(11) families. This agonist-specific effect may be demonstrated in crude membrane as well as domain/raft preparations and it is not accompanied by changes in overall protein composition.
2012-01-01
Although mu opioid (MOP) receptor agonists are the most commonly used analgesics for the treatment of moderate to severe pain in the clinic, the side effects of MOP agonists such as abuse liability limit their value as a medication. Research to identify novel analgesics without adverse effects is pivotal to advance the health care of humans. The nociceptin/orphanin FQ peptide (NOP) receptor, the fourth opioid receptor subtype, mediates distinctive actions in nonhuman primates which suggests the possibility that activity at this receptor may result in strong analgesia in the absence of virtually all of the side effects associated with MOP agonists. The present review highlights the recent progress of pharmacological studies of NOP-related ligands in primates. Selective NOP agonists, either peptidic or nonpeptidic, produce full analgesia in various assays in primates, when delivered systemically or intrathecally. Yet small molecule NOP agonists do not serve as reinforcers, indicating a lack of abuse liability. Given that NOP agonists have low abuse liability and that coactivation of NOP and MOP receptors produces synergistic antinociception, it is worth developing bifunctional NOP/MOP ligands. The outcomes of these studies and recent developments provide new perspectives to establish a translational bridge for understanding the biobehavioral functions of NOP receptors in primates and for facilitating the development of NOP-related ligands as a new generation of analgesics without abuse liability in humans. PMID:23421672
Synaptic Neurotransmitter-Gated Receptors
Smart, Trevor G.; Paoletti, Pierre
2012-01-01
Since the discovery of the major excitatory and inhibitory neurotransmitters and their receptors in the brain, many have deliberated over their likely structures and how these may relate to function. This was initially satisfied by the determination of the first amino acid sequences of the Cys-loop receptors that recognized acetylcholine, serotonin, GABA, and glycine, followed later by similar determinations for the glutamate receptors, comprising non-NMDA and NMDA subtypes. The last decade has seen a rapid advance resulting in the first structures of Cys-loop receptors, related bacterial and molluscan homologs, and glutamate receptors, determined down to atomic resolution. This now provides a basis for determining not just the complete structures of these important receptor classes, but also for understanding how various domains and residues interact during agonist binding, receptor activation, and channel opening, including allosteric modulation. This article reviews our current understanding of these mechanisms for the Cys-loop and glutamate receptor families. PMID:22233560
FRET-based sensors for the human M1-, M3-, and M5-acetylcholine receptors.
Ziegler, Nicole; Bätz, Julia; Zabel, Ulrike; Lohse, Martin J; Hoffmann, Carsten
2011-02-01
Based on the recently developed approach to generate fluorescence resonance energy transfer (FRET)-based sensors to measure GPCR activation, we generated sensor constructs for the human M(1)-, M(3)-, and M(5)-acetylcholine receptor. The receptors were labeled with cyan fluorescent protein (CFP) at their C-terminus, and with fluorescein arsenical hairpin binder (FlAsH) via tetra-cysteine tags inserted in the third intracellular loop. We then measured FRET between the donor CFP and the acceptor FlAsH in living cells and real time. Agonists like acetylcholine, carbachol, or muscarine activate each receptor construct with half-maximal activation times between 60 and 70ms. Removal of the agonist caused the reversal of the signal. Compared with all other agonists, oxotremorine M differed in two major aspects: it caused significantly slower signals at M(1)- and M(5)-acetylcholine receptors and the amplitude of these signals was larger at the M(1)-acetylcholine receptor. Concentration-response curves for the agonists reveal that all agonists tested, with the mentioned exception of oxotremorine M, caused similar maximal FRET-changes as acetylcholine for the M(1)-, M(3)- and M(5)-acetylcholine receptor constructs. Taken together our data support the notion that orthosteric agonists behave similar at different muscarinic receptor subtypes but that kinetic differences can be observed for receptor activation. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ericson, Mark D; Freeman, Katie T; Schnell, Sathya M; Fleming, Katlyn A; Haskell-Luevano, Carrie
2017-10-12
The melanocortin system consists of five reported receptors, agonists from the proopiomelanocortin gene transcript, and two antagonists, agouti-signaling protein (ASP) and agouti-related protein (AGRP). For both ASP and AGRP, the hypothesized Arg-Phe-Phe pharmacophores are on exposed β-hairpin loops. In this study, the Asn and Ala positions of a reported AGRP macrocyclic scaffold (c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-DPro]) were explored with 14-compound and 8-compound libraries, respectively, to generate more potent, selective melanocortin receptor antagonists. Substituting diaminopropionic acid (Dap), DDap, and His at the Asn position yielded potent MC4R ligands, while replacing Ala with Ser maintained MC4R potency. Since these substitutions correlate to ASP loop residues, an additional Phe to Ala substitution was synthesized and observed to maintain MC4R potency. Seventeen compounds also possessed inverse agonist activity at the MC5R, the first report of this pharmacology. These findings are useful in developing molecular probes to study negative energy balance conditions and unidentified functions of the MC5R.
Melatonergic drugs in development.
Carocci, Alessia; Catalano, Alessia; Sinicropi, Maria Stefania
2014-01-01
Melatonin (N-acetyl-5-methoxytryptamine) is widely known as "the darkness hormone". It is a major chronobiological regulator involved in circadian phasing and sleep-wake cycle in humans. Numerous other functions, including cyto/neuroprotection, immune modulation, and energy metabolism have been ascribed to melatonin. A variety of studies have revealed a role for melatonin and its receptors in different pathophysiological conditions. However, the suitability of melatonin as a drug is limited because of its short half-life, poor oral bioavailability, and ubiquitous action. Due to the therapeutic potential of melatonin in a wide variety of clinical conditions, the development of new agents able to interact selectively with melatonin receptors has become an area of great interest during the last decade. Therefore, the field of melatonergic receptor agonists comprises a great number of structurally different chemical entities, which range from indolic to nonindolic compounds. Melatonergic agonists are suitable for sleep disturbances, neuropsychiatric disorders related to circadian dysphasing, and metabolic diseases associated with insulin resistance. The results of preclinical studies on animal models show that melatonin receptor agonists can be considered promising agents for the treatment of central nervous system-related pathologies. An overview of recent advances in the field of investigational melatonergic drugs will be presented in this review.
Hazard and risk assessment of chemical mixtures using the toxic equivalency factor approach.
Safe, S H
1998-08-01
There is considerable public, regulatory, and scientific concern regarding human exposure to endocrine-disrupting chemicals, which include compounds that directly modulate steroid hormone receptor pathways (estrogens, antiestrogens, androgens, antiandrogens) and aryl hydrocarbon receptor (AhR) agonists, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Based on quantitative structure-activity relationships for both AhR and estrogen receptor (ER) agonists, the relative potency (RP) of individual compounds relative to a standard (e.g. TCDD and 17-beta-estradiol) have been determined for several receptor-mediated responses. Therefore, the TCDD or estrogenic equivalent (TEQ or EQ, respectively) of a mixture is defined as TEQ = sigma[T(i)]xRP(i)or EQ=sigma[E(i)]xRP(i), where T(i) and E(i) are concentrations of individual AhR or ER agonists in any mixture. This approach for risk assessment of endocrine-disrupting mixtures assumes that for each endocrine response pathway, the effects of individual compounds are essentially additive. This paper will critically examine the utility of the TEQ/EQ approach for risk assessment, the validity of the assumptions used for this approach, and the problems associated with comparing low dose exposures to xeno and natural (dietary) endocrine disruptors.
Synthesis and Structure–Activity Relationships of N-Benzyl Phenethylamines as 5-HT2A/2C Agonists
2014-01-01
N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor. PMID:24397362
Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Shengchen; Han, Ying; Shi, Yuzhe
2012-06-28
Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination ofmore » RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.« less
Could the 5-HT1B receptor inverse agonism affect learning consolidation?
Meneses, A
2001-03-01
Diverse evidence indicates that, the 5-HT system might play a role in learning and memory, since it occurs in brain areas mediating such processes and 5-HT drugs modulate them. Hence in this work, in order to explore further 5-HT involvement on learning and memory 5-HT1B receptors' role is investigated. Evidence indicates that SB-224289 (a 5-HT1B receptor inverse agonist) post-training injection facilitated learning consolidation in an associative autoshaping learning task, this effect was partially reversed by GR 127935 (a 5-HT1B/1D receptor antagonist), but unaffected by MDL 100907 (a 5-HT2A receptor antagonist) or ketanserin (a 5-HT1D/2A/7 receptor antagonist) at low doses. Moreover, SB-224289 antagonized the learning deficit produced by TFMPP (a 5-HT1A/1B/1D/2A/2C receptor agonist), GR 46611 (a 5-HT1A/1B/1D receptor agonist), mCPP (a 5-HT2A/2C/3/7 receptor agonist/antagonist) or GR 127935 (at low dose). SB-224289 did not alter the 8-OH-DPAT (a 5-HT1A/7 receptor agonist) learning facilitatory effect. SB-224289 eliminated the deficit learning produced by the anticholinergic muscarinic scopolamine or the glutamatergic antagonist dizocilpine. Administration of both, GR 127935 (5mg/kg) plus ketanserin (0.01 mg/kg) did not modify learning consolidation; nevertheless, when ketanserin dose was increased (0.1-1.0mg/kg) and SB-224289 dose was maintained constant, a learning facilitation effect was observed. Notably, SB-224289 at 1.0mg/kg potentiated a subeffective dose of the 5-HT1B/1D receptor agonist/antagonist mixed GR 127935, which facilitated learning consolidation and this effect was abolished by ketanserin at a higher dose. Collectively, the data confirm and extend the earlier findings with GR 127935 and the effects of non-selective 5-HT(1B) receptor agonists. Clearly 5-HT1B agonists induced a learning deficit which can be reversed with SB-224289. Perhaps more importantly, SB-224289 enhances learning consolidation when given alone and can reverse the deficits induced by both cholinergic and glutamatergic antagonist. Hence, 5-HT1B receptor inverse agonists or antagonists could represent drugs for the treatment of learning and memory dysfunctions.
Structural basis for bifunctional peptide recognition at human δ-opioid receptor
Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; ...
2015-02-16
Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH 2 (DIPP-NH 2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. In summary, the observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics.
Sridharan, Rajashri; Connelly, Sara M; Naider, Fred; Dumont, Mark E
2016-11-11
We report here on the relationship between ligand binding and signaling responses in the yeast pheromone response pathway, a well characterized G protein-coupled receptor system. Responses to agonist (α-factor) by cells expressing widely varying numbers of receptors depend primarily on fractional occupancy, not the absolute number of agonist-bound receptors. Furthermore, the concentration of competitive antagonist required to inhibit α-factor-dependent signaling is more than 10-fold higher than predicted based on the known ligand affinities. Thus, responses to a particular number of agonist-bound receptors can vary greatly, depending on whether there are unoccupied or antagonist-bound receptors present on the same cell surface. This behavior does not appear to be due to pre-coupling of receptors to G protein or to the Sst2p regulator of G protein signaling. The results are consistent with a signaling response that is determined by the integration of positive signals from agonist-occupied receptors and inhibitory signals from unoccupied receptors, where the inhibitory signals can be diminished by antagonist binding. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Noha, Stefan M; Schmidhammer, Helmut; Spetea, Mariana
2017-06-21
Among opioids, morphinans are of major importance as the most effective analgesic drugs acting primarily via μ-opioid receptor (μ-OR) activation. Our long-standing efforts in the field of opioid analgesics from the class of morphinans led to N-methylmorphinan-6-ones differently substituted at positions 5 and 14 as μ-OR agonists inducing potent analgesia and fewer undesirable effects. Herein we present the first thorough molecular modeling study and structure-activity relationship (SAR) explorations aided by docking and molecular dynamics (MD) simulations of 14-oxygenated N-methylmorphinan-6-ones to gain insights into their mode of binding to the μ-OR and interaction mechanisms. The structure of activated μ-OR provides an essential model for how ligand/μ-OR binding is encoded within small chemical differences in otherwise structurally similar morphinans. We reveal important molecular interactions that these μ-agonists share and distinguish them. The molecular docking outcomes indicate the crucial role of the relative orientation of the ligand in the μ-OR binding site, influencing the propensity of critical non-covalent interactions that are required to facilitate ligand/μ-OR interactions and receptor activation. The MD simulations point out minor differences in the tendency to form hydrogen bonds by the 4,5α-epoxy group, along with the tendency to affect the 3-7 lock switch. The emerged SARs reveal the subtle interplay between the substituents at positions 5 and 14 in the morphinan scaffold by enabling the identification of key structural elements that determine the distinct pharmacological profiles. This study provides a significant structural basis for understanding ligand binding and μ-OR activation by the 14-oxygenated N-methylmorphinan-6-ones, which should be useful for guiding drug design.
Melanocortin 1 Receptor: Structure, Function, and Regulation
Wolf Horrell, Erin M.; Boulanger, Mary C.; D’Orazio, John A.
2016-01-01
The melanocortin 1 receptor (MC1R) is a melanocytic Gs protein coupled receptor that regulates skin pigmentation, UV responses, and melanoma risk. It is a highly polymorphic gene, and loss of function correlates with a fair, UV-sensitive, and melanoma-prone phenotype due to defective epidermal melanization and sub-optimal DNA repair. MC1R signaling, achieved through adenylyl cyclase activation and generation of the second messenger cAMP, is hormonally controlled by the positive agonist melanocortin, the negative agonist agouti signaling protein, and the neutral antagonist β-defensin 3. Activation of cAMP signaling up-regulates melanin production and deposition in the epidermis which functions to limit UV penetration into the skin and enhances nucleotide excision repair (NER), the genomic stability pathway responsible for clearing UV photolesions from DNA to avoid mutagenesis. Herein we review MC1R structure and function and summarize our laboratory’s findings on the molecular mechanisms by which MC1R signaling impacts NER. PMID:27303435
Chen, Rui; Wan, Jing; Song, Jing; Qian, Yan; Liu, Yong; Gu, Shuiming
2017-12-01
Peroxisome proliferator-activated receptor-γ (PPARγ) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Activation of PPARγ pathway has been shown to enhance fatty acid oxidation, improve endothelial cell function, and decrease myocardial fibrosis in heart failure. Thus, the protein has been raised as an attractive target for heart failure therapy. This work attempted to discover new and potent PPARγ agonists from natural products using a synthetic strategy of computer virtual screening and transactivation reporter assay. A large library of structurally diverse, drug-like natural products was compiled, from which those with unsatisfactory pharmacokinetic profile and/or structurally redundant compounds were excluded. The binding mode of remaining candidates to PPARγ ligand-binding domain (LBD) was computationally modelled using molecular docking and their relative binding potency was ranked by an empirical scoring scheme. Consequently, eight commercially available hits with top scores were selected and their biological activity was determined using a cell-based reporter-gene assay. Four natural product compounds, namely ZINC13408172, ZINC4292805, ZINC44179 and ZINC901461, were identified to have high or moderate agonistic potency against human PPARγ with EC 50 values of 0.084, 2.1, 0.35 and 5.6 μM, respectively, which are comparable to or even better than that of the approved PPARγ full agonists pioglitazone (EC 50 = 0.16 μM) and rosiglitazone (EC 50 = 0.034 μM). Hydrophobic interactions and van der Waals contacts are the primary chemical forces to stabilize the complex architecture of PPARγ LBD domain with these agonist ligands, while few hydrogen bonds, salt bridges and/or π-π stacking at the complex interfaces confer selectivity and specificity for the domain-agonist recognition. The integrated in vitro-in silico screening strategy can be successfully applied to rational discovery of biologically active compounds. The newly identified natural products with PPARγ agonistic potency are considered as promising lead scaffolds to develop novel chemical therapeutics for heart failure.
Serotonin 5-HT4 receptors: A new strategy for developing fast acting antidepressants?
Vidal, Rebeca; Castro, Elena; Pilar-Cuéllar, Fuencisla; Pascual-Brazo, Jesús; Díaz, Alvaro; Rojo, María Luisa; Linge, Raquel; Martín, Alicia; Valdizán, Elsa M; Pazos, Angel
2014-01-01
The regulation of the activity of brain monoaminergic systems has been the focus of attention of many studies since the first antidepressant drug emerged 50 years ago. The search for novel antidepressants is deeply linked to the search for fast-acting strategies, taking into account that 2-4 weeks of treatment with classical antidepressant are required before clinical remission of the symptoms becomes evident. In the recent years several hypotheses have been proposed on the basis of the existence of alterations in brain synaptic plasticity in major depression. Recent evidences support a role for 5-HT4 receptors in the pathogenesis of depression as well as in the mechanism of action of antidepressant drugs. In fact, chronic treatment with antidepressant drugs appears to modulate, at different levels, the signaling pathway associated to 5-HT4 receptors, as well as their levels of expression in the brain. Moreover, several experimental studies have identified this receptor subtype as a promising new target for fast-acting antidepressant strategy: the administration of partial agonists of this receptor induces a number of responses similar to those observed after chronic treatment with classical antidepressants, but with a rapid onset of action. They include efficacy in behavioral models of depression, rapid desensitization of 5-HT1A autoreceptors, and modifications in the expression of several molecular markers of brain neuroplasticity. Although much work remains to be done in order to clarify the real therapeutic potential of these drugs, the evidences reviewed below support the hypothesis that 5-HT4 receptor partial agonists could behave as rapid and effective antidepressants.
Rives, Marie-Laure; Rossillo, Mary; Liu-Chen, Lee-Yuan; Javitch, Jonathan A
2012-08-03
κ-Opioid receptor (KOR) agonists do not activate the reward pathway stimulated by morphine-like μ-opioid receptor (MOR) agonists and thus have been considered to be promising nonaddictive analgesics. However, KOR agonists produce other adverse effects, including dysphoria, diuresis, and constipation. The therapeutic promise of KOR agonists has nonetheless recently been revived by studies showing that their dysphoric effects require arrestin recruitment, whereas their analgesic effects do not. Moreover, KOR agonist-induced antinociceptive tolerance observed in vivo has also been proposed to be correlated to the ability to induce arrestin-dependent phosphorylation, desensitization, and internalization of the receptor. The discovery of functionally selective drugs that are therapeutically effective without the adverse effects triggered by the arrestin pathway is thus an important goal. We have identified such an extreme G protein-biased KOR compound, 6'-guanidinonaltrindole (6'-GNTI), a potent partial agonist at the KOR receptor for the G protein activation pathway that does not recruit arrestin. Indeed, 6'-GNTI functions as an antagonist to block the arrestin recruitment and KOR internalization induced by other nonbiased agonists. As an extremely G protein-biased KOR agonist, 6'-GNTI represents a promising lead compound in the search for nonaddictive opioid analgesic as its signaling profile suggests that it will be without the dysphoria and other adverse effects promoted by arrestin recruitment and its downstream signaling.
Endogenous cannabinoid receptor agonists inhibit neurogenic inflammations in guinea pig airways.
Yoshihara, Shigemi; Morimoto, Hiroshi; Ohori, Makoto; Yamada, Yumi; Abe, Toshio; Arisaka, Osamu
2005-09-01
Although neurogenic inflammation via the activation of C fibers in the airway must have an important role in the pathogenesis of asthma, their regulatory mechanism remains uncertain. The pharmacological profiles of endogenous cannabinoid receptor agonists on the activation of C fibers in airway tissues were investigated and the mechanisms how cannabinoids regulate airway inflammatory reactions were clarified. The effects of endogenous cannabinoid receptor agonists on electrical field stimulation-induced bronchial smooth muscle contraction, capsaicin-induced bronchoconstriction and capsaicin-induced substance P release in guinea pig airway tissues were investigated. The influences of cannabinoid receptor antagonists and K+ channel blockers to the effects of cannabinoid receptor agonists on these respiratory reactions were examined. Both endogenous cannabinoid receptor agonists, anandamide and palmitoylethanolamide, inhibited electrical field stimulation-induced guinea pig bronchial smooth muscle contraction, but not neurokinin A-induced contraction. A cannabinoid CB2 antagonist, SR 144528, reduced the inhibitory effect of endogenous agonists, but not a cannabinoid CB1 antagonist, SR 141716A. Inhibitory effects of agonists were also reduced by the pretreatment of large conductance Ca2+ -activated K+ channel (maxi-K+ channel) blockers, iberiotoxin and charybdotoxin, but not by other K+ channel blockers, dendrotoxin or glibenclamide. Anandamide and palmitoylethanolamide blocked the capsaicin-induced release of substance P-like immunoreactivity from guinea pig airway tissues. Additionally, intravenous injection of palmitoylethanolamide dose-dependently inhibited capsaicin-induced guinea pig bronchoconstriction, but not neurokinin A-induced reaction. However, anandamide did not reduce capsaicin-induced guinea pig bronchoconstriction. These findings suggest that endogenous cannabinoid receptor agonists inhibit the activation of C fibers via cannabinoid CB2 receptors and maxi-K+ channels in guinea pig airways. Copyright (c) 2005 S. Karger AG, Basel.
Trendelenburg, A U; Cox, S L; Schelb, V; Klebroff, W; Khairallah, L; Starke, K
2000-01-01
Release-modulating opioid and cannabinoid (CB) receptors, β-adrenoceptors and bradykinin receptors at noradrenergic axons were studied in mouse tissues (occipito-parietal cortex, heart atria, vas deferens and spleen) preincubated with 3H-noradrenaline. Experiments using the OP1 receptor-selective agonists DPDPE and DSLET, the OP2-selective agonists U50488H and U69593, the OP3-selective agonist DAMGO, the ORL1 receptor-selective agonist nociceptin, and a number of selective antagonists showed that the noradrenergic axons innervating the occipito-parietal cortex possess release-inhibiting OP3 and ORL1 receptors, those innervating atria OP1, ORL1 and possibly OP3 receptors, and those innervating the vas deferens all four opioid receptor types. Experiments using the non-selective CB agonists WIN 55,212-2 and CP 55,940 and the CB1-selective antagonist SR 141716A indicated that the noradrenergic axons of the vas deferens possess release-inhibiting CB1 receptors. Presynaptic CB receptors were not found in the occipito-parietal cortex, in atria or in the spleen. Experiments using the non-selective β-adrenoceptor agonist isoprenaline and the β2-selective agonist salbutamol, as well as subtype-selective antagonists, demonstrated the occurrence of release-enhancing β2-adrenoceptors at the sympathetic axons of atria and the spleen, but demonstrated their absence in the occipito-parietal cortex and the vas deferens. Experiments with bradykinin and the B2-selective antagonist Hoe 140 showed the operation of release-enhancing B2 receptors at the sympathetic axons of atria, the vas deferens and the spleen, but showed their absence in the occipito-parietal cortex. The experiments document a number of new presynaptic receptor locations. They confirm and extend the existence of marked tissue and species differences in presynaptic receptors at noradrenergic neurons. PMID:10807669
1987-09-04
agonist were compared to those of the ganglionic Ml-selective agonist, McN-A- 343 and to oxotremorine which has a relative high selectivity toward M2...lower than that of oxotremorine However AF102B was similar to McN-A-343 in displacing H-QNB from forebrain homogenate (rich in Ml receptor subtype
Yi, Shou-Pu; Kong, Qing-Hong; Li, Yu-Lei; Pan, Chen-Ling; Yu, Jie; Cui, Ben-Qiang; Wang, Ying-Fei; Wang, Guan-Lin; Zhou, Pei-Lan; Wang, Li-Li; Gong, Ze-Hui; Su, Rui-Bin; Shen, Yue-Hai; Yu, Gang; Chang, Kwen-Jen
2017-07-01
Opioid analgesics remain the first choice for the treatment of moderate to severe pain, but they are also notorious for their respiratory depression and addictive effects. This study focused on the pharmacology of a novel opioid receptor mixed agonist DPI-125 and attempted to elucidate the relationship between the δ-, μ- and κ-receptor potency ratio and respiratory depression and abuse liability. Five diarylmethylpiperazine compounds (DPI-125, DPI-3290, DPI-130, KUST202 and KUST13T02) were selected for this study. PKA fluorescence redistribution assays in CHO cells individually expressing δ-, μ- or κ-receptors were used to measure the agonist potency. The respiratory safety profiles were estimated in rats by the ratio of ED 50 (pCO 2 increase)/ED 50 (antinociception). The abuse liability of DPI-125 was evaluated with a self-administration model in rhesus monkeys. The observed agonist potencies of DPI-125 for δ-, μ- and κ-opioid receptors were 4.29±0.36, 11.10±3.04, and 16.57±4.14 nmol/L, respectively. The other four compounds were also mixed agonists with varying potencies. DPI-125 exhibited a high respiratory safety profile, clearly related to its high δ-receptor potency. The ratio of the EC 50 potencies for the μ- and δ-receptors was found to be positively correlated with the respiratory safety ratio. DPI-125 has similar potencies for μ- and κ-receptors, which is likely the reason for its reduced abuse potential. Our results demonstrate that the opioid receptor mixed agonist DPI-125 is safer and less addictive than traditional μ-agonist analgesics. These findings suggest that the development of δ>μ∼κ opioid receptor mixed agonists is feasible, and such compounds could represent a promising class of potent analgesics with wider therapeutic windows.
Hu, Jianping; Feng, Zhiwei; Ma, Shifan; Zhang, Yu; Tong, Qin; Alqarni, Mohammed Hamed; Gou, Xiaojun; Xie, Xiang-Qun
2016-06-27
Cannabinoid receptor 2 (CB2), a G protein-coupled receptor (GPCR), is a promising target for the treatment of neuropathic pain, osteoporosis, immune system, cancer, and drug abuse. The lack of an experimental three-dimensional CB2 structure has hindered not only the development of studies of conformational differences between the inactive and active CB2 but also the rational discovery of novel functional compounds targeting CB2. In this work, we constructed models of both inactive and active CB2 by homology modeling. Then we conducted two comparative 100 ns molecular dynamics (MD) simulations on the two systems-the active CB2 bound with both the agonist and G protein and the inactive CB2 bound with inverse agonist-to analyze the conformational difference of CB2 proteins and the key residues involved in molecular recognition. Our results showed that the inactive CB2 and the inverse agonist remained stable during the MD simulation. However, during the MD simulations, we observed dynamical details about the breakdown of the "ionic lock" between R131(3.50) and D240(6.30) as well as the outward/inward movements of transmembrane domains of the active CB2 that bind with G proteins and agonist (TM5, TM6, and TM7). All of these results are congruent with the experimental data and recent reports. Moreover, our results indicate that W258(6.48) in TM6 and residues in TM4 (V164(4.56)-L169(4.61)) contribute greatly to the binding of the agonist on the basis of the binding energy decomposition, while residues S180-F183 in extracellular loop 2 (ECL2) may be of importance in recognition of the inverse agonist. Furthermore, pharmacophore modeling and virtual screening were carried out for the inactive and active CB2 models in parallel. Among all 10 hits, two compounds exhibited novel scaffolds and can be used as novel chemical probes for future studies of CB2. Importantly, our studies show that the hits obtained from the inactive CB2 model mainly act as inverse agonist(s) or neutral antagonist(s) at low concentration. Moreover, the hit from the active CB2 model also behaves as a neutral antagonist at low concentration. Our studies provide new insight leading to a better understanding of the structural and conformational differences between two states of CB2 and illuminate the effects of structure on virtual screening and drug design.
Wysoczynski-Horita, Christina L; Boursier, Michelle E; Hill, Ryan; Hansen, Kirk; Blackwell, Helen E; Churchill, Mair E A
2018-05-01
Pseudomonas aeruginosa is an opportunistic pathogen that uses the process of quorum sensing (QS) to coordinate the expression of many virulence genes. During quorum sensing, N-acyl-homoserine lactone (AHL) signaling molecules regulate the activity of three LuxR-type transcription factors, LasR, RhlR and QscR. To better understand P. aeruginosa QS signal reception, we examined the mechanism underlying the response of QscR to synthetic agonists and antagonists using biophysical and structural approaches. The structure of QscR bound to a synthetic agonist reveals a novel mode of ligand binding supporting a general mechanism for agonist activity. In turn, antagonists of QscR with partial agonist activity were found to destabilize and greatly impair QscR dimerization and DNA binding. These results highlight the diversity of LuxR-type receptor responses to small molecule agonists and antagonists and demonstrate the potential for chemical strategies for the selective targeting of individual QS systems. © 2018 John Wiley & Sons Ltd.
Rahmeh, Rita; Damian, Marjorie; Cottet, Martin; Orcel, Hélène; Mendre, Christiane; Durroux, Thierry; Sharma, K Shivaji; Durand, Grégory; Pucci, Bernard; Trinquet, Eric; Zwier, Jurriaan M; Deupi, Xavier; Bron, Patrick; Banères, Jean-Louis; Mouillac, Bernard; Granier, Sébastien
2012-04-24
G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters, representing the largest group of therapeutic targets. Recent studies show that some GPCRs signal through both G protein and arrestin pathways in a ligand-specific manner. Ligands that direct signaling through a specific pathway are known as biased ligands. The arginine-vasopressin type 2 receptor (V2R), a prototypical peptide-activated GPCR, is an ideal model system to investigate the structural basis of biased signaling. Although the native hormone arginine-vasopressin leads to activation of both the stimulatory G protein (Gs) for the adenylyl cyclase and arrestin pathways, synthetic ligands exhibit highly biased signaling through either Gs alone or arrestin alone. We used purified V2R stabilized in neutral amphipols and developed fluorescence-based assays to investigate the structural basis of biased signaling for the V2R. Our studies demonstrate that the Gs-biased agonist stabilizes a conformation that is distinct from that stabilized by the arrestin-biased agonists. This study provides unique insights into the structural mechanisms of GPCR activation by biased ligands that may be relevant to the design of pathway-biased drugs.
Yu, Ning; Zhao, Hong-Bo
2008-11-01
Intracochlear ATP is an important mediator in regulating hearing function. ATP can activate ionotropic purinergic (P2x) and metabotropic purinergic (P2y) receptors to influence cell functions. In this paper, we report that ATP can activate P2x receptors directly to modify outer hair cell (OHC) electromotility, which is an active cochlear amplifier determining hearing sensitivity and frequency selectivity in mammals. We found that ATP, but not UTP, a P2y receptor agonist, reduced the OHC electromotility-associated nonlinear capacitance (NLC) and shifted its voltage dependence to the right (depolarizing) direction. Blockage of the activation of P2x receptors by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), suramin, and 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) could block the ATP effect. This modification also required extracellular Ca(++) participation. Removal of extracellular Ca(++) abolished the ATP effect. However, chelation of intracellular Ca(++) concentration by a fast calcium-chelating reagent 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, 10 mM) did not affect the effect of ATP on NLC. The effect is also independent of K(+) ions. Substitution of Cs(+) for intracellular or extracellular K(+) did not affect the ATP effect. Our findings indicate that ATP activates P2x receptors instead of P2y receptors to modify OHC electromotility. Extracellular Ca(++) is required for this modification.
SR2067 reveals a unique kinetic and structural signature for PPARγ partial agonism
van Marrewijk, Laura M.; Polyak, Steven W.; Hijnen, Marcel; ...
2015-11-18
Here, synthetic full agonists of PPARγ have been prescribed for the treatment of diabetes due to their ability to regulate glucose homeostasis and insulin sensitization. While the use of full agonists of PPARγ has been hampered due to severe side effects, partial agonists have shown promise due to their decreased incidence of such side effects in preclinical models. No kinetic information has been forthcoming in regard to the mechanism of full versus partial agonism of PPARγ to date. In this paper, we describe the discovery of a partial agonist, SR2067. A co-crystal structure obtained at 2.2 Å resolution demonstrates thatmore » interactions with the β-sheet are driven exclusively via hydrophobic interactions mediated through a naphthalene group, an observation that is unique from other partial agonists. Finally, surface plasmon resonance revealed that SR2067 binds to the receptor with higher affinity (K D = 513 nM) as compared to that of full agonist rosiglitazone, yet it has a much slower off rate compared to that of rosiglitazone.« less
Pawar, Mohit; Kumar, Priyank; Sunkaraneni, Soujanya; Sirohi, Sunil; Walker, Ellen A; Yoburn, Byron C
2007-06-01
It has been proposed that opioid agonist efficacy may play a role in tolerance and the regulation of opioid receptor density. To address this issue, the present studies estimated the in vivo efficacy of three opioid agonists and then examined changes in spinal mu-opioid receptor density following chronic treatment in the mouse. In addition, tolerance and regulation of the trafficking protein dynamin-2 were determined. To evaluate efficacy, the method of irreversible receptor alkylation was employed and the efficacy parameter tau estimated. Mice were injected with the irreversible mu-opioid receptor antagonist clocinnamox (0.32-25.6 mg/kg, i.p), and 24 h later, the analgesic potency of s.c. morphine, oxycodone and etorphine were determined. Clocinnamox dose-dependently antagonized the analgesic effects of morphine, etorphine and oxycodone. The shift to the right of the dose-response curves was greater for morphine and oxycodone compared to etorphine and the highest dose of clocinnamox reduced the maximal effect of morphine and oxycodone, but not etorphine. The order of efficacy calculated from these results was etorphine>morphine>oxycodone. Other mice were infused for 7 days with oxycodone (10-150 mg/kg/day, s.c.) or etorphine (50-250 microg/kg/day, s.c.) and the analgesic potency of s.c. morphine determined. The low efficacy agonist (oxycodone) produced more tolerance than the high efficacy agonist (etorphine) at equi-effective infusion doses. In saturation binding experiments, the low efficacy opioid agonists (morphine, oxycodone) did not regulate the density of spinal mu-opioid receptors, while etorphine produced approximately 40% reduction in mu-opioid receptor density. Furthermore, etorphine increased spinal dynamin-2 abundance, while oxycodone did not produce any significant change in dynamin-2 abundance. Overall, these data indicate that high efficacy agonists produce less tolerance at equi-effective doses. Furthermore, increased efficacy was associated with mu-opioid receptor downregulation and dynamin-2 upregulation. Conversely, lower efficacy agonists produced more tolerance at equi-effective doses, but did not regulate mu-opioid receptor density or dynamin-2 abundance. Taken together, these studies indicate that agonist efficacy plays an important role in tolerance and regulation of receptors and trafficking proteins.
Alder, J Tracy; Hacksell, Uli; Strange, Philip G
2003-01-01
Factors influencing agonist affinity and relative efficacy have been studied for the 5-HT1A serotonin receptor using membranes of CHO cells expressing the human form of the receptor and a series of R-and S-2-(dipropylamino)tetralins (nonhydroxylated and monohydroxylated (5-OH, 6-OH, 7-OH, 8-OH) species). Ligand binding studies were used to determine dissociation constants for agonist binding to the 5-HT1A receptor: Ki values for agonists were determined in competition versus the binding of the agonist [3H]-8-OH DPAT. Competition data were all fitted best by a one-binding site model.Ki values for agonists were also determined in competition versus the binding of the antagonist [3H]-NAD-199. Competition data were all fitted best by a two-binding site model, and agonist affinities for the higher (Kh) and lower affinity (Kl) sites were determined. The ability of the agonists to activate the 5-HT1A receptor was determined using stimulation of [35S]-GTPγS binding. Maximal effects of agonists (Emax) and their potencies (EC50) were determined from concentration/response curves for stimulation of [35S]-GTPγS binding. Kl/Kh determined from ligand binding assays correlated with the relative efficacy (relative Emax) of agonists determined in [35S]-GTPγS binding assays. There was also a correlation between Kl/Kh and Kl/EC50 for agonists determined from ligand binding and [35S]-GTPγS binding assays. Simulations of agonist binding and effect data were performed using the Ternary Complex Model in order to assess the use of Kl/Kh for predicting the relative efficacy of agonists. PMID:12684269
Structural basis for Smoothened receptor modulation and chemoresistance to anti-cancer drugs
Wang, Chong; Wu, Huixian; Evron, Tama; Vardy, Eyal; Han, Gye Won; Huang, Xi-Ping; Hufeisen, Sandy J.; Mangano, Thomas J.; Urban, Dan J.; Katritch, Vsevolod; Cherezov, Vadim; Caron, Marc G.; Roth, Bryan L.; Stevens, Raymond C.
2014-01-01
The Smoothened receptor (SMO) mediates signal transduction in the hedgehog pathway, which is implicated in normal development and carcinogenesis. SMO antagonists can suppress the growth of some tumors; however, mutations at SMO have been found to abolish their anti-tumor effects, a phenomenon known as chemoresistance. Here we report three crystal structures of human SMO bound to the antagonists SANT1 and Anta XV, and the agonist, SAG1.5, at 2.6–2.8Å resolution. The long and narrow cavity in the transmembrane domain of SMO harbors multiple ligand binding sites, where SANT1 binds at a deeper site as compared with other ligands. Distinct interactions at D4736.55 elucidated the structural basis for the differential effects of chemoresistance mutations on SMO antagonists. The agonist SAG1.5 induces a conformational rearrangement of the binding pocket residues, which could contribute to SMO activation. Collectively, these studies reveal the structural basis for the modulation of SMO by small molecules. PMID:25008467
Batista, Fernanda Aparecida Heleno
2018-01-01
Peroxisome proliferator-activated receptor beta/delta (PPARß/δ) is considered a therapeutic target for metabolic disorders, cancer, and cardiovascular diseases. Here, we developed one pipeline for the screening of PPARß/δ agonists, which reduces the cost, time, and false-positive hits. The first step is an optimized 3-day long cellular transactivation assay based on reporter-gene technology, which is supported by automated liquid-handlers. This primary screening is followed by a confirmatory transactivation assay and by two biophysical validation methods (thermal shift assay (TSA) and (ANS) fluorescence quenching), which allow the calculation of the affinity constant, giving more information about the selected hits. All of the assays were validated using well-known commercial agonists providing trustworthy data. Furthermore, to validate and test this pipeline, we screened a natural extract library (560 extracts), and we found one plant extract that might be interesting for PPARß/δ modulation. In conclusion, our results suggested that we developed a cheaper and more robust pipeline that goes beyond the single activation screening, as it also evaluates PPARß/δ tertiary structure stabilization and the ligand affinity constant, selecting only molecules that directly bind to the receptor. Moreover, this approach might improve the effectiveness of the screening for agonists that target PPARß/δ for drug development.
Schindler, Charles W; Karcz-Kubicha, Marzena; Thorndike, Eric B; Müller, Christa E; Tella, Srihari R; Ferré, Sergi; Goldberg, Steven R
2005-03-01
1. The cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were investigated in rats implanted with telemetry transmitters for the measurement of blood pressure and heart rate. 2. Intraperitoneal (i.p.) injections of the adenosine A1 receptor agonist CPA led to dose-dependent decreases in both blood pressure and heart rate. These effects of 0.3 mg kg(-1) CPA were antagonized by i.p. injections of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT), but not by i.p. injections of the adenosine A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3). Injections (i.p.) of the peripherally acting nonselective adenosine antagonist 8-sulfophenyltheophylline (8-SPT) and the purported nonselective adenosine antagonist caffeine also antagonized the cardiovascular effects of CPA. 3. The adenosine A2A agonist CGS 21680 given i.p. produced a dose-dependent decrease in blood pressure and an increase in heart rate. These effects of 0.5 mg kg(-1) CGS 21680 were antagonized by i.p. injections of the adenosine A2A receptor antagonist MSX-3, but not by i.p. injections of the antagonists CPT, 8-SPT or caffeine. 4. Central administration (intracerebral ventricular) of CGS 21680 produced an increase in heart rate, but no change in blood pressure. MSX-3 given i.p. antagonized the effects of the central injection of CGS 21680. 5. These results suggest that adenosine A1 receptor agonists produce decreases in blood pressure and heart rate that are mediated by A1 receptors in the periphery, with little or no contribution of central adenosine A1 receptors to those effects. 6. The heart rate increasing effect of adenosine A2A agonists appears to be mediated by adenosine A2A receptors in the central nervous system. The blood pressure decreasing effect of adenosine A2A agonists is most probably mediated in the periphery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong,N.; Jasti, J.; Beich-Frandsen, M.
2006-01-01
The canonical conformational states occupied by most ligand-gated ion channels, and many cell-surface receptors, are the resting, activated, and desensitized states. While the resting and activated states of multiple receptors are well characterized, elaboration of the structural properties of the desensitized state, a state that is by definition inactive, has proven difficult. Here we use electrical, chemical, and crystallographic experiments on the AMPA-sensitive GluR2 receptor, defining the conformational rearrangements of the agonist binding cores that occur upon desensitization of this ligand-gated ion channel. These studies demonstrate that desensitization involves the rupture of an extensive interface between domain 1 of 2-foldmore » related glutamate-binding core subunits, compensating for the ca. 21{sup o} of domain closure induced by glutamate binding. The rupture of the domain 1 interface allows the ion channel to close and thereby provides a simple explanation to the long-standing question of how agonist binding is decoupled from ion channel gating upon receptor desensitization.« less
Crack, B E; Beukers, M W; McKechnie, K C; Ijzerman, A P; Leff, P
1994-12-01
1. Previous studies have shown that suramin and FPL 66301 are competitive antagonists at the P2X-purinoceptor in the rabbit ear artery. Those studies employed alpha,beta-methylene ATP, a poorly hydrolysable ATP analogue, as the agonist. In this study these compounds have been tested using ATP as the agonist. 2. Suramin, in the concentration range 30-1000 microM, potentiated the contractile effects of ATP, producing a 3-fold leftward shift of the ATP E/[A] curves. FPL 66301, in the concentration range 100-1000 microM, produced a significant but small (approximately 3-fold) rightward shift of the ATP curves. These results are in marked contrast with previous studies using alpha,beta-methylene ATP in which 30-fold rightward shifts were achieved using the same concentration ranges of suramin and FPL 66301. 3. Suramin and FPL 66301 were tested as ecto-ATPase inhibitors in a human blood cell assay. Suramin inhibited the enzyme with a pIC50 of 4.3, FPL 66301 with a pIC50 of 3.3. 4. The pharmacological data were analysed using a theoretical model describing the action of a compound with dual enzyme inhibitory and receptor antagonistic properties on the effects of an agonist susceptible to enzymatic degradation. The model was found to fit the data well using the known pKB estimates for suramin and FPL 66301 and similar relative (but not absolute) pK1 estimates to those obtained for the compounds in the enzyme assay. 5. From this analysis it was concluded that the limited shifts of ATP E/[A] curves produced by suramin and FPL 66301 were the result of 'self-cancellation' of the potentiating (enzyme inhibitory) and rightward-shifting (receptor antagonistic) properties.6. The analysis also indicated that the presence of ecto-ATPase activity in the rabbit ear artery preparation has a marked effect on the apparent potency of ATP. The experimental p[A50] was 3.4,whereas the 'true' value, that is the value which would be obtained in the absence of ecto-ATPase activity, was 6.0, some 400-fold higher.7 Two conclusions are drawn from this study. Firstly, caution must be exercised in the use of suramin and FPL 66301 as tools for receptor classification. Absence of overt antagonism by these compounds when metabolically unstable agonists are used could lead to erroneous claims for receptor subtypes.Secondly, the agonist potency order currently used to designate P2X- purinoceptors may require modification.
Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi
2016-01-01
Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca2+-activated K+ (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (I NMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated I NMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on I NMDA-OUT. A direct perfusion of 3,5′-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated I NMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of I NMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516
Shoblock, James R
2007-01-01
The NOP receptor (formerly referred to as opiate receptor-like 1, ORL-1, LC132, OP(4), or NOP(1)) is a G protein-coupled receptor that shares high homology to the classic opioid MOP, DOP, and KOP (mu, delta, and kappa, respectively) receptors and was first cloned in 1994 by several groups. The NOP receptor remained an orphan receptor until 1995, when the endogenous neuropeptide agonist, known as nociceptin or orphanin FQ (N/OFQ) was isolated. Five years later, a group at Hoffmann-La Roche reported on the selective, nonpeptide NOP agonist Ro 64-6198, which became the most extensively published nonpeptide NOP agonist and a valuable pharmacological tool in determining the potential of the NOP receptor as a therapeutic target. Ro 64-6198 is systemically active and achieves high brain penetration. It has subnanomolar affinity for the NOP receptor and is at least 100 times more selective for the NOP receptor over the classic opioid receptors. Ro 64-6198 ranges from partial to full agonist, depending on the assay. Preclinical data indicate that Ro 64-6198 may have broad clinical uses, such as in treating stress and anxiety, addiction, neuropathic pain, cough, and anorexia. This review summarizes the pharmacology and preclinical data of Ro 64-6198.
Cell-autonomous regulation of Mu-opioid receptor recycling by substance P.
Bowman, Shanna L; Soohoo, Amanda L; Shiwarski, Daniel J; Schulz, Stefan; Pradhan, Amynah A; Puthenveedu, Manojkumar A
2015-03-24
How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP), a neuropeptide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R) receptor, increases the post-endocytic recycling of the mu-opioid receptor (MOR) in trigeminal ganglion (TG) neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC) activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeostatic interaction between the pain and analgesic systems.
Cell-Autonomous Regulation of Mu-Opioid Receptor Recycling by Substance P
Bowman, Shanna L.; Soohoo, Amanda L.; Shiwarski, Daniel J.; Schulz, Stefan; Pradhan, Amynah A.; Puthenveedu, Manojkumar A.
2015-01-01
SUMMARY How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP), a neuropep-tide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R) receptor, increases the post-endocytic recycling of the muopioid receptor (MOR) in trigeminal ganglion (TG) neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC) activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeo-static interaction between the pain and analgesic systems. PMID:25801029
Müller, Christa E.
2013-01-01
Magnolol (4-allyl-2-(5-allyl-2-hydroxyphenyl)phenol), the main bioactive constituent of the medicinal plant Magnolia officinalis, and its main metabolite tetrahydromagnolol were recently found to activate cannabinoid (CB) receptors. We now investigated the structure-activity relationships of (tetrahydro)magnolol analogs with variations of the alkyl chains and the phenolic groups and could considerably improve potency. Among the most potent compounds were the dual CB1/CB2 full agonist 2-(2-methoxy-5-propyl-phenyl)-4-hexylphenol (61a, K i CB1∶0.00957 µM; K i CB2∶0.0238 µM), and the CB2-selective partial agonist 2-(2-hydroxy-5-propylphenyl)-4-pentylphenol (60, K i CB1∶0.362 µM; K i CB2∶0.0371 µM), which showed high selectivity versus GPR18 and GPR55. Compound 61b, an isomer of 61a, was the most potent GPR55 antagonist with an IC50 value of 3.25 µM but was non-selective. The relatively simple structures, which possess no stereocenters, are easily accessible in a four- to five-step synthetic procedure from common starting materials. The central reaction step is the well-elaborated Suzuki-Miyaura cross-coupling reaction, which is suitable for a combinatorial chemistry approach. The scaffold is versatile and may be fine-tuned to obtain a broad range of receptor affinities, selectivities and efficacies. PMID:24204944
Franchini, Silvia; Battisti, Umberto Maria; Prandi, Adolfo; Tait, Annalisa; Borsari, Chiara; Cichero, Elena; Fossa, Paola; Cilia, Antonio; Prezzavento, Orazio; Ronsisvalle, Simone; Aricò, Giuseppina; Parenti, Carmela; Brasili, Livio
2016-04-13
Herein we report the synthesis and biological activity of new sigma receptor (σR) ligands obtained by combining different substituted five-membered heterocyclic rings with appropriate σR pharmacophoric amines. Radioligand binding assay, performed on guinea pig brain membranes, identified 25b (1-(1,4-dioxaspiro[4.5]decan-2-ylmethyl)-4-benzylpiperazine) as the most interesting compound of the series, displaying high affinity and selectivity for σ1R (pKiσ1 = 9.13; σ1/σ2 = 47). The ability of 25b to modulate the analgesic effect of the κ agonist (-)-U-50,488H and μ agonist morphine was evaluated in vivo by radiant heat tail-flick test. It exhibited anti-opioid effects on both κ and μ receptor-mediated analgesia, suggesting an agonistic behavior at σ1R. Docking studies were performed on the theoretical σ1R homology model. The present work represents a new starting point for the design of more potent and selective σ1R ligands. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Schramm, Cicely L.; Honda, Christopher N.
2010-01-01
Enhancement of peripheral opioid analgesia following tissue injury or inflammation in animal models is well-documented, but clinical results of peripheral opioid therapy remain inconsistent. Previous studies in the central nervous system have shown that co-administration of μ- and δ-opioid receptor agonists can enhance analgesic outcomes; however, less is known about the functional consequences of opioid receptor interactions in the periphery. The present study examines the effects of intraplantar injection of the μ- and δ-opioid receptor agonists, morphine and deltorphin, alone and in combination on behavioral tests of nociception in naïve rats and on potassium-evoked release of CGRP from sciatic nerves of naïve rats. Neither drug alone affected nociceptive behaviors or CGRP release. Two separate measures of mechanical nociceptive sensitivity remained unchanged after co-administration of the two drugs. In contrast, when deltorphin was co-injected with morphine, dose-dependent and peripherally-restricted increases in paw withdrawal latencies to radiant heat were observed. Similarly, concentration-dependent inhibition of CGRP release was observed when deltorphin and morphine were administered in sequence prior to potassium stimulation. However, no inhibition was observed when morphine was administered prior to deltorphin. All combined opioid effects were blocked by co-application of antagonists. Deltorphin exposure also enhanced the in vivo and in vitro effects of another μ-opioid receptor agonist, DAMGO. Together, these results suggest that under normal conditions, δ-opioid receptor agonists enhance the effect of μ-opioid receptor agonists in the periphery, and local co-administration of δ- and μ-opioid receptor agonists may improve results of peripheral opioid therapy for the treatment of pain. PMID:20970925
The actions of some esters of 4-hydroxyquinuclidine on guinea-pig ileum, atria and rat fundus strip.
Barlow, R B; Kitchen, R
1982-11-01
1 The acetyl, phenylacetyl, and diphenylacetyl esters of 4-hydroxyquinuclidine and their methiodides have been prepared.2 4-Diphenylacetoxyquinuclidine methiodide has higher affinity for muscarinic receptors than 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP methiodide) but it is less selective. At 30 degrees C its affinity for receptors in ileum is about 5 times that for receptors in atria, a difference similar to that found with diphenylacetoxytrophine methiodide. With 4-DAMP methiodide affinity for receptors in the ileum is over 10 times that for receptors in atria.3 4-Diphenylacetoxyquinuclidine methiodide has higher affinity for muscarinic receptors than 3-diphenylacetoxyquinuclidine hydrochloride or its methiodide.4 4-Acetoxyquinuclidine hydrochloride has less than one-hundredth of the activity of 3-acetoxyquinuclidine hydrochloride (acecyclidine) on guinea-pig ileum, atria, and rat fundus: however, 4-acetoxyquinuclidine methiodide is consistently more active than its 3-isomer, though it is only about 1/25 times as active as acecyclidine.5 4-Acetoxyquinuclidine hydrochloride is only a poor substrate for electric eel acetylcholinesterase: its affinity is similar to that of acecyclidine but it is greatly reduced by methylation.6 The relations between the structure and activity of the agonists are very different from the relations between the structure and affinity of the antagonists, which supports the view that agonists and antagonists bind to different conformations of the muscarinic receptor.
Mihara, Satoru; Shibamoto, Takayuki
2015-01-01
TRPA1 has been proposed to be associated with diverse sensory allergic reactions, including thermal (cold) nociception, hearing and allergic inflammatory conditions. Some naturally occurring compounds are known to activate TRPA1 by forming a Michael addition product with a cysteine residue of TRPA1 through covalent protein modification and, in consequence, to cause allergic reactions. The anti-allergic property of TRPA1 agonists may be due to the activation and subsequent desensitization of TRPA1 expressed in sensory neurons. In this review, naturally occurring TRPA1 antagonists, such as camphor, 1,8-cineole, menthol, borneol, fenchyl alcohol and 2-methylisoborneol, and TRPA1 agonists, including thymol, carvacrol, 1'S-1'- acetoxychavicol acetate, cinnamaldehyde, α-n-hexyl cinnamic aldehyde and thymoquinone as well as isothiocyanates and sulfides are discussed.
Crystal structure of human glycine receptor-α3 bound to antagonist strychnine.
Huang, Xin; Chen, Hao; Michelsen, Klaus; Schneider, Stephen; Shaffer, Paul L
2015-10-08
Neurotransmitter-gated ion channels of the Cys-loop receptor family are essential mediators of fast neurotransmission throughout the nervous system and are implicated in many neurological disorders. Available X-ray structures of prokaryotic and eukaryotic Cys-loop receptors provide tremendous insights into the binding of agonists, the subsequent opening of the ion channel, and the mechanism of channel activation. Yet the mechanism of inactivation by antagonists remains unknown. Here we present a 3.0 Å X-ray structure of the human glycine receptor-α3 homopentamer in complex with a high affinity, high-specificity antagonist, strychnine. Our structure allows us to explore in detail the molecular recognition of antagonists. Comparisons with previous structures reveal a mechanism for antagonist-induced inactivation of Cys-loop receptors, involving an expansion of the orthosteric binding site in the extracellular domain that is coupled to closure of the ion pore in the transmembrane domain.
Is the isolated ligand binding domain a good model of the domain in the native receptor?
Deming, Dustin; Cheng, Qing; Jayaraman, Vasanthi
2003-05-16
Numerous studies have used the atomic level structure of the isolated ligand binding domain of the glutamate receptor to elucidate the agonist-induced activation and desensitization processes in this group of proteins. However, no study has demonstrated the structural equivalence of the isolated ligand binding fragments and the protein in the native receptor. In this report, using visible absorption spectroscopy we show that the electronic environment of the antagonist 6-cyano-7-nitro-2,3-dihydroxyquinoxaline is identical for the isolated protein and the native glutamate receptors expressed in cells. Our results hence establish that the local structure of the ligand binding site is the same in the two proteins and validate the detailed structure-function relationships that have been developed based on a comparison of the structure of the isolated ligand binding domain and electrophysiological consequences in the native receptor.
Suwanmanee, Siros; Buckingham, Steven David; Biggin, Philip; Sattelle, David
2014-01-01
Ionotropic GABA receptors are the targets for several classes of insecticides. One of the most widely-studied insect GABA receptors is RDL (resistance to dieldrin), originally isolated from Drosophila melanogaster. RDL undergoes alternative splicing and RNA editing, which influence the potency of GABA. Most work has focussed on minority isoforms. Here, we report the first characterisation of the predominant native splice variant and RNA edit, combining functional characterisation with molecular modelling of the agonist-binding region. The relative order of agonist potency is GABA> muscimol> TACA> β-alanine. The I/V edit does not alter the potency of GABA compared to RDLbd. Docking calculations suggest that these agonists bind and activate RDLbdI/V through a similar binding mode. TACA and β-alanine are predicted to bind with lower affinity than GABA, potentially explaining their lower potency, whereas the lower potency of muscimol and isoguvacine cannot be explained structurally from the docking calculations. The A301S (resistance to dieldrin) mutation reduced the potency of antagonists picrotoxin, fipronil and pyrafluprole but the I/V edit had no measurable effect. Ivermectin suppressed responses to GABA of RDLbdI/V, RDLbd and RDLbdI/VA301S. The dieldrin resistant variant also showed reduced sensitivity to Ivermectin. This study of a highly abundant insect GABA receptor isoform will help the design of new insecticides. PMID:24823815
Agonist trapped in ATP-binding sites of the P2X2 receptor
Jiang, Ruotian; Lemoine, Damien; Martz, Adeline; Taly, Antoine; Gonin, Sophie; Prado de Carvalho, Lia; Specht, Alexandre; Grutter, Thomas
2011-01-01
ATP-gated P2X receptors are trimeric ion channels, as recently confirmed by X-ray crystallography. However, the structure was solved without ATP and even though extracellular intersubunit cavities surrounded by conserved amino acid residues previously shown to be important for ATP function were proposed to house ATP, the localization of the ATP sites remains elusive. Here we localize the ATP-binding sites by creating, through a proximity-dependent “tethering” reaction, covalent bonds between a synthesized ATP-derived thiol-reactive P2X2 agonist (NCS-ATP) and single cysteine mutants engineered in the putative binding cavities of the P2X2 receptor. By combining whole-cell and single-channel recordings, we report that NCS-ATP covalently and specifically labels two previously unidentified positions N140 and L186 from two adjacent subunits separated by about 18 Å in a P2X2 closed state homology model, suggesting the existence of at least two binding modes. Tethering reaction at both positions primes subsequent agonist binding, yet with distinct functional consequences. Labeling of one position impedes subsequent ATP function, which results in inefficient gating, whereas tethering of the other position, although failing to produce gating by itself, enhances subsequent ATP function. Our results thus define a large and dynamic intersubunit ATP-binding pocket and suggest that receptors trapped in covalently agonist-bound states differ in their ability to gate the ion channel. PMID:21576497
Structural basis for the specific recognition of IL-18 by its alpha receptor.
Wei, Hui; Wang, Dongli; Qian, Yun; Liu, Xi; Fan, Shilong; Yin, Hsien-Sheng; Wang, Xinquan
2014-11-03
Interleukin 18 (IL-18), a member of the IL-1 family of cytokines, is an important regulator of innate and acquired immune responses. It signals through its ligand-binding primary receptor IL-18Rα and accessory receptor IL-18Rβ. Here we report the crystal structure of IL-18 with the ectodomain of IL-18Rα, which reveals the structural basis for their specific recognition. It confirms that surface charge complementarity determines the ligand-binding specificity of primary receptors in the IL-1 receptor family. We suggest that IL-18 signaling complex adopts an architecture similar to other agonistic cytokines and propose a general ligand-receptor assembly and activation model for the IL-1 family. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Saijo, Takeaki; Maeda, Jun; Okauchi, Takashi; Maeda, Jun-ichi; Morio, Yasunori; Kuwahara, Yasuhiro; Suzuki, Masayuki; Goto, Nobuharu; Fukumura, Toshimitsu; Suhara, Tetsuya; Higuchi, Makoto
2012-01-01
A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT(1A)) receptor, called Wf-516 (structural formula: (2S)-1-[4-(3,4-dichlorophenyl)piperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-yl)benzo[b]furan-4-yloxy]propan-2-ol monohydrochloride), has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET) and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT(1A) receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT(1A) receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT(1A) receptors. In addition, [(35)S]guanosine 5'-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT(1A) receptors. This finding has lent support to reports that diverse partial agonists for 5-HT(1A) receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants.
Okauchi, Takashi; Maeda, Jun-ichi; Morio, Yasunori; Kuwahara, Yasuhiro; Suzuki, Masayuki; Goto, Nobuharu; Fukumura, Toshimitsu; Suhara, Tetsuya; Higuchi, Makoto
2012-01-01
A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT1A) receptor, called Wf-516 (structural formula: (2S)-1-[4-(3,4-dichlorophenyl)piperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-yl)benzo[b]furan-4-yloxy]propan-2-ol monohydrochloride), has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET) and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT1A receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT1A receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT1A receptors. In addition, [35S]guanosine 5′-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT1A receptors. This finding has lent support to reports that diverse partial agonists for 5-HT1A receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants. PMID:22880045
Mastering tricyclic ring systems for desirable functional cannabinoid activity
Petrov, Ravil R.; Knight, Lindsay; Chen, Shao-Rui; Wager-Miller, Jim; McDaniel, Steven W.; Diaz, Fanny; Barth, Francis; Pan, Hui-Lin; Mackie, Ken; Cavasotto, Claudio N.; Diaz, Philippe
2013-01-01
There is growing interest in using cannabinoid receptor 2 (CB2) agonists for the treatment of neuropathic pain and other indications. In continuation of our ongoing program aiming for the development of new small molecule cannabinoid ligands, we have synthesized a novel series of carbazole and γ-carboline derivatives. The affinities of the newly synthesized compounds were determined by a competitive radioligand displacement assay for human CB2 cannabinoid receptor and rat CB1 cannabinoid receptor. Functional activity and selectivity at human CB1 and CB2 receptors were characterized using receptor internalization and [35S]GTP-γ-S assays. The structure-activity relationship and optimization studies of the carbazole series have led to the discovery of a non-selective CB1 and CB2 agonist, compound 4. Our subsequent research efforts to increase CB2 selectivity of this lead compound have led to the discovery of CB2 selective compound 64, which robustly internalized CB2 receptors. Compound 64 had potent inhibitory effects on pain hypersensitivity in a rat model of neuropathic pain. Other potent and CB2 receptor–selective compounds, including compounds 63 and 68, and a selective CB1 agonist, compound 74 were also discovered. In addition, we identified the CB2 ligand 35 which failed to promote CB2 receptor internalization and inhibited compound CP55,940-induced CB2 internalization despite a high CB2 receptor affinity. The present study provides novel tricyclic series as a starting point for further investigations of CB2 pharmacology and pain treatment. PMID:24125850
Tsuji, Keiichiro
2002-06-01
Although it is suggested that (+/-)-pindolol, a beta-adrenergic/5-HT1A receptor antagonist, may enhance the efficacy of selective serotonin reuptake inhibitors (SSRI), the results of double-blind studies are contradictory and recent animal studies suggest that (+/-)-pindolol may act as a partial agonist to the 5-HT1A receptor. In this study we have investigated the effect of (+/-)-pindolol on both pre- and postsynaptic 5-HT1A receptors using in vivo microdialysis and hippocampal slice preparations. (+/-)-pindolol and flesinoxan, a 5-HT1A receptor full agonist, significantly decreased the extracellular levels of 5-HT in the raphe and prefrontal cortex. The 5-HT and other 5-HT1A receptor agonists, flesinoxan and 8-hydroxy-2- (di-n-propylamino)tetralon (8-OH-DPAT), significantly decreased the population excitatory postsynaptic potential (EPSP) in the CA3-CA1 excitatory synapse in a dose-dependent manner. The effect of 5-HT and other 5-HT1A receptor agonists accompanied the increase in paired-pulse facilitation (ppf) induced by short-interval two stimuli and were reversed by the coadministration of the 5-HT1A receptor agonist, NAN-190, but not by (+/-)-pindolol. (+/-)-pindolol also suppressed the EPSP, but this effect was not reversed by NAN-190. These results suggest that (+/-)-pindolol acts as a partial agonist to the somatodendritic 5-HT1A receptor in the raphe, whereas it may have no action on the postsynaptic 5-HT1A receptor in the hippocampus.
Neurophysiological Analysis of Circadian Rhythm Entrainment
1994-05-24
on activations in response to the ionotropic agonist NMDA (25). These results point to a previously uninvestigated role for metabotropic receptors in...are selective agonists of the metabotropic type of glutamate receptor . Selective metabotropic antagonists can block these effects but do not alter...glutamate receptors on SCN cell activity. In slice preparations, our initial findings are that the selective metabotropic agonist 1S,3R-ACPD has very potent
Lamonte, Nicole; Echo, Joyce A; Ackerman, Tsippa F; Christian, Garrison; Bodnar, Richard J
2002-03-01
The present study examined opioid receptor(s) mediation of feeding elicited by mu opioid agonists in the ventral tegmental area using general or selective opioid antagonist pretreatment. Naltrexone as well as equimolar doses of selective mu and kappa, but not delta opioid antagonists in the ventral tegmental area significantly reduced mu agonist-induced feeding, indicating a pivotal role for these receptor subtypes in the full expression of this response.
Moore, Thomas J; Glenmullen, Joseph; Mattison, Donald R
2014-12-01
Severe impulse control disorders involving pathological gambling, hypersexuality, and compulsive shopping have been reported in association with the use of dopamine receptor agonist drugs in case series and retrospective patient surveys. These agents are used to treat Parkinson disease, restless leg syndrome, and hyperprolactinemia. To analyze serious adverse drug event reports about these impulse control disorders received by the US Food and Drug Administration (FDA) and to assess the relationship of these case reports with the 6 FDA-approved dopamine receptor agonist drugs. We conducted a retrospective disproportionality analysis based on the 2.7 million serious domestic and foreign adverse drug event reports from 2003 to 2012 extracted from the FDA Adverse Event Reporting System. Cases were selected if they contained any of 10 preferred terms in the Medical Dictionary for Regulatory Activities (MedDRA) that described the abnormal behaviors. We used the proportional reporting ratio (PRR) to compare the proportion of target events to all serious events for the study drugs with a similar proportion for all other drugs. We identified 1580 events indicating impulse control disorders from the United States and 21 other countries:710 fordopamine receptor agonist drugs and 870 for other drugs. The dopamine receptor agonist drugs had a strong signal associated with these impulse control disorders (n = 710; PRR = 277.6, P < .001). The association was strongest for the dopamine agonists pramipexole (n = 410; PRR = 455.9, P < .001) and ropinirole (n = 188; PRR = 152.5, P < .001), with preferential affinity for the dopamine D3 receptor. A signal was also seen for aripiprazole, an antipsychotic classified as a partial agonist of the D3 receptor (n = 37; PRR = 8.6, P < .001). Our findings confirm and extend the evidence that dopamine receptor agonist drugs are associated with these specific impulse control disorders. At present, none of the dopamine receptor agonist drugs approved by the FDA have boxed warnings as part of their prescribing information. Our data, and data from prior studies, show the need for more prominent warnings.
Tran, Thien-Duc; Pryde, David C; Jones, Peter; Adam, Fiona M; Benson, Neil; Bish, Gerwyn; Calo, Frederick; Ciaramella, Guiseppe; Dixon, Rachel; Duckworth, Jonathan; Fox, David N A; Hay, Duncan A; Hitchin, James; Horscroft, Nigel; Howard, Martin; Gardner, Iain; Jones, Hannah M; Laxton, Carl; Parkinson, Tanya; Parsons, Gemma; Proctor, Katie; Smith, Mya C; Smith, Nicholas; Thomas, Amy
2011-04-15
The synthesis and structure-activity relationships of a series of novel interferon inducers are described. Pharmacokinetic studies and efficacy assessment of a series of 8-oxo-3-deazapurine analogues led to the identification of compound 33, a potent and selective agonist of the TLR7 receptor with an excellent in vivo efficacy profile in a mouse model. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fauber, Benjamin P.; René, Olivier; de Leon Boenig, Gladys
2014-08-01
Using structure-based drug design principles, we identified opportunities to reduce the lipophilicity of our tertiary sulfonamide RORc inverse agonists. The new analogs possessed improved RORc cellular potencies with >77-fold selectivity for RORc over other nuclear receptors in our cell assay suite. The reduction in lipophilicity also led to an increased plasma–protein unbound fraction and improvements in cellular permeability and aqueous solubility.
Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.
G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the nativemore » ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.« less
Ghrelin and motilin receptor agonists: time to introduce bias into drug design.
Sanger, G J
2014-02-01
Ghrelin and motilin receptor agonists increase gastric motility and are attractive drug targets. However, 14 years after the receptors were described (18-24 years since ligands became available) the inactivity of the ghrelin agonist TZP-102 in patients with gastroparesis joins the list of unsuccessful motilin agonists. Fundamental questions must be asked. Pustovit et al., have now shown that the ghrelin agonist ulimorelin evokes prolonged increases in rat colorectal propulsion yet responses to other ghrelin agonists fade. Similarly, different motilin agonists induce short- or long-lasting effects in a cell-dependent manner. Together, these and other data create the hypothesis that the receptors can be induced to preferentially signal ('biased agonism') via particular pathways to evoke different responses with therapeutic advantages/disadvantages. Biased agonism has been demonstrated for ghrelin. Are motilin agonists which cause long-lasting facilitation of human stomach cholinergic function (compared with motilin) biased agonists (e.g., camicinal, under development for patients with gastric hypo-motility)? For ghrelin, additional complications exist because the therapeutic aims/mechanisms of action are uncertain, making it difficult to select the best (biased) agonist. Will ghrelin agonists be useful treatments of nausea and/or as suggested by Pustovit et al., chronic constipation? How does ghrelin increase gastric motility? As gastroparesis symptoms poorly correlate with delayed gastric emptying (yet gastro-prokinetic drugs can provide relief: e.g., low-dose erythromycin), would low doses of ghrelin and motilin agonists relieve symptoms simply by restoring neuromuscular rhythm? These questions on design and functions need addressing if ghrelin and motilin agonists are to reach patients as drugs. © 2014 John Wiley & Sons Ltd.
Varano, Flavia; Catarzi, Daniela; Vincenzi, Fabrizio; Falsini, Matteo; Pasquini, Silvia; Borea, Pier Andrea; Colotta, Vittoria; Varani, Katia
2018-06-09
This paper describes the synthesis and characterization of N 5 -(hetero)arylalkyl-substituted-thiazolo [5,4-d]pyrimidine-5,7-diamine derivatives (4-19) as novel human (h) A 2A adenosine receptor (AR) inverse agonists. Competition binding and cyclic AMP assays indicate that the examined compounds behave as hA 2A AR inverse agonists showing binding affinity values in the nanomolar or subnanomolar range. Notably, compounds 4, 5, 6 and 11 showed two affinity values for the hA 2A ARs with the highest (KH) falling in the femtomolar range and the lowest (KL) of the nanomolar order. In addition, in cyclic AMP assays, compounds 4, 5, 6 and 11 exhibited potency (IC 50 ) values in the picomolar range. This study has confirmed that 2-(2-furanyl)thiazolo [5,4-d]pyrimidine-5,7-diamine-based derivatives represent a unique new class of hA 2A AR inverse agonists. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Design of ligands for the nicotinic acetylcholine receptors: the quest for selectivity.
Bunnelle, William H; Dart, Michael J; Schrimpf, Michael R
2004-01-01
In the last decade, nicotinic acetylcholine receptors (nAChRs) have emerged as important targets for drug discovery. The therapeutic potential of nicotinic agonists depends substantially on the ability to selectively activate certain receptor subtypes that mediate beneficial effects. The design of such compounds has proceeded in spite of a general shortage of data pertaining to subtype selectivity. Medicinal chemistry efforts have been guided principally by binding affinities to the alpha4beta2 and/or alpha7 subtypes, even though these are not predictive of agonist activity at either subtype. Nevertheless, a diverse family of nAChR ligands has been developed, and several analogs with promising therapeutic potential have now advanced to human clinical trials. This paper provides an overview of the structure-affinity relationships that continue to drive development of new nAChR ligands.
Estall, Jennifer L; Koehler, Jacqueline A; Yusta, Bernardo; Drucker, Daniel J
2005-06-10
Classic models of receptor desensitization and internalization have been largely based on the behavior of Family A G-protein-coupled receptors (GPCRs). The glucagon-like peptide-2 receptor (GLP-2R) is a member of the Family B glucagon-secretin GPCR family, which exhibit significant sequence and structural differences from the Family A receptors in their intracellular and extracellular domains. To identify structural motifs that regulate GLP-2R signaling and cell surface receptor expression, we analyzed the functional properties of a series of mutant GLP-2Rs. The majority of the C-terminal receptor tail was dispensable for GLP-2-induced cAMP accumulation, ERK1/2 activation, and endocytosis in transfected cells. However, progressive truncation of the C terminus reduced cell surface receptor expression, altered agonist-induced GLP-2R trafficking, and abrogated protein kinase A-mediated heterologous receptor desensitization. Elimination of the distal 21 amino acids of the receptor was sufficient to promote constitutive receptor internalization and prevent agonist-induced recruitment of beta-arrestin-2. Site-directed mutagenesis identified specific amino acid residues within the distal GLP-2R C terminus that mediate the stable association with beta-arrestin-2. Surprisingly, although the truncated mutant receptors failed to interact with beta-arrestin-2, they underwent homologous desensitization and subsequent resensitization with kinetics similar to that observed with the wild-type GLP-2R. Our data suggest that, although the GLP-2R C terminus is not required for coupling to cellular machinery regulating signaling or desensitization, it may serve as a sorting signal for intracellular trafficking. Taken together with the previously demonstrated clathrin and dynamin-independent, lipid-raft-dependent pathways for internalization, our data suggest that GLP-2 receptor signaling has evolved unique structural and functional mechanisms for control of receptor trafficking, desensitization, and resensitization.
Mulak, Agata; Larauche, Muriel; Biraud, Mandy; Million, Mulugeta; Rivier, Jean; Taché, Yvette
2014-01-01
Somatostatin interacts with 5 G-protein-coupled receptor (sst1–5). Octreotide, a stable sst2≫3≥5 agonist, octreotide, exerts a visceral anti-hyperalgesic effect in experimental and clinical studies. Little is known on the receptor subtypes involved. We investigated the influence of the stable sst1–5 agonist, ODT8-SST and selective receptor subtype peptide agonists (3 or 10 μg/mouse) injected intraperitoneally (ip) on visceral hypersensitivity in mice induced by repeated noxious colorectal distensions (4 sets of 3 CRD, each at 55 mmHg) or corticotropin-releasing factor receptor 1 agonist, cortagine given between 2 sets of graded CRD (15, 30, 45, and 60 mmHg, 3 times each pressure). The mean visceromotor response (VMR) was assessed using a non-invasive manometry method and values were expressed as percentage of the VMR to the 1st set of CRD baseline or to the 60 mmHg CRD, respectively. ODT8-SST (10 μg) and the sst2 agonist, S-346-011 (3 and 10 μg) prevented mechanically-induced visceral hypersensitivity in the 3 sets of CRD, the sst1 agonist (10 μg) blocked only the 2nd set and showed a trend at 3 μg while the sst4 agonist had no effect. The selective sst2 antagonist, S-406-028 blocked the sst2 agonist but not the sst1 agonist effect. The sst1 agonist (3 and 10 μg) prevented cortagine-induced hypersensitivity to CRD at each pressure while the sst2 agonist at 10 μg reduced it. These data indicate that in addition to sst2, the sst1 agonist may provide a novel promising target to alleviate visceral hypersensitivity induced by mechanoreceptor sensitization and more prominently, stress-related visceral nociceptive sensitization. PMID:25451334
Mulak, Agata; Larauche, Muriel; Biraud, Mandy; Million, Mulugeta; Rivier, Jean; Taché, Yvette
2015-01-01
Somatostatin interacts with five G-protein-coupled receptor (sst1-5). Octreotide, a stable sst2≫3≥5 agonist, exerts a visceral anti-hyperalgesic effect in experimental and clinical studies. Little is known on the receptor subtypes involved. We investigated the influence of the stable sst1-5 agonist, ODT8-SST and selective receptor subtype peptide agonists (3 or 10μg/mouse) injected intraperitoneally (ip) on visceral hypersensitivity in mice induced by repeated noxious colorectal distensions (four sets of three CRD, each at 55mmHg) or corticotropin-releasing factor receptor 1 agonist, cortagine given between two sets of graded CRD (15, 30, 45, and 60mmHg, three times each pressure). The mean visceromotor response (VMR) was assessed using a non-invasive manometry method and values were expressed as percentage of the VMR to the 1st set of CRD baseline or to the 60mmHg CRD, respectively. ODT8-SST (10μg) and the sst2 agonist, S-346-011 (3 and 10μg) prevented mechanically induced visceral hypersensitivity in the three sets of CRD, the sst1 agonist (10μg) blocked only the 2nd set and showed a trend at 3μg while the sst4 agonist had no effect. The selective sst2 antagonist, S-406-028 blocked the sst2 agonist but not the sst1 agonist effect. The sst1 agonist (3 and 10μg) prevented cortagine-induced hypersensitivity to CRD at each pressure while the sst2 agonist at 10μg reduced it. These data indicate that in addition to sst2, the sst1 agonist may provide a novel promising target to alleviate visceral hypersensitivity induced by mechanoreceptor sensitization and more prominently, stress-related visceral nociceptive sensitization. Copyright © 2014 Elsevier Inc. All rights reserved.
Building a bridge between neurobiology and mental illness.
Costa, E
1992-10-01
GABA (gamma amino butyric acid) is the most abundant and important inhibitory transmitter in mammalian CNS. It counterbalances the glutamate mediated neuronal excitation. Abnormalities of the interaction of these two transmitters might change the mechanisms of neuronal group selection that according to Edelman [Neural Darwinism. Basic Books, New York] play a role in mediating several brain functions including cognition processes. Indeed imbalances in GABAergic functions were shown to elicit psychoses. They can be obtained by administration of drugs that affect synthesis, metabolism and uptake of GABA and thereby cause a persistent stimulation of GABAA receptors or perhaps by genetic abnormalities in DNA transcription, pre-mRNA splicing, mRNA translation and posttranslation modifications of GABAA receptor subunits. The complexities in the regulation of GABAA receptor subunit structure, synthesis, assembly and the brain location of specific mRNA encoding for these subunits are investigated with in situ mRNA hybridization specific for subunits of GABAA receptors. The role of the variability resulting from the complexities in the regulation of GABAA receptor allosteric modulation by drugs and putative endogenous allosteric modulators of GABA action at GABAA receptors is discussed. This discussion gives relevance to the possibility that genetic abnormalities in the expression of proteins participating in GABAergic function are to be considered as a possible target of the genetic defects operative in psychoses. In line with this thinking, it is suggested that partial allosteric modulators (partial agonists) of GABAA receptors and the phosphothioate or methylphosphonate analogs antisense to specific mRNA oligonucleotides that mediate the expression of genetic information concerning GABAA and glutamate receptor subunits may become valuable tools in psychiatric research. Perhaps in the future these studies might generate new ideas useful in the therapy of genetically determined psychiatric illness.
NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids
Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.
2014-01-01
Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792
Kappa Opioid Receptor Agonist and Brain Ischemia
Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu
2014-01-01
Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482
Moran, Sean P; Cho, Hyekyung P; Maksymetz, James; Remke, Daniel H; Hanson, Ryan M; Niswender, Colleen M; Lindsley, Craig W; Rook, Jerri M; Conn, P Jeffrey
2018-04-25
Positive allosteric modulators (PAMs) of the M 1 subtype of muscarinic acetylcholine receptor have attracted intense interest as an exciting new approach for improving the cognitive deficits in schizophrenia and Alzheimer's disease. Recent evidence suggests that the presence of intrinsic agonist activity of some M 1 PAMs may reduce efficacy and contribute to adverse effect liability. However, the M 1 PAM PF-06827443 was reported to have only weak agonist activity at human M 1 receptors but produced M 1 -dependent adverse effects. We now report that PF-06827443 is an allosteric agonist in cell lines expressing rat, dog, and human M 1 and use of inducible cell lines shows that agonist activity of PF-06827443 is dependent on receptor reserve. Furthermore, PF-06827443 is an agonist in native tissue preparations and induces behavioral convulsions in mice similar to other ago-PAMs. These findings suggest that PF-06827443 is a robust ago-PAM, independent of species, in cell lines and native systems.
Regulation of bat echolocation pulse acoustics by striatal dopamine.
Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael
2011-10-01
The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg(-1)) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D(1)- and D(2)-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D(2)-type dopamine receptor agonist (Quinpirole) but not by a D(1)-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D(2)-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats.
Regulation of bat echolocation pulse acoustics by striatal dopamine
Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael
2011-01-01
SUMMARY The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg–1) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D1- and D2-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D2-type dopamine receptor agonist (Quinpirole) but not by a D1-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D2-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats. PMID:21900471
A Review of the Updated Pharmacophore for the Alpha 5 GABA(A) Benzodiazepine Receptor Model
Clayton, Terry; Poe, Michael M.; Rallapalli, Sundari; Biawat, Poonam; Savić, Miroslav M.; Rowlett, James K.; Gallos, George; Emala, Charles W.; Kaczorowski, Catherine C.; Stafford, Douglas C.; Arnold, Leggy A.; Cook, James M.
2015-01-01
An updated model of the GABA(A) benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A) subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A) α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1) which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM), SH-053-2′F-R-CH3 (2), has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5β2γ2 Bz/GABA(A) receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1β2γ2, α2β2γ2, and α3β2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A) receptors. PMID:26682068
Simonneau, Claire; Bérénice Leclercq; Mougel, Alexandra; Adriaenssens, Eric; Paquet, Charlotte; Raibaut, Laurent; Ollivier, Nathalie; Drobecq, Hervé; Marcoux, Julien; Cianférani, Sarah; Tulasne, David; de Jonge, Hugo; Melnyk, Oleg; Vicogne, Jérôme
2015-03-01
The development of MET receptor agonists is an important goal in regenerative medicine, but is limited by the complexity and incomplete understanding of its interaction with HGF/SF (Hepatocyte Growth Factor/Scatter Factor). NK1 is a natural occurring agonist comprising the N-terminal (N) and the first kringle (K1) domains of HGF/SF. In the presence of heparin, NK1 can self-associate into a "head to tail" dimer which is considered as the minimal structural module able to trigger MET dimerization and activation whereas isolated K1 and N domains showed a weak or a complete lack of agonistic activity respectively. Starting from these structural and biological observations, we investigated whether it was possible to recapitulate the biological properties of NK1 using a new molecular architecture of isolated N or K1 domains. Therefore, we engineered multivalent N or K1 scaffolds by combining synthetic and homogeneous site-specifically biotinylated N and K1 domains (NB and K1B) and streptavidin (S). NB alone or in complex failed to activate MET signaling and to trigger cellular phenotypes. Importantly and to the contrary of K1B alone, the semi-synthetic K1B/S complex mimicked NK1 MET agonist activity in cell scattering, morphogenesis and survival phenotypic assays. Impressively, K1B/S complex stimulated in vivo angiogenesis and, when injected in mice, protected the liver against fulminant hepatitis in a MET dependent manner whereas NK1 and HGF were substantially less potent. These data reveal that without N domain, proper multimerization of K1 domain is a promising strategy for the rational design of powerful MET agonists.
2012-01-01
Background Somatostatin (SST) via five Gi coupled receptors namely SSTR1-5 is known to inhibit cell proliferation by cytostatic and cytotoxic mechanisms. Heterodimerization plays a crucial role in modulating the signal transduction pathways of SSTR subtypes. In the present study, we investigated human SSTR2/SSTR3 heterodimerization, internalization, MAPK signaling, cell proliferation and apoptosis in HEK-293 cells in response to SST and specific agonists for SSTR2 and SSTR3. Results Although in basal conditions, SSTR2 and SSTR3 colocalize at the plasma membrane and exhibit heterodimerization, the cell surface distribution of both receptors decreased upon agonist activation and was accompanied by a parallel increase in intracellular colocalization. Receptors activation by SST and specific agonists significantly decreased cAMP levels in cotransfected cells in comparison to control. Agonist-mediated modulation of pERK1/2 was time and concentration-dependent, and pronounced in serum-deprived conditions. pERK1/2 was inhibited in response to SST; conversely receptor-specific agonist treatment caused inhibition at lower concentration and activation at higher concentration. Strikingly, ERK1/2 phosphorylation was sustained upon prolonged treatment with SST but not with receptor-specific agonists. On the other hand, SST and receptor-specific agonists modulated p38 phosphorylation time-dependently. The receptor activation in cotransfected cells exhibits Gi-dependent inhibition of cell proliferation attributed to increased PARP-1 expression and TUNEL staining, whereas induction of p21 and p27Kip1 suggests a cytostatic effect. Conclusion Our study provides new insights in SSTR2/SSTR3 mediated signaling which might help in better understanding of the molecular interactions involving SSTRs in tumor biology. PMID:22651821
Rojas, Jennifer M; Stafford, John M; Saadat, Sanaz; Printz, Richard L; Beck-Sickinger, Annette G; Niswender, Kevin D
2012-12-15
Elevated plasma triglyceride (TG) levels contribute to an atherogenic dyslipidemia that is associated with obesity, diabetes, and metabolic syndrome. Numerous models of obesity are characterized by increased central nervous system (CNS) neuropeptide Y (NPY) tone that contributes to excess food intake and obesity. Previously, we demonstrated that intracerebroventricular (icv) administration of NPY in lean fasted rats also elevates hepatic production of very low-density lipoprotein (VLDL)-TG. Thus, we hypothesize that elevated CNS NPY action contributes to not only the pathogenesis of obesity but also dyslipidemia. Here, we sought to determine whether the effects of NPY on feeding and/or obesity are dissociable from effects on hepatic VLDL-TG secretion. Pair-fed, icv NPY-treated, chow-fed Long-Evans rats develop hypertriglyceridemia in the absence of increased food intake and body fat accumulation compared with vehicle-treated controls. We then modulated CNS NPY signaling by icv injection of selective NPY receptor agonists and found that Y1, Y2, Y4, and Y5 receptor agonists all induced hyperphagia in lean, ad libitum chow-fed Long-Evans rats, with the Y2 receptor agonist having the most pronounced effect. Next, we found that at equipotent doses for food intake NPY Y1 receptor agonist had the most robust effect on VLDL-TG secretion, a Y2 receptor agonist had a modest effect, and no effect was observed for Y4 and Y5 receptor agonists. These findings, using selective agonists, suggest the possibility that the effect of CNS NPY signaling on hepatic VLDL-TG secretion may be relatively dissociable from effects on feeding behavior via the Y1 receptor.
Johnson, Tyler A; Milan-Lobo, Laura; Che, Tao; Ferwerda, Madeline; Lambu, Eptisam; McIntosh, Nicole L; Li, Fei; He, Li; Lorig-Roach, Nicholas; Crews, Phillip; Whistler, Jennifer L
2017-03-15
Opioid therapeutics are excellent analgesics, whose utility is compromised by dependence. Morphine (1) and its clinically relevant derivatives such as OxyContin (2), Vicodin (3), and Dilaudid (4) are "biased" agonists at the μ opioid receptor (OR), wherein they engage G protein signaling but poorly engage β-arrestin and the endocytic machinery. In contrast, endorphins, the endogenous peptide agonists for ORs, are potent analgesics, show reduced liability for tolerance and dependence, and engage both G protein and β-arrestin pathways as "balanced" agonists. We set out to determine if marine-derived alkaloids could serve as novel OR agonist chemotypes with a signaling profile distinct from morphine and more similar to the endorphins. Screening of 96 sponge-derived extracts followed by LC-MS-based purification to pinpoint the active compounds and subsequent evaluation of a mini library of related alkaloids identified two structural classes that modulate the ORs. These included the following: aaptamine (10), 9-demethyl aaptamine (11), demethyl (oxy)-aaptamine (12) with activity at the δ-OR (EC 50 : 5.1, 4.1, 2.3 μM, respectively) and fascaplysin (17), and 10-bromo fascaplysin (18) with activity at the μ-OR (EC 50 : 6.3, 4.2 μM respectively). An in vivo evaluation of 10 using δ-KO mice indicated its previously reported antidepressant-like effects are dependent on the δ-OR. Importantly, 17 functioned as a balanced agonist promoting both G protein signaling and β-arrestin recruitment along with receptor endocytosis similar to the endorphins. Collectively these results demonstrate the burgeoning potential for marine natural products to serve as novel lead compounds for therapeutic targets in neuroscience research.
Higgins, G A; Silenieks, L B; Lau, W; de Lannoy, I A M; Lee, D K H; Izhakova, J; Coen, K; Le, A D; Fletcher, P J
2013-04-01
Selective 5-HT2C receptor agonists, such as lorcaserin, are being developed for the treatment of obesity. Studies suggest that they may also have therapeutic potential for addictive behaviours including nicotine dependence, although few drugs of this class have been evaluated. The primary aim was to evaluate the highly selective 5-HT2C agonist, CP-809101, against food-motivated (operant FR5 and progressive ratio schedules, palatability-induced feeding) and nicotine-motivated (intravenous self-administration, drug discrimination) behaviours in rats and to compare with equivalent findings for the structurally distinct 5-HT2C receptor agonists lorcaserin and Ro 60-0175. The secondary aims were to evaluate the side effect profiles of lorcaserin and CP-809101 and to determine the plasma levels of lorcaserin at a dose (1 mg/kg) that reduces both food and nicotine reinforcement for comparison to plasma concentrations reported in human trials. CP-809101 (0.3-3 mg/kg SC) reduced responding for both nicotine and food and blocked the discriminative stimulus properties of nicotine in a similar manner to lorcaserin and Ro 60-0175. Behaviours such as hypolocomotion, chewing and ptosis became evident following both CP-809101 and lorcaserin administration at higher doses. Plasma levels of lorcaserin were of similar range to those reported in obesity trials. These studies support the utility of 5-HT2C agonists as a therapeutic approach to treat nicotine dependence. Plasma exposure levels after acute lorcaserin treatment suggest that equivalent dosages could be used to evaluate these drugs in obesity and smoking cessation trials. Finally, there may be differences in the side effect profiles between lorcaserin and CP-809101, raising the possibility for tolerability differences amongst 5-HT2C agonists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stegeman, J.; Smolowitz, R.; Burnett, K.
1994-12-31
Identifying target cells and organs is critical to establishing the sites and mechanisms of toxicity of Ah-receptor agonists. Previous studies have described the localization of CYPLA induced in multiple organs of fish exposed to Ah-receptor agonists. Here the authors compare the responses in multiple cell types and organs of small fish (Rivulus) exposed to waterborne TCDD. Adult fish were exposed to TCDD at concentrations from 0.01 to 10 ng/liter for 48 hours, then prepared and analyzed by immunohistochemistry with monoclonal antibody to teleost CYPIAI. At the highest dose profound induction was detected in virtually every organ. Structures staining intensely were:more » nasal and cephalic chemoreceptors, including sensory and basal cells; superficial cells in skin and pharynx; cartilage cells (chondrocytes) in the head, gills, growth plates and fins; epithelial and endothelial cells of liver, gut, kidney, and gill; pseudobranch vessels and glandular cells; eye lens epithelium; endothelium in vessels of eye, brain, skin, muscle, thymus and gonad. Lesser concentrations of TCDD elicited less strong responses, and control fish showed mild staining only in cartilage structures. The dose-dependent patterns of induction differed between different cell types. Responsive cells identified is these fish indicate sites where toxicity associated with Ah-receptor agonists or with CYPLA function may be expressed.« less
Tao, Yong-guang; Xu, Yong; Xu, H. Eric; Simons, S. Stoney
2009-01-01
The transcriptional activity of steroid hormones is intimately associated with their structure. Deacylcortivazol (DAC) contains several features that were predicted to make it an inactive glucocorticoid. Nevertheless, gene induction and repression by complexes of glucocorticoid receptor (GR) with DAC occurs with greater potency (lower EC50) than, and equal efficacy (maximal activity, or Amax) to, the very active and smaller synthetic glucocorticoid dexamethasone (Dex). Guided by a recent x-ray structure of DAC bound to the GR ligand binding domain (LBD), we now report that several point mutants in the LBD have little effect on the binding of either agonist steroid. However, these same mutations dramatically alter the Amax and/or EC50 of exogenous and endogenous genes in a manner that depends on steroid structure. In some cases, Dex is no longer a full agonist. These properties appear to result from a preferential inactivation of the AF2 activation domain in the GR LBD of Dex-, but not DAC-, bound receptors. The Dex-bound receptors display normal binding to, but greatly reduced response to, the coactivator TIF2, thus indicating a defect in the transmission efficiency of GR-steroid complex information to the coactivator TIF2. In addition, all GR mutants that are active in gene induction with either Dex or DAC have greatly reduced activity in gene repression. This contrasts with the reports of GR mutations preferentially suppressing GR-mediated induction. The properties of these GR mutants in gene induction support the hypothesis that the Amax and EC50 of GR-controlled gene expression can be independently modified, indicate that the receptor can be modified to favor activity with a specific agonist steroid, and suggest that new ligands with suitable substituents may be able to affect the same LBD conformational changes and thereby broaden the therapeutic applications of glucocorticoid steroids PMID:18578507
Neumann, Susanne; Huang, Wenwei; Titus, Steve; Krause, Gerd; Kleinau, Gunnar; Alberobello, Anna Teresa; Zheng, Wei; Southall, Noel T.; Inglese, James; Austin, Christopher P.; Celi, Francesco S.; Gavrilova, Oksana; Thomas, Craig J.; Raaka, Bruce M.; Gershengorn, Marvin C.
2009-01-01
Seven-transmembrane-spanning receptors (7TMRs) are prominent drug targets. However, small-molecule ligands for 7-transmembrane-spanning receptors for which the natural ligands are large, heterodimeric glycoprotein hormones, like thyroid-stimulating hormone (TSH; thyrotropin), have only recently been reported, and none are approved for human use. We have used quantitative high-throughput screening to identify a small-molecule TSH receptor (TSHR) agonist that was modified to produce a second agonist with increased potency. We show that these agonists are highly selective for human TSHR versus other glycoprotein hormone receptors and interact with the receptor's serpentine domain. A binding pocket within the transmembrane domain was defined by docking into a TSHR homology model and was supported by site-directed mutagenesis. In primary cultures of human thyrocytes, both TSH and the agonists increase mRNA levels for thyroglobulin, thyroperoxidase, sodium iodide symporter, and deiodinase type 2, and deiodinase type 2 enzyme activity. Moreover, oral administration of the agonist stimulated thyroid function in mice, resulting in increased serum thyroxine and thyroidal radioiodide uptake. Thus, we discovered a small molecule that activates human TSHR in vitro, is orally active in mice, and could be a lead for development of drugs to use in place of recombinant human TSH in patients with thyroid cancer. PMID:19592511
Cichero, Elena; Espinoza, Stefano; Gainetdinov, Raul R; Brasili, Livio; Fossa, Paola
2013-04-01
Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that belongs to the family of TAAR receptors and responds to a class of compounds called trace amines, such as β-phenylethylamine (β-PEA) and 3-iodothyronamine (T(1)AM). The receptor is known to have a very rich pharmacology and could be also activated by other classes of compounds, including adrenergic and serotonergic ligands. It is expected that targeting TAAR1 could provide a novel pharmacological approach to correct monoaminergic dysfunctions found in several brain disorders, such as schizophrenia, depression, attention deficit hyperactivity disorder and Parkinson's disease. Only recently, the first selective TAAR1 agonist RO5166017 has been identified. To explore the molecular mechanisms of protein-agonist interaction and speed up the identification of new chemical entities acting on this biomolecular target, we derived a homology model for the hTAAR1. The putative protein-binding site has been explored by comparing the hTAAR1 model with the β(2)-adrenoreceptor binding site, available by X-ray crystallization studies, and with the homology modelled 5HT(1A) receptor. The obtained results, in tandem with docking studies performed with RO5166017, β-PEA and T(1)AM, provided an opportunity to reasonably identify the hTAAR1 key residues involved in ligand recognition and thus define important starting points to design new agonists. © 2012 John Wiley & Sons A/S.
The effects of agonists of ionotropic GABA(A) and metabotropic GABA(B) receptors on learning.
Zyablitseva, Evgeniya A; Kositsyn, Nikolay S; Shul'gina, Galina I
2009-05-01
The research described here investigates the role played by inhibitory processes in the discriminations made by the nervous system of humans and animals between familiar and unfamiliar and significant and nonsignificant events. This research compared the effects of two inhibitory mediators of gamma-aminobutyric acid (GABA): 1) phenibut, a nonselective agonist of ionotropic GABA(A) and metabotropic GABA(B) receptors and 2) gaboxadol a selective agonist of ionotropic GABA(A) receptors on the process of developing active defensive and inhibitory conditioned reflexes in alert non-immobilized rabbits. It was found that phenibut, but not gaboxadol, accelerates the development of defensive reflexes at an early stage of conditioning. Both phenibut and gaboxadol facilitate the development of conditioned inhibition, but the effect of gaboxadol occurs at later stages of conditioning and is less stable than that of phenibut. The earlier and more stable effects of phenibut, as compared to gaboxadol, on storage in memory of the inhibitory significance of a stimulus may occur because GABA(B) receptors play the dominant role in the development of internal inhibition during an early stage of conditioning. On the other hand this may occur because the participation of both GABA(A) and GABA(B) receptors are essential to the process. We discuss the polyfunctionality of GABA receptors as a function of their structure and the positions of the relevant neurons in the brain as this factor can affect regulation of various types of psychological processes.
NASA Technical Reports Server (NTRS)
Sorenson, E. M.; Gallagher, J. P.
1993-01-01
Previous intracellular recordings have demonstrated that dorsolateral septal nucleus (DLSN) neurons express a novel nicotinic receptor which produces a direct membrane hyperpolarization when activated by nicotinic agonists. Activation of the classical excitatory nicotinic receptors has been shown to require a disulfide bond involving the cysteines at positions 192 and 193 of the alpha subunits of the receptor. Reduction of this cystine bond with dithiothreitol (DTT) abolishes agonist activation of excitatory nicotinic receptors. We have now examined whether DTT treatment of the inhibitory nicotinic receptor on DLSN neurons also abolishes the inhibitory nicotinic response. We find that the inhibitory response persists after treatment of the neurons with 1 mM DTT, even if the reduction is followed by alkylation of the receptor with bromoacetylcholine to prevent possible reformation of disulfide bonds. This result suggests that the agonist binding site on the inhibitory nicotinic receptor does not require an intact disulfide bond, similar to the bond on the alpha subunit of the excitatory nicotinic receptor, for agonist activation of the receptor. Some of these results have been previously reported in abstract form.
Mikami, Tadayoshi; Ochi, Yasuo; Suzuki, Keiko; Saito, Toshiyuki; Sugie, Yutaka; Sakakibara, Minoru
2008-04-01
5-Hydroxytryptamine (5-HT) receptors and dopamine(2) (D(2)) receptor modulate gastrointestinal motility. Gastroprokinetic agents that act on several 5-HT receptor subtypes and/or D(2) receptors are used clinically. Although the 5-HT(4) receptor is known to mediate the gastroprokinetic effects of these agents, the absence of highly selective 5-HT(4) receptor agonists has made it difficult to confirm the physiological consequences of selective 5-HT(4) receptor stimulation. In this study, we report the in vitro pharmacological profiles and the in vivo gastroprokinetic effects of 5-amino-6-chloro-N-[(1-isobutylpiperidin-4-yl)methyl]-2-methylimidazo[1,2-alpha]pyridine-8-carboxamide (CJ-033,466), a novel, potent, and selective 5-HT(4) partial agonist. Compared with preceding 5-HT(4) agonists such as cisapride, mosapride, and tegaserod, CJ-033,466 had a superior in vitro profile, with nanomolar agonistic activities for the 5-HT(4) receptor and 1000-fold greater selectivity for the 5-HT(4) receptor over other 5-HT and D(2) receptors. In vivo studies in conscious dogs showed that CJ-033,466 dose-dependently stimulated gastric antral motility in both the fasted and postprandial states at the same dose range and that it was 30 times more potent than cisapride. Furthermore, CJ-033,466 accelerated the gastric emptying rate in a gastroparesis dog model at the minimally effective dose established in the gastric motility study. In conclusion, CJ-033,466 is a potent and highly selective 5-HT(4) agonist that stimulates physiologically coordinated gastric motility, and it has no activity on other 5-HT receptor subtypes and D(2) receptors. Therefore, CJ-033,466 could be used to treat gastroparesis, providing better gastroprokinetics and reduced side effects mediated by the other receptors.
Schmassmann, A; Garner, A; Flogerzi, B; Hasan, M Y; Sanner, M; Varga, L; Halter, F
1994-01-01
Gastrin (cholecystokinin type B (CCK-B)) receptor antagonists may help to elucidate the physiological role of gastrin, have therapeutic potential as acid antisecretory drugs, and may be of use as adjuvant therapy for gastrin sensitive tumours. In binding studies, the gastrin receptor antagonist PD-136,450 had at least 1000 fold greater affinity for gastrin (CCK-B) than CCK-A receptors. In this study the biological activity of PD-136,450 was evaluated in conscious and anaesthetised rats. PD-136,450 antagonised gastrin stimulated acid secretion after subcutaneous (IC50: 0.28 mumol/kg; conscious rats) and intravenous (IC50: 0.17 mumol/kg; anaesthetised rats) administration. In basal secreting fistula animals, the compound stimulated acid output to 30 (5)% of the maximal response to gastrin. Stimulant activity was not caused by gastrin release. As an agonist PD-136,450 was about 350 times less potent than gastrin-17 on a molar basis. In addition, PD-136,450 was a powerful agonist of pancreatic secretion in anaesthetised rats. The specific gastrin antagonist L-365,260 inhibited the (partial) agonist activity of PD-136,450 in the stomach and the specific CCK-A receptor antagonist L-364,718 inhibited the agonist activity of PD-136,450 in the pancreas. It is concluded that the agonist effect of PD-136,450 is mediated via interaction with the gastrin (CCK-B) receptor in the stomach and the CCK-A receptor in the pancreas. PMID:8307482
Nürnberg, Daniela; Grüters, Annette; Führer-Sakel, Dagmar; Krude, Heiko; Köhrle, Josef; Schöneberg, Torsten; Biebermann, Heike
2011-01-01
Trace amine-associated receptors (TAAR) are rhodopsin-like G-protein-coupled receptors (GPCR). TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR), phenylethylamine (PEA), octopamine (OA), but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1) and 2 (ADRB2) have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR) octopamine (OAR), ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes. PMID:22073124
Structural basis of ligand recognition in 5-HT3 receptors
Kesters, Divya; Thompson, Andrew J; Brams, Marijke; van Elk, René; Spurny, Radovan; Geitmann, Matthis; Villalgordo, Jose M; Guskov, Albert; Helena Danielson, U; Lummis, Sarah C R; Smit, August B; Ulens, Chris
2013-01-01
The 5-HT3 receptor is a pentameric serotonin-gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti-emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5-HT3 receptor. In the serotonin-bound structure, we observe hydrophilic interactions with loop E-binding site residues, which might enable transitions to channel opening. In the granisetron-bound structure, we observe a critical cation–π interaction between the indazole moiety of the ligand and a cationic centre in loop D, which is uniquely present in the 5-HT3 receptor. We use a series of chemically tuned granisetron analogues to demonstrate the energetic contribution of this electrostatic interaction to high-affinity ligand binding in the human 5-HT3 receptor. Our study offers the first structural perspective on recognition of serotonin and antagonism by anti-emetics in the 5-HT3 receptor. PMID:23196367
Agonist-Antagonist Interaction at the Cholinergic Receptor of Denervated Diaphragm,
A study has been made of the cholinergic receptor induced by chronic denervation in the rat diaphragm. The agonists acetylcholine, carbachol and...muscle cells. Supramaximally effective doses of agonists caused desensitization of the preparation; however, there was no cross tachyphylaxis between acetylcholine and carbachol . (Author)
Joseph, Christine G; Wilczynski, Andrzej; Holder, Jerry R; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Haskell-Luevano, Carrie
2003-12-01
Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.
Bunzow, J R; Sonders, M S; Arttamangkul, S; Harrison, L M; Zhang, G; Quigley, D I; Darland, T; Suchland, K L; Pasumamula, S; Kennedy, J L; Olson, S B; Magenis, R E; Amara, S G; Grandy, D K
2001-12-01
The trace amine para-tyramine is structurally and functionally related to the amphetamines and the biogenic amine neurotransmitters. It is currently thought that the biological activities elicited by trace amines such as p-tyramine and the psychostimulant amphetamines are manifestations of their ability to inhibit the clearance of extracellular transmitter and/or stimulate the efflux of transmitter from intracellular stores. Here we report the discovery and pharmacological characterization of a rat G protein-coupled receptor that stimulates the production of cAMP when exposed to the trace amines p-tyramine, beta-phenethylamine, tryptamine, and octopamine. An extensive pharmacological survey revealed that psychostimulant and hallucinogenic amphetamines, numerous ergoline derivatives, adrenergic ligands, and 3-methylated metabolites of the catecholamine neurotransmitters are also good agonists at the rat trace amine receptor 1 (rTAR1). These results suggest that the trace amines and catecholamine metabolites may serve as the endogenous ligands of a novel intercellular signaling system found widely throughout the vertebrate brain and periphery. Furthermore, the discovery that amphetamines, including 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy"), are potent rTAR1 agonists suggests that the effects of these widely used drugs may be mediated in part by this receptor as well as their previously characterized targets, the neurotransmitter transporter proteins.
Newman-Tancredi, A; Rivet, J-M; Cussac, D; Touzard, M; Chaput, C; Marini, L; Millan, M J
2003-09-01
This study employed [(35)S]guanosine 5'- O-(3-thiotriphosphate) ([(35)S]GTPgammaS) binding to compare the actions of antipsychotic agents known to stimulate cloned, human 5-HT(1A) receptors with those of reference agonists at postsynaptic 5-HT(1A) receptors. In rat hippocampal membranes, the following order of efficacy was observed (maximum efficacy, E(max), values relative to 5-HT=100): (+)8-OH-DPAT (85), flesinoxan (62), eltoprazine (60), S14506 (59), S16924 (48), buspirone (41), S15535 (22), clozapine (22), ziprasidone (21), pindolol (7), p-MPPI (0), WAY100,635 (0), spiperone (0). Despite differences in species and tissue source, the efficacy and potency (pEC(50)) of agonists (with the exception of clozapine) correlated well with those determined previously at human 5-HT(1A) receptors expressed in Chinese hamster ovary (CHO) cells. In contrast, clozapine was more potent at hippocampal membranes. The selective antagonists p-MPPI and WAY100,635 abolished stimulation of binding by (+)8-OH-DPAT, clozapine and S16924 (p-MPPI), indicating that these actions were mediated specifically by 5-HT(1A) receptors. Clozapine and S16924 also attenuated 5-HT- and (+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding, consistent with partial agonist properties. In [(35)S]GTPgammaS autoradiographic studies, 5-HT-induced stimulation, mediated through 5-HT(1A) receptors, was more potent in the septum (pEC(50) approximately 6.5) than in the dentate gyrus of the hippocampus (pEC(50) approximately 5) suggesting potential differences in coupling efficiency or G protein expression. Though clozapine (30 and 100 microM) did not enhance [(35)S]GTPgammaS labelling in any structure, S16924 (10 micro M) modestly increased [(35)S]GTPgammaS labelling in the dentate gyrus. On the other hand, both these antipsychotic agents attenuated 5-HT (10 microM)-stimulated [(35)S]GTPgammaS binding in the dentate gyrus and septum. In conclusion, clozapine, S16924 and ziprasidone act as partial agonists for G protein activation at postsynaptic 5-HT(1A) receptors in the hippocampus. These data support a role of postsynaptic 5-HT(1A) receptors in the functional profiles of certain antipsychotic agents.
Peroxisome proliferator-activated receptors for hypertension
Usuda, Daisuke; Kanda, Tsugiyasu
2014-01-01
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which is composed of four members encoded by distinct genes (α, β, γ, and δ). The genes undergo transactivation or transrepression under specific mechanisms that lead to the induction or repression of target gene expression. As is the case with other nuclear receptors, all four PPAR isoforms contain five or six structural regions in four functional domains; namely, A/B, C, D, and E/F. PPARs have many functions, particularly functions involving control of vascular tone, inflammation, and energy homeostasis, and are, therefore, important targets for hypertension, obesity, obesity-induced inflammation, and metabolic syndrome in general. Hence, PPARs also represent drug targets, and PPARα and PPARγ agonists are used clinically in the treatment of dyslipidemia and type 2 diabetes mellitus, respectively. Because of their pleiotropic effects, they have been identified as active in a number of diseases and are targets for the development of a broad range of therapies for a variety of diseases. It is likely that the range of PPARγ agonist therapeutic actions will result in novel approaches to lifestyle and other diseases. The combination of PPARs with reagents or with other cardiovascular drugs, such as diuretics and angiotensin II receptor blockers, should be studied. This article provides a review of PPAR isoform characteristics, a discussion of progress in our understanding of the biological actions of PPARs, and a summary of PPAR agonist development for patient management. We also include a summary of the experimental and clinical evidence obtained from animal studies and clinical trials conducted to evaluate the usefulness and effectiveness of PPAR agonists in the treatment of lifestyle-related diseases. PMID:25228953
Grace, Christy Rani R; Perrin, Marilyn H; Cantle, Jeffrey P; Vale, Wylie W; Rivier, Jean E; Riek, Roland
2007-12-26
Members of the corticoliberin family include the corticotropin releasing factors (CRFs), sauvagine, the urotensins, and urocortin 1 (Ucn1), which bind to both the CRF receptors CRF-R1 and CRF-R2, and the urocortins 2 (Ucn2) and 3 (Ucn3), which are selective agonists of CRF-R2. Structure activity relationship studies led to several potent and long-acting analogues with selective binding to either one of the receptors. NMR structures of six ligands of this family (the antagonists astressin B and astressin2-B, the agonists stressin1, and the natural ligands human Ucn1, Ucn2, and Ucn3) were determined in DMSO. These six peptides show differences in binding affinities, receptor-selectivity, and NMR structure. Overall, their backbones are alpha-helical, with a small kink or a turn around residues 25-27, resulting in a helix-loop-helix motif. The C-terminal helices are of amphipathic nature, whereas the N-terminal helices vary in their amphipathicity. The C-terminal helices thereby assume a conformation very similar to that of astressin bound to the ECD1 of CRF-R2 recently reported by our group.1 On the basis of an analysis of the observed 3D structures and relative potencies of [Ala]-substituted analogues, it is proposed that both helices could play a crucial role in receptor binding and selectivity. In conclusion, the C-terminal helices may interact along their hydrophobic faces with the ECD1, whereas the entire N-terminal helical surface may be involved in receptor activation. On the basis of the common and divergent features observed in the 3D structures of these ligands, multiple binding models are proposed that may explain their plurality of actions.
75 FR 50768 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-17
.... N-Methanocarba Adenosine Derivatives and Their Dendrimer Conjugates as A 3 Receptor Agonists... receptors and agonists and antagonists of P2Y receptors, such as P2Y 1 and P2Y 14 . Dendrimer conjugates may...
Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.
Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael
2015-12-01
Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.
Delta-opioid receptors as targets for migraine therapy.
Charles, Andrew; Pradhan, Amynah A
2016-06-01
The purpose of this review is to contrast the properties of the δ-opioid receptor with those of the μ-opioid receptor, which is the primary target of most currently available opioid analgesics. We also discuss preclinical evidence that indicates the potential efficacy of δ-opioid receptor agonists as migraine therapy. The use of currently available opioid analgesics is highly problematic for patients with migraine. Delta-opioid receptors have key differences from μ receptors; these differences make the δ receptor an attractive therapeutic target for migraine. Delta-opioid receptors are expressed in both the peripheral and central nervous system in anatomical regions and cell types that are believed to play a role in migraine. Delta-receptor agonists have also shown promising effects in multiple migraine models, including nitroglycerin evoked hyperalgesia and conditioned place aversion, and cortical spreading depression. Evidence from animal models indicates that activation of δ receptors is less likely to cause tolerance and dependence, and less likely to cause hyperalgesia. In addition, δ receptors may have antidepressant and anxiolytic properties that are distinct from those of μ receptors. In human studies investigating other conditions, δ-receptor agonists have been generally safe and well tolerated. Delta-opioid receptor agonists have promising potential as acute and/or preventive migraine therapies, without the problems associated with currently used opioid analgesics.
Physiology and emerging biochemistry of the glucagon-like peptide-1 receptor.
Willard, Francis S; Sloop, Kyle W
2012-01-01
The glucagon-like peptide-1 (GLP-1) receptor is one of the best validated therapeutic targets for the treatment of type 2 diabetes mellitus (T2DM). Over several years, the accumulation of basic, translational, and clinical research helped define the physiologic roles of GLP-1 and its receptor in regulating glucose homeostasis and energy metabolism. These efforts provided much of the foundation for pharmaceutical development of the GLP-1 receptor peptide agonists, exenatide and liraglutide, as novel medicines for patients suffering from T2DM. Now, much attention is focused on better understanding the molecular mechanisms involved in ligand induced signaling of the GLP-1 receptor. For example, advancements in biophysical and structural biology techniques are being applied in attempts to more precisely determine ligand binding and receptor occupancy characteristics at the atomic level. These efforts should better inform three-dimensional modeling of the GLP-1 receptor that will help inspire more rational approaches to identify and optimize small molecule agonists or allosteric modulators targeting the GLP-1 receptor. This article reviews GLP-1 receptor physiology with an emphasis on GLP-1 induced signaling mechanisms in order to highlight new molecular strategies that help determine desired pharmacologic characteristics for guiding development of future nonpeptide GLP-1 receptor activators.
Physiology and Emerging Biochemistry of the Glucagon-Like Peptide-1 Receptor
Willard, Francis S.; Sloop, Kyle W.
2012-01-01
The glucagon-like peptide-1 (GLP-1) receptor is one of the best validated therapeutic targets for the treatment of type 2 diabetes mellitus (T2DM). Over several years, the accumulation of basic, translational, and clinical research helped define the physiologic roles of GLP-1 and its receptor in regulating glucose homeostasis and energy metabolism. These efforts provided much of the foundation for pharmaceutical development of the GLP-1 receptor peptide agonists, exenatide and liraglutide, as novel medicines for patients suffering from T2DM. Now, much attention is focused on better understanding the molecular mechanisms involved in ligand induced signaling of the GLP-1 receptor. For example, advancements in biophysical and structural biology techniques are being applied in attempts to more precisely determine ligand binding and receptor occupancy characteristics at the atomic level. These efforts should better inform three-dimensional modeling of the GLP-1 receptor that will help inspire more rational approaches to identify and optimize small molecule agonists or allosteric modulators targeting the GLP-1 receptor. This article reviews GLP-1 receptor physiology with an emphasis on GLP-1 induced signaling mechanisms in order to highlight new molecular strategies that help determine desired pharmacologic characteristics for guiding development of future nonpeptide GLP-1 receptor activators. PMID:22666230
Structural basis for PPAR partial or full activation revealed by a novel ligand binding mode
NASA Astrophysics Data System (ADS)
Capelli, Davide; Cerchia, Carmen; Montanari, Roberta; Loiodice, Fulvio; Tortorella, Paolo; Laghezza, Antonio; Cervoni, Laura; Pochetti, Giorgio; Lavecchia, Antonio
2016-10-01
The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of the metabolic homeostasis and therefore represent valuable therapeutic targets for the treatment of metabolic diseases. The development of more balanced drugs interacting with PPARs, devoid of the side-effects showed by the currently marketed PPARγ full agonists, is considered the major challenge for the pharmaceutical companies. Here we present a structure-based virtual screening approach that let us identify a novel PPAR pan-agonist with a very attractive activity profile and its crystal structure in the complex with PPARα and PPARγ, respectively. In PPARα this ligand occupies a new pocket whose filling is allowed by the ligand-induced switching of the F273 side chain from a closed to an open conformation. The comparison between this pocket and the corresponding cavity in PPARγ provides a rationale for the different activation of the ligand towards PPARα and PPARγ, suggesting a novel basis for ligand design.
The Retinoid X Receptors and Their Ligands
Dawson, Marcia I.; Xia, Zebin
2014-01-01
This chapter presents an overview of the current status of studies on the structural and molecular biology of the retinoid X receptor subtypes α, β, and γ (RXRs, NR2B1–3), their nuclear and cytoplasmic functions, post-transcriptional processing, and recently reported ligands. Points of interest are the different changes in the ligand-binding pocket induced by variously shaped agonists, the communication of the ligand–bound pocket with the coactivator binding surface and the heterodimerization interface, and recently identified ligands that are natural products, those that function as environmental toxins or drugs that had been originally designed to interact with other targets, as well as those that were deliberately designed as RXR-selective transcriptional agonists, synergists, or antagonists. Of these synthetic ligands, the general trend in design appears to be away from fully aromatic rigid structures to those containing partial elements of the flexible tetraene side chain of 9-cis-retinoic acid. PMID:22020178
Renton, Paul; Green, Brenda; Maddaford, Shawn; Rakhit, Suman; Andrews, John S
2012-03-08
A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the μ-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the μ-opioid GPCR was predicated on the modulatory role of nitric oxide on μ-opioid receptor function. Structure-activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 μM), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent μ-opioid binding affinity, K i = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 μM). This work represents a novel approach in the development of new analgesics for the treatment of pain.
Ghanouni, Pejman; Steenhuis, Jacqueline J.; Farrens, David L.; Kobilka, Brian K.
2001-01-01
The majority of extracellular physiologic signaling molecules act by stimulating GTP-binding protein (G-protein)-coupled receptors (GPCRs). To monitor directly the formation of the active state of a prototypical GPCR, we devised a method to site specifically attach fluorescein to an endogenous cysteine (Cys-265) at the cytoplasmic end of transmembrane 6 (TM6) of the β2 adrenergic receptor (β2AR), adjacent to the G-protein-coupling domain. We demonstrate that this tag reports agonist-induced conformational changes in the receptor, with agonists causing a decline in the fluorescence intensity of fluorescein-β2AR that is proportional to the biological efficacy of the agonist. We also find that agonists alter the interaction between the fluorescein at Cys-265 and fluorescence-quenching reagents localized to different molecular environments of the receptor. These observations are consistent with a rotation and/or tilting of TM6 on agonist activation. Our studies, when compared with studies of activation in rhodopsin, indicate a general mechanism for GPCR activation; however, a notable difference is the relatively slow kinetics of the conformational changes in the β2AR, which may reflect the different energetics of activation by diffusible ligands. PMID:11353823
NASA Astrophysics Data System (ADS)
Cohen-Armon, Malca; Kloog, Yoel; Henis, Yoav I.; Sokolovsky, Mordechai
1985-05-01
The effects of Na+-channel activator batrachotoxin (BTX) on the binding properties of muscarinic receptors in homogenates of rat brain and heart were studied. BTX enhanced the affinity for the binding of the agonists carbamoylcholine and acetylcholine to the muscarinic receptors in brainstem and ventricle, but not in the cerebral cortex. Analysis of the data according to a two-site model for agonist binding indicated that the effect of BTX was to increase the affinity of the agonists to the high-affinity site. Guanyl nucleotides, known to induce interconversion of high-affinity agonist binding sites to the low-affinity state, canceled the effect of BTX on carbamoylcholine and acetylcholine binding. BTX had no effect on the binding of the agonist oxotremorine or on the binding of the antagonist [3H]-N-methyl-4-piperidyl benzilate. The local anesthetics dibucaine and tetracaine antagonized the effect of BTX on the binding of muscarinic agonists at concentrations known to inhibit the activation of Na+ channels by BTX. On the basis of these findings, we propose that in specific tissues the muscarinic receptors may interact with the BTX binding site (Na+ channels).
Sanz, Guenhaël; Leray, Isabelle; Grébert, Denise; Antoine, Sharmilee; Acquistapace, Adrien; Muscat, Adeline; Boukadiri, Abdelhak; Mir, Lluis M.
2017-01-01
Olfactory receptors are G protein-coupled receptors. Some of them are expressed in tumor cells, such as the OR51E2 receptor overexpressed in LNCaP prostate cancer cells. It is considered a prostate tumor marker. We previously demonstrated that this receptor is able to promote LNCaP cell invasiveness in vitro upon stimulation with its odorant agonist β-ionone, leading to increased generation of metastases in vivo. In the present study, we show that even a relatively short exposure to β-ionone is sufficient to promote metastasis emergence. Moreover, α-ionone, considered an OR51E2 antagonist, in fact promotes prostate tumor growth in vivo. The combination of α-ionone with β-ionone triggers a higher increase in the total tumor burden than each molecule alone. To support the in vivo results, we demonstrate in vitro that α-ionone is a real agonist of OR51E2, mainly sustaining LNCaP cell growth, while β-ionone mainly promotes cell invasiveness. So, while structurally close, α-ionone and β-ionone appear to induce different cellular effects, both leading to increased tumor aggressiveness. This behaviour could be explained by a different coupling to downstream effectors, as it has been reported for the so-called biased ligands of other G protein-coupled receptors. PMID:28032594
Zhang, Qing; Yang, Hui; Li, Jing; Xie, Xin
2016-05-01
G protein-coupled receptor 84 (GPR84) is a free fatty acid receptor activated by medium-chain free fatty acids with 9-14 carbons. It is expressed mainly in the immune-related tissues, such as spleen, bone marrow, and peripheral blood leukocytes. GPR84 plays significant roles in inflammatory processes and may represent a novel drug target for the treatment of immune-mediated diseases. However, the lack of potent and specific ligands for GPR84 hindered the study of its functions and the development of potential clinical applications. Here, we report the screen of 160,000 small-molecule compounds with a calcium mobilization assay using a human embryonic kidney 293 cell line stably expressing GPR84 and Gα16, and the identification of 2-(hexylthio)pyrimidine-4,6-diol (ZQ-16) as a potent and selective agonist of GPR84 with a novel structure. ZQ-16 activates several GPR84-mediated signaling pathways, including calcium mobilization, inhibition of cAMP accumulation, phosphorylation of extracellular signal-regulated protein kinase 1/2, receptor desensitization and internalization, and receptor-β-arrestin interaction. This compound may be a useful tool to study the functions of GPR84 and a potential candidate for further structural optimization. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Schneider, Sebastian; Provasi, Davide; Filizola, Marta
2016-11-22
Substantial attention has recently been devoted to G protein-biased agonism of the μ-opioid receptor (MOR) as an ideal new mechanism for the design of analgesics devoid of serious side effects. However, designing opioids with appropriate efficacy and bias is challenging because it requires an understanding of the ligand binding process and of the allosteric modulation of the receptor. Here, we investigated these phenomena for TRV-130, a G protein-biased MOR small-molecule agonist that has been shown to exert analgesia with less respiratory depression and constipation than morphine and that is currently being evaluated in human clinical trials for acute pain management. Specifically, we carried out multimicrosecond, all-atom molecular dynamics (MD) simulations of the binding of this ligand to the activated MOR crystal structure. Analysis of >50 μs of these MD simulations provides insights into the energetically preferred binding pathway of TRV-130 and its stable pose at the orthosteric binding site of MOR. Information transfer from the TRV-130 binding pocket to the intracellular region of the receptor was also analyzed, and was compared to a similar analysis carried out on the receptor bound to the classical unbiased agonist morphine. Taken together, these studies lead to a series of testable hypotheses of ligand-receptor interactions that are expected to inform the structure-based design of improved opioid analgesics.
Hypotensive effects of ghrelin receptor agonists mediated through a novel receptor.
Callaghan, Brid; Kosari, Samin; Pustovit, Ruslan V; Sartor, Daniela M; Ferens, Dorota; Ban, Kung; Baell, Jonathan; Nguyen, Trung V; Rivera, Leni R; Brock, James A; Furness, John B
2014-03-01
Some agonists of ghrelin receptors cause rapid decreases in BP. The mechanisms by which they cause hypotension and the pharmacology of the receptors are unknown. The effects of ligands of ghrelin receptors were investigated in rats in vivo, on isolated blood vessels and on cells transfected with the only molecularly defined ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR1a). Three agonists of GHSR1a receptors, ulimorelin, capromorelin and CP464709, caused a rapid decrease in BP in the anaesthetized rat. The effect was not reduced by either of two GHSR1a antagonists, JMV2959 or YIL781, at doses that blocked effects on colorectal motility, in vivo. The rapid hypotension was not mimicked by ghrelin, unacylated ghrelin or the unacylated ghrelin receptor agonist, AZP531. The early hypotension preceded a decrease in sympathetic nerve activity. Early hypotension was not reduced by hexamethonium or by baroreceptor (sino-aortic) denervation. Ulimorelin also relaxed isolated segments of rat mesenteric artery, and, less potently, relaxed aorta segments. The vascular relaxation was not reduced by JMV2959 or YIL781. Ulimorelin, capromorelin and CP464709 activated GHSR1a in transfected HEK293 cells at nanomolar concentrations. JMV2959 and YIL781 both antagonized effects in these cells, with their pA2 values at the GHSR1a receptor being 6.55 and 7.84. Our results indicate a novel vascular receptor or receptors whose activation by ulimorelin, capromorelin and CP464709 lowered BP. This receptor is activated by low MW GHSR1a agonists, but is not activated by ghrelin. © 2013 The British Pharmacological Society.
Chang, H. Ming; Berde, Charles B.; Holz, George G.; Steward, Grieg F.; Kream, Richard M.
2010-01-01
An in vitro model system for analysis of presynaptic inhibitory actions of spinal opioids has been applied. Embryonic sensory neurons derived from chick dorsal root ganglia were grown in primary cell culture, and the release of substance P was evoked by electrical field stimulation during exposure to drugs with well-demonstrated affinity for opioid receptors. This allowed a pharmacologic characterization of the inhibitory actions of specific opioid agonists on the release of substance P as measured by radioimmunoassay (RIA). Sufentanil (0.5 µm), a high affinity µ receptor agonist, U-50,488H (25 µm), a selective κ receptor agonist, and morphine (10 µm), an agonist with high affinity for µ and δ receptors, inhibited the evoked release of substance P by approximately 60%, 40%, and 50%, respectively. For sufentanil the response was demonstrated to be dose-dependent. As is the case for its analgesic action in vivo, morphine was approximately 50-fold less potent than sufentanil on a molar basis in this assay. The actions of sufentanil, U-50-488H and morphine were mimicked by the endogenous opioid peptide met-enkephalin, and its stable synthetic analog D-ala2-met5-enkephalinamide (DAME). Naloxone (25 µm), an opioid receptor antagonist, blocked the inhibitory action of sufentanil (0.5 µm), morphine (5 µm), and DAME (5 µm), but not U-50,488H (10 µm). The action of U-50,488H was partially blocked by the antagonist naltrexone (25 µm). Stereo-selectivity of agonist action was confirmed by the failure of dextrorphan (50 µm), an inactive opioid isomer, to inhibit the release of substance P. Actions mediated by specific opioid receptors were thus demonstrated by high affinity responses to agonists, blockade of agonist responses by opioid antagonists, and stereoselectivity. These findings suggest that in the spinal cord presynaptic inhibition of evoked substance P release is mediated by µ, K and δ opioid receptors located on primary sensory nerve terminals. Activation of these receptors may explain, at least in part, the spinal analgesic actions of specific opioid agonists. PMID:2467589
Crystallization of M-CSF.alpha.
Pandit, Jayvardhan; Jancarik, Jarmila; Kim, Sung-Hou; Koths, Kirston; Halenbeck, Robert; Fear, Anna Lisa; Taylor, Eric; Yamamoto, Ralph; Bohm, Andrew
1999-01-01
The present invention is directed to methods for crystallizing macrophage colony stimulating factor (M-CSF) and to a crystalline M-CSF produced thereby. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.
NASA Astrophysics Data System (ADS)
Xiang, Li; Xu, Youdong; Zhang, Yan; Meng, Xianli; Wang, Ping
2015-04-01
Alzheimer's disease (AD) is an age-related neurodegenerative disease. Extensive in vitro and in vivo experiments have proved that the decreased activity of the cholinergic neuron is responsible for the memory and cognition deterioration. The alpha7 nicotinic acetylcholine receptor (α7-nAChR) is proposed to a drug target of AD, and compounds which acting as α7-nAChR agonists are considered as candidates in AD treatment. Chinese medicine CoptidisRhizoma and its compounds are reported in various anti-AD effects. In this study, virtual screening, docking approaches and hydrogen bond analyses were applied to screen potential α7-nAChR agonists from CoptidisRhizome. The 3D structure of the protein was obtained from PDB database. 87 reported compounds were included in this research and their structures were accessed by NCBI Pubchem. Docking analysis of the compounds was performed using AutoDock 4.2 and AutoDock Vina. The images of the binding modes hydrogen bonds and the hydrophobic interaction were rendered with PyMOL1.5.0.4. and LigPlot+ respectively. Finally, N-tran-feruloyltyramine, isolariciresinol, flavanone, secoisolariciresinol, (+)-lariciresinol and dihydrochalcone, exhibited the lowest docking energy of protein-ligand complex. The results indicate these 6 compounds are potential α7 nAChR agonists, and expected to be effective in AD treatment.
Energy for Wild-Type Acetylcholine Receptor Channel Gating from Different Choline Derivatives
Bruhova, Iva; Gregg, Timothy; Auerbach, Anthony
2013-01-01
Agonists, including the neurotransmitter acetylcholine (ACh), bind at two sites in the neuromuscular ACh receptor channel (AChR) to promote a reversible, global change in protein conformation that regulates the flow of ions across the muscle cell membrane. In the synaptic cleft, ACh is hydrolyzed to acetate and choline. Replacement of the transmitter’s ester acetyl group with a hydroxyl (ACh→choline) results in a +1.8 kcal/mol reduction in the energy for gating generated by each agonist molecule from a low- to high-affinity change of the transmitter binding site (ΔGB). To understand the distinct actions of structurally related agonist molecules, we measured ΔGB for 10 related choline derivatives. Replacing the hydroxyl group of choline with different substituents, such as hydrogen, chloride, methyl, or amine, increased the energy for gating (i.e., it made ΔGB more negative relative to choline). Extending the ethyl hydroxide tail of choline to propyl and butyl hydroxide also increased this energy. Our findings reveal the amount of energy that is available for the AChR conformational change provided by different, structurally related agonists. We speculate that a hydrogen bond between the choline hydroxyl and the backbone carbonyl of αW149 positions this agonist’s quaternary ammonium group so as to reduce the cation-π interaction between this moiety and the aromatic groups at the binding site. PMID:23442907
Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radić, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer
2008-01-01
Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 Å in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids. PMID:18477694
Directly Observable Behavioral Effects of Lorcaserin in Rats.
Serafine, Katherine M; Rice, Kenner C; France, Charles P
2015-12-01
(1R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine (lorcaserin) is approved by the United States Food and Drug Administration for treating obesity, and its therapeutic effects are thought to result from agonist activity at serotonin (5-HT)2C receptors. Lorcaserin has affinity for other 5-HT receptor subtypes, although its activity at those subtypes is not fully described. The current study compared the behavioral effects of lorcaserin (0.0032-32.0 mg/kg) to the effects of other 5-HT receptor selective agonists in rats (n = 8). The 5-HT2C receptor selective agonist 1-(3-chlorophenyl)piperazine (mCPP, 0.032-1.0 mg/kg) and lorcaserin induced yawning which was attenuated by the 5-HT2C receptor selective antagonist 6-chloro-5-methyl-N-(6-[(2-methylpyridin-3-yl)oxy]pydidin-3-yl)indoline-1-carboxamide (1.0 mg/kg). The 5-HT2A receptor selective agonist 2,5-dimethoxy-4-methylamphetamine (0.1-3.2 mg/kg) induced head twitching, which was attenuated by the 5-HT2A receptor selective antagonist R-(+)-2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol] (MDL 100907, 0.01 mg/kg), lorcaserin (3.2 mg/kg), and mCPP (3.2 mg/kg). In rats pretreated with MDL 100907 (1.0 mg/kg), lorcaserin also induced head twitching. At larger doses, lorcaserin produced forepaw treading, which was attenuated by the 5-HT1A receptor selective antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridyl)cyclohexanecarboxamide (0.178 mg/kg). While the behavioral effects of lorcaserin in rats are consistent with it having agonist activity at 5-HT2C receptors, these data suggest that at larger doses it also has agonist activity at 5-HT2A and possibly 5-HT1A receptors. Mounting evidence suggests that 5-HT2C receptor agonists might be effective for treating drug abuse. A more complete description of the activity of lorcaserin at 5-HT receptor subtypes will facilitate a better understanding of the mechanisms that mediate its therapeutic effects. U.S. Government work not protected by U.S. copyright.
Directly Observable Behavioral Effects of Lorcaserin in Rats
Serafine, Katherine M.; Rice, Kenner C.
2015-01-01
(1R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine (lorcaserin) is approved by the United States Food and Drug Administration for treating obesity, and its therapeutic effects are thought to result from agonist activity at serotonin (5-HT)2C receptors. Lorcaserin has affinity for other 5-HT receptor subtypes, although its activity at those subtypes is not fully described. The current study compared the behavioral effects of lorcaserin (0.0032–32.0 mg/kg) to the effects of other 5-HT receptor selective agonists in rats (n = 8). The 5-HT2C receptor selective agonist 1-(3-chlorophenyl)piperazine (mCPP, 0.032–1.0 mg/kg) and lorcaserin induced yawning which was attenuated by the 5-HT2C receptor selective antagonist 6-chloro-5-methyl-N-(6-[(2-methylpyridin-3-yl)oxy]pydidin-3-yl)indoline-1-carboxamide (1.0 mg/kg). The 5-HT2A receptor selective agonist 2,5-dimethoxy-4-methylamphetamine (0.1–3.2 mg/kg) induced head twitching, which was attenuated by the 5-HT2A receptor selective antagonist R-(+)-2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol] (MDL 100907, 0.01 mg/kg), lorcaserin (3.2 mg/kg), and mCPP (3.2 mg/kg). In rats pretreated with MDL 100907 (1.0 mg/kg), lorcaserin also induced head twitching. At larger doses, lorcaserin produced forepaw treading, which was attenuated by the 5-HT1A receptor selective antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridyl)cyclohexanecarboxamide (0.178 mg/kg). While the behavioral effects of lorcaserin in rats are consistent with it having agonist activity at 5-HT2C receptors, these data suggest that at larger doses it also has agonist activity at 5-HT2A and possibly 5-HT1A receptors. Mounting evidence suggests that 5-HT2C receptor agonists might be effective for treating drug abuse. A more complete description of the activity of lorcaserin at 5-HT receptor subtypes will facilitate a better understanding of the mechanisms that mediate its therapeutic effects. PMID:26384326
Pain-relieving prospects for adenosine receptors and ectonucleotidases
Zylka, Mark J.
2010-01-01
Adenosine receptor agonists have potent antinociceptive effects in diverse preclinical models of chronic pain. In contrast, the efficacy of adenosine or adenosine receptor agonists at treating pain in humans is unclear. Two ectonucleotidases that generate adenosine in nociceptive neurons were recently identified. When injected spinally, these enzymes have long-lasting adenosine A1 receptor (A1R)-dependent antinociceptive effects in inflammatory and neuropathic pain models. Furthermore, recent findings indicate that spinal adenosine A2A receptor activation can enduringly inhibit neuropathic pain symptoms. Collectively, these studies suggest the possibility of treating chronic pain in humans by targeting specific adenosine receptor subtypes in anatomically defined regions with agonists or with ectonucleotidases that generate adenosine. PMID:21236731
Improving virtual screening of G protein-coupled receptors via ligand-directed modeling
Simms, John; Christopoulos, Arthur; Wootten, Denise
2017-01-01
G protein-coupled receptors (GPCRs) play crucial roles in cell physiology and pathophysiology. There is increasing interest in using structural information for virtual screening (VS) of libraries and for structure-based drug design to identify novel agonist or antagonist leads. However, the sparse availability of experimentally determined GPCR/ligand complex structures with diverse ligands impedes the application of structure-based drug design (SBDD) programs directed to identifying new molecules with a select pharmacology. In this study, we apply ligand-directed modeling (LDM) to available GPCR X-ray structures to improve VS performance and selectivity towards molecules of specific pharmacological profile. The described method refines a GPCR binding pocket conformation using a single known ligand for that GPCR. The LDM method is a computationally efficient, iterative workflow consisting of protein sampling and ligand docking. We developed an extensive benchmark comparing LDM-refined binding pockets to GPCR X-ray crystal structures across seven different GPCRs bound to a range of ligands of different chemotypes and pharmacological profiles. LDM-refined models showed improvement in VS performance over origin X-ray crystal structures in 21 out of 24 cases. In all cases, the LDM-refined models had superior performance in enriching for the chemotype of the refinement ligand. This likely contributes to the LDM success in all cases of inhibitor-bound to agonist-bound binding pocket refinement, a key task for GPCR SBDD programs. Indeed, agonist ligands are required for a plethora of GPCRs for therapeutic intervention, however GPCR X-ray structures are mostly restricted to their inactive inhibitor-bound state. PMID:29131821
Novoa, Alexandre; Van Dorpe, Sylvia; Wynendaele, Evelien; Spetea, Mariana; Bracke, Nathalie; Stalmans, Sofie; Betti, Cecilia; Chung, Nga N; Lemieux, Carole; Zuegg, Johannes; Cooper, Matthew A; Tourwé, Dirk; De Spiegeleer, Bart; Schiller, Peter W; Ballet, Steven
2012-11-26
The influence of the side chain charges of the second and fourth amino acid residues in the peptidic μ opioid lead agonist Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1)]-DALDA) was examined. Additionally, to increase the overall lipophilicity of [Dmt(1)]-DALDA and to investigate the Phe(3) side chain flexibility, the final amide bond was N-methylated and Phe(3) was replaced by a constrained aminobenzazepine analogue. The in vitro receptor binding and activity of the peptides, as well as their in vivo transport (brain in- and efflux and tissue biodistribution) and antinociceptive properties after peripheral administration (ip and sc) in mice were determined. The structural modifications result in significant shifts of receptor binding, activity, and transport properties. Strikingly, while [Dmt(1)]-DALDA and its N-methyl analogue, Dmt-d-Arg-Phe-NMeLys-NH(2), showed a long-lasting antinociceptive effect (>7 h), the peptides with d-Cit(2) generate potent antinociception more rapidly (maximal effect at 1h postinjection) but also lose their analgesic activity faster when compared to [Dmt(1)]-DALDA and [Dmt(1),NMeLys(4)]-DALDA.
Novoa, Alexandre; Van Dorpe, Sylvia; Wynendaele, Evelien; Spetea, Mariana; Bracke, Nathalie; Stalmans, Sofie; Betti, Cecilia; Chung, Nga N.; Lemieux, Carole; Zuegg, Johannes; Cooper, Matthew A.; Tourwé, Dirk; De Spiegeleer, Bart; Schiller, Peter W.; Ballet, Steven
2012-01-01
The influence of the side chain charges of the second and fourth amino acid residues in the peptidic μ opioid lead agonist Dmt-D-Arg-Phe-Lys-NH2 ([Dmt1]-DALDA) was examined. Additionally, to increase the overall lipophilicity of [Dmt1]-DALDA and to investigate the Phe3 side chain flexibility, the final amide bond was N-methylated and Phe3 was replaced by a constrained aminobenzazepine analogue. The in vitro receptor binding and activity of the peptides, as well as their in vivo transport (brain in- and efflux and tissue biodistribution) and antinociceptive properties after peripheral administration (i.p. and s.c.) in mice were determined. The structural modifications result in significant shifts of receptor binding, activity and transport properties. Strikingly, while [Dmt1]-DALDA and its N-methyl analogue, Dmt-D-Arg-Phe-NMeLys-NH2, showed a long-lasting antinociceptive effect (>7h), the peptides with D-Cit2 generate potent antinociception more rapidly (maximal effect at 1h post-injection) but also lose their analgesic activity faster, when compared to [Dmt1]-DALDA and [Dmt1,NMeLys4]-DALDA. PMID:23102273
Méndez-Luna, D; Martínez-Archundia, M; Maroun, Rachid C; Ceballos-Reyes, G; Fragoso-Vázquez, M J; González-Juárez, D E; Correa-Basurto, J
2015-01-01
The G-protein coupled estrogen receptor 1 GPER/GPR30 is a transmembrane seven-helix (7TM) receptor involved in the growth and proliferation of breast cancer. Due to the absence of a crystal structure of GPER/GPR30, in this work, molecular modeling studies have been carried out to build a three-dimensional structure, which was subsequently refined by molecular dynamics (MD) simulations (up to 120 ns). Furthermore, we explored GPER/GPR30's molecular recognition properties by using reported agonist ligands (G1, estradiol (E2), tamoxifen, and fulvestrant) and the antagonist ligands (G15 and G36) in subsequent docking studies. Our results identified the E2 binding site on GPER/GPR30, as well as other receptor cavities for accepting large volume ligands, through GPER/GPR30 π-π, hydrophobic, and hydrogen bond interactions. Snapshots of the MD trajectory at 14 and 70 ns showed almost identical binding motifs for G1 and G15. It was also observed that C107 interacts with the acetyl oxygen of G1 (at 14 ns) and that at 70 ns the residue E275 interacts with the acetyl group and with the oxygen from the other agonist whereas the isopropyl group of G36 is oriented toward Met141, suggesting that both C107 and E275 could be involved in the protein activation. This contribution suggest that GPER1 has great structural changes which explain its great capacity to accept diverse ligands, and also, the same ligand could be recognized in different binding pose according to GPER structural conformations.
2017-01-01
Among opioids, morphinans are of major importance as the most effective analgesic drugs acting primarily via μ-opioid receptor (μ-OR) activation. Our long-standing efforts in the field of opioid analgesics from the class of morphinans led to N-methylmorphinan-6-ones differently substituted at positions 5 and 14 as μ-OR agonists inducing potent analgesia and fewer undesirable effects. Herein we present the first thorough molecular modeling study and structure–activity relationship (SAR) explorations aided by docking and molecular dynamics (MD) simulations of 14-oxygenated N-methylmorphinan-6-ones to gain insights into their mode of binding to the μ-OR and interaction mechanisms. The structure of activated μ-OR provides an essential model for how ligand/μ-OR binding is encoded within small chemical differences in otherwise structurally similar morphinans. We reveal important molecular interactions that these μ-agonists share and distinguish them. The molecular docking outcomes indicate the crucial role of the relative orientation of the ligand in the μ-OR binding site, influencing the propensity of critical non-covalent interactions that are required to facilitate ligand/μ-OR interactions and receptor activation. The MD simulations point out minor differences in the tendency to form hydrogen bonds by the 4,5α-epoxy group, along with the tendency to affect the 3–7 lock switch. The emerged SARs reveal the subtle interplay between the substituents at positions 5 and 14 in the morphinan scaffold by enabling the identification of key structural elements that determine the distinct pharmacological profiles. This study provides a significant structural basis for understanding ligand binding and μ-OR activation by the 14-oxygenated N-methylmorphinan-6-ones, which should be useful for guiding drug design. PMID:28125215
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jun; Byrne, Noel; Wang, John
Clinical studies indicate that partial agonists of the G-protein-coupled, free fatty acid receptor 1 GPR40 enhance glucose-dependent insulin secretion and represent a potential mechanism for the treatment of type 2 diabetes mellitus. Full allosteric agonists (AgoPAMs) of GPR40 bind to a site distinct from partial agonists and can provide additional efficacy. We report the 3.2-Å crystal structure of human GPR40 (hGPR40) in complex with both the partial agonist MK-8666 and an AgoPAM, which exposes a novel lipid-facing AgoPAM-binding pocket outside the transmembrane helical bundle. Comparison with an additional 2.2-Å structure of the hGPR40–MK-8666 binary complex reveals an induced-fit conformational couplingmore » between the partial agonist and AgoPAM binding sites, involving rearrangements of the transmembrane helices 4 and 5 (TM4 and TM5) and transition of the intracellular loop 2 (ICL2) into a short helix. These conformational changes likely prime GPR40 to a more active-like state and explain the binding cooperativity between these ligands.« less
Gobec, Martina; Tomašič, Tihomir; Štimac, Adela; Frkanec, Ruža; Trontelj, Jurij; Anderluh, Marko; Mlinarič-Raščan, Irena; Jakopin, Žiga
2018-04-12
Muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan, has long been known as the smallest fragment possessing adjuvant activity, on the basis of its agonistic action on the nucleotide-binding oligomerization domain-containing protein 2 (NOD2). There is a pressing need for novel adjuvants, and NOD2 agonists provide an untapped source of potential candidates. Here, we report the design, synthesis, and characterization of a series of novel acyl tripeptides. A pivotal structural element for molecular recognition by NOD2 has been identified, culminating in the discovery of compound 9, the most potent desmuramylpeptide NOD2 agonist to date. Compound 9 augmented pro-inflammatory cytokine release from human peripheral blood mononuclear cells in synergy with lipopolysaccharide. Furthermore, it was able to induce ovalbumin-specific IgG titers in a mouse model of adjuvancy. These findings provide deeper insights into the structural requirements of desmuramylpeptides for NOD2-activation and highlight the potential use of NOD2 agonists as adjuvants for vaccines.
Novel kinin B1 receptor agonists with improved pharmacological profiles.
Côté, Jérôme; Savard, Martin; Bovenzi, Veronica; Bélanger, Simon; Morin, Josée; Neugebauer, Witold; Larouche, Annie; Dubuc, Céléna; Gobeil, Fernand
2009-04-01
There is some evidence to suggest that inducible kinin B1 receptors (B1R) may play beneficial and protecting roles in cardiovascular-related pathologies such as hypertension, diabetes, and ischemic organ diseases. Peptide B1R agonists bearing optimized pharmacological features (high potency, selectivity and stability toward proteolysis) hold promise as valuable therapeutic agents in the treatment of these diseases. In the present study, we used solid-phase methodology to synthesize a series of novel peptide analogues based on the sequence of Sar[dPhe(8)]desArg(9)-bradykinin, a relatively stable peptide agonist with moderate affinity for the human B1R. We evaluated the pharmacological properties of these peptides using (1) in vitro competitive binding experiments on recombinant human B1R and B2R (for index of selectivity determination) in transiently transfected human embryonic kidney 293 cells (HEK-293T cells), (2) ex vivo vasomotor assays on isolated human umbilical veins expressing endogenous human B1R, and (3) in vivo blood pressure tests using anesthetized lipopolysaccharide-immunostimulated rabbits. Key chemical modifications at the N-terminus, the positions 3 and 5 on Sar[dPhe(8)]desArg(9)-bradykinin led to potent analogues. For example, peptides 18 (SarLys[Hyp(3),Cha(5), dPhe(8)]desArg(9)-bradykinin) and 20 (SarLys[Hyp(3),Igl(5), dPhe(8)]desArg(9)-bradykinin) outperformed the parental molecule in terms of affinity, functional potency and duration of action in vitro and in vivo. These selective agonists should be valuable in future animal and human studies to investigate the potential benefits of B1R activation.
Platelet-activating factor receptor agonists mediate xeroderma pigmentosum A photosensitivity.
Yao, Yongxue; Harrison, Kathleen A; Al-Hassani, Mohammed; Murphy, Robert C; Rezania, Samin; Konger, Raymond L; Travers, Jeffrey B
2012-03-16
To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa-/-) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-α production in Xpa-/- mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity.
Huang, Meng; Wang, Xuezhi; Xing, Beibei; Yang, Hongwei; Sa, Zheyan; Zhang, Di; Yao, Wei; Yin, Na; Xia, Ying; Ding, Guanghong
2018-04-25
Acupuncture is one of the most promising modalities in complimentary medicine. However, the underlying mechanisms are not well understood yet. We found that in TRPV2 knockout male mice, acupuncture-induced analgesia was suppressed with a decreased activation of mast cells in the acupoints stimulated. The mast cell stabilizer sodium cromolyn could suppress the release of adenosine in the acupoints on male rats. A direct injection of adenosine A1 receptor agonist or histamine H1 receptor agonist increased β-endorphin in the cerebral-spinal fluid in the acute adjuvant arthritis male rats and thus replicated the analgesic effect of acupuncture. These observations suggest that the mast cell is the central structure of acupoints and is activated by acupuncture through TRPV2 channels. The mast cell transduces the mechanical stimuli to acupuncture signal by activating either H1 or A1 receptors, therefore triggering the acupuncture effect in the subject. These findings might open new frontiers for acupuncture research.
Structure-activity analysis of synthetic alpha-thrombin-receptor-activating peptides.
Van Obberghen-Schilling, E; Rasmussen, U B; Vouret-Craviari, V; Lentes, K U; Pavirani, A; Pouysségur, J
1993-06-15
alpha-Thrombin stimulates G-protein-coupled effectors leading to secretion and aggregation in human platelets, and to a mitogenic response in CCL39 hamster fibroblasts. alpha-Thrombin receptors can be activated by synthetic peptides corresponding to the receptor sequence starting with serine-42, at the proposed cleavage site. We have previously determined that the agonist domain of receptor-activating peptides resides within the five N-terminal residues [Vouret-Craviari, Van Obberghen-Schilling, Rasmussen, Pavirani, Lecocq and Pouysségur (1992) Mol. Biol. Cell. 3, 95-102], although the 7-residue peptide (SFFLRNP) corresponding to the hamster alpha-thrombin receptor was 10 times more potent than the 5-residue peptide for activation of human platelets. In the present study we have analysed the role of individual amino acids in receptor activation by using a series of modified hexa- or hepta-peptides derived from the human alpha-thrombin-receptor sequence. Cellular events examined here include phospholipase C activation, adenylyl cyclase inhibition and DNA synthesis stimulation in non-transformed CCL39 fibroblasts and a tumorigenic variant of that line (A71 cells). Modification of the peptide sequence had similar functional consequence for each of the assays described, indicating that either a unique receptor or pharmacologically indistinguishable receptor subtypes activate distinct G-protein signalling pathways. Furthermore, we found that: (1) the N-terminal serine can be replaced by small or intermediately sized amino acids (+/- hydroxyl groups) without loss of activity. However, its replacement by an aromatic side-chain or omission of the N-terminal amino group severely reduces activity. (2) An aromatic side-chain on the penultimate N-terminal residue appears to play a critical role since phenylalanine in this position can be substituted by tyrosine without complete loss of activity whereas an alanine in its place is not tolerated. (3) Deletion of the first, second or third N-terminal residue leads to a loss of activity, suggesting that a defined spacing of more than one structural component may be important for ligand-receptor interaction. Finally, we did not observe an antagonistic effect of the inactive peptides on phospholipase C activation or DNA synthesis induced by alpha-thrombin (1 nM) or SFLLRNP (3 microM).
Structure-activity analysis of synthetic alpha-thrombin-receptor-activating peptides.
Van Obberghen-Schilling, E; Rasmussen, U B; Vouret-Craviari, V; Lentes, K U; Pavirani, A; Pouysségur, J
1993-01-01
alpha-Thrombin stimulates G-protein-coupled effectors leading to secretion and aggregation in human platelets, and to a mitogenic response in CCL39 hamster fibroblasts. alpha-Thrombin receptors can be activated by synthetic peptides corresponding to the receptor sequence starting with serine-42, at the proposed cleavage site. We have previously determined that the agonist domain of receptor-activating peptides resides within the five N-terminal residues [Vouret-Craviari, Van Obberghen-Schilling, Rasmussen, Pavirani, Lecocq and Pouysségur (1992) Mol. Biol. Cell. 3, 95-102], although the 7-residue peptide (SFFLRNP) corresponding to the hamster alpha-thrombin receptor was 10 times more potent than the 5-residue peptide for activation of human platelets. In the present study we have analysed the role of individual amino acids in receptor activation by using a series of modified hexa- or hepta-peptides derived from the human alpha-thrombin-receptor sequence. Cellular events examined here include phospholipase C activation, adenylyl cyclase inhibition and DNA synthesis stimulation in non-transformed CCL39 fibroblasts and a tumorigenic variant of that line (A71 cells). Modification of the peptide sequence had similar functional consequence for each of the assays described, indicating that either a unique receptor or pharmacologically indistinguishable receptor subtypes activate distinct G-protein signalling pathways. Furthermore, we found that: (1) the N-terminal serine can be replaced by small or intermediately sized amino acids (+/- hydroxyl groups) without loss of activity. However, its replacement by an aromatic side-chain or omission of the N-terminal amino group severely reduces activity. (2) An aromatic side-chain on the penultimate N-terminal residue appears to play a critical role since phenylalanine in this position can be substituted by tyrosine without complete loss of activity whereas an alanine in its place is not tolerated. (3) Deletion of the first, second or third N-terminal residue leads to a loss of activity, suggesting that a defined spacing of more than one structural component may be important for ligand-receptor interaction. Finally, we did not observe an antagonistic effect of the inactive peptides on phospholipase C activation or DNA synthesis induced by alpha-thrombin (1 nM) or SFLLRNP (3 microM). PMID:7686363
Crystal structures of the M 1 and M 4 muscarinic acetylcholine receptors
Thal, David M.; Sun, Bingfa; Feng, Dan; ...
2016-03-09
Muscarinic M1–M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer’s disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. In this paper, we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 andmore » M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. Finally, we also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.« less
Crystal structures of the M 1 and M 4 muscarinic acetylcholine receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thal, David M.; Sun, Bingfa; Feng, Dan
Muscarinic M1–M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer’s disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. In this paper, we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 andmore » M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. Finally, we also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.« less
Schröder, W; Lambert, D G; Ko, M C; Koch, T
2014-01-01
Despite high sequence similarity between NOP (nociceptin/orphanin FQ opioid peptide) and opioid receptors, marked differences in endogenous ligand selectivity, signal transduction, phosphorylation, desensitization, internalization and trafficking have been identified; underscoring the evolutionary difference between NOP and opioid receptors. Activation of NOP receptors affects nociceptive transmission in a site-specific manner, with antinociceptive effects prevailing after peripheral and spinal activation, and pronociceptive effects after supraspinal activation in rodents. The net effect of systemically administered NOP receptor agonists on nociception is proposed to depend on the relative contribution of peripheral, spinal and supraspinal activation, and this may depend on experimental conditions. Functional expression and regulation of NOP receptors at peripheral and central sites of the nociceptive pathway exhibits a high degree of plasticity under conditions of neuropathic and inflammatory pain. In rodents, systemically administered NOP receptor agonists exerted antihypersensitive effects in models of neuropathic and inflammatory pain. However, they were largely ineffective in acute pain while concomitantly evoking severe motor side effects. In contrast, systemic administration of NOP receptor agonists to non-human primates (NHPs) exerted potent and efficacious antinociception in the absence of motor and sedative side effects. The reason for this species difference with respect to antinociceptive efficacy and tolerability is not clear. Moreover, co-activation of NOP and μ-opioid peptide (MOP) receptors synergistically produced antinociception in NHPs. Hence, both selective NOP receptor as well as NOP/MOP receptor agonists may hold potential for clinical use as analgesics effective in conditions of acute and chronic pain. PMID:24762001
Nirogi, Ramakrishna; Mohammed, Abdul Rasheed; Shinde, Anil K; Gagginapally, Shankar Reddy; Kancharla, Durga Malleshwari; Middekadi, Vanaja Reddy; Bogaraju, Narsimha; Ravella, Srinivasa Rao; Singh, Pooja; Birangal, Sumit Raosaheb; Subramanian, Ramkumar; Palacharla, Raghava Choudary; Benade, Vijay; Muddana, Nageswararao; Jayarajan, Pradeep
2018-05-31
Alzheimer's disease (AD) is a neurodegenerative disorder that has a higher prevalence and incidence in people older than 60 years. The need for improved AD therapies is unmet as the current therapies are symptomatic with modest efficacy. Partial agonists of the 5-HT 4 receptor (5-HT 4 R) offer both symptomatic and disease-modifying treatments as they shift amyloid-precursor-protein (APP) processing from the amyloidogenic pathway to the nonamyloidogenic pathway by activating the α-secretase enzyme. In addition, they also offer symptomatic treatment by increasing levels of the neurotransmitter acetylcholine in the brain. Because of this fascinating dual mechanism of action, several chemical scaffolds having 5-HT 4 R pharmacophores were designed and evaluated. Most of the synthesized compounds showed potent in vitro affinities and in vivo efficacies. Upon analysis of focused structure-activity relationships, compound 4o was identified as a potent 5-HT 4 R partial agonist with favorable ADME properties and good in vivo efficacy. GR-125487, a selective 5-HT 4 R antagonist, attenuated the activity of compound 4o in the novel-object-recognition-test cognition model.
Modeling and simulation studies of human β3 adrenergic receptor and its interactions with agonists.
Sahi, Shakti; Tewatia, Parul; Malik, Balwant K
2012-12-01
β3 adrenergic receptor (β3AR) is known to mediate various pharmacological and physiological effects such as thermogenesis in brown adipocytes, lipolysis in white adipocytes, glucose homeostasis and intestinal smooth muscle relaxation. Several efforts have been made in this field to understand their function and regulation in different human tissues and they have emerged as potential attractive targets in drug discovery for the treatment of diabetes, depression, obesity etc. Although the crystal structures of Bovine Rhodopsin and β2 adrenergic receptor have been resolved, to date there is no three dimensional structural information on β3AR. Our aim in this study was to model 3D structure of β3AR by various molecular modeling and simulation techniques. In this paper, we describe a refined predicted model of β3AR using different algorithms for structure prediction. The structural refinement and minimization of the generated 3D model of β3AR were done by Schrodinger suite 9.1. Docking studies of β3AR model with the known agonists enabled us to identify specific residues, viz, Asp 117, Ser 208, Ser 209, Ser 212, Arg 315, Asn 332, within the β3AR binding pocket, which might play an important role in ligand binding. Receptor ligand interaction studies clearly indicated that these five residues showed strong hydrogen bonding interactions with the ligands. The results have been correlated with the experimental data available. The predicted ligand binding interactions and the simulation studies validate the methods used to predict the 3D-structure.
Fediuk, J; Sikarwar, A S; Lizotte, P P; Hinton, M; Nolette, N; Dakshinamurti, S
2015-02-01
Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by sustained vasospasm and an increased thromboxane:prostacyclin ratio. Thromboxane (TP) receptors signal via Gαq to mobilize IP3 and Ca(2+), causing pulmonary arterial constriction. We have previously reported increased TP internalization in hypoxic pulmonary arterial (PA) myocytes. Serum-deprived PA myocytes were grown in normoxia (NM) or hypoxia (HM) for 72 h. TP localization was visualized in agonist-naïve and -challenged NM and HM by immunocytochemistry. Pathways for agonist-induced TP receptor internalization were determined by inhibiting caveolin- or clathrin-mediated endocytosis, and caveolar fractionation. Roles of actin and tubulin in TP receptor internalization were assessed using inhibitors of tubulin, actin-stabilizing or -destabilizing agents. PKA, PKC or GRK activation and inhibition were used to determine the kinase responsible for post-agonist receptor internalization. Agonist-naïve HM had decreased cell surface TP, and greater TP internalization after agonist challenge. TP protein did not sort with caveolin-rich fractions. Inhibition of clathrin prevented TP internalization. Both actin-stabilizing and -destabilizing agents prevented TP endocytosis in NM, while normalizing TP internalization in HM. Velocity of TP internalization was unaffected by PKA activity, but PKC activation normalized TP receptor internalization in HM. GRK inhibition had no effect. We conclude that in hypoxic myocytes, TP is internalized faster and to a greater extent than in normoxic controls. Internalization of the agonist-challenged TP requires clathrin, dynamic actin and is sensitive to PKC activity. TP receptor trafficking and signaling in hypoxia are pivotal to understanding increased vasoconstrictor sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tachykinin receptors in the guinea-pig isolated bronchi.
Maggi, C A; Patacchini, R; Quartara, L; Rovero, P; Santicioli, P
1991-05-17
The aim of the study was to assess which tachykinin receptors mediate the contractile response in the guinea-pig isolated bronchi. Experiments with natural tachykinins and receptor-selective tachykinin agonists were performed in the absence or presence of peptidase inhibitors and in bronchi pretreated with phenoxybenzamine. Both NK-1 (substance P, substance P methylester and septide) and NK-2 (neurokinin A, [beta-Ala8]neurokinin A-(4-10) and MDL 28,564) receptor agonists produced concentration-dependent contraction. NK-3 agonists (senktide and [MePhe7]neurokinin B) were active only at high concentrations. Phenoxybenzamine pretreatment reduced the maximal response to NK-1 agonists and produced a rightward shift of the curve to NK-2 agonists, without depression of the maximum. Five tachykinin antagonists selective for the NK-1 (L 668,169) or the NK-2 (MEN 10,207, MEN 10,376, L 659,877 and R 396) receptor were tested against substance P methylester and [beta-Ala8]neurokinin A-(4-10). The results indicated that these receptor-selective antagonists maintain their characteristic even when tested in a multireceptor assay such as the guinea-pig bronchus. The rank order of potency of NK-2 antagonists against [beta-Ala8]neurokinin A-(4-10) was MEN 10,207 = MEN 10,376 greater than L 659,877 much greater than R 396. This pattern, with the observation of the full agonist activity of MDL 28,564, indicates that in addition to NK-1 receptors, NK-2 receptors also are present in the guinea-pig bronchi and belong to the same subtype (NK-2A) as present in the rabbit pulmonary artery.
Simulations of Biased Agonists in the β2 Adrenergic Receptor with Accelerated Molecular Dynamics
2013-01-01
The biased agonism of the G protein-coupled receptors (GPCRs), where in addition to a traditional G protein-signaling pathway a GPCR promotes intracellular signals though β-arrestin, is a novel paradigm in pharmacology. Biochemical and biophysical studies have suggested that a GPCR forms a distinct ensemble of conformations signaling through the G protein and β-arrestin. Here we report on the dynamics of the β2 adrenergic receptor bound to the β-arrestin and G protein-biased agonists and the empty receptor to further characterize the receptor conformational changes caused by biased agonists. We use conventional and accelerated molecular dynamics (aMD) simulations to explore the conformational transitions of the GPCR from the active state to the inactive state. We found that aMD simulations enable monitoring of the transition within the nanosecond time scale while capturing the known microscopic characteristics of the inactive states, such as the ionic lock, the inward position of F6.44, and water clusters. Distinct conformational states are shown to be stabilized by each biased agonist. In particular, in simulations of the receptor with the β-arrestin-biased agonist N-cyclopentylbutanepherine, we observe a different pattern of motions in helix 7 when compared to simulations with the G protein-biased agonist salbutamol that involves perturbations of the network of interactions within the NPxxY motif. Understanding the network of interactions induced by biased ligands and the subsequent receptor conformational shifts will lead to development of more efficient drugs. PMID:23879802
Fox, Norma E; Lim, Jihyang; Chen, Rose; Geddis, Amy E
2010-05-01
To determine whether specific c-Mpl mutations might respond to thrombopoietin receptor agonists. We created cell line models of type II c-Mpl mutations identified in congenital amegakaryocytic thrombocytopenia. We selected F104S c-Mpl for further study because it exhibited surface expression of the receptor. We measured proliferation of cell lines expressing wild-type or F104S c-Mpl in response to thrombopoietin receptor agonists targeting the extracellular (m-AMP4) or transmembrane (LGD-4665) domains of the receptor by 1-methyltetrazole-5-thiol assay. We measured thrombopoietin binding to the mutant receptor using an in vitro thrombopoietin uptake assay and identified F104 as a potentially critical residue for the interaction between the receptor and its ligand by aligning thrombopoietin and erythropoietin receptors from multiple species. Cells expressing F104S c-Mpl proliferated in response to LGD-4665, but not thrombopoietin or m-AMP4. Compared to thrombopoietin, LGD-4665 stimulates signaling with delayed kinetics in both wild-type and F104S c-Mpl-expressing cells. Although F104S c-Mpl is expressed on the cell surface in our BaF3 cell line model, the mutant receptor does not bind thrombopoietin. Comparison to the erythropoietin receptor suggests that F104 engages in hydrogen-bonding interactions that are critical for binding to thrombopoietin. These findings suggest that a small subset of patients with congenital amegakaryocytic thrombocytopenia might respond to treatment with thrombopoietin receptor agonists, but that responsiveness will depend on the type of mutation and agonist used. We postulate that F104 is critical for thrombopoietin binding. The kinetics of signaling in response to a transmembrane domain-binding agonist are delayed in comparison to thrombopoietin. 2010 ISEH Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.