Science.gov

Sample records for receptor blockade decreases

  1. Selective blockade of the endothelin subtype A receptor decreases early atherosclerosis in hamsters fed cholesterol.

    PubMed Central

    Kowala, M. C.; Rose, P. M.; Stein, P. D.; Goller, N.; Recce, R.; Beyer, S.; Valentine, M.; Barton, D.; Durham, S. K.

    1995-01-01

    Recent studies suggest that endothelin and its receptors may be involved in atherogenesis. To test this hypothesis, cholesterol-fed hamsters were treated with a selective endothelin subtype A (ETA) receptor antagonist BMS-182874. Characterization of hamster atherosclerotic plaques indicated that they contained a fibrous cap of smooth muscle cells, large macrophage-foam cells, and epitopes of oxidized low density lipoprotein. Messenger RNA for both ETA and ETB receptors was detected in aortic endothelial cells, in medial smooth muscle cells, and in macrophage-foam cells and smooth muscle cells of the fibro-fatty plaques. BMS-182874 inhibited the endothelin-1-induced pressor response whereas the depressor effect was unaltered, suggesting that vascular ETA receptors were selectively blocked in vivo. In hyperlipidemic hamsters, BMS-182874 decreased the area of the fatty streak by reducing the number and size of macrophage-foam cells. The results indicated that ETA receptors and thus endothelin promoted the early inflammatory phase of atherosclerosis. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:7717449

  2. Blockade of NMDA receptors in postnatal period decreased density of tyrosine hydroxylase immunoreactive axonal arbors in the medial prefrontal cortex of adult rats.

    PubMed

    Wedzony, K; Fijał, K; Chocyk, A

    2005-06-01

    Malfunction of glutamatergic neurotransmission in postnatal period is considered to be a risk factor for development of schizophrenia. Thus, the present study investigates the impact of NMDA receptor blockade in the postnatal period on the density of tyrosine hydroxylase immunoreactive axonal arbors in the rat medial prefrontal cortex. Behavioral experiments revealed that adult rats (60 days old) treated in the postnatal period with a competitive antagonist of NMDA receptors, CGP 40116 (1.25 mg/kg on days 1, 3, 6, 9; 2.5 mg/kg on days 12, 15, 18; and finally 5 mg/kg on day 21, all injections s.c.), showed enhancement of the locomotor activity stimulated by quinpirole (0.3 mg/kg s.c.) and amphetamine (0.5 mg/kg s.c.), which suggests development of functional supersensitivity of dopaminergic systems. It has been found that CGP 40116, given in postnatal period decreased the density of tyrosine hydroxylase immunoreactive axonal arbors in the medial prefrontal cortex of adult animals. The decrease was observed in superficial (II/III) and deep (V/VI) layers of the medial prefrontal cortex, while the average length of tyrosine hydroxylase immunoreactive axonal arbors was increased in both superficial and deep cortical layers. Changes in the density of tyrosine hydroxylase immunoreactive axonal arbors have not been followed by a significant decrease in the content of tyrosine hydroxylase protein measured by Western blot. Thus, NMDA receptor blockade in the early period of life evokes changes in architecture of tyrosine hydroxylase immunoreactive axonal arbors and that malfunction of glutamatergic neurotransmission, in early period of life may produce anatomical changes which resemble those observed in the brains of schizophrenics.

  3. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature.

    PubMed

    Almeida, M Camila; Hew-Butler, Tamara; Soriano, Renato N; Rao, Sara; Wang, Weiya; Wang, Judy; Tamayo, Nuria; Oliveira, Daniela L; Nucci, Tatiane B; Aryal, Prafulla; Garami, Andras; Bautista, Diana; Gavva, Narender R; Romanovsky, Andrej A

    2012-02-08

    We studied N-(2-aminoethyl)-N-(4-(benzyloxy)-3-methoxybenzyl)thiophene-2-carboxamide hydrochloride (M8-B), a selective and potent antagonist of the transient receptor potential melastatin-8 (TRPM8) channel. In vitro, M8-B blocked cold-induced and TRPM8-agonist-induced activation of rat, human, and murine TRPM8 channels, including those on primary sensory neurons. In vivo, M8-B decreased deep body temperature (T(b)) in Trpm8(+/+) mice and rats, but not in Trpm8(-/-) mice, thus suggesting an on-target action. Intravenous administration of M8-B was more effective in decreasing T(b) in rats than intrathecal or intracerebroventricular administration, indicating a peripheral action. M8-B attenuated cold-induced c-Fos expression in the lateral parabrachial nucleus, thus indicating a site of action within the cutaneous cooling neural pathway to thermoeffectors, presumably on sensory neurons. A low intravenous dose of M8-B did not affect T(b) at either a constantly high or a constantly low ambient temperature (T(a)), but the same dose readily decreased T(b) if rats were kept at a high T(a) during the M8-B infusion and transferred to a low T(a) immediately thereafter. These data suggest that both a successful delivery of M8-B to the skin (high cutaneous perfusion) and the activation of cutaneous TRPM8 channels (by cold) are required for the hypothermic action of M8-B. At tail-skin temperatures <23°C, the magnitude of the M8-B-induced decrease in T(b) was inversely related to skin temperature, thus suggesting that M8-B blocks thermal (cold) activation of TRPM8. M8-B affected all thermoeffectors studied (thermopreferendum, tail-skin vasoconstriction, and brown fat thermogenesis), thus suggesting that TRPM8 is a universal cold receptor in the thermoregulation system.

  4. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature

    PubMed Central

    Almeida, M. Camila; Hew-Butler, Tamara; Soriano, Renato N.; Rao, Sara; Wang, Weiya; Wang, Judy; Tamayo, Nuria; Oliveira, Daniela L.; Nucci, Tatiane B.; Aryal, Prafulla; Garami, Andras; Bautista, Diana; Gavva, Narender R.; Romanovsky, Andrej A.

    2012-01-01

    We studied M8-B, a selective and potent antagonist of the transient receptor potential melastatin-8 (TRPM8) channel. In vitro, M8-B blocked cold-induced and TRPM8-agonist-induced activation of rat, human, and murine TRPM8 channels, including those on primary sensory neurons. In vivo, M8-B decreased deep body temperature (Tb) in Trpm8+/+ mice and rats, but not in Trpm8−/− mice, thus suggesting an on-target action. The intravenous administration of M8-B was more effective in decreasing Tb in rats than the intrathecal or intracerebroventricular administration, indicating a peripheral action. M8-B attenuated cold-induced c-Fos expression in the lateral parabrachial nucleus, thus indicating a site of action within the cutaneous cooling neural pathway to thermoeffectors, presumably on sensory neurons. A low intravenous dose of M8-B did not affect Tb at either a constantly high or a constantly low ambient temperature (Ta), but the same dose readily decreased Tb if rats were kept at a high Ta during the M8-B infusion and transferred to a low Ta immediately thereafter. These data suggest that both a successful delivery of M8-B to the skin (high cutaneous perfusion) and the activation of cutaneous TRPM8 channels (by cold) are required for the hypothermic action of M8-B. At tail skin temperatures < 23°C, the magnitude of the M8-B-induced decrease in Tb was inversely related to skin temperature, thus suggesting that M8-B blocks thermal (cold) activation of TRPM8. M8-B affected all thermoeffectors studied (thermopreferendum, tail skin vasoconstriction, and brown fat thermogenesis), thus suggesting that TRPM8 is a universal cold receptor in the thermoregulation system. PMID:22323721

  5. Angiotensin II receptor type 1 blockade decreases CTGF/CCN2-mediated damage and fibrosis in normal and dystrophic skeletal muscles

    PubMed Central

    Cabello-Verrugio, Claudio; Morales, María Gabriela; Cabrera, Daniel; Vio, Carlos P; Brandan, Enrique

    2012-01-01

    Abstract Connective tissue growth factor (CTGF/CCN-2) is mainly involved in the induction of extracellular matrix (ECM) proteins. The levels of CTGF correlate with the degree and severity of fibrosis in many tissues, including dystrophic skeletal muscle. The CTGF overexpression in tibialis anterior skeletal muscle using an adenoviral vector reproduced many of the features observed in dystrophic muscles including muscle damage and regeneration, fibrotic response and decrease in the skeletal muscle strength. The renin–angiotensin system is involved in the genesis and progression of fibrotic diseases through its main fibrotic components angiotensin-II and its transducer receptor AT-1. The use of AT-1 receptor blockers (ARB) has been shown to decrease fibrosis. In this paper, we show the effect of AT-1 receptor blockade on CTGF-dependent biological activity in skeletal muscle cells as well as the response to CTGF overexpression in normal skeletal muscle. Our results show that in myoblasts ARB decreased CTGF-mediated increase of ECM protein levels, extracellular signal regulated kinases 1/2 (ERK-1/2) phosphorylation and stress fibres formation. In tibialis anterior muscle overexpressing CTGF using an adenovirus, ARB treatment decreased CTGF-mediated increase of ECM molecules, α-SMA and ERK-1/2 phosphorylation levels. Quite remarkable, ARB was able to prevent the loss of contractile force of tibialis anterior muscles overexpressing CTGF. Finally, we show that ARB decreased the levels of fibrotic proteins, CTGF and ERK-1/2 phosphorylation augmented in a dystrophic skeletal muscle from mdx mice. We propose that ARB is a novel pharmacological tool that can be used to decrease the fibrosis induced by CTGF in skeletal muscle associated with muscular dystrophies. PMID:21645240

  6. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    SciTech Connect

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao; Zhai, Zhifang; Gang Huang; Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong; Hou, Weiping

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade

  7. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3.

    PubMed

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao; Zhai, Zhifang; GangHuang; Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong; Hou, Weiping

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease.

  8. Peripheral metabolic effects of endocannabinoids and cannabinoid receptor blockade.

    PubMed

    Engeli, Stefan

    2008-01-01

    The endocannabinoid system consists of endogenous arachidonic acid derivates that activate cannabinoid receptors. The two most prominent endocannabinoids are anandamide and 2-arachidonoyl glycerol. In obesity, increased concentrations of circulating and tissue endocannabinoid levels have been described, suggesting increased activity of the endocannabinoid system. Increased availability of endocannabinoids in obesity may over-stimulate cannabinoid receptors. Blockade of cannabinoid type 1 (CB1) receptors was the only successful clinical development of an anti-obesity drug during the last decade. Whereas blockade of CB1 receptors acutely reduces food intake, the long-term effects on metabolic regulation are more likely mediated by peripheral actions in liver, skeletal muscle, adipose tissue, and the pancreas. Lipogenic effects of CB1 receptor signalling in liver and adipose tissue may contribute to regional adipose tissue expansion and insulin resistance in the fatty liver. The association of circulating 2-arachidonoyl glycerol levels with decreased insulin sensitivity strongly suggests further exploration of the role of endocannabinoid signalling for insulin sensitivity in skeletal muscle, liver, and adipose tissue. A few studies have suggested a specific role for the regulation of adiponectin secretion from adipocytes by endocannabinoids, but that has to be confirmed by more experiments. Also, the potential role of CB1 receptor blockade for the stimulation of energy expenditure needs to be studied in the future. Despite the current discussion of safety issues of cannabinoid receptor blockade, these findings open a new and exciting perspective on endocannabinoids as regulators of body weight and metabolism.

  9. Blockade of Rostral Ventrolateral Medulla (RVLM) Bombesin Receptor Type 1 Decreases Blood Pressure and Sympathetic Activity in Anesthetized Spontaneously Hypertensive Rats

    PubMed Central

    Pinto, Izabella S.; Mourão, Aline A.; da Silva, Elaine F.; Camargo, Amanda S.; Marques, Stefanne M.; Gomes, Karina P.; Fajemiroye, James O.; da Silva Reis, Angela A.; Rebelo, Ana C. S.; Ferreira-Neto, Marcos L.; Rosa, Daniel A.; Freiria-Oliveira, André H.; Castro, Carlos H.; Colombari, Eduardo; Colugnati, Diego B.; Pedrino, Gustavo R.

    2016-01-01

    Intrathecal injection of bombesin (BBS) promoted hypertensive and sympathoexcitatory effects in normotensive (NT) rats. However, the involvement of rostral ventrolateral medulla (RVLM) in these responses is still unclear. In the present study, we investigated: (1) the effects of BBS injected bilaterally into RVLM on cardiorespiratory and sympathetic activity in NT and spontaneously hypertensive rats (SHR); (2) the contribution of RVLM BBS type 1 receptors (BB1) to the maintenance of hypertension in SHR. Urethane-anesthetized rats (1.2 g · kg−1, i.v.) were instrumented to record mean arterial pressure (MAP), diaphragm (DIA) motor, and renal sympathetic nerve activity (RSNA). In NT rats and SHR, BBS (0.3 mM) nanoinjected into RVLM increased MAP (33.9 ± 6.6 and 37.1 ± 4.5 mmHg, respectively; p < 0.05) and RSNA (97.8 ± 12.9 and 84.5 ± 18.1%, respectively; p < 0.05). In SHR, BBS also increased DIA burst amplitude (115.3 ± 22.7%; p < 0.05). BB1 receptors antagonist (BIM-23127; 3 mM) reduced MAP (–19.9 ± 4.4 mmHg; p < 0.05) and RSNA (−17.7 ± 3.8%; p < 0.05) in SHR, but not in NT rats (−2.5 ± 2.8 mmHg; −2.7 ± 5.6%, respectively). These results show that BBS can evoke sympathoexcitatory and pressor responses by activating RVLM BB1 receptors. This pathway might be involved in the maintenance of high levels of arterial blood pressure in SHR. PMID:27313544

  10. CTLA4 blockade broadens the peripheral T cell receptor repertoire

    PubMed Central

    Robert, Lidia; Tsoi, Jennifer; Wang, Xiaoyan; Emerson, Ryan; Homet, Blanca; Chodon, Thinle; Mok, Stephen; Huang, Rong Rong; Cochran, Alistair J.; Comin-Anduix, Begonya; Koya, Richard C.; Graeber, Thomas G.; Robins, Harlan; Ribas, Antoni

    2014-01-01

    Purpose To evaluate the immunomodulatory effects of CTLA-4 blockade with tremelimumab in peripheral blood mononuclear cells (PBMC). Experimental Design We used next generation sequencing to study the complementarity determining region 3 (CDR3) from the rearranged T cell receptor (TCR) variable beta (V-beta) in PBMC of 21 patients, at baseline and 30–60 days after receiving tremelimumab. Results After receiving tremelimumab there was a median of 30% increase in unique productive sequences of TCR V-beta CDR3 in 19 out of 21 patients, and a median decrease of 30% in only 2 out of 21 patients. These changes were significant for richness (p=0.01) and for Shannon index diversity (p=0.04). In comparison, serially collected PBMC from four healthy donors did not show a significant change in TCR V-beta CDR3 diversity over one year. There was a significant difference in the total unique productive TCR V-beta CDR3 sequences between patients experiencing toxicity with tremelimumab compared to patients without toxicity (p=0.05). No relevant differences were noted between clinical responders and non-responders. Conclusions CTLA4 blockade with tremelimumab diversifies the peripheral T cell pool, representing a pharmacodynamic effect of how this class of antibodies modulates the human immune system. PMID:24583799

  11. Assessment of Methods for the Intracellular Blockade of GABAA Receptors

    PubMed Central

    Atherton, Laura A.; Burnell, Erica S.; Mellor, Jack R.

    2016-01-01

    Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4’-dinitro-stilbene-2,2’-disulphonic acid (DNDS) and 4,4’-diisothiocyanostilbene-2,2’-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility. PMID:27501143

  12. P2X1 receptor blockade inhibits whole kidney autoregulation of renal blood flow in vivo

    PubMed Central

    Osmond, David A.

    2010-01-01

    In vitro experiments demonstrate that P2X1 receptor activation is important for normal afferent arteriolar autoregulatory behavior, but direct in vivo evidence for this relationship occurring in the whole kidney is unavailable. Experiments were performed to test the hypothesis that P2X1 receptors are important for autoregulation of whole kidney blood flow. Renal blood flow (RBF) was measured in anesthetized male Sprague-Dawley rats before and during P2 receptor blockade with PPADS, P2X1 receptor blockade with IP5I, or A1 receptor blockade with DPCPX. Both P2X1 and A1 receptor stimulation with α,β-methylene ATP and CPA, respectively, caused dose-dependent decreases in RBF. Administration of either PPADS or IP5I significantly blocked P2X1 receptor stimulation. Likewise, administration of DPCPX significantly blocked A1 receptor activation to CPA. Autoregulatory behavior was assessed by measuring RBF responses to reductions in renal perfusion pressure. In vehicle-infused rats, as pressure was decreased from 120 to 100 mmHg, there was no decrease in RBF. However, in either PPADS- or IP5I-infused rats, each decrease in pressure resulted in a significant decrease in RBF, demonstrating loss of autoregulatory ability. In DPCPX-infused rats, reductions in pressure did not cause significant reductions in RBF over the pressure range of 100–120 mmHg, but the autoregulatory curve tended to be steeper than vehicle-infused rats over the range of 80–100 mmHg, suggesting that A1 receptors may influence RBF at lower pressures. These findings are consistent with in vitro data from afferent arterioles and support the hypothesis that P2X1 receptor activation is important for whole kidney autoregulation in vivo. PMID:20335318

  13. Glycinergic inhibition in thalamus revealed by synaptic receptor blockade.

    PubMed

    Ghavanini, Ahmad A; Mathers, David A; Puil, Ernest

    2005-09-01

    Using juvenile rat brain slices, we examined the possibility that strychnine-sensitive receptors for glycine-like amino acids contributed to synaptic inhibition in ventrobasal thalamus, where gamma-aminobutyrate (GABA) is the prevalent inhibitory transmitter. Ventrobasal nuclei showed staining for antibodies against alpha1 and alpha2 subunits of the glycine receptor. Exogenously applied glycine, taurine and beta-alanine increased membrane conductance, effects antagonized by strychnine, indicative of functional glycine receptors. Using glutamate receptor antagonists, we isolated inhibitory postsynaptic potentials and currents (IPSPs and IPSCs) evoked by high-threshold stimulation of medial lemniscus. Like the responses to glycine agonists, these synaptic responses reversed near E(Cl). In comparative tests with GABA receptor antagonists, strychnine attenuated inhibition in a majority of neurons, but did not alter slow, GABA(B) inhibition. For complete blockade, the majority of fast IPSPs required co-application of strychnine with bicuculline or gabazine, GABA(A) receptor antagonists. Strychnine acting with an IC50 approximately = 33 nM, eliminated residual fast inhibition during selective GABA(A) receptor blockade with gabazine. The latency of onset for IPSPs was compatible with polysynaptic pathways or prolonged axonal propagation time. Strychnine lacked effects on monosynaptic, GABAergic IPSPs from zona incerta. The specific actions of strychnine implicated a glycine receptor contribution to fast inhibition in somatosensory thalamus.

  14. A pharmacological analysis of serotonergic receptors: effects of their activation of blockade in learning.

    PubMed

    Meneses, A; Hong, E

    1997-02-01

    1. The authors have tested several 5-HT selective agonists and antagonists (5-HT1A/1B, 5-HT2A/2B/2C, 5-HT3 or 5-HT4), an uptake inhibitor and 5-HT depletors in the autoshaping learning task. 2. The present work deals with the receptors whose stimulation increases or decreases learning. 3. Impaired consolidation of learning was observed after the presynaptic activation of 5-HT1B, 5-HT3 or 5-HT4 or the blockade of postsynaptic 5-HT2C/2B receptors. 4. In contrast, an improvement occurred after the presynaptic activation of 5-HT1A, 5-HT2C, and the blockade of presynaptic 5-HT2A, 5-HT2C and 5-HT3 receptors. 5. The blockade of postsynaptic 5-HT1A, 5-HT1B, 5-HT3 or 5-HT4 receptors and 5-HT inhibition of synthesis and its depletion did no alter learning by themselves. 6. The present data suggest that multiple pre- and postsynaptic serotonergic receptors are involved in the consolidation of learning. 7. Stimulation of most 5-HT receptors increases learning, however, some of 5-HT subtypes seem to limit the data storage. 8. Furthermore, the role of 5-HT receptors in learning seem to require an interaction with glutamatergic, GABAergic and cholinergic neurotransmission systems.

  15. Interaction of anesthesia, beta-receptor blockade, and blood loss in dogs with induced myocardial infarction.

    PubMed

    Prys-Roberts, C; Roberts, J G; Foëx, P; Clarke, T N; Bennett, M J; Ryder, W A

    1976-09-01

    The cardiovascular effects of halothane-nitrous oxide anesthesia, and beta-receptor blockade with either propranolol or practolol, were studied in 15 dogs in which severe myocardial infarction had been induced ten days earlier. The hemodynamic responses to blood loss amounting to 25 per cent of estimated blood volume, and its subsequent replacement, were studied before and after induction of beta-receptor blockade. In terms of cardiac output and aortic blood flow acceleration, cardiac performance in the absence of beta-blockade was markedly impaired during steady-state anesthesia, compared with corresponding values in normal dogs. Practolol (2.0 mg/kg) administered during anesthesia induced no significant circulatory change other than a 14 per cent decrease in heart rate and a 25 per cent increase in strode volum. Propranolol (0.3 mg/kg) caused a comparable reduction of heart rate, but significantly reduced cardiac output (-27 per cent), aortic blood flow acceleration (-26 per cent), and peak LV power (-19 per cent), and increased systemic vascular resistance (+49 per cent). The two drugs caused comparable shifts of the isoproterenol dose-response curve during anesthesia. Graduated blood loss during anesthesia, to a total of 25 per cent of blood volume, caused consistent circulatory changes (decreased mean arterial pressure cardiac output, peak LV power, LV minute work) that were essentially similar before and after beta-receptor blockade with either propranolol or practolol. The positive inotropic effect of calcium gluconate during halothane anesthesia was significantly reduced following either propranolol or practolol, but the hemodynamic responses to changes of systemic vascular resistance induced with acetylcholine or phenylephrine were not modified by beta-receptor blockade.

  16. β-Adrenergic receptor blockade blunts postexercise skeletal muscle mitochondrial protein synthesis rates in humans

    PubMed Central

    Robinson, Matthew M.; Bell, Christopher; Peelor, Frederick F.

    2011-01-01

    β-Adrenergic receptor (AR) signaling is a regulator of skeletal muscle protein synthesis and mitochondrial biogenesis in mice. We hypothesized that β-AR blockade blunts postexercise skeletal muscle mitochondrial protein synthesis rates in adult humans. Six healthy men (mean ± SD: 26 ± 6 yr old, 39.9 ± 4.9 ml·kg−1·min−1 peak O2 uptake, 26.7 ± 2.0 kg/m2 body mass index) performed 1 h of stationary cycle ergometer exercise (60% peak O2 uptake) during 1) β-AR blockade (intravenous propranolol) and 2) administration of saline (control). Skeletal muscle mitochondrial, myofibrillar, and sarcoplasmic protein synthesis rates were assessed using [2H5]phenylalanine incorporation into skeletal muscle proteins after exercise. The mRNA content of signals for mitochondrial biogenesis was determined using real-time PCR. β-AR blockade decreased mitochondrial (from 0.217 ± 0.076 to 0.135 ± 0.031%/h, P < 0.05), but not myofibrillar or sarcoplasmic, protein synthesis rates. Peroxisome proliferator-activated receptor-γ coactivator-1α mRNA was increased ∼2.5-fold (P < 0.05) at 5 h compared with 1 h postexercise but was not influenced by β-AR blockade. We conclude that decreased β-AR signaling during cycling can blunt the postexercise increase in mitochondrial protein synthesis rates without affecting mRNA content. PMID:21613574

  17. Down-regulation of tumor necrosis factor receptors by blockade of mitochondrial respiration.

    PubMed

    Sánchez-Alcázar, J A; Hernández, I; De la Torre, M P; García, I; Santiago, E; Muñoz-Yagüe, M T; Solís-Herruzo, J A

    1995-10-13

    We have studied the effect of blockade of mitochondrial respiration on the binding of human 125I-TNF alpha to L929 cell receptors. Specific TNF alpha binding was decreased to about 20-40% of controls by blocking mitochondrial respiration. This effect was dose- and time-related and was observed independently of the level at which the respiration was blocked (respiratory chain, proton backflow, ATPase, anaerobiosis). This blockade had no effect on the half-life of the specific TNF alpha binding, the internalization or degradation of TNF alpha-receptor complexes, or the number of TNF alpha-binding sites. Scatchard analysis of TNF alpha binding data indicated a 2-4-fold decrease in the affinity of these binding sites. These effects did not appear to be related to the protein kinase C activity or to reactive oxygen radicals, since they were not antagonized by pretreatment of cells with oxygen radical scavengers, deferoxamine, or inhibitors of protein kinase C. Decrease in TNF alpha binding capacity correlated significantly with cellular ATP content (r = 0.94; p < 0.01) and with the cytocidal activity of TNF alpha against L929 cells. These findings suggest that blockade of mitochondrial respiration down-regulates the binding of TNF alpha to cells, most likely by changing the affinity of receptors for this cytokine. This down-regulation may increase the resistance of cells to TNF alpha cytotoxicity.

  18. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons.

    PubMed

    Lindsly, Casie; Gonzalez-Islas, Carlos; Wenner, Peter

    2014-01-01

    Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs). We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.

  19. Recovery of network-driven glutamatergic activity in rat hippocampal neurons during chronic glutamate receptor blockade.

    PubMed

    Leininger, Eric; Belousov, Andrei B

    2009-01-28

    Previous studies indicated that a long-term decrease in the activity of ionotropic glutamate receptors induces cholinergic activity in rat and mouse hypothalamic neuronal cultures. Here we studied whether a prolonged inactivation of ionotropic glutamate receptors also induces cholinergic activity in hippocampal neurons. Receptor activity was chronically suppressed in rat hippocampal primary neuronal cultures with two proportionally increasing sets of concentrations of NMDA plus non-NMDA receptor antagonists: 100 microM/10 microM AP5/CNQX (1X cultures) and 200 microM/20 microM AP5/CNQX (2X cultures). Using calcium imaging we demonstrate that cholinergic activity does not develop in these cultures. Instead, network-driven glutamate-dependent activity, that normally is detected in hyper-excitable conditions, reappears in each culture group in the presence of these antagonists and can be reversibly suppressed by higher concentrations of AP5/CNQX. This activity is mediated by non-NMDA receptors and is modulated by NMDA receptors. Further, non-NMDA receptors, the general level of glutamate receptor activity and CaMK-dependent signaling are critical for development of this network-driven glutamatergic activity in the presence of receptor antagonists. Using electrophysiology, western blotting and calcium imaging we show that some neuronal parameters are either reduced or not affected by chronic glutamate receptor blockade. However, other parameters (including neuronal excitability, mEPSC frequency, and expression of GluR1, NR1 and betaCaMKII) become up-regulated and, in some cases, proportionally between the non-treated, 1X and 2X cultures. Our data suggest recovery of the network-driven glutamatergic activity after chronic glutamate receptor blockade. This recovery may represent a form of neuronal plasticity that compensates for the prolonged suppression of the activity of glutamate receptors.

  20. Effect of {beta}{sub 1} adrenergic receptor blockade on myocardial blood flow and vasodilatory capacity

    SciTech Connect

    Boettcher, M.; Czernin, J.; Sun, K.

    1997-03-01

    The {beta}{sub 1} receptor blockade reduces cardiac work and may thereby lower myocardial blood flow (MBF) at rest. The effect of {beta}{sub 1} receptor blockade on hyperemic MBF is unknown. To evaluate the effect of selective {beta}{sub 1} receptor blockade on MBF at rest and during dipyridamole induced hyperemia, 10 healthy volunteers (8 men, 2 women, mean age 24 {+-} 5 yr) were studied using {sup 13}N-ammonia PET (two-compartment model) under control conditions and again during metoprolol (50 mg orally 12 hr and 1 hr before the study). The resting rate pressure product (6628 {+-} 504 versus 5225 {+-} 807) and heart rate (63 {+-} 6-54 {plus_minus} 5 bpm) declined during metoprolol (p < 0.05). Similarly, heart rate and rate pressure product declined from the baseline dipyridamole study to dipyridamole plus metoprolol (p < 0.05). Resting MBF declined in proportion to cardiac work by approximately 20% from 0.61 {+-} 0.09-0.51 {+-} 0.10 ml/g/min (p < 0.05). In contrast, hyperemic MBF increased when metoprolol was added to dipyridamole (1.86 {plus_minus} 0.27 {+-} 0.45 ml/g/min; p<0.05). The decrease in resting MBF together with the increase in hyperemic MBF resulted in a significant increase in the myocardial flow reserve during metoprolol (3.14 {+-} 0.80-4.61 {+-} 0.68; p<0.01). The {beta}{sub 1} receptor blockade increases coronary vasodilatory capacity and myocardial flow reserve. However, the mechanisms accounting for this finding remain uncertain. 32 refs., 2 figs., 2 tabs.

  1. Endothelin A-receptor blockade in experimental diabetes improves glucose balance and gastrointestinal function.

    PubMed

    Balsiger, Bruno; Rickenbacher, Andreas; Boden, Penelope Jane; Biecker, Erwin; Tsui, Janice; Dashwood, Michael; Reichen, Jürg; Shaw, Sidney George

    2002-08-01

    Secondary complications of diabetes mellitus often involve gastrointestinal dysfunction. In the experimental Goto Kakizaki rat, a model of Type II diabetes, hyperglycaemia and reduced glucose clearance is associated with elevated plasma endothelin (ET)-1 levels and selective decreases in nitric oxide synthase in circular muscle, longitudinal muscle and neuronal elements of the gastrointestinal tract. Functionally, this is accompanied by decreased nitrergic relaxatory responses of jejunal longitudinal muscle to tetrodotoxin-sensitive electrical field stimulation. Long-term treatment with a selective ET A-type receptor antagonist, markedly reduced hyperglycaemia and restored plasma glucose clearance rates towards normal. This was associated with a restoration of N(G)-nitro-L-arginine methyl ester-sensitive relaxatory responses of jejunal longitudinal muscle to electrical field stimulation. The results indicate that beneficial effects of ETA receptor blockade on gastrointestinal function may result from an improvement in insulin sensitivity with concomitant reduction of the severity of hyperglycaemia. ETA receptor blockade may represent a new therapeutic principle for improving glucose tolerance in Type II diabetes and could be beneficial in alleviating or preventing hyperglycaemia-related secondary complications in this condition.

  2. IL-7 receptor blockade following T cell depletion promotes long-term allograft survival

    PubMed Central

    Mai, Hoa-Le; Boeffard, Françoise; Longis, Julie; Danger, Richard; Martinet, Bernard; Haspot, Fabienne; Vanhove, Bernard; Brouard, Sophie; Soulillou, Jean-Paul

    2014-01-01

    T cell depletion is commonly used in organ transplantation for immunosuppression; however, a restoration of T cell homeostasis following depletion leads to increased memory T cells, which may promote transplant rejection. The cytokine IL-7 is important for controlling lymphopoiesis under both normal and lymphopenic conditions. Here, we investigated whether blocking IL-7 signaling with a mAb that targets IL-7 receptor α (IL-7Rα) alone or following T cell depletion confers an advantage for allograft survival in murine transplant models. We found that IL-7R blockade alone induced indefinite pancreatic islet allograft survival if anti–IL-7R treatment was started 3 weeks before graft. IL-7R blockade following anti-CD4– and anti-CD8–mediated T cell depletion markedly prolonged skin allograft survival. Furthermore, IL-7 inhibition in combination with T cell depletion synergized with either CTLA-4Ig administration or suboptimal doses of tacrolimus to induce long-term skin graft acceptance in this stringent transplant model. Together, these therapies inhibited T cell reconstitution, decreased memory T cell numbers, increased the relative frequency of Tregs, and abrogated both cellular and humoral alloimmune responses. Our data suggest that IL-7R blockade following T cell depletion has potential as a robust, immunosuppressive therapy in transplantation. PMID:24569454

  3. Effect of H1- and H2-histamine receptor blockade on postexercise insulin sensitivity

    PubMed Central

    Pellinger, Thomas K; Dumke, Breanna R; Halliwill, John R

    2013-01-01

    Following a bout of dynamic exercise, humans experience sustained postexercise vasodilatation in the previously exercised skeletal muscle which is mediated by activation of histamine (H1 and H2) receptors. Skeletal muscle glucose uptake is also enhanced following dynamic exercise. Our aim was to determine if blunting the vasodilatation during recovery from exercise would have an adverse effect on blood glucose regulation. Thus, we tested the hypothesis that insulin sensitivity following exercise would be reduced with H1- and H2-receptor blockade versus control (no blockade). We studied 20 healthy young subjects (12 exercise; eight nonexercise sham) on randomized control and H1- and H2-receptor blockade (fexofenadine and ranitidine) days. Following 60 min of upright cycling at 60% VO2 peak or nonexercise sham, subjects consumed an oral glucose tolerance beverage (1.0 g/kg). Blood glucose was determined from “arterialized” blood samples (heated hand vein). Postexercise whole-body insulin sensitivity (Matsuda insulin sensitivity index) was reduced 25% with H1- and H2-receptor blockade (P < 0.05), whereas insulin sensitivity was not affected by histamine receptor blockade in the sham trials. These results indicate that insulin sensitivity following exercise is blunted by H1- and H2-receptor blockade and suggest that postexercise H1- and H2-receptor–mediated skeletal muscle vasodilatation benefits glucose regulation in healthy humans. PMID:24303118

  4. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade.

    PubMed

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello; Secher, Niels H; Bangsbo, Jens

    2009-04-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged knee-extensor exercise (18 W) during control conditions and with cisatracurium blockade, as well as with cisatracurium blockade with prior glycopyrrone infusion. Thigh blood flow and vascular conductance in control and with cisatracurium infusion were similar at rest and during passive movement of the leg, but higher (P < 0.05) during exercise with cisatracurium than in control (3.83 +/- 0.42 vs. 2.78 +/- 0.21 l/min and 26.9 +/- 3.4 vs. 21.8 +/- 2.0 ml.min(-1).mmHg(-1) at the end of exercise). Thigh oxygen uptake was similar in control and with cisatracurium infusion both at rest and during exercise, being 354 +/- 33 and 406 +/- 34 ml/min, at the end of exercise. Combined infusion of cisatracurium and glycopyrrone caused a similar increase in blood flow as cisatracurium infusion alone. The current results demonstrate that neuromuscular blockade leads to enhanced thigh blood flow and vascular conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperemia or for the enhanced blood flow during neuromuscular blockade. The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibers.

  5. Ventral Midbrain NMDA Receptor Blockade: From Enhanced Reward and Dopamine Inactivation

    PubMed Central

    Hernandez, Giovanni; Cossette, Marie-Pierre; Shizgal, Peter; Rompré, Pierre-Paul

    2016-01-01

    Glutamate stimulates ventral midbrain (VM) N-Methyl-D-Aspartate receptors (NMDAR) to initiate dopamine (DA) burst firing activity, a mode of discharge associated with enhanced DA release and reward. Blockade of VM NMDAR, however, enhances brain stimulation reward (BSR), the results can be explained by a reduction in the inhibitory drive on DA neurons that is also under the control of glutamate. In this study, we used fast-scan cyclic voltammetry (FSCV) in anesthetized animals to determine whether this enhancement is associated with a change in phasic DA release in the nucleus accumbens. Rats were implanted with a stimulation electrode in the dorsal-raphe (DR) and bilateral cannulae above the VM and trained to self-administer trains of electrical stimulation. The curve-shift method was used to evaluate the effect of a single dose (0.825 nmol/0.5 μl/side) of the NMDAR antagonist, (2R,4S)-4-(3-Phosphopropyl)-2-piperidinecarboxylic acid (PPPA), on reward. These animals were then anesthetized and DA release was measured during delivery of electrical stimulation before and after VM microinjection of the vehicle followed by PPPA. As expected, phasic DA release and operant responding depended similarly on the frequency of rewarding electrical stimulation. As anticipated, PPPA produced a significant reward enhancement. Unexpectedly, PPPA produced a decrease in the magnitude of DA transients at all tested frequencies. To test whether this decrease resulted from excessive activation of DA neurons, we injected apomorphine 20 min after PPPA microinjection. At a dose (100 μg s.c.) sufficient to reduce DA firing under control conditions, apomorphine restored electrical stimulation-induced DA transients. These findings show that combined electrical stimulation and VM NMDARs blockade induce DA inactivation, an effect that indirectly demonstrates that VM NMDARs blockade enhances reward by potentiating stimulation-induced excitation in the mesoaccumbens DA pathway. PMID:27616984

  6. Remodeling of striatal NMDA receptors by chronic A(2A) receptor blockade in Huntington's disease mice.

    PubMed

    Martire, Alberto; Ferrante, Antonella; Potenza, Rosa Luisa; Armida, Monica; Ferretti, Roberta; Pézzola, Antonella; Domenici, Maria Rosaria; Popoli, Patrizia

    2010-01-01

    Excitotoxicity plays a major role in the pathogenesis of Huntington disease (HD), a fatal neurodegenerative disorder. Adenosine A(2A) receptors (A(2A)Rs) modulate excitotoxicity and have been suggested to play a pathogenetic role in HD. The main aim of this study was to evaluate the effect of A(2A)R blockade on the expression and functions of NMDA receptors in the striatum of HD mice (R6/2). We found that 3 weeks' treatment with SCH 58261 (0.01 mg/kg/day i.p. from the 8th week of age) modified NR1 and NR2A/NR2B expression in the striatum of R6/2 (Western blotting) while had no effect on NMDA-induced toxicity in corticostriatal slices (electrophysiological experiments). In conclusion, in vivo A(2A)R blockade induced a remodeling of NMDA receptors in the striatum of HD mice. Even though the functional relevance of the above effect remains to be fully elucidated, these results add further evidence to the modulatory role of A(2A)Rs in HD.

  7. Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT1 receptor blockade and PPARγ activation

    PubMed Central

    Wang, Juan; Pang, Tao; Hafko, Roman; Benicky, Julius; Sanchez-Lemus, Enrique; Saavedra, Juan M.

    2014-01-01

    Sartans (Angiotensin II AT1 Receptor Blockers, ARBs) are powerful neuroprotective agents in vivo and protect against IL-1β neurotoxicity in vitro. The purpose of this research was to determine the extent of sartan neuroprotection against glutamate excitotoxicity, a common cause of neuronal injury and apoptosis. The results show that sartans are neuroprotective, significantly reducing glutamate-induced neuronal injury and apoptosis in cultured rat primary cerebellar granule cells (CGCs). Telmisartan was the most potent sartan studied, with an order of potency telmisartan > candesartan > losartan > valsartan. Mechanisms involved reduction of pro-apoptotic caspase-3 activation, protection of the survival PI3K/Akt/GSK-3β pathway, and prevention of glutamate-induced ERK1/2 activation. NMDA receptor stimulation was essential for glutamate-induced cell injury and apoptosis. Participation of AT1A receptor was supported by glutamate-induced upregulation of AT1A gene expression and AT1 receptor binding. Conversely, AT1B or AT2 receptor played no role. Glutamate-induced neuronal injury and the neuroprotective effect of telmisartan were decreased, but not abolished, in CGCs obtained from AT1A knock-out mice. This indicates that although AT1 receptors are necessary for glutamate to exert its full neurotoxic potential, part of the neuroprotective effect of telmisartan is independent of AT1 receptor blockade. PPARγ activation was also involved in the neuroprotective effects of telmisartan, as telmisartan enhanced PPARγ nuclear translocation, and the PPARγ antagonist GW9662 partially reversed the neuroprotective effects of telmisartan. The present results substantiate the therapeutic use of sartans, in particular telmisartan, in neurodegenerative diseases and traumatic brain disorders where glutamate neurotoxicity plays a significant role. PMID:24316465

  8. Cerebrocortical and medullary blood flow changes after general opiate receptor blockade during hemorrhagic shock in cats.

    PubMed

    Komjáti, K; Sandor, P; Sandor, N; Szirmai, L; H-Velkei, M; Kovach, A G

    1997-04-01

    The effect of centrally induced opiate receptor blockade on regional cerebral blood flow (rCBF) was studied in anesthetized, ventilated cats during the course of hemorrhagic shock. The blood flow of the medulla and the parietal cortex was measured with the H2-gas clearance technique. Hemorrhagic shock was produced by lowering the systemic mean arterial pressure to 60 mmHg for 120 min by blood withdrawal. Central opiate receptor blockade was induced by 10 micrograms/kg intracerebroventricularly (i.c.v.) injected naloxone at the 60th min of the bleeding period. Cortical blood flow showed no improvement after i.c.v. naloxone administration. Medullary blood flow, however, increased significantly and approached the pre-bleeding control flow values following central opiate receptor blockade. The results indicate involvement of endogenous opioid mechanisms in the regulation of rCBF during hemorrhage and may provide an explanation for the previously described beneficial effects of naloxone in hemorrhagic shock.

  9. NMDA receptor blockade attenuates locomotion elicited by intrastriatal dopamine D1-receptor stimulation.

    PubMed

    Kreipke, Christian W; Walker, Paul D

    2004-07-01

    Previous behavioral studies suggest that the striatum mediates a hyperactive response to systemic NMDA receptor antagonism in combination with systemic D1 receptor stimulation. However, many experiments conducted at the cellular level suggest that inhibition of NMDA receptors should block D1 receptor-mediated locomotor activity. Therefore, we investigated the consequences of NMDA receptor blockade on the ability of striatal D1 receptors to elicit locomotor activity using systemic and intrastriatal injections of the NMDA antagonist MK-801 combined with intrastriatal injections of the D1 full agonist SKF 82958. Following drug treatment locomotor activity was measured via computerized activity monitors designed to quantify multiple parameters of rodent open-field behavior. Both systemic (0.1 mg/kg) and intrastriatal (1.0 microg) MK-801 pretreatments completely blocked locomotor and stereotypic activity elicited by 10 microg of SKF 82958 directly infused into the striatum. Further, increased activity triggered by intrastriatal SKF 82958 was attenuated by a posttreatment with intrastriatal infusion of 1 microg MK-801. These data suggest that D1-stimulated locomotor behaviors controlled by the striatum require functional NMDA channels.

  10. Angiogenesis and radiation response modulation after vascular endothelial growth factor receptor-2 (VEGFR2) blockade

    SciTech Connect

    Li Jing; Huang Shyhmin; Armstrong, Eric A.; Fowler, John F.; Harari, Paul M. . E-mail: harari@humonc.wisc.edu

    2005-08-01

    The formation of new blood vessels (angiogenesis) represents a critical factor in the malignant growth of solid tumors and metastases. Vascular endothelial cell growth factor (VEGF) and its receptor VEGFR2 represent central molecular targets for antiangiogenic intervention, because of their integral involvement in endothelial cell proliferation and migration. In the current study, we investigated in vitro and in vivo effects of receptor blockade on various aspects of the angiogenic process using monoclonal antibodies against VEGFR2 (cp1C11, which is human specific, and DC101, which is mouse specific). Molecular blockade of VEGFR2 inhibited several critical steps involved in angiogenesis. VEGFR2 blockade in endothelial cells attenuated cellular proliferation, reduced cellular migration, and disrupted cellular differentiation and resultant formation of capillary-like networks. Further, VEGFR2 blockade significantly reduced the growth response of human squamous cell carcinoma xenografts in athymic mice. The growth-inhibitory effect of VEGFR2 blockade in tumor xenografts seems to reflect antiangiogenic influence as demonstrated by vascular growth inhibition in an in vivo angiogenesis assay incorporating tumor-bearing Matrigel plugs. Further, administration of VEGFR2-blocking antibodies in endothelial cell cultures, and in mouse xenograft models, increased their response to ionizing radiation, indicating an interactive cytotoxic effect of VEGFR2 blockade with radiation. These data suggest that molecular inhibition of VEGFR2 alone, and in combination with radiation, can enhance tumor response through molecular targeting of tumor vasculature.

  11. Beta adrenergic receptor blockade of feline myocardium. Cardiac mechanics, energetics, and beta adrenoceptor regulation.

    PubMed Central

    Cooper, G; Kent, R L; McGonigle, P; Watanabe, A M

    1986-01-01

    Myocardial oxygen consumption is regulated by interrelated mechanical and inotropic conditions; there is a parallel increase in the aerobic metabolism and inotropic state during beta-adrenergic stimulation under fixed mechanical conditions. In contrast, there is some evidence that beta-blockade may reduce oxygen consumption through effects independent of its influence on mechanical conditions and contractile state, and that prolonged beta-blockade may sensitize the myocardium to beta-adrenergic stimulation. To clarify these two points, the present study examined the relationship of myocardial energetics to mechanics and inotropism during acute beta-blockade and after the withdrawal of long-term beta-blockade, whereupon the basis for any effect observed was sought by characterizing the number, affinity, and affinity states of the beta-receptors as well as the coupling of activated beta-receptors to cyclic AMP generation. Studies of right ventricular papillary muscles from control and chronically beta-blocked cats demonstrated contractile and energetic properties as well as dose-response behavior and inotropic specificity suggestive of an increase in myocardial sensitivity to beta-adrenoceptor stimulation in the latter group. Assays of cardiac beta-adrenoceptors from further groups of control and pretreated cats, both in cardiac tissue and in isolated cardiac muscle cells, failed to define a difference between the two groups either in terms of receptor number and affinity or in terms of the proportion of receptors in the high-affinity state. However, coupling of the activated beta-adrenoceptors to cyclic AMP generation was enhanced in cardiac muscle cells from chronically beta-blocked cats. These data demonstrate that beta-adrenoceptor blockade (a) produces parallel effects on inotropic state and oxygen consumption without an independent effect on either and (b) increases myocardial sensitivity to beta-adrenergic stimulation after beta-blockade withdrawal, not by "up

  12. Histamine H3 receptor blockade improves cardiac function in canine anaphylaxis.

    PubMed

    Chrusch, C; Sharma, S; Unruh, H; Bautista, E; Duke, K; Becker, A; Kepron, W; Mink, S N

    1999-10-01

    In anaphylactic shock (AS), the relative effects of the autacoids including histamine, prostaglandins, and leukotrienes on causing cardiovascular collapse and the extent to which receptor blocking agents and pathway inhibitors may prevent this collapse are not clear. In a ragweed model of anaphylaxis, we examined whether pretreatment with H1, H2, H3 receptor blockers, and cyclooxygenase and leukotriene pathway inhibitors was useful in preventing the depression in left ventricular (LV) contractility known to occur in this model. The dose of allergen was varied to produce similar degrees of shock between treatments. The animals were studied under pentobarbital anesthesia in which the treatment studies were approximately 3 wk apart. LV volumes were measured by sonomicrometric techniques. During challenge, mean arterial blood pressure (Pa), cardiac output (Q), and LV end-diastolic pressure (LVEDP) decreased approximately 50% compared with preshock values in all treatments. Histamine H3 receptor blockade was associated with higher heart rates (HR) and higher stroke work (SW) (p < 0.05) as compared with the other treatment studies. We conclude that histamine H3 activation by inhibiting adrenergic neural norepinephrine release contributes to cardiovascular collapse in AS.

  13. Pharmacologic blockade of FAK autophosphorylation decreases human glioblastoma tumor growth and synergizes with temozolomide.

    PubMed

    Golubovskaya, Vita M; Huang, Grace; Ho, Baotran; Yemma, Michael; Morrison, Carl D; Lee, Jisook; Eliceiri, Brian P; Cance, William G

    2013-02-01

    Malignant gliomas are characterized by aggressive tumor growth with a mean survival of 15 to 18 months and frequently developed resistance to temozolomide. Therefore, strategies that sensitize glioma cells to temozolomide have a high translational impact. We have studied focal adhesion kinase (FAK), a tyrosine kinase and emerging therapeutic target that is known to be highly expressed and activated in glioma. In this report, we tested the FAK autophosphorylation inhibitor, Y15, in DBTRG and U87 glioblastoma cells. Y15 significantly decreased viability and clonogenicity in a dose-dependent manner, increased detachment in a dose- and time-dependent manner, caused apoptosis, and inhibited cell invasion in both cell lines. In addition, Y15 treatment decreased autophosphorylation of FAK in a dose-dependent manner and changed cell morphology by causing cell rounding in DBTRG and U87 cells. Administration of Y15 significantly decreased subcutaneous DBTRG tumor growth with decreased Y397-FAK autophosphorylation, activated caspase-3 and PARP. Y15 was administered in an orthotopic glioma model, leading to an increase in mouse survival. The combination of Y15 with temozolomide was more effective than either agent alone in decreasing viability and activating caspase-8 in DBTRG and U87 cells in vitro. In addition, the combination of Y15 and temozolomide synergistically blocked U87 brain tumor growth in vivo. Thus, pharmacologic blockade of FAK autophosphorylation with the oral administration of a small-molecule inhibitor Y15 has a potential to be an effective therapy approach for glioblastoma either alone or in combination with chemotherapy agents such as temozolomide.

  14. [Pulmonary hemodynamics following experimental myocardial ischemia after the blockade of adrenergic receptors].

    PubMed

    Evlakhov, V I; Poiasov, I Z

    2015-01-01

    In acute experiments in anesthetized rabbits the changes of the pulmonary hemodynamics following 60 s myocardial ischemia in the region of the descendent left coronary artery were studied in control animals and after the blockade of α-adrenoreceptors by phentolamine or β-adrenoreceptors by propranolol. Following myocardial ischemia in control animals the pulmonary artery pressure and flow decreased, the pulmonary vascular resistance did not change, the left atrial pressure elevated; the cardiac output decreased more than pulmonary artery flow. Following myocardial ischemia after the blockade of β-adrenoreceptors the pulmonary artery pressure decreased more than in control animals, the pulmonary artery flow was decreased in the same level as in the last case. The pulmonary vascular resistance was diminished, the left atrial pressure increased; the pulmonary artery flow and cardiac output decreased in the same level. Following myocardial ischemia after the blockade of β-adrenoreceptors the pulmonary artery pressure and pulmonary vascular resistance decreased more than after the blockade of α-adrenoreceptors, the left atrial pressure did not change. In both cases the pulmonary artery flow decreased in the same level and its changes were correlated with venous return shifts. The differences of the pulmonary artery changes following myocardial ischemia after the blockade of α- and β-adrenoreceptors are caused not only the different pulmonary vascular resistance changes, but also the left atrial pressure.

  15. Normotensive sodium loading in normal man: regulation of renin secretion during beta-receptor blockade.

    PubMed

    Mølstrøm, Simon; Larsen, Nils H; Simonsen, Jane A; Washington, Remon; Bie, Peter

    2009-02-01

    Saline administration may change renin-angiotensin-aldosterone system (RAAS) activity and sodium excretion at constant mean arterial pressure (MAP). We hypothesized that such responses are elicited mainly by renal sympathetic nerve activity by beta1-receptors (beta1-RSNA), and tested the hypothesis by studying RAAS and renal excretion during slow saline loading at constant plasma sodium concentration (Na+ loading; 12 micromol Na+.kg(-1).min(-1) for 4 h). Normal subjects were studied on low-sodium intake with and without beta1-adrenergic blockade by metoprolol. Metoprolol per se reduced RAAS activity as expected. Na+ loading decreased plasma renin concentration (PRC) by one-third, plasma ANG II by one-half, and plasma aldosterone by two-thirds (all P < 0.05); surprisingly, these changes were found without, as well as during, acute metoprolol administration. Concomitantly, sodium excretion increased indistinguishably with and without metoprolol (16 +/- 2 to 71 +/- 14 micromol/min; 13 +/- 2 to 55 +/- 13 micromol/min, respectively). Na+ loading did not increase plasma atrial natriuretic peptide, glomerular filtration rate (GFR by 51Cr-EDTA), MAP, or cardiac output (CO by impedance cardiography), but increased central venous pressure (CVP) by approximately 2.0 mmHg (P < 0.05). During Na+ loading, sodium excretion increased with CVP at an average slope of 7 micromol.min(-1).mmHg(-1). Concomitantly, plasma vasopressin decreased by 30-40% (P < 0.05). In conclusion, beta1-adrenoceptor blockade affects neither the acute saline-mediated deactivation of RAAS nor the associated natriuretic response, and the RAAS response to modest saline loading seems independent of changes in MAP, CO, GFR, beta1-mediated effects of norepinephrine, and ANP. Unexpectedly, the results do not allow assessment of the relative importance of RAAS-dependent and -independent regulation of renal sodium excretion. The results are compatible with the notion that at constant arterial pressure, a volume

  16. Hepatic structural enhancement and insulin resistance amelioration due to AT1 receptor blockade

    PubMed Central

    Souza-Mello, Vanessa

    2017-01-01

    Over the last decade, the role of renin-angiotensin system (RAS) on the development of obesity and its comorbidities has been extensively addressed. Both circulating and local RAS components are up-regulated in obesity and involved in non-alcoholic fatty liver disease onset. Pharmacological manipulations of RAS are viable strategies to tackle metabolic impairments caused by the excessive body fat mass. Renin inhibitors rescue insulin resistance, but do not have marked effects on hepatic steatosis. However, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers (ARB) yield beneficial hepatic remodeling. ARBs elicit body mass loss and normalize insulin levels, tackling insulin resistance. Also, this drug class increases adiponectin levels, besides countering interleukin-6, tumoral necrosis factor-alpha, and transforming growth factor-beta 1. The latter is essential to prevent from liver fibrosis. When conjugated with peroxisome proliferator-activated receptor (PPAR)-alpha activation, ARB fully rescues fatty liver. These effects might be orchestrated by an indirect up-regulation of MAS receptor due to angiotensin II receptor type 1 (AT1R) blockade. These associations of ARB with PPAR activation and ACE2-angiotensin (ANG) (1-7)-MAS receptor axis deserve a better understanding. This editorial provides a brief overview of the current knowledge regarding AT1R blockade effects on sensitivity to insulin and hepatic structural alterations as well as the intersections of AT1R blockade with peroxisome proliferator-activated receptor activation and ACE2-ANG (1-7) - MAS receptor axis. PMID:28144388

  17. Hepatic structural enhancement and insulin resistance amelioration due to AT1 receptor blockade.

    PubMed

    Souza-Mello, Vanessa

    2017-01-18

    Over the last decade, the role of renin-angiotensin system (RAS) on the development of obesity and its comorbidities has been extensively addressed. Both circulating and local RAS components are up-regulated in obesity and involved in non-alcoholic fatty liver disease onset. Pharmacological manipulations of RAS are viable strategies to tackle metabolic impairments caused by the excessive body fat mass. Renin inhibitors rescue insulin resistance, but do not have marked effects on hepatic steatosis. However, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers (ARB) yield beneficial hepatic remodeling. ARBs elicit body mass loss and normalize insulin levels, tackling insulin resistance. Also, this drug class increases adiponectin levels, besides countering interleukin-6, tumoral necrosis factor-alpha, and transforming growth factor-beta 1. The latter is essential to prevent from liver fibrosis. When conjugated with peroxisome proliferator-activated receptor (PPAR)-alpha activation, ARB fully rescues fatty liver. These effects might be orchestrated by an indirect up-regulation of MAS receptor due to angiotensin II receptor type 1 (AT1R) blockade. These associations of ARB with PPAR activation and ACE2-angiotensin (ANG) (1-7)-MAS receptor axis deserve a better understanding. This editorial provides a brief overview of the current knowledge regarding AT1R blockade effects on sensitivity to insulin and hepatic structural alterations as well as the intersections of AT1R blockade with peroxisome proliferator-activated receptor activation and ACE2-ANG (1-7) - MAS receptor axis.

  18. Effects of calorie restriction and IGF-1 receptor blockade on the progression of 22Rv1 prostate cancer xenografts.

    PubMed

    Galet, Colette; Gray, Ashley; Said, Jonathan W; Castor, Brandon; Wan, Junxiang; Beltran, Pedro J; Calzone, Franck J; Elashoff, David; Cohen, Pinchas; Aronson, William J

    2013-07-03

    Calorie restriction (CR) inhibits prostate cancer progression, partially through modulation of the IGF axis. IGF-1 receptor (IGF-1R) blockade reduces prostate cancer xenograft growth. We hypothesized that combining calorie restriction with IGF-1R blockade would have an additive effect on prostate cancer growth. Severe combined immunodeficient mice were subcutaneously injected with 22Rv1 cells and randomized to: (1) Ad libitum feeding/intraperitoneal saline (Ad-lib); (2) Ad-lib/20 mg/kg twice weekly, intraperitoneal ganitumab [anti-IGF-1R antibody (Ad-lib/Ab)]; (3) 40% calorie restriction/intraperitoneal saline (CR); (4) CR/ intraperitoneal ganitumab, (CR/Ab). CR and ganitumab treatment were initiated one week after tumor injection. Euthanasia occurred 19 days post treatment. Results showed that CR alone decreased final tumor weight, plasma insulin and IGF-1 levels, and increased apoptosis. Ganitumab therapy alone reduced tumor growth but had no effect on final tumor weight. The combination therapy (CR/Ab) further decreased final tumor weight and proliferation, increased apoptosis in comparison to the Ad-lib group, and lowered plasma insulin levels relative to the Ad-lib and Ad-lib/Ab groups. Tumor AKT activation directly correlated with plasma IGF-1 levels. In conclusion, whereas ganitumab therapy modestly affected 22Rv1 tumor growth, combining IGF-1R blockade with calorie restriction resulted in a significant decrease in final tumor weight and improved metabolic profile.

  19. Blockade of Urotensin II Receptor Prevents Vascular Dysfunction

    PubMed Central

    Kim, Young-Ae; Lee, Dong Gil; Yi, Kyu Yang; Lee, Byung Ho; Jung, Yi-Sook

    2016-01-01

    Urotensin II (UII) is a potent vasoactive peptide and mitogenic agent to induce proliferation of various cells including vascular smooth muscle cells (VSMCs). In this study, we examined the effects of a novel UII receptor (UT) antagonist, KR-36676, on vasoconstriction of aorta and proliferation of aortic SMCs. In rat aorta, UII-induced vasoconstriction was significantly inhibited by KR-36676 in a concentration-dependent manner. In primary human aortic SMCs (hAoSMCs), UII-induced cell proliferation was significantly inhibited by KR-36676 in a concentration-dependent manner. In addition, KR-36676 decreased UII-induced phosphorylation of ERK, and UII-induced cell proliferation was also significantly inhibited by a known ERK inhibitor U0126. In mouse carotid ligation model, intimal thickening of carotid artery was dramatically suppressed by oral treatment with KR-36676 (30 mg/ kg/day) for 4 weeks compared to vehicle-treated group. From these results, it is indicated that KR-36676 suppress UII-induced proliferation of VSMCs at least partially through inhibition of ERK activation, and that it also attenuates UII-induced vasoconstriction and vascular neointima formation. Our study suggest that KR-36676 may be an attractive candidate for the pharmacological management of vascular dysfunction. PMID:27582556

  20. ETA receptor blockade with atrasentan prevents hypertension with the multitargeted tyrosine kinase inhibitor ABT-869 in telemetry-instrumented rats.

    PubMed

    Banfor, Patricia N; Franklin, Pamela A; Segreti, Jason A; Widomski, Deborah L; Davidsen, Steven K; Albert, Daniel H; Cox, Bryan F; Fryer, Ryan M; Gintant, Gary A

    2009-02-01

    ABT-869 is a novel multitargeted inhibitor of vascular endothelial growth factor and platelet-derived growth factor receptor tyrosine kinases (RTKs) with potent antiangiogenic properties that slow tumor progression. Vascular endothelial growth factor receptor blockade has been shown to produce hypertension. Atrasentan is a potent and selective endothelin (ETA) receptor antagonist that lowers blood pressure and affects tumor growth. To assess the utility of ETA receptor blockade in controlling hypertension with RTK inhibition, we evaluated the ability of atrasentan to block hypertension with ABT-869 in conscious, telemetry-instrumented rats. Changes in mean arterial pressure (MAP) and heart rate (HR) were evaluated using mean values and the area under the curve (AUC). Atrasentan (0.5, 1.5, and 5.0 mg kg(-1) d(-1) for 5 days) elicited dose-dependent decreases in MAP-AUC (-16.7 +/- 1.3, -20.94 +/- 3.68, and -30.12 +/- 3.57 mm Hg x day, respectively) compared with vehicle. ABT-869 (1, 3, 10, 30 mg kg(-1) d(-1) for 5 days) increased MAP compared with vehicle (MAP-AUC values of -5.52 +/- 3.75, 12.7 +/- 8.4, 37.5 +/- 4.4, and 63.8 +/- 3.3 mm Hg x day, respectively). Pretreatment with atrasentan (5 mg/kg for 5 days) prevented and abolished the hypertensive effects of ABT-869. Thus, ETA receptor blockade effectively alleviated hypertension with RTK inhibition and may serve a dual therapeutic role by preventing hypertension and slowing tumor progression.

  1. Blockade of glucocorticoid receptors improves cutaneous wound healing in stressed mice.

    PubMed

    de Almeida, Taís Fontoura; de Castro Pires, Taiza; Monte-Alto-Costa, Andréa

    2016-02-01

    Stress is an important condition of modern life. The successful wound healing requires the execution of three major overlapping phases: inflammation, proliferation, and remodeling, and stress can disturb this process. Chronic stress impairs wound healing through the activation of the hypothalamic-pituitary-adrenal axis, and the glucocorticoids (GCs) hormones have been shown to delay wound closure. Therefore, the aim of this study was to investigate the effects of a GC receptor antagonist (RU486) treatment on cutaneous healing in chronically stressed mice. Male mice were submitted to rotational stress, whereas control animals were not subjected to stress. Stressed and control animals were treated with RU486. A full-thickness excisional lesion was generated, and seven days later, lesions were recovered. The RU486 treatment improves wound healing since contraction takes place earlier in RU486-treated in comparison to non-treated mice, and the RU486 treatment also improves the angiogenesis in Stress+RU486 mice when compared to stressed animals. The Stress+RU486 group showed a decrease in inflammatory cell infiltration and in hypoxia-inducible factor-1α and inducible nitric oxide synthase expression; meanwhile, there was an increase in myofibroblasts quantity. In conclusion, blockade of GC receptors with RU486 partially ameliorates stress-impaired wound healing, suggesting that stress inhibits healing through more than one functional pathway.

  2. Blockade of P-Glycoprotein Decreased the Disposition of Phenformin and Increased Plasma Lactate Level

    PubMed Central

    Choi, Min-Koo; Song, Im-Sook

    2016-01-01

    This study aimed to investigate the in vivo relevance of P-glycoprotein (P-gp) in the pharmacokinetics and adverse effect of phenformin. To investigate the involvement of P-gp in the transport of phenformin, a bi-directional transport of phenformin was carried out in LLC-PK1 cells overexpressing P-gp, LLC-PK1-Pgp. Basal to apical transport of phenformin was 3.9-fold greater than apical to basal transport and became saturated with increasing phenformin concentration (2–75 μM) in LLC-PK1-Pgp, suggesting the involvement of P-gp in phenformin transport. Intrinsic clearance mediated by P-gp was 1.9 μL/min while passive diffusion clearance was 0.31 μL/min. Thus, P-gp contributed more to phenformin transport than passive diffusion. To investigate the contribution of P-gp on the pharmacokinetics and adverse effect of phenformin, the effects of verapamil, a P-gp inhibitor, on the pharmacokinetics of phenformin were also examined in rats. The plasma concentrations of phenformin were increased following oral administration of phenformin and intravenous verapamil infusion compared with those administerd phenformin alone. Pharmacokinetic parameters such as Cmax and AUC of phenformin increased and CL/F and Vss/F decreased as a consequence of verapamil treatment. These results suggested that P-gp blockade by verapamil may decrease the phenformin disposition and increase plasma phenformin concentrations. P-gp inhibition by verapamil treatment also increased plasma lactate concentration, which is a crucial adverse event of phenformin. In conclusion, P-gp may play an important role in phenformin transport process and, therefore, contribute to the modulation of pharmacokinetics of phenformin and onset of plasma lactate level. PMID:26797108

  3. An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation.

    PubMed

    Pérez-García, Georgina; Gonzalez-Espinosa, Claudia; Meneses, Alfredo

    2006-04-25

    Despite the compelling support for 5-hydroxytryptamine (5-HT) receptors participation in learning and memory in mammal species, the molecular basis had been largely absent from any discussion of its mechanistic underpinnings. Here, we report that reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that there was a higher level of expression of the investigated 5-HT receptor mRNAs in autoshaping-trained relative to untrained groups. Actually, pharmacological naïve untrained and autoshaping-trained rats showed significant differences, the latter groups expressing, in decreasing order, 5-HT1A < 5-HT6 < 5-HT4 < or = 5-HT7 receptors mRNA in prefrontal cortex and hippocampus. In order to determine more precisely mRNA expression and memory consolidation, we combined selective 5-HT7 receptors stimulation or blockade in the same animals, and brain areas individually analyzed. 5-HT7 receptors were strongly expressed in all the three brain areas of vehicle-trained rats relative to untrained group. The potential selective 5-HT7 receptor agonist AS 19 enhanced memory consolidation, attenuated mRNA receptors expression, and the facilitatory memory effect was reversed by SB-269970. Finally, pharmacological stimulation of 5-HT7 receptors reversed scopolamine- or dizocilpine-induced amnesia and receptor down-regulation.

  4. Hypocretin receptor 1 blockade preferentially reduces high effort responding for cocaine without promoting sleep

    PubMed Central

    Brodnik, Zachary D.; Bernstein, David L.; Prince, Courtney D.; España, Rodrigo A.

    2015-01-01

    Recent evidence suggests that blockade of the hypocretin receptor 1 may act as a useful pharmacotherapy for cocaine abuse. Here we investigated the extent to which various doses of a hypocretin receptor 1 antagonist, SB-334867, affect cocaine self-administration at varying doses of cocaine and across a range of effort requirements, and tested if these SB-334867 doses produce sedative effects. First, we trained animals to self-administer one of three doses of cocaine on a progressive ratio schedule, and then tested the effects of three doses of SB-334867. Responding for cocaine was then analyzed to segregate features of relatively high and low effort requirements across the progressive ratio session. In another set of experiments we tested the sleep-promoting effects of the same doses of SB-334867. Our data indicate that blockade of hypocretin receptor 1 preferentially reduces high effort responding for cocaine at levels that do not promote sedation. PMID:26049058

  5. Investigation of Prolactin Receptor Activation and Blockade Using Time-Resolved Fluorescence Resonance Energy Transfer

    PubMed Central

    Tallet, Estelle; Fernandez, Isabelle; Zhang, Chi; Salsac, Marion; Gregor, Nathalie; Ayoub, Mohammed Akli; Pin, Jean Philippe; Trinquet, Eric; Goffin, Vincent

    2011-01-01

    The prolactin receptor (PRLR) is emerging as a therapeutic target in oncology. Knowledge-based drug design led to the development of a pure PRLR antagonist (Del1-9-G129R-hPRL) that was recently shown to prevent PRL-induced mouse prostate tumorogenesis. In humans, the first gain-of-function mutation of the PRLR (PRLRI146L) was recently identified in breast tumor patients. At the molecular level, the actual mechanism of action of these two novel players in the PRL system remains elusive. In this study, we addressed whether constitutive PRLR activation (PRLRI146L) or PRLR blockade (antagonist) involved alteration of receptor oligomerization and/or of inter-chain distances compared to unstimulated and PRL-stimulated PRLR. Using a combination of various biochemical and spectroscopic approaches (co-IP, blue native electrophoresis, BRET1), we demonstrated that preformed PRLR homodimers are altered neither by PRL- or I146L-induced receptor triggering, nor by antagonist-mediated blockade. These findings were confirmed using a novel time-resolved fluorescence resonance energy transfer (TR-FRET) technology that allows monitoring distance changes between cell surface tagged receptors. This technology revealed that PRLR blockade or activation did not involve detectable distance changes between extracellular domains of receptor chains within the dimer. This study merges with our previous structural investigations suggesting that the mechanism of PRLR activation solely involves intermolecular contact adaptations leading to subtle intramolecular rearrangements. PMID:22649370

  6. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    PubMed Central

    Dugovic, Christine; Shelton, Jonathan E.; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T.; Lovenberg, Timothy W.

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic. PMID:24592208

  7. Heterologous immunity triggered by a single, latent virus in Mus musculus: combined costimulation- and adhesion- blockade decrease rejection.

    PubMed

    Beus, Jonathan M; Hashmi, Salila S; Selvaraj, Saranya A; Duan, Danxia; Stempora, Linda L; Monday, Stephanie A; Cheeseman, Jennifer A; Hamby, Kelly M; Speck, Samuel H; Larsen, Christian P; Kirk, Allan D; Kean, Leslie S

    2013-01-01

    The mechanisms underlying latent-virus-mediated heterologous immunity, and subsequent transplant rejection, especially in the setting of T cell costimulation blockade, remain undetermined. To address this, we have utilized MHV68 to develop a rodent model of latent virus-induced heterologous alloimmunity. MHV68 infection was correlated with multimodal immune deviation, which included increased secretion of CXCL9 and CXCL10, and with the expansion of a CD8(dim) T cell population. CD8(dim) T cells exhibited decreased expression of multiple costimulation molecules and increased expression of two adhesion molecules, LFA-1 and VLA-4. In the setting of MHV68 latency, recipients demonstrated accelerated costimulation blockade-resistant rejection of skin allografts compared to non-infected animals (MST 13.5 d in infected animals vs 22 d in non-infected animals, p<.0001). In contrast, the duration of graft acceptance was equivalent between non-infected and infected animals when treated with combined anti-LFA-1/anti-VLA-4 adhesion blockade (MST 24 d for non-infected and 27 d for infected, p = n.s.). The combination of CTLA-4-Ig/anti-CD154-based costimulation blockade+anti-LFA-1/anti-VLA-4-based adhesion blockade led to prolonged graft acceptance in both non-infected and infected cohorts (MST>100 d for both, p<.0001 versus costimulation blockade for either). While in the non-infected cohort, either CTLA-4-Ig or anti-CD154 alone could effectively pair with adhesion blockade to prolong allograft acceptance, in infected animals, the prolonged acceptance of skin grafts could only be recapitulated when anti-LFA-1 and anti-VLA-4 antibodies were combined with anti-CD154 (without CTLA-4-Ig, MST>100 d). Graft acceptance was significantly impaired when CTLA-4-Ig alone (no anti-CD154) was combined with adhesion blockade (MST 41 d). These results suggest that in the setting of MHV68 infection, synergy occurs predominantly between adhesion pathways and CD154-based costimulation, and

  8. Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.

    PubMed

    Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N

    2015-03-04

    The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs.

  9. Assessment of dopamine receptor blockade by neuroleptic drugs in the living human brain

    SciTech Connect

    Wong, D.F.; Wagner, H.N. Jr.; Coyle, J.; Snyder, S.; Dannals, R.; LaFrance, N.; Bice, A.; Pearlson, G.; Links, J.; Paulos, M.

    1985-05-01

    Positron emission tomography (PET) makes it possible to attempt to relate directly the antipsychotic effect of neuroleptic drugs and their blocking effect on dopamine receptors (D2) in vivo. The authors have examined the ability of haloperidol (HAL) and molindone (MOL) to block the binding of C-11 n-methylspiperone (NMSP) in 6 normal subjects. A dose of 0.05 mg/kg of HAL resulted in a 68% drop in the slope of the caudate/cerebellum (Ca/Cb) vs. time. This slope is related to the rate of specific binding of NMSP to the receptor. A dose response was seen with both drugs. With increasing doses of HAL from .05 to 0.082 mg/kg, CA/Cb vs. time slope fell from .235 to .156/min. (N=4), progressively. Similarly with increasing doses of MOL of .16-.44 mg/kg slopes decreased from .0335 to .0155/min. (N=4). Similar degrees of post injection Ca/Cb ratio were produced with quantities of MOL and HAL administered in the oral dose ratio of doses 3-5:1 times greater than HAL. This is also the dose ratio at which we found similar dopamine receptor blockade by PET in vivo. A question that arises is why the in vitro affinity of HAL for D2 is 30 times greater than that of MOL in the human brain. The results raise the possibility that MOL metabolites are not only active in blocking D2 but indeed may possibly be more potent than MOL itself. It also helps confirm the site of action of MOL and its in vivo metabolites.

  10. Hypotensive effect of angiotensin II after AT1-receptor blockade with losartan.

    PubMed

    Matys, T; Pawlak, R; Kucharewicz, I; Chabielska, E; Buczko, W

    2000-03-01

    Recent data suggest that hypotensive effect of losartan may not be attributed solely to AT1-receptor blockade, but also to excessive AT2 or other receptors stimulation by elevated angiotensin II and its derivative peptides. Therefore in the present study we examined the effect of angiotensin II on mean blood pressure after AT -receptor blockade with losartan. Male Wistar rats were anaesthetised and received injection of either losartan (30 mg/kg, 1 ml/kg, i.v.) or saline (the same volume and route) followed by bolus injection of angiotensin II (100, 300 or 1,000 ng/kg; 1 ml/kg, i.v.) or 1-hour infusion of angiotensin II (200 ng/kg/min; 2.5 ml/kg/h, i.v.). Control animals received saline instead. Angiotensin II, given either as the injection or the infusion, caused an evident increase in mean blood pressure (p ranged from 0.05 to 0.001 depending on the experimental group). Losartan caused a rapid drop in mean blood pressure and blunted the hypertensive effect of angiotensin II (p < 0.01). Moreover, in the losartan-pretreated animals the hypotensive phase was enhanced by the infusion, but not single injection of angiotensin II, which was most evident from the 30 th minute of observation (p < 0.05 vs control). In conclusion, hypotensive effect of losartan may be amplified by simultaneous increase in angiotensin II level, the situation observed during chronic AT1-receptor blockade.

  11. Normotensive sodium loading in conscious dogs: regulation of renin secretion during beta-receptor blockade.

    PubMed

    Bie, Peter; Mølstrøm, Simon; Wamberg, Søren

    2009-02-01

    Renin secretion is regulated in part by renal nerves operating through beta1-receptors of the renal juxtaglomerular cells. Slow sodium loading may decrease plasma renin concentration (PRC) and cause natriuresis at constant mean arterial blood pressure (MAP) and glomerular filtration rate (GFR). We hypothesized that in this setting, renin secretion and renin-dependent sodium excretion are controlled by via the renal nerves and therefore are eliminated or reduced by blocking the action of norepinephrine on the juxtaglomerular cells with the beta1-receptor antagonist metoprolol. This was tested in conscious dogs by infusion of NaCl (20 micromol.kg(-1).min(-1) for 180 min, NaLoad) during regular or low-sodium diet (0.03 mmol.kg(-1).day(-1), LowNa) with and without metoprolol (2 mg/kg plus 0.9 mg.kg(-1).h(-1)). Vasopressin V2 receptors were blocked by Otsuka compound OPC31260 to facilitate clearance measurements. Body fluid volume was maintained by servocontrolled fluid infusion. Metoprolol per se did not affect MAP, heart rate, or sodium excretion significantly, but reduced PRC and ANG II by 30-40%, increased plasma atrial natriuretic peptide (ANP), and tripled potassium excretion. LowNa per se increased PRC (+53%), ANG II (+93%), and aldosterone (+660%), and shifted the vasopressin function curve to the left. NaLoad elevated plasma [Na+] by 4.5% and vasopressin by threefold, but MAP and plasma ANP remained unchanged. NaLoad decreased PRC by approximately 30%, ANG II by approximately 40%, and aldosterone by approximately 60%, regardless of diet and metoprolol. The natriuretic response to NaLoad was augmented during metoprolol regardless of diet. In conclusion, PRC depended on dietary sodium and beta1-adrenergic control as expected; however, the acute sodium-driven decrease in PRC at constant MAP and GFR was unaffected by beta1-receptor blockade demonstrating that renin may be regulated without changes in MAP, GFR, or beta1-mediated effects of norepinephrine. Low

  12. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    ERIC Educational Resources Information Center

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  13. Early BAFF receptor blockade mitigates murine Sjögren's syndrome: Concomitant targeting of CXCL13 and the BAFF receptor prevents salivary hypofunction

    PubMed Central

    Klimatcheva, Ekaterina; Howell, Alan; Fereidouni, Farzad; Levenson, Richard; Rothstein, Thomas L.; Kramer, Jill M.

    2016-01-01

    Sjögren's Syndrome (SS) is a debilitating autoimmune disease. Patients with SS may develop xerostomia. This process is progressive, and there are no therapeutics that target disease etiology. We hypothesized BAFF receptor (BAFFR) blockade would mitigate SS disease development, and neutralization of CXCL13 and BAFF signaling would be more efficacious than BAFFR blockade alone. We treated NOD/ShiLtJ SS mice with soluble BAFF receptor (BAFFR-Fc) or anti-CXCL13/BAFFR-Fc in combination, prior to the development of clinical disease. Our results show treatment with BAFFR-Fc reduced peripheral B cells numbers and decreased sialadenitis. In addition, this treatment reduced total serum immunoglobulin as well as IgG and IgM specific anti-nuclear autoantibodies. NOD/ShiLtJ mice treated with BAFFR-Fc and anti-CXCL13 antibody were protected from salivary deficits. Results from this study suggest blockade of CXCL13 and BAFFR together may be an effective therapeutic strategy in preventing salivary hypofunction and reducing autoantibody titers and sialadenitis in patients with SS. PMID:26826598

  14. Early BAFF receptor blockade mitigates murine Sjögren's syndrome: Concomitant targeting of CXCL13 and the BAFF receptor prevents salivary hypofunction.

    PubMed

    Sharma, Arjun; Kiripolsky, Jeremy; Klimatcheva, Ekaterina; Howell, Alan; Fereidouni, Farzad; Levenson, Richard; Rothstein, Thomas L; Kramer, Jill M

    2016-03-01

    Sjögren's syndrome (SS) is a debilitating autoimmune disease. Patients with SS may develop xerostomia. This process is progressive, and there are no therapeutics that target disease etiology. We hypothesized BAFF receptor (BAFFR) blockade would mitigate SS disease development, and neutralization of CXCL13 and BAFF signaling would be more efficacious than BAFFR blockade alone. We treated NOD/ShiLtJ SS mice with soluble BAFF receptor (BAFFR-Fc) or anti-CXCL13/BAFFR-Fc in combination, prior to the development of clinical disease. Our results show treatment with BAFFR-Fc reduced peripheral B cell numbers and decreased sialadenitis. In addition, this treatment reduced total serum immunoglobulin as well as IgG and IgM specific anti-nuclear autoantibodies. NOD/ShiLtJ mice treated with BAFFR-Fc and anti-CXCL13 antibody were protected from salivary deficits. Results from this study suggest blockade of CXCL13 and BAFFR together may be an effective therapeutic strategy in preventing salivary hypofunction and reducing autoantibody titers and sialadenitis in patients with SS.

  15. Early chronic blockade of NR2B subunits and transient activation of NMDA receptors modulate LTP in mouse auditory cortex.

    PubMed

    Mao, Yuting; Zang, Shaoyun; Zhang, Jiping; Sun, Xinde

    2006-02-16

    In the auditory cortex, the properties of NMDA receptors depend primarily on the ratio of NR2A and NR2B subunits. NR2B subunit expression is high at the beginning of critical period and lower in adulthood. Because NMDA receptors are crucial in triggering long-term potentiation (LTP) and long-term depression, developmental or experience-dependent modification of NMDAR subunit composition is likely to influence synaptic plasticity. To examine how NMDA subunit change during postnatal development affect the adult synaptic plasticity, we employed chronic ifenprodil blockade of NR2B subunits and analyzed evoked field potentials in adult C57BL/6 mice auditory cortex (AC). We found that chronic loss of NR2B activity led to a decline in LTP magnitude in the AC of adult mice. Adding NMDA to the artificial cerebrospinal fluid (ACSF) in blocked mice had the opposite effect, producing LTP magnitudes at or exceeding those found in treated or untreated animals. These results suggest that, even in adulthood when NR2B expression is downregulated, these receptor subunits play an important role in experience-dependent plasticity of mouse auditory cortex. Blockade from P60 did not result in any decrease of LTP amplitude, suggesting that chronic block in postnatal period may permanently affect cortical circuits so that they cannot produce significant LTP in adulthood.

  16. Evidence that the positive inotropic effects of the alkylxanthines are not due to adenosine receptor blockade.

    PubMed Central

    Collis, M. G.; Keddie, J. R.; Torr, S. R.

    1984-01-01

    We investigated the possibility that the positive inotropic effects of the alkylxanthines are due to adenosine receptor blockade. The potency of 8-phenyltheophylline, theophylline and enprofylline as adenosine antagonists was assessed in vitro, using the guinea-pig isolated atrium, and in vivo, using the anaesthetized dog. The order of potency of the alkylxanthines as antagonists of the negative inotropic response to 2-chloroadenosine in vitro, and of the hypotensive response to adenosine in vivo was 8-phenyltheophylline greater than theophylline greater than enprofylline. The order of potency of the alkylxanthines as positive inotropic and chronotropic agents in the anaesthetized dog was enprofylline greater than theophylline greater than 8-phenyltheophylline. The results of this study indicate that the inotropic effects of the alkylxanthines in the anaesthetized dog are not due to adenosine receptor blockade. PMID:6322898

  17. Opiate receptor blockade on human granulosa cells inhibits VEGF release.

    PubMed

    Lunger, Fabian; Vehmas, Anni P; Fürnrohr, Barbara G; Sopper, Sieghart; Wildt, Ludwig; Seeber, Beata

    2016-03-01

    The objectives of this study were to determine whether the main opioid receptor (OPRM1) is present on human granulosa cells and if exogenous opiates and their antagonists can influence granulosa cell vascular endothelial growth factor (VEGF) production via OPRM1. Granulosa cells were isolated from women undergoing oocyte retrieval for IVF. Complementary to the primary cells, experiments were conducted using COV434, a well-characterized human granulosa cell line. Identification and localization of opiate receptor subtypes was carried out using Western blot and flow cytometry. The effect of opiate antagonist on granulosa cell VEGF secretion was assessed by enzyme-linked immunosorbent assay. For the first time, the presence of OPRM1 on human granulosa cells is reported. Blocking of opiate signalling using naloxone, a specific OPRM1 antagonist, significantly reduced granulosa cell-derived VEGF levels in both COV434 and granulosa-luteal cells (P < 0.01). The presence of opiate receptors and opiate signalling in granulosa cells suggest a possible role in VEGF production. Targeting this signalling pathway could prove promising as a new clinical option in the prevention and treatment of ovarian hyperstimulation syndrome.

  18. Receptor for advanced glycation end product blockade enhances the chemotherapeutic effect of cisplatin in tongue squamous cell carcinoma by reducing autophagy and modulating the Wnt pathway.

    PubMed

    Zhao, Ziming; Wang, Hongyu; Zhang, Liao; Mei, Xifan; Hu, Jing; Huang, Keqiang

    2017-02-01

    Tongue squamous cell carcinoma (TSCC) is one of the most severe types of cancer with poor outcomes. Cisplatin is used widely to treat cancer cells, but many patients develop acquired drug resistance. The receptor for advanced glycation end products (RAGE) is expressed widely in TSCC and associated with drug-induced chemotherapy resistance. However, the effect of RAGE and cisplatin on Tca-8113 cells remains unknown. We assayed the combined use of RAGE blockade and cisplatin effect on Tca-8113 cells' viability by MTT and apoptosis rate of Tca-8113 cells on RAGE blockade+cisplatin treatment; cisplatin alone; or RAGE blockade alone by flow cytometry. We observed the expressions of autophagy-related proteins beclin1, LC3II, p62; Wnt signaling-related proteins β-catenin, GSK3β, WNT5A, ROR-2; and apoptosis-related protein cleaved caspase-3, bcl-2-associated X proteins using western blot. We determined WNT5A and beclin1 expression on Tca-8113 cells by immunofluorescence. We further observed autophagy vacuoles by monodansylcadaverine staining. We found that RAGE blockade and cisplatin significantly decreased cell viability and increased the cell apoptosis rate compared with cisplatin alone. Furthermore, RAGE blockade suppressed the canonical Wnt pathway proteins β-catenin and GSK-3β, but upregulated noncanonical WNT5A and receptor ROR-2. We show that RAGE blockade suppressed the levels of autophagy-related protein LC3II/I, beclin1, accelerated degradation of autophagy for the increasing p62 expression, and increased cell apoptosis for the increasing expressions of cleaved caspase-3 and bcl-2-associated X proteins. We observed the location of WNT5A and beclin1 expressions on cells by immunofluorescence and their trends were consistent with western blotting. Taken together, our findings suggested that RAGE blockade+cisplatin improved chemotherapeutic effects by reducing autophagy and regulating Wnt/β-catenin to suppress the progression of TSCC.

  19. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    PubMed

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  20. Blockade of Central GLP-1 Receptors Deteriorates the Improvement of Diabetes after Ileal Transposition

    PubMed Central

    Chen, Weijie; Xu, Qianqian; Xiao, Yiding; Zhou, Jiaolin; Zhang, Weimin; Lin, Guole; Gong, Fengying

    2016-01-01

    Background: The mechanism of improvement of type 2 diabetes mellitus induced by ileal transposition (IT) is undefined. Our aim was to investigate the possible role of central glucagon-like peptide 1 (GLP-1) after IT. Methods: Ninety male diabetic rats were randomly divided into the IT, sham IT (S-IT) and control group. The food intake, glucose metabolism and GLP-1 level were measured. Subsequently, we administered GLP-1 antagonist via lateral brain ventricle cannula to block central GLP-1 receptor, and verified whether the food intake, glucose metabolism changed. And the activated pro-opiomelanocortin (POMC) neurons in different groups were compared after sacrifice. Results: IT induced significant diabetic improvement with decreased maximum food intake and higher postprandial GLP-1 level. The GLP-1 level in cerebrospinal fluid increased in correlation with the plasma GLP-1 level. When the central GLP-1 receptor antagonist was given to the IT group rats, the improvement of the glucose level declined. The glucose level surged (169.9 ± 14.2) % during the oral glucose tolerance test, the range was larger than that before central blockade ((67.1 ± 14.2) %, P < 0.001). Moreover, the POMC neuron number in the arcuate nucleus of the hypothalamus were reduced (12.7 ± 6.1 at a magnification of 100×). The relative content level of POMC-derived peptides in the pituitary was lower (0.1 ± 0.05). Conclusions: The central GLP-1 might play an important role in the remission of diabetes after IT. POMC neurons in the hypothalamus may be activated by the enhanced level of GLP-1 after IT. PMID:27994501

  1. Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine

    PubMed Central

    Kargieman, Lucila; Santana, Noemí; Mengod, Guadalupe; Celada, Pau; Artigas, Francesc

    2007-01-01

    NMDA receptor (NMDA-R) antagonists are extensively used as schizophrenia models because of their ability to evoke positive and negative symptoms as well as cognitive deficits similar to those of the illness. Cognitive deficits in schizophrenia are associated with prefrontal cortex (PFC) abnormalities. These deficits are of particular interest because an early improvement in cognitive performance predicts a better long-term clinical outcome. Here, we examined the effect of the noncompetitive NMDA-R antagonist phencyclidine (PCP) on PFC function to understand the cellular and network elements involved in its schizomimetic actions. PCP induces a marked disruption of the activity of the PFC in the rat, increasing and decreasing the activity of 45% and 33% of the pyramidal neurons recorded, respectively (22% of the neurons were unaffected). Concurrently, PCP markedly reduced cortical synchrony in the delta frequency range (0.3–4 Hz) as assessed by recording local field potentials. The subsequent administration of the antipsychotic drugs haloperidol and clozapine reversed PCP effects on pyramidal cell firing and cortical synchronization. PCP increased c-fos expression in PFC pyramidal neurons, an effect prevented by the administration of clozapine. PCP also enhanced c-fos expression in the centromedial and mediodorsal (but not reticular) nuclei of the thalamus, suggesting the participation of enhanced thalamocortical excitatory inputs. These results shed light on the involvement of PFC in the schizomimetic action of NMDA-R antagonists and show that antipsychotic drugs may partly exert their therapeutic effect by normalizing a disrupted PFC activity, an effect that may add to subcortical dopamine receptor blockade. PMID:17785415

  2. Acute and chronic systemic CB1 cannabinoid receptor blockade improves blood pressure regulation and metabolic profile in hypertensive (mRen2)27 rats.

    PubMed

    Schaich, Chris L; Shaltout, Hossam A; Brosnihan, K Bridget; Howlett, Allyn C; Diz, Debra I

    2014-08-01

    We investigated acute and chronic effects of CB1 cannabinoid receptor blockade in renin-angiotensin system-dependent hypertension using rimonabant (SR141716A), an orally active antagonist with central and peripheral actions. In transgenic (mRen2)27 rats, a model of angiotensin II-dependent hypertension with increased body mass and insulin resistance, acute systemic blockade of CB1 receptors significantly reduced blood pressure within 90 min but had no effect in Sprague-Dawley rats. No changes in metabolic hormones occurred with the acute treatment. During chronic CB1 receptor blockade, (mRen2)27 rats received daily oral administration of SR141716A (10 mg/kg/day) for 28 days. Systolic blood pressure was significantly reduced within 24 h, and at Day 21 of treatment values were 173 mmHg in vehicle versus 149 mmHg in drug-treated rats (P < 0.01). This accompanied lower cumulative weight gain (22 vs. 42 g vehicle; P < 0.001), fat mass (2.0 vs. 2.9% of body weight; P < 0.05), and serum leptin (2.8 vs. 6.0 ng/mL; P < 0.05) and insulin (1.0 vs. 1.9 ng/mL; P < 0.01), following an initial transient decrease in food consumption. Conscious hemodynamic recordings indicate twofold increases occurred in spontaneous baroreflex sensitivity (P < 0.05) and heart rate variability (P < 0.01), measures of cardiac vagal tone. The beneficial actions of CB1 receptor blockade in (mRen2)27 rats support the interpretation that an upregulated endocannabinoid system contributes to hypertension and impaired autonomic function in this angiotensin II-dependent model. We conclude that systemic CB1 receptor blockade may be an effective therapy for angiotensin II-dependent hypertension and associated metabolic syndrome.

  3. Adenosine A2A Receptor Blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism

    PubMed Central

    Fathalla, Ahmed M.; Soliman, Amira M.; Ali, Mohamed H.; Moustafa, Ahmed A.

    2016-01-01

    Pharmacological studies implicate the blockade of adenosine receptorsas an effective strategy for reducing Parkinson’s disease (PD) symptoms. The objective of this study is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1, 3-dipropylxanthine, two selective A2A and A1 receptor antagonists, on a rotenone rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h), rotenone (1.5 mg/kg/48 h, s.c.), ZM241385 (3.3 mg/kg/day, i.p) and 8-cyclopentyl-1, 3-dipropylxanthine (5 mg/kg/day, i.p). After that, animals were subjected to behavioral (stride length and grid walking) and biochemical (measuring concentration of dopamine levels using high performance liquid chromatography, HPLC). In the rotenone group, rats displayed a reduced motor activity and disturbed movement coordination in the behavioral tests and a decreased dopamine concentration as foundby HPLC. The effect of rotenone was partially prevented in the ZM241385 group, but not with 8-cyclopentyl-1,3-dipropylxanthine administration. The administration of ZM241385 improved motor function and movement coordination (partial increase of stride length and partial decrease in the number of foot slips) and an increase in dopamine concentration in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and rotenone groups were not significantly different. These results indicate that selective A2A receptor blockade by ZM241385, but not A1 receptor blockadeby 8-cyclopentyl-1,3-dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A receptor antagonists as a treatment strategy for PD patients. PMID:26973484

  4. Androgen receptor blockade using flutamide skewed sex ratio of litters in mice

    PubMed Central

    Gharagozlou, Faramarz; Youssefi, Reza; Vojgani, Mehdi; Akbarinejad, Vahid; Rafiee, Ghazaleh

    2016-01-01

    Maternal testosterone has been indicated to affect sex ratio of offspring. The present study was conducted to elucidate the role of androgen receptor in this regard by blockade of androgen receptor using flutamide in female mice. Mice were randomly assigned to two experimental groups. Mice in the control (n = 20) and treatment (n = 20) groups received 8 IU equine chorionic gonadotropin (eCG) followed by human chorionic gonadotropin (hCG) injection (8 IU) 47 hr later. In addition, mice in the control and treatment groups received four injections of ethanol-saline vehicle and flutamide solution (2.50 mg), respectively, started from 1 hr before eCG injection until hCG injection at 12-hr intervals. Conception rate was not different between the treatment (18/20: 90.00%) and control (19/20: 95.00%) groups (p > 0.05). Litter size was higher in the treatment (8.22 ± 0.26) than control (7.21 ± 0.28) group (p < 0.05). Male sex ratio was lower in the flutamide-treated mice (67/148: 45.30%) as compared with the untreated ones (80/137: 58.40%; odds ratio = 1.69; p < 0.05). In conclusion, the results showed that androgen receptor blockade could skew sex ratio of offspring toward females implying that the effect of testosterone on sex ratio might be through binding to androgen receptor. In addition, the blockade of androgen receptor using flutamide appeared to enhance litter size. PMID:27482363

  5. Blockade of porcine carotid vascular response to sumatriptan by GR 127935, a selective 5-HT1D receptor antagonist.

    PubMed Central

    De Vries, P.; Heiligers, J. P.; Villalón, C. M.; Saxena, P. R.

    1996-01-01

    1. It has previously been shown that the antimigraine drug, sumatriptan, a putative 5-HT1D receptor agonist, decreases porcine common carotid and arteriovenous anastomotic blood flows, but slightly increases the arteriolar (capillary) blood flow to the skin and ears. Interestingly, such responses, being mediated by 5-HT1-like receptors, are resistant to blockade by metergoline, which, in addition to displaying a very high affinity for (and occasionally intrinsic efficacy at) the 5-HT1D receptor subtypes, blocks (with lower potency than methiothepin) some 5-HT1D receptor-mediated vascular responses. These findings raise doubts whether sumatriptan-sensitive 5-HT1-like receptors mediating changes in the distribution of porcine carotid blood flow are identical to cloned 5-HT1D receptors. With the recent advent of the potent and selective 5-HT1D receptor antagonist, GR127935, we have examined in the present study whether the carotid vascular effects of sumatriptan in the pig are amenable to blockade by GR127935. 2. In animals pretreated with saline, sumatriptan (30, 100 and 300 micrograms kg-1, i.v.) reduced the total carotid and arteriovenous anastomotic blood flows in a dose dependent manner. In contrast, sumatriptan increased blood flow to the skin, ears and fat, although the total capillary fraction was not significantly affected. 3. While GR127935 pretreatment (0.25 and 0.5 mg kg-1) itself slightly reduced the total carotid and arteriovenous anastomotic blood flows, carotid vasoconstrictor responses to sumatriptan were either partly (0.25 mg kg-1) or completely (0.5 mg kg-1) blocked by the compound. In GR127935 pretreated animals, the sumatriptan-induced increases in blood flow to the skin, ears and fat were also attenuated. 4. Taken together, the results suggest that arteriovenous anastomotic constriction and, possibly, arteriolar dilatation in the skin, ears and fat by sumatriptan are mediated by 5-HT1D receptors. Therefore, vascular 5-HT1-like receptors in the

  6. Oncogenic fingerprint of epidermal growth factor receptor pathway and emerging epidermal growth factor receptor blockade resistance in colorectal cancer

    PubMed Central

    Sobani, Zain A; Sawant, Ashwin; Jafri, Mikram; Correa, Amit Keith; Sahin, Ibrahim Halil

    2016-01-01

    Epidermal growth factor receptor (EGFR) has been an attractive target for treatment of epithelial cancers, including colorectal cancer (CRC). Evidence from clinical trials indicates that cetuximab and panitumumab (anti-EGFR monoclonal antibodies) have clinical activity in patients with metastatic CRC. The discovery of intrinsic EGFR blockade resistance in Kirsten RAS (KRAS)-mutant patients led to the restriction of anti-EGFR antibodies to KRAS wild-type patients by Food and Drug Administration and European Medicine Agency. Studies have since focused on the evaluation of biomarkers to identify appropriate patient populations that may benefit from EGFR blockade. Accumulating evidence suggests that patients with mutations in EGFR downstream signaling pathways including KRAS, BRAF, PIK3CA and PTEN could be intrinsically resistant to EGFR blockade. Recent whole genome studies also suggest that dynamic alterations in signaling pathways downstream of EGFR leads to distinct oncogenic signatures and subclones which might have some impact on emerging resistance in KRAS wild-type patients. While anti-EGFR monoclonal antibodies have a clear potential in the management of a subset of patients with metastatic CRC, further studies are warranted to uncover exact mechanisms related to acquired resistance to EGFR blockade. PMID:27777877

  7. Blockade of the growth hormone (GH) receptor unmasks rapid GH-releasing peptide-6-mediated tissue-specific insulin resistance.

    PubMed

    Muller, A F; Janssen, J A; Hofland, L J; Lamberts, S W; Bidlingmaier, M; Strasburger, C J; van der Lely, A J

    2001-02-01

    The roles of GH and its receptor (GHR) in metabolic control are not yet fully understood. We studied the roles of GH and the GHR using the GHR antagonist pegvisomant for metabolic control of healthy nonobese men in fasting and nonfasting conditions. Ten healthy subjects were enrolled in a double blind, placebo-controlled study on the effects of pegvisomant on GHRH and GH-releasing peptide-6 (GHRP-6)-induced GH secretion before and after 3 days of fasting and under nonfasting conditions (n = 5). Under the condition of GHR blockade by pegvisomant in the nonfasting state, GHRP-6 (1 microg/kg) caused a increase in serum insulin (10.3 +/- 2.1 vs. 81.3 +/- 25.4 mU/L; P < 0.001) and glucose (4.2 +/- 0.3 vs. 6.0 +/- 0.6 mmol/L; P < 0.05) concentrations. In this group, a rapid decrease in serum free fatty acids levels was also observed. These changes were not observed under GHR blockade during fasting or in the absence of pegvisomant. We conclude that although these results were obtained from an acute study, and long-term administration of pegvisomant could render different results, blockade of the GHR in the nonfasting state induces tissue-specific changes in insulin sensitivity, resulting in an increase in glucose and insulin levels (indicating insulin resistance of liver/muscle), but probably also in an increase in lipogenesis (indicating normal insulin sensitivity of adipose tissue). These GHRP-6-mediated changes indicate that low GH bioactivity on the tissue level can induce changes in metabolic control, which are characterized by an increase in fat mass and a decrease in lean body mass. As a mechanism of these GHRP-6-mediated metabolic changes in the nonfasting state, direct nonpituitary-mediated GHRP-6 effects on the gastroentero-hepatic axis seem probable.

  8. BENEFICIAL EFFECTS OF MINERALOCORTICOID RECEPTOR BLOCKADE IN EXPERIMENTAL NON-ALCOHOLIC STEATOHEPATITIS

    PubMed Central

    Pizarro, Margarita; Solís, Nancy; Quintero, Pablo; Barrera, Francisco; Cabrera, Daniel; Santiago, Pamela Rojasde; Arab, Juan Pablo; Padilla, Oslando; Roa, Juan Carlos; Moshage, Han; Wree, Alexander; Inzaugarat, Eugenia; Feldstein, Ariel E.; Fardella, Carlos E.; Baudrand, Rene; Riquelme, Arnoldo; Arrese, Marco

    2015-01-01

    Background Therapeutic options to treat Non-alcoholic steatohepatitis (NASH) are limited. Mineralocorticoid receptor (MR) activation could play a role in hepatic fibrogenesis and its modulation could be beneficial for NASH. Aim To investigate whether eplerenone, a specific MR antagonist, ameliorates liver damage in experimental NASH. Methods C57bl6 mice were fed a choline-deficient-amino-acid–defined (CDAA) diet for 22 weeks with or without eplerenone supplementation. Serum levels of aminotransferases and aldosterone were measured and hepatic steatosis, inflammation, and fibrosis scored histologically. Hepatic triglyceride content (HTC) and hepatic mRNA levels of pro-inflammatory pro-fibrotic, oxidative stress-associated genes and of MR were also assessed. Results CDAA diet effectively induced fibrotic NASH, and increased the hepatic expression of pro-inflammatory, pro-fibrotic and oxidative stress-associated genes. Hepatic MR mRNA levels significantly correlated with the expression of pro-inflammatory and pro-fibrotic genes and were significantly increased in hepatic stellate cells obtained from CDAA-fed animals. Eplerenone administration was associated to a reduction in histological steatosis and attenuation of liver fibrosis development, which was associated to a significant decrease in the expression of collagen-α1, collagen type III, alpha 1 and Matrix metalloproteinase-2. Conclusion The expression of MR correlates with inflammation and fibrosis development in experimental NASH. Specific MR blockade with eplerenone has hepatic anti-steatotic and anti-fibrotic effects. These data identifies eplerenone as a potential novel therapy for NASH. Considering its safety and FDA-approved status, human studies are warranted PMID:25646700

  9. [Comparative analysis of metabotropic and ionotropic glutamate striatal receptors blockade influence on rats locomotor behaviour].

    PubMed

    Iakimovskiĭ, A F; Kerko, T V

    2013-02-01

    The influence of NMDA and metabotropic neostriatal glutamate receptors blockade to avoidance conditioning (in shuttle box) and free locomotor behavior (in open field) in chronic experiments in rats were investigated. The glutamate receptor antagonists were injected bilateral into striatum separately and with the GABA-A receptor antagonist picrotoxin (2 microg), that produced in rats the impairment of avoidance conditioning and choreo-myoklonic hyperkinesis. The most effective in preventing of negative picrotoxin influence on behavior was 5-type metabotropic glutamate receptors antagonist MTEP (3 microg). Separately injected MTEP did not influence on avoidance conditioning and free locomotor behavior. Unlike that, 1-type metabotropic glutamate receptors antagonist EMQMCM (3 microg) impaired normal locomotor behavior and did not prevent the picrotoxin effects. The NMDA glutamate receptors MK 801 (disocilpin--1 and 5 microg) impaired the picrotoxin-induced hyperkinesis, but did not to prevent the negative effects on avoidance conditioning; separately injected MK 801 reduced free locomotor activity. Based on location of investigated receptor types in neostriatal neurons membranes, we proposed that the most effective influence on 5-type metabotropic glutamate receptors is associated with their involvement in "indirect" efferent pathway, suffered in hyperkinetic extrapyramidal motor dysfunction--Huntington's chorea in human.

  10. Beta-Adrenergic Blockade Does not Prevent Polycythemia or Decrease in Plasma Volume in Men at 4300 m Altitude

    NASA Technical Reports Server (NTRS)

    Grover, R. F.; Selland, M. A.; McCullough, R. G.; Dahms, T. E.; Wolfel, E. E.; Butterfield, G. E.; Reeves, J. T.; Greenleaf, J. E.

    1998-01-01

    When humans ascend to high altitude (ALT) their plasma volume (PV) and total blood volume (BV) decrease during the first few days. With continued residence over several weeks, the hypoxia-induced stimulation of erythropoietin increases red cell production which tends to restore BV. Because hypoxia also activates the beta-adrenergic system, which stimulates red blood cell production, we investigated the effect of adrenergic beta-receptor inhibition with propranolol on fluid volumes and the polycythemic response in 11 healthy unacclimatized men (21-33 years old exposed to an ALT of 4300 m (barometric pressure 460 Torr) for 3 weeks on Pikes Peak, Colorado. PV was determined by the Evans blue dye method (PV(sub EB)), BV by the carbon monoxide method (BV(sub CO)), red cell volume (RCV)was calculated from hematocrit (Hct) and BV(sub CO), and serum erythropoietin concentration ([EPO]) and reticulocyte count, were also determined. All determinations were made at sea level and after 9-11 (ALT-10) and 9-20 (ALT-20) days at ALT. At sea level and ALT, six men received propranolol (pro, 240 mg/day), and five received a placebo (pla). Effective beta-blockade did not modify the mean (SE) maximal values of [EPO] [pla: 24.9 (3.5) vs pro: 24.5 (1.5) mU/ml] or reticulocyte count [pla: 2.7 (0.7) vs pro: 2.2 (0.5)%]; nor changes in PV(sub EB)[pla: -15.8 (3.8) vs pro: -19.9 (2.8)%], RCV(sub CO) [pla: +7.0 (6.7) vs pro: +10.1 (6.1)%], or BV(sub CO) [pla: -7.3 (2.3) vs pro: -7.1 (3.9)%]. In the absence of weight loss, a redistribution of body water with no net loss is implied. Hence, activation of the beta-adrenergic system did not appear to affect the hypovolemic or polycythemic responses that occurred during 3 weeks at 4300 m ALT in these subjects.

  11. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans.

    PubMed

    Gavva, Narender R; Treanor, James J S; Garami, Andras; Fang, Liang; Surapaneni, Sekhar; Akrami, Anna; Alvarez, Francisco; Bak, Annette; Darling, Mary; Gore, Anu; Jang, Graham R; Kesslak, James P; Ni, Liyun; Norman, Mark H; Palluconi, Gabrielle; Rose, Mark J; Salfi, Margaret; Tan, Edward; Romanovsky, Andrej A; Banfield, Christopher; Davar, Gudarz

    2008-05-01

    The vanilloid receptor TRPV1 has been identified as a molecular target for the treatment of pain associated with inflammatory diseases and cancer. Hence, TRPV1 antagonists have been considered for therapeutic evaluation in such diseases. During Phase I clinical trials with AMG 517, a highly selective TRPV1 antagonist, we found that TRPV1 blockade elicited marked, but reversible, and generally plasma concentration-dependent hyperthermia. Similar to what was observed in rats, dogs, and monkeys, hyperthermia was attenuated after repeated dosing of AMG 517 (at the highest dose tested) in humans during a second Phase I trial. However, AMG 517 administered after molar extraction (a surgical cause of acute pain) elicited long-lasting hyperthermia with maximal body temperature surpassing 40 degrees C, suggesting that TRPV1 blockade elicits undesirable hyperthermia in susceptible individuals. Mechanisms of AMG 517-induced hyperthermia were then studied in rats. AMG 517 caused hyperthermia by inducing tail skin vasoconstriction and increasing thermogenesis, which suggests that TRPV1 regulates vasomotor tone and metabolic heat production. In conclusion, these results demonstrate that: (a) TRPV1-selective antagonists like AMG 517 cannot be developed for systemic use as stand alone agents for treatment of pain and other diseases, (b) individual susceptibility influences magnitude of hyperthermia observed after TRPV1 blockade, and (c) TRPV1 plays a pivotal role as a molecular regulator for body temperature in humans.

  12. Alpha-adrenergic receptor blockade by phentolamine increases the efficacy of vasodilators in penile corpus cavernosum.

    PubMed

    Kim, N N; Goldstein, I; Moreland, R B; Traish, A M

    2000-03-01

    Penile trabecular smooth muscle tone, a major determinant of erectile function, is highly regulated by numerous inter- and intracellular pathways. The interaction between pathways mediating contraction and relaxation has not been studied in detail. To this end, we investigated the functional effects of alpha adrenergic receptor blockade with phentolamine and its interaction with vasodilators (sildenafil, vasoactive intestinal polypeptide (VIP) and PGE1) that elevate cyclic nucleotides on penile cavernosal smooth muscle contractility. In organ bath preparations of cavernosal tissue strips contracted with phenylephrine, phentolamine significantly enhanced relaxation induced by sildenafil, VIP and PGE1. Sildenafil, VIP or PGE1 also significantly enhanced relaxation induced by phentolamine in cavernosal tissue strips contracted with phenylephrine. To study the effects of alpha adrenergic receptor blockade and modification of cyclic nucleotide metabolism during active neurogenic input, cavernosal tissue strips in organ bath preparations were contracted with the non-adrenergic agonist endothelin-1 and subjected to electrical field stimulation (EFS) in the absence or presence of phentolamine and/or sildenafil. EFS (5-40Hz) typically caused biphasic relaxation and contraction responses. Phentolamine alone enhanced relaxation and reduced or prevented contraction to EFS. Sildenafil enhanced relaxation to EFS at lower frequencies (< or = 5 Hz). The combination of phentolamine and sildenafil enhanced EFS-induced relaxation at all frequencies tested. EFS, in the presence of 10 nM phentolamine and 30 nM sildenafil, produced enhanced relaxation responses which were quantitatively similar to those obtained in the presence of 50 nM sildenafil alone. Thus, blockade of alpha-adrenergic receptors with phentolamine increases the efficacy of cyclic nucleotide-dependent vasodilators. Furthermore, phentolamine potentiates relaxation and attenuates contraction in response to endogenous

  13. Endothelin receptor a blockade is an ineffective treatment for adriamycin nephropathy.

    PubMed

    Tan, Roderick J; Zhou, Lili; Zhou, Dong; Lin, Lin; Liu, Youhua

    2013-01-01

    Endothelin is a vasoconstricting peptide that plays a key role in vascular homeostasis, exerting its biologic effects via two receptors, the endothelin receptor A (ETA) and endothelin receptor B (ETB). Activation of ETA and ETB has opposing actions, in which hyperactive ETA is generally vasoconstrictive and pathologic. Selective ETA blockade has been shown to be beneficial in renal injuries such as diabetic nephropathy and can improve proteinuria. Atrasentan is a selective pharmacologic ETA blocker that preferentially inhibits ETA activation. In this study, we evaluated the efficacy of ETA blockade by atrasentan in ameliorating proteinuria and kidney injury in murine adriamycin nephropathy, a model of human focal segmental glomerulosclerosis. We found that ETA expression was unaltered during the course of adriamycin nephropathy. Whether initiated prior to injury in a prevention protocol (5 mg/kg/day, i.p.) or after injury onset in a therapeutic protocol (7 mg/kg or 20 mg/kg three times a week, i.p.), atrasentan did not significantly affect the initiation and progression of adriamycin-induced albuminuria (as measured by urinary albumin-to-creatinine ratios). Indices of glomerular damage were also not improved in atrasentan-treated groups, in either the prevention or therapeutic protocols. Atrasentan also failed to improve kidney function as determined by serum creatinine, histologic damage, and mRNA expression of numerous fibrosis-related genes such as collagen-I and TGF-β1. Therefore, we conclude that selective blockade of ETA by atrasentan has no effect on preventing or ameliorating proteinuria and kidney injury in adriamycin nephropathy.

  14. Potential effect of angiotensin II receptor blockade in adipose tissue and bone.

    PubMed

    Nakagami, Hironori; Osako, Mariana Kiomy; Morishita, Ryuichi

    2013-01-01

    Recent evidence demonstrated that dysregulation of adipocytokine functions seen in abdominal obesity may be involved in the pathogenesis of the metabolic syndrome. Angiotensinogen, the precursor of angiotensin (Ang) II, is produced primarily in the liver, and also in adipose tissue, where it is up-regulated during the development of obesity and involved in blood pressure regulation and adipose tissue growth. Blockade of renin-angiotensin system (RAS) attenuates weight gain and adiposity by enhanced energy expenditure, and the favorable metabolic effects of telmisartan have been related to its Ang II receptor blockade and action as a partial agonist of peroxisome proliferators activated receptor (PPAR)-γ. PPARγ plays an important role in regulating carbohydrate and lipid metabolism, and ligands for PPARγ can improve insulin sensitivity and reduce triglyceride levels. Similarly, bone metabolism is closely regulated by hormones and cytokines, which have effects on both bone resorption and deposition. It is known that the receptors of Ang II are expressed in culture osteoclasts and osteoblasts, and Ang II is postulated to be able to act upon the cells involved in bone metabolism. In in vitro system, Ang II induced the differentiation and activation of osteoclasts responsible for bone resorption. Importantly, it was demonstrated by the sub-analysis of a recent clinical study that the fracture risk was significantly reduced by the usage of angiotensin-converting enzyme inhibitors. To treat the subgroups of hypertensive patients with osteoporosis RAS can be considered a novel target.

  15. Effects of semax against the background of dopaminergic receptor blockade with haloperidol.

    PubMed

    Sebentsova, E A; Levitskaya, N G; Andreeva, L A; Alfeeva, L Yu; Kamenskii, A A; Myasoedov, N F

    2006-02-01

    We studied the neurotropic effects of ACTH(4-10) analog semax against the background of dopaminergic receptors blockade with haloperidol. Intranasal administration of semax (0.05, 0.2, and 0.6 mg/kg) produced virtually no effect on disturbances of orientation and exploratory reactions and motor activity caused by intraperitoneal injection of 0.2 mg/kg haloperidol. By contrast, preliminary administration of 0.05 mg/kg semax prevented haloperidol-induced disturbances in active avoidance conditioning.

  16. Blockade of the N-Methyl-D-Aspartate Glutamate Receptor Ameliorates Lipopolysaccharide-Induced Renal Insufficiency

    PubMed Central

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor activation in rat kidney reduces renal perfusion and ultrafiltration. Hypoperfusion-induced ischemia is the most frequent cause of functional insufficiency in the endotoxemic kidney. Here, we used non-hypotensive rat model of lipopolysaccharide-induced endotoxemia to examine whether NMDA receptor hyperfunction contributes to acute kidney injury. Lipopolysaccharide-induced renal damage via increased enzymuria and hemodynamic impairments were ameliorated by co-treatment with the NMDA receptor blocker, MK-801. The NMDA receptor NR1 subunit in the rat kidney mainly co-localized with serine racemase, an enzyme responsible for synthesizing the NMDA receptor co-agonist, D-serine. The NMDA receptor hyperfunction in lipopolysaccharide-treated kidneys was demonstrated by NR1 and serine racemase upregulation, particularly in renal tubules, and by increased D-serine levels. Lipopolysaccharide also induced cell damage in cultured tubular cell lines and primary rat proximal tubular cells. This damage was mitigated by MK-801 and by small interfering RNA targeting NR1. Lipopolysaccharide increased cytokine release in tubular cell lines via toll-like receptor 4. The release of interleukin-1β from these cells are the most abundant. An interleukin-1 receptor antagonist not only attenuated cell death but also abolished lipopolysaccharide-induced NR1 and serine racemase upregulation and increases in D-serine secretion, suggesting that interleukin-1β-mediated NMDA receptor hyperfunction participates in lipopolysaccharide-induced tubular damage. The results of this study indicate NMDA receptor hyperfunction via cytokine effect participates in lipopolysaccharide-induced renal insufficiency. Blockade of NMDA receptors may represent a promising therapeutic strategy for the treatment of sepsis-associated renal failure. PMID:26133372

  17. Add-on angiotensin II receptor blockade lowers urinary transforming growth factor-beta levels.

    PubMed

    Agarwal, Rajiv; Siva, Senthuran; Dunn, Stephen R; Sharma, Kumar

    2002-03-01

    TGF-beta1 that improved over 1 month of add-on therapy with losartan. We speculate that dual blockade with losartan and an ACE inhibitor may provide additional renoprotection by decreasing renal production of TGF-beta1.

  18. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    SciTech Connect

    Gan, Lu; Xue, Jian-Xin; Li, Xin; Liu, De-Song; Ge, Yan; Ni, Pei-Yan; Deng, Lin; Lu, You; Jiang, Wei

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1

  19. Selective endothelin B receptor blockade does not influence BNP-induced natriuresis in man.

    PubMed

    van der Zander, K; Houben, A J H M; Webb, D J; Udo, E; Kietselaer, B; Hofstra, L; De Mey, J G R; de Leeuw, P W

    2006-03-01

    Brain natriuretic peptide (BNP) and endothelin-1 (ET-1) both exhibit natriuretic activity within the human kidney. Furthermore, they both act partly through activation of the endothelial nitric oxide pathway. Since ET-1 may cause vasodilation and natriuresis via stimulation of the ET-B receptor, the aim of the present study was to investigate whether renal ET-B receptors participate in the renal actions of BNP. In this placebo-controlled, crossover study, we infused BNP (4 pmol/kg/min) or placebo (i.v.) for 1 h, with or without co-infusion of the ET-B receptor antagonist BQ-788 (50 nmol/min) for 15 min on 4 separate days, in 10 healthy subjects (mean age 54+/-6 years.). During infusion, we measured effective renal plasma flow (ERPF), and glomerular filtration rate (GFR) using PAH/inulin clearance. Cardiac output was measured before and after infusion, using echocardiography. Blood pressure and heart rate (HR) were monitored as well. Urine and plasma samples were taken every hour to measure diuresis, natriuresis, cyclic 3',5' guanosine monophosphate, and ET-1 levels. BNP with or without ET-B receptor blockade increased natriuresis and diuresis. In addition, BNP alone increased GFR and filtered load, without changing ERPF. BQ-788 infusion did not affect renal hemodynamics or natriuresis. Neither BNP nor BQ-788 altered cardiac output, blood pressure, and heart rate. In conclusion, the present study shows that selective ET-B receptor blockade has no effect on the BNP-induced natriuresis and glomerular filtration rate.

  20. Angiotensin II receptor blockade limits glomerular injury in rats with reduced renal mass.

    PubMed Central

    Lafayette, R A; Mayer, G; Park, S K; Meyer, T W

    1992-01-01

    The effects of angiotensin II (AII) blockade were compared with the effects of angiotensin converting enzyme inhibition in rats with reduced nephron number. Rats were subjected to five-sixths renal ablation and divided into four groups with similar values for blood pressure and serum creatinine after 2 wk. Group 1 then served as untreated controls, while group 2 received the AII receptor antagonist MK954 (which has previously been designated DuP753), group 3 received the converting enzyme inhibitor enalapril, and group 4 received a combination of reserpine, hydralazine, and hydrochlorothiazide. Micropuncture and morphologic studies were performed 10 wk later. Converting enzyme inhibition, AII receptor blockade, and the combination regimen were equally effective in reversing systemic hypertension (time-averaged systolic blood pressure: group 1, 185 +/- 5 mmHg; group 2, 125 +/- 2 mmHg; group 3, 127 +/- 2 mmHg; group 4, 117 +/- 4 mmHg). Micropuncture studies showed that glomerular transcapillary pressure was reduced significantly by converting enzyme inhibition and by AII blockade but not by the combination regimen (delta P: group 1, 49 +/- 1 mmHg; group 2, 42 +/- 1 mmHg; group 3, 40 +/- 2 mmHg, group 4, 47 +/- 1 mmHg). Reduction of systemic blood pressure was associated with the development of markedly less proteinuria and segmental glomerular sclerosis in rats receiving enalapril and MK954 but not in rats receiving the combination regimen (prevalence of glomerular sclerotic lesions: group 1, 41 +/- 4%; group 2, 9 +/- 1%; group 3, 9 +/- 1%; group 4, 33 +/- 6%). These results indicate that the effects of converting enzyme inhibition on remnant glomerular function and structure depend on reduction in AII activity and are not attributable simply to normalization of systemic blood pressure. PMID:1522231

  1. Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress.

    PubMed

    Hanke, M L; Powell, N D; Stiner, L M; Bailey, M T; Sheridan, J F

    2012-10-01

    During physiological or psychological stress, catecholamines produced by the sympathetic nervous system (SNS) regulate the immune system. Previous studies report that the activation of β-adrenergic receptors (βARs) mediates the actions of catecholamines and increases pro-inflammatory cytokine production in a number of different cell types. The impact of the SNS on the immune modulation of social defeat has not been examined. The following studies were designed to determine whether SNS activation during social disruption stress (SDR) influences anxiety-like behavior as well as the activation, priming, and glucocorticoid resistance of splenocytes after social stress. CD-1 mice were exposed to one, three, or six cycles of SDR and HPLC analysis of the plasma and spleen revealed an increase in catecholamines. After six cycles of SDR the open field test was used to measure behaviors characteristic of anxiety and indicated that the social defeat induced increase in anxiety-like behavior was blocked by pre-treatment with the β-adrenergic antagonist propranolol. Pre-treatment with the β-adrenergic antagonist propranolol did not significantly alter corticosterone levels indicating no difference in activation of the hypothalamic-pituitary-adrenal axis. In addition to anxiety-like behavior the SDR induced splenomegaly and increase in plasma IL-6, TNFα, and MCP-1 were each reversed by pre-treatment with propranolol. Furthermore, flow cytometric analysis of cells from propranolol pretreated mice reduced the SDR-induced increase in the percentage of CD11b(+) splenic macrophages and significantly decreased the expression of TLR2, TLR4, and CD86 on the surface of these cells. In addition, supernatants from 18h LPS-stimulated ex vivo cultures of splenocytes from propranolol-treated SDR mice contained less IL-6. Likewise propranolol pre-treatment abrogated the glucocorticoid insensitivity of CD11b(+) cells ex vivo when compared to splenocytes from SDR vehicle-treated mice

  2. Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade

    PubMed Central

    Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu

    2016-01-01

    Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named ‘beige’ or ‘brite’ adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders. PMID:27992452

  3. Postcontest blockade of dopamine receptors inhibits development of the winner effect in the California mouse (Peromyscus californicus).

    PubMed

    Becker, Elizabeth A; Marler, Catherine A

    2015-04-01

    The winner effect is an accumulation of previous wins that increase future winning. A primary unanswered question about the winner effect is how do individuals integrate information about previous wins? Dopamine (DA) has been implicated because phosphorylated tyrosine hydroxylase (pTH), the rate-limiting enzyme for DA biosynthesis, is elevated following multiple winning experiences. Moreover, DA receptor blockers and agonists influence aggression when administered prior to male-male contests. In the current study, we administered D1- and D2-like DA receptor antagonists immediately after a contest and examined the development of the winner effect in the territorial California mouse, Peromyscus californicus. During a 3-contest training phase, resident males experienced winning contests, followed immediately by a peripheral injection of either a DA receptor antagonist or vehicle or a handling experience (without injection). The DA receptor antagonists used in this study did not influence locomotion. To assess the cumulative effects of previous winning, males were subjected to a final test contest with a more competitive intruder. The winner effect was significantly decreased by both D1- and D2-like receptor antagonists administered during training. During the test contest, attack behavior was significantly reduced by previous administration of both types of DA receptor antagonists compared with controls. D1-like receptor blockade also diminished chasing behavior, whereas D2-antagonist treated animals continued to pursue opponents. During training against a less competitive intruder, there was no difference in aggressive behaviors between experimental and controls males. Our data indicate that DA activity between contests is concomitant with the competitive advantage gained from multiple winning experiences.

  4. Cat carotid body chemoreceptor responses before and after nicotine receptor blockade with alpha-bungarotoxin.

    PubMed

    Mulligan, E; Lahiri, S

    1987-01-01

    The nature of nicotine receptors in the carotid body was studied in anesthetized, paralyzed and artificially ventilated cats. Chemoreceptor discharge in single or few-fiber preparations of the carotid sinus nerve was measured during isocapnic hypoxia, hyperoxic hypercapnia and in response to nicotine injections before and after administration of alpha-bungarotoxin (10 cats) and after alpha-bungarotoxin plus mecamylamine (7 cats) which binds to neuromuscular-type nicotine cholinergic receptors. alpha-Bungarotoxin caused a slight enhancement of the chemoreceptor response to hypoxia without affecting the chemoreceptor stimulation by nicotine. Mecamylamine (1-5 mg, i.v.), a ganglionic-type nicotinic receptor blocker, had no further effect on the response to hypoxia while it completely abolished the chemoreceptor stimulation by nicotine. Thus the nicotinic receptors in the cat carotid body which elicit excitation of chemosensory fibers appear to be of the ganglionic-type. Blockade of neuromuscular and ganglionic types of nicotinic receptors in the carotid body by alpha-bungarotoxin and mecamylamine does not attenuate the chemosensory responses to either hypoxia or hypercapnia. These nicotinic receptors therefore, do not appear to play an essential role in hypoxic or hypercapnic chemoreception in the cat carotid body.

  5. Differential effects of dopamine and opioid receptor blockade on motivated Coca-Cola drinking behavior and associated changes in brain, skin and muscle temperatures.

    PubMed

    Kiyatkin, E A

    2010-05-05

    Although pharmacological blockade of both dopamine (DA) and opiate receptors has an inhibiting effect on appetitive motivated behaviors, it is still unclear which physiological mechanisms affected by these treatments underlie the behavioral deficit. To clarify this issue, we examined how pharmacological blockade of either DA (SCH23390+eticlopride at 0.2 mg/kg each) or opioid receptors (naloxone 1 mg/kg) affects motor activity and temperature fluctuations in the nucleus accumbens (NAcc), temporal muscle, and facial skin associated with motivated Coca-Cola drinking behavior in rats. In drug-free conditions, presentation of a cup containing 5 ml of Coca-Cola induced locomotor activation and rapid NAcc temperature increases, which both transiently decreased during drinking, and phasically increased again after the cup was emptied. Muscle temperatures followed this pattern, but increases were weaker and more delayed than those in the NAcc. Skin temperature rapidly dropped after cup presentation, remained at low levels during consumption, and slowly restored during post-consumption behavioral activation. By itself, DA receptor blockade induced robust decrease in spontaneous locomotion, moderate increases in brain and muscle temperatures, and a relative increase in skin temperatures, suggesting metabolic activation coupled with adynamia. Following this treatment (approximately 180 min), motor activation to cup presentation and Coca-Cola consumption were absent, but rats showed NAcc and muscle temperature increases following cup presentation comparable to control. Therefore, DA receptor blockade does not affect significantly central and peripheral autonomic responses to appetitive stimuli, but eliminates their behavior-activating effects, thus disrupting appetitive behavior and blocking consumption. Naloxone alone slightly decreased brain and muscle temperatures and increased skin temperatures, pointing at the enhanced heat loss and possible minor inhibition of basal

  6. Initial evidence that GLP-1 receptor blockade fails to suppress postprandial satiety or promote food intake in humans.

    PubMed

    Melhorn, Susan J; Tyagi, Vidhi; Smeraglio, Anne; Roth, Christian L; Schur, Ellen A

    2014-11-01

    Glucagon-like peptide 1 (GLP-1) has incretin effects that are well-documented, but the independent role of GLP-1 action in human satiety perception is debated. We hypothesized that blockade of GLP-1 receptors would suppress postprandial satiety and increase voluntary food intake. After an overnight fast, eight normal weight participants (seven men, BMI 19-24.7 kg/m(2), age 19-29 year) were enrolled in a double-blind, placebo-controlled, randomized crossover study of the GLP-1 antagonist Exendin-[9-39] (Ex-9) to determine if the satiating effects of a meal are dependent on GLP-1 signaling in humans. Following a fasting blood draw, iv infusion of Ex-9 (600-750 pmol/kg/min) or saline began. Thirty minutes later, subjects consumed a standardized breakfast followed 90 min later (at the predicted time of maximal endogenous circulating GLP-1) by an ad libitum buffet meal to objectively measure satiety. Infusions ended once the buffet meal was complete. Visual analog scale ratings of hunger and fullness and serial assessments of plasma glucose, insulin, and GLP-1 concentrations were done throughout the experiment. Contrary to the hypothesis, during Ex-9 infusion subjects reported a greater decrease in hunger due to consumption of the breakfast (Ex-9 -62 ± 5; placebo -41 ± 9; P=0.01) than during placebo. There were no differences in ad libitum caloric intake between Ex-9 and placebo. Ex-9 increased glucose, insulin, and endogenous GLP-1, which may have counteracted any effects of Ex-9 infusion to block satiety signaling. Blockade of GLP-1 receptors failed to suppress subjective satiety following a standardized meal or increase voluntary food intake in healthy, normal-weight subjects.

  7. Angiotensin 2 type 1 receptor blockade different affects postishemic kidney injury in normotensive and hypertensive rats.

    PubMed

    Miloradović, Zoran; Ivanov, Milan; Jovović, Đurđica; Karanović, Danijela; Vajić, Una Jovana; Marković-Lipkovski, Jasmina; Mihailović-Stanojević, Nevena; Milanović, Jelica Grujić

    2016-12-01

    Many studies demonstrated that angiotensin 2 type 1 receptor (AT1R) blockade accelerates renal recovery in post-ischaemic kidney but there are many controversies related to its net effect on kidney structure and function. During the past years, our research group was trying to define the pathophysiological significance of the renin-angiotensin system on post-ischemic acute renal failure (ARF) development in normotensive Wistar as well as hypertensive rats (SHR). This review mostly summarizes our experience in that field. Our previous studies in normotensive rats revealed that AT1R blockade, except slightly renal vascular resistance improvement, had no other obvious beneficial effects, and therefore implies angiotensin 2 (Ang-2) overexpression as non-dominant on kidney reperfusion injuries development. Similarly it was observed in Wistar rats with induced mild (L-NAME, 3 mg/kg b.w.) nitric oxide (NO) deficiency. Expectably, in strong induced (L-NAME, 10 mg/kg b.w.) NO deficiency associated with ARF, massive tubular injuries indicate harmful effects of AT1R blockade, implying strongly disturbed glomerular filtration and suggesting special precaution related to AT1R blockers usage. Opposite to previous, by our opinion, AT1R antagonism promises new advance in treatment of essentially hypertensive subjects who develop ARF. Increased glomerular filtration, diminished oxidative stress, and most importantly improved tubular structure in postishemic SHR treated with AT1R blocker losartan, implicate Ang-2 over production as potently agent in the kidney ischemic injury, partly trough generation of reactive oxygen species. These data contribute understanding the pathogenesis of this devastating illness in hypertensive surroundings.

  8. Localized β-adrenergic receptor blockade does not affect sweating during exercise.

    PubMed

    Buono, Michael J; Tabor, Brian; White, Ailish

    2011-05-01

    The purpose of the current study was to determine the effect of a locally administered nonselective β-adrenergic antagonist on sweat gland function during exercise. Systemically administered propranolol has been reported to increase, decrease, or not alter sweat production during exercise. To eliminate the confounding systemic effects associated with orally administered propranolol, we used iontophoresis to deliver it to the eccrine sweat glands within a localized area on one forearm prior to exercise. This allowed for determination of the direct effect of β-adrenergic receptor blockade on sweating during exercise. Subjects (n = 14) reported to the laboratory (23 ± 1°C, 35 ± 3% relative humidity) after having refrained from exercise for ≥12 h. Propranolol (1% solution) was administered to a 5-cm(2) area of the flexor surface of one forearm via iontophoresis (1.5 mA) for 5 min. A saline solution was administered to the opposing arm via iontophoresis. Each subject then exercised on a motor-driven treadmill at 75% of their age-predicted maximal heart rate for 20 min, while sweat rate was measured simultaneously in both forearms. Immediately after cessation of exercise, the number of active sweat glands was measured by application of iodine-impregnated paper to each forearm. The sweat rate for the control and propranolol-treated forearm was 0.62 ± 41 and 0.60 ± 0.44 (SD) mg·cm(-2)·min(-1), respectively (P = 0.86). The density of active sweat glands for the control and propranolol-treated forearm was 130 ± 6 and 134 ± 5 (SD) glands/cm(2), respectively, (P = 0.33). End-exercise skin temperature was 32.9 ± 0.2 and 33.1 ± 0.3°C for the control and propranolol-treated forearm, respectively (P = 0.51). Results of the current study show that when propranolol is administered locally, thus eliminating the potential confounding systemic effects of the drug, it does not directly affect sweating during the initial stages of high-intensity exercise in young, healthy

  9. Pharmacological Blockade of 5-HT7 Receptors as a Putative Fast Acting Antidepressant Strategy

    PubMed Central

    Mnie-Filali, Ouissame; Faure, Céline; Lambás-Señas, Laura; Mansari, Mostafa El; Belblidia, Hassina; Gondard, Elise; Etiévant, Adeline; Scarna, Hélène; Didier, Anne; Berod, Anne; Blier, Pierre; Haddjeri, Nasser

    2011-01-01

    Current antidepressants still display unsatisfactory efficacy and a delayed onset of therapeutic action. Here we show that the pharmacological blockade of serotonin 7 (5-HT7) receptors produced a faster antidepressant-like response than the commonly prescribed antidepressant fluoxetine. In the rat, the selective 5-HT7 receptor antagonist SB-269970 counteracted the anxiogenic-like effect of fluoxetine in the open field and exerted an antidepressant-like effect in the forced swim test. In vivo, 5-HT7 receptors negatively regulate the firing activity of dorsal raphe 5-HT neurons and become desensitized after long-term administration of fluoxetine. In contrast with fluoxetine, a 1-week treatment with SB-269970 did not alter 5-HT firing activity but desensitized cell body 5-HT autoreceptors, enhanced the hippocampal cell proliferation, and counteracted the depressive-like behavior in olfactory bulbectomized rats. Finally, unlike fluoxetine, early-life administration of SB-269970, did not induce anxious/depressive-like behaviors in adulthood. Together, these findings indicate that the 5-HT7 receptor antagonists may represent a new class of antidepressants with faster therapeutic action. PMID:21326194

  10. A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice.

    PubMed

    Belikoff, Bryan G; Hatfield, Stephen; Georgiev, Peter; Ohta, Akio; Lukashev, Dmitriy; Buras, Jon A; Remick, Daniel G; Sitkovsky, Michail

    2011-02-15

    Antimicrobial treatment strategies must improve to reduce the high mortality rates in septic patients. In noninfectious models of acute inflammation, activation of A2B adenosine receptors (A2BR) in extracellular adenosine-rich microenvironments causes immunosuppression. We examined A2BR in antibacterial responses in the cecal ligation and puncture (CLP) model of sepsis. Antagonism of A2BR significantly increased survival, enhanced bacterial phagocytosis, and decreased IL-6 and MIP-2 (a CXC chemokine) levels after CLP in outbred (ICR/CD-1) mice. During the CLP-induced septic response in A2BR knockout mice, hemodynamic parameters were improved compared with wild-type mice in addition to better survival and decreased plasma IL-6 levels. A2BR deficiency resulted in a dramatic 4-log reduction in peritoneal bacteria. The mechanism of these improvements was due to enhanced macrophage phagocytic activity without augmenting neutrophil phagocytosis of bacteria. Following ex vivo LPS stimulation, septic macrophages from A2BR knockout mice had increased IL-6 and TNF-α secretion compared with wild-type mice. A therapeutic intervention with A2BR blockade was studied by using a plasma biomarker to direct therapy to those mice predicted to die. Pharmacological blockade of A2BR even 32 h after the onset of sepsis increased survival by 65% in those mice predicted to die. Thus, even the late treatment with an A2BR antagonist significantly improved survival of mice (ICR/CD-1) that were otherwise determined to die according to plasma IL-6 levels. Our findings of enhanced bacterial clearance and host survival suggest that antagonism of A2BRs offers a therapeutic target to improve macrophage function in a late treatment protocol that improves sepsis survival.

  11. Angiotensin receptor blockade mediated amelioration of mucopolysaccharidosis type I cardiac and craniofacial pathology

    PubMed Central

    Webber, Beau R.; McElmurry, Ronald T.; Rudser, Kyle D.; DeFeo, Anthony P.; Muradian, Michael; Petryk, Anna; Hallgrimsson, Benedikt; Blazar, Bruce R.; Tolar, Jakub

    2017-01-01

    Mucopolysaccharidosis type I (MPS IH) is a lysosomal storage disease (LSD) caused by inactivating mutations to the alpha-L-iduronidase (IDUA) gene. Treatment focuses on IDUA enzyme replacement and currently employed methods can be non-uniform in their efficacy particularly for the cardiac and craniofacial pathology. Therefore, we undertook efforts to better define the pathological cascade accounting for treatment refractory manifestations and demonstrate a role for the renin angiotensin system (RAS) using the IDUA−/− mouse model. Perturbation of the RAS in the aorta was more profound in male animals suggesting a causative role in the observed gender dimorphism and angiotensin receptor blockade (ARB) resulted in improved cardiac function. Further, we show the ability of losartan to prevent shortening of the snout, a common craniofacial anomaly in IDUA−/− mice. These data show a key role for the RAS in MPS associated pathology and support the inclusion of losartan as an augmentation to current therapies. PMID:27743312

  12. Effects of acute and chronic beta-receptor blockade on ventricular repolarisation in man.

    PubMed Central

    Edvardsson, N; Olsson, S B

    1981-01-01

    The right ventricular repolarisation phase was studied electrophysiologically after an injection of 15 mg metoprolol in 16 healthy volunteers. Eight of them were restudied after chronic treatment with 400 mg metoprolol daily for five weeks. The assessment of the repolarisation time included ventricular effective refractory periods, monophasic action potential duration, and the QT interval measured during atrial stimulation at different driving frequencies. The acute administration of 15 mg metoprolol intravenously had no detectable effect on the repolarisation phase, while chronic treatment caused a significant increase of the ventricular effective refractory periods, monophasic action potential duration, and the QT interval during atrial stimulation. Thus the study confirmed the contrasting effect of acute and chronic beta-receptor blockade on the ventricular repolarisation time in man. PMID:7259913

  13. Atrophy of submandibular gland by the duct ligation and a blockade of SP receptor in rats.

    PubMed

    Hishida, Sumiyo; Ozaki, Noriyuki; Honda, Takashi; Shigetomi, Toshio; Ueda, Minoru; Hibi, Hideharu; Sugiura, Yasuo

    2016-05-01

    To clarify the mechanisms underlying the submandibular gland atrophies associated with ptyalolithiasis, morphological changes were examined in the rat submandibular gland following either surgical intervention of the duct or functional blockade at substance P receptors (SPRs). Progressive acinar atrophy was observed after duct ligation or avulsion of periductal tissues. This suggested that damage to periductal tissue involving nerve fibers might contribute to ligation-associated acinar atrophy. Immunohistochemically labeled-substance P positive nerve fibers (SPFs) coursed in parallel with the main duct and were distributed around the interlobular, striated, granular and intercalated duct, and glandular acini. Strong SPR immunoreactivity was observed in the duct. Injection into the submandibular gland of a SPR antagonist induced marked acinar atrophy. The results revealed that disturbance of SPFs and SPRs might be involved in the atrophy of the submandibular gland associated with ptyalolithiasis.

  14. Atrophy of submandibular gland by the duct ligation and a blockade of SP receptor in rats

    PubMed Central

    Hishida, Sumiyo; Ozaki, Noriyuki; Honda, Takashi; Shigetomi, Toshio; Ueda, Minoru; Hibi, Hideharu; Sugiura, Yasuo

    2016-01-01

    ABSTRACT To clarify the mechanisms underlying the submandibular gland atrophies associated with ptyalolithiasis, morphological changes were examined in the rat submandibular gland following either surgical intervention of the duct or functional blockade at substance P receptors (SPRs). Progressive acinar atrophy was observed after duct ligation or avulsion of periductal tissues. This suggested that damage to periductal tissue involving nerve fibers might contribute to ligation-associated acinar atrophy. Immunohistochemically labeled-substance P positive nerve fibers (SPFs) coursed in parallel with the main duct and were distributed around the interlobular, striated, granular and intercalated duct, and glandular acini. Strong SPR immunoreactivity was observed in the duct. Injection into the submandibular gland of a SPR antagonist induced marked acinar atrophy. The results revealed that disturbance of SPFs and SPRs might be involved in the atrophy of the submandibular gland associated with ptyalolithiasis. PMID:27303108

  15. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists

    PubMed Central

    Hiranita, Takato; Kopajtic, Theresa A.; Rice, Kenner C.; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H.; McCurdy, Christopher R.

    2016-01-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  16. Alpha 2-adrenergic receptor turnover in adipose tissue and kidney: irreversible blockade of alpha 2-adrenergic receptors by benextramine

    SciTech Connect

    Taouis, M.; Berlan, M.; Lafontan, M.

    1987-01-01

    The recovery of post- and extrasynaptic alpha 2-adrenergic receptor-binding sites was studied in vivo in male golden hamsters after treatment with an irreversible alpha-adrenoceptor antagonist benextramine, a tetramine disulfide that possesses a high affinity for alpha 2-binding sites. The kidney alpha 2-adrenergic receptor number was measured with (/sup 3/H)yohimbine, whereas (/sup 3/H)clonidine was used for fat cell and brain membrane alpha 2-binding site identification. Benextramine treatment of fat cell, kidney, and brain membranes reduced or completely suppressed, in an irreversible manner, (/sup 3/H) clonidine and (/sup 3/H)yohimbine binding without modifying adenosine (A1-receptor) and beta-adrenergic receptor sites. This irreversible binding was also found 1 and 2 hr after intraperitoneal administration of benextramine to the hamsters. Although it bound irreversibly to peripheral and central alpha 2-adrenergic receptors on isolated membranes, benextramine was unable to cross the blood-brain barrier of the hamster at the concentrations used (10-20 mg/kg). After the irreversible blockade, alpha 2-binding sites reappeared in kidney and adipose tissue following a monoexponential time course. Recovery of binding sites was more rapid in kidney than in adipose tissue; the half-lives of the receptor were 31 and 46 hr, respectively in the tissues. The rates of receptor production were 1.5 and 1.8 fmol/mg of protein/hr in kidney and adipose tissue. Reappearance of alpha 2-binding sites was associated with a rapid recovery of function (antilipolytic potencies of alpha 2-agonists) in fat cells inasmuch as occupancy of 15% of (/sup 3/H)clonidine-binding sites was sufficient to promote 40% inhibition of lipolysis. Benextramine is a useful tool to estimate turnover of alpha 2-adrenergic receptors under normal and pathological situations.

  17. GRK2 blockade with βARKct is essential for cardiac β2-adrenergic receptor signaling towards increased contractility

    PubMed Central

    2013-01-01

    Background β1- and β2–adrenergic receptors (ARs) play distinct roles in the heart, e.g. β1AR is pro-contractile and pro-apoptotic but β2AR anti-apoptotic and only weakly pro-contractile. G protein coupled receptor kinase (GRK)-2 desensitizes and opposes βAR pro-contractile signaling by phosphorylating the receptor and inducing beta-arrestin (βarr) binding. We posited herein that GRK2 blockade might enhance the pro-contractile signaling of the β2AR subtype in the heart. We tested the effects of cardiac-targeted GRK2 inhibition in vivo exclusively on β2AR signaling under normal conditions and in heart failure (HF). Results We crossed β1AR knockout (B1KO) mice with cardiac-specific transgenic mice expressing the βARKct, a known GRK2 inhibitor, and studied the offspring under normal conditions and in post-myocardial infarction (MI). βARKct expression in vivo proved essential for β2AR-dependent contractile function, as β2AR stimulation with isoproterenol fails to increase contractility in either healthy or post-MI B1KO mice and it only does so in the presence of βARKct. The main underlying mechanism for this is blockade of the interaction of phosphodiesterase (PDE) type 4D with the cardiac β2AR, which is normally mediated by the actions of GRK2 and βarrs on the receptor. The molecular “brake” that PDE4D poses on β2AR signaling to contractility stimulation is thus “released”. Regarding the other beneficial functions of cardiac β2AR, βARKct increased overall survival of the post-MI B1KO mice progressing to HF, via a decrease in cardiac apoptosis and an increase in wound healing-associated inflammation early (at 24 hrs) post-MI. However, these effects disappear by 4 weeks post-MI, and, in their place, upregulation of the other major GRK in the heart, GRK5, is observed. Conclusions GRK2 inhibition in vivo with βARKct is absolutely essential for cardiac β2AR pro-contractile signaling and function. In addition, β2AR anti-apoptotic signaling in

  18. The non-competitive blockade of GABAA receptors by an aqueous extract of water hemlock (Cicuta douglasii) tubers.

    PubMed

    Green, Benedict T; Goulart, Camila; Welch, Kevin D; Pfister, James A; McCollum, Isabelle; Gardner, Dale R

    2015-12-15

    Water hemlocks (Cicuta spp.) are acutely toxic members of the Umbellierae family; the toxicity is due to the presence of C17-polyacetylenes such as cicutoxin. There is only limited evidence of noncompetitive antagonism by C17-polyacetylenes at GABAA receptors. In this work with WSS-1 cells, we documented the noncompetitive blockade of GABAA receptors by an aqueous extract of water hemlock (Cicuta douglasii) and modulated the actions of the extract with a pretreatment of 10 μM midazolam.

  19. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25

    PubMed Central

    Hannani, Dalil; Vétizou, Marie; Enot, David; Rusakiewicz, Sylvie; Chaput, Nathalie; Klatzmann, David; Desbois, Melanie; Jacquelot, Nicolas; Vimond, Nadège; Chouaib, Salem; Mateus, Christine; Allison, James P; Ribas, Antoni; Wolchok, Jedd D; Yuan, Jianda; Wong, Philip; Postow, Michael; Mackiewicz, Andrzej; Mackiewicz, Jacek; Schadendorff, Dirk; Jaeger, Dirk; Korman, Alan J; Bahjat, Keith; Maio, Michele; Calabro, Luana; Teng, Michele WL; Smyth, Mark J; Eggermont, Alexander; Robert, Caroline; Kroemer, Guido; Zitvogel, Laurence

    2015-01-01

    The cytotoxic T lymphocyte antigen-4 (CTLA-4)-blocking antibody ipilimumab induces immune-mediated long-term control of metastatic melanoma in a fraction of patients. Although ipilimumab undoubtedly exerts its therapeutic effects via immunostimulation, thus far clinically useful, immunologically relevant biomarkers that predict treatment efficiency have been elusive. Here, we show that neutralization of IL-2 or blocking the α and β subunits of the IL-2 receptor (CD25 and CD122, respectively) abolished the antitumor effects and the accompanying improvement of the ratio of intratumoral T effector versus regulatory cells (Tregs), which were otherwise induced by CTLA-4 blockade in preclinical mouse models. CTLA-4 blockade led to the reduction of a suppressive CD4+ T cell subset expressing Lag3, ICOS, IL-10 and Egr2 with a concomitant rise in IL-2-producing effector cells that lost FoxP3 expression and accumulated in regressing tumors. While recombinant IL-2 improved the therapeutic efficacy of CTLA-4 blockade, the decoy IL-2 receptor α (IL-2Rα, sCD25) inhibited the anticancer effects of CTLA-4 blockade. In 262 metastatic melanoma patients receiving ipilimumab, baseline serum concentrations of sCD25 represented an independent indicator of overall survival, with high levels predicting resistance to therapy. Altogether, these results unravel a role for IL-2 and IL-2 receptors in the anticancer activity of CTLA-4 blockade. Importantly, our study provides the first immunologically relevant biomarker, namely elevated serum sCD25, that predicts resistance to CTLA-4 blockade in patients with melanoma. PMID:25582080

  20. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage

    PubMed Central

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-01-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise. PMID:25605289

  1. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage.

    PubMed

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-05-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.

  2. TNF-alpha blockade by a dimeric TNF type I receptor molecule selectively inhibits adaptive immune responses.

    PubMed

    Colagiovanni, D B; Suniga, M A; Frazier, J L; Edwards, C K; Fleshner, M; McCay, J A; White, K L; Shopp, G M

    2000-11-01

    Tumor necrosis factor-alpha (TNF-alpha) is a mediator of severe inflammatory processes, including rheumatoid arthritis. Suppression of TNF with a soluble type I or type II receptor molecule (TNF-RI or TNF-RII) has the potential to decrease cytokine levels and modulate inflammatory diseases in humans. However, it has recently been reported that treatment of mice with a TNF-RI:Fc immunoadhesin protein augmented Gram positive infections and subsequent mortality. To determine if TNF-alpha blockade with soluble TNF-alpha receptors might alter immune system function, assays were assessed in rodents treated with a dimeric form of the p55 TNF-RI, Tumor Necrosis Factor-binding protein (TNFbp). Administration of TNFbp resulted in suppression of primary and secondary IgG antibody responses and cell-mediated immune function. No treatment-related differences were detected in immune-enhancing assays or non-specific immune function parameters. Bacterial host resistance assays with Listeria monocytogenes, Staphylococcus aureus or Escherichia coli showed an increase in tissue colony counts only with L. monocytogenes challenged animals following TNFbp administration. These results suggest that TNFbp has the capacity to inhibit adaptive immune function in experimental animal models. Studies suggest that while reducing TNF-alpha is important in controlling cytokine-dependent disease states, maintenance of a threshold level may be critical for normal immune function.

  3. Dual Endothelin Receptor Blockade Abrogates Right Ventricular Remodeling and Biventricular Fibrosis in Isolated Elevated Right Ventricular Afterload

    PubMed Central

    Nielsen, Eva Amalie; Sun, Mei; Honjo, Osami; Hjortdal, Vibeke E.; Redington, Andrew N.; Friedberg, Mark K.

    2016-01-01

    Background Pulmonary arterial hypertension is usually fatal due to right ventricular failure and is frequently associated with co-existing left ventricular dysfunction. Endothelin-1 is a powerful pro-fibrotic mediator and vasoconstrictor that is elevated in pulmonary arterial hypertension. Endothelin receptor blockers are commonly used as pulmonary vasodilators, however their effect on biventricular injury, remodeling and function, despite elevated isolated right ventricular afterload is unknown. Methods Elevated right ventricular afterload was induced by progressive pulmonary artery banding. Seven rabbits underwent pulmonary artery banding without macitentan; 13 received pulmonary artery banding + macitentan; and 5 did not undergo inflation of the pulmonary artery band (sham-operated controls). Results: Right and left ventricular collagen content was increased with pulmonary artery banding compared to sham-operated controls and ameliorated by macitentan. Right ventricular fibrosis signaling (connective tissue growth factor and endothelin-1 protein levels); extra-cellular matrix remodeling (matrix-metalloproteinases 2 and 9), apoptosis and apoptosis-related peptides (caspases 3 and 8) were increased with pulmonary artery banding compared with sham-operated controls and decreased with macitentan. Conclusion Isolated right ventricular afterload causes biventricular fibrosis, right ventricular apoptosis and extra cellular matrix remodeling, mediated by up-regulation of endothelin-1 and connective tissue growth factor signaling. These pathological changes are ameliorated by dual endothelin receptor blockade despite persistent elevated right ventricular afterload. PMID:26765263

  4. Effect of cholecystokinin-2 receptor blockade on rat stomach ECL cells. A histochemical, electron-microscopic and chemical study.

    PubMed

    Chen, D; Zhao, C M; Norlén, P; Björkqvist, M; Ding, X Q; Kitano, M; Håkanson, R

    2000-01-01

    The ECL cells in the oxyntic mucosa of rat stomach produce histamine and chromogranin A-derived peptides such as pancreastatin. The cells respond to gastrin via cholecystokinin-2 (CCK2) receptors. A CCK2 receptor blockade was induced by treatment (for up to 8 weeks) with two receptor antagonists, YM022 and YF476. Changes in ECL-cell morphology were examined by immunocytochemistry and electron microscopy, while changes in ECL cell-related biochemical parameters were monitored by measuring serum pancreastatin and oxyntic mucosal pancreastatin, and histamine concentrations, and histidine decarboxylase (HDC) activity. The CCK2 receptor blockade reduced the ECL-cell density only marginally, if at all, but transformed the ECL cells from slender, elongated cells with prominent projections to small, spherical cells without projections. The Golgi complex and the rough endoplasmic reticulum were diminished. Secretory vesicles were greatly reduced in volume density in the trans Golgi area. Circulating pancreastatin concentration and oxyntic mucosal HDC activity were lowered within a few hours. Oxyntic mucosal histamine and pancreastatin concentrations were reduced only gradually. The CCK2 receptor blockade was found to prevent the effects of omeprazole-evoked hypergastrinaemia on the ECL-cell activity and density. In conclusion, gastrin, acting on CCK2 receptors, is needed to maintain the shape, size and activity of the ECL cells, but not for maintaining the ECL-cell population.

  5. Inhibition of drinking in water-deprived rats by combined central angiotensin II and cholinergic receptor blockade.

    PubMed

    Hoffman, W E; Ganten, U; Phillips, M I; Schmid, P G; Schelling, P; Ganten, D

    1978-01-01

    The effect of blockade of central angiotensin II (AII) receptors and cholinergic receptors on thirst induced by water deprivation was studied in Sprague-Dawley rats and rats with hereditary hypothalamic diabetes insipidus (DI). Neither central AII nor cholinergic blockade alone affected drinking. Antagonism of both receptors simultaneously, however, significantly inhibited water intake of both Sprague-Dawley and DI rats. This inhibitory effect was not observed in water-deprived, nephrectomized rats. The combined antagonism on water intake was specific, since milk intake in hungry rats was not affected by simultaneous AII and cholinergic blockade. Isorenin concentrations in brain tissue were at control levels in water-deprived, nephrectomized, and non-nephrectomized Sprague-Dawley rats but were increased in water-deprived DI rats. The results suggest that angiotensin and cholinergic receptors in the brain have a physiological role in thirst. Thirst is maintained when either receptor is intact, but reduced when both receptors are inhibited by antagonists. They are independently capable of maintaining thirst.

  6. Effects of epidermal growth factor receptor blockade on ependymoma stem cells in vitro and in orthotopic mouse models.

    PubMed

    Servidei, Tiziana; Meco, Daniela; Trivieri, Nadia; Patriarca, Valentina; Vellone, Valerio Gaetano; Zannoni, Gian Franco; Lamorte, Giuseppe; Pallini, Roberto; Riccardi, Riccardo

    2012-09-01

    Some lines of evidence suggest that tumors, including ependymoma, might arise from a subpopulation of cells, termed cancer stem cells (CSCs), with self-renewal and tumor-initiation properties. Given the strict dependence of CSCs on epidermal growth factor (EGF) through EGF receptor (EGFR), we investigated the effects of EGFR inhibitors in ependymoma-stem cells (SCs) in vitro and in orthotopic mouse models. We established two ependymoma-SC lines from two recurrent pediatric ependymoma. Both lines expressed markers of radial glia--the candidate SCs of ependymoma--and showed renewal ability, multipotency, and tumorigenicity after orthotopic implantation, despite markedly different expression of CD133 (94 vs. 6%). High phosphorylated-EGFR/EGFR ratio was detected, which decreased after differentiation. EGFR inhibitors (gefitinib and AEE788) reduced clonogenicity, proliferation and survival of ependymoma-SC lines dose-dependently, and blocked EGF-induced activation of EGFR, Akt and extracellular signal-regulated kinase 1/2. Overall, AEE788 was more effective than gefitinib. EGFR blockade as well as differentiation strongly reduced CD133 expression. However, ex vivo treatment with AEE788 did not impair orthotopic tumor engraftment, whereas ex vivo differentiation did, suggesting that CD133 does not absolutely segregate for tumorigenicity in ependymoma-SCs. Orally administered AEE788 prolonged survival of mice bearing ependymoma-SC-driven orthotopic xenografts from 56 to 63 days, close to statistical significance (log-rank p=0.06). Our study describes for the first time EGFR signaling in ependymoma-SCs and the effects of EGFR blockade in complementary in vitro and in vivo systems. The experimental models we developed can be used to further investigate the activity of EGFR inhibitors or other antineoplastic agents in this tumor.

  7. Reduction of the Morphine Maintenance by Blockade of the NMDA Receptors during Extinction Period in Conditioned Place Preference Paradigm of Rats

    PubMed Central

    Siahposht-Khachaki, Ali; Fatahi, Zahra; Haghparast, Abbas

    2016-01-01

    Introduction: Activation of N-methyl-d-aspartate (NMDA) glutamate receptors in the nucleus accumbens is a component of drug-induced reward mechanism. In addition, NMDA receptors play a major role in brain reward system and activation of these receptors can change firing pattern of dopamine neurons. Blockade of glutamatergic neurotransmission reduces the expression of conditioned place preference (CPP) induced by morphine. Therefore, in this study, by using an NMDA receptor antagonist, DL-2-Amino-5-phosphonopentanoic acid sodium salt (AP5), the role of NMDA receptors on the maintenance and reinstatement of morphine-CPP was investigated. Methods: Forty-three adult male albino Wistar rats were used in this study. After subcutaneous administration of effective dose of morphine (5 mg/kg) during CPP paradigm, the animals received intracerebroventricular doses of AP5(1, 5, and 25 mM/5μL saline) during extinction period (free morphine stage). Conditioning score was recorded during extinction period and reinstatement phase. Besides, another group of the animals received a single dose administration of AP5(5 mM) just before the administration of ineffective dose of morphine (1 mg/kg) in reinstatement phase. Results: The results revealed that two doses of this antagonist (5 and 25 mM) significantly shortened the extinction period of morphine-CPP but did not reduce reinstatement induced by priming dose of morphine. Moreover, the single dose administration of AP5(5 mM) just before prime-morphine injection decreased reinstatement of morphine-CPP. Conclusion: These findings indicate that blockade of NMDA receptors during extinction period reduces maintenance but not reinstatement of morphine. In addition, blocking these receptors in reinstatement phase decreases reinstatement to extinguished morphine. PMID:27872695

  8. Blockade of neuronal dopamine D2 receptor attenuates morphine tolerance in mice spinal cord

    PubMed Central

    Dai, Wen-Ling; Xiong, Feng; Yan, Bing; Cao, Zheng-Yu; Liu, Wen-Tao; Liu, Ji-Hua; Yu, Bo-Yang

    2016-01-01

    Tolerance induced by morphine remains a major unresolved problem and significantly limits its clinical use. Recent evidences have indicated that dopamine D2 receptor (D2DR) is likely to be involved in morphine-induced antinociceptive tolerance. However, its exact effect and molecular mechanism remain unknown. In this study we examined the effect of D2DR on morphine antinociceptive tolerance in mice spinal cord. Chronic morphine treatment significantly increased levels of D2DR in mice spinal dorsal horn. And the immunoreactivity of D2DR was newly expressed in neurons rather than astrocytes or microglia both in vivo and in vitro. Blockade of D2DR with its antagonist (sulpiride and L-741,626, i.t.) attenuated morphine antinociceptive tolerance without affecting basal pain perception. Sulpiride (i.t.) also down-regulated the expression of phosphorylation of NR1, PKC, MAPKs and suppressed the activation of astrocytes and microglia induced by chronic morphine administration. Particularly, D2DR was found to interact with μ opioid receptor (MOR) in neurons, and chronic morphine treatment enhanced the MOR/D2DR interactions. Sulpiride (i.t.) could disrupt the MOR/D2DR interactions and attenuate morphine tolerance, indicating that neuronal D2DR in the spinal cord may be involved in morphine tolerance possibly by interacting with MOR. These results may present new opportunities for the treatment and management of morphine-induced antinociceptive tolerance which often observed in clinic. PMID:28004735

  9. Co-receptor and co-stimulation blockade for mixed chimerism and tolerance without myelosuppressive conditioning

    PubMed Central

    Graca, Luis; Daley, Stephen; Fairchild, Paul J; Cobbold, Stephen P; Waldmann, Herman

    2006-01-01

    Background A major challenge in the application of marrow transplantation as a route to immunological tolerance of a transplanted organ is to achieve hematopoietic stem cell (HSC) engraftment with minimal myelosuppressive treatments. Results We here describe a combined antibody protocol which can achieve long-term engraftment with clinically relevant doses of MHC-mismatched bone marrow, without the need for myelosuppressive drugs. Although not universally applicable in all strains, we achieved reliable engraftment in permissive strains with a two-stage strategy: involving first, treatment with anti-CD8 and anti-CD4 in advance of transplantation; and second, treatment with antibodies targeting CD4, CD8 and CD40L (CD154) at the time of marrow transplantation. Long-term mixed chimerism through co-receptor and co-stimulation blockade facilitated tolerance to donor-type skin grafts, without any evidence of donor-antigen driven regulatory T cells. Conclusion We conclude that antibodies targeting co-receptor and co-stimulatory molecules synergise to enable mixed hematopoietic chimerism and central tolerance, showing that neither cytoreductive conditioning nor 'megadoses' of donor bone marrow are required for donor HSC to engraft in permissive strains. PMID:16638128

  10. Angiotensin receptor blockade attenuates cigarette smoke-induced lung injury and rescues lung architecture in mice.

    PubMed

    Podowski, Megan; Calvi, Carla; Metzger, Shana; Misono, Kaori; Poonyagariyagorn, Hataya; Lopez-Mercado, Armando; Ku, Therese; Lauer, Thomas; McGrath-Morrow, Sharon; Berger, Alan; Cheadle, Christopher; Tuder, Rubin; Dietz, Harry C; Mitzner, Wayne; Wise, Robert; Neptune, Enid

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is a prevalent smoking-related disease for which no disease-altering therapies currently exist. As dysregulated TGF-β signaling associates with lung pathology in patients with COPD and in animal models of lung injury induced by chronic exposure to cigarette smoke (CS), we postulated that inhibiting TGF-β signaling would protect against CS-induced lung injury. We first confirmed that TGF-β signaling was induced in the lungs of mice chronically exposed to CS as well as in COPD patient samples. Importantly, key pathological features of smoking-associated lung disease in patients, e.g., alveolar injury with overt emphysema and airway epithelial hyperplasia with fibrosis, accompanied CS-induced alveolar cell apoptosis caused by enhanced TGF-β signaling in CS-exposed mice. Systemic administration of a TGF-β-specific neutralizing antibody normalized TGF-β signaling and alveolar cell death, conferring improved lung architecture and lung mechanics in CS-exposed mice. Use of losartan, an angiotensin receptor type 1 blocker used widely in the clinic and known to antagonize TGF-β signaling, also improved oxidative stress, inflammation, metalloprotease activation and elastin remodeling. These data support our hypothesis that inhibition of TGF-β signaling through angiotensin receptor blockade can attenuate CS-induced lung injury in an established murine model. More importantly, our findings provide a preclinical platform for the development of other TGF-β-targeted therapies for patients with COPD.

  11. The Effect of Opioid Receptor Blockade on the Neural Processing of Thermal Stimuli

    PubMed Central

    Schoell, Eszter D.; Bingel, Ulrike; Eippert, Falk; Yacubian, Juliana; Christiansen, Kerrin; Andresen, Hilke; May, Arne; Buechel, Christian

    2010-01-01

    The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent) signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone. PMID:20811582

  12. Vasotocin receptor blockade disrupts maternal care of offspring in a viviparous snake, Sistrurus miliarius.

    PubMed

    Lind, Craig M; Birky, Nikolette K; Porth, Anita M; Farrell, Terence M

    2017-02-15

    Parental care is a complex social behavior that is widespread among vertebrates. The neuroendocrine regulation of parent-offspring social behavior has been well-described in mammals, and to a lesser extent, in birds and fish. However, little is known regarding the underlying mechanisms that mediate the expression of care behaviors in squamate reptiles. In mammalian model species and humans, posterior pituitary hormones of the oxytocin and vasopressin families mediate parental care behaviors. To test the hypothesis that the regulatory role of posterior pituitary neuropeptides is conserved in a viviparous squamate reptile, we pharmacologically blocked the vasotocin receptor in post-parturient pigmy rattlesnakes, Sistrurus miliarius, and monitored the spatial relationship between mothers and offspring relative to controls. Mothers in the control group demonstrated spatial aggregation with offspring, with mothers having greater post-parturient energy stores aggregating more closely with their offspring. Blockade of vasotocin receptors eliminated evidence of spatial aggregation between mothers and offspring and eliminated the relationship between maternal energetic status and spatial aggregation. Our results are the first to implicate posterior pituitary neuropeptides in the regulation of maternal behavior in a squamate reptile and are consistent with the hypothesis that the neuroendocrine mechanisms underlying social behaviors are broadly conserved among vertebrates.

  13. Vasotocin receptor blockade disrupts maternal care of offspring in a viviparous snake, Sistrurus miliarius

    PubMed Central

    Birky, Nikolette K.; Porth, Anita M.; Farrell, Terence M.

    2017-01-01

    ABSTRACT Parental care is a complex social behavior that is widespread among vertebrates. The neuroendocrine regulation of parent-offspring social behavior has been well-described in mammals, and to a lesser extent, in birds and fish. However, little is known regarding the underlying mechanisms that mediate the expression of care behaviors in squamate reptiles. In mammalian model species and humans, posterior pituitary hormones of the oxytocin and vasopressin families mediate parental care behaviors. To test the hypothesis that the regulatory role of posterior pituitary neuropeptides is conserved in a viviparous squamate reptile, we pharmacologically blocked the vasotocin receptor in post-parturient pigmy rattlesnakes, Sistrurus miliarius, and monitored the spatial relationship between mothers and offspring relative to controls. Mothers in the control group demonstrated spatial aggregation with offspring, with mothers having greater post-parturient energy stores aggregating more closely with their offspring. Blockade of vasotocin receptors eliminated evidence of spatial aggregation between mothers and offspring and eliminated the relationship between maternal energetic status and spatial aggregation. Our results are the first to implicate posterior pituitary neuropeptides in the regulation of maternal behavior in a squamate reptile and are consistent with the hypothesis that the neuroendocrine mechanisms underlying social behaviors are broadly conserved among vertebrates. PMID:28069591

  14. Role of dopamine receptor and muscarinic acetylcholine receptor blockade in the antiapomorphine action of neuroleptics

    SciTech Connect

    Zharkovskii, A.M.; Langel, Yu.L.; Chereshka, K.S.; Zharkovskaya, T.A.

    1987-08-01

    The authors analyze the role of dopamine and muscarinic acetylcholine receptor blocking components in the antistereotypic action of neuroleptics with different chemical structure. To determine dopamine-blocking activity in vitro, binding of /sup 3/H-spiperone with membranes of the rat striatum was measured. To study the blocking action of the substances on muscarinic acetylcholine receptors, binding of /sup 3/H-quinuclidinyl benzylate with brain membranes was chosen.

  15. The blockade of GABAA receptors attenuates the inhibitory effect of orexin type 1 receptors antagonist on morphine withdrawal syndrome in rats.

    PubMed

    Davoudi, Mahnaz; Azizi, Hossein; Mirnajafi-Zadeh, Javad; Semnanian, Saeed

    2016-03-23

    The aim of present study was to investigate the involvement of orexin-A neuropeptide in naloxone-induced morphine withdrawal syndrome via modulating neurons bearing GABAA receptors. The locus coeruleus (LC) is a sensitive site for expression of the somatic aspects of morphine withdrawal. Intra-LC microinjection of GABAA receptor agonist attenuates morphine withdrawal signs in rats. Here we studied the influence of LC orexin type 1 receptors blockade by SB-334867 in presence of bicuculline, a GABAA receptor antagonist, on naloxone-induced morphine withdrawal syndrome. Adult male Wistar rats, weighing 250-300 g, were rendered dependent on morphine by subcutaneous (s.c.) injection of increasing morphine doses (6, 16, 26, 36, 46, 56 and 66 mg/kg, 2 ml/kg) at set intervals of 24 h for 7 days. On 8th day, naloxone (3 mg/kg, s.c.) was injected and the somatic signs of morphine withdrawal were evaluated. Intra-LC microinjections (0.2 μl) of either bicuculline (15 μM) or SB-334867 (3 mM) or a combination of both chemicals were done immediately before naloxone injection. Intra-LC microinjection of bicuculline (15 μM) had no significant effect on morphine withdrawal signs, whereas intra-LC microinjection of SB-334867 considerably attenuated morphine withdrawal signs. However, the effect of SB-334867 in attenuating naloxone-induced morphine withdrawal signs was blocked in presence of bicuculline. This finding, for the first time, indicated that orexin-A may participate in expression of naloxone-induced morphine withdrawal syndrome partly through decreasing the activity of neurons bearing GABAA receptors.

  16. Interleukin-1 Receptor Blockade Rescues Myocarditis-Associated End-Stage Heart Failure

    PubMed Central

    Cavalli, Giulio; Foppoli, Marco; Cabrini, Luca; Dinarello, Charles A.; Tresoldi, Moreno; Dagna, Lorenzo

    2017-01-01

    Support measures currently represent the mainstay of treatment for fulminant myocarditis, while effective and safe anti-inflammatory therapies remain an unmet clinical need. However, clinical and experimental evidence indicates that inhibition of the pro-inflammatory cytokine interleukin 1 (IL-1) is effective against both myocardial inflammation and contractile dysfunction. We thus evaluated treatment with the IL-1 receptor antagonist anakinra in a case of heart failure secondary to fulminant myocarditis. A 65-year-old man with T cell lymphoma developed fulminant myocarditis presenting with severe biventricular failure and cardiogenic shock requiring admittance to the intensive care unit and mechanical circulatory and respiratory support. Specifically, acute heart failure and cardiogenic shock were initially treated with non-invasive ventilation and mechanical circulatory support with an intra-aortic balloon pump. Nevertheless, cardiac function deteriorated further, and there were no signs of improvement. Treatment with anakinra, the recombinant form of the naturally occurring IL-1 receptor antagonist, was started at a standard subcutaneous dose of 100 mg/day. We observed a dramatic clinical improvement within 24 h of initiating anakinra. Prompt, progressive amelioration of cardiac function allowed weaning from mechanical circulatory and respiratory support within 72 h of anakinra administration. Recent studies point at inhibition of IL-1 activity as an attractive treatment option for both myocardial inflammation and contractile dysfunction. Furthermore, IL-1 receptor blockade with anakinra is characterized by an extremely rapid onset of action and remarkable safety and may thus be suitable for the treatment of patients critically ill with myocarditis. PMID:28232838

  17. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade.

    PubMed

    Desposito, Dorinne; Chollet, Catherine; Taveau, Christopher; Descamps, Vincent; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine; Waeckel, Ludovic

    2016-01-01

    Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers.

  18. Kappa opioid receptor activation decreases inhibitory transmission and antagonizes alcohol effects in rat central amygdala.

    PubMed

    Gilpin, Nicholas W; Roberto, Marisa; Koob, George F; Schweitzer, Paul

    2014-02-01

    Activation of the kappa opioid receptor (KOR) system mediates negative emotional states and considerable evidence suggests that KOR and their natural ligand, dynorphin, are involved in ethanol dependence and reward. The central amygdala (CeA) plays a major role in alcohol dependence and reinforcement. Dynorphin peptide and gene expression are activated in the amygdala during acute and chronic administration of alcohol, but the effects of activation or blockade of KOR on inhibitory transmission and ethanol effects have not been studied. We used the slice preparation to investigate the physiological role of KOR and interaction with ethanol on GABA(A) receptor-mediated synaptic transmission. Superfusion of dynorphin or U69593 onto CeA neurons decreased evoked inhibitory postsynaptic potentials (IPSPs) in a concentration-dependent manner, an effect prevented by the KOR antagonist norbinaltorphimine (norBNI). Applied alone, norBNI increased GABAergic transmission, revealing a tonic endogenous activity at KOR. Paired-pulse analysis suggested a presynaptic KOR mechanism. Superfusion of ethanol increased IPSPs and pretreatment with KOR agonists diminished the ethanol effect. Surprisingly, the ethanol-induced augmentation of IPSPs was completely obliterated by KOR blockade. Our results reveal an important role of the dynorphin/KOR system in the regulation of inhibitory transmission and mediation of ethanol effects in the CeA.

  19. Blockade of Serotonin 5-HT2A Receptors Suppresses Behavioral Sensitization and Naloxone-Precipitated Withdrawal Symptoms in Morphine-Treated Mice

    PubMed Central

    Pang, Gang; Wu, Xian; Tao, Xinrong; Mao, Ruoying; Liu, Xueke; Zhang, Yong-Mei; Li, Guangwu; Stackman, Robert W.; Dong, Liuyi; Zhang, Gongliang

    2016-01-01

    The increasing prescription of opioids is fueling an epidemic of addiction and overdose deaths. Morphine is a highly addictive drug characterized by a high relapse rate – even after a long period of abstinence. Serotonin (5-HT) neurotransmission participates in the development of morphine dependence, as well as the expression of morphine withdrawal. In this study, we examined the effect of blockade of 5-HT2A receptors (5-HT2ARs) on morphine-induced behavioral sensitization and withdrawal in male mice. 5-HT2AR antagonist MDL 11,939 (0.5 mg/kg, i.p.) suppressed acute morphine (5.0 mg/kg, s.c.)-induced increase in locomotor activity. Mice received morphine (10 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of morphine (10 mg/kg) was administered to induce the expression of behavioral sensitization. MDL 11,939 (0.5 mg/kg, i.p.) pretreatment suppressed the expression of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. MDL 11,939 (0.5 mg/kg, i.p.) prevented naloxone-precipitated withdrawal in morphine-dependent mice on day 7. Moreover, chronic morphine treatment increased 5-HT2AR protein level and decreased the phosphorylation of extracellular signal-regulated kinases in the prefrontal cortex. Together, these results by the first time demonstrate that 5-HT2ARs modulate opioid dependence and blockade of 5-HT2AR may represent a novel strategy for the treatment of morphine use disorders. Highlights (i) Blockade of 5-HT2A receptors suppresses the expression of morphine-induced behavioral sensitization. (ii) Blockade of 5-HT2A receptors suppresses naloxone-precipitated withdrawal in morphine-treated mice. (iii) Chronic morphine exposure induces an increase in 5-HT2A receptor protein level and a decrease in ERK protein phosphorylation in prefrontal cortex. PMID:28082900

  20. Effect of angiotensin II type 1 receptor blockade on kidney ischemia/reperfusion; a gender-related difference

    PubMed Central

    Moslemi, Fatemeh; Taheri, Pegah; Azimipoor, Mahdis; Ramtin, Sina; Hashemianfar, Mostafa; Momeni- Ashjerdi, Ali; Eshraghi-Jazi, Fatemeh; Talebi, Ardeshir; Nasri, Hamid; Nematbakhsh, Mehdi

    2016-01-01

    Background: Renal ischemia/reperfusion (I/R) injury may be related to activity of reninangiotensin system (RAS), which is gender-related. In this study, it was attempted to compare the effect of angiotensin II (Ang II) receptor type 1 (AT1R) blockade; losartan in I/R injury in male and female rats. Materials and Methods: Male and female Wistar rats were assigned as sham surgery, control I/R groups treated with vehicle, and case I/R groups treated with losartan (30 mg/kg). Vehicle and losartan were given 2 hours before bilateral kidney ischemia induced by clamping renal arteries for 45 minutes followed by 24 hours of renal reperfusion. Results: The I/R injury significantly increased the serum levels of blood urea nitrogen (BUN) and creatinine (Cr), and kidney tissue damage score in both genders. However, losartan decreased these values in female rats significantly (P < 0.05). This was not observed in male rats. Conclusion: Losartan protects the kidney from I/R injury in female but not in male rats possibly because of gender-related difference of RAS. PMID:27689110

  1. Blockade of vascular endothelial growth factor receptors by tivozanib has potential anti-tumour effects on human glioblastoma cells

    PubMed Central

    Momeny, Majid; Moghaddaskho, Farima; Gortany, Narges K.; Yousefi, Hassan; Sabourinejad, Zahra; Zarrinrad, Ghazaleh; Mirshahvaladi, Shahab; Eyvani, Haniyeh; Barghi, Farinaz; Ahmadinia, Leila; Ghazi-Khansari, Mahmoud; Dehpour, Ahmad R.; Amanpour, Saeid; Tavangar, Seyyed M.; Dardaei, Leila; Emami, Amir H.; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H.

    2017-01-01

    Glioblastoma (GBM) remains one of the most fatal human malignancies due to its high angiogenic and infiltrative capacities. Even with optimal therapy including surgery, radiotherapy and temozolomide, it is essentially incurable. GBM is among the most neovascularised neoplasms and its malignant progression associates with striking neovascularisation, evidenced by vasoproliferation and endothelial cell hyperplasia. Targeting the pro-angiogenic pathways is therefore a promising anti-glioma strategy. Here we show that tivozanib, a pan-inhibitor of vascular endothelial growth factor (VEGF) receptors, inhibited proliferation of GBM cells through a G2/M cell cycle arrest via inhibition of polo-like kinase 1 (PLK1) signalling pathway and down-modulation of Aurora kinases A and B, cyclin B1 and CDC25C. Moreover, tivozanib decreased adhesive potential of these cells through reduction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Tivozanib diminished GBM cell invasion through impairing the proteolytic cascade of cathepsin B/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase-2 (MMP-2). Combination of tivozanib with EGFR small molecule inhibitor gefitinib synergistically increased sensitivity to gefitinib. Altogether, these findings suggest that VEGFR blockade by tivozanib has potential anti-glioma effects in vitro. Further in vivo studies are warranted to explore the anti-tumour activity of tivozanib in combinatorial approaches in GBM. PMID:28287096

  2. Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys.

    PubMed

    Justinová, Zuzana; Redhi, Godfrey H; Goldberg, Steven R; Ferré, Sergi

    2014-05-07

    Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.

  3. Blockade of hypocretin receptor-1 preferentially prevents cocaine seeking: comparison with natural reward seeking

    PubMed Central

    Martin-Fardon, Rémi; Weiss, Friedbert

    2014-01-01

    Hypothalamic orexin/hypocretin (Orx/Hcrt) peptides participate in the regulation of a wide range of physiological processes and are recruited by drugs of abuse. To advance our understanding of the potential of the Orx/Hcrt receptor-1 (Hcrt-r1) as a treatment target for cocaine addiction, the effect of SB334867, a specific Hcrt-r1 antagonist, on reinstatement elicited by cocaine-associated stimuli vs. stimuli associated with a highly palatable conventional reinforcer (sweetened condensed milk [SCM]) was tested. Two separate groups of male Wistar rats were trained to associate a discriminative stimulus (S+) with the response-contingent availability of cocaine (0.25 mg/0.1 ml/infusion) or SCM (2/1 [v/v]) and subjected to reinstatement tests following extinction, during which the reinforcers and S+ were withheld, of cocaine or SCM-reinforced behavior. Following extinction, presentation of the cocaine or SCM S+ produced comparable recovery of responding. Hcrt-r1 blockade by SB334867 (1–10 mg/kg, IP) dose-dependently and selectively reversed conditioned reinstatement induced by cocaine-related stimuli, without interfering with reward seeking produced by the same stimulus when conditioned to SCM. The findings implicate an important role for Hcrt-r1 in appetitive behavior controlled by reward-related stimuli with selectivity for cocaine seeking and identify Hcrt-r1 as a potential treatment target for cocaine relapse prevention. PMID:24407199

  4. Effects of angiotensin II (AT1) receptor blockade on cardiac vagal control in heart failure.

    PubMed

    Vaile, J C; Chowdhary, S; Osman, F; Ross, H F; Fletcher, J; Littler, W A; Coote, J H; Townend, J N

    2001-12-01

    The objective of the present study was to determine the autonomic effects of angiotensin II (AT(1)) receptor blocker therapy in heart failure. In a randomized double-blind cross-over study, we compared the effects of candesartan and placebo on baroreflex sensitivity and on heart rate variability at rest, during stress and during 24 h monitoring. Acute effects were assessed 4 h after oral candesartan (8 mg) and chronic effects after 4 weeks of treatment (dose titrated to 16 mg daily). The study group comprised 21 patients with heart failure [mean (S.E.M.) ejection fraction 33% (1%)], in the absence of angiotensin-converting enzyme (ACE) inhibitor therapy. We found that acute candesartan was not different from placebo in its effects on blood pressure or mean RR interval. Chronic candesartan significantly reduced blood pressure [placebo, 137 (3)/82 (3) mmHg; candesartan, 121 (4)/75 (2) mmHg; P<0.001; values are mean (S.E.M.)], but had no effect on mean RR interval [placebo, 857 (25) ms; candesartan, 857 (21) ms]. Compared with placebo there were no significant effects of acute or chronic candesartan on heart rate variability in the time domain and no consistent effects in the frequency domain. Baroreflex sensitivity assessed by the phenylephrine bolus method was significantly increased after chronic candesartan [placebo, 3.5 (0.5) ms/mmHg; candesartan, 4.8 (0.7) ms/mmHg; P<0.05], although there were no changes in cross-spectral baroreflex sensitivity. Thus, in contrast with previous results with ACE inhibitors, angiotensin II receptor blockade in heart failure did not increase heart rate variability, and there was no consistent effect on baroreflex sensitivity.

  5. Pitting type of pretibial edema in a patient with silent thyroiditis successfully treated by angiotensin ii receptor blockade

    PubMed Central

    Kazama, Itsuro; Mori, Yoko; Baba, Asuka; Nakajima, Toshiyuki

    2014-01-01

    Patient: Female, 56 Final Diagnosis: Thyroiditis – silent Symptoms: Palpitations • pretibial pitting edema • short of breath • sweating Medication: — Clinical Procedure: — Specialty: Endocrinology and Metabolic Objective: Unknown etiology Background: Hyper- or hypothyroidism sometimes causes pretibial myxedema characterized by non-pitting infiltration of a proteinaceous ground substance. However, in those patients, the “pitting” type of pretibial edema as a result of increased sodium and fluid retention or vascular hyper-permeability rarely occurs, except in cases complicated by heart failures due to severe cardiomyopathy or pulmonary hypertension. Case Report: A 56-year-old woman developed bilateral pretibial pitting edema, followed by occasional sweating, palpitations, and shortness of breath, which persisted for more than 2 months. The diagnosis of hyperthyroidism due to silent thyroiditis was supported by elevated levels of free thyroxine (T4) and triiodothyronine (T3), with a marked decrease in thyroid-stimulating hormone (TSH), and the negative results for TSH receptor antibodies with typical findings of destructive thyrotoxicosis. Despite her “pitting” type of pretibial edema, a chest radio-graph demonstrated the absence of cardiomyopathy or congestive heart failure. Oral administration of angiotensin II receptor blocker (ARB) was initiated for her systolic hypertension, with a relatively higher elevation of plasma renin activity compared to that of the aldosterone level. Although the symptoms characteristic to hyperthyroidism, such as increased sweating, palpitations and shortness of breath, slowly improved with a spontaneous resolution of the disease, ARB quickly resolved the pretibial pitting edema shortly after the administration.. Conclusions: In this case, increased activity of the renin-angiotensin-aldosterone system stimulated by thyroid hormone was likely responsible for the patient’s pitting type of edema. The pharmacological

  6. Neurokinin-1 receptors are decreased in major depressive disorder.

    PubMed

    Stockmeier, Craig A; Shi, Xiaochun; Konick, Lisa; Overholser, James C; Jurjus, George; Meltzer, Herbert Y; Friedman, Lee; Blier, Pierre; Rajkowska, Grazyna

    2002-07-02

    Treatment with an antagonist at the neurokinin-1 (NK-1) receptor may alleviate depression, however the brain region(s) in which the NK-1 receptor antagonist exerts its therapeutic effect is unknown. [125I]BH-Substance P was used to measure NK-1 receptors postmortem in cytoarchitectonically defined areas of rostral orbitofrontal cortex (Brodmann's area 47) of subjects with major depressive disorder (n = 12, six females) and psychiatrically normal subjects (n = 11, five females). Six subjects with depression died by suicide. Subjects with depression showed decreased binding to NK-1 receptors across all cortical layers (p = 0.024). The pathophysiology of depression, and the reported therapeutic benefit of NK-1 receptor antagonists, may thus involve NK-1 receptors in prefrontal cortex.

  7. Effects of continuous opioid receptor blockade on alcohol intake and up-regulation of opioid receptor subtype signalling in a genetic model of high alcohol drinking.

    PubMed

    Hyytiä, P; Ingman, K; Soini, S L; Laitinen, J T; Korpi, E R

    1999-10-01

    Effects of a continuous naloxone infusion via osmotic pumps on alcohol drinking and opioid receptor density and function in the high-drinking AA (Alko, Alcohol) rats were examined. AA rats were trained to drink 10% (v/v) ethanol in a 1-h limited access procedure and implanted with subcutaneous osmotic pumps delivering either saline, a low dose (0.3 mg/kg per hour), or a high dose (3.0 mg/kg per hour) of naloxone for 7 days. The pumps were then removed and alcohol, food and water intakes were measured for another 4 days. Compared with saline, both naloxone doses significantly suppressed 1-h alcohol intake during the 7-day infusion. The suppression was smaller than that by a bolus injection of the same daily dose 15 min before the session, although a complete blockade of morphine-induced antinociception was achieved even with the smaller naloxone infusion. Significant decreases were also seen in daily food and water intake during the first days, but they quickly returned to their previous baselines. After pump removal, rats of both naloxone-treated groups rapidly increased their alcohol drinking and reached the pretreatment baseline, while their food and water intakes significantly surpassed their baselines. Naloxone infusion at 3.0 mg/kg per hour for 7 days significantly decreased 24-h alcohol drinking without affecting alcohol preference. Twenty-four hours after pump removal, autoradiography with [3H]DAMGO, [3H]DPDPE and [3H]U-69,543 revealed an up-regulation of mu-, delta- and kappa-opioid receptor binding sites in many brain areas of these animals. This receptor up-regulation was functional, because receptor coupling to G-protein activation was enhanced by agonist ligands, as revealed by [35S]GTPgammaS autoradiography. A good correlation existed between ligand binding densities and G-protein activation for mu- and kappa-receptors in control and naloxone-treated brain sections. Furthermore, morphine-induced analgesia in a hot-plate test showed a leftward shift in

  8. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles.

    PubMed

    Stone, Audrey J; Copp, Steven W; Kim, Joyce S; Kaufman, Marc P

    2015-12-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles combined receptor blockade is required to attenuate the exercise pressor reflex. We first compared the reflex before and after injecting either PPADS (10 mg/kg), a P2X receptor antagonist, APETx2 (100 μg/kg), an activating acid-sensing ion channel 3 (ASIC) channel antagonist, or L161982 (2 μg/kg), an EP4 receptor antagonist, into the arterial supply of the hindlimb of decerebrated rats. We then examined the effects of combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the exercise pressor reflex using the same doses, intra-arterial route, and time course of antagonist injections as those used for individual blockade. We found that neither PPADS (n = 5), APETx2 (n = 6), nor L161982 (n = 6) attenuated the reflex. In contrast, combined blockade of these receptors (n = 7) attenuated the peak (↓27%, P < 0.019) and integrated (↓48%, P < 0.004) pressor components of the reflex. Combined blockade injected intravenously had no effect on the reflex. We conclude that combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the endings of thin fiber muscle afferents is required to attenuate the exercise pressor reflex in rats with freely perfused hindlimbs.

  9. Activation of the Cardiac Renin-Angiotensin System in High Oxygen-Exposed Newborn Rats: Angiotensin Receptor Blockade Prevents the Developmental Programming of Cardiac Dysfunction.

    PubMed

    Bertagnolli, Mariane; Dios, Anne; Béland-Bonenfant, Sarah; Gascon, Gabrielle; Sutherland, Megan; Lukaszewski, Marie-Amélie; Cloutier, Anik; Paradis, Pierre; Schiffrin, Ernesto L; Nuyt, Anne Monique

    2016-04-01

    Newborn rats exposed to high oxygen (O2), mimicking preterm birth-related neonatal stress, develop later in life cardiac hypertrophy, dysfunction, fibrosis, and activation of the renin-angiotensin system. Cardiac renin-angiotensin system activation in O2-exposed adult rats is characterized by an imbalance in angiotensin (Ang) receptors type 1/2 (AT1/2), with prevailing AT1 expression. To study the role of renin-angiotensin system in the developmental programming of cardiac dysfunction, we assessed Ang receptor expression during neonatal high O2 exposure and whether AT1 receptor blockade prevents cardiac alterations in early adulthood. Sprague-Dawley newborn rats were kept with their mother in 80% O2 or room air (control) from days 3 to 10 (P3-P10) of life. Losartan or water was administered by gavage from P8 to P10 (n=9/group). Rats were studied at P3 (before O2 exposure), P5, P10 (end of O2), and P28. Losartan treatment had no impact on growth or kidney development. AT1 and Ang type 2 receptors were upregulated in the left ventricle by high O2 exposure (P5 and P10), which was prevented by Losartan treatment at P10. Losartan prevented the cardiac AT1/2 imbalance at P28. Losartan decreased cardiac hypertrophy and fibrosis and improved left ventricle fraction of shortening in P28 O2-exposed rats, which was associated with decreased oxidation of calcium/calmodulin-dependent protein kinase II, inhibition of the transforming growth factor-β/SMAD3 pathway, and upregulation of cardiac angiotensin-converting enzyme 2. In conclusion, short-term Ang II blockade during neonatal high O2 prevents the development of cardiac alterations later in life in rats. These findings highlight the key role of neonatal renin-angiotensin system activation in the developmental programming of cardiac dysfunction induced by deleterious neonatal conditions.

  10. Obesity and gastrointestinal hormones-dual effect of angiotensin II receptor blockade and a partial agonist of PPAR-γ.

    PubMed

    Nakagami, Hironori; Morishita, Ryuichi

    2011-03-01

    Obesity is strongly associated with type 2 diabetes, hypertension, and hyperlipidemia, which is one of the leading causes of mortality and morbidity worldwide. It is now clear that gut hormones play a role in the regulation of body weight and represent therapeutic targets for the future treatment of obesity. Recent evidence demonstrated that dysregulation of adipocytokine functions seen in abdominal obesity may be involved in the pathogenesis of the metabolic syndrome. Angiotensinogen, the precursor of angiotensin (Ang) II, is produced primarily in the liver, but also in adipose tissue, where it is up-regulated during the development of obesity and involved in blood pressure regulation and adipose tissue growth. Importantly, blockade of the RAS attenuates weight gain and adiposity by enhanced energy expenditure. The favorable metabolic effects of telmisartan have been related to its Ang II receptor blockade and action as a partial agonist of peroxisome proliferators activated receptor (PPAR)-γ. PPARγ plays an important role in regulating carbohydrate and lipid metabolism, and ligands for PPARγ can improve insulin sensitivity and reduce triglyceride levels. We designed a comparative study of telmisartan and losartan in ApoE-deficient mice. Treatment with telmisartan or losartan significantly reduced the development of lipid-rich plaque. However, treatment with telmisartan significantly improved endothelial dysfunction and inhibited lipid accumulation in the liver. These favorable characteristics of telmisartan might be due to its action as a partial agonist of PPAR-γ, beyond its blood pressure-lowering effect, through Ang II blockade, which may be called "metabosartan".

  11. Determinants and Changes Associated with Aldosterone Breakthrough after Angiotensin II Receptor Blockade in Patients with Type 2 Diabetes with Overt Nephropathy

    PubMed Central

    Moranne, Olivier; Bakris, George; Fafin, Coraline; Favre, Guillaume; Pradier, Christian

    2013-01-01

    Summary Background and objectives Inhibition of the renin-angiotensin-aldosterone system decreases proteinuria and slows estimated GFR decline in patients with type 2 diabetes mellitus with overt nephropathy. Serum aldosterone levels may increase during renin-angiotensin-aldosterone system blockade. The determinants and consequences of this aldosterone breakthrough remain unknown. Design, setting, participants, & measurements This study examined the incidence, determinants, and changes associated with aldosterone breakthrough in a posthoc analysis of a randomized study that compared the effect of two angiotensin II receptor blockers in patients with type 2 diabetes mellitus with overt nephropathy. Results Of 567 of 860 participants included in this posthoc analysis, 28% of participants developed aldosterone breakthrough, which was defined by an increase greater than 10% over baseline values of serum aldosterone levels after 1 year of angiotensin II receptor blocker treatment. Factors independently associated with aldosterone breakthrough at 1 year were lower serum aldosterone and potassium levels at baseline, higher decreases in sodium intake, systolic BP, and estimated GFR from baseline to 1 year, and use of losartan versus telmisartan. Aldosterone breakthrough at 6 months was not sustained at 1 year in 69% of cases, and it did not predict estimated GFR decrease and proteinuria increase between 6 months and 1 year. Conclusions Aldosterone breakthrough is a frequent event 1 year after initiating renin-angiotensin-aldosterone system blockade, particularly in participants exposed to intensive lowering of BP with sodium depletion and short-acting angiotensin II receptor blockers. Short-term serum aldosterone level increases at 6 months are not associated with negative kidney outcomes between 6 months and 1 year. PMID:23929924

  12. Amelioration strategies fail to prevent tobacco smoke effects on neurodifferentiation: Nicotinic receptor blockade, antioxidants, methyl donors.

    PubMed

    Slotkin, Theodore A; Skavicus, Samantha; Card, Jennifer; Levin, Edward D; Seidler, Frederic J

    2015-07-03

    Tobacco smoke exposure is associated with neurodevelopmental disorders. We used neuronotypic PC12 cells to evaluate the mechanisms by which tobacco smoke extract (TSE) affects neurodifferentiation. In undifferentiated cells, TSE impaired DNA synthesis and cell numbers to a much greater extent than nicotine alone; TSE also impaired cell viability to a small extent. In differentiating cells, TSE enhanced cell growth at the expense of cell numbers and promoted emergence of the dopaminergic phenotype. Nicotinic receptor blockade with mecamylamine was ineffective in preventing the adverse effects of TSE and actually enhanced the effect of TSE on the dopamine phenotype. A mixture of antioxidants (vitamin C, vitamin E, N-acetyl-l-cysteine) provided partial protection against cell loss but also promoted loss of the cholinergic phenotype in response to TSE. Notably, the antioxidants themselves altered neurodifferentiation, reducing cell numbers and promoting the cholinergic phenotype at the expense of the dopaminergic phenotype, an effect that was most prominent for N-acetyl-l-cysteine. Treatment with methyl donors (vitamin B12, folic acid, choline) had no protectant effect and actually enhanced the cell loss evoked by TSE; they did have a minor, synergistic interaction with antioxidants protecting against TSE effects on growth. Thus, components of tobacco smoke perturb neurodifferentiation through mechanisms that cannot be attributed to the individual effects of nicotine, oxidative stress or interference with one-carbon metabolism. Consequently, attempted amelioration strategies may be partially effective at best, or, as seen here, can actually aggravate injury by interfering with normal developmental signals and/or by sensitizing cells to TSE effects on neurodifferentiation.

  13. Interleukin-6 receptor alpha blockade improves skin lesions in a murine model of systemic lupus erythematosus.

    PubMed

    Birner, Peter; Heider, Susanne; Petzelbauer, Peter; Wolf, Peter; Kornauth, Christoph; Kuroll, Madeleine; Merkel, Olaf; Steiner, Günter; Kishimoto, Tadamitsu; Rose-John, Stefan; Soleiman, Afschin; Moriggl, Richard; Kenner, Lukas

    2016-04-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease, characterized by antinuclear autoantibodies (ANA) and immunocomplexes, commonly affecting kidneys, skin, heart, lung or even the brain. We have shown that JunB(Δep) mice develop a SLE phenotype linked to increased epidermal Interleukin (IL)-6 secretion. Blocking of IL-6 receptor alpha (IL-6Rα) is considered as therapeutic strategy for the treatment of SLE. JunB(Δep) and wild-type mice were treated for short (5 weeks) or long term (21 weeks) with the IL-6Rα-blocking antibody MR16-1. Skin and kidney of mice were investigated by histology and immunofluorescence, and in addition, kidneys were analysed by electron microscopy. Furthermore, soluble IL-6R (sIL-6R), antihistone and antinucleosome antibodies levels were measured and associated with disease parameters. Treatment with MR16-1 resulted in significant improvement of SLE-like skin lesions in JunB(Δep) mice, compared to untreated mice. The sIL-6R amount upon long-term treatment with MR16-1 was significantly higher in JunB(Δep) versus untreated JunB(Δep) (P = 0.034) or wild-type mice (P = 0.034). MR16-1 treatment over these time spans did not significantly improve kidney pathology of immunoglobulin deposits causing impaired function. Significantly higher antihistone (P = 0.028) and antinucleosome antibody levels (P = 0.028) were measured in MR16-1-treated JunB(Δep) mice after treatment compared to levels before therapy. In conclusion, blockade of IL-6Rα improves skin lesions in a murine SLE model, but does not have a beneficial effect on autoimmune-mediated kidney pathology. Inhibition of IL-6R signalling might be helpful in lupus cases with predominant skin involvement, but combinatorial treatment might be required to restrain autoantibodies.

  14. Local GABA receptor blockade reveals hindlimb responses in the SI forelimb-stump representation of neonatally amputated rats.

    PubMed

    Pluto, Charles P; Lane, Richard D; Rhoades, Robert W

    2004-07-01

    In adult rats that sustained forelimb amputation on the day of birth, there are numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to cutaneous stimulation of the hindlimb when cortical receptors for GABA are blocked. These normally suppressed hindlimb inputs originate in the SI hindlimb representation and synapse in the dysgranular cortex before exciting SI forelimb-stump neurons. In our previous studies, GABA (A + B) receptor blockade was achieved by topically applying a bicuculline methiodide/saclofen solution (BMI/SAC) to the cortical surface. This treatment blocks receptors throughout SI and does not allow determination of where along the above circuit the GABA-mediated suppression of hindlimb information occurs. In this study, focal injections of BMI/SAC were delivered to three distinct cortical regions that are involved in the hindlimb-to-forelimb-stump pathway. Blocking GABA receptors in the SI hindlimb representation and in the dysgranular cortex was largely ineffective in revealing hindlimb inputs ( approximately 10% of hindlimb inputs were revealed in both cases). In contrast, when the blockade was targeted at forelimb-stump recording sites, >80% of hindlimb inputs were revealed. Thus GABAergic interneurons within the forelimb-stump representation suppress the expression of reorganized hindlimb inputs to the region. A circuit model incorporating these and previous observations is presented and discussed.

  15. Impaired off-line consolidation of motor memories after combined blockade of cholinergic receptors during REM sleep-rich sleep.

    PubMed

    Rasch, Björn; Gais, Steffen; Born, Jan

    2009-06-01

    Rapid eye movement (REM) sleep has been considered important for the consolidation of memories, particularly of procedural skills. REM sleep, in contrast to slow-wave sleep (SWS), is hallmarked by the high, wake-like activity of the neurotransmitter acetylcholine (ACh), which promotes certain synaptic plastic processes underlying the formation of memories. Here, we show in healthy young men that off-line consolidation of a motor skill during a period of late sleep with high amounts of REM sleep depends essentially on high cholinergic activity. After a 3-h sleep period during the early night to satisfy the need for SWS, subjects learned a procedural finger sequence tapping task and a declarative word-pair learning task. After learning, they received either placebo or a combination of the muscarinic receptor antagonist scopolamine (4 microg/kg bodyweight, intravenously) and the nicotinic receptor antagonist mecamylamine (5 mg, orally), and then slept for another 3 h, ie, the late nocturnal sleep period, which is dominated by REM sleep. Retrieval was tested the following evening. Combined cholinergic receptor blockade significantly impaired motor skill consolidation, whereas word-pair memory remained unaffected. Additional data show that the impairing effect of cholinergic receptor blockade is specific to sleep-dependent consolidation of motor skill and does not occur during a wake-retention interval. Taken together, these results identify high cholinergic activity during late, REM sleep-rich sleep as an essential factor promoting sleep-dependent consolidation of motor skills.

  16. Angiotensin 1-7 Receptor and Angiotensin II Receptor 2 Blockades Prevent the Increased Serum and Kidney Nitric Oxide Levels in Response to Angiotensin II Administration: Gender-Related Difference

    PubMed Central

    Safari, Tahereh; Nematbakhsh, Mehdi

    2013-01-01

    Background: The angiotensin II (Ang II) receptor 2 (AT2R) and angiotensin 1-7 receptor (masR) expression in the kidney are gender-related. We attempted to compare the response of nitric oxide (NO) production to Ang II administration, with and without AT2R and masR blockades, using A-779 and PD123319 in male and female rats. Methods: Anesthetized and catheterized male and female Wistar rats were subjected to one-hour continuous infusion of Ang II (~20 μg/kg/hour), with and without masR and AT2R blockades. The level of the NO metabolite (nitrite) was measured before and after the experiment in rat serum and in the homogenized kidney tissue. Results: The basal data indicated that no sex difference in the serum level of nitrite could be detected before Ang II infusion. However, administration of Ang II in male and female rats caused a gender difference in the nitrite level, which resulted in the serum level of the nitrite significantly increasing in males (P < 0.05) when compared with the females. In addition, masR blockade or co-blockade of masR and AT2R in male rats abolished the gender difference related to the effect of Ang II on nitrite production. In the presence of masR and AT2R, or when masR alone was blocked, the level of nitrite in the kidney, in response to the Ang II infusion was not significantly different between the two sexes. On the contrary, masR and AT2R co-blockades significantly decreased the kidney nitrite concentration response to Ang II administration in both male and female rats (P < 0.05), but no sex difference was detected. Conclusions: The renal vasculature of male rats may provide more response to Ang II administration-induced NO, which is dependent on masR and AT2R. During dual masR + AT2R blockades, the kidney NO formation wasreduced in a non-gender related manner. PMID:23626887

  17. Combined blockade of ADP receptors and PI3-kinase p110β fully prevents platelet and leukocyte activation during hypothermic extracorporeal circulation.

    PubMed

    Krajewski, Stefanie; Kurz, Julia; Geisler, Tobias; Peter, Karlheinz; Wendel, Hans Peter; Straub, Andreas

    2012-01-01

    Extracorporeal circulation (ECC) and hypothermia are used to maintain stable circulatory parameters and improve the ischemia tolerance of patients in cardiac surgery. However, ECC and hypothermia induce activation mechanisms in platelets and leukocytes, which are mediated by the platelet agonist ADP and the phosphoinositide-3-kinase (PI3K) p110β. Under clinical conditions these processes are associated with life-threatening complications including thromboembolism and inflammation. This study analyzes effects of ADP receptor P(2)Y(12) and P(2)Y(1) blockade and PI3K p110β inhibition on platelets and granulocytes during hypothermic ECC. Human blood was treated with the P(2)Y(12) antagonist 2-MeSAMP, the P(2)Y(1) antagonist MRS2179, the PI3K p110β inhibitor TGX-221, combinations thereof, or PBS and propylene glycol (controls). Under static in vitro conditions a concentration-dependent effect regarding the inhibition of ADP-induced platelet activation was found using 2-MeSAMP or TGX-221. Further inhibition of ADP-mediated effects was achieved with MRS2179. Next, blood was circulated in an ex vivo ECC model at 28°C for 30 minutes and various platelet and granulocyte markers were investigated using flow cytometry, ELISA and platelet count analysis. GPIIb/IIIa activation induced by hypothermic ECC was inhibited using TGX-221 alone or in combination with P(2)Y blockers (p<0.05), while no effect of hypothermic ECC or antiplatelet agents on GPIIb/IIIa and GPIbα expression and von Willebrand factor binding was observed. Sole P(2)Y and PI3K blockade or a combination thereof inhibited P-selectin expression on platelets and platelet-derived microparticles during hypothermic ECC (p<0.05). P(2)Y blockade alone or combined with TGX-221 prevented ECC-induced platelet-granulocyte aggregate formation (p<0.05). Platelet adhesion to the ECC surface, platelet loss and Mac-1 expression on granulocytes were inhibited by combined P(2)Y and PI3K blockade (p<0.05). Combined blockade of P

  18. Interleukin-6, A Cytokine Critical to Mediation of Inflammation, Autoimmunity and Allograft Rejection: Therapeutic Implications of IL-6 Receptor Blockade.

    PubMed

    Jordan, Stanley C; Choi, Jua; Kim, Irene; Wu, Gordon; Toyoda, Mieko; Shin, Bonga; Vo, Ashley

    2017-01-01

    The success of kidney transplants is limited by the lack of robust improvements in long-term survival. It is now recognized that alloimmune responses are responsible for the majority of allograft failures. Development of novel therapies to decrease allosensitization is critical. The lack of new drug development in kidney transplantation necessitated repurposing drugs initially developed in oncology and autoimmunity. Among these is tocilizumab (anti-IL-6 receptor [IL-6R]) which holds promise for modulating multiple immune pathways responsible for allograft injury and loss. Interleukin-6 is a cytokine critical to proinflammatory and immune regulatory cascades. Emerging data have identified important roles for IL-6 in innate immune responses and adaptive immunity. Excessive IL-6 production is associated with activation of T-helper 17 cell and inhibition of regulatory T cell with attendant inflammation. Plasmablast production of IL-6 is critical for initiation of T follicular helper cells and production of high-affinity IgG. Tocilizumab is the first-in-class drug developed to treat diseases mediated by IL-6. Data are emerging from animal and human studies indicating a critical role for IL-6 in mediation of cell-mediated rejection, antibody-mediated rejection, and chronic allograft vasculopathy. This suggests that anti-IL-6/IL-6R blockade could be effective in modifying T- and B-cell responses to allografts. Initial data from our group suggest anti-IL-6R therapy is of value in desensitization and prevention and treatment of antibody-mediated rejection. In addition, human trials have shown benefits in treatment of graft versus host disease in matched or mismatched stem cell transplants. Here, we explore the biology of IL-6/IL-6R interactions and the evidence for an important role of IL-6 in mediating allograft rejection.

  19. NR2B receptor blockade inhibits pain-related sensitization of amygdala neurons.

    PubMed

    Ji, Guangchen; Horváth, Csilla; Neugebauer, Volker

    2009-04-28

    Pain-related sensitization and synaptic plasticity in the central nucleus of the amygdala (CeA) depend on the endogenous activation of NMDA receptors and phosphorylation of the NR1 subunit through a PKA-dependent mechanism. Functional NMDA receptors are heteromeric assemblies of NR1 with NR2A-D or NR3A, B subunits. NMDA receptors composed of NR1 and NR2B subunits have been implicated in neuroplasticity and are present in the CeA. Here we used a selective NR2B antagonist (Ro-256981) to determine the contribution of NR2B-containing NMDA receptors to pain-related sensitization of CeA neurons. Extracellular single-unit recordings were made from CeA neurons in anesthetized adult male rats before and during the development of an acute arthritis. Arthritis was induced in one knee joint by intraarticular injections of kaolin and carrageenan. Brief (15 s) mechanical stimuli of innocuous (100-500 g/30 mm2) and noxious (1000-2000 g/30 mm2) intensity were applied to the knee and other parts of the body. In agreement with our previous studies, all CeA neurons developed increased background and evoked activity after arthritis induction. Ro-256981 (1, 10 and 100 muM; 15 min each) was administered into the CeA by microdialysis 5-6 h postinduction of arthritis. Ro-256981 concentration-dependently decreased evoked responses, but not background activity. This pattern of effect is different from that of an NMDA receptor antagonist (AP5) in our previous studies. AP5 (100 microM - 5 mM) inhibited background activity and evoked responses. The differential effects of AP5 and Ro-256981 may suggest that NMDA receptors containing the NR2B subunit are important but not sole contributors to pain-related changes of CeA neurons.

  20. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD)

    PubMed Central

    Okada, Yasunobu; Maeno, Emi; Shimizu, Takahiro; Dezaki, Katsuya; Wang, Jun; Morishima, Shigeru

    2001-01-01

    A fundamental property of animal cells is the ability to regulate their own cell volume. Even under hypotonic stress imposed by either decreased extracellular or increased intracellular osmolarity, the cells can re-adjust their volume after transient osmotic swelling by a mechanism known as regulatory volume decrease (RVD). In most cell types, RVD is accomplished mainly by KCl efflux induced by parallel activation of K+ and Cl− channels. We have studied the molecular mechanism of RVD in a human epithelial cell line (Intestine 407). Osmotic swelling results in a significant increase in the cytosolic Ca2+ concentration and thereby activates intermediate-conductance Ca2+-dependent K+ (IK) channels. Osmotic swelling also induces ATP release from the cells to the extracellular compartment. Released ATP stimulates purinergic ATP (P2Y2) receptors, thereby inducing phospholipase C-mediated Ca2+ mobilization. Thus, RVD is facilitated by stimulation of P2Y2 receptors due to augmentation of IK channels. In contrast, stimulation of another G protein-coupled Ca2+-sensing receptor (CaR) enhances the activity of volume-sensitive outwardly rectifying Cl− channels, thereby facilitating RVD. Therefore, it is possible that Ca2+ efflux stimulated by swelling-induced and P2Y2 receptor-mediated intracellular Ca2+ mobilization activates the CaR, thereby secondarily upregulating the volume-regulatory Cl− conductance. On the other hand, the initial process towards apoptotic cell death is coupled to normotonic cell shrinkage, called apoptotic volume decrease (AVD). Stimulation of death receptors, such as TNFα receptor and Fas, induces AVD and thereafter biochemical apoptotic events in human lymphoid (U937), human epithelial (HeLa), mouse neuroblastoma × rat glioma hybrid (NG108-15) and rat phaeochromocytoma (PC12) cells. In those cells exhibiting AVD, facilitation of RVD is always observed. Both AVD induction and RVD facilitation as well as succeeding apoptotic events can be

  1. Habituation deficits induced by metabotropic glutamate receptors 2/3 receptor blockade in mice: reversal by antipsychotic drugs.

    PubMed

    Bespalov, Anton; Jongen-Rêlo, Ana-Lucia; van Gaalen, Marcel; Harich, Silke; Schoemaker, Hans; Gross, Gerhard

    2007-02-01

    Cortical metabotropic glutamate receptors (mGluRs) seem to be involved in habituation of simple stimulus-bound behaviors (e.g., habituation to acoustic startle or odor-elicited orienting response). Habituation deficits may contribute to the cognitive symptoms of schizophrenia. In the present study, male NMRI mice were injected with mGluR2/3 antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid (LY-341495) 30 min before being placed into novel arenas for automatic motor activity recording (2-h sessions). Administration of LY-341495 (1-10 mg/kg s.c.) dose-dependently prevented the habituation of the locomotor activity. Effects of LY-341495 (10 mg/kg) were fully and dose-dependently reversed by i.p. administration of haloperidol (0.03-0.3 mg/kg), clozapine (1-10 mg/kg), risperidone (0.01-0.1 mg/kg), olanzapine (0.3-3 mg/kg), aripiprazole (1-10 mg/kg), and sulpiride (3-30 mg/kg), each of which was given 15 min before the test. Effects of antipsychotic drugs were observed at the dose levels that did not affect spontaneous motor activity. LY-341495-induced delayed hyperactivity was also partially attenuated by lithium (50-200 mg/kg), amisulpride (1-10 mg/kg), and the selective dopamine D3 antagonist trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide (SB-277011A; 3-30 mg/kg). Application of diazepam, imipramine, or several agonists and/or antagonists acting at various receptors that are thought to be relevant for antipsychotic treatment [e.g., 5-hydroxytryptamine (5-HT)(2A), 5-HT(3), and 5-HT(6) antagonists; 5-HT(1A) agonist; D4 antagonist; CB1 antagonist; ampakines; and glycine transporter inhibitor) had no appreciable effects. Thus, behavioral deficits induced by mGluR2/3 blockade (such as delayed motor hyperactivity) are selectively reversed by clinically used antipsychotic drugs.

  2. Platelet peripheral benzodiazepine receptors are decreased in Parkinson's disease

    SciTech Connect

    Bonuccelli, U.; Nuti, A.; Del Dotto, P.; Piccini, P.; Martini, C.; Giannacccini, G.; Lucacchini, A.; Muratorio, A. )

    1991-01-01

    Peripheral benzodiazepine (BDZ) receptors are located in a variety of tissues, including platelets, in the nuclear and/or mitochondrial membranes. The authors studied the density of peripheral BDZ receptors in platelets of 10 de novo Parkinson's disease (PD) patients, 18 PD patients treated with a levodopa/carbidopa combination, and in 15 healthy subjects matched for sex and age. The binding assay was conducted using ({sup 3}H)PK 11195, a specific ligand for peripheral BDZ receptors. A significant decrease in the density of ({sup 3}H)PK 11195 binding sites has been observed in PD patients with respect to controls but not between de novo and treated PD patients. No correlation has been found between the decrease in density of ({sup 3}H)PK 11195 binding sites in platelets and either the duration or severity of PD. Peripheral BDZ receptors are implicated in the regulation of mitochondrial respiratory function. Thus, their decrease in PD might parallel the abnormalities in mitochondrial function recently found in this neurologic disease.

  3. Interleukin 1 (IL-1) gene expression, synthesis, and effect of specific IL-1 receptor blockade in rabbit immune complex colitis.

    PubMed Central

    Cominelli, F; Nast, C C; Clark, B D; Schindler, R; Lierena, R; Eysselein, V E; Thompson, R C; Dinarello, C A

    1990-01-01

    Interleukin 1 (IL-1) may be a key mediator of inflammation and tissue damage in inflammatory bowel disease (IBD). In rabbits with immune complex-induced colitis, IL-1 alpha and beta mRNA levels were detectable at 4 h, peaked at 12 but were absent at 96 h after the induction of colitis. Colonic IL-1 tissue levels were measured by specific radioimmunoassays. IL-1 alpha was significantly elevated at 4 h (9.4 +/- 1.5 ng/g colon), progressively increased at 48 h (31 +/- 5.8 ng/g) and then decreased by 96 h (11.5 +/- 3.4 ng/g). IL-1 beta levels were 2.0 +/- 0.5 ng/g colon at 4 h, 5.0 +/- 1.6 ng/g at 48 h and undetectable by 96 h. By comparison, colonic levels of PGE2 and LTB4 were unchanged during the first 12 h and did not become elevated until 24 h. IL-1 alpha levels were highly correlated with inflammation (r = 0.885, P less than 0.0001), edema (r = 0.789, P less than 0.0001) and necrosis (r = 0.752, P less than 0.0005). Treatment with a specific IL-1 receptor antagonist (IL-1 ra) before and during the first 33 h after the administration of immune complexes markedly reduced inflammatory cell infiltration index (from 3.2 +/- 0.4 to 1.4 +/- 0.3, P less than 0.02), edema (from 2.2 +/- 0.4 to 0.6 +/- 0.3, P less than 0.01) and necrosis (from 43 +/- 10% to 6.6 +/- 3.2%, P less than 0.03) compared to vehicle-matched colitis animals. These studies demonstrate that (a) IL-1 gene expression and synthesis occur early in the course of immune complex-induced colitis; (b) are significantly elevated for 12 h before the appearance of PGE2 and LTB4; (c) tissue levels of IL-1 correlate with the degree of tissue inflammation and; (d) specific blockade of IL-1 receptors reduces the inflammatory responses associated with experimental colitis. Images PMID:2168444

  4. NEUROTROPHIN RECEPTOR BLOCKADE ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC RESPONSES

    EPA Science Inventory

    ABSTRACT BODY:
    Recent investigations have linked neurotrophins including NGF, NT-3, and BDNF to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance associated with allergic airway responses in mice. Mice administered an antibody against the low aff...

  5. Angiotensin II receptor blockade promotes repair of skeletal muscle through down-regulation of aging-promoting C1q expression

    PubMed Central

    Yabumoto, Chizuru; Akazawa, Hiroshi; Yamamoto, Rie; Yano, Masamichi; Kudo-Sakamoto, Yoko; Sumida, Tomokazu; Kamo, Takehiro; Yagi, Hiroki; Shimizu, Yu; Saga-Kamo, Akiko; Naito, Atsuhiko T.; Oka, Toru; Lee, Jong-Kook; Suzuki, Jun-ichi; Sakata, Yasushi; Uejima, Etsuko; Komuro, Issei

    2015-01-01

    Disruption of angiotensin II type 1 (AT1) receptor prolonged life span in mice. Since aging-related decline in skeletal muscle function was retarded in Atgr1a−/− mice, we examined the role of AT1 receptor in muscle regeneration after injury. Administration of AT1 receptor blocker irbesartan increased the size of regenerating myofibers, decreased fibrosis, and enhanced functional muscle recovery after cryoinjury. We recently reported that complement C1q, secreted by macrophages, activated Wnt/β-catenin signaling and promoted aging-related decline in regenerative capacity of skeletal muscle. Notably, irbesartan induced M2 polarization of macrophages, but reduced C1q expression in cryoinjured muscles and in cultured macrophage cells. Irbesartan inhibited up-regulation of Axin2, a downstream gene of Wnt/β-catenin pathway, in cryoinjured muscles. In addition, topical administration of C1q reversed beneficial effects of irbesartan on skeletal muscle regeneration after injury. These results suggest that AT1 receptor blockade improves muscle repair and regeneration through down-regulation of the aging-promoting C1q-Wnt/β-catenin signaling pathway. PMID:26571361

  6. Effect of chronic blockade of angiotensin II-receptor subtypes on aortic compliance in rats with myocardial infarction.

    PubMed

    Ceiler, D L; Nelissen-Vrancken, H J; De Mey, J G; Smits, J F

    1998-04-01

    This study was undertaken to investigate changes in aortic geometry and compliance after long-term blockade of angiotensin receptors type 1 (AT1) and AT2 receptors under basal conditions and after myocardial infarction (MI). Sham-operated (sham) or MI rats received either no treatment, AT1 antagonist GR138950C (GR; 2 mg/kg/day i.v.), or AT2 antagonist PD123319 (PD; 3 mg/kg/day s.c.). After 3 weeks, mean arterial blood pressure (MAP) was measured. Thoracic aorta diastolic diameter (D[dia]), compliance coefficient (CC), and distensibility coefficient (DC) were determined noninvasively in anesthetized rats by using ultrasound and wall tracking. After the rats were killed, histologic measurements were made on aortic cross sections. In sham rats, MAP was reduced by GR treatment (76 +/- 6 vs. 106 +/- 5 mm Hg), but not by PD. D(dia) was reduced in both GR-treated (1.74 +/- 0.08 vs. 2.09 +/- 0.05 mm) and PD-treated (1.83 +/- 0.05 vs. 2.09 +/- 0.05 mm) sham rats. CC and DC were not modified by either treatment. Although media cross-sectional area was not affected by either GR or PD treatment in sham rats, media thickness and media/lumen ratio were increased in both cases. Induction of MI had no effect on aortic structure, geometry, or mechanics; however, treatment with either GR or PD improved DC versus untreated MI rats. We conclude that AT1 and AT2 receptors are involved in angiotensin II-mediated effects on aortic geometry and mechanics under both basal conditions and after MI. Whereas blockade of AT1 receptors most likely influences vascular properties through a depressor mechanism, AT2 receptors induce pressure-independent remodeling.

  7. Selective blockade of 5-HT7 receptors facilitates attentional set-shifting in stressed and control rats.

    PubMed

    Nikiforuk, Agnieszka

    2012-01-01

    Preclinical data demonstrate that the selective blockade of 5-HT7 receptors produces antidepressant-like behavioural effects. Although the involvement of 5-HT7 receptors in cognitive processes has been previously suggested, little is known about their role in the prefrontal cortex (PFC)-dependent processes that may be impaired in stress-related states. According to our previous study, repeated restraint stress induces the long-lasting cognitive impairment in a rat model of PFC-dependent attentional set-shifting task (ASST). Therefore, the first aim of the present experiments was to examine the impact of the selective 5-HT7 receptor antagonist, SB-269970, on ASST performance of stressed and control rats. Since the selective blockade of 5-HT7 receptors has been previously demonstrated to enhance the behavioural effects of antidepressants, the second goal was to examine the impact of the joint administration of inactive doses of SB-269970 and escitalopram in the ASST. SB-269970 (0.3 and 1mg/kg) given to stressed rats 30min before testing reversed the restraint-induced impairment of the extra-dimensional (ED) set-shifting ability. Additionally, SB-269970 (1mg/kg) also improved ED performance of the unstressed control group. Moreover, SB-269970, given at an inactive dose, enhanced the pro-cognitive efficacy of escitalopram. In conclusion, these results highlight the possibility that 5-HT7 receptor antagonism may represent a useful pharmacological approach in the treatment of frontal-like cognitive disturbances in stress-related psychiatric disorders.

  8. Endothelin Receptor Blockade Ameliorates Vascular Fragility in Endothelial Cell–Specific Fli-1–Knockout Mice by Increasing Fli-1 DNA Binding Ability

    PubMed Central

    Akamata, Kaname; Asano, Yoshihide; Yamashita, Takashi; Noda, Shinji; Taniguchi, Takashi; Takahashi, Takehiro; Ichimura, Yohei; Toyama, Tetsuo; Trojanowska, Maria; Sato, Shinichi

    2016-01-01

    Objective It is generally accepted that blockade of endothelin receptors has potentially beneficial effects on vasculopathy associated with systemic sclerosis (SSc). The aim of this study was to clarify the molecular mechanism underlying these effects using endothelial cell–specific Fli-1–knockout (Fli-1 ECKO) mice, an animal model of SSc vasculopathy. Methods Levels of messenger RNA for target genes and the expression and phosphorylation levels of target proteins were determined in human and murine dermal microvascular endothelial cells by real-time quantitative reverse transcription–polymerase chain reaction and immunoblotting, respectively. The binding of Fli-1 to the target gene promoters was evaluated using chromatin immunoprecipitation. Expression levels of Fli-1 and α-smooth muscle actin in murine skin were evaluated using immunohistochemistry. Vascular structure and permeability were evaluated in mice injected with fluorescein isothiocyanate–dextran and Evans blue dye, respectively. Results In human dermal microvascular endothelial cells, endothelin 1 induced phosphorylation of Fli-1 at Thr312 through the sequential activation of c-Abl and protein kinase Cδ, leading to a decrease in Fli-1 protein levels as well as a decrease in binding of Fli-1 to the target gene promoters, whereas bosentan treatment reversed those effects. In Fli-1 ECKO mice, 4 weeks of treatment with bosentan increased endothelial Fli-1 expression, resulting in vascular stabilization and the restoration of impaired leaky vessels. Conclusion The vascular fragility of Fli-1 ECKO mice was improved by bosentan through the normalization of Fli-1 protein levels and activity in endothelial cells, which may explain, in part, the mechanism underlying the beneficial effects of endothelin receptor blockade on SSc vasculopathy. PMID:25707716

  9. Blockade of metabotropic glutamate receptor 5 activation inhibits mechanical hypersensitivity following abdominal surgery.

    PubMed

    Dolan, Sharron; Nolan, Andrea Mary

    2007-08-01

    This study used the metabotropic glutamate 5 (mGlu5) receptor subtype-selective antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) to characterise the contribution of mGlu5 receptor activity to pain and hypersensitivity in an animal model of post-surgical pain. Adult female Wistar rats (200-250g) were anaesthetised with isoflurane (2%) and underwent a midline laparotomy with gentle manipulation of the viscera, and the effects of pre- (30min) or post- (5h) operative treatment with MPEP (1, 3 or 10mgkg(-1); i.p.) or drug-vehicle on hindpaw withdrawal latency (in seconds) to thermal stimulation (Hargreave's Test) and response threshold (in grams) to mechanical stimulation (using a dynamic plantar aesthesiometer) were measured. Animals that underwent surgery displayed significant hypersensitivity to mechanical stimulation of the hindpaws. Hypersensitivity was maximum at 6h post-surgery (44.5+/-2.4% decrease; p<0.01 vs. anaesthesia only controls) and persisted for 48h. Surgery had no effect on thermal withdrawal latency. Both pre-operative and post-operative administration of 10mgkg(-1)MPEP blocked mechanical hypersensitivity induced by surgery (p<0.01 vs. vehicle treatment). MPEP had no effect on acute nociceptive thresholds in naïve animals. These data suggest that activity at mGlu5 receptors contributes to development of pain and hypersensitivity following surgery.

  10. Effects of dopamine D1 receptor activation and blockade on dopamine and noradrenaline levels in the rat brain.

    PubMed

    Avila-Luna, Alberto; Verduzco-Mendoza, Antonio; Bueno-Nava, Antonio

    2016-01-26

    The noradrenergic and dopaminergic systems are associated with the motor system and have anatomical and functional connections that have not yet been studied. The present study aimed to examine the specific role of D1 receptors (D1Rs) on noradrenergic and dopaminergic responses in the rat brain. Male Wistar rats were assigned to eight groups to receive systemic injection of a D1R agonist (SKF-38393) at 0, 1, 5 or 10mg/kg or injection of a D1R antagonist (SCH-23390) at 0, 0.25, 0.5 or 1mg/kg. Dopamine (DA) and noradrenaline (NA) levels were measured using high-performance liquid chromatography. Injection of SKF-38393 alone at 1, 5 and 10mg/kg did not alter DA levels in the midbrain, cerebral cortex or pons, while it significantly increased these levels in the striatum (at 1 and 10mg/kg), hippocampus (at 1mg/kg) and cerebellum (at 1 and 5mg/kg). Administration of SKF-38393 at 1, 5, and 10mg/kg decreased the NA levels in the midbrain, pons, hippocampus (except at 1mg/kg) and cortex (except at 5mg/kg), whereas the opposite effect was observed in the striatum. SCH-23390 decreased the DA levels in the cortex (at 0.25 and 0.5mg/kg) and pons (at 0.5mg/kg). In contrast, 0.25, 0.5 and 1mg/kg SCH-23390 increased the DA levels in the cerebellum, whereas no differences from the control levels were observed for the DA levels in the striatum, midbrain and hippocampus. SCH-23390 at 0.5 and 1mg/kg increased the NA levels in the striatum. In contrast, the midbrain, hippocampus, cortex, pons and cerebellum did not exhibit altered NA levels. Our results demonstrate that the activation of D1Rs modulates the response of the noradrenergic system in nearly all of the investigated brain structures; thus, the blockade of D1Rs attenuates the effects induced by D1R activation.

  11. GluN2B-containing NMDA receptors blockade rescues bidirectional synaptic plasticity in the bed nucleus of the stria terminalis of cocaine self-administering rats.

    PubMed

    deBacker, Julian; Hawken, Emily R; Normandeau, Catherine P; Jones, Andrea A; Di Prospero, Cynthia; Mechefske, Elysia; Gardner Gregory, James; Hayton, Scott J; Dumont, Éric C

    2015-01-01

    Drugs of abuse have detrimental effects on homeostatic synaptic plasticity in the motivational brain network. Bidirectional plasticity at excitatory synapses helps keep neural circuits within a functional range to allow for behavioral flexibility. Therefore, impaired bidirectional plasticity of excitatory synapses may contribute to the behavioral hallmarks of addiction, yet this relationship remains unclear. Here we tracked excitatory synaptic strength in the oval bed nucleus of the stria terminalis (ovBNST) using whole-cell voltage-clamp recordings in brain slices from rats self-administering sucrose or cocaine. In the cocaine group, we measured both a persistent increase in AMPA to NMDA ratio (A:N) and slow decay time of NMDA currents throughout the self-administration period and after withdrawal from cocaine. In contrast, the sucrose group exhibited an early increase in A:N ratios (acquisition) that returned toward baseline values with continued self-administration (maintenance) and after withdrawal. The sucrose rats also displayed a decrease in NMDA current decay time with continued self-administration (maintenance), which normalized after withdrawal. Cocaine self-administering rats exhibited impairment in NMDA-dependent long-term depression (LTD) that could be rescued by GluN2B-containing NMDA receptor blockade. Sucrose self-administering rats demonstrated no impairment in NMDA-dependent LTD. During the maintenance period of self-administration, in vivo (daily intraperitoneally for 5 days) pharmacologic blockade of GluN2B-containing NMDA receptors did not reduce lever pressing for cocaine. However, in vivo GluN2B blockade did normalize A:N ratios in cocaine self-administrating rats, and dissociated the magnitude of ovBNST A:N ratios from drug-seeking behavior after protracted withdrawal. Altogether, our data demonstrate when and how bidirectional plasticity at ovBNST excitatory synapses becomes dysfunctional with cocaine self-administration and that NMDA

  12. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    PubMed

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1 receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB1/CB2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A2AR blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A2ARs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB1Rs was assessed by using the CB1R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.

  13. Blockade of 5-Ht3 receptors in the septal area increases Fos expression in selected brain areas.

    PubMed

    Urzedo-Rodrigues, Lilia S; Ferreira, Hilda S; Santana, Rejane Conceição; Luz, Carla Patrícia; Perrone, Camila F; Fregoneze, Josmara B

    2014-04-01

    Serotonin is widely distributed throughout the brain and is involved in a multiplicity of visceral, cognitive and behavioral responses. It has been previously shown that injections of different doses of ondansetron, a 5-HT3 receptor antagonist, into the medial septum/vertical limb of the diagonal band complex (MS/vDB) induce a hypertensive response in rats. On the other hand, administration of m-CPBG, a 5-HT3 agonist, into the MS/vDB inhibits the increase of blood pressure during restraint stress. However, it is unclear which neuronal circuitry is involved in these responses. The present study investigated Fos immunoreactive nuclei (Fos-IR) in different brain areas following the blockade of 5-HT3 receptors located in the MS/vDB in sham and in sinoaortic denervated (SAD) rats. Ondansetron injection into the MS/vDB increases Fos-IR in different brain areas including the limbic system (central amygdala and ventral part of the bed nucleus of the stria terminalis), hypothalamus (medial parvocellular parts of the paraventricular nucleus, anterodorsal preoptic area, dorsomedial hypothalamic nucleus), mesencephalon (ventrolateral periaqueductal gray region) and rhombencephalon (lateral parabrachial nucleus) in sham rats. Barodenervation results in higher Fos expression at the parvocellular and magnocellular part of the paraventricular nucleus, the lateral parabrachial nucleus, the central nucleus of amygdala, the locus coeruleus, the medial part of the nucleus of the solitary tract, the rostral ventrolateral medulla and the caudal ventrolateral medulla following 5-HT3receptor blockade in the MS/vDB. Based on the present results and previous data showing a hypertensive response to ondansetron injected into the MS/vDB, it is reasonable to suggest that 5-HT3receptors in the MS/vDB exert an inhibitory drive that may oscillate as a functional regulatory part of the complex central neuronal network participating in the control of blood pressure.

  14. CB1 cannabinoid receptor-mediated anandamide signalling reduces the defensive behaviour evoked through GABAA receptor blockade in the dorsomedial division of the ventromedial hypothalamus.

    PubMed

    Dos Anjos-Garcia, Tayllon; Ullah, Farhad; Falconi-Sobrinho, Luiz Luciano; Coimbra, Norberto Cysne

    2017-02-01

    The effects of cannabinoids in brain areas expressing cannabinoid receptors, such as hypothalamic nuclei, are not yet well known. Several studies have demonstrated the role of hypothalamic nuclei in the organisation of behavioural responses induced through innate fear and panic attacks. Panic-prone states are experimentally induced in laboratory animals through a reduction in the GABAergic activity. The aim of the present study was to examine panic-like elaborated defensive behaviour evoked by GABAA receptor blockade with bicuculline (BIC) in the dorsomedial division of the ventromedial hypothalamus (VMHdm). We also aimed to characterise the involvement of endocannabinoids and the CB1 cannabinoid receptor in the modulation of elaborated defence behavioural responses organised with the VMHdm. The guide-cannula was stereotaxicaly implanted in VMHdm and the animals were treated with anandamide (AEA) at different doses, and the effective dose was used after the pre-treatment with the CB1 receptor antagonist AM251, followed by GABAA receptor blockade in VMHdm. The results showed that the intra-hypothalamic administration of AEA at an intermediate dose (5 pmol) attenuated defence responses induced through the intra-VMHdm microinjection of bicuculline (40 ng). This effect, however, was inhibited when applied central microinjection of the CB1 receptor antagonist AM251 in the VMHdm. Moreover, AM251 potentiates de non-oriented escape induced by bicuculline, effect blocked by pre-treatment with the TRPV1 channel antagonist 6-I-CPS. These results indicate that AEA modulates the pro-aversive effects of intra-VMHdm-bicuculline treatment, recruiting CB1 cannabinoid receptors and the TRPV1 channel is involved in the AM251-related potentiation of bicuculline effects on non-oriented escape behaviour.

  15. Fibroblast growth factor receptor levels decrease during chick embryogenesis

    PubMed Central

    1990-01-01

    Two putative receptors for fibroblast growth factor (FGF) of approximately 150 and 200 kD were identified in membrane preparations from chick embryos. Specific binding (femtomoles/milligram) of 125I- aFGF to whole chick embryonic membranes was relatively constant from day 2 to 7, then decreased fivefold between days 7 and 13. Day-19 chick embryos retained 125I-aFGF binding at low levels to brain, eye, and liver tissues but not to skeletal muscle or cardiac tissues. The 200-kD FGF receptor began to decline between day 4.5 and 7 and was barely detectable by day 9, whereas the 150-kD FGF receptor began to decline by day 7 but was still detectable in day-9 embryonic membranes. It is not known whether the two FGF-binding proteins represent altered forms of one polypeptide, but it is clear that their levels undergo differential changes during development. Because endogenous chick FGF may remain bound to FGF receptor in membrane preparations, membranes were treated with acidic (pH 4.0) buffers to release bound FGF; such treatment did not affect 125I-aFGF binding and moderately increased the number of binding sites in day-7 and -19 embryos. Consequently, the observed loss of high affinity 125I-aFGF binding sites and FGF-binding polypeptides most likely represents a loss of FGF receptor protein. These experiments provide in vivo evidence to support the hypothesis that regulation of FGF receptor levels may function as a mechanism for controlling FGF-dependent processes during embryonic development. PMID:2153684

  16. Role of adiponectin in the metabolic effects of cannabinoid type 1 receptor blockade in mice with diet-induced obesity

    PubMed Central

    Godlewski, Grzegorz; Earley, Brian J.; Zhou, Liang; Jourdan, Tony; Szanda, Gergö; Cinar, Resat; Kunos, George

    2013-01-01

    The adipocyte-derived hormone adiponectin promotes fatty acid oxidation and improves insulin sensitivity and thus plays a key role in the regulation of lipid and glucose metabolism and energy homeostasis. Chronic cannabinoid type 1 (CB1) receptor blockade also increases lipid oxidation and improves insulin sensitivity in obese individuals or animals, resulting in reduced cardiometabolic risk. Chronic CB1 blockade reverses the obesity-related decline in serum adiponectin levels, which has been proposed to account for the metabolic effects of CB1 antagonists. Here, we investigated the metabolic actions of the CB1 inverse agonist rimonabant in high-fat diet (HFD)-induced obese adiponectin knockout (Adipo−/−) mice and their wild-type littermate controls (Adipo+/+). HFD-induced obesity and its hormonal/metabolic consequences were indistinguishable in the two strains. Daily treatment of obese mice with rimonabant for 7 days resulted in significant and comparable reductions in body weight, serum leptin, free fatty acid, cholesterol, and triglyceride levels in the two strains. Rimonabant treatment improved glucose homeostasis and insulin sensitivity to the same extent in Adipo+/+ and Adipo−/− mice, whereas it reversed the HFD-induced hepatic steatosis, fibrosis, and hepatocellular damage only in the former. The adiponectin-dependent, antisteatotic effect of rimonabant was mediated by reduced uptake and increased β-oxidation of fatty acids in the liver. We conclude that reversal of the HFD-induced hepatic steatosis and fibrosis by chronic CB1 blockade, but not the parallel reduction in adiposity and improved glycemic control, is mediated by adiponectin. PMID:24381003

  17. Pharmacogenomics of β-adrenergic receptor physiology and response to β-blockade.

    PubMed

    von Homeyer, Peter; Schwinn, Debra A

    2011-12-01

    Myocardial β-adrenergic receptors (βARs) are important in altering heart rate, inotropic state, and myocardial relaxation (lusitropy). The β1AR and β2AR stimulation increases cyclic adenosine monophosphate concentration with the net result of myocyte contraction, whereas β3AR stimulation results in decreased inotropy. Downregulation of β1ARs in heart failure, as well as an increased β3AR activity and density, lead to decreased cyclic adenosine monophosphate production and reduced inotropy. The βAR antagonists are commonly used in patients with coronary artery disease and heart failure; however, perioperative use of βAR antagonists is controversial. Individual patient's response to beta-blocker therapy is an area of intensive research, and apart from pharmacokinetics, pharmacodynamics, and ethnic differences, genetic alterations have become more important in the last 20 years. The most common genetic variants in humans are single nucleotide polymorphisms (SNPs). There are 2 clinically relevant SNPs for the β1AR (Ser49Gly, Arg389Gly), 3 for the β2AR (Arg16Gly, Gln27Glu, Thr164Ile), and 1 for the β3AR (Trp64Arg). Although results are somewhat controversial, generally large datasets have the potential to show a relationship between βAR SNPs and outcomes such as development and progression of heart failure, coronary artery disease, vascular reactivity, hypertension, asthma, obesity, and diabetes. Although βAR SNPs may not directly cause disease, they appear to be risk factors for, and modifiers of, disease and the response to stress and drugs. In the perioperative setting, this has specifically been demonstrated for the Arg389Gly β1AR polymorphism with which patients with the Gly variant had a higher incidence of adverse perioperative events. Knowing that genetic variants play an important role, perioperative medicine will likely change from simple therapeutic intervention to a more personalized way of adrenergic receptor modulation.

  18. Effects of Adrenergic Receptor Activation and Blockade on the Systolic Preejection Period, Heart Rate, and Arterial Pressure in Man

    PubMed Central

    Harris, Willard S.; Schoenfeld, Clyde D.; Weissler, Arnold M.

    1967-01-01

    We have investigated the possibility that alterations in the duration of the systolic preejection period can be used to estimate adrenergic influences on the human left ventricle. The preejection period was determined from high speed, simultaneous recordings of the phonocardiogram, carotid pulse tracing, and electrocardiogram. The preejection period was shortened by isoproterenol, epinephrine, and moderate doses of norepinephrine—all of which activate beta adrenergic receptors—and by cedilanid-D. It was unaltered by changes in heart rate induced by atropine and right atrial electrical pacing. Beta adrenergic receptor blockade by propranolol abolished the shortening effects of the three catecholamines but did not inhibit that due to cedilanid-D. Vasoconstriction, both alpha adrenergic (epinephrine and norepinephrine after propranolol) and nonadrenergic (angiotensin), prolonged the preejection period. Most of the shortening of the preejection period by beta adrenergic receptor activating agents and cedilanid-D and all of the prolongation accompanying pharmacologic vasoconstriction occurred after the onset of the first heart sound, thereby excluding changes in electrical-mechanical delay as a major factor in the observed preejection period responses. Shortening of the preejection period by beta adrenergic activity induced with isoproterenol was dose-related. Increasing doses of propranolol produced parallel shifts to the right in the isoproterenol dose-response curve. In 37 normal resting subjects intravenous propranolol (10 mg) prolonged the preejection period an average of 10 (SE ± 1) msec. In six patients with psychogenic sinus tachycardia and a patient with a pheochromocytoma the presence of excessive beta adrenergic influences on the left ventricle was demonstrated by the finding of an initially short preejection period which responded with an abnormally great prolongation to beta adrenergic receptor blockade. Images PMID:4294053

  19. Full central neurokinin-1 receptor blockade is required for efficacy in depression: evidence from orvepitant clinical studies.

    PubMed

    Ratti, Emiliangelo; Bettica, Paolo; Alexander, Robert; Archer, Graeme; Carpenter, David; Evoniuk, Gary; Gomeni, Roberto; Lawson, Erica; Lopez, Monica; Millns, Helen; Rabiner, Eugenii A; Trist, David; Trower, Michael; Zamuner, Stefano; Krishnan, Ranga; Fava, Maurizio

    2013-05-01

    Full, persistent blockade of central neurokinin-1 (NK1) receptors may be a potential antidepressant mechanism. The selective NK1 antagonist orvepitant (GW823296) was used to test this hypothesis. A preliminary positron emission tomography study in eight male volunteers drove dose selection for two randomized six week studies in patients with major depressive disorder (MDD). Displacement of central [(11)C]GR205171 binding indicated that oral orvepitant doses of 30-60 mg/day provided >99% receptor occupancy for ≥24 h. Studies 733 and 833 randomized patients with MDD and 17-item Hamilton Depression Rating Scale (HAM-D)≥22 to double-blind treatment with orvepitant 30 mg/day, orvepitant 60 mg/day or placebo (1:1:1). Primary outcome measure was change from baseline in 17-item HAM-D total score at Week 6 analyzed using mixed models repeated measures. Study 733 (n=328) demonstrated efficacy on the primary endpoint (estimated drug-placebo differences of 30 mg: -2.41, 95% confidence interval (CI) (-4.50 to -0.31) p=0.0245; 60 mg: -2.86, 95% CI (-4.97 to -0.75) p=0.0082). Study 833 (n=345) did not show significance (estimated drug-placebo differences of 30 mg: -1.67, 95% CI (-3.73 to 0.39) p=0.1122; 60 mg: -0.76, 95% CI (-2.85 to 1.32) p=0.4713). The results support the hypothesis that full, long lasting blockade of central NK1 receptors may be an efficacious mechanism for the treatment of MDD.

  20. NMDA and AMPA/kainate glutamatergic receptors in the prelimbic medial prefrontal cortex modulate the elaborated defensive behavior and innate fear-induced antinociception elicited by GABAA receptor blockade in the medial hypothalamus.

    PubMed

    de Freitas, Renato Leonardo; Salgado-Rohner, Carlos José; Biagioni, Audrey Francisco; Medeiros, Priscila; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre S; Coimbra, Norberto Cysne

    2014-06-01

    The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) and amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptors of the prelimbic (PL) division of the medial prefrontal cortex (MPFC) on the panic attack-like reactions evoked by γ-aminobutyric acid-A receptor blockade in the medial hypothalamus (MH). Rats were pretreated with NaCl 0.9%, LY235959 (NMDA receptor antagonist), and NBQX (AMPA/kainate receptor antagonist) in the PL at 3 different concentrations. Ten minutes later, the MH was treated with bicuculline, and the defensive responses were recorded for 10 min. The antagonism of NMDA receptors in the PL decreased the frequency and duration of all defensive behaviors evoked by the stimulation of the MH and reduced the innate fear-induced antinociception. However, the pretreatment of the PL cortex with NBQX was able to decrease only part of defensive responses and innate fear-induced antinociception. The present findings suggest that the NMDA-glutamatergic system of the PL is critically involved in panic-like responses and innate fear-induced antinociception and those AMPA/kainate receptors are also recruited during the elaboration of fear-induced antinociception and in panic attack-related response. The activation of the glutamatergic neurotransmission of PL division of the MPFC during the elaboration of oriented behavioral reactions elicited by the chemical stimulation of the MH recruits mainly NMDA receptors in comparison with AMPA/kainate receptors.

  1. Disruption of type 5 adenylyl cyclase prevents β-adrenergic receptor cardiomyopathy: a novel approach to β-adrenergic receptor blockade.

    PubMed

    Yan, Lin; Vatner, Stephen F; Vatner, Dorothy E

    2014-11-15

    β-Adrenergic receptor (β-AR) blockade is widely used to treat heart failure, since the adverse effects of chronic β-AR stimulation are central to the pathogenesis of this disease state. Transgenic (Tg) mice, where β-AR signaling is chronically enhanced by overexpression of cardiac β₂-ARs, is a surrogate for this mechanism, since these mice develop cardiomyopathy as reflected by reduced left ventricular (LV) function, increased fibrosis, apoptosis, and myocyte hypertrophy. We hypothesized that disruption of type 5 adenylyl cyclase (AC5), which is in the β-AR signaling pathway in the heart, but exerts only a minor β-AR blocking effect, could prevent the cardiomyopathy in β₂-AR Tg mice without the negative effects of full β-AR blockade. Accordingly, we mated β₂-AR Tg mice with AC5 knockout (KO) mice. The β₂-AR Tg × AC5 KO bigenic mice prevented the cardiomyopathy as reflected by improved LV ejection fraction, reduced apoptosis, fibrosis, and myocyte size and preserved exercise capacity. The rescue was not simply due to a β-blocking effect of AC5 KO, since neither baseline LV function nor the response to isoproterenol was diminished substantially compared with the negative inotropic effects of β-blockade. However, AC5 disruption in β₂-AR Tg activates the antioxidant, manganese superoxide dismutase, an important mechanism protecting the heart from cardiomyopathy. These results indicate that disruption of AC5 prevents the cardiomyopathy induced by chronically enhanced β-AR signaling in mice with overexpressed β₂-AR, potentially by enhancing resistance to oxidative stress and apoptosis, suggesting a novel, alternative approach to β-AR blockade.

  2. P2Y12 receptor blockade synergizes strongly with nitric oxide and prostacyclin to inhibit platelet activation

    PubMed Central

    Chan, Melissa V.; Knowles, Rebecca B. M.; Lundberg, Martina H.; Tucker, Arthur T.; Mohamed, Nura A.; Kirkby, Nicholas S.; Armstrong, Paul C. J.; Mitchell, Jane A.

    2016-01-01

    Aims In vivo platelet function is a product of intrinsic platelet reactivity, modifiable by dual antiplatelet therapy (DAPT), and the extrinsic inhibitory endothelial mediators, nitric oxide (NO) and prostacyclin (PGI2), that are powerfully potentiated by P2Y12 receptor blockade. This implies that for individual patients endothelial mediator production is an important determinant of DAPT effectiveness. Here, we have investigated this idea using platelets taken from healthy volunteers treated with anti‐platelet drugs. Methods Three groups of male volunteers (n = 8) received either prasugrel (10 mg), aspirin (75 mg) or DAPT (prasugrel + aspirin) once daily for 7 days. Platelet reactivity in the presence of diethylammonium (Z)‐1‐(N,N‐diethylamino)diazen‐1‐ium‐1,2‐diolate (DEA/NONOate) and PGI2 was studied before and following treatment. Results Ex vivo, PGI2 and/or DEA/NONOate had little inhibitory effect on TRAP‐6‐induced platelet reactivity in control conditions. However, in the presence of DAPT, combination of DEA/NONOate + PGI2 reduced platelet aggregation (74 ± 3% to 19 ± 6%, P < 0.05). In vitro studies showed even partial (25%) P2Y12 receptor blockade produced a significant (67 ± 2% to 39 ± 10%, P < 0.05) inhibition when DEA/NONOate + PGI2 was present. Conclusions We have demonstrated that PGI2 and NO synergize with P2Y12 receptor antagonists to produce powerful platelet inhibition. Furthermore, even with submaximal P2Y12 blockade the presence of PGI2 and NO greatly enhances platelet inhibition. Our findings highlight the importance of endothelial mediator in vivo modulation of P2Y12 inhibition and introduces the concept of refining ex vivo platelet function testing by incorporating an assessment of endothelial function to predict thrombotic outcomes better and adjust therapy to prevent adverse outcomes in individual patients. PMID:26561399

  3. Activation but not blockade of GABAB receptors during early-life alters anxiety in adulthood in BALB/c mice.

    PubMed

    Sweeney, Fabian F; O'Leary, Olivia F; Cryan, John F

    2014-06-01

    Although the underlying pathophysiology of anxiety disorders is unknown it is clear that a combination of genetic and environmental factors in early life predispose to disease risk. Preclinical research increasingly suggests an important role for the GABAB receptor in modulating anxiety behaviour, with GABAB receptor deficient mice having increased anxiety behaviour. Previous studies have highlighted critical windows during development where adult anxiety behaviour is primed. However, little is known regarding the role played by the GABAB receptors in the developmental processes that underlie adult anxiety behaviour. To this end, we treated male BALB/c mouse pups with the either the selective GABAB receptor agonist, R-baclofen (2 mg/kg, s.c), the GABAB receptor antagonist CGP 52432 (10 mg/kg and 30 mg/kg) or vehicle from postnatal days (P) 14-28. The anxiety behaviour of these mice was then assessed in adulthood (P62 onwards) in a battery of behavioural tests comprising; the stress induced hyperthermia (SIH) test, defensive marble burying (DMB), elevated-plus maze (EPM) and the forced swim test (FST). Postnatal R-baclofen treatment resulted in increased anxiety-like behaviour in the EPM as shown by approach-avoidance and ethological measures. Other behavioural measures were not significantly altered. Interestingly, blockade of GABAB receptors with CGP52432 in early life caused no alterations in emotional behaviour. These data suggest that during early life GABAB receptor signalling can play a functional role in programing anxiety behaviour in adulthood. The underlying neurodevelopmental processes underlying these effects remain to be discovered.

  4. Doxepin and diphenhydramine increased non-rapid eye movement sleep through blockade of histamine H1 receptors.

    PubMed

    Wang, Yi-Qun; Takata, Yohko; Li, Rui; Zhang, Ze; Zhang, Meng-Qi; Urade, Yoshihiro; Qu, Wei-Min; Huang, Zhi-Li

    2015-02-01

    Histaminergic neurons have been reported to play an important role in the regulation of sleep-wake behavior through the histamine H1 receptor (R, H1R). First generation H1R antagonists, such as doxepin and diphenhydramine, produce drowsiness in humans, and are occasionally used to treat insomnia. However, if H1R antagonists function via physically blocking the H1R remains unclear. In the current study, we used H1R knockout (KO) mice to investigate if the sleep-promoting effects of doxepin and diphenhydramine are dependent on blockade of the H1R. When doxepin was administered, non-rapid eye movement (NREM) sleep in wild type (WT) mice increased for 4h, with an increase in the numbers of NREM sleep bouts of 256-512 s and 512-1024 s. These effects were not observed in the H1R KO mice. Furthermore, diphenhydramine increased NREM sleep for 6h in WT, and not in the H1R KO mice after the injection. These results indicate that both doxepin at 15 mg/kg and diphenhydramine at 10 mg/kg induce NREM sleep through blockade of H1R.

  5. Prorenin/Renin Receptor Blockade Promotes a Healthy Fat Distribution in Obese Mice

    PubMed Central

    Tan, Paul; Blais, Carolane; Nguyen, Thi M.-D.; Schiller, Peter W.; Gutkowska, Jolanta; Lavoie, Julie L.

    2016-01-01

    Objective Administration of the handle region peptide (HRP), a (pro)renin receptor blocker, decreases body weight gain and visceral adipose tissue (VAT) in high-fat/high-carbohydrate (HF/HC) diet-fed mice. The objective of this study was to elucidate potential mechanisms implicated in these observations. Methods Mice were given a normal or a HF/HC diet along with saline or HRP for 10 weeks. Results In HF/HC-fed mice, HRP increased the expression of several enzymes implicated in lipogenesis and lipolysis in subcutaneous fat (SCF) while the expression of the enzyme implicated in the last step of lipogenesis decreased in VAT. A reduction was also observed in circulating free fatty acids in these animals which was accompanied by normalized adipocyte size in VAT and increased adipocyte size in SCF. “Beiging“ is the evolution of a white adipose tissue toward a brown-like phenotype characterized by an increased mitochondrial density and small lipid droplets. HRP increased the expression of’ “beiging” markers in SCF of HF/HC diet-fed mice. Conclusions HRP treatment may favor healthy fat storage in SCF by activating a triglyceride/free fatty acid cycling and “beiging,” which could explain the body weight and fat mass reduction. PMID:27458124

  6. The simultaneous blockade of chemokine receptors CCR2, CCR5 and CXCR3 by a non-peptide chemokine receptor antagonist protects mice from dextran sodium sulfate-mediated colitis.

    PubMed

    Tokuyama, Hirotake; Ueha, Satoshi; Kurachi, Makoto; Matsushima, Kouji; Moriyasu, Fuminori; Blumberg, Richard S; Kakimi, Kazuhiro

    2005-08-01

    Chemokine receptors CCR2, CCR5 and CXCR3 are involved in the regulation of macrophage- and T cell-mediated immune responses and in the migration and activation of these cells. In order to determine whether blockade of these chemokine receptors modulates intestinal inflammation, we investigated here the effect of a non-peptide chemokine receptor antagonist, TAK-779 (N,N-dimethyl-N-[4-[[[2-(4-methylphenyl)-6,7-dihydro-5H-benzocyclohepten-8-yl]carbonyl]amino]benzyl]-tetrahydro-2H-pyran-4-aminium chloride), in mice with dextran sodium sulfate (DSS)-induced experimental colitis. C57BL/6 mice were fed 5% DSS in their drinking water for up to 7 days with or without the administration of TAK-779. The severity of inflammation in the colon was assessed by clinical signs and histological examination. Infiltration of inflammatory cells into the mucosa was analyzed by immunohistochemistry, and the expression of cytokine and chemokine mRNAs in tissues was quantitated by reverse transcription-PCR. During DSS-induced colitis, the recruitment of monocytes/macrophages into the colonic mucosa and the induction of proinflammatory cytokines correlated with the severity of intestinal inflammation. The onset of clinical signs and histopathologic features were delayed in animals treated with TAK-779. The expression of CCR2, CCR5 and CXCR3 mRNAs was inhibited in the TAK-779-treated mice. Consistent with these results, infiltration of monocytes/macrophages into the lamina propria was almost completely inhibited and the expression of colonic IL-1beta and IL-6 was significantly decreased in the TAK-779-treated mice. The blockade of CCR2, CCR5 and CXCR3 prevents murine experimental colitis by inhibiting the recruitment of inflammatory cells into the mucosa. Therefore, chemokines and their receptors may be therapeutic targets for the treatment of inflammatory bowel disease.

  7. Selective blockade of 5-HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats.

    PubMed

    Ootsuka, Youichirou; Blessing, William W; Nalivaiko, Eugene

    2008-03-01

    Previous studies have demonstrated that 5-HT2A receptors may be involved in the central control of thermoregulation and of the cardiovascular system. Our aim was to test whether these receptors mediate thermogenic and tachycardiac responses induced by acute psychological stress. Three groups of adult male Hooded Wistar rats were instrumented with: (i) a thermistor in the interscapular area (for recording brown adipose tissue temperature) and an ultrasound Doppler probe (to record tail blood flow); (ii) temperature dataloggers to record core body temperature; (iii) ECG electrodes. On the day of the experiment, rats were subjected to a 30-min restraint stress preceded by s.c. injection of either vehicle or SR-46349B (a serotonin 2A receptor antagonist) at doses of 0.01, 0.1 and 1.0 mg/kg. The restraint stress caused a rise in brown adipose tissue temperature (from, mean +/- s.e.m., 36.6 +/- 0.2 to 38.0 +/- 0.2 degrees C), transient cutaneous vasoconstriction (tail blood flow decreased from 12 +/- 2 to 5 +/- 1 cm/s), increase in heart rate (from 303 +/- 15 to 453 +/- 15 bpm at the peak, then reduced to 393 +/- 12 bpm at the steady state), and defaecation (6 +/- 1 pellets per restraint session). The core body temperature was not affected by the restraint. Blockade of 5-HT2A receptors attenuated the increase in brown adipose tissue temperature and transient cutaneous vasoconstriction, but not tachycardia and defaecation elicited by restraint stress. These results indicate that psychological stress causes activation of 5-HT2A receptors in neural pathways that control thermogenesis in the brown adipose tissue and facilitate cutaneous vasoconstriction.

  8. Cortisol receptor blockade and seawater adaptation in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Marshall, W.S.; Cozzi, R.R.F.; Pelis, R.M.; McCormick, S.D.

    2005-01-01

    To examine the role of cortisol in seawater osmoregulation in a euryhaline teleost, adult killifish were acclimated to brackish water (10???) and RU486 or vehicle was administered orally in peanut oil daily for five days at low (40 mg.kg-1) or high dose (200 mg.kg-1). Fish were transferred to 1.5 x seawater (45???) or to brackish water (control) and sampled at 24 h and 48 h after transfer, when Cl- secretion is upregulated. At 24 h, opercular membrane Cl- secretion rate, as Isc, was increased only in the high dose RU486 group. Stimulation of membranes by 3-isobutyl-1-methylxanthine and cAMP increased Isc in vehicle treated controls but those from RU486-treated animals were unchanged and membranes from brackish water animals showed a decrease in Isc. At 48 h, Isc increased and transepithelial resistance decreased in vehicle and RU486 groups, compared to brackish water controls. Plasma cortisol increased in all groups transferred to high salinity, compared to brackish water controls. RU486 treated animals had higher cortisol levels compared to vehicle controls. Vehicle treated controls had lower cortisol levels than untreated or RU486 treated animals, higher stimulation of Isc, and lower hematocrit at 24 h, beneficial effects attributed to increased caloric intake from the peanut oil vehicle. Chloride cell density was significantly increased in the high dose RU486 group at 48 hours, yet Isc was unchanged, suggesting a decrease in Cl- secretion per cell. Thus cortisol enhances NaCl secretion capacity in chloride cells, likely via glucocorticoid type receptors. ?? 2005 Wiley-Liss, Inc.

  9. D1, but not D2, receptor blockade within the infralimbic and medial orbitofrontal cortex impairs cocaine seeking in a region-specific manner.

    PubMed

    Cosme, Caitlin V; Gutman, Andrea L; Worth, Wensday R; LaLumiere, Ryan T

    2016-08-31

    Evidence suggests that the infralimbic cortex (IL), a subregion of the ventromedial prefrontal cortex (vmPFC), suppresses cocaine-seeking behavior in a self-administration paradigm, whereas the more anterior vmPFC subregion, the medial orbitofrontal cortex (mOFC), has received very little attention in this regard. Despite the established dopaminergic innervation of the vmPFC, whether dopamine receptor blockade in each subregion alters the reinstatement of cocaine seeking is unclear. To address this issue, male Sprague-Dawley rats underwent 2 weeks of cocaine self-administration, followed by extinction training and reinstatement testing. Immediately prior to each reinstatement test, rats received microinjections of the D1 receptor antagonist SCH 23390, the D2 receptor antagonist sulpiride or their respective vehicles. D1 receptor blockade in the IL reduced cued reinstatement but had no effect on cocaine prime and cue + cocaine-prime reinstatement, whereas D2 receptor blockade in the IL had no effect on reinstatement. For the mOFC, however, D1 receptor blockade reduced cocaine seeking in all reinstatement types, whereas blocking D2 receptors in the mOFC had no effect on any form of cocaine seeking. These findings suggest different roles for D1 receptors in the IL versus the mOFC in regulating cocaine-seeking behavior. Moreover, even as previous work indicates that IL inactivation does not affect reinstatement but, rather, induces cocaine seeking during extinction, the present findings suggest that dopamine receptor activation in the IL is necessary for cocaine seeking under some circumstances.

  10. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat.

    PubMed

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion

  11. Blockade of dorsal hippocampal orexin-1 receptors impaired morphine-induced state-dependent learning.

    PubMed

    Farahmandfar, Maryam; Kadivar, Mehdi; Rastipisheh, Sareh

    2016-12-01

    Behavioral abnormalities associated with opiate addiction include memory and learning deficits, which are the result of some alterations in the neuromodulatory systems. Recently, orexin has shown to influence drug addiction neural circuitry, specifically in mediating reward-related perception and memory. To explore the possible interaction of orexinergic and opioidergic system on modulation of learning and memory, we have investigated the effects of intra-dorsal hippocampal (intra-CA1) administration of orexin-1 receptor agonist and the competitive orexin-1 antagonist, SB-334867, on morphine-induced memory impairment by using step-down passive avoidance task in mice. Pre-training injection of morphine (5mg/kg, i.p.) impaired memory, which was restored when 24h later the same dose of the drug was administered. Pre-test administration of orexin-1 (0.5, 5 and 50pmol, intra-CA1) had not a significant effect on the retention latency compared to the saline-treated animals, but it restored the memory impairment induced by pre-training morphine (5mg/kg, i.p.). Pre-test administration of SB-334867 (10, 20 and 40nmol, intra-CA1) by itself decreased the retention latencies of passive avoidance task. Co-administration of orexin-1 (0.5, 5 and 50pmol, intra-CA1) and morphine (1mg/kg, i.p.) on the test day induced morphine state-dependent memory. Conversely, pre-test injection of SB-334867 (10, 20 and 40nmol, intra-CA1) inhibited the orexin-1-induced potentiation of morphine state-dependent learning on the test day. It is concluded that dorsal hippocampal orexin-1 receptors may be involved, at least in part, in morphine state-dependent learning in mice.

  12. Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum.

    PubMed

    Tebano, Maria Teresa; Pintor, Annita; Frank, Claudio; Domenici, Maria Rosaria; Martire, Alberto; Pepponi, Rita; Potenza, Rosa Luisa; Grieco, Rosa; Popoli, Patrizia

    2004-07-01

    Adenosine A(2A) receptor antagonists are being regarded as potential neuroprotective drugs, although the mechanisms underlying their effects need to be better studied. The aim of this work was to investigate further the mechanism of the neuroprotective action of A(2A) receptor antagonists in models of pre- and postsynaptic excitotoxicity. In microdialysis studies, the intrastriatal perfusion of the A(2A) receptor antagonist ZM 241385 (5 and 50 nM) significantly reduced, in an inversely dose-dependent way, the raise in glutamate outflow induced by 5 mM quinolinic acid (QA). In rat corticostriatal slices, ZM 241385 (30-100 nM) significantly reduced 4-aminopyridine (4-AP)-induced paired-pulse inhibition (PPI; an index of neurotransmitter release), whereas it worsened the depression of field potential amplitude elicited by N-methyl-D-aspartate (NMDA; 12.5 and 50 microM). The A(2A) antagonist SCH 58261 (30 nM) mimicked the effects of ZM 241385, whereas the A(2A) agonist CGS 21680 (100 nM) showed a protective influence toward 50 microM NMDA. In rat striatal neurons, 50 nM ZM 241385 did not affect the increase in [Ca(2+)](i) or the release of lactate dehydrogenase (LDH) induced by 100 and 300 microM NMDA, respectively. The ability of ZM 241385 to prevent QA-induced glutamate outflow and 4-AP-induced effects confirms that A(2A) receptor antagonists have inhibitory effects on neurotransmitter release, whereas the results obtained toward NMDA-induced effects suggest that A(2A) receptor blockade does not reduce, or even amplifies, excitotoxic mechanisms due to direct NMDA receptor stimulation. This indicates that the neuroprotective potential of A(2A) antagonists may be evident mainly in models of neurodegeneration in which presynaptic mechanisms play a major role.

  13. Selective blockade of 5-hydroxytryptamine (5-HT)7 receptors enhances 5-HT transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents.

    PubMed

    Bonaventure, Pascal; Kelly, Lisa; Aluisio, Leah; Shelton, Jonathan; Lord, Brian; Galici, Ruggero; Miller, Kirsten; Atack, John; Lovenberg, Timothy W; Dugovic, Christine

    2007-05-01

    Evidence has accumulated supporting a role for 5-hydroxytryptamine (5-HT)7 receptors in circadian rhythms, sleep, and mood disorders, presumably as a consequence of the modulation of 5-HT-mediated neuronal activity. We hypothesized that a selective 5-HT7 receptor antagonist, (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]-pyrrolidine (SB-269970), should increase activity of 5-HT neurons and potentiate the effect of selective serotonin reuptake inhibitors (citalopram). In rats, administration of 3 mg/kg s.c. citalopram alone increased the extracellular concentration of 5-HT. This effect of citalopram on extracellular 5-HT concentration was significantly enhanced by an ineffective dose of SB-269970. Combining this dose of SB-269970 with a low dose of citalopram also resulted in a significant increase in extracellular concentration of 5-HT, suggesting a potentiation of neurochemical effects. In mice, citalopram and SB-269970 dose-dependently decreased immobility time in the tail suspension test. The dose-effect curve of citalopram was shifted leftward by coadministration of an effective dose of SB-269970. Furthermore, combining ineffective doses of citalopram and SB-269970 also resulted in a significant decrease of immobility time in the tail suspension test, suggesting potentiation of antidepressant-like effects. In rats, SB-269970 potentiated the increase of rapid eye movement (REM) latency and the REM sleep decrease induced by citalopram. SB-269970 also reversed the increase in sleep fragmentation induced by citalopram. Rat plasma and brain concentrations of citalopram were not affected by coadministration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. Overall, these results indicate that selective blockade of 5-HT7 receptors may enhance the antidepressant efficacy of citalopram and may provide a novel therapy to alleviate sleep disturbances associated with depression.

  14. Long-term effects of amygdala GABA receptor blockade on specific subpopulations of hippocampal interneurons.

    PubMed

    Berretta, Sabina; Lange, Nicholas; Bhattacharyya, Sujoy; Sebro, Ronnie; Garces, Jessica; Benes, Francine M

    2004-01-01

    Growing evidence indicates that the amygdala modulates hippocampal functions. To test the hypothesis that this modulation may involve long-lasting effects on interneuronal networks in the hippocampus, changes in the expression of neurochemical markers specific for different interneuronal subpopulations were assessed in adult rats 96 h following acute infusion of low doses of the GABAA receptor antagonist picrotoxin into the amygdala. The numerical density (Nd) of somata showing immunoreactivity (IR) for parvalbumin (PVB) was decreased in dentate gyrus (DG) and the CA4-2 region, while that of calretinin (CR)-IR was decreased in DG and CA2. The Nd of calbindin D28k (CB)-IR somata was decreased in CA3-2. The densities of axon terminals arising from PVB-IR and cholecystokinin (CCK)-IR basket neurons were also altered, with those of CCK-IR terminals increased across all sectors, while PVB-IR terminals were decreased only in the CA region. Increases in CCK-IR terminals were paralleled by increases of terminals with IR for the 65-kD isoform of glutamate decarboxylase (GAD65). Mixed-effects statistical models, adapted specifically for these analyses, indicated that perturbations of amygdalar inputs to the hippocampus significantly alter the drive that hippocampal PVB-, CR-, and CB-IR neurons within the dentate gyrus/CA4 region exercise on CCK-IR terminals within the same region as well as in CA3-1. These results suggest that amygdalar modulation of specific neuronal subpopulations may induce lasting and far-reaching changes in the hippocampus during normal functioning, as well as in diseases involving a disruption of amygdalar activity. In particular, changes in specific interneuronal markers within selective hippocampal sectors detected in the present results are strikingly similar to those reported in this region in schizophrenia. These similarities suggest that, in this disease, a disruption of GABAergic transmission within the amygdala may play a significant role in

  15. Mineralocorticoid receptor blockade prevents Western diet-induced diastolic dysfunction in female mice.

    PubMed

    Bostick, Brian; Habibi, Javad; DeMarco, Vincent G; Jia, Guanghong; Domeier, Timothy L; Lambert, Michelle D; Aroor, Annayya R; Nistala, Ravi; Bender, Shawn B; Garro, Mona; Hayden, Melvin R; Ma, Lixin; Manrique, Camila; Sowers, James R

    2015-05-01

    Overnutrition/obesity predisposes individuals, particularly women, to diastolic dysfunction (DD), an independent predictor of future cardiovascular disease. We examined whether low-dose spironolactone (Sp) prevents DD associated with consumption of a Western Diet (WD) high in fat, fructose, and sucrose. Female C57BL6J mice were fed a WD with or without Sp (1 mg·kg(-1)·day(-1)). After 4 mo on the WD, mice exhibited increased body weight and visceral fat, but similar blood pressures, compared with control diet-fed mice. Sp prevented the development of WD-induced DD, as indicated by decreased isovolumic relaxation time and an improvement in myocardial performance (decreased diastolic relaxation time/increased diastolic initial filling rate, as assessed by MRI. The relationship between passive sarcomere length of cardiac myocytes and ventricular pressure was monitored using di-8-ANEPPS staining of the t-tubule network in hearts ex vivo. Sp administration led to longer sarcomere lengths at each pressure indicative of improved ventricular compliance in WD-fed mice. Sp also prevented left ventricular hypertrophy, interstitial fibrosis, and oxidative stress. Sp prevented the WD-induced increased expression of myocardial proinflammatory M1 macrophage markers monocyte chemoattractant protein-1 and CD11c and increased the expression of the anti-inflammatory M2 macrophage marker CD206. These findings demonstrate that WD-induced DD is associated with increased oxidant stress, fibrosis, and immune dysregulation. Mineralocorticoid receptor antagonism enhanced M2 macrophage polarization and ameliorated oxidant stress and fibrosis. This work supports a novel blood pressure-independent effect of MR antagonism as a strategy to prevent diet-induced DD in women. Mineralocorticoid antagonism; low-dose spironolactone; aldosterone;high-fat diet; high-fructose diet; oxidative stress

  16. Lithium attenuated the behavioral despair induced by acute neurogenic stress through blockade of opioid receptors in mice.

    PubMed

    Khaloo, Pegah; Sadeghi, Banafshe; Ostadhadi, Sattar; Norouzi-Javidan, Abbas; Haj-Mirzaian, Arya; Zolfagharie, Samira; Dehpour, Ahmad-Reza

    2016-10-01

    Major depressive disorder is disease with high rate of morbidity and mortality. Stressful events lead to depression and they can be used as a model of depression in rodents. In this study we aimed to investigate whether lithium modifies the stressed-induced depression through blockade of opioid receptors in mice. We used foot shock stress as stressor and forced swimming test (FST), tail suspension test (TST) and open field test (OFT) to evaluation the behavioral responses in mice. We also used naltrexone hydrochloride (as opioid receptor antagonist), and morphine (as opioid receptor agonist). Our results displayed that foot-shock stress significantly increased the immobility time in TST and FST but it could not change the locomotor behavior in OFT. When we combined the low concentrations of lithium and naltrexone a significant reduction in immobility time was seen in the FST and TST in comparison with control foot-shock stressed group administered saline only. Despite the fact that our data showed low concentrations of lithium, when administered independently did not significantly affect the immobility time. Also our data indicated that concurrent administration of lithium and naltrexone had no effect on open field test. Further we demonstrated that simultaneous administration of morphine and lithium reverses the antidepressant like effect of active doses of lithium. Our data acclaimed that we lithium can augment stressed-induced depression and opioid pathways are involved in this action.

  17. EFFECT OF AT1 RECEPTOR BLOCKADE ON INTERMITTENT HYPOXIA-INDUCED ENDOTHELIAL DYSFUNCTION

    PubMed Central

    Marcus, Noah J.; Philippi, Nathan R.; Bird, Cynthia E.; Li, Yu-Long; Schultz, Harold D.; Morgan, Barbara J.

    2012-01-01

    Chronic intermittent hypoxia (CIH) raises arterial pressure, impairs vasodilator responsiveness, and increases circulating angiotensin II (Ang II); however, the role of Ang II in CIH-induced vascular dysfunction is unknown. Rats were exposed to CIH or room air (NORM), and a subset of these animals was treated with losartan (Los) during the exposure period. After 28 days, vasodilatory responses to acetylcholine or nitroprusside were measured in isolated gracilis arteries. Superoxide levels and Ang II receptor protein expression were measured in saphenous arteries. After 28 days, arterial pressure was increased and acetylcholine-induced vasodilation was blunted in CIH vs. NORM, and this was prevented by Los. Responses to nitroprusside and superoxide levels did not differ between CIH and NORM. Expression of AT2R was decreased and the AT1R:AT2R ratio was increased in CIH vs. NORM, but this was unaffected by Los. These results indicate that the blood pressure elevation and endothelial dysfunction associated with CIH is dependent, at least in part, on RAS signaling. PMID:22728949

  18. Blockade of the tumor necrosis factor-related apoptosis inducing ligand death receptor DR5 prevents beta-amyloid neurotoxicity.

    PubMed

    Uberti, Daniela; Ferrari-Toninelli, Giulia; Bonini, Sara Anna; Sarnico, Ilenia; Benarese, Marina; Pizzi, Marina; Benussi, Luisa; Ghidoni, Roberta; Binetti, Giuliano; Spano, PierFranco; Facchetti, Fabio; Memo, Maurizio

    2007-04-01

    We originally suggested that inhibition of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) death pathway could be taken into consideration as a potential therapeutic strategy for Alzheimer's disease (AD). However, because the critical role of TRAIL in immune surveillance, the neutralization of TRAIL protein by an antibody to prevent its binding to death receptors is definitely a risky approach. Here, we demonstrated that the blockade of the TRAIL death receptor DR5 with a specific antibody completely prevented amyloid beta peptide (A beta) neurotoxicity in both neuronal cell line and primary cortical neurons. DR5 was demonstrated to be a key factor in TRAIL death pathway. In fact, whereas TRAIL expression was enhanced dose-dependently by concentrations of beta amyloid ranging from 10 nM to 1 microM, only the highest toxic dose of A beta (25 microM) induced the increased expression of DR5 and neuronal cell death. In addition, the increased expression of DR5 receptor after beta amyloid treatment was sustained by p53 transcriptional activity, as demonstrated by the data showing that the p53 inhibitor Pifithrin alpha prevented both beta amyloid-induced DR5 induction and cell death. These data suggest a sequential activation of p53 and DR5 upon beta amyloid exposure. Further insight into the key role of DR5 in AD was suggested by data showing a significant increase of DR5 receptor in cortical slices of AD brain. Thus, these findings may give intracellular TRAIL pathway a role in AD pathophysiology, making DR5 receptor a possible candidate as a pharmacological target.

  19. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot.

    PubMed

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B; Turkheimer, Federico E

    2016-04-15

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i

  20. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot

    PubMed Central

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B.; Turkheimer, Federico E.

    2016-01-01

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i

  1. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus.

    PubMed

    Zhang, Yue; Peti-Peterdi, Janos; Müller, Christa E; Carlson, Noel G; Baqi, Younis; Strasburg, David L; Heiney, Kristina M; Villanueva, Karie; Kohan, Donald E; Kishore, Bellamkonda K

    2015-12-01

    P2Y12 receptor (P2Y12-R) signaling is mediated through Gi, ultimately reducing cellular cAMP levels. Because cAMP is a central modulator of arginine vasopressin (AVP)-induced water transport in the renal collecting duct (CD), we hypothesized that if expressed in the CD, P2Y12-R may play a role in renal handling of water in health and in nephrogenic diabetes insipidus. We found P2Y12-R mRNA expression in rat kidney, and immunolocalized its protein and aquaporin-2 (AQP2) in CD principal cells. Administration of clopidogrel bisulfate, an irreversible inhibitor of P2Y12-R, significantly increased urine concentration and AQP2 protein in the kidneys of Sprague-Dawley rats. Notably, clopidogrel did not alter urine concentration in Brattleboro rats that lack AVP. Clopidogrel administration also significantly ameliorated lithium-induced polyuria, improved urine concentrating ability and AQP2 protein abundance, and reversed the lithium-induced increase in free-water excretion, without decreasing blood or kidney tissue lithium levels. Clopidogrel administration also augmented the lithium-induced increase in urinary AVP excretion and suppressed the lithium-induced increase in urinary nitrates/nitrites (nitric oxide production) and 8-isoprostane (oxidative stress). Furthermore, selective blockade of P2Y12-R by the reversible antagonist PSB-0739 in primary cultures of rat inner medullary CD cells potentiated the expression of AQP2 and AQP3 mRNA, and cAMP production induced by dDAVP (desmopressin). In conclusion, pharmacologic blockade of renal P2Y12-R increases urinary concentrating ability by augmenting the effect of AVP on the kidney and ameliorates lithium-induced NDI by potentiating the action of AVP on the CD. This strategy may offer a novel and effective therapy for lithium-induced NDI.

  2. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus

    PubMed Central

    Zhang, Yue; Peti-Peterdi, Janos; Müller, Christa E.; Carlson, Noel G.; Baqi, Younis; Strasburg, David L.; Heiney, Kristina M.; Villanueva, Karie; Kohan, Donald E.

    2015-01-01

    P2Y12 receptor (P2Y12-R) signaling is mediated through Gi, ultimately reducing cellular cAMP levels. Because cAMP is a central modulator of arginine vasopressin (AVP)-induced water transport in the renal collecting duct (CD), we hypothesized that if expressed in the CD, P2Y12-R may play a role in renal handling of water in health and in nephrogenic diabetes insipidus. We found P2Y12-R mRNA expression in rat kidney, and immunolocalized its protein and aquaporin-2 (AQP2) in CD principal cells. Administration of clopidogrel bisulfate, an irreversible inhibitor of P2Y12-R, significantly increased urine concentration and AQP2 protein in the kidneys of Sprague–Dawley rats. Notably, clopidogrel did not alter urine concentration in Brattleboro rats that lack AVP. Clopidogrel administration also significantly ameliorated lithium-induced polyuria, improved urine concentrating ability and AQP2 protein abundance, and reversed the lithium-induced increase in free-water excretion, without decreasing blood or kidney tissue lithium levels. Clopidogrel administration also augmented the lithium-induced increase in urinary AVP excretion and suppressed the lithium-induced increase in urinary nitrates/nitrites (nitric oxide production) and 8-isoprostane (oxidative stress). Furthermore, selective blockade of P2Y12-R by the reversible antagonist PSB-0739 in primary cultures of rat inner medullary CD cells potentiated the expression of AQP2 and AQP3 mRNA, and cAMP production induced by dDAVP (desmopressin). In conclusion, pharmacologic blockade of renal P2Y12-R increases urinary concentrating ability by augmenting the effect of AVP on the kidney and ameliorates lithium-induced NDI by potentiating the action of AVP on the CD. This strategy may offer a novel and effective therapy for lithium-induced NDI. PMID:25855780

  3. Decreased Brain Neurokinin-1 Receptor Availability in Chronic Tennis Elbow

    PubMed Central

    Linnman, Clas; Catana, Ciprian; Svärdsudd, Kurt; Appel, Lieuwe; Engler, Henry; Långström, Bengt; Sörensen, Jens; Furmark, Tomas; Fredrikson, Mats; Borsook, David; Peterson, Magnus

    2016-01-01

    Substance P is released in painful and inflammatory conditions, affecting both peripheral processes and the central nervous system neurokinin 1 (NK1) receptor. There is a paucity of data on human brain alterations in NK1 expression, how this system may be affected by treatment, and interactions between central and peripheral tissue alterations. Ten subjects with chronic tennis elbow (lateral epicondylosis) were selected out of a larger (n = 120) randomized controlled trial evaluating graded exercise as a treatment for chronic tennis elbow (lateral epicondylosis). These ten subjects were examined by positron emission tomography (PET) with the NK1-specific radioligand 11C-GR205171 before, and eight patients were followed up after treatment with graded exercise. Brain binding in the ten patients before treatment, reflecting NK1-receptor availability (NK1-RA), was compared to that of 18 healthy subjects and, longitudinally, to the eight of the original ten patients that agreed to a second PET examination after treatment. Before treatment, patients had significantly lower NK1-RA in the insula, vmPFC, postcentral gyrus, anterior cingulate, caudate, putamen, amygdala and the midbrain but not the thalamus and cerebellum, with the largest difference in the insula contralateral to the injured elbow. No significant correlations between brain NK1-RA and pain, functional severity, or peripheral NK1-RA in the affected limb were observed. In the eight patients examined after treatment, pain ratings decreased in everyone, but there were no significant changes in NK1-RA. These findings indicate a role for the substance P (SP) / NK1 receptor system in musculoskeletal pain and tissue healing. As neither clinical parameters nor successful treatment response was reflected in brain NK1-RA after treatment, this may reflect the diverse function of the SP/NK1 system in CNS and peripheral tissue, or a change too small or slow to capture over the three-month treatment. PMID:27658244

  4. Effect of blockade of postsynaptic H1 or H2 receptors or activation of presynaptic H3 receptors on catecholamine-induced stimulation of ACTH and prolactin secretion.

    PubMed

    Willems, E; Knigge, U; Jorgensen, H; Kjaer, A; Warberg, J

    2000-06-01

    The effect of inhibition of the neuronal histaminergic system by blockade of postsynaptic H1 or H2 receptors or activation of presynaptic H3 autoreceptors on the ACTH and prolactin responses to the catecholamines epinephrine and norepinephrine was investigated in conscious male rats. Intracerebroventricular infusion of epinephrine and norepinephrine stimulated ACTH and prolactin secretion. Prior intracerebroventricular infusion of the H1 receptor antagonist, mepyramine, or the H2 receptor antagonist, cimetidine, had no effect on the ACTH response to epinephrine or norepinephrine, while these responses were inhibited by pretreatment with the H3 receptor agonist, imetit. The prolactin response to norepinephrine was significantly inhibited by pretreatment with mepyramine, cimetidine or imetit whereas the three histaminergic compounds had no effect on the prolactin response to epinephrine. The findings suggest that the histaminergic system exerts a mediating or permissive action on the norepinephrine-induced stimulation of prolactin secretion, whereas an intact histaminergic system may not be required for catecholamines to stimulate ACTH secretion. The inhibitory effect of imetit on catecholamine-induced release of ACTH may be due to an activation of H3 receptors located presynaptically on non-histaminergic neurons, e.g. aminergic neurons. The study further indicates an important role of histamine in the neuroendocrine regulation of prolactin secretion.

  5. Glucose inhibition of epinephrine stimulation of hepatic gluconeogenesis by blockade of the alpha-receptor function.

    PubMed

    Kneer, N M; Bosch, A L; Clark, M G; Lardy, H A

    1974-11-01

    For isolated rat hepatocytes, glucagon, 3':5'-cyclic AMP, 3':5'-cyclic GMP, and epinephrine stimulate the rate of gluconeogenesis from substrates not involving pathways of mitochondrial metabolism. From estimation of the rates of glucose formation, fructose 6-phosphate phosphorylation, and lactate and pyruvate formation it is concluded that epinephrine and 3':5'-cyclic GMP stimulate gluconeogenesis from either galactose or fructose by influencing the rate of reactions involving fructose 6-phosphate in a manner similar to that already reported for glucagon and 3':5'-cyclic AMP. Each agent acts to inhibit flux through phosphofructokinase (EC 2.7.1.11) and enhance flux through fructose diphosphatase (EC 3.1.3.11), resulting in the re-direction of carbon from lactate and pyruvate formation to glucose synthesis. In addition to 3':5'-cyclic GMP, dibutyryl 3':5'-cyclic GMP, 8-bromo 3':5'-cyclic GMP, 8-benzyl-thio 3':5'-cyclic GMP and 8-(4-chlorophenyl)thio 3':5'-cyclic GMP stimulate glucose formation and inhibit lactate and pyruvate formation from galactose. Guanosine monophosphate and 2':3'-cyclic GMP are inactive. As the stimulatory effect of epinephrine is inhibited by phenoxybenzamine and not by propranolol, and is not simulated by isoproterenol, it is concluded that catecholamine activity is expressed through the alpha-receptor. Increased extracellular glucose concentration (>10 mM) decreases the stimulatory effect of epinephrine, 3':5'-cyclic GMP, and partially that of 3':5'-cyclic AMP but does not alter the efficacy of glucagon.

  6. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    PubMed

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD.

  7. Nogo receptor blockade overcomes remyelination failure after white matter stroke and stimulates functional recovery in aged mice

    PubMed Central

    Sozmen, Elif G.; Rosenzweig, Shira; Llorente, Irene L.; DiTullio, David J.; Machnicki, Michal; Vinters, Harry V.; Havton, Lief A.; Giger, Roman J.; Hinman, Jason D.

    2016-01-01

    White matter stroke is a distinct stroke subtype, accounting for up to 25% of stroke and constituting the second leading cause of dementia. The biology of possible tissue repair after white matter stroke has not been determined. In a mouse stroke model, white matter ischemia causes focal damage and adjacent areas of axonal myelin disruption and gliosis. In these areas of only partial damage, local white matter progenitors respond to injury, as oligodendrocyte progenitors (OPCs) proliferate. However, OPCs fail to mature into oligodendrocytes (OLs) even in regions of demyelination with intact axons and instead divert into an astrocytic fate. Local axonal sprouting occurs, producing an increase in unmyelinated fibers in the corpus callosum. The OPC maturation block after white matter stroke is in part mediated via Nogo receptor 1 (NgR1) signaling. In both aged and young adult mice, stroke induces NgR1 ligands and down-regulates NgR1 inhibitors during the peak OPC maturation block. Nogo ligands are also induced adjacent to human white matter stroke in humans. A Nogo signaling blockade with an NgR1 antagonist administered after stroke reduces the OPC astrocytic transformation and improves poststroke oligodendrogenesis in mice. Notably, increased white matter repair in aged mice is translated into significant poststroke motor recovery, even when NgR1 blockade is provided during the chronic time points of injury. These data provide a perspective on the role of NgR1 ligand function in OPC fate in the context of a specific and common type of stroke and show that it is amenable to systemic intervention to promote recovery. PMID:27956620

  8. The blockade of transient receptor potential ankirin 1 (TRPA1) signalling mediates antidepressant- and anxiolytic-like actions in mice

    PubMed Central

    de Moura, Juliana Cavalcante; Noroes, Maíra Macedo; Rachetti, Vanessa de Paula Soares; Soares, Bruno Lobão; Preti, Delia; Nassini, Romina; Materazzi, Serena; Marone, Ilaria Maddalena; Minocci, Daiana; Geppetti, Pierangelo; Gavioli, Elaine Cristina; André, Eunice

    2014-01-01

    Background and Purpose Transient receptor potential vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) are involved in many biological processes, including nociception and hyperalgesia. Whereas the involvement of TRPV1 in psychiatric disorders such as anxiety and depression has been reported, little is known regarding the role of TRPA1 in these conditions. Experimental Approach We investigated the role of TRPA1 in mice models of depression [forced swimming test (FST)] and anxiety [elevated plus maze (EPM) test]. Key Results Administration of the TRPA1 antagonist (HC030031, 30 nmol in 2 μL, i.c.v.) reduced immobility time in the FST. Similar results were obtained after oral administration of HC030031 (30–300 mg·kg−1). The reduction in immobility time in FST induced by HC030031 (100 mg·kg−1) was completely prevented by pretreatment with TRPA1 agonist, cinnamaldehyde (50 mg·kg−1, p.o.), which per se was inactive. In the EPM test, pretreatment with cinnamaldehyde (50 mg·kg−1, p.o.), which per se did not affect behaviour response, prevented the anxiolytic-like effect (increased open arm exploration) evoked by TRPA1 blockade (HC030031, 100 mg·kg−1, p.o.). Treatment with either cinnamaldehyde or HC030031 did not affect spontaneous ambulation. Furthermore, TRPA1-deficient mice showed anxiolytic- and antidepressant-like phenotypes in the FST and EPM test respectively. Conclusion and Implications The present findings indicate that genetic deletion or pharmacological blockade of TRPA1 produces inhibitory activity in mouse models of anxiety and depression. These results imply that TRPA1 exerts tonic control, promoting anxiety and depression, and that TRPA1 antagonism has potential as an innovative strategy for the treatment of anxiety and mood disorders. PMID:24846744

  9. Effect of acute aerobic exercise and histamine receptor blockade on arterial stiffness in African Americans and Caucasians.

    PubMed

    Yan, Huimin; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Behun, Michael A; Cook, Marc D; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo

    2017-02-01

    African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA.NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise

  10. Angiotensin type 1 receptor resistance to blockade in the opossum proximal tubule cell due to variations in the binding pocket.

    PubMed

    Nistala, Ravi; Andresen, Bradley T; Pulakat, Lakshmi; Meuth, Alex; Sinak, Catherine; Mandavia, Chirag; Thekkumkara, Thomas; Speth, Robert C; Whaley-Connell, Adam; Sowers, James R

    2013-04-15

    Blockade of the angiotensin (ANG) II receptor type 1 (AT(1)R) with angiotensin receptor blockers (ARBs) is widely used in the treatment of hypertension. However, ARBs are variably effective in reducing blood pressure, likely due, in part, to polymorphisms in the ARB binding pocket of the AT(1)R. Therefore, we need a better understanding of variations/polymorphisms that alter binding of ARBs in heterogeneous patient populations. The opossum proximal tubule cell (OKP) line is commonly used in research to evaluate renal sodium handling and therefore blood pressure. Investigating this issue, we found natural sequence variations in the opossum AT(1)R paralleling those observed in the human AT(1)R. Therefore, we posited that these sequence variations may explain ARB resistance. We demonstrate that OKP cells express AT(1)R mRNA, bind (125)I-labeled ANG II, and exhibit ANG II-induced phosphorylation of Jak2. However, Jak2 phosphorylation is not inhibited by five different ARBs commonly used to treat hypertension. Additionally, nonradioactive ANG II competes (125)I-ANG II efficiently, whereas a 10-fold molar excess of olmesartan and the ANG II receptor type 2 blocker PD-123319 is unable to block (125)I-ANG II binding. In contrast, ANG II binding to OKP cells stably expressing rat AT(1A)Rs, which have a conserved AT(1)R-binding pocket with human AT(1)R, is efficiently inhibited by olmesartan. A novel observation was that resistance to ARB binding to opossum AT(1)Rs correlates with variations from the human receptor at positions 108, 163, 192, and 198 within the ARB-binding pocket. These observations highlight the potential utility of evaluating AT(1)R polymorphisms within the ARB-binding pocket in various hypertensive populations.

  11. Muscarinic, but not nicotinic, acetylcholine receptor blockade in the ventral tegmental area attenuates cue-induced sucrose-seeking

    PubMed Central

    Addy, Nii A.; Nunes, Eric J.; Wickham, Robert J.

    2015-01-01

    The mesolimbic dopamine (DA) system is known to play a role in cue-mediated reward-seeking for natural rewards and drugs of abuse. Specifically, cholinergic and glutamatergic receptors in the ventral tegmental area (VTA) have been shown to regulate cue-induced drug-seeking. However, the potential role of these VTA receptors in regulating cue-induced reward seeking for natural rewards is unknown. Here, we examined whether blockade of VTA acetylcholine receptors (AChRs) and N-methyl-D-aspartate receptors (NMDARs) would alter cue-induced sucrose seeking in male Sprague-Dawley rats. Subjects underwent 10 days of sucrose self-administration training (fixed ratio 1 schedule) followed by 7 days of forced abstinence. On withdrawal day 7, rats received bilateral VTA infusion of vehicle, the muscarinic AChR antagonist scopolamine (2.4 or 24 μg/side), the nicotinic AChR antagonist mecamylamine (3 or 30 μg/side), or the NMDAR antagonist AP-5 (0.1 or 1 μg/side) immediately prior to examination of cue-induced sucrose-seeking. Scopolamine infusion led to robust attenuation, but did not completely block, sucrose-seeking behavior. In contrast, VTA administration of mecamylamine or AP-5 did not alter cue-induced sucrose-seeking. Together, the data suggest that VTA muscarinic AChRs, but not nicotinic AChRs nor NMDARs, facilitate the ability of food-associated cues to drive seeking behavior for a food reward. PMID:26026787

  12. Monoclonal antibody that inhibits infection of HeLa and rhabdomyosarcoma cells by selected enteroviruses through receptor blockade

    SciTech Connect

    Crowell, R.L.; Field, A.K.; Schleif, W.A.; Long, W.L.; Colonno, R.J.; Mapoles, J.E.; Emini, E. A.

    1986-02-01

    BALB/c mice were immunized with HeLa cells, and their spleen cells were fused with myeloma cells to produce hybridomas. Initial screening of culture fluids from 800 fusion products in a cell protection assay against coxsackievirus B3 (CB3) and the CB3-RD virus variant yielded five presumptive monoclonal antibodies with three specificities: (i) protection against CB3 on HeLa, (ii) protection against CB3-RD on rhabdomyosarcoma (RD) cells, and (iii) protection against both viruses on the respective cells. Only one of the monoclonal antibodies (with dual specificity) survived two subclonings and was studied in detail. The antibody was determined to have an immunoglobulin G2a isotype and protected cells by blockade of cellular receptors, since attachment of (/sup 35/S)methionine-labeled CB3 was inhibited by greater than 90%. The monoclonal antibody protected HeLa cells against infection by CB1, CB3, CB5, echovirus 6, and coxsackievirus A21 and RD cells against CB1-RD, CB3-RD, and CB5-Rd virus variants. The monoclonal antibody did not protect either cell type against 16 other immunotypes of picornaviruses. The monoclonal antibody produced only positive fluorescence on those cells which were protected against infection, and /sup 125/I-labeled antibody confirmed the specific binding to HeLa and RD cells. The results suggest that this monoclonal antibody possesses some of the receptor specificity of the group B coxsackieviruses.

  13. In vivo blockade of thalamic GABA(B) receptors increases excitatory amino-acid levels.

    PubMed

    Nyitrai, G; Emri, Z; Crunelli, V; Kékesi, K A; Dobolyi, A; Juhász, G

    1996-12-30

    The effect of intrathalamic application of GABA(B) receptor antagonists on the basal excitatory amino-acid levels was studied using microdialysis probes implanted in the dorsal lateral geniculate nucleus and in the ventrobasal complex. In both nuclei, continuous perfusion of the GABA(B) receptor antagonist 3-aminopropyl-(diethoxymethyl)-phosphinic acid (CGP 35348) produced an increase in the extracellular concentration of aspartate and (to a lesser extent) glutamate, but no change was observed in the level of taurine, the main amino acid involved in the regulation of brain osmolarity processes. In contrast, 3-amino-2-hydroxy-2-(4-chlorophenyl)-propanesulphonic acid (2-hydroxy-saclofen), another GABA(B) receptor antagonist, failed to affect the extracellular concentration of aspartate, glutamate and taurine. Thus, the basal level of excitatory amino acids in the thalamus in vivo is under the control of CGP 35348-sensitive GABA(B) receptors.

  14. Opioid receptor blockade and warmth-liking: effects on interpersonal trust and frontal asymmetry.

    PubMed

    Schweiger, Desirée; Stemmler, Gerhard; Burgdorf, Christin; Wacker, Jan

    2014-10-01

    The emotion 'warmth-liking' (WL) associated with feelings of affection and acceptance is regularly activated in social contexts. WL has been suggested to be more closely related to the consummatory phase of post-goal attainment positive affect than to pre-goal attainment positive affect/approach motivation and to be partly mediated by brain opioids. To validate these assumptions we employed film/imagery to induce either a neutral emotional state or WL in female participants after intake of either placebo or the opioid antagonist naltrexone. Dependent variables were emotion self-report, interpersonal trust (TRUST, i.e. a behavioral indicator of WL) and frontal asymmetry (i.e. an electroencephalogram (EEG) indicator of approach motivation/behavioral activation). We found that participants reported more WL in the placebo/WL group than in the placebo/neutral group and both naltrexone groups. In addition, TRUST increased in the WL group after placebo, but not after naltrexone, and this pattern was reversed in the neutral control groups. Consequently, opioid blockade suppressed or even reversed the effects of the WL induction on the levels of self-report and behavior, respectively. In addition, we observed reduced relative left-frontal asymmetry in the WL (vs neutral) group, consistent with reduced approach motivation. Overall, these results suggest opioidergic influences on WL and TRUST and reduced approach motivation/behavioral activation for the positive emotion WL.

  15. The effect of blockade of dopamine receptors on the inhibition of episodic luteinizing hormone release during electrical stimulation of the arcuate nucleus in ovariectomized rats.

    PubMed

    Gallo, R V

    1978-04-01

    This study examined the possible involvement of dopamine (DA) in mediating the inhibition of episodic LH release that occurs during electrical stimulation of the arcuate nucleus (ARH) in ovariectomized rats. Animals were treated before stimulation with pimozide (1.26--2.0 mg/kg) or d-butaclamol (1 mg/kg), blockers of DA receptors, or l-butaclamol. Apomorphine, which inhibits episodic LH release by activating DA receptors, was given near the end of the experiment to determine if these receptors were blocked. ARH stimulation suppressed pulsatile LH release in six rats when DA receptors were not blocked by pimozide (as well as two in which blockade was not tested). A transient increase occurred in one other animal. When DA receptors were blocked by pimozide, stimulation of the ARH inhibited episodic LH release in nine rats, suggesting that DA may have no role in mediating this inhibition. However, because increased LH release occurred in five additional animals, as well as in one with partial receptor blockade, the possibility remains that DA may perhaps have a minor role in this inhibitory response. Although ARH stimulation increased LH release after DA receptor blockade by d-butaclamol, this effect could not be ascribed to the DA antagonist property of this agent, because elevated blood LH levels also occurred during stimulation in rats treated with l-butaclamol, in which DA receptors were not blocked. d- and l-butaclamol may possess a non-stereospecific action on a non-dopaminergic event, thus reversing the response to ARH stimulation. Finally, whether DA receptors were blocked or not by pimozide, d-, or l-butaclamol, activation of the ventromedial hypothalamic and periventricular nucleus regions suppressed episodic LH release, but did not increase LH secretion. This suggests that the region through which stimulation can inhibit, but not increase, LH release may extend in the hypothalamus to these two areas.

  16. Combined blockade of angiotensin II and prorenin receptors ameliorates podocytic apoptosis induced by IgA-activated mesangial cells.

    PubMed

    Leung, Joseph C K; Chan, Loretta Y Y; Saleem, M A; Mathieson, P W; Tang, Sydney C W; Lai, Kar Neng

    2015-07-01

    Glomerulo-podocytic communication plays an important role in the podocytic injury in IgA nephropathy (IgAN). In this study, we examine the role of podocytic angiotensin II receptor subtype 1 (AT1R) and prorenin receptor (PRR) in podocytic apoptosis in IgAN. Polymeric IgA (pIgA) was isolated from patients with IgAN and healthy controls. Conditioned media were prepared from growth arrested human mesangial cells (HMC) incubated with pIgA from patients with IgAN (IgA-HMC media) or healthy controls (Ctl-HMC media). A human podocyte cell line was used as a model to examine the regulation of the expression of AT1R, PRR, TNF-α and CTGF by IgA-HMC media. Podocytic nephrin expression, annexin V binding and caspase 3 activity were used as the functional readout of podocytic apoptosis. IgA-HMC media had no effect on AngII release by podocytes. IgA-HMC media significantly up-regulated the expression of AT1R and PRR, down-regulated nephrin expression and induced apoptosis in podocytes. Mono-blockade of AT1R, PRR, TNF-α or CTGF partially reduced podocytic apoptosis. IgA-HMC media activated NFκB, notch1 and HEY1 expression by podocytes and dual blockade of AT1R with PRR, or anti-TNF-α with anti-CTGF, effectively rescued the podocytic apoptosis induced by IgA-HMC media. Our data suggests that pIgA-activated HMC up-regulates the expression of AT1R and PRR expression by podocytes and the associated activation of NFκB and notch signalling pathways play an essential role in the podocytic apoptosis induced by glomerulo-podocytic communication in IgAN. Simultaneously targeting the AT1R and PRR could be a potential therapeutic option to reduce the podocytic injury in IgAN.

  17. Up-Regulation of Endothelin Type A Receptor in Human and Rat Radiation Proctitis: Preclinical Therapeutic Approach With Endothelin Receptor Blockade

    SciTech Connect

    Jullien, Nicolash; Blirando, Karl; Milliat, Fabien; Benderitter, Marc; Francois, Agnes

    2009-06-01

    Purpose: Rectum radiation damage and fibrosis are often associated with radiation therapy of pelvic tumors. The endothelin (ET) system has been implicated in several fibrotic diseases but never studied in the context of gastrointestinal radiation damage. This study assessed modifications in ET type 1 (ET-1), ET type A receptor (ET{sub A}), and ET type B receptor (ET{sub B}) localization and/or expression in irradiated human rectal tissue and in a rat model of delayed colorectal injury. We also evaluated the therapeutic potential of long-term ET receptor blockade. Methods and Materials: Routine histological studies of sections of healthy and radiation-injured human rectum tissue were done; the sections were also immunostained for ET{sub A} and ET{sub B} receptors. The rat model involved the delivery of 27 Gy in a single dose to the colons and rectums of the animals. The ET-1/ET{sub A}/ET{sub B} expression and ET{sub A}/ET{sub B} localization were studied at 10 weeks postexposure. The abilities of bosentan and atrasentan to protect against delayed rectal injury were also investigated. Results: The immunolocalization of ET{sub A} and ET{sub B} in healthy human rectums was similar to that in rat rectums. However, strong ET{sub A} immunostaining was seen in the presence of human radiation proctitis, and increased ET{sub A} mRNA levels were seen in the rat following colorectal irradiation. Immunostaining for ET{sub A} was also strongly positive in rats in areas of radiation-induced mucosal ulceration, atypia, and fibroproliferation. However, neither bosentan nor atrasentan prevented radiation damage to the rectum when given long term. The only effect seen for atrasentan was an increased number of sclerotic vessel sections in injured tissues. Conclusions: As the result of the overexpression of ET{sub A}, radiation exposure deregulates the endothelin system through an 'ET{sub A} profile' in the human and rodent rectum. However, therapeutic interventions involving mixed or

  18. Blockade of CCR7 leads to decreased dendritic cell migration to draining lymph nodes and promotes graft survival in low-risk corneal transplantation.

    PubMed

    Hos, D; Dörrie, J; Schaft, N; Bock, F; Notara, M; Kruse, F E; Krautwald, S; Cursiefen, C; Bachmann, B O

    2016-05-01

    The chemokine receptor CCR7 is essential for migration of mature dendritic cells (DCs) to the regional lymph nodes, and it has been shown that blocking of CCR7 improves graft survival after high-risk corneal transplantation in vascularized recipient corneas. However, it is so far unknown whether blocking of CCR7 reduces migration of DCs from the avascular cornea to the draining lymph nodes and whether this leads to improved graft survival also in the low-risk setting of corneal transplantation, which accounts for the majority of perforating transplantations performed. Therefore, in this study, pellets containing Freund's adjuvant and bovine serum albumin (BSA) conjugated to Alexa488 fluorescent dye were implanted into the corneal stroma of BALB/c mice to analyze antigen uptake by corneal DCs and their migration to the regional lymph nodes. After pellet implantation, mice were either treated by local administration of a CCR7 blocking fusion protein that consisted of CCL19 fused to the Fc part of human IgG1 or a control-IgG. In vivo fluorescence microscopy showed uptake of Alexa488-conjugated BSA by corneal DCs within 8 h. Furthermore, analysis of single cell suspensions of draining lymph nodes prepared after 48 h revealed that 2.1 ± 0.3% of CD11c(+) cells were also Alexa488(+). Importantly, DC migration was significantly reduced after topical administration of CCL19-IgG (1.2 ± 0.2%; p < 0.05). To test the effect of CCR7 blockade on graft rejection after allogeneic low-risk keratoplasty, corneal transplantations were performed using C57BL/6-mice as donors and BALB/c-mice as recipients. Treatment mice received two intraperitoneal loading doses of CCL19-IgG prior to transplantation, followed by local treatment with CCL19-IgG containing eye drops for the first two weeks after transplantation. Control mice received same amounts of control-IgG. Kaplan-Meier survival analysis showed that in the CCL19-IgG treated group, 76% of the grafts survived through the end

  19. Systemic Blockade of D2-Like Dopamine Receptors Facilitates Extinction of Conditioned Fear in Mice

    ERIC Educational Resources Information Center

    Ponnusamy, Ravikumar; Nissim, Helen A.; Barad, Mark

    2005-01-01

    Extinction of conditioned fear in animals is the explicit model of behavior therapy for human anxiety disorders, including panic disorder, obsessive-compulsive disorder, and post-traumatic stress disorder. Based on previous data indicating that fear extinction in rats is blocked by quinpirole, an agonist of dopamine D2 receptors, we hypothesized…

  20. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death

    PubMed Central

    Noh, Kyung-Min; Yokota, Hidenori; Mashiko, Toshihiro; Castillo, Pablo E.; Zukin, R. Suzanne; Bennett, Michael V. L.

    2005-01-01

    Transient global or forebrain ischemia induced experimentally in animals can cause selective, delayed neuronal death of hippocampal CA1 pyramidal neurons. A striking feature is a delayed rise in intracellular free Zn2+ in CA1 neurons just before the onset of histologically detectable cell death. Here we show that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) at Schaffer collateral to CA1 synapses in postischemic hippocampus exhibit properties of Ca2+/Zn2+-permeable, Glu receptor 2 (GluR2)-lacking AMPARs before the rise in Zn2+ and cell death. At 42 h after ischemia, AMPA excitatory postsynaptic currents exhibited pronounced inward rectification and marked sensitivity to 1-naphthyl acetyl spermine (Naspm), a selective channel blocker of GluR2-lacking AMPARs. In control hippocampus, AMPA excitatory postsynaptic currents were electrically linear and relatively insensitive to Naspm. Naspm injected intrahippocampally at 9-40 h after insult greatly reduced the late rise in intracellular free Zn2+ in postischemic CA1 neurons and afforded partial protection against ischemia-induced cell death. These results implicate GluR2-lacking AMPA receptors in the ischemia-induced rise in free Zn2+ and death of CA1 neurons, although a direct action at the time of the rise in Zn2+ is unproven. This receptor subtype appears to be an important therapeutic target for intervention in ischemia-induced neuronal death in humans. PMID:16093311

  1. Targeting β3-Adrenergic Receptors in the Heart: Selective Agonism and β-Blockade

    PubMed Central

    Cannavo, Alessandro

    2017-01-01

    Abstract: Cardiac diseases, such as heart failure, remain leading causes of morbidity and mortality worldwide, with myocardial infarction as the most common etiology. HF is characterized by β-adrenergic receptor (βAR) dysregulation that is primarily due to the upregulation of G protein–coupled receptor kinases that leads to overdesensitization of β1 and β2ARs, and this clinically manifests as a loss of inotropic reserve. Interestingly, the “minor” βAR isoform, the β3AR, found in the heart, lacks G protein–coupled receptor kinases recognition sites, and is not subject to desensitization, and as a consequence of this, in human failing myocardium, the levels of this receptor remain unchanged or are even increased. In different preclinical studies, it has been shown that β3ARs can activate different signaling pathways that can protect the heart. The clinical relevance of this is also supported by the effects of β-blockers which are well known for their proangiogenic and cardioprotective effects, and data are emerging showing that these are mediated, at least in part, by enhancement of β3AR activity. In this regard, targeting of β3ARs could represent a novel potential strategy to improve cardiac metabolism, function, and remodeling. PMID:28170359

  2. Blockade of 5-HT2 Receptor Selectively Prevents MDMA-Induced Verbal Memory Impairment

    PubMed Central

    van Wel, J H P; Kuypers, K P C; Theunissen, E L; Bosker, W M; Bakker, K; Ramaekers, J G

    2011-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) or ‘ecstasy' has been associated with memory deficits during abstinence and intoxication. The human neuropharmacology of MDMA-induced memory impairment is unknown. This study investigated the role of 5-HT2A and 5-HT1A receptors in MDMA-induced memory impairment. Ketanserin is a 5-HT2A receptor blocker and pindolol a 5-HT1A receptor blocker. It was hypothesized that pretreatment with ketanserin and pindolol would protect against MDMA-induced memory impairment. Subjects (N=17) participated in a double-blind, placebo-controlled, within-subject design involving six experimental conditions consisting of pretreatment (T1) and treatment (T2). T1 preceded T2 by 30 min. T1–T2 combinations were: placebo–placebo, pindolol 20 mg–placebo, ketanserin 50 mg–placebo, placebo–MDMA 75 mg, pindolol 20 mg–MDMA 75 mg, and ketanserin 50 mg–MDMA 75 mg. Memory function was assessed at Tmax of MDMA by means of a word-learning task (WLT), a spatial memory task and a prospective memory task. MDMA significantly impaired performance in all memory tasks. Pretreatment with a 5-HT2A receptor blocker selectively interacted with subsequent MDMA treatment and prevented MDMA-induced impairment in the WLT, but not in the spatial and prospective memory task. Pretreatment with a 5-HT1A blocker did not affect MDMA-induced memory impairment in any of the tasks. Together, the results demonstrate that MDMA-induced impairment of verbal memory as measured in the WLT is mediated by 5-HT2A receptor stimulation. PMID:21562484

  3. Decreasing nicotinic receptor activity and the spatial learning impairment caused by the NMDA glutamate antagonist dizocilpine in rats

    PubMed Central

    Burke, Dennis A.; Heshmati, Pooneh; Kholdebarin, Ehsan; Levin, Edward D.

    2014-01-01

    Nicotinic systems have been shown by a variety of studies to be involved in cognitive function. Nicotinic receptors have an inherent property to become desensitized after activation. The relative role of nicotinic receptor activation vs. net receptor inactivation by desensitization in the cognitive effects of nicotinic drugs remains to be fully understood. In these studies, we tested the effects of the α7 nicotinic receptor antagonist methyllycaconitine (MLA), the α4β2 nicotinic receptor antagonist dihydro-β-erythroidine (DHβE), the nonspecific nicotinic channel blocker mecamylamine and the α4β2 nicotinic receptor desensitizing agent sazetidine-A on learning in a repeated acquisition test. Adult female Sprague-Dawley rats were trained on a repeated acquisition learning procedure in an 8-arm radial maze. MLA (1–4 mg/kg), DHβE (1–4 mg/kg), mecamylamine (0.125–0.5 mg/kg) or sazetidine-A (1 and 3 mg/kg) were administered in four different studies either alone or together with the NMDA glutamate antagonist dizocilpine (0.05 and 0.10 mg/kg). MLA significantly counteracted the learning impairment caused by dizocilpine. The overall choice accuracy impairment caused by dizocilpine was significantly attenuated by co-administration of DHβE. Low doses of the non-specific nicotinic antagonist mecamylamine also reduced dizocilpine-induced repeated acquisition impairment. Sazetidine-A reversed the accuracy impairment caused by dizocilpine. These studies provide evidence that a net decrease in nicotinic receptor activity can improve learning by attenuating learning impairment induced by NMDA glutamate blockade. This adds to evidence in cognitive tests that nicotinic antagonists can improve cognitive function. Further research characterizing the efficacy and mechanisms underlying nicotinic antagonist and desensitization induced cognitive improvement is warranted. PMID:25064338

  4. Intra-Articular Blockade of P2X7 Receptor Reduces the Articular Hyperalgesia and Inflammation in the Knee Joint Synovitis Especially in Female Rats.

    PubMed

    Teixeira, Juliana Maia; Dias, Elayne Vieira; Parada, Carlos Amílcar; Tambeli, Cláudia Herrera

    2017-02-01

    Synovitis is a key factor in joint disease pathophysiology, which affects a greater proportion of women than men. P2X7 receptor activation contributes to arthritis, but whether it plays a role in articular inflammatory pain in a sex-dependent manner is unknown. We investigated whether the P2X7 receptor blockade in the knee joint of male and female rats reduces the articular hyperalgesia and inflammation induced by a carrageenan knee joint synovitis model. Articular hyperalgesia was quantified using the rat knee joint incapacitation test and the knee joint inflammation, characterized by the concentration of cytokines tumor necrosis factor-α, interleukin-1β, interleukin-6, and cytokine-induced neutrophil chemoattractant-1, and by neutrophil migration, was quantified using enzyme-linked immunosorbent assay and by myeloperoxidase enzyme activity measurement, respectively. P2X7 receptor blockade by the articular coadministration of selective P2X7 receptor antagonist A740003 with carrageenan significantly reduced articular hyperalgesia, pro-inflammatory cytokine concentrations, and myeloperoxidase activity induced by carrageenan injection into the knee joint of male and estrus female rats. However, a lower dose of P2X7 receptor antagonist was sufficient to significantly induce the antihyperalgesic and anti-inflammatory effects in estrus female but not in male rats. These results suggest that P2X7 receptor activation by endogenous adenosine 5'-triphosphate is essential to articular hyperalgesia and inflammation development in the knee joint of male and female rats. However, female rats are more responsive than male rats to the antihyperalgesic and anti-inflammatory effects induced by P2X7 receptor blockade.

  5. Blockade of patch-based μ opioid receptors in the striatum attenuates methamphetamine-induced conditioned place preference and reduces activation of the patch compartment.

    PubMed

    Horner, Kristen A; Logan, Mary Caroline; Fisher, Trevor J; Logue, Jordan B

    2017-02-05

    The behavioral effects of methamphetamine (METH) are mediated by the striatum, which is divided into the patch compartment, which mediates limbic and reward functions, and the matrix compartment, which mediates sensorimotor tasks. METH treatment results in repetitive behavior that is related to enhanced relative activation of the patch versus the matrix compartment. The patch, but not the matrix compartment contains a high density of μ opioid receptors, and localized blockade of patch-based μ opioid receptors attenuates METH-induced patch-enhanced activity and repetitive behaviors. Numerous studies have examined patch-enhanced activity and the contribution of patch-associated μ opioid receptors to METH-induced repetitive behavior, but it is not known whether patch-enhanced activity occurs during METH-mediated reward, nor is it known if patch-based μ opioid receptors contribute to METH reward. The goals of this study were to determine if blockade of patch-based μ opioid receptors alters METH-induced conditioned place preference (CPP), as well activation of the patch and matrix compartments following METH-mediated CPP. A biased conditioning paradigm was used to assess CPP, and conditioning occurred over an 8-d period. Animals were bilaterally infused in the striatum with the μ-specific antagonist CTAP or vehicle prior to conditioning. Animals were tested for preference 24h after the last day of conditioning, sacrificed and the brains processed for immunohistochemistry. Blockade of patch-based μ opioid receptors reduced METH-induced CPP, and reduced patch-enhanced c-Fos expression in the striatum following METH-mediated CPP. These data indicate that patch-enhanced activity is associated with METH-mediated reward and patch-based μ opioid receptors contribute to this phenomenon.

  6. Blockade of transient receptor potential cation channel subfamily V member 1 promotes regeneration after sciatic nerve injury

    PubMed Central

    Ren, Fei; Zhang, Hong; Qi, Chao; Gao, Mei-ling; Wang, Hong; Li, Xia-qing

    2015-01-01

    The transient receptor potential cation channel subfamily V member 1 (TRPV1) provides the sensation of pain (nociception). However, it remains unknown whether TRPV1 is activated after peripheral nerve injury, or whether activation of TRPV1 affects neural regeneration. In the present study, we established rat models of unilateral sciatic nerve crush injury, with or without pretreatment with AMG517 (300 mg/kg), a TRPV1 antagonist, injected subcutaneously into the ipsilateral paw 60 minutes before injury. At 1 and 2 weeks after injury, we performed immunofluorescence staining of the sciatic nerve at the center of injury, at 0.3 cm proximal and distal to the injury site, and in the dorsal root ganglia. Our results showed that Wallerian degeneration occurred distal to the injury site, and neurite outgrowth and Schwann cell regeneration occurred proximal to the injury. The number of regenerating myelinated and unmyelinated nerve clusters was greater in the AMG517-pretreated rats than in the vehicle-treated group, most notably 2 weeks after injury. TRPV1 expression in the injured sciatic nerve and ipsilateral dorsal root ganglia was markedly greater than on the contralateral side. Pretreatment with AMG517 blocked this effect. These data indicate that TRPV1 is activated or overexpressed after sciatic nerve crush injury, and that blockade of TRPV1 may accelerate regeneration of the injured sciatic nerve. PMID:26487864

  7. Blockade of mGluR1 receptor results in analgesia and disruption of motor and cognitive performances: effects of A-841720, a novel non-competitive mGluR1 receptor antagonist

    PubMed Central

    El-Kouhen, O; Lehto, S G; Pan, J B; Chang, R; Baker, S J; Zhong, C; Hollingsworth, P R; Mikusa, J P; Cronin, E A; Chu, K L; McGaraughty, S P; Uchic, M E; Miller, L N; Rodell, N M; Patel, M; Bhatia, P; Mezler, M; Kolasa, T; Zheng, G Z; Fox, G B; Stewart, A O; Decker, M W; Moreland, R B; Brioni, J D; Honore, P

    2006-01-01

    Background and purpose: To further assess the clinical potential of the blockade of metabotropic glutamate receptors (mGluR1) for the treatment of pain. Experimental approach: We characterized the effects of A-841720, a novel, potent and non-competitive mGluR1 antagonist in models of pain and of motor and cognitive function. Key results: At recombinant human and native rat mGluR1 receptors, A-841720 inhibited agonist-induced calcium mobilization, with IC50 values of 10.7±3.9 and 1.0±0.2 nM, respectively, while showing selectivity over other mGluR receptors, in addition to other neurotransmitter receptors, ion channels, and transporters. Intraperitoneal injection of A-841720 potently reduced complete Freund's adjuvant-induced inflammatory pain (ED50=23 μmol kg−1) and monoiodoacetate-induced joint pain (ED50=43 μmol kg−1). A-841720 also decreased mechanical allodynia observed in both the sciatic nerve chronic constriction injury and L5-L6 spinal nerve ligation (SNL) models of neuropathic pain (ED50=28 and 27 μmol kg−1, respectively). Electrophysiological studies demonstrated that systemic administration of A-841720 in SNL animals significantly reduced evoked firing in spinal wide dynamic range neurons. Significant motor side effects were observed at analgesic doses and A-841720 also impaired cognitive function in the Y-maze and the Water Maze tests. Conclusions and implications. The analgesic effects of a selective mGluR1 receptor antagonist are associated with motor and cognitive side effects. The lack of separation between efficacy and side effects in pre-clinical models indicates that mGluR1 antagonism may not provide an adequate therapeutic window for the development of such antagonists as novel analgesic agents in humans. PMID:17016515

  8. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor

    PubMed Central

    Olmos, Gabriel; DeGregorio-Rocasolano, Nuria; Regalado, M Paz; Gasull, Teresa; Boronat, M Assumpció; Trullas, Ramón; Villarroel, Alvaro; Lerma, Juan; García-Sevilla, Jesús A

    1999-01-01

    This study was designed to assess the potential neuroprotective effect of several imidazol(ine) drugs and agmatine on glutamate-induced necrosis and on apoptosis induced by low extracellular K+ in cultured cerebellar granule cells.Exposure (30 min) of energy deprived cells to L-glutamate (1–100 μM) caused a concentration-dependent neurotoxicity, as determined 24 h later by a decrease in the ability of the cells to metabolize 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) into a reduced formazan product. L-glutamate-induced neurotoxicity (EC50=5 μM) was blocked by the specific NMDA receptor antagonist MK-801 (dizocilpine).Imidazol(ine) drugs and agmatine fully prevented neurotoxicity induced by 20 μM (EC100) L-glutamate with the rank order (EC50 in μM): antazoline (13)>cirazoline (44)>LSL 61122 [2-styryl-2-imidazoline] (54)>LSL 60101 [2-(2-benzofuranyl) imidazole] (75)>idazoxan (90)>LSL 60129 [2-(1,4-benzodioxan-6-yl)-4,5-dihydroimidazole] (101)>RX821002 (2-methoxy idazoxan) (106)>agmatine (196). No neuroprotective effect of these drugs was observed in a model of apoptotic neuronal cell death (reduction of extracellular K+) which does not involve stimulation of NMDA receptors.Imidazol(ine) drugs and agmatine fully inhibited [3H]-(+)-MK-801 binding to the phencyclidine site of NMDA receptors in rat brain. The profile of drug potency protecting against L-glutamate neurotoxicity correlated well (r=0.90) with the potency of the same compounds competing against [3H]-(+)-MK-801 binding.In HEK-293 cells transfected to express the NR1-1a and NR2C subunits of the NMDA receptor, antazoline and agmatine produced a voltage- and concentration-dependent block of glutamate-induced currents. Analysis of the voltage dependence of the block was consistent with the presence of a binding site for antazoline located within the NMDA channel pore with an IC50 of 10–12 μM at 0 mV.It is concluded that imidazol(ine) drugs and agmatine are

  9. Cardiovascular reactivity after blockade of angiotensin AT1 receptors in the experimental model of tilting test in conscious rats

    PubMed Central

    Bedette, D; Santos, R A S; Fontes, M A P

    2008-01-01

    Background and purpose: Studies have shown that the angiotensin II AT1 receptor antagonist, losartan, accentuates the hypotensive response in the orthostatic stress test (tilt) performed in anaesthetized rats. The same effect was not reported with other AT1 antagonists. The aim of this study was to re-evaluate the effects of AT1 receptor blockade on the cardiovascular response to tilt in a model developed for conscious rats. Experimental approach: Rats (n=5–7 per group) were instrumented for infusion of drugs and recording of cardiovascular parameters and, after recovery, placed in a plastic tube positioned over the tilt board. The tilt test was conducted by raising the head side of the tilt board from horizontal position to 75° head up position for 15 min. Key results: Compared with control group (NaCl 0.9%, 1 ml kg−1), oral treatment with 1 mg kg−1 per day of losartan or telmisartan did not alter the blood pressure response during tilt. With the 10 mg kg−1 dose, both antagonists altered the blood pressure response during tilt (mean maximum changes −11±3 mm Hg; P<0.01). A post-tilt hypotension was observed with both doses in losartan and telmisartan groups (−13±1 and −9±2 mm Hg, respectively; P<0.01). Conclusions and implications: The present results indicate that the effect of losartan on the cardiovascular reactivity to tilt shares a similar profile to that of other AT1 antagonists. Evidence discussed addresses the importance of using a conscious model for testing the influence of antihypertensive drugs on the cardiovascular reactivity to orthostatic challenges. PMID:18193073

  10. Selective blockade of drug-induced place preference conditioning by ACPC, a functional NDMA-receptor antagonist.

    PubMed

    Papp, Marius; Gruca, Piotr; Willner, Paul

    2002-11-01

    ACPC (1-aminocyclopropanecarboxylic acid) is a partial agonist at the strychnine-insensitive glycine receptor site on the NMDA receptor complex, and a functional NMDA antagonist. A series of experiments was conducted to assess the effects of ACPC in a biased place conditioning paradigm. As previously reported, ACPC itself did not support either appetitive or aversive place conditioning. However, co-administration of ACPC (200 mg/kg) blocked the acquisition of place preferences conditioned using a variety of psychoactive drugs (amphetamine, cocaine, nomifensine, diazepam, morphine, nicotine). No tolerance was seen to this effect following two weeks of chronic ACPC administration. Overall, ACPC did not affect the expression of place conditioning when administered immediately before the post-conditioning test. However, these effects appeared somewhat variable between drugs, and further analysis showed that ACPC did block the expression of preferences conditioned with some drugs (diazepam, morphine, nicotine), but not others (amphetamine, cocaine, nomifensine). The effects of ACPC could not be accounted for by state dependence, as ACPC blocked morphine and cocaine place preferences when administered during both the acquisition and the expression phase of conditioning. In contrast to the blockade by ACPC of drug-induced place preferences, ACPC had no effect on the acquisition of place preferences conditioned using a variety of natural non-drug reinforcers (food, sucrose, social interaction, novelty). ACPC also had no effect on the acquisition of drug-induced place aversions (naloxone, picrotoxin). Thus, ACPC selectively blocked appetitive conditioning by drug reinforcers, without affecting either appetitive conditioning by natural reinforcers or drug-induced aversions. As place preference conditioning has been demonstrated to have high predictive validity for detecting compounds with an abuse potential in humans, this selective action suggests that ACPC might have some

  11. Hormonal responses to opioid receptor blockade: during rest and exercise in cold and hot environments.

    PubMed

    Armstrong, David W; Hatfield, Bradley D

    2006-05-01

    Opioid receptors appear to modulate a variety of physiological and metabolic homeostatic responses to stressors such as exercise and thermally extreme environments. To more accurately determine the role of the naloxone (NAL) sensitive opioid receptor system during rest and exercise, subjects were subjected to concomitant environmental thermal stress. Fifteen untrained men rested or performed low intensity (60% VO2peak) or high intensity (80% VO2peak) exercise on a cycle ergometer for 60 min in an environmental chamber during cold (0 degrees C) hot (35 degrees C) air exposure while receiving an infusion of normal saline (SAL) or NAL (0.1 mg kg(-1)). Plasma adrenocorticotropin hormone (ACTH), immunoreactive beta-endorphin (IBE), cortisol and growth hormone were measured at baseline and every 15 min while in the chamber. Time to exhaustion was significantly reduced during high intensity exercise in the heat (P<0.0001). NAL significantly (P=0.0004) reduced the time to exhaustion (38.3+/-2.1 min) during high intensity exercise in the heat compared to SAL (49.4+/-2.1 min). ACTH and IBE increased during hot conditions and cold attenuated this response. Plasma concentrations of IBE, ACTH, and growth hormone increased significantly with NAL during high intensity exercise in the heat compared to SAL. Cold attenuated the response of ACTH, IBE and cortisol to NAL. NAL administration exaggerates plasma hormone concentration during high intensity exercise in the heat, but not cold. These results support a regulatory effect of the opioid receptor system on physiological responses during exercise in thermally stressful environments. Future research should be directed to more clearly defining the effect of environmental temperature on the mechanism of hypothalamic-pituitary-adrenal hormonal release during exercise and hot environmental temperatures.

  12. Aortic Remodeling Following Transverse Aortic Constriction in Mice is Attenuated with AT1 Receptor Blockade

    PubMed Central

    Kuang, Shao-Qing; Geng, Liang; Prakash, Siddharth K.; Cao, Jiu-Mei; Guo, Steven; Villamizar, Carlos; Kwartler, Callie S.; Ju, Xiaoxi; Brasier, Allan R.; Milewicz, Dianna M.

    2016-01-01

    Objective Although hypertension is the most common risk factor for thoracic aortic diseases, it is not understood how increased pressures on the ascending aorta lead to aortic aneurysms. We investigated the role of Ang II type 1 (AT1) receptor activation in ascending aortic remodeling in response to increased biomechanical forces using a transverse aortic constriction (TAC) mouse model. Approach and Results Two weeks after TAC, the increased biomechanical pressures led to ascending aortic dilatation, aortic wall thickening and medial hypertrophy. Significant adventitial hyperplasia and inflammatory responses in TAC ascending aortas were accompanied by increased adventitial collagen, elevated inflammatory and proliferative markers, and increased cell density due to accumulation of myofibroblasts and macrophages. Treatment with losartan significantly blocked TAC induced vascular inflammation and macrophage accumulation. However, losartan only partially prevented TAC induced adventitial hyperplasia, collagen accumulation and ascending aortic dilatation. Increased Tgfb2 expression and phosphorylated-Smad2 staining in the medial layer of TAC ascending aortas was effectively blocked with losartan. In contrast, the increased Tgfb1 expression and adventitial phospho-Smad2 staining were only partially attenuated by losartan. In addition, losartan significantly blocked Erk activation and ROS production in the TAC ascending aorta. Conclusions Inhibition of the AT1 receptor using losartan significantly attenuated the vascular remodeling associated with TAC but did not completely block the increased TGF- β1 expression, adventitial Smad2 signaling and collagen accumulation. These results help to delineate the aortic TGF-β signaling that is dependent and independent of the AT1 receptor after TAC. PMID:23868934

  13. Intra-accumbal CB1 receptor blockade reduced extinction and reinstatement of morphine.

    PubMed

    Khaleghzadeh-Ahangar, Hossein; Haghparast, Abbas

    2015-10-01

    The limbic dopaminergic reward system is the main target of morphine-like drugs which begins from the ventral tegmental area (VTA) and sends its dopaminergic projections to the nucleus accumbens (NAc), amygdala, hippocampus and prefrontal cortex. Cannabinoid receptors exist in afferent neurons from these areas to the NAc and can modulate glutamate synaptic transmission in the NAc. Cannabinoids can interact with the opiate system in reward-related behaviors; nevertheless these systems' interaction in extinction duration and reinstatement has not been shown. In the present study, the effects of bilateral intra-accumbal administration of AM251, a CB1 receptor antagonist, on the duration of the extinction phase and reinstatement to morphine were investigated by conditioned place preference (CPP) paradigm. Forty eight adult male albino Wistar rats were used. Bilateral intra-accumbal administration of AM251 (15, 45 and 90μM/0.5μl DMSO per side) was performed. Subcutaneous administration of morphine (5mg/kg) in three consecutive days was used to induce CPP. The results showed that administration of the maximal dose of AM251 during the extinction period significantly reduces duration of extinction and reinstatement to morphine. Administration of the middle dose during the extinction period significantly attenuated reinstatement to morphine. A single microinjection of the middle dose just before the reinstatement phase significantly attenuated reinstatement to morphine only, while bilateral intra-accumbal administration of neither the lowest dose nor the vehicle (DMSO) had any effects. These results for the first time indicated that CB1 receptors within the NAc are involved in the maintenance of morphine rewarding properties, and morphine seeking behaviors in extinguished morphine-induced CPP rats.

  14. Effects of activation and blockade of dopamine receptors on the extinction of a passive avoidance reaction in mice with a depressive-like state.

    PubMed

    Dubrovina, N I; Zinov'eva, D V

    2010-01-01

    Learning and extinction of a conditioned passive avoidance reaction resulting from neuropharmacological actions on dopamine D(1) and D(2) receptors were demonstrated to be specific in intact mice and in mice with a depressive-like state. Learning was degraded only after administration of the D(2) receptor antagonist sulpiride and was independent of the initial functional state of the mice. In intact mice, activation of D(2) receptors with quinpirole led to a deficit of extinction, consisting of a reduction in the ability to acquire new inhibitory learning in conditions associated with the disappearance of the expected punishment. In mice with the "behavioral despair" reaction, characterized by delayed extinction, activation of D(1) receptors with SKF38393 normalized this process, while the D(2) agonist was ineffective. A positive effect consisting of accelerated extinction of the memory of fear of the dark ("dangerous") sector of the experimental chamber was also seen on blockade of both types of dopamine receptor.

  15. [Effects of activation and blockade of dopamine receptors on extinction of passive avoidance response in mice with depressive-like state].

    PubMed

    Dubrovina, N I; Zinov'eva, D V

    2008-01-01

    Selectivity of training and extinction of passive avoidance response caused by pharmacological influences on D1 and D2 dopamine receptors in intact mice and mice in depressive-like state was shown. Training was impaired only by administration of D2 receptor antagonist sulpiride and did not depend on the initial functional condition of mice. In intact mice, activation of D2 receptors by quinpirole evoked deficiency of extinction, i.e., impairment of the capability of new inhibitory training under conditions of disappearance of the expected punishment. In mice with reaction of "behavioral despair" characterized by a delay of extinction, activation of D1 receptors by SKF38393 normalized this process (as distinct from the inefficiency of D2 agonist). The positive effect of acceleration of fear memory extinction was revealed also under conditions of blockade of D1 and D2 dopamine receptors.

  16. Blockade of glucocorticoid receptors with ORG 34116 does not normalize stress-induced symptoms in male tree shrews.

    PubMed

    Van Kampen, Marja; De Kloet, E Ronald; Flügge, Gabriele; Fuchs, Eberhard

    2002-12-20

    Glucocorticoid receptors play an important role in the regulation of the activity of the hypothalamo-pituitary-adrenal axis, and are thought to be involved in the pathophysiology of depressive disorders. The present study investigated the effect of the specific glucocorticoid receptor antagonist ORG 34116 (a substituted 11,21 bisarylsteroid compound) in the tree shrew (Tupaia belangeri) chronic psychosocial stress model, an established animal model for depressive disorders. Animals were stressed for 10 days before treatment with ORG 34116 started (25 mg/kg p.o. for 28 days). Stress induced a decrease in body weight, which just failed significance, whereas ORG 34116 did not affect body weight in stress and control animals. ORG 34116 enhanced the stress-induced increase in the concentration of urinary-free cortisol, although no differences between the different experimental groups existed during the last week of treatment. In stressed animals, ORG 34116 did not affect marking behavior, but decreased locomotor activity. Post mortem analysis of 5-HT(1A) receptors revealed a decreased affinity of 3[H]-8-OH-DPAT (3[H]-8-hydroxy-2-[di-n-propylamino]tetralin) binding sites in the hippocampus of animals treated with the glucocorticoid receptor antagonist. In conclusion, under our experimental conditions, the glucocorticoid receptor antagonist ORG 34116 did not normalize the depressive-like symptoms in the psychosocial stress model of male tree shrews. This finding, however, does not exclude that specific central, neuroendocrine and behavioral features are affected by the compound.

  17. Inhibition of angiogenesis by selective estrogen receptor modulators through blockade of cholesterol trafficking rather than estrogen receptor antagonism.

    PubMed

    Shim, Joong Sup; Li, Ruo-Jing; Lv, Junfang; Head, Sarah A; Yang, Eun Ju; Liu, Jun O

    2015-06-28

    Selective estrogen receptor modulators (SERM) including tamoxifen are known to inhibit angiogenesis. However, the underlying mechanism, which is independent of their action on the estrogen receptor (ER), has remained largely unknown. In the present study, we found that tamoxifen and other SERM inhibited cholesterol trafficking in endothelial cells, causing a hyper-accumulation of cholesterol in late endosomes/lysosomes. Inhibition of cholesterol trafficking by tamoxifen was accompanied by abnormal subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR2) and inhibition of the terminal glycosylation of the receptor. Tamoxifen also caused perinuclear positioning of lysosomes, which in turn trapped the mammalian target of rapamycin (mTOR) in the perinuclear region of endothelial cells. Abnormal distribution of VEGFR2 and mTOR and inhibition of VEGFR2 and mTOR activities by tamoxifen were significantly reversed by addition of cholesterol-cyclodextrin complex to the culture media of endothelial cells. Moreover, high concentrations of tamoxifen inhibited endothelial and breast cancer cell proliferation in a cholesterol-dependent, but ER-independent, manner. Together, these results unraveled a previously unrecognized mechanism of angiogenesis inhibition by tamoxifen and other SERM, implicating cholesterol trafficking as an attractive therapeutic target for cancer treatment.

  18. D2 receptor blockade by flunarizine and cinnarizine explains extrapyramidal side effects. A SPECT study.

    PubMed

    Brücke, T; Wöber, C; Podreka, I; Wöber-Bingöl, C; Asenbaum, S; Aull, S; Wenger, S; Ilieva, D; Harasko-van der Meer, C; Wessely, P

    1995-05-01

    Twenty-six patients under treatment with the calcium channel blockers flunarizine (Fz) or cinnarizine (Cz) were examined-with single-photon emission computed tomography using [123I]iodobenzamide as a ligand. The striatal dopamine D2 receptor-binding potential was determined and found to be reduced by 14 to 63% (39.5 +/- 15.0%; p < 0.0001) in patients compared with age-matched control values. This reduction was larger in 12 patients with extrapyramidal symptoms and was only slowly reversible after discontinuation of treatment. Patients treated for > 6 months had significantly larger reductions than patients treated for a shorter period. Parkinsonian symptoms were only seen in patients older than 50 years. Our findings prove a neuroleptic-like action of Fz and Cz, which seems to be the major reason for their extrapyramidal side effects. Older age and long-term treatment are predisposing factors for these effects.

  19. Selective endothelin receptor blockade in resistant hypertension: results of the DORADO trial.

    PubMed

    Grassi, Guido

    2011-01-01

    Effective treatment of resistant hypertension still remains an unmet goal of antihypertensive drug treatment. The DORADO trial recently evaluated the efficacy and safety profile of the selective endothelin receptor blocker darusentan in almost 400 hypertensive patients treated with more than four antihypertensive drugs (including a diuretic) but without effective blood pressure control. The trial results show that > 50% of patients treated with the drug exhibit clinical blood pressure < 140/90 mmHg and well-controlled ambulatory blood pressure values. Darusentan, however, was associated with a high incidence of peripheral edema and fluid retention, a side effect that may reduce the safety profile of the drug and its tolerability. Although these data are promising, the drug requires further evaluation, with particularly regard to the long term.

  20. Glucocorticoid receptor blockade inhibits brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus.

    PubMed

    Dunlap, Kent D; Jashari, Denisa; Pappas, Kristina M

    2011-08-01

    When animals are under stress, glucocorticoids commonly inhibit adult neurogenesis by acting through glucocorticoid receptors (GRs). However, in some cases, conditions that elevate glucocorticoids promote adult neurogenesis, and the role of glucocorticoid receptors in these circumstances is not well understood. We examined the involvement of GRs in social enhancement of brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus. In this species, long-term social interaction simultaneously elevates plasma cortisol, enhances brain cell addition and increases production of aggressive electrocommunication signals ("chirps"). We implanted isolated and paired fish with capsules containing nothing (controls) or the GR antagonist, RU486, recorded chirp production and locomotion for 7d, and measured the density of newborn cells in the periventricular zone. Compared to isolated controls, paired controls showed elevated chirping in two phases: much higher chirp rates in the first 5h and moderately higher nocturnal rates thereafter. Treating paired fish with RU486 reduced chirp rates in both phases to those of isolated fish, demonstrating that GR activation is crucial for socially induced chirping. Neither RU486 nor social interaction affected locomotion. RU486 treatment to paired fish had a partial effect on cell addition: paired RU486 fish had less cell addition than paired control fish but more than isolated fish. This suggests that cortisol activation of GRs contributes to social enhancement of cell addition but works in parallel with another GR-independent mechanism. RU486 also reduced cell addition in isolated fish, indicating that GRs participate in the regulation of cell addition even when cortisol levels are low.

  1. Due to interleukin-6 type cytokine redundancy only glycoprotein 130 receptor blockade efficiently inhibits myeloma growth

    PubMed Central

    Burger, Renate; Günther, Andreas; Klausz, Katja; Staudinger, Matthias; Peipp, Matthias; Penas, Eva Maria Murga; Rose-John, Stefan; Wijdenes, John; Gramatzki, Martin

    2017-01-01

    Interleukin-6 has an important role in the pathophysiology of multiple myeloma where it supports the growth and survival of the malignant plasma cells in the bone marrow. It belongs to a family of cytokines which use the glycoprotein 130 chain for signal transduction, such as oncostatin M or leukemia inhibitory factor. Targeting interleukin-6 in plasma cell diseases is currently evaluated in clinical trials with monoclonal antibodies. Here, efforts were made to elucidate the contribution of interleukin-6 and glycoprotein 130 signaling in malignant plasma cell growth in vivo. In the xenograft severe combined immune deficiency model employing our interleukin-6-dependent plasma cell line INA-6, the lack of human interleukin-6 induced autocrine interleukin-6 production and a proliferative response to other cytokines of the glycoprotein 130 family. Herein, mice were treated with monoclonal antibodies against human interleukin-6 (elsilimomab/B-E8), the interleukin-6 receptor (B-R6), and with an antibody blocking glycoprotein 130 (B-R3). While treatment of mice with interleukin-6 and interleukin-6 receptor antibodies resulted in a modest delay in tumor growth, the development of plasmacytomas was completely prevented with the anti-glycoprotein 130 antibody. Importantly, complete inhibition was also achieved using F(ab’)2-fragments of monoclonal antibody B-R3. Tumors harbor activated signal transducer and activator of transcription 3, and in vitro, the antibody inhibited leukemia inhibitory factor stimulated signal transducer and activator of transcription 3 phosphorylation and cell growth, while being less effective against interleukin-6. In conclusion, the growth of INA-6 plasmacytomas in vivo under interleukin-6 withdrawal remains strictly dependent on glycoprotein 130, and other glycoprotein 130 cytokines may substitute for interleukin-6. Antibodies against glycoprotein 130 are able to overcome this redundancy and should be explored for a possible therapeutic window

  2. Original nootropic drug noopept prevents memory deficit in rats with muscarinic and nicotinic receptor blockade.

    PubMed

    Radionova, K S; Belnik, A P; Ostrovskaya, R U

    2008-07-01

    Antiamnesic activity of Noopept was studied on the original three-way model of conditioned passive avoidance response, which allows studying spatial component of memory. Cholinoceptor antagonists of both types (scopolamine and mecamylamine) decreased entry latency and reduced the probability for selection of the safe compartment. Noopept abolished the antiamnesic effect of cholinoceptor antagonists and improved spatial preference.

  3. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    SciTech Connect

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F. )

    1988-04-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of {sup 125}I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase.

  4. The Impact of NMDA Receptor Blockade on Human Working Memory-Related Prefrontal Function and Connectivity

    PubMed Central

    Driesen, Naomi R; McCarthy, Gregory; Bhagwagar, Zubin; Bloch, Michael H; Calhoun, Vincent D; D'Souza, Deepak C; Gueorguieva, Ralitza; He, George; Leung, Hoi-Chung; Ramani, Ramachandran; Anticevic, Alan; Suckow, Raymond F; Morgan, Peter T; Krystal, John H

    2013-01-01

    Preclinical research suggests that N-methyl-D-aspartate glutamate receptors (NMDA-Rs) have a crucial role in working memory (WM). In this study, we investigated the role of NMDA-Rs in the brain activation and connectivity that subserve WM. Because of its importance in WM, the lateral prefrontal cortex, particularly the dorsolateral prefrontal cortex and its connections, were the focus of analyses. Healthy participants (n=22) participated in a single functional magnetic resonance imaging session. They received saline and then the NMDA-R antagonist ketamine while performing a spatial WM task. Time-course analysis was used to compare lateral prefrontal activation during saline and ketamine administration. Seed-based functional connectivity analysis was used to compare dorsolateral prefrontal connectivity during the two conditions and global-based connectivity was used to test for laterality in these effects. Ketamine reduced accuracy on the spatial WM task and brain activation during the encoding and early maintenance (EEM) period of task trials. Decrements in task-related activation during EEM were related to performance deficits. Ketamine reduced connectivity in the DPFC network bilaterally, and region-specific reductions in connectivity were related to performance. These results support the hypothesis that NMDA-Rs are critical for WM. The knowledge gained may be helpful in understanding disorders that might involve glutamatergic deficits such as schizophrenia and developing better treatments. PMID:23856634

  5. The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity.

    PubMed

    Driesen, Naomi R; McCarthy, Gregory; Bhagwagar, Zubin; Bloch, Michael H; Calhoun, Vincent D; D'Souza, Deepak C; Gueorguieva, Ralitza; He, George; Leung, Hoi-Chung; Ramani, Ramachandran; Anticevic, Alan; Suckow, Raymond F; Morgan, Peter T; Krystal, John H

    2013-12-01

    Preclinical research suggests that N-methyl-D-aspartate glutamate receptors (NMDA-Rs) have a crucial role in working memory (WM). In this study, we investigated the role of NMDA-Rs in the brain activation and connectivity that subserve WM. Because of its importance in WM, the lateral prefrontal cortex, particularly the dorsolateral prefrontal cortex and its connections, were the focus of analyses. Healthy participants (n=22) participated in a single functional magnetic resonance imaging session. They received saline and then the NMDA-R antagonist ketamine while performing a spatial WM task. Time-course analysis was used to compare lateral prefrontal activation during saline and ketamine administration. Seed-based functional connectivity analysis was used to compare dorsolateral prefrontal connectivity during the two conditions and global-based connectivity was used to test for laterality in these effects. Ketamine reduced accuracy on the spatial WM task and brain activation during the encoding and early maintenance (EEM) period of task trials. Decrements in task-related activation during EEM were related to performance deficits. Ketamine reduced connectivity in the DPFC network bilaterally, and region-specific reductions in connectivity were related to performance. These results support the hypothesis that NMDA-Rs are critical for WM. The knowledge gained may be helpful in understanding disorders that might involve glutamatergic deficits such as schizophrenia and developing better treatments.

  6. Error correction in latent inhibition and its disruption by opioid receptor blockade with naloxone.

    PubMed

    Leung, Hiu T; Killcross, A S; Westbrook, R Frederick

    2013-11-01

    Latent inhibition refers to the retardation in the development of conditioned responding when a pre-exposed stimulus is used to signal an unconditioned stimulus. This effect is described by error-correction models as an attentional deficit and is commonly used as an animal model of schizophrenia. A series of experiments studied the role of error-correction mechanism in latent inhibition and its interaction with the endogenous opioid system. Systemic administration of the competitive opioid receptor antagonist naloxone before rats were pre-exposed to a target stimulus prevented latent inhibition of its subsequent fear conditioning; it was without effect on a non-pre-exposed stimulus and did not produce state-dependent learning (Experiments 1a and 1b). Naloxone did not reverse the latent inhibitory effect already accrued to a pre-exposed target. However, it did prevent the enhancement of latent inhibition by a long retention interval interpolated between its initial exposure and re-exposure (Experiment 2) or by a novel stimulus compounded with the pre-exposed target during re-exposure (Experiment 3). These results provide evidence that attentional loss in latent inhibition is instructed by an opioid-mediated error signal which diminishes with repeated stimulus exposures but recovers with the passage of time or reintroduction of novelty.

  7. Chronic CRF1 receptor blockade reduces heroin intake escalation and dependence-induced hyperalgesia.

    PubMed

    Park, Paula E; Schlosburg, Joel E; Vendruscolo, Leandro F; Schulteis, Gery; Edwards, Scott; Koob, George F

    2015-03-01

    Opioids represent effective drugs for the relief of pain, yet chronic opioid use often leads to a state of increased sensitivity to pain that is exacerbated during withdrawal. A sensitization of pain-related negative affect has been hypothesized to closely interact with addiction mechanisms. Neuro-adaptive changes occur as a consequence of excessive opioid exposure, including a recruitment of corticotropin-releasing factor (CRF) and norepinephrine (NE) brain stress systems. To better understand the mechanisms underlying the transition to dependence, we determined the effects of functional antagonism within these two systems on hyperalgesia-like behavior during heroin withdrawal utilizing models of both acute and chronic dependence. We found that passive or self-administered heroin produced a significant mechanical hypersensitivity. During acute opioid dependence, systemic administration of the CRF1 receptor antagonist MPZP (20 mg/kg) alleviated withdrawal-induced mechanical hypersensitivity. In contrast, several functional adrenergic system antagonists (clonidine, prazosin, propranolol) failed to alter mechanical hypersensitivity in this state. We then determined the effects of chronic MPZP or clonidine treatment on extended access heroin self-administration and found that MPZP, but not clonidine, attenuated escalation of heroin intake, whereas both drugs alleviated chronic dependence-associated hyperalgesia. These findings suggest that an early potentiation of CRF signaling occurs following opioid exposure that begins to drive both opioid-induced hyperalgesia and eventually intake escalation.

  8. Central serotonin(2B) receptor blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical dopamine outflow.

    PubMed

    Devroye, Céline; Cathala, Adeline; Di Marco, Barbara; Caraci, Filippo; Drago, Filippo; Piazza, Pier Vincenzo; Spampinato, Umberto

    2015-10-01

    The central serotonin2B receptor (5-HT2BR) is currently considered as an interesting pharmacological target for improved treatment of drug addiction. In the present study, we assessed the effect of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on cocaine-induced hyperlocomotion and dopamine (DA) outflow in the nucleus accumbens (NAc) and the dorsal striatum of freely moving rats. The peripheral administration of RS 127445 (0.16 mg/kg, i.p.) or LY 266097 (0.63 mg/kg, i.p.) significantly reduced basal DA outflow in the NAc shell, but had no effect on cocaine (10 mg/kg, i.p.)-induced DA outflow in this brain region. Also, RS 127445 failed to modify both basal and cocaine-induced DA outflow in the NAc core and the dorsal striatum. Conversely, both 5-HT2BR antagonists reduced cocaine-induced hyperlocomotion. Furthermore, RS 127445 as well as the DA-R antagonist haloperidol (0.1 mg/kg, i.p.) reduced significantly the late-onset hyperlocomotion induced by the DA-R agonist quinpirole (0.5 mg/kg, s.c.). Altogether, these results demonstrate that 5-HT2BR blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical DA outflow. This interaction takes place downstream to DA neurons and could involve an action at the level of dorsostriatal and/or NAc DA transmission, in keeping with the importance of these brain regions in the behavioural responses of cocaine. Overall, this study affords additional knowledge into the regulatory control exerted by the 5-HT2BR on ascending DA pathways, and provides additional support to the proposed role of 5-HT2BRs as a new pharmacological target in drug addiction.

  9. Beyond aggression: Androgen-receptor blockade modulates social interaction in wild meerkats.

    PubMed

    delBarco-Trillo, Javier; Greene, Lydia K; Goncalves, Ines Braga; Fenkes, Miriam; Wisse, Jillian H; Drewe, Julian A; Manser, Marta B; Clutton-Brock, Tim; Drea, Christine M

    2016-02-01

    In male vertebrates, androgens are inextricably linked to reproduction, social dominance, and aggression, often at the cost of paternal investment or prosociality. Testosterone is invoked to explain rank-related reproductive differences, but its role within a status class, particularly among subordinates, is underappreciated. Recent evidence, especially for monogamous and cooperatively breeding species, suggests broader androgenic mediation of adult social interaction. We explored the actions of androgens in subordinate, male members of a cooperatively breeding species, the meerkat (Suricata suricatta). Although male meerkats show no rank-related testosterone differences, subordinate helpers rarely reproduce. We blocked androgen receptors, in the field, by treating subordinate males with the antiandrogen, flutamide. We monitored androgen concentrations (via baseline serum and time-sequential fecal sampling) and recorded behavior within their groups (via focal observation). Relative to controls, flutamide-treated animals initiated less and received more high-intensity aggression (biting, threatening, feeding competition), engaged in more prosocial behavior (social sniffing, grooming, huddling), and less frequently initiated play or assumed a 'dominant' role during play, revealing significant androgenic effects across a broad range of social behavior. By contrast, guarding or vigilance and measures of olfactory and vocal communication in subordinate males appeared unaffected by flutamide treatment. Thus, androgens in male meerkat helpers are aligned with the traditional trade-off between promoting reproductive and aggressive behavior at a cost to affiliation. Our findings, based on rare endocrine manipulation in wild mammals, show a more pervasive role for androgens in adult social behavior than is often recognized, with possible relevance for understanding tradeoffs in cooperative systems.

  10. Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning.

    PubMed

    Yin, Henry H; Knowlton, Barbara J; Balleine, Bernard W

    2005-07-01

    Although there is consensus that instrumental conditioning depends on the encoding of action-outcome associations, it is not known where this learning process is localized in the brain. Recent research suggests that the posterior dorsomedial striatum (pDMS) may be the critical locus of these associations. We tested this hypothesis by examining the contribution of N-methyl-D-aspartate receptors (NMDARs) in the pDMS to action-outcome learning. Rats with bilateral cannulae in the pDMS were first trained to perform two actions (left and right lever presses), for sucrose solution. After the pre-training phase, they were given an infusion of the NMDA antagonist 2-amino-5-phosphonopentanoic acid (APV, 1 mg/mL) or artificial cerebral spinal fluid (ACSF) before a 30-min session in which pressing one lever delivered food pellets and pressing the other delivered fruit punch. Learning during this session was tested the next day by sating the animals on either the pellets or fruit punch before assessing their performance on the two levers in extinction. The ACSF group selectively reduced responding on the lever that, in training, had earned the now devalued outcome, whereas the APV group did not. Experiment 2 replicated the effect of APV during the critical training session but found no effect of APV given after acquisition and before test. Furthermore, Experiment 3 showed that the effect of APV on instrumental learning was restricted to the pDMS; infusion into the dorsolateral striatum did not prevent learning. These experiments provide the first direct evidence that, in instrumental conditioning, NMDARs in the dorsomedial striatum are involved in encoding action-outcome associations.

  11. The impact of angiotensin II receptor blockade and the DASH diet on markers of endogenous fibrinolysis.

    PubMed

    Erlinger, T P; Conlin, P R; Macko, R F; Bohannon, A D; Miller, E R; Moore, T J; Svetkey, L P; Appel, L J

    2002-06-01

    Hypertension is associated with impaired fibrinolysis. Both angiotensin receptor blockers (ARB) and the DASH (Dietary Approaches to Stop Hypertension) diet effectively lower blood pressure in hypertensive patients. Some evidence suggests that treatment with ARBs could increase fibrinolysis, however, data is conflicting. The impact of the DASH diet on fibrinolytic parameters is not known. Fifty-five hypertensive participants (35 African-American, 20 white) were randomly assigned to receive 8 weeks of either a control diet or the DASH diet. The diets did not differ in sodium content (approximately 3 g/day). Within each diet, individuals were randomly assigned to receive losartan or placebo for 4 weeks in double-blind, cross-over fashion. Tissue plasminogen activator (t-PA) antigen, t-PA activity, plasminogen activator inhibitor-1 (PAI-1) activity and plasma renin activity (PRA) were measured at the end of a 2-week run-in period on the control diet and after each treatment period. The DASH diet did not affect markers of fibrinolysis. Losartan significantly lowered t-PA antigen levels (-1.8 ng/mL, P = 0.045), but had no effect on t-PA or PAI-1 activities. This effect was more pronounced in whites (-4.1 ng/mL (P = 0.003)) compared with African-Americans (-0.3 ng/mL (P = 0.7), P-interaction = 0.03). Results were not materially affected by adjustment for basline values or changes in blood pressure. This study demonstrates that losartan reduces t-PA antigen levels in white, but not African-American hypertensive individuals. In contrast, the DASH diet had no significant effect on markers of fibrinolysis in whites or African-Americans.

  12. Preferential blockade of dioxin-induced activation of the aryl hydrocarbon receptor by Antrodia camphorata.

    PubMed

    Mukai, Mai; Hayakawa, Kunihiro; Okamura, Maro; Tagawa, Yasuhiro; Nakajima, Shotaro; Saito, Yukinori; Takahashi, Shuhei; Yao, Jian; Nishimura, Daisuke; Sugi, Masahito; Matsunaga, Masaji; Kitamura, Masanori

    2009-09-01

    Halogenated and polycyclic aromatic hydrocarbons are widely distributed pollutants in environments. These toxic substances activate the aryl hydrocarbon receptor (AhR) and thereby cause a broad spectrum of pathological changes. Development of AhR inhibitors will be useful for prevention of diseases caused by AhR activation. Using the dioxin responsive element (DRE)-based sensing via secreted alkaline phosphatase (DRESSA), we examined effects of Antrodia camphorata, a mycerial extract, on the activation of AhR by halogenated and polycyclic aromatic hydrocarbons. We found that Antrodia camphorata markedly suppressed activation of AhR triggered by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In contrast, activation of AhR by polycyclic aromatic hydrocarbons (benzo[a]pyrene and 3-methylcholanthrene) was inhibited only modestly by this mycelium. Similarly, Antrodia camphorata only mildly attenuated activation of AhR by cigarette smoke that contains polycyclic aromatic hydrocarbons. Consistent with these results, Northern blot analysis revealed that DRE-driven exogenous and endogenous gene expression triggered by TCDD was abolished by Antrodia camphorata, whereas it did not substantially affect DRE-induced transcription triggered by benzo[a]pyrene, 3-methylcholanthrene or cigarette smoke. We also found that the inhibitory effect of Antrodia camphorata on TCDD-induced AhR activation was ascribed to neither down-regulation of AhR, down-regulation of the AhR nuclear translocator, nor up-regulation of the AhR repressor. These results suggest that Antrodia camphorata preferentially inhibits AhR activation and DRE-dependent gene expression triggered by dioxin.

  13. Blockade of interleukin-6 receptor suppresses the proliferation of H460 lung cancer stem cells.

    PubMed

    Yi, Hee; Cho, Hee-Jung; Cho, Soo-Min; Jo, Kyul; Park, Jin-A; Kim, Na-Hyun; Amidon, Gordon L; Kim, Jin-Suk; Shin, Ho-Chul

    2012-07-01

    IL-6/6R signaling is closely associated with tumor growth and poor prognosis. Although there is evidence that interleukin-6 receptor (IL-6R)-mediated signaling promotes the growth and malignancy of cancer, the role of IL-6R in cancer stem cells (CSCs) is poorly defined. This study investigated the role of IL-6R in the proliferation of CSCs. Sphere-forming cells were isolated from the H460 non-small cell lung cancer (NSCLC) cell line and identified as CSCs using confocal microscopy, RT-PCR and WST-1 assay. The H460 spheres demonstrated the typical characteristics of CSCs, including CD133 expression, upregulation of Nanog, self-renewal, and drug resistance to methotrexate (MTX) and fluorouracil (5-FU). The release of IL-6R and its ligand, IL-6, were quantitatively determined and compared between CSCs and non-CSCs. The concentration of soluble IL-6R (sIL-6R) was remarkably high in CSCs compared to that in non-CSCs. Furthermore, significant upregulation of the IL-6R gene was also observed in the CSCs. The growth of CSCs was significantly inhibited by transfection with IL-6R small-interfering RNA (siRNA), as well as with the IL-6R monoclonal antibody (mAb). In addition, blocking both IL-6R and IL-6 using siRNA or mAbs intensified the inhibition of CSC proliferation. These findings indicate that IL-6R is present in CSCs and has an important role in the proliferation of CSCs in the H460 lung cancer cell line. Therefore, we suggest that IL-6R is both a viable target for the development of CSC-directed lung cancer therapeutics and a potential CSC marker in NSCLC.

  14. Targeted leptin receptor blockade: role of ventral tegmental area and nucleus of the solitary tract leptin receptors in body weight homeostasis.

    PubMed

    Matheny, M; Strehler, K Y E; King, M; Tümer, N; Scarpace, P J

    2014-07-01

    The present investigation examined whether leptin stimulation of ventral tegmental area (VTA) or nucleus of the solitary tract (NTS) has a role in body weight homeostasis independent of the medial basal hypothalamus (MBH). To this end, recombinant adeno-associated viral techniques were employed to target leptin overexpression or overexpression of a dominant negative leptin mutant (leptin antagonist). Leptin antagonist overexpression in MBH or VTA increased food intake and body weight to similar extents over 14 days in rats. Simultaneous overexpression of leptin in VTA with antagonist in MBH resulted in food intake and body weight gain that were less than with control treatment but greater than with leptin alone in VTA. Notably, leptin overexpression in VTA increased P-STAT3 in MBH along with VTA, and leptin antagonist overexpression in the VTA partially attenuated P-STAT3 levels in MBH. Interestingly, leptin antagonist overexpression elevated body weight gain, but leptin overexpression in the NTS failed to modulate either food intake or body weight despite increased P-STAT3. These data suggest that leptin function in the VTA participates in the chronic regulation of food consumption and body weight in response to stimulation or blockade of VTA leptin receptors. Moreover, one component of VTA-leptin action appears to be independent of the MBH, and another component appears to be related to leptin receptor-mediated P-STAT3 activation in the MBH. Finally, leptin receptors in the NTS are necessary for normal energy homeostasis, but mostly they appear to have a permissive role. Direct leptin activation of NTS slightly increases UCP1 levels, but has little effect on food consumption or body weight.

  15. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    PubMed Central

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  16. Decrease of Obesity by Allantoin via Imidazoline I1-Receptor Activation in High Fat Diet-Fed Mice

    PubMed Central

    Chung, Hsien-Hui; Lee, Kung Shing

    2013-01-01

    The activation of the imidazoline I1-receptor (I1R) is known to regulate appetite. Allantoin, an active ingredient in the yam, has been reported to improve lipid metabolism in high fat diet- (HFD-)fed mice. However, the effect of allantoin on obesity remains unclear. In the present study, we investigated the effects of allantoin on HFD-induced obesity. The chronic administration of allantoin to HFD-fed mice for 8 weeks significantly decreased their body weight, and this effect was reversed by efaroxan at a dose sufficient to block I1R. The epididymal white adipose tissue (eWAT) cell size and weight in HFD-fed mice were also decreased by allantoin via the activation of I1R. In addition, allantoin significantly decreased the energy intake of HFD-fed mice, and this reduction was associated with a decrease in the NPY levels in the brain. However, no inhibitory effect of allantoin on energy intake was observed in db/db mice. Moreover, allantoin lowered HFD-induced hyperleptinemia, and this activity was abolished by I1R blockade with efaroxan. Taken together, these data suggest that allantoin can ameliorate energy intake and eWAT accumulation by activating I1R to improve HFD-induced obesity. PMID:23606885

  17. Blockade of Glucagon-like Peptide 1 Receptor Corrects Post-prandial Hypoglycemia After Gastric Bypass

    PubMed Central

    Salehi, Marzieh; Gastaldelli, Amalia; D'Alessio, David A.

    2014-01-01

    Background & Aims Post-prandial glycemia excursions increase after gastric bypass surgery; this effect is even greater among individuals with recurrent hypoglycemia (blood glucose levels <50 mg/dL). These patients also have increased post-prandial levels of insulin and glucagon-like peptide 1 (GLP1). We performed a clinical trial to determine the role of GLP1 in post-prandial glycemia in patients with hyperinsulinemic hypoglycemia syndrome after gastric bypass. Methods Nine patients with recurrent hypoglycemia after gastric bypass (H-GB), 7 asymptomatic individuals with previous gastric bypass (A-GB), and 8 non-diabetic subjects who did not receive surgery (controls) were studied with a mixed-meal tolerance test (350 kcal) using a dual glucose tracer method on 2 days. On 1 day they received continuous infusion of GLP-1 receptor (GLP1R) antagonist, exendin-(9–39) (Ex-9), and on the other day, a saline control. Glucose kinetics and islet and gut hormone responses were measured before and after the meal. Results Infusion of Ex9 corrected hypoglycemia in all H-GB individuals. The reduction of post-prandial insulin secretion by Ex9 was greater in the H-GB group than other groups (H-GB, 50%±8%; A-GB, 13%±10%; and controls, 14%±10%) (P<.05). Meal-derived glucose (RaOral) was significantly greater among subjects who had undergone gastric bypass than controls, and in H-GB patients compared with A-GB subjects. Ex9 shortened the time to peak RaOral in all groups without any significant effect on the overall glucose flux. Post-prandial glucagon levels were higher among patients who had undergone gastric bypass than controls, and increased with Ex9 administration. Conclusions Hypoglycemia following gastric bypass can be corrected by administration of a GLP1R antagonist, which might be used to treat this disorder. These findings are consistent with reports that increased GLP1 activity contributes to hypoglycemia following gastric bypass. ClinicalTrials.gov number, NCT

  18. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice.

    PubMed

    Walker, Adam K; Budac, David P; Bisulco, Stephanie; Lee, Anna W; Smith, Robin A; Beenders, Brent; Kelley, Keith W; Dantzer, Robert

    2013-08-01

    We have previously demonstrated that lipopolysaccharide (LPS) induces depressive-like behavior by activating indoleamine 2,3 dioxygenase (IDO; O'Connor et al, 2009c). IDO degrades tryptophan along the kynurenine pathway. Using mass-spectrometry (LC-MS) analysis of kynurenine metabolites in the brain of mice injected at the periphery with 1 mg/kg LPS, we show that LPS activates the kynurenine 3-monooxygenase pathway that ultimately degrades kynurenine into quinolinic acid. As quinolinic acid acts as an N-methyl-D-aspartate (NMDA) receptor agonist, we used the NMDA receptor antagonist ketamine to assess the role of NMDA receptor activation in LPS-induced depressive-like behavior. Here, we report that a low dose of ketamine (6 mg/kg, intraperitoneally) immediately before administration of LPS (0.83 mg/kg, intraperitoneally) in C57Bl/6 J mice abrogated the development of LPS-induced depressive-like behavior, without altering LPS-induced sickness measured by body weight loss, decreased motor activity, and reduced food intake. Depressive-like behavior was measured 24 h after LPS by decreased sucrose preference and increased immobility in the forced swim test (FST). Ketamine had no effect on LPS-induced cytokine expression in the liver and brain, IDO activation, and brain-derived neurotrophic factor (BDNF) transcripts. The ability of ketamine to abrogate LPS-induced depressive-like behavior independently of a possible interference with LPS-induced inflammatory signaling was confirmed when ketamine was administered 10 h after LPS instead of immediately before LPS. In contrast, ketamine had no effect when administered 24 h before LPS. To confirm that NMDA receptor antagonism by ketamine mediates the antidepressant-like activity of this compound in LPS-treated mice, mice were pretreated with the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline-2,3-dione (NBQX) to block enhanced AMPA

  19. The effect of dopamine receptor blockade in the rodent nucleus accumbens on local field potential oscillations and motor activity in response to ketamine.

    PubMed

    Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark Jeremy

    2010-12-17

    Altered functioning of the nucleus accumbens (NAc) has been implicated in the psychotomimetic actions of NMDA receptor (NMDAR) antagonists and the pathophysiology of schizophrenia. We have shown previously that NMDAR antagonists enhance the power of high-frequency oscillations (HFO) in the NAc in a dose-dependent manner, as well as increase locomotor activity. Systemic administration of NMDAR antagonists is known to increase the release of dopamine in the NAc and dopamine antagonists can reduce ketamine-induced hyperactivity. In this study, we examined the effect of 0.5 μl intra-NAc infusion of 3.2 μg SCH23390 (D1 antagonist), 10 μg raclopride (D2 antagonist) and saline on ketamine-induced changes in motor and oscillatory activity. We found that local blockade of D1 receptors attenuated ketamine-induced increases in motor activity and blockade of D2 receptors produced a much weaker effect, with respect to saline-infused control groups. In contrast, none of the antagonists, infused separately or together, significantly modified the power or dominant frequency of ketamine-induced increases in HFO, but changes in delta and theta frequency bands were observed. Together, these findings suggest, that, in contrast to delta and theta frequency bands, the generation of ketamine enhanced-HFO in the NAc is not causally related to locomotor activation and occurs largely independently of local changes in dopamine receptor activation.

  20. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity

    PubMed Central

    Chamoto, Kenji; Chowdhury, Partha S.; Kumar, Alok; Sonomura, Kazuhiro; Matsuda, Fumihiko; Fagarasan, Sidonia; Honjo, Tasuku

    2017-01-01

    Although immunotherapy by PD-1 blockade has dramatically improved the survival rate of cancer patients, further improvement in efficacy is required to reduce the fraction of less sensitive patients. In mouse models of PD-1 blockade therapy, we found that tumor-reactive cytotoxic T lymphocytes (CTLs) in draining lymph nodes (DLNs) carry increased mitochondrial mass and more reactive oxygen species (ROS). We show that ROS generation by ROS precursors or indirectly by mitochondrial uncouplers synergized the tumoricidal activity of PD-1 blockade by expansion of effector/memory CTLs in DLNs and within the tumor. These CTLs carry not only the activation of mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) but also an increment of their downstream transcription factors such as PPAR-gamma coactivator 1α (PGC-1α) and T-bet. Furthermore, direct activators of mTOR, AMPK, or PGC-1α also synergized the PD-1 blockade therapy whereas none of above-mentioned chemicals alone had any effects on tumor growth. These findings will pave a way to developing novel combinatorial therapies with PD-1 blockade. PMID:28096382

  1. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity.

    PubMed

    Chamoto, Kenji; Chowdhury, Partha S; Kumar, Alok; Sonomura, Kazuhiro; Matsuda, Fumihiko; Fagarasan, Sidonia; Honjo, Tasuku

    2017-01-31

    Although immunotherapy by PD-1 blockade has dramatically improved the survival rate of cancer patients, further improvement in efficacy is required to reduce the fraction of less sensitive patients. In mouse models of PD-1 blockade therapy, we found that tumor-reactive cytotoxic T lymphocytes (CTLs) in draining lymph nodes (DLNs) carry increased mitochondrial mass and more reactive oxygen species (ROS). We show that ROS generation by ROS precursors or indirectly by mitochondrial uncouplers synergized the tumoricidal activity of PD-1 blockade by expansion of effector/memory CTLs in DLNs and within the tumor. These CTLs carry not only the activation of mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) but also an increment of their downstream transcription factors such as PPAR-gamma coactivator 1α (PGC-1α) and T-bet. Furthermore, direct activators of mTOR, AMPK, or PGC-1α also synergized the PD-1 blockade therapy whereas none of above-mentioned chemicals alone had any effects on tumor growth. These findings will pave a way to developing novel combinatorial therapies with PD-1 blockade.

  2. Beneficial Effects of Combined AT1 Receptor/Neprilysin Inhibition (ARNI) Versus AT1 Receptor Blockade Alone in the Diabetic Eye

    PubMed Central

    Prasad, Tuhina; Roksnoer, Lodi C. W.; Zhu, Ping; Verma, Amrisha; Li, Yiming; Batenburg, Wendy W.; de Vries, René; Danser, A. H. Jan; Li, Qiuhong

    2016-01-01

    Purpose Dysfunction of the renin-angiotensin system (RAS) contributes to pathogenesis of diabetic retinopathy (DR). Yet RAS blockers have only limited beneficial effects on progression of DR in clinical trials. The natriuretic peptide system offsets RAS, so that enhancing the activity of this system on top of RAS blockade might be beneficial. Neprilysin has an important role in the degradation of natriuretic peptides. Therefore, we hypothesize that dual angiotensin receptor-neprilysin inhibition (ARNI) may outperform angiotensin receptor blocker (ARB) in protection against DR. We tested this hypothesis in streptozotocin-induced diabetic transgenic (mRen2)27 rats. Methods Adult male diabetic (mRen2)27 rats were followed for 5 or 12 weeks. Treatment with vehicle, irbesartan (ARB), or ARB combined with the neprilysin inhibitor thiorphan (irbesartan+thiorphan [ARNI]) occurred during the final 3 weeks. Retinal cell death, gliosis, and capillary loss were evaluated. Real-time polymerase chain reaction (RT-PCR) analyses were performed to quantify the retinal level of inflammatory cell markers. Results Both ARB- and ARNI-treated groups showed similarly reduced retinal apoptotic cell death, gliosis, and capillary loss compared to the vehicle-treated group in the 5-week study. Treatment with ARNI reduced the expression of inflammatory markers more than ARB treatment in the 5-week study. In the 12-week study, ARNI treatment showed significantly more reduction in apoptotic cell death (51% vs. 25% reduction), and capillary loss (68% vs. 43% reduction) than ARB treatment. Conclusions Treatment with ARNI provides better protection against DR in diabetic (mRen2)27 transgenic rats, compared to ARB alone. This approach may be a promising treatment option for patients with DR. PMID:27951594

  3. Recovery from ketamine-induced amnesia by blockade of GABA-A receptor in the medial prefrontal cortex of mice.

    PubMed

    Farahmandfar, Maryam; Akbarabadi, Ardeshir; Bakhtazad, Atefeh; Zarrindast, Mohammad-Reza

    2017-03-06

    Ketamine and other noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists are known to induce deficits in learning and cognitive performance sensitive to prefrontal cortex (PFC) functions. The interaction of a glutamatergic and GABAergic systems is essential for many cognitive behaviors. In order to understand the effect of γ-aminobutyric acid (GABA)/glutamate interactions on learning and memory, we investigated the effects of intra medial prefrontal cortex (mPFC) injections of GABAergic agents on ketamine-induced amnesia using a one-trial passive avoidance task in mice. Pre-training systemic administration of ketamine (5, 10 and 15mg/kg, i.p.) dose-dependently decreased the memory acquisition of a one-trial passive avoidance task. Pre-training intra-mPFC injection of muscimol, GABAA receptor agonist (0.05, 0.1 and 0.2μg/mouse) and baclofen GABAB receptor agonist (0.05, 0.1, 0.5 and 1μg/mouse), impaired memory acquisition. However, co-pretreatment of different doses of muscimol and baclofen with a lower dose of ketamine (5mg/kg), which did not induce amnesia by itself, caused inhibition of memory formation. Our data showed that sole pre-training administration of bicuculline, GABA-A receptor antagonist and phaclofen GABA-B receptor antagonist into the mPFC, did not affect memory acquisition. In addition, the amnesia induced by pre-training ketamine (15mg/kg) was significantly decreased by the pretreatment of bicuculline (0.005, 0.1 and 0.5μg/mouse). It can be concluded that GABAergic system of the mPFC is involved in the ketamine-induced impairment of memory acquisition.

  4. Decreased glucocorticoid receptor activity following glucocorticoid receptor antisense RNA gene fragment transfection.

    PubMed Central

    Pepin, M C; Barden, N

    1991-01-01

    Depression is often characterized by increased cortisol secretion caused by hyperactivity of the hypothalamic-pituitary-adrenal axis and by nonsuppression of cortisol secretion following dexamethasone administration. This hyperactivity of the hypothalamic-pituitary-adrenal axis could result from a reduced glucocorticoid receptor (GR) activity in neurons involved in its control. To investigate the effect of reduced neuronal GR levels, we have blocked cellular GR mRNA processing and/or translation by introduction of a complementary GR antisense RNA strand. Two cell lines were transfected with a reporter plasmid carrying the chloramphenicol acetyltransferase (CAT) gene under control of the mouse mammary tumor virus long terminal repeat (a glucocorticoid-inducible promoter). This gene construction permitted assay of the sensitivity of the cells to glucocorticoid hormones. Cells were also cotransfected with a plasmid containing 1,815 bp of GR cDNA inserted in the reverse orientation downstream from either a neurofilament gene promoter element or the Rous sarcoma virus promoter element. Northern (RNA) blot analysis demonstrated formation of GR antisense RNA strands. Measurement of the sensitivity of CAT activity to exogeneous dexamethasone showed that although dexamethasone increased CAT activity by as much as 13-fold in control incubations, expression of GR antisense RNA caused a 2- to 4-fold decrease in the CAT response to dexamethasone. Stable transfectants bearing the GR antisense gene fragment construction demonstrated a 50 to 70% decrease of functional GR levels compared with normal cells, as evidenced by a ligand-binding assay with the type II glucocorticoid receptor-specific ligand [3H]RU 28362. These results validate the use of antisense RNA to GR to decrease cellular response to glucocorticoids. Images PMID:1996114

  5. Cholinergic receptor blockade by scopolamine and mecamylamine exacerbates global cerebral ischemia induced memory dysfunction in C57BL/6J mice.

    PubMed

    Ray, R S; Rai, S; Katyal, A

    2014-12-01

    Global cerebral ischemia/reperfusion (GCI/R) injury encompasses complex pathophysiological sequalae, inducing loss of hippocampal neurons and behavioural deficits. Progressive neuronal death and memory dysfunctions culminate from several different mechanisms like oxidative stress, excitotoxicity, neuroinflammation and cholinergic hypofunction. Experimental evidences point to the beneficial effects of cholinomimetic agents such as rivastigmine and galantamine in improving memory outcomes following GCI/R injury. However, the direct implications of muscarinic and nicotinic receptor blockade during global cerebral ischemia/reperfusion injury have not been investigated. Therefore, we evaluated the relative involvement of muscarinic and nicotinic receptors in spatial/associative memory functions and neuronal damage during global cerebral ischemia reperfusion injury. The outcomes of present study support the idea that preservation of both muscarinic and nicotinic receptor functions is essential to alleviate hippocampal neuronal death in CA1 region following global cerebral ischemia/reperfusion injury.

  6. Selective blockade and recovery of cell surface alpha 2-adrenergic receptors in human erythroleukemia (HEL) cells. Studies with the irreversible antagonist benextramine

    SciTech Connect

    McKernan, R.M.; Strickland, W.R.; Insel, P.A.

    1988-01-01

    alpha 2-Adrenergic receptors are present on human erythroleukemia (HEL) cells, both on the cell surface and in a sequestered compartment. In the current study we show that benextramine, a hydrophilic irreversible antagonist, can be used to investigate alpha 2-adrenergic receptor compartmentation in these cells. In membranes prepared from HEL cells, benextramine competed for all alpha 2-adrenergic receptors ( (/sup 3/H)yohimbine sites). In intact cells, at 4 degrees, benextramine exhibited a biphasic competition curve for alpha 2-adrenergic receptors, with EC50 values of approximately 10 microM and greater than 1 mM for the high and low affinity components, respectively. We propose that the alpha 2-adrenergic receptors preferentially blocked by benextramine are those on the surface of the cell, whereas those with low affinity are sequestered receptors because: 1) only epinephrine-accessible sites are removed by prior treatment of cells with benextramine, 2) a preparation enriched with surface membranes is also enriched in receptors with a high affinity for benextramine; and 3) after blockade of cell surface receptors (54 +/- 6% of total sites, n = 7) by benextramine, the ability of the alpha 2-adrenergic agonists epinephrine and UK-14,304 to inhibit forskolin-stimulated cAMP accumulation is lost. The latter result implies that only cell surface and not sequestered receptors are functionally coupled to adenylate cyclase. The return of receptors from the sequestered compartment to the cell surface and the recovery of alpha 2-adrenergic receptor function were measured after HEL cells were treated with benextramine (50 microM for 1 hr at 4 degrees). The recovery of receptor binding (t1/2 = 25 min) was somewhat slower than the recovery of function (t1/2 approximately 8 min).

  7. Effects of local alpha2-adrenergic receptor blockade on adipose tissue lipolysis during prolonged systemic adrenaline infusion in normal man.

    PubMed

    Simonsen, Lene; Enevoldsen, Lotte H; Stallknecht, Bente; Bülow, Jens

    2008-03-01

    During prolonged adrenaline infusion, lipolysis peaks within 30 min and thereafter tends to decline, and we hypothesized that the stimulation of local adipose tissue alpha2-adrenergic receptors accounts for this decline. The lipolytic effect of a prolonged intravenous adrenaline infusion combined with local infusion of the alpha2-blocker phentolamine in superficial and deep abdominal subcutaneous adipose tissue and in preperitoneal adipose tissue was studied in seven healthy subjects. The interstitial glycerol concentration in the three adipose tissue depots was measured by the microdialysis method. Regional adipose tissue blood flow was measured by the (133)Xe clearance technique. Regional glycerol output (lipolytic rate) was calculated from these measurements and simultaneous measurements of arterial glycerol concentrations. Adrenaline infusion increased lipolysis in all three depots (data previously published). Phentolamine infusion did not augment lipolysis in the subcutaneous depots while it increased the lipolytic rate in the preperitoneal depot. It is concluded that alpha2-adrenergic receptors do not have a significant effect on subcutaneous adipose tissue lipolysis during high circulating adrenaline concentrations, and the decrease in lipolysis in subcutaneous adipose tissue under prolonged adrenaline stimulation is thus not attributed to alpha2-adrenergic receptor inhibition of lipolysis. However, in the preperitoneal adipose tissue depot, alpha2-adrenergic receptor tone plays a role for the lipolytic rate obtained during prolonged adrenaline stimulation.

  8. EGFR-TKI, erlotinib, causes hypomagnesemia, oxidative stress, and cardiac dysfunction: attenuation by NK-1 receptor blockade.

    PubMed

    Mak, I Tong; Kramer, Jay H; Chmielinska, Joanna J; Spurney, Christopher F; Weglicki, William B

    2015-01-01

    To determine whether the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib may cause hypomagnesemia, inflammation, and cardiac stress, erlotinib was administered to rats (10 mg · kg(-1)· d(-1)) for 9 weeks. Plasma magnesium decreased progressively between 3 and 9 weeks (-9% to -26%). Modest increases in plasma substance P (SP) occurred at 3 (27%) and 9 (25%) weeks. Neutrophil superoxide-generating activity increased 3-fold, and plasma 8-isoprostane rose 210%, along with noticeable appearance of cardiac perivascular nitrotyrosine. The neurokinin-1 (NK-1) receptor antagonist, aprepitant (2 mg · kg(-1) · d(-1)), attenuated erlotinib-induced hypomagnesemia up to 42%, reduced circulating SP, suppressed neutrophil superoxide activity and 8-isoprostane elevations; cardiac nitrotyrosine was diminished. Echocardiography revealed mild to moderately decreased left ventricular ejection fraction (-11%) and % fractional shortening (-17%) by 7 weeks of erlotinib treatment and significant reduction (-17.5%) in mitral valve E/A ratio at week 9 indicative of systolic and early diastolic dysfunction. Mild thinning of the left ventricular posterior wall suggested early dilated cardiomyopathy. Aprepitant completely prevented the erlotinib-induced systolic and diastolic dysfunction and partially attenuated the anatomical changes. Thus, chronic erlotinib treatment does induce moderate hypomagnesemia, triggering SP-mediated oxidative/inflammation stress and mild-to-moderate cardiac dysfunction, which can largely be corrected by the administration of the SP receptor blocker.

  9. BLOCKADE OF NERVE GROWTH FACTOR (NGF) RECEPTOR TRKA ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC INFLAMMATION

    EPA Science Inventory


    Recent studies have shown that asthmatics have increased levels of the neurotrophin, NGF, in their lungs. In addition, antibody blockade of NGF in mice attenuates airway resistance associated with allergic airway responses. DEP has been linked to asthma exacerbation in many c...

  10. Effects of Long-term Blockade of Vasopressin Receptor Types 1a and 2 on Cardiac and Renal Damage in a Rat Model of Hypertensive Heart Failure.

    PubMed

    Ikeda, Tomoyuki; Iwanaga, Yoshitaka; Watanabe, Heitaro; Morooka, Hanako; Akahoshi, Yasumitsu; Fujiki, Hiroyuki; Miyazaki, Shunichi

    2015-11-01

    The effects of chronic blockade of vasopressin type 1a receptors (V1aR) and the additive effects of a type 2 receptor (V2R) antagonist on the treatment of hypertension-induced heart failure and renal injury remain to be unknown. In this study, Dahl salt-sensitive hypertensive rats were chronically treated with a vehicle (CONT), a V1aR antagonist (OPC21268; OPC), a V2R antagonist (tolvaptan; TOLV), or a combination of OPC21268 and tolvaptan (OPC/TOLV) from the pre-hypertrophic stage (6 weeks). No treatment altered blood pressure during the study. Significant improvements were seen in median survival for the OPC and TOLV, and the OPC/TOLV showed a further improvement in Kaplan-Meier analysis. Echocardiography showed suppressed left ventricular hypertrophy in the OPC and OPC/TOLV at 11 weeks with improved function in all treatment groups by 17 weeks. In all treatment groups, improvements were seen in the following: myocardial histological changes, creatinine clearance, urinary albumin excretion, and renal histopathologic damage. Also, key mRNA levels were suppressed (eg, endothelin-1 and collagen). In conclusion, chronic V1aR blockade ameliorated disease progression in this rat model, with additive benefits from the combination of V1aR and V2R antagonists. It was associated with protection of both myocardial and renal damage, independent of blood pressure.

  11. CXCL12/CXCR4 Blockade by Oncolytic Virotherapy Inhibits Ovarian Cancer Growth by Decreasing Immunosuppression and Targeting Cancer Initiating Cells1

    PubMed Central

    Gil, Margaret; Komorowski, Marcin P.; Seshadri, Mukund; Rokita, Hanna; McGray, A. J Robert; Opyrchal, Mateusz; Odunsi, Kunle O.; Kozbor, Danuta

    2014-01-01

    Signals mediated by the chemokine CXCL12 and its receptor CXCR4 are involved in progression of ovarian cancer by enhancing tumor angiogenesis and immunosuppressive networks that regulate dissemination of peritoneal metastasis and development of cancer initiating cells (CICs). Here, we investigated the antitumor efficacy of a CXCR4 antagonist expressed by oncolytic vaccinia virus (OVV) against an invasive variant of the murine epithelial ovarian cancer cell line ID8-T. This variant harbors a high frequency of CICs that form multilayered spheroid cells and express the hyaluronan receptor CD44 as well as stem cell factor receptor CD117 (c-kit). Using an orthotopic ID8-T tumor model, we observed that intraperitoneal delivery of a CXCR4 antagonist-expressing OVV led to reduced metastatic spread of tumors and improved overall survival over that mediated by oncolysis alone. Inhibition of tumor growth with the armed virus was associated with efficient killing of CICs, reductions in expression of ascitic CXCL12 and VEGF, and decreases in intraperitoneal numbers of endothelial and myeloid cells as well as plasmacytoid dendritic cells (pDCs). These changes, together with reduced recruitment of T regulatory cells, were associated with higher ratios of IFN-γ+/IL-10+ tumor-infiltrating T lymphocytes as well as induction of spontaneous humoral and cellular antitumor responses. Similarly, the CXCR4 antagonist released from virally-infected human CAOV2 ovarian carcinoma cells inhibited peritoneal dissemination of tumors in SCID mice leading to improved tumor-free survival in a xenograft model. Our findings demonstrate that OVV armed with a CXCR4 antagonist represents a potent therapy for ovarian CICs with a broad antitumor repertoire. PMID:25320277

  12. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells.

    PubMed

    Gil, Margaret; Komorowski, Marcin P; Seshadri, Mukund; Rokita, Hanna; McGray, A J Robert; Opyrchal, Mateusz; Odunsi, Kunle O; Kozbor, Danuta

    2014-11-15

    Signals mediated by the chemokine CXCL12 and its receptor CXCR4 are involved in the progression of ovarian cancer through enhancement of tumor angiogenesis and immunosuppressive networks that regulate dissemination of peritoneal metastasis and development of cancer-initiating cells (CICs). In this study, we investigated the antitumor efficacy of a CXCR4 antagonist expressed by oncolytic vaccinia virus (OVV) against an invasive variant of the murine epithelial ovarian cancer cell line ID8-T. This variant harbors a high frequency of CICs that form multilayered spheroid cells and express the hyaluronan receptor CD44, as well as stem cell factor receptor CD117 (c-kit). Using an orthotopic ID8-T tumor model, we observed that i.p. delivery of a CXCR4 antagonist-expressing OVV led to reduced metastatic spread of tumors and improved overall survival compared with oncolysis alone. Inhibition of tumor growth with the armed virus was associated with efficient killing of CICs, reduced expression of ascitic CXCL12 and vascular endothelial growth factor, and decreases in i.p. numbers of endothelial and myeloid cells, as well as plasmacytoid dendritic cells. These changes, together with reduced recruitment of T regulatory cells, were associated with higher ratios of IFN-γ(+)/IL-10(+) tumor-infiltrating T lymphocytes, as well as induction of spontaneous humoral and cellular antitumor responses. Similarly, the CXCR4 antagonist released from virally infected human CAOV2 ovarian carcinoma cells inhibited peritoneal dissemination of tumors in SCID mice, leading to improved tumor-free survival in a xenograft model. Our findings demonstrate that OVV armed with a CXCR4 antagonist represents a potent therapy for ovarian CICs with a broad antitumor repertoire.

  13. Embryonic GABA(B) receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    PubMed

    Stratton, Matthew S; Staros, Michelle; Budefeld, Tomaz; Searcy, Brian T; Nash, Connor; Eitel, Chad; Carbone, David; Handa, Robert J; Majdic, Gregor; Tobet, Stuart A

    2014-01-01

    Neurons of the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic- pituitary-adrenal (HPA) axis and the autonomic nervous system. Females lacking functional GABA(B) receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B) receptor to a 7-day critical period (E11-E17) during embryonic development. Experiments tested the role of GABA(B) receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B) receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B) receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B) receptor antagonist. Embryonic exposure to GABA(B) receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B) receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  14. Embryonic GABAB Receptor Blockade Alters Cell Migration, Adult Hypothalamic Structure, and Anxiety- and Depression-Like Behaviors Sex Specifically in Mice

    PubMed Central

    Stratton, Matthew S.; Staros, Michelle; Budefeld, Tomaz; Searcy, Brian T.; Nash, Connor; Eitel, Chad; Carbone, David; Handa, Robert J.; Majdic, Gregor; Tobet, Stuart A.

    2014-01-01

    Neurons of the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic- pituitary-adrenal (HPA) axis and the autonomic nervous system. Females lacking functional GABAB receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABAB receptor to a 7-day critical period (E11–E17) during embryonic development. Experiments tested the role of GABAB receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABAB receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABAB receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABAB receptor antagonist. Embryonic exposure to GABAB receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABAB receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity. PMID:25162235

  15. Effects of platelet glycoprotein IIb/IIIa receptor blockade by a chimeric monoclonal antibody (abciximab) on acute and six-month outcomes after percutaneous transluminal coronary angioplasty for acute myocardial infarction. EPIC investigators.

    PubMed

    Lefkovits, J; Ivanhoe, R J; Califf, R M; Bergelson, B A; Anderson, K M; Stoner, G L; Weisman, H F; Topol, E J

    1996-05-15

    Percutaneous transluminal coronary angioplasty (PTCA) for acute myocardial infarction is an attractive alternative to thrombolysis, but is still limited by recurrent ischemia and restenosis. We determined whether adjunctive platelet glycoprotein IIb/IIIa receptor blockade improved outcomes in patients undergoing direct and rescue PTCA in the Evaluation of c7E3 for Prevention of Ischemic Complications (EPIC) trial. Of the 2,099 patients undergoing percutaneous intervention who randomly received chimeric 7E3 Fab (c7E3) as a bolus, a bolus and 12-hour infusion, or placebo, 42 underwent direct PTCA for acute myocardial infarction and 22 patients had rescue PTCA after failed thrombolysis. The primary composite end point comprised death, reinfarction, repeat intervention, or bypass surgery. Outcomes were assessed at 30 days and 6 months. Baseline characteristics were similar in direct and rescue PTCA patients. Pooling the 2 groups, c7E3 bolus and infusion reduced the primary composite end point by 83% (26.1% placebo vs 4.5% c7E3 bolus and infusion, p = 0.06). No reinfarctions or repeat urgent interventions occurred in c7E3 bolus and infusion patients at 30 days, although there was a trend toward more deaths in c7E3-treated patients. Major bleeding was increased with c7E3 (24% vs 13%, p = 0.28). At 6 months, ischemic events were reduced from 47.8% with placebo to 4.5% with c7E3 bolus and infusion (p = 0.002), particularly reinfarction (p = 0.05) and repeat revascularization (p = 0.002). We conclude that adjunctive c7E3 therapy during direct and rescue PTCA decreased acute ischemic events and clinical restenosis in the EPIC trial. These data provide initial evidence of benefit for glycoprotein IIb/IIIa receptor blockade during PTCA for acute myocardial infarction.

  16. Tandospirone, a 5-HT1A partial agonist, ameliorates aberrant lactate production in the prefrontal cortex of rats exposed to blockade of N-methy-D-aspartate receptors; Toward the therapeutics of cognitive impairment of schizophrenia

    PubMed Central

    Uehara, Takashi; Matsuoka, Tadasu; Sumiyoshi, Tomiki

    2014-01-01

    Rationale: Augmentation therapy with serotonin-1A (5-HT1A) receptor partial agonists has been suggested to improve cognitive impairment in patients with schizophrenia. Decreased activity of prefrontal cortex may provide a basis for cognitive deficits of the disease. Lactate plays a significant role in the supply of energy to the brain, and glutamatergic neurotransmission contributes to lactate production. Objectives and methods: The purposes of this study were to examine the effect of repeated administration (once a daily for 4 days) of tandospirone (0.05 or 5 mg/kg) on brain energy metabolism, as represented by extracellular lactate concentration (eLAC) in the medial prefrontal cortex (mPFC) of a rat model of schizophrenia. Results: Four-day treatment with MK-801, an NMDA-R antagonist, prolonged eLAC elevation induced by foot-shock stress (FS). Co-administration with the high-dose tandospirone suppressed prolonged FS-induced eLAC elevation in rats receiving MK-801, whereas tandospirone by itself did not affected eLAC increment. Conclusions: These results suggest that stimulation of 5-HT1A receptors ameliorates abnormalities of energy metabolism in the mPFC due to blockade of NMDA receptors. These findings provide a possible mechanism, based on brain energy metabolism, by which 5-HT1A agonism improve cognitive impairment of schizophrenia and related disorders. PMID:25232308

  17. Dopamine D1 receptor blockade impairs alcohol seeking without reducing dorsal striatal activation to cues of alcohol availability

    PubMed Central

    Fanelli, Rebecca R; Robinson, Donita L

    2015-01-01

    Introduction Alcohol-associated cues activate both ventral and dorsal striatum in functional brain imaging studies of heavy drinkers. In rodents, alcohol-associated cues induce changes in neuronal firing frequencies and increase dopamine release in ventral striatum, but the impact of alcohol-associated cues on neuronal activity in dorsal striatum is unclear. We previously reported phasic changes in action potential frequency in the dorsomedial and dorsolateral striatum after cues that signaled alcohol availability, prompting approach behavior. Methods We investigated the hypothesis that dopamine transmission modulates these phasic firing changes. Rats were trained to self-administer alcohol, and neuronal activity was monitored with extracellular electrophysiology during “anticipatory” cues that signaled the start of the operant session. Sessions were preceded by systemic administration of the D1-type dopamine receptor antagonist SCH23390 (0, 10, and 20 μg/kg). Results SCH23390 significantly decreased firing rates during the 60 s prior to cue onset without reducing phasic excitations immediately following the cues. While neuronal activation to cues might be expected to initiate behavioral responses, in this study alcohol seeking was reduced despite the presence of dorsal striatal excitations to alcohol cues. Conclusions These data suggest that D1 receptor antagonism reduces basal firing rates in the dorsal striatum and modulates the ability of neuronal activation to “anticipatory” cues to initiate alcohol seeking in rats with an extensive history of alcohol self-administration. PMID:25642390

  18. Chronic blockade of glucocorticoid receptors by RU486 enhances lipopolysaccharide-induced depressive-like behaviour and cytokine production in rats.

    PubMed

    Wang, Donglin; Lin, Wenjuan; Pan, Yuqin; Kuang, Xueying; Qi, Xiaoli; Sun, Han

    2011-05-01

    Although accumulating evidence supports a role for cytokines in the pathophysiology of depression, the cytokine hypothesis of depression is debatable. It has been suggested that neuroendocrine and immune systems acting in concert may have roles in the development and the maintenance of the disease. Glucocorticoid receptor (GR) is the key element which exerts both anti-inflammatory and cytokine-inhibiting effects. Whether functional changes of GR are involved in the pathophysiology of cytokine-induced depression remains elusive. In the present study, the effects of both acute and chronic GR blockade on depressive-like behaviour and cytokine production induced by lipopolysaccharides (LPS), cytokine inducer, were investigated in rats. Acute or chronic blockade of GR was achieved by a single administration or repeated administrations, respectively, of the GR antagonist RU486 (RU). Behavioural measurements, including saccharin preference, locomotor activity, and immobility time, were assessed. The serum levels of proinflammatory cytokines (TNFα, IL-1β, and IFNγ) were determined by ELISA. The results showed that LPS induced significant but transient depressive-like behaviour. Repeated, but not single, administration of RU significantly enhanced and prolonged LPS-induced depressive-like behaviour and an increase in the serum production of TNFα and IFNγ. These results indicate that the effective blockade of GR enhanced the depressive-like behaviour induced by cytokines. Findings from this study suggest that GR dysfunction may be an important contributing factor to the development of cytokine-related depression. These findings add to the growing evidence of mechanisms by which cytokines influence depression.

  19. GABA(A) receptor blockade in dorsomedial and ventromedial nuclei of the hypothalamus evokes panic-like elaborated defensive behaviour followed by innate fear-induced antinociception.

    PubMed

    Freitas, Renato Leonardo; Uribe-Mariño, Andrés; Castiblanco-Urbina, Maria Angélica; Elias-Filho, Daoud Hibraim; Coimbra, Norberto Cysne

    2009-12-11

    Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour.

  20. Decreased Insulin Receptors but Normal Glucose Metabolism in Duchenne Muscular Dystrophy

    NASA Astrophysics Data System (ADS)

    de Pirro, Roberto; Lauro, Renato; Testa, Ivano; Ferretti, Ginofabrizio; de Martinis, Carlo; Dellantonio, Renzo

    1982-04-01

    Compared to matched controls, 17 patients with Duchenne muscular dystrophy showed decreased insulin binding to monocytes due to decreased receptor concentration. These patients showed no signs of altered glucose metabolism and retrospective analysis of the clinical records of a further 56 such patients revealed no modification in carbohydrate metabolism. These data suggest that reduced insulin receptor number does not produce overt modifications of glucose metabolism in Duchenne muscular dystrophy.

  1. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    PubMed

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  2. Chronic blockade of angiotensin AT1 receptors improves cardinal symptoms of metabolic syndrome in diet-induced obesity in rats

    PubMed Central

    Müller-Fielitz, Helge; Hübel, Nils; Mildner, Martin; Vogt, Florian M; Barkhausen, Jörg; Raasch, Walter

    2014-01-01

    Background and Purpose AT1 receptor antagonists decrease body weight gain in models of murine obesity. However, fewer data are available concerning the anti-obesity effects of these antagonists, given as a treatment after obesity had been established. Experimental Approach In spontaneously hypertensive rats, obesity was established by cafeteria diet (CD) feeding for 19 weeks. Rats were then were treated with telmisartan (8 mg·kg−1·d−1) or amlodipine (10 mg·kg−1·d−1; serving as blood pressure control) or telmisartan + amlodipine (2 + 10 mg·kg−1·d−1; to control for dose-dependency) for 17 weeks. Rats receiving only chow (Cchow) or CD-fed rats treated with vehicle (CCD) served as controls. Key Results The CD feeding induced obesity, hyperphagia, hyperlipidaemia, and leptin and insulin resistance. Telmisartan reduced the CD-induced increase in body weight and abdominal fat mass. Whereas energy intake was higher rather than lower, the respiratory ratio was lower. After telmisartan, leptin-induced energy intake was reduced and respiratory ratio was increased compared with CCD rats. Telmisartan also decreased plasma levels of triglycerides, free fatty acids and low-density lipoprotein. Amlodipine alone or the combination telmisartan + amlodipine did not affect body weight and eating behaviour. Telmisartan, but not amlodipine and telmisartan + amlodipine, improved glucose utilization. The decrease in BP reduction was almost the same in all treatment groups. Conclusions and Implications Telmisartan exerted anti-obesity effects and restored leptin sensitivity, given as a treatment to rats with obesity. Such effects required high doses of telmisartan and were independent of the decrease in blood pressure. PMID:24490862

  3. Neuroprotection by estradiol: a role of aromatase against spine synapse loss after blockade of GABA(A) receptors.

    PubMed

    Zhou, Lepu; Lehan, Nadine; Wehrenberg, Uwe; Disteldorf, Erik; von Lossow, Richard; Mares, Ute; Jarry, Hubertus; Rune, Gabriele M

    2007-01-01

    Estrogen has been suggested to be pro-epileptic by reducing GABA synthesis, resulting in increased spine density and a decreased threshold for seizures in the hippocampus, which, once they occur, are characterized by a dramatic spine loss in the affected brain areas. As considerable amounts of estradiol are synthesized in the hippocampus, in this study we focused on aromatase, the rate-limiting enzyme in estrogen synthesis in order to examine the role of locally synthesized estrogens in epilepsy. To this end, we first examined the effects of letrozole, a potent aromatase inhibitor, on GABA metabolism in single interneurons of hippocampal dispersion cultures. Letrozole downregulated estradiol release into the medium, as well as glutamate decarboxylase (GAD) expression and GABA synthesis, and decreased the number of GAD positive cells in the cultures. Next, we counted spine synapses and measured estradiol release of hippocampal slice cultures, in which GABA(A) receptors had been blocked by bicuculline, in order to mimic epileptic activity. Treatment of slice cultures with bicuculline resulted in a dramatic decrease in the number of spine synapses and in a significant suppression of estrogen synthesis. The decrease in synapse number in response to bicuculline was restored by combined application of estradiol and bicuculline. Surprisingly, estradiol alone had no effect on either spine synapse number or on GAD expression and GABA synthesis. "Rescue" of synapse number in "epileptic slices" by estradiol and maintenance of GABA metabolism by hippocampus-derived estradiol points to a neuroprotective role of aromatase in epilepsy. Re-filling of estradiol stores after their depletion due to overexcitation may therefore add to therapeutical strategies in epilepsy.

  4. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity

    PubMed Central

    Shelton, Jonathan; Yun, Sujin; Losee Olson, Susan; Turek, Fred; Bonaventure, Pascal; Dvorak, Curt; Lovenberg, Timothy; Dugovic, Christine

    2015-01-01

    Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals. PMID:25642174

  5. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity.

    PubMed

    Shelton, Jonathan; Yun, Sujin; Losee Olson, Susan; Turek, Fred; Bonaventure, Pascal; Dvorak, Curt; Lovenberg, Timothy; Dugovic, Christine

    2014-01-01

    Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  6. Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors

    PubMed Central

    Holmgaard, Rikke B.; Zamarin, Dmitriy; Lesokhin, Alexander; Merghoub, Taha; Wolchok, Jedd D.

    2016-01-01

    Tumor indoleamine 2,3-dioxygenase (IDO) promotes immunosuppression by direct action on effector T cells and Tregs and through recruitment, expansion and activation of myeloid-derived suppressor cells (MDSCs). Targeting of MDSCs is clinically being explored as a therapeutic strategy, though optimal targeting strategies and biomarkers predictive of response are presently unknown. Maturation and tumor recruitment of MDSCs are dependent on signaling through the receptor tyrosine kinase CSF-1R on myeloid cells. Here, we show that MDSCs are the critical cell population in IDO-expressing B16 tumors in mediating accelerated tumor outgrowth and resistance to immunotherapy. Using a clinically relevant drug, we show that inhibition of CSF-1R signaling can functionally block tumor-infiltrating MDSCs and enhance anti-tumor T cell responses. Furthermore, inhibition of CSF-1R sensitizes IDO-expressing tumors to immunotherapy with T cell checkpoint blockade, and combination of CSF-1R blockade with IDO inhibitors potently elicits tumor regression. These findings provide evidence for a critical and functional role for MDSCs on the in vivo outcome of IDO-expressing tumors. PMID:27211548

  7. Blockade of Hedgehog Signaling Synergistically Increases Sensitivity to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer Cell Lines

    PubMed Central

    Bai, Xiao-Yan; Zhang, Xu-Chao; Yang, Su-Qing; An, She-Juan; Chen, Zhi-Hong; Su, Jian; Xie, Zhi; Gou, Lan-Ying; Wu, Yi-Long

    2016-01-01

    Aberrant activation of the hedgehog (Hh) signaling pathway has been implicated in the epithelial-to-mesenchymal transition (EMT) and cancer stem-like cell (CSC) maintenance; both processes can result in tumor progression and treatment resistance in several types of human cancer. Hh cooperates with the epidermal growth factor receptor (EGFR) signaling pathway in embryogenesis. We found that the Hh signaling pathway was silenced in EGFR-TKI-sensitive non-small-cell lung cancer (NSCLC) cells, while it was inappropriately activated in EGFR-TKI-resistant NSCLC cells, accompanied by EMT induction and ABCG2 overexpression. Upregulation of Hh signaling through extrinsic SHH exposure downregulated E-cadherin expression and elevated Snail and ABCG2 expression, resulting in gefitinib tolerance (P < 0.001) in EGFR-TKI-sensitive cells. Blockade of the Hh signaling pathway using the SMO antagonist SANT-1 restored E-cadherin expression and downregulate Snail and ABCG2 in EGFR-TKI-resistant cells. A combination of SANT-1 and gefitinib markedly inhibited tumorigenesis and proliferation in EGFR-TKI-resistant cells (P < 0.001). These findings indicate that hyperactivity of Hh signaling resulted in EGFR-TKI resistance, by EMT introduction and ABCG2 upregulation, and blockade of Hh signaling synergistically increased sensitivity to EGFR-TKIs in primary and secondary resistant NSCLC cells. E-cadherin expression may be a potential biomarker of the suitability of the combined application of an Hh inhibitor and EGFR-TKIs in EGFR-TKI-resistant NSCLCs. PMID:26943330

  8. CRF receptor blockade prevents initiation and consolidation of stress effects on affect in the predator stress model of PTSD.

    PubMed

    Adamec, Robert; Fougere, Dennis; Risbrough, Victoria

    2010-07-01

    Post traumatic stress disorder (PTSD) is a chronic anxiety disorder initiated by an intensely threatening, traumatic event. There is a great need for more efficacious pharmacotherapy and preventive treatments for PTSD. In animals, corticotropin-releasing factor (CRF) and the CRF1 receptor play a critical role in behavioural and neuroendocrine responses to stress. We tested the hypothesis that CRF1 activation is required for initiation and consolidation of long-term effects of trauma on anxiety-like behaviour in the predator exposure (predator stress) model of PTSD. Male C57BL6 mice were treated with the selective CRF1 antagonist CRA0450 (2, 20 mg/kg) 30 min before or just after predator stress. Long-term effects of stress on rodent anxiety were measured 7 d later using acoustic startle, elevated plus maze (EPM), light/dark box, and hole-board tests. Predator stress increased startle amplitude and delayed startle habituation, increased time in and decreased exits from the dark chamber in the light/dark box test, and decreased risk assessment in the EPM. CRF1 antagonism had limited effects on these behaviours in non-stressed controls, with the high dose decreasing risk assessment in the EPM. However, in stressed animals CRF1 antagonism blocked initiation and consolidation of stressor effects on startle, and returned risk assessment to baseline levels in predator-stressed mice. These findings implicate CRF1 activation in initiation and post-trauma consolidation of predator stress effects on anxiety-like behaviour, specifically on increased arousal as measured by exaggerated startle behaviours. These data support further research of CRF1 antagonists as potential prophylactic treatments for PTSD.

  9. Decreased agonist, but not antagonist, binding to the naturally occurring Thr92Lys variant of the h5-HT7(a) receptor.

    PubMed

    Brüss, Michael; Kiel, Sibylle; Bönisch, Heinz; Kostanian, Arevat; Göthert, Manfred

    2005-08-01

    In the present study on transfected human embryonic kidney (HEK)293 cells, we aimed at establishing whether expression of the naturally occurring Thr92Lys variation of the Gs-coupled h5-HT7(a) receptor leads to changes of ligand binding properties, of agonist-evoked cAMP formation and/or of antagonist-mediated blockade of the latter. Binding of [3H]5-carboxamidotryptamine ([3H]5-CT) to membranes and stimulated [3H]cAMP accumulation in whole cells were determined. Saturation binding experiments in membranes of transiently transfected cells expressing either the wild-type or the variant receptor revealed a single binding site in both cases and no difference in Bmax between both receptor isoforms. In competition binding experiments in membranes of stably transfected cells, the Thr92Lys variant exhibited a 2.8-11 times lower binding affinity of the ligands 5-hydroxytryptamine (5-HT), 5-CT, 5-methoxy-3-(1,2,3,6-tetrahydropyridin-4yl)-1H-indole (RU24969), (+/-)-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT) and sumatriptan compared to the wild-type receptor. However, the variant did not differ from the wild-type with respect to the binding properties of the antagonists (R)-3-(2-(2-(4-methylpiperidin-1-yl)ethyl)-pyrrolodine-1-sulfonyl)phenol hydrochloride (SB-269970), risperidone, mesulergine and clozapine. In agreement with the decreased binding affinity of 5-HT, 5-CT, RU24969 and 8-OH-DPAT for the variant receptor, these agonists were less potent in stimulating [3H]cAMP accumulation in cells stably expressing the Thr92Lys h5-HT7(a) receptor. Sumatriptan did not stimulate cAMP accumulation in spite of its affinity for both receptor isoforms pointing to a putative weak antagonistic property of this drug at the h5-HT7 receptor. SB-269970 and clozapine were equipotent at both the variant and the wild-type receptor in producing a rightward shift of the 5-HT concentration-response curve for its stimulant effect on [3H]cAMP accumulation. In view of, e.g., the

  10. Patch clamp reveals powerful blockade of the mitochondrial permeability transition pore by the D2-receptor agonist pramipexole.

    PubMed

    Sayeed, Iqbal; Parvez, Suhel; Winkler-Stuck, Kirstin; Seitz, Gordon; Trieu, Isabelle; Wallesch, Claus-Werner; Schönfeld, Peter; Siemen, Detlef

    2006-03-01

    The dopamine-D2-agonist pramipexole (PPX) was tested for blocking mitochondrial permeability transition (PT) in order to give a possible explanation for its neuroprotective effect seen in PPX-treated Parkinson's disease patients. Patch-clamp techniques for studying single-channel currents in the inner mitochondrial membrane and large-amplitude swelling of energized mitochondria were used to study PPX action on the permeability transition pore (PTP), a key player in the mitochondrial route of the apoptotic cascade. Identity of the PTP was proven by measuring the concentration-response relation for cyclosporin A-blockade (IC50=26 nM). PPX inhibits the PTP reversibly with an IC50 of 500 nM, which is close to the values determined earlier as plasma concentrations after PPX medication in patients. Interaction of PPX with the PTP is further supported by demonstrating that it abolished Ca2+-triggered swelling in functionally intact mitochondria. Blockade of the PTP by PPX was attenuated by increasing concentrations of inorganic phosphate and by acidification. We suggest that PPX could exert part of its neuroprotective effect by inhibition of the PTP and thus, probably, blocking of the mitochondrial pathway of the apoptosis cascade.

  11. Ryanodine receptors blockade reduces Amyloid-beta load and memory impairments in Tg2576 mouse model of Alzheimer disease

    PubMed Central

    Oulès, Bénédicte; Del Prete, Dolores; Greco, Barbara; Zhang, Xuexin; Lauritzen, Inger; Sevalle, Jean; Moreno, Sebastien; Paterlini-Bréchot, Patrizia; Trebak, Mohamed; Checler, Frédéric; Benfenati, Fabio; Chami, Mounia

    2012-01-01

    In Alzheimer disease (AD), the perturbation of the endoplasmic reticulum (ER) calcium (Ca2+) homeostasis has been linked to presenilins (PS), the catalytic core in γ-secretase complexes cleaving the amyloid precursor protein (APP) thereby generating amyloid-β (Aβ) peptides. Here we investigate whether APP contributes to ER Ca2+ homeostasis and whether ER Ca2+ could in turn influence Aβ production. We show that overexpression of wild-type human APP (APP695), or APP harboring the Swedish double mutation (APPswe) triggers increased Ryanodine receptors (RyR) expression and enhances RyR-mediated ER Ca2+ release in SH-SY5Y neuroblastoma cells and in APPswe-expressing (Tg2576) mice. Interestingly, dantrolene-induced lowering of RyR-mediated Ca2+ release leads to the reduction of both intracellular and extracellular Aβ load in neuroblastoma cells as well as in primary cultured neurons derived from Tg2576 mice. This Aβ reduction can be accounted for by decreased Thr-668-dependent APP phosphorylation and β- and γ-secretases activities. Importantly, dantrolene diminishes Aβ load, reduces Aβ-related histological lesions and slows down learning and memory deficits in Tg2576 mice. Overall, our data document a key role of RyR in Aβ production and learning and memory performances, and delineate RyR-mediated control of Ca2+ homeostasis as a physiological paradigm that could be targeted for innovative therapeutic approaches. PMID:22915123

  12. Reciprocal roles of angiotensin II and Angiotensin II Receptors Blockade (ARB) in regulating Cbfa1/RANKL via cAMP signaling pathway: possible mechanism for hypertension-related osteoporosis and antagonistic effect of ARB on hypertension-related osteoporosis.

    PubMed

    Guan, Xiao-Xu; Zhou, Yi; Li, Ji-Yao

    2011-01-01

    Hypertension is a risk factor for osteoporosis. Animal and epidemiological studies demonstrate that high blood pressure is associated with increased calcium loss, elevated parathyroid hormone, and increased calcium movement from bone. However, the mechanism responsible for hypertension-related osteoporosis remains elusive. Recent epidemiological studies indicate the benefits of Angiotensin II Receptors Blockade (ARB) on decreasing fracture risks. Since receptors for angiotensin II, the targets of ARB, are expressed in both osteoblasts and osteoclasts, we postulated that angiotensin II plays an important role in hypertension-related osteoporosis. Cbfa1 and RANKL, the important factors for maintaining bone homeostasis and key mediators in controlling osteoblast and osteoclast differentiation, are both regulated by cAMP-dependent signaling. Angiotensin II along with factors such as LDL, HDL, NO and homocysteine that are commonly altered both in hypertension and osteoporosis, can down-regulate the expression of Cbfa1 but up-regulate RANKL expression via the cAMP signaling pathway. We thus hypothesized that, by altering the ratio of Cbfa1/RANKL expression via the cAMP-dependent pathway, angiotensin II differently regulates osteoblast and osteoclast differentiation leading to enhanced bone resorption and reduced bone formation. Since ARB can antagonize the adverse effect of angiotensin II on bone by lowering cAMP levels and modifying other downstream targets, including LDL, HDL, NO and Cbfa1/RANKL, we propose the hypothesis that the antagonistic effects of ARB may also be exerted via cAMP signaling pathway.

  13. Lack of weight gain after angiotensin AT1 receptor blockade in diet-induced obesity is partly mediated by an angiotensin-(1–7)/ Mas-dependent pathway

    PubMed Central

    Schuchard, Johanna; Winkler, Martina; Stölting, Ines; Schuster, Franziska; Vogt, Florian M; Barkhausen, Jörg; Thorns, Christoph; Santos, Robson A; Bader, Michael; Raasch, Walter

    2015-01-01

    Background and Purpose Angiotensin AT1 receptor antagonists induce weight loss; however, the mechanism underlying this phenomenon is unknown. The Mas receptor agonist angiotensin-(1-7) is a metabolite of angiotensin I and of angiotensin II. As an agonist of Mas receptors, angiotensin-(1-7) has beneficial cardiovascular and metabolic effects. Experimental Approach We investigated the anti-obesity effects of transgenically overexpressed angiotensin-(1-7) in rats. We secondly examined whether weight loss due to telmisartan (8 mg·kg−1·d−1) in diet-induced obese Sprague Dawley (SD) rats can be blocked when the animals were co-treated with the Mas receptor antagonist A779 (24 or 72 μg·kg−1·d−1). Key Results In contrast to wild-type controls, transgenic rats overexpressing angiotensin-(1-7) had 1.) diminished body weight when they were regularly fed with chow; 2.) were protected from developing obesity although they were fed with cafeteria diet (CD); 3.) showed a reduced energy intake that was mainly related to a lower CD intake; 5.) remained responsive to leptin despite chronic CD feeding; 6.) had a higher, strain-dependent energy expenditure, and 7.) were protected from developing insulin resistance despite CD feeding. Telmisartan-induced weight loss in SD rats was partially antagonized after a high, but not a low dose of A779. Conclusions and Implications Angiotensin-(1-7) regulated food intake and body weight and contributed to the weight loss after AT1 receptor blockade. Angiotensin-(1-7)-like agonists may be drug candidates for treating obesity. PMID:25906670

  14. Ca2+ signals mediated by bradykinin type 2 receptors in normal pancreatic stellate cells can be inhibited by specific Ca2+ channel blockade

    PubMed Central

    Gryshchenko, Oleksiy; Gerasimenko, Julia V.

    2015-01-01

    Key points Bradykinin may play a role in the autodigestive disease acute pancreatitis, but little is known about its pancreatic actions.In this study, we have investigated bradykinin‐elicited Ca2+ signal generation in normal mouse pancreatic lobules.We found complete separation of Ca2+ signalling between pancreatic acinar (PACs) and stellate cells (PSCs). Pathophysiologically relevant bradykinin concentrations consistently evoked Ca2+ signals, via B2 receptors, in PSCs but never in neighbouring PACs, whereas cholecystokinin, consistently evoking Ca2+ signals in PACs, never elicited Ca2+ signals in PSCs.The bradykinin‐elicited Ca2+ signals were due to initial Ca2+ release from inositol trisphosphate‐sensitive stores followed by Ca2+ entry through Ca2+ release‐activated channels (CRACs). The Ca2+ entry phase was effectively inhibited by a CRAC blocker.B2 receptor blockade reduced the extent of PAC necrosis evoked by pancreatitis‐promoting agents and we therefore conclude that bradykinin plays a role in acute pancreatitis via specific actions on PSCs. Abstract Normal pancreatic stellate cells (PSCs) are regarded as quiescent, only to become activated in chronic pancreatitis and pancreatic cancer. However, we now report that these cells in their normal microenvironment are far from quiescent, but are capable of generating substantial Ca2+ signals. We have compared Ca2+ signalling in PSCs and their better studied neighbouring acinar cells (PACs) and found complete separation of Ca2+ signalling in even closely neighbouring PACs and PSCs. Bradykinin (BK), at concentrations corresponding to the slightly elevated plasma BK levels that have been shown to occur in the auto‐digestive disease acute pancreatitis in vivo, consistently elicited substantial Ca2+ signals in PSCs, but never in neighbouring PACs, whereas the physiological PAC stimulant cholecystokinin failed to evoke Ca2+ signals in PSCs. The BK‐induced Ca2+ signals were mediated by B2 receptors and B2

  15. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of the macrophage activation syndrome: Re-analysis of a prior Phase III trial

    PubMed Central

    Shakoory, B.; Carcillo, J.A.; Chatham, W. W.; Amdur, R. L.; Zhao, H.; Dinarello, C.A.; Cron, R.Q.; Opal, S.M.

    2017-01-01

    Objective To determine the efficacy of anakinra (recombinant interleukin-1 receptor antagonist) in improving 28-day survival in sepsis patients with features of macrophage activation syndrome (MAS). Despite equivocal results in sepsis trials, anakinra is effective in treating MAS, a similar entity with fever, disseminated intravascular coagulation (DIC), hepatobiliary dysfunction (HBD), cytopenias, and hyperferritinemia. Hence, sepsis patients with MAS features may benefit from IL-1 receptor blockade. Design Re-analysis of de-identified data from the phase III randomized interleukin-1 receptor antagonist trial in severe sepsis (Opal, et. al. Crit Care Med. 1997 Jul;25(7):1115–24). Setting Multi-center study recruiting through 91 centers from 11 countries in Europe and North America. Participants Sepsis patients with MODS and/or shock (original study) were re-grouped based on presence or absence of concurrent HBD and DIC as features of MAS (HBD/DIC group). The “non-HBD/DIC” group included patients with only HBD, only DIC or neither. Intervention Treatment with anakinra or placebo. Main Outcome(s) and Measure(s) 28-day mortality. Statistical analysis descriptive statistics, chi-square, ANOVA, logistic and Cox regression. Results Data were available for 763 adults from the original study cohort, randomized to receive either anakinra or placebo. Concurrent HBD/DIC was noted in 43 patients (5.6% of total, ages 18–75; 47% women). The 28-day survival was similar in both anakinra and placebo-treated non-HBD/DIC patients (71.4% vs. 70.8%, p=.88). Treatment with anakinra was associated with significant improvement in the 28-day survival rate in HBD/DIC patients (65.4% anakinra vs. 35.3% placebo), with HR for death 0.28 (0.11–0.71, p = 0.0071) for the treatment group in Cox regression. Conclusions and Relevance In this subgroup analysis, IL-1 receptor blockade was associated with significant improvement in survival of patients with sepsis and concurrent HBD/DIC. A

  16. Distinct effects of ventral tegmental area NMDA and acetylcholine receptor blockade on conditioned reinforcement produced by food-associated cues.

    PubMed

    Wickham, R J; Solecki, W B; Nunes, E J; Addy, N A

    2015-08-20

    Stimuli paired with rewards acquire reinforcing properties to promote reward-seeking behavior. Previous work supports the role of ventral tegmental area (VTA) nicotinic acetylcholine receptors (nAChRs) in mediating conditioned reinforcement elicited by drug-associated cues. However, it is not known whether these cholinergic mechanisms are specific to drug-associated cues or whether VTA cholinergic mechanisms also underlie the ability of cues paired with natural rewards to act as conditioned reinforcers. Burst firing of VTA dopamine (DA) neurons and the subsequent phasic DA release in the nucleus accumbens (NAc) plays an important role in cue-mediated behavior and in the ability of cues to acquire reinforcing properties. In the VTA, both AChRs and N-methyl-d-aspartate receptors (NMDARs) regulate DA burst firing and phasic DA release. Here, we tested the role of VTA nAChRs, muscarinic AChRs (mAChRs), and NMDARs in the conditioned reinforcement elicited by a food-associated, natural reward cue. Subjects received 10 consecutive days of Pavlovian conditioning training where lever extension served as a predictive cue for food availability. On day 11, rats received bilateral VTA infusion of saline, AP-5 (0.1 or 1μg), mecamylamine (MEC: 3 or 30μg) or scopolamine (SCOP: 3 or 66.7μg) immediately prior to the conditioned reinforcement test. During the test, nosepoking into the active (conditioned reinforced, CR) noseport produced a lever cue while nosepoking on the inactive (non-conditioned reinforced, NCR) noseport had no consequence. AP-5 robustly attenuated conditioned reinforcement and blocked discrimination between CR and NCR noseports at the 1-μg dose. MEC infusion decreased responding for both CR and NCR while 66.7-μg SCOP disrupted the subject's ability to discriminate between CR and NCR. Together, our data suggest that VTA NMDARs and mAChRs, but not nAChRs, play a role in the ability of natural reward-associated cues to act as conditioned reinforcers.

  17. Upregulation of ERK1/2-eNOS via AT2 Receptors Decreases the Contractile Response to Angiotensin II in Resistance Mesenteric Arteries from Obese Rats

    PubMed Central

    Hagihara, Graziela N.; Lobato, Nubia S.; Filgueira, Fernando P.; Akamine, Eliana H.; Aragão, Danielle S.; Casarini, Dulce E.; Carvalho, Maria Helena C.; Fortes, Zuleica B.

    2014-01-01

    It has been clearly established that mitogen-activated protein kinases (MAPKS) are important mediators of angiotensin II (Ang II) signaling via AT1 receptors in the vasculature. However, evidence for a role of these kinases in changes of Ang II-induced vasoconstriction in obesity is still lacking. Here we sought to determine whether vascular MAPKs are differentially activated by Ang II in obese animals. The role of AT2 receptors was also evaluated. Male monosodium glutamate-induced obese (obese) and non-obese Wistar rats (control) were used. The circulating concentrations of Ang I and Ang II, determined by HPLC, were increased in obese rats. Ang II-induced isometric contraction was decreased in endothelium-intact resistance mesenteric arteries from obese compared with control rats and exhibited a retarded AT1 receptor antagonist response. Blocking of AT2 receptors and inhibition of either endothelial nitric oxide synthase (eNOS) or extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) restored Ang II-induced contraction in obese rats. Western blot analysis revealed increased protein expression of AT2 receptors in arteries from obese rats. Basal and Ang II-induced ERK1/2 phosphorylation was also increased in obese rats. Blockade of either AT1 or AT2 receptors corrected the increased ERK1/2 phosphorylation in arteries from obese rats to levels observed in control preparations. Phosphorylation of eNOS was increased in obese rats. Incubation with the ERK1/2 inhibitor before Ang II stimulation did not affect eNOS phosphorylation in control rats; however, it corrected the increased phosphorylation of eNOS in obese rats. These results clearly demonstrate that enhanced AT2 receptor and ERK1/2-induced, NO-mediated vasodilation reduces Ang II-induced contraction in an endothelium-dependent manner in obese rats. PMID:25170617

  18. Hippocampal partial kindling decreased hippocampal GABAB receptor efficacy and wet dog shakes in rats.

    PubMed

    Leung, L Stan; Shen, Bixia

    2006-10-16

    To test the hypothesis that GABA(B) receptor efficacy in the behaving rat decreases after partial hippocampal kindling, we measured GABA(B) receptor efficacy by the number of wet dog shakes (WDSs) induced by baclofen (5mM in 0.2muL of saline) infusion into the dorsal hippocampus; these WDSs were blocked by prior infusion of GABA(B) receptor antagonist CGP55845A. Rats were given 15 afterdischarges (ADs) evoked in CA1 over 3 days or control stimulations. The partially kindled rats (after 15 ADs) showed a significant decrease in baclofen-induced WDSs as compared to control rats, on days 1, 4 and 21 after kindling. In contrast, kindled and control rats did not show a significant difference in WDSs induced by hippocampal infusion of GABA(A) receptor antagonist bicuculline. Also, the number of WDSs induced after subcutaneous injection of serotonin-2A/2C agonist+/-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane was not different between kindled and control rats on 4 and 21 days after kindling. We further tested the hypothesis that the decrease in hippocampal AD-induced WDSs during kindling is caused by a decrease in GABA(B) receptor efficacy. However, we found no convincing evidence to support the latter hypothesis since the AD-induced WDSs were not suppressed by hippocampal infusion of CGP55845A, with the exception that CGP55845A infusion into ventral hippocampus suppressed both hippocampal ADs and WDSs. Together with results derived from previous electrophysiological studies in vitro, it is suggested that a decrease of GABA(B) receptor, possibly GABA(B) autoreceptor, efficacy may explain the decrease of baclofen-induced WDSs after hippocampal kindling.

  19. [The effects of selective 5HT3 receptor blockade on physiological markers of abdominal pain in awake dogs].

    PubMed

    Panteleev, S S; Busygina, I I; Liubashina, O A

    2013-04-01

    In awake dogs, the visceromotor and cardioautonomic responses to the rectal balloon distension were studied before and after intravenous administration of a selective 5HT3 receptor antagonist granisetron. It was shown that balloon distension level up to 60 mmHg caused neither noticeable muscle responses nor substantial changes in heart rate. In turn, distending pressures of 80 mmHg and higher induced vigorous abdominal muscle contractions and tachycardia that were graded with increasing intensities of stimulation. Thus, the rectal stimulation with pressures 80 mmHg and more produced the changes in visceromotor and cardiovascular indices which could be considered as suitable indicators of visceral nociception in conscious animals. Based on monitoring of these physiological markers in a model of abdominal pain the dose-dependent antinociceptive effect of granisetron in awake dogs has been demonstrated for the first time. It was determined that granisetron in doses of 0.25, 0.5 or 1.0 mg/kg induced correspondingly 33.6 +/- 9.2, 58.0+/- 8.6 [see text] 76.7 +/- 5.5 % decrease in visceromotor response of dogs to nociceptive visceral stimulation. The effect occurred immediately after the drug administration and was lasting more than 90 min. In turn, the dose-dependent suppression of the rectal distension-induced tachycardia was less prominent and only observed during the initial period of granisetron action. The described model of abdominal pain in awake dogs might be useful for preclinical screening of new pharmacological substances, whereas the obtained data could contribute to the development of more efficient analgesics aimed in patients with irritable bowel syndrome.

  20. Central blockade of melanocortin receptors attenuates the metabolic and locomotor responses to peripheral interleukin-1beta administration.

    PubMed

    Whitaker, Keith W; Reyes, Teresa M

    2008-03-01

    Loss of appetite and cachexia is an obstacle in the treatment of chronic infection and cancer. Proinflammatory cytokines released from activated immune cells and acting in the central nervous system (CNS) are prime candidates for mediating these metabolic changes, potentially affecting both energy intake as well as energy expenditure. The effect of intravenous administration of two proinflammatory cytokines, interleukin (IL)-1beta (15 microg/kg) and tumor necrosis factor (TNF)-alpha (10 microg/kg), on food and water intake, locomotor activity, oxygen consumption (VO2), and respiratory exchange ratio (RER) was evaluated. The two cytokines elicited a comparable decrease in food intake and activated similar numbers of cells in the paraventricular nucleus of the hypothalamus (PVH), a region that plays a critical role in the regulation of appetite and metabolism (determined via expression of the immediate early gene, c-fos). However, only IL-1beta reduced locomotion and RER, and increased VO2, while TNF-alpha was without effect. To examine the role of the melanocortins in mediating IL-1beta- induced metabolic changes, animals were pretreated centrally with a melanocortin receptor antagonist, HS014. Pretreatment with HS014 blocked the effect of IL-1beta on food intake and RER at later time points (beyond 8 h post injection), as well as the hypoactivity and increased metabolic rate. Further, HS014 blocked the induction of Fos-ir in the PVH. These data highlight the importance of the melanocortin system, particularly within the PVH, in mediating a broad range of metabolic responses to IL-1beta.

  1. Distinct roles of the hippocampus and perirhinal cortex in GABAA receptor blockade-induced enhancement of object recognition memory.

    PubMed

    Kim, Jong Min; Kim, Dong Hyun; Lee, Younghwan; Park, Se Jin; Ryu, Jong Hoon

    2014-03-13

    It is well known that the hippocampus plays a role in spatial and contextual memory, and that spatial information is tightly regulated by the hippocampus. However, it is still highly controversial whether the hippocampus plays a role in object recognition memory. In a pilot study, the administration of bicuculline, a GABAA receptor antagonist, enhanced memory in the passive avoidance task, but not in the novel object recognition task. In the present study, we hypothesized that these different results are related to the characteristics of each task and the different roles of hippocampus and perirhinal cortex. A region-specific drug-treatment model was employed to clarify the role of the hippocampus and perirhinal cortex in object recognition memory. After a single habituation in the novel object recognition task, intra-perirhinal cortical injection of bicuculline increased and intra-hippocampal injection decreased the exploration time ratio to novel object. In addition, when animals were repeatedly habituated to the context, intra-perirhinal cortical administration of bicuculline still increased exploration time ratio to novel object, but the effect of intra-hippocampal administration disappeared. Concurrent increases of c-Fos expression and ERK phosphorylation were observed in the perirhinal cortex of the object with context-exposed group either after single or repeated habituation to the context, but no changes were noted in the hippocampus. Altogether, these results suggest that object recognition memory formation requires the perirhinal cortex but not the hippocampus, and that hippocampal activation interferes with object recognition memory by the information encoding of unfamiliar environment.

  2. Genetic blockade of adenosine A2A receptors induces cognitive impairments and anatomical changes related to psychotic symptoms in mice.

    PubMed

    Moscoso-Castro, Maria; Gracia-Rubio, Irene; Ciruela, Francisco; Valverde, Olga

    2016-07-01

    Schizophrenia is a chronic severe mental disorder with a presumed neurodevelopmental origin, and no effective treatment. Schizophrenia is a multifactorial disease with genetic, environmental and neurochemical etiology. The main theories on the pathophysiology of this disorder include alterations in dopaminergic and glutamatergic neurotransmission in limbic and cortical areas of the brain. Early hypotheses also suggested that nucleoside adenosine is a putative affected neurotransmitter system, and clinical evidence suggests that adenosine adjuvants improve treatment outcomes, especially in poorly responsive patients. Hence, it is important to elucidate the role of the neuromodulator adenosine in the pathophysiology of schizophrenia. A2A adenosine receptor (A2AR) subtypes are expressed in brain areas controlling motivational responses and cognition, including striatum, and in lower levels in hippocampus and cerebral cortex. The aim of this study was to characterize A2AR knockout (KO) mice with complete and specific inactivation of A2AR, as an animal model for schizophrenia. We performed behavioral, anatomical and neurochemical studies to assess psychotic-like symptoms in adult male and female KO and wild-type (WT) littermates. Our results show impairments in inhibitory responses and sensory gating in A2AR KO animals. Hyperlocomotion induced by d-amphetamine and MK-801 was reduced in KO animals when compared to WT littermates. Moreover, A2AR KO animals show motor disturbances, social and cognitive alterations. Finally, behavioral impairments were associated with enlargement of brain lateral ventricles and decreased BDNF levels in the hippocampus. These data highlight the role of adenosine in the pathophysiology of schizophrenia and provide new possibilities for the therapeutic management of schizophrenia.

  3. Post-retrieval beta-adrenergic receptor blockade: effects on extinction and reconsolidation of cocaine-cue memories.

    PubMed

    Fricks-Gleason, Ashley N; Marshall, John F

    2008-09-01

    Contexts and discrete cues associated with drug-taking are often responsible for relapse among addicts. Animal models have shown that interference with the reconsolidation of drug-cue memories can reduce seeking of drugs or drug-paired stimuli. One such model is conditioned place preference (CPP) in which an animal is trained to associate a particular environment with the rewarding effects of a drug. Previous work from this laboratory has shown that intra-nucleus accumbens core infusions of a MEK inhibitor can interfere with reconsolidation of these drug-cue memories. A question that remains is whether post-retrieval drug effects on subsequent memories represent an interference with reconsolidation processes or rather a facilitation of extinction. In this experiment, we explore the effect of post-retrieval injections of propranolol, a beta-adrenergic receptor antagonist, on reconsolidation and extinction of cocaine CPP. After acquisition of cocaine CPP, animals were given post-retrieval propranolol injections once or each day during a protocol of unreinforced preference tests, until the animals showed no preference for the previously cocaine-paired environment. Following a cocaine priming injection, the animals that received daily post-test propranolol injections did not reinstate their preference for the drug-paired side. In contrast, a single post-retrieval propranolol injection followed by multiple days of unreinforced preference tests failed to blunt subsequent cocaine reinstatement of the memory. These data suggest that daily post-retrieval systemic injections of propranolol decrease the conditioned preference by interfering with reconsolidation of the memory for the association between the drug-paired side and the reinforcing effects of the drug, rather than facilitating new extinction learning.

  4. Anti-remodeling effects of rapamycin in experimental heart failure: dose response and interaction with angiotensin receptor blockade.

    PubMed

    Bishu, Kalkidan; Ogut, Ozgur; Kushwaha, Sudhir; Mohammed, Selma F; Ohtani, Tomohito; Xu, Xiaolei; Brozovich, Frank V; Redfield, Margaret M

    2013-01-01

    While neurohumoral antagonists improve outcomes in heart failure (HF), cardiac remodeling and dysfunction progress and outcomes remain poor. Therapies superior or additive to standard HF therapy are needed. Pharmacologic mTOR inhibition by rapamycin attenuated adverse cardiac remodeling and dysfunction in experimental heart failure (HF). However, these studies used rapamycin doses that produced blood drug levels targeted for primary immunosuppression in human transplantation and therefore the immunosuppressive effects may limit clinical translation. Further, the relative or incremental effect of rapamycin combined with standard HF therapies targeting upstream regulators of cardiac remodeling (neurohumoral antagonists) has not been defined. Our objectives were to determine if anti-remodeling effects of rapamycin were preserved at lower doses and whether rapamycin effects were similar or additive to a standard HF therapy (angiotensin receptor blocker (losartan)). Experimental murine HF was produced by transverse aortic constriction (TAC). At three weeks post-TAC, male mice with established HF were treated with placebo, rapamycin at a dose producing immunosuppressive drug levels (target dose), low dose (50% target dose) rapamycin, losartan or rapamycin + losartan for six weeks. Cardiac structure and function (echocardiography, catheterization, pathology, hypertrophic and fibrotic gene expression profiles) were assessed. Downstream mTOR signaling pathways regulating protein synthesis (S6K1 and S6) and autophagy (LC3B-II) were characterized. TAC-HF mice displayed eccentric hypertrophy, systolic dysfunction and pulmonary congestion. These perturbations were attenuated to a similar degree by oral rapamycin doses achieving target (13.3±2.1 ng/dL) or low (6.7±2.5 ng/dL) blood levels. Rapamycin treatment decreased mTOR mediated regulators of protein synthesis and increased mTOR mediated regulators of autophagy. Losartan monotherapy did not attenuate remodeling, whereas

  5. Ryanodine receptor blockade reduces amyloid-β load and memory impairments in Tg2576 mouse model of Alzheimer disease.

    PubMed

    Oulès, Bénédicte; Del Prete, Dolores; Greco, Barbara; Zhang, Xuexin; Lauritzen, Inger; Sevalle, Jean; Moreno, Sebastien; Paterlini-Bréchot, Patrizia; Trebak, Mohamed; Checler, Frédéric; Benfenati, Fabio; Chami, Mounia

    2012-08-22

    In Alzheimer disease (AD), the perturbation of the endoplasmic reticulum (ER) calcium (Ca²⁺) homeostasis has been linked to presenilins, the catalytic core in γ-secretase complexes cleaving the amyloid precursor protein (APP), thereby generating amyloid-β (Aβ) peptides. Here we investigate whether APP contributes to ER Ca²⁺ homeostasis and whether ER Ca²⁺ could in turn influence Aβ production. We show that overexpression of wild-type human APP (APP(695)), or APP harboring the Swedish double mutation (APP(swe)) triggers increased ryanodine receptor (RyR) expression and enhances RyR-mediated ER Ca²⁺ release in SH-SY5Y neuroblastoma cells and in APP(swe)-expressing (Tg2576) mice. Interestingly, dantrolene-induced lowering of RyR-mediated Ca²⁺ release leads to the reduction of both intracellular and extracellular Aβ load in neuroblastoma cells as well as in primary cultured neurons derived from Tg2576 mice. This Aβ reduction can be accounted for by decreased Thr-668-dependent APP phosphorylation and β- and γ-secretases activities. Importantly, dantrolene diminishes Aβ load, reduces Aβ-related histological lesions, and slows down learning and memory deficits in Tg2576 mice. Overall, our data document a key role of RyR in Aβ production and learning and memory performances, and delineate RyR-mediated control of Ca²⁺ homeostasis as a physiological paradigm that could be targeted for innovative therapeutic approaches.

  6. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    PubMed

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress.

  7. Blockade of dopamine D₃ but not D₂ receptors reverses the novel object discrimination impairment produced by post-weaning social isolation: implications for schizophrenia and its treatment.

    PubMed

    Watson, David J G; Marsden, Charles A; Millan, Mark J; Fone, Kevin C F

    2012-05-01

    Dopamine D₃ receptors are densely expressed in mesolimbic projection areas, and selective antagonists enhance cognition, consistent with their potential therapeutic use in the treatment of schizophrenia. This study examines the effect of dopamine D₃ vs. D₂ receptor antagonists on the cognitive impairment and hyperactivity produced by social isolation of rat pups, in a neurodevelopmental model of certain deficits of schizophrenia. Three separate groups of male Lister hooded rats were group-housed or isolation-reared from weaning. Six weeks later rats received either vehicle or the dopamine D₃ selective antagonist, S33084 (0.04 and 0.16 mg/kg), the preferential D₃ antagonist, S33138 (0.16 and 0.63 mg/kg) or the preferential D₂ antagonist, L-741,626 (0.63 mg/kg) s.c. 30 min prior to recording; horizontal locomotor activity in a novel arena for 60 min and, the following day, novel object discrimination using a 2-h inter-trial interval. Isolation rearing induced locomotor hyperactivity in a novel arena and impaired novel object discrimination compared to that in group-housed littermates. Both S33084 and S33138 restored novel object discrimination deficits in isolation-reared rats without affecting discrimination in group-housed controls. By contrast, L-741,626 impaired novel object discrimination in group-housed rats, without affecting impairment in isolates. S33084 (0.16 mg/kg), S33138 and, less markedly, L741,626 reduced the locomotor hyperactivity in isolates without attenuating activity in group-housed controls. Selective blockade of dopamine D₃ receptors reverses the visual recognition memory deficit and hyperactivity produced by isolation rearing. These data support further investigation of the potential use of dopamine D₃ receptor antagonists to treat schizophrenia.

  8. Blockade of the epidermal growth factor receptor tyrosine kinase suppresses tumorigenesis in MMTV/Neu + MMTV/TGF-α bigenic mice

    PubMed Central

    Lenferink, Anne E. G.; Simpson, Jean F.; Shawver, Laura K.; Coffey, Robert J.; Forbes, James T.; Arteaga, Carlos L.

    2000-01-01

    Overexpression of ErbB-2/Neu has been causally associated with mammary epithelial transformation. Here we report that blockade of the epidermal growth factor receptor (EGFR) kinase with AG-1478 markedly delays breast tumor formation in mouse mammary tumor virus (MMTV)/Neu + MMTV/transforming growth factor α bigenic mice. This delay was associated with inhibition of EGFR and Neu signaling, reduction of cyclin-dependent kinase 2 (Cdk2) and mitogen-activated protein kinase (MAPK) activities and cyclin D1, and an increase in the levels of the Cdk inhibitor p27Kip1. In addition, BrdUrd incorporation into tumor cell nuclei was prevented with no signs of tumor cell apoptosis. These observations prompted us to investigate the stability of p27. Recombinant p27 was degraded rapidly in vitro by untreated but not by AG-1478-treated tumor lysates. Proteasome depletion of the tumor lysates, addition of the specific MEK1/2 inhibitor U-0126, or a T187A mutation in recombinant p27 all prevented p27 degradation. Cdk2 and MAPK precipitates from untreated tumor lysates phosphorylated recombinant wild-type p27 but not the T187A mutant in vitro. Cdk2 and MAPK precipitates from AG-1478-treated tumors were unable to phosphorylate p27 in vitro. These data suggest that increased signaling by ErbB receptors up-regulates MAPK activity, which, in turn, phosphorylates and destabilizes p27, thus contributing to dysregulated cell cycle progression. PMID:10931950

  9. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization

    PubMed Central

    Kuver, Aarti; Smith, Sheryl S.

    2015-01-01

    Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM – 100 μM, IC50=~1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM) + THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ~60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil. PMID:26592470

  10. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    PubMed

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p < or = 0.05), significantly, while the famotidine and thioperamide were ineffective. These results suggest the existence of H1-receptor mediated histamine-GABA(A) receptor interaction on food intake in broiler cockerels.

  11. A novel muscarinic receptor-independent mechanism of KCNQ2/3 potassium channel blockade by Oxotremorine-M.

    PubMed

    Zwart, Ruud; Reed, Hannah; Clarke, Sophie; Sher, Emanuele

    2016-11-15

    Inhibition of KCNQ (Kv7) potassium channels by activation of muscarinic acetylcholine receptors has been well established, and the ion currents through these channels have been long known as M-currents. We found that this cross-talk can be reconstituted in Xenopus oocytes by co-transfection of human recombinant muscarinic M1 receptors and KCNQ2/3 potassium channels. Application of the muscarinic acetylcholine receptor agonist Oxotremorine-methiodide (Oxo-M) between voltage pulses to activate KCNQ2/3 channels caused inhibition of the subsequent KCNQ2/3 responses. This effect of Oxo-M was blocked by the muscarinic acetylcholine receptor antagonist atropine. We also found that KCNQ2/3 currents were inhibited when Oxo-M was applied during an ongoing KCNQ2/3 response, an effect that was not blocked by atropine, suggesting that Oxo-M inhibits KCNQ2/3 channels directly. Indeed, also in oocytes that were transfected with only KCNQ2/3 channels, but not with muscarinic M1 receptors, Oxo-M inhibited the KCNQ2/3 response. These results show that besides the usual muscarinic acetylcholine receptor-mediated inhibition, Oxo-M also inhibits KCNQ2/3 channels by a direct mechanism. We subsequently tested xanomeline, which is a chemically distinct muscarinic acetylcholine receptor agonist, and oxotremorine, which is a close analogue of Oxo-M. Both compounds inhibited KCNQ2/3 currents via activation of M1 muscarinic acetylcholine receptors but, in contrast to Oxo-M, they did not directly inhibit KCNQ2/3 channels. Xanomeline and oxotremorine do not contain a positively charged trimethylammonium moiety that is present in Oxo-M, suggesting that such a charged moiety could be a crucial component mediating this newly described direct inhibition of KCNQ2/3 channels.

  12. Leptin decreases heart rate associated with increased ventricular repolarization via its receptor.

    PubMed

    Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H; Hull, Robert; Davis, Mary; Yu, Han-Gang

    2015-11-15

    Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1-30 μg/kg) decreased resting heart rate; at high doses (150-300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03-0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias.

  13. Striatal Serotonin 2C receptors decrease nigrostriatal dopamine release by increasing GABA-A receptor tone in the substantia nigra

    PubMed Central

    Burke, M.V.; Nocjar, C.; Sonneborn, A.J.; McCreary, A.C.

    2017-01-01

    Drugs acting at the serotonin-2C (5-HT2C) receptor subtype have shown promise as therapeutics in multiple syndromes including obesity, depression, and Parkinson’s disease. While it is established that 5-HT2C receptor stimulation inhibits DA release, the neural circuits and the localization of the relevant 5-HT2C receptors remain unknown. The present study used dual-probe in vivo microdialysis to investigate the relative contributions of 5-HT2C receptors localized in the rat substantia nigra (SN) and caudate-putamen (CP) in the control of nigrostriatal DA release. Systemic administration (3.0 mg/kg) of the 5-HT2C receptor selective agonist Ro 60-0175 [(α S )-6-Chloro-5-fluoro-α-methyl-1 H-indole-1-ethanamine fumarate] decreased, whereas intrastriatal infusions of the selective 5-HT2C antagonist SB 242084 [6-Chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1 H-indole-1-carboxyamide; 1.0 µM] increased, basal DA in the CP. Depending on the site within the SN pars reticulata (SNpr), infusions of SB 242084 had more modest but significant effects. Moreover, infusions of the GABA-A receptor agonist muscimol (10 µM) into the SNpr completely reversed the increases in striatal DA release produced by intrastriatal infusions of SB 242084. These findings suggest a role for 5-HT2C receptors regulating striatal DA release that is highly localized. 5-HT2C receptors localized in the striatum may represent a primary site of action that is mediated by actions on GABAergic activity in the SN. PMID:25073477

  14. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    PubMed

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  15. [Blockade of NMDA receptor enhances corticosterone-induced downregulation of brain-derived neurotrophic factor gene expression in the rat hippocampus through cAMP response element binding protein pathway].

    PubMed

    Feng, Hao; Lu, Li-Min; Huang, Ying; Zhu, Yi-Chun; Yao, Tai

    2005-10-25

    High concentration of corticosterone leads to morphological and functional impairments in hippocampus, ranging from a reversible atrophy of pyramidal CA3 apical dendrites to the impairment of long-term potentiation (LTP) and hippocampus-dependent learning and memory. Glutamate and N-methyl-D-aspartate (NMDA) receptor play an important role in this effect. Because of the importance of brain-derived neurotrophic factor (BDNF) in the functions of the hippocampal neurons, alteration of the expression of BDNF is thought to be involved in the corticosterone effect on the hippocampus. To determine whether change in BDNF in the hippocampus is involved in the corticosterone effect, we injected corticosterone (2 mg/kg, s.c.) to Sprague-Dawley rats and measured the mRNA, proBDNF and mature BDNF protein levels in the hippocampus. We also measured the phosphorylation level of the transcription factor cAMP response element binding protein (CREB). Furthermore, we intraperitoneally injected NMDA receptor antagonist MK801 (0.1 mg/kg) 30 min before corticosterone administration to investigate whether and how MK801 affected the regulation of BDNF gene expression by corticosterone. Our results showed that 3 h after single s.c. injection of corticsterone, the expression of BDNF mRNA, proBDNF and mature BDNF protein decreased significantly (P<0.01). MK801 promoted the downregulation of BDNF gene expression in the rat hippocampus by corticosterone. We also found that either applying corticosterone or co-applying corticosterone with MK801 downregulated the phosphoration level of CREB, the latter (corticosterone plus MK801) being more effective (P<0.05). Taken together, our results indicate that corticosterone downregulates BDNF gene expression in the rat hippocampus through CREB pathway and that blockade of NMDA receptor enhances this effect of corticosterone in reducing BDNF expression.

  16. The case for peripheral CB₁ receptor blockade in the treatment of visceral obesity and its cardiometabolic complications.

    PubMed

    Kunos, George; Tam, Joseph

    2011-08-01

    In this review, we consider the role of endocannabinoids and cannabinoid-1 (CB(1)) cannabinoid receptors in metabolic regulation and as mediators of the thrifty phenotype that underlies the metabolic syndrome. We survey the actions of endocannabinoids on food intake and body weight, as well as on the metabolic complications of visceral obesity, including fatty liver, insulin resistance and dyslipidemias. Special emphasis is placed on weighing the relative importance of CB(1) receptors located in peripheral tissues versus the central nervous system in mediating the metabolic effects of endocannabinoids. Finally, we review recent observations that indicate that peripherally restricted CB(1) receptor antagonists retain efficacy in reducing weight and improving metabolic abnormalities in mouse models of obesity without causing behavioural effects predictive of neuropsychiatric side effects in humans.

  17. Chronic exposure to morphine decreases the expression of EAAT3 via opioid receptors in hippocampal neurons.

    PubMed

    Guo, Mingyan; Cao, Dexiong; Zhu, Siyu; Fu, Ganglan; Wu, Qiang; Liang, Jianjun; Cao, Minghui

    2015-12-02

    Alterations in glutamate transporter expression are closely related to opiate addition behavior, but the role of opioid receptors is unclear. In this study, we used primary cultures of hippocampal neurons from neonatal rats to study the effects of chronic exposure to morphine on excitatory amino acid transporter 3 (EAAT3) expression and the roles of µ opioid receptor (MOR), δ opioid receptor (DOR), and κ opioid receptor (KOR) in the morphine-dependent alterations in EAAT3 expression. The results showed that the EAAT3 protein and mRNA expression levels decreased significantly after chronic exposure to morphine (10μmol/L) for 48h, whereas the concentration of extracellular glutamate increased. In addition, we found that both the MOR inhibitor CTOP and the DOR inhibitor naltrindole could reverse the decreased expression of EAAT3 after exposure to morphine, whereas the MOR activator DAMGO and the DOR activator DPDPE significantly decreased EAAT3 expression. The KOR inhibitor had no effect on the expression of EAAT3, whereas its activator increased EAAT3 expression. These results suggest that the down-regulation of morphine-dependent EAAT3 expression in primary rat hippocampal cultures may be mediated by MOR and DOR and that KOR may not contribute significantly to this effect.

  18. Decreased serotonin2C receptor responses in male patients with schizophrenia.

    PubMed

    Lee, Myung Ae; Jayathilake, Karuna; Sim, Min Young; Meltzer, Herbert Y

    2015-03-30

    Serotonin (5-HT)2C receptors in brain affect psychosis, reward, substance abuse, anxiety, other behaviors, appetite, body temperature, and other physiological measures. They also have been implicated in antipsychotic drug efficacy and side effects. We previously reported that the hyperthermia following administration of MK-212, a predominantly 5-HT(2C) receptor agonist, was diminished in a small sample of patients with schizophrenia (SCH), suggesting decreased 5-HT(2C) receptor responsiveness. We have now studied the responses to oral MK-212 and placebo in a larger sample of unmedicated male SCH (n = 69) and normal controls (CON) (n = 33), and assessed the influence of comorbid substance abuse (SA) on oral body temperature, behavioral responses, etc. The placebo-adjusted oral body temperature response to MK-212 was significantly lower in SCH compared to CON and not significantly different between the SCH with or without SA. Some behavioral responses to MK-212, e.g. self-rated feelings of increased anxiety, depression and decreased calmness, or good overall feeling, were significantly lower in the SCH patients compared to CON. These results add to the evidence for diminished 5-HT(2C) receptor responsiveness in SCH patients compared to CON and are consistent with reported association of HTR(2C) polymorphisms, leading to decreased expression or function of the HTR(2C) in patients with SCH.

  19. Cysteinyl leukotriene receptor (CysLT) antagonists decrease pentylenetetrazol-induced seizures and blood-brain barrier dysfunction.

    PubMed

    Lenz, Q F; Arroyo, D S; Temp, F R; Poersch, A B; Masson, C J; Jesse, A C; Marafiga, J R; Reschke, C R; Iribarren, P; Mello, C F

    2014-09-26

    Current evidence suggests that inflammation plays a role in the pathophysiology of seizures. In line with this view, selected pro-inflammatory arachidonic acid derivatives have been reported to facilitate seizures. Kainate-induced seizures are accompanied by leukotriene formation, and are reduced by inhibitors of LOX/COX pathway. Moreover, LTD4 receptor blockade and LTD4 synthesis inhibition suppress pentylenetetrazol (PTZ)-induced kindling and pilocarpine-induced recurrent seizures. Although there is convincing evidence supporting that blood-brain-barrier (BBB) dysfunction facilitates seizures, no study has investigated whether the anticonvulsant effect of montelukast is associated with its ability to maintain BBB integrity. In this study we investigated whether montelukast and other CysLT receptor antagonists decrease PTZ-induced seizures, as well as whether these antagonists preserve BBB during PTZ-induced seizures. Adult male albino Swiss mice were stereotaxically implanted with a cannula into the right lateral ventricle, and two electrodes were placed over the parietal cortex along with a ground lead positioned over the nasal sinus for electroencephalography (EEG) recording. The effects of montelukast (0.03 or 0.3 μmol/1 μL, i.c.v.), pranlukast (1 or 3 μmol/1 μL, i.c.v.), Bay u-9773 (0.3, 3 or 30 nmol/1 μL, i.c.v.), in the presence or absence of the agonist LTD4 (0.2, 2, 6 or 20 pmol/1 μL, i.c.v.), on PTZ (1.8 μmol/2 μL)-induced seizures and BBB permeability disruption were determined. The animals were injected with the antagonists, agonist or vehicle 30 min before PTZ, and monitored for additional 30 min for the appearance of seizures by electrographic and behavioral methods. BBB permeability was assessed by sodium fluorescein method and by confocal microscopy for CD45 and IgG immunoreactivity. Bay-u9973 (3 and 30 nmol), montelukast (0.03 and 0.3 μmol) and pranlukast (1 and 3 μmol), increased the latency to generalized seizures and decreased the

  20. Blockade of NR2B-Containing NMDA Receptors Prevents BDNF Enhancement of Glutamatergic Transmission in Hippocampal Neurons

    PubMed Central

    Crozier, Robert A.; Black, Ira B.; Plummer, Mark R.

    1999-01-01

    Application of brain-derived neurotrophic factor (BDNF) to hippocampal neurons has profound effects on glutamatergic synaptic transmission. Both pre- and postsynaptic actions have been identified that depend on the age and type of preparation. To understand the nature of this diversity, we have begun to examine the mechanisms of BDNF action in cultured dissociated embryonic hippocampal neurons. Whole-cell patch-clamp recording during iontophoretic application of glutamate revealed that BDNF doubled the amplitude of induced inward current. Coexposure to BDNF and the NMDA receptor antagonist AP-5 markedly reduced, but did not entirely prevent, the increase in current. Coexposure to BDNF and ifenprodil, an NR2B subunit antagonist, reproduced the response observed with AP-5, suggesting BDNF primarily enhanced activity of NR2B-containing NMDA receptors with a lesser effect on non-NMDA receptors. Protein kinase involvement was confirmed with the broad spectrum inhibitor staurosporine, which prevented the response to BDNF. PKCI19-31 and H-89, selective antagonists of PKC and PKA, had no effect on the response to BDNF, whereas autocamtide-2-related inhibitory peptide, an antagonist of CaM kinase II, reduced response magnitude by 60%. These results demonstrate the predominant role of a specific NMDA receptor subtype in BDNF modulation of hippocampal synaptic transmission. PMID:10492007

  1. Pharmacological Blockade of Serotonin 5-HT7 Receptor Reverses Working Memory Deficits in Rats by Normalizing Cortical Glutamate Neurotransmission

    PubMed Central

    Bonaventure, Pascal; Aluisio, Leah; Shoblock, James; Boggs, Jamin D.; Fraser, Ian C.; Lord, Brian; Lovenberg, Timothy W.; Galici, Ruggero

    2011-01-01

    The role of 5-HT7 receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT7 antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg) significantly reversed the deficits induced by MK-801 (0.1 mg/kg) but augmented the deficit induced by scopolamine (0.06 mg/kg). The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT7 receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission. PMID:21701689

  2. The non-competitive blockade of GABAA receptors by an aqueous extract of water hemlock (Cicuta douglassi) tubers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Teratogenic alkaloids can cause developmental defects due to the inhibition of fetal movement from the desensitization of fetal muscle-type nicotinic acetylcholine receptors (nAChR). In this study, we tested the hypothesis that the piperidine alkaloid anabaseine a 1,2-dehydropiperidine and anabasin...

  3. Microcirculatory effects of selective receptor blockade during hemorrhagic shock treatment with vasopressin: experimental study in the hamster dorsal chamber.

    PubMed

    Lima, Ronald; Villela, Nivaldo R; Bouskela, Eliete

    2012-11-01

    Hemorrhagic shock is a major cause of death in modern societies. Some patients, when treated, fail to sustain normal cardiovascular parameters, requiring fluid therapy and vasoactive drugs. Among drugs with cardiovascular profile other than catecholamine, vasopressin (VP) is emerging as an option. To better understand its effects during hemorrhagic shock, we compared the effects of VP and noradrenaline (NA), associated to fluid therapy. In this work, hamsters were subjected to shock by withdrawal of 40% of their blood volume and were then divided into five groups. One group was treated with saline solution, and the remaining ones with VP (three groups) and NA (one group) combined to fluid resuscitation. To assess receptor role, two more VP groups were pretreated with specific receptor blockers (anti-V1 or anti-V2, respectively) before its infusion. Microcirculatory parameters such as vessel diameter, red blood cell velocity, and functional capillary density were evaluated. In addition, blood gas analysis and lactate levels were also determined. Measurements were performed at baseline, after shock, and after treatment. At the end, leukocyte-endothelium interaction was evaluated, and animals were followed up to determine survival time. Neither saline solution nor NA recovered microcirculatory parameters, but VP treatment returned to near baseline values, except when V2 receptors were blocked. Functional capillary density was higher in the VP group after treatment, without statistical difference from baseline values. When V2 receptors were blocked, recovery was not achieved after treatment. The VP group also had a smaller number of adhering leukocytes and improved 72-h survival time compared with the NA one. This study suggests that, in hemorrhagic shock, treatment with low-dose VP, in combination with fluid therapy, improves tissue perfusion. This outcome is mediated mostly by V2 receptors, eliciting vasodilatation and consequently blood flow redistribution through

  4. Blockade of the dorsal hippocampal dopamine D1 receptors inhibits the scopolamine-induced state-dependent learning in rats.

    PubMed

    Piri, M; Rostampour, M; Nasehi, M; Zarrindast, M R

    2013-11-12

    In the present study, we investigated the possible role of the dorsal hippocampal (CA1) dopamine D1 receptors on scopolamine-induced amnesia as well as scopolamine state-dependent memory in adult male Wistar rats. Animals were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus, trained in a step-through type inhibitory avoidance task, and tested 24h after training for their step-through latency. Results indicated that pre-training or pre-test intra-CA1 administration of scopolamine (1.5 and 3 μg/rat) dose-dependently reduced the step-through latency, showing an amnestic response. The pre-training scopolamine-induced amnesia (3 μg/rat) was reversed by the pre-test administration of scopolamine, indicating a state-dependent effect. Similarly, the pre-test administration of dopamine D1 receptor agonist, 1-phenyl-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SKF38393; 1, 2 and 4 μg/rat, intra-CA1), could significantly reverse the scopolamine-induced amnesia. Interestingly, administration of an ineffective dose of scopolamine (0.25 μg/rat, intra-CA1) before different doses of SKF38393, blocked the reversal effect of SKF38393 on the pre-training scopolamine-induced amnesia. Moreover, while the pre-test intra-CA1 injection of the dopamine D1 receptor antagonist, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390; 0.1 and 0.5 μg/rat, intra-CA1), resulted in apparent memory impairment, microinjection of the same doses of this agent inhibited the scopolamine-induced state-dependent memory. These results indicate that the CA1 dopamine D1 receptors may potentially play an important role in scopolamine-induced amnesia as well as the scopolamine state-dependent memory. Furthermore, our results propose that dopamine D1 receptor agonist, SKF38393 reverses the scopolamine-induced amnesia via acetylcholine release and possibly through the activation of muscarinic

  5. Blockade of receptor for advanced glycation end products protects against systolic overload-induced heart failure after transverse aortic constriction in mice.

    PubMed

    Liu, Yu; Yu, Manli; Zhang, Zhigang; Yu, Yunhua; Chen, Qi; Zhang, Wei; Zhao, Xianxian

    2016-11-15

    Heart failure is the consequence of sustained, abnormal neurohormonal and mechanical stress and remains a leading cause of death worldwide. The aim of this work was to identify whether blockade of receptor for advanced glycation end products (RAGE) protected against systolic overload-induced heart failure and investigate the possible underlying mechanism. It was found that RAGE mRNA and protein expression was up-regulated in cardiac tissues from mice subjected to pressure overload by transverse aortic constriction (TAC). Importantly, inhibition of RAGE by treatment with soluble RAGE (sRAGE) or FPS-ZM1 (a high-affinity RAGE-specific inhibitor) for 8 weeks attenuated cardiac remodeling (including cardiac hypertrophy and fibrosis), and dysfunction in mice exposed to TAC. Furthermore, treatment of TAC mice with sRAGE or FPS-ZM1 enhanced phosphorylation of AMPK and reduced phosphorylation of mTOR and protein expression of NFκB p65 in cardiac tissues. In addition, treatment of TAC mice with sRAGE or FPS-ZM1 abated oxidative stress, attenuated endoplasmic reticulum stress, and suppressed inflammation in cardiac tissues. These data demonstrated the benefits of blocking RAGE on the progression of systolic overload-induced heart failure in mice, which was possibly through modulating AMPK/mTOR and NFκB pathways.

  6. Systemic modulation of serotonergic synapses via reuptake blockade or 5HT1A receptor antagonism does not alter perithreshold taste sensitivity in rats.

    PubMed

    Mathes, Clare M; Spector, Alan C

    2014-09-01

    Systemic blockade of serotonin (5HT) reuptake with paroxetine has been shown to increase sensitivity to sucrose and quinine in humans. Here, using a 2-response operant taste detection task, we measured the effect of paroxetine and the 5HT1A receptor antagonist WAY100635 on the ability of rats to discriminate sucrose, NaCl, and citric acid from water. After establishing individual psychometric functions, 5 concentrations of each taste stimulus were chosen to represent the dynamic portion of the concentration-response curve, and the performance of the rats to these stimuli was assessed after vehicle, paroxetine (7mg/kg intraperitoneally), and WAY100635 (0.3mg/kg subcutaneously; 1mg/kg intravenously) administration. Although, at times, overall performance across concentrations dropped, at most, 5% from vehicle to drug conditions, no differences relative to vehicle were seen on the parameters of the psychometric function (asymptote, slope, or EC50) after drug administration. In contrast to findings in humans, our results suggest that modulation of 5HT activity has little impact on sucrose detectability at perithreshold concentrations in rats, at least at the doses used in this task. In the rat model, the purported paracrine/neurocrine action of serotonin in the taste bud may work in a manner that does not impact overt taste detection behavior.

  7. Systemic Modulation of Serotonergic Synapses via Reuptake Blockade or 5HT1A Receptor Antagonism Does Not Alter Perithreshold Taste Sensitivity in Rats

    PubMed Central

    Spector, Alan C.

    2014-01-01

    Systemic blockade of serotonin (5HT) reuptake with paroxetine has been shown to increase sensitivity to sucrose and quinine in humans. Here, using a 2-response operant taste detection task, we measured the effect of paroxetine and the 5HT1A receptor antagonist WAY100635 on the ability of rats to discriminate sucrose, NaCl, and citric acid from water. After establishing individual psychometric functions, 5 concentrations of each taste stimulus were chosen to represent the dynamic portion of the concentration–response curve, and the performance of the rats to these stimuli was assessed after vehicle, paroxetine (7mg/kg intraperitoneally), and WAY100635 (0.3mg/kg subcutaneously; 1mg/kg intravenously) administration. Although, at times, overall performance across concentrations dropped, at most, 5% from vehicle to drug conditions, no differences relative to vehicle were seen on the parameters of the psychometric function (asymptote, slope, or EC50) after drug administration. In contrast to findings in humans, our results suggest that modulation of 5HT activity has little impact on sucrose detectability at perithreshold concentrations in rats, at least at the doses used in this task. In the rat model, the purported paracrine/neurocrine action of serotonin in the taste bud may work in a manner that does not impact overt taste detection behavior. PMID:25056731

  8. Systems Biology and Birth Defects Prevention: Blockade of the Glucocorticoid Receptor Prevents Arsenic-Induced Birth Defects

    PubMed Central

    Ahir, Bhavesh K.; Sanders, Alison P.; Rager, Julia E.

    2013-01-01

    Background: The biological mechanisms by which environmental metals are associated with birth defects are largely unknown. Systems biology–based approaches may help to identify key pathways that mediate metal-induced birth defects as well as potential targets for prevention. Objectives: First, we applied a novel computational approach to identify a prioritized biological pathway that associates metals with birth defects. Second, in a laboratory setting, we sought to determine whether inhibition of the identified pathway prevents developmental defects. Methods: Seven environmental metals were selected for inclusion in the computational analysis: arsenic, cadmium, chromium, lead, mercury, nickel, and selenium. We used an in silico strategy to predict genes and pathways associated with both metal exposure and developmental defects. The most significant pathway was identified and tested using an in ovo whole chick embryo culture assay. We further evaluated the role of the pathway as a mediator of metal-induced toxicity using the in vitro midbrain micromass culture assay. Results: The glucocorticoid receptor pathway was computationally predicted to be a key mediator of multiple metal-induced birth defects. In the chick embryo model, structural malformations induced by inorganic arsenic (iAs) were prevented when signaling of the glucocorticoid receptor pathway was inhibited. Further, glucocorticoid receptor inhibition demonstrated partial to complete protection from both iAs- and cadmium-induced neurodevelopmental toxicity in vitro. Conclusions: Our findings highlight a novel approach to computationally identify a targeted biological pathway for examining birth defects prevention. PMID:23458687

  9. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats.

    PubMed

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-01-01

    We examined the effects of an adenosine receptor agonist on caffeine-induced changes in thermoregulation, neurotransmitter release in the preoptic area and anterior hypothalamus, and endurance exercise performance in rats. One hour before the start of exercise, rats were intraperitoneally injected with either saline alone (SAL), 10 mg kg(-1) caffeine and saline (CAF), a non-selective adenosine receptor agonist (5'-N-ethylcarboxamidoadenosine [NECA]: 0.5 mg kg(-1)) and saline (NECA), or the combination of caffeine and NECA (CAF+NECA). Rats ran until fatigue on the treadmill with a 5% grade at a speed of 18 m min(-1) at 23 °C. Compared to the SAL group, the run time to fatigue (RTTF) was significantly increased by 52% following caffeine administration and significantly decreased by 65% following NECA injection (SAL: 91 ± 14.1 min; CAF: 137 ± 25.8 min; NECA: 31 ± 13.7 min; CAF+NECA: 85 ± 11.8 min; p<0.05). NECA decreased the core body temperature (Tcore), oxygen consumption, which is an index of heat production, tail skin temperature, which is an index of heat loss, and extracellular dopamine (DA) release at rest and during exercise. Furthermore, caffeine injection inhibited the NECA-induced decreases in the RTTF, Tcore, heat production, heat loss, and extracellular DA release. Neither caffeine nor NECA affected extracellular noradrenaline or serotonin release. These results support the findings of previous studies showing improved endurance performance and overrides in body limitations after caffeine administration, and imply that the ergogenic effects of caffeine may be associated with the adenosine receptor blockade-induced increases in brain DA release.

  10. Sigma-2 receptor binding is decreased in female, but not male, APP/PS1 mice.

    PubMed

    Sahlholm, Kristoffer; Liao, Fan; Holtzman, David M; Xu, Jinbin; Mach, Robert H

    2015-05-01

    The sigma-2 receptor is a steroid-binding membrane-associated receptor which has been implicated in cell survival. Sigma-2 has recently been shown to bind amyloid-β (Aβ) oligomers in Alzheimer's disease (AD) brain. Furthermore, blocking this interaction was shown to prevent or reverse the effects of Aβ to cause cognitive impairment in mouse models and synaptic loss in neuronal cultures. In the present work, the density of sigma-2 receptors was measured in a double transgenic mouse model of amyloid-β deposition (APP/PS1). Comparisons were made between males and females and between transgenic and wt animals. Sigma-2 receptor density was assessed by quantitative autoradiography performed on coronal brain slices using [(3)H]N-[4-(3,4-dihydro-6,7-dimethoxyisoquinolin-2(1H)-yl)butyl]-2-methoxy-5-methyl-benzamide ([(3)H]RHM-1), which has a 300-fold selectivity for the sigma-2 receptor over the sigma-1 receptor. The translocator protein of 18 kDa (TSPO) is expressed on activated microglia and is a marker for neuroinflammation. TSPO has been found to be upregulated in neurodegenerative disorders, including AD. Therefore, in parallel with the sigma-2 autoradiography experiments, we measured TSPO expression using the selective radioligand, [(3)H]PBR28. We also quantified Aβ plaque burden in the same animals using a monoclonal antibody raised against aggregated Aβ. Sigma-2 receptor density was significantly decreased in piriform and motor cortices as well as striata of 16-month old female, but not male, APP/PS1 mice as compared to their wt counterparts. [(3)H]PBR28 binding and immunostaining for Aβ plaques were significantly increased in piriform and motor cortices of both male and female transgenic mice. In striatum however, significant increases were observed only in females.

  11. Cannabinoid CB{sub 1} receptor inhibition decreases vascular smooth muscle migration and proliferation

    SciTech Connect

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Hasko, Gyoergy; Pacher, Pal

    2008-12-26

    Vascular smooth muscle proliferation and migration triggered by inflammatory stimuli and chemoattractants such as platelet-derived growth factor (PDGF) are key events in the development and progression of atherosclerosis and restenosis. Cannabinoids may modulate cell proliferation and migration in various cell types through cannabinoid receptors. Here we investigated the effects of CB{sub 1} receptor antagonist rimonabant (SR141716A), which has recently been shown to have anti-atherosclerotic effects both in mice and humans, on PDGF-induced proliferation, migration, and signal transduction of human coronary artery smooth muscle cells (HCASMCs). PDGF induced Ras and ERK 1/2 activation, while increasing proliferation and migration of HCASMCs, which were dose dependently attenuated by CB{sub 1} antagonist, rimonabant. These findings suggest that in addition to improving plasma lipid alterations and decreasing inflammatory cell migration and inflammatory response, CB{sub 1} antagonists may exert beneficial effects in atherosclerosis and restenosis by decreasing vascular smooth muscle proliferation and migration.

  12. Loss of neurons in rostral ventromedial medulla that express neurokinin-1 receptors decreases the development of hyperalgesia.

    PubMed

    Khasabov, S G; Simone, D A

    2013-10-10

    It is well known that neurons in the rostral ventromedial medulla (RVM) are involved in descending modulation of nociceptive transmission in the spinal cord. It has been shown that activation of neurokinin-1 receptors (NK-1Rs) in the RVM, which are presumably located on pain facilitating ON cells, produces hyperalgesia whereas blockade of NK-1Rs attenuates hyperalgesia. To obtain a better understanding of the functions of NK-1R expressing neurons in the RVM, we selectively ablated these neurons by injecting the stable analog of substance P (SP), Sar(9),Met(O2)(11)-Substance P, conjugated to the ribosomal toxin saporin (SSP-SAP) into the RVM. Rats received injections of SSP-SAP (1 μM) or an equal volume of 1 μM of saporin conjugated to artificial peptide (Blank-SAP). Stereological analysis of NK-1R- and NeuN-labeled neurons in the RVM was determined 21-24 days after treatment. Withdrawal responses to mechanical and heat stimuli applied to the plantar hindpaw were determined 5-28 days after treatment. Withdrawal responses were also determined before and after intraplantar injection of capsaicin (acute hyperalgesia) or complete Freund's adjuvant (CFA) (prolonged hyperalgesia). The proportion of NK-1R-labeled neurons in the RVM was 8.8 ± 1.3% in naïve rats and 8.1 ± 0.8% in rats treated with Blank-SAP. However, injection of SSP-SAP into the RVM resulted in a 90% decrease in NK-1R-labeled neurons. SSP-SAP did not alter withdrawal responses to mechanical or heat stimuli under normal conditions, and did not alter analgesia produced by morphine administered into the RVM. In contrast, the duration of nocifensive behaviors produced by capsaicin and mechanical and heat hyperalgesia produced by capsaicin and CFA were decreased in rats pretreated with SSP-SAP as compared to those that received Blank-SAP. These data support our earlier studies using NK-1R antagonists in the RVM and demonstrate that RVM neurons that possess the NK-1R do not play a significant role in

  13. Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels

    PubMed Central

    Martina, Marzia; Gorfinkel, Yelena; Halman, Samantha; Lowe, John A; Periyalwar, Pranav; Schmidt, Christopher J; Bergeron, Richard

    2004-01-01

    Long-term potentiation (LTP) in the hippocampal CA1 region requires the activation of NMDA receptors (NMDARs). NMDAR activation in turn requires membrane depolarization as well as the binding of glutamate and its coagonist glycine. Previous pharmacological studies suggest that the glycine transporter type 1 (GlyT1) maintains subsaturating concentrations of glycine at synaptic NMDARs. Antagonists of GlyT1 increase levels of glycine in the synaptic cleft and, like direct glycine site agonists, can augment NMDAR currents and NMDAR-mediated functions such as LTP. In addition, stimulation of the glycine site initiates signalling through the NMDAR complex, priming the receptors for clathrin-dependent endocytosis. We have used a new potent GlyT1 antagonist, CP-802,079, with whole-cell patch-clamp recordings in acute rat hippocampal slices to determine the effect of GlyT1 blockade on LTP. Reverse microdialysis experiments in the hippocampus of awake, freely moving rats, showed that this drug elevated only the extracellular concentration of glycine. We found that CP-802,079, sarcosine and glycine significantly increased the amplitude of the NMDAR currents and LTP. In contrast, application of higher concentrations of CP-802,079 and glycine slightly reduced NMDAR currents and did not increase LTP. Overall, these data suggest that the level of glycine present in the synaptic cleft tightly regulates the NMDAR activity. This level is kept below the ‘set point’ of the NMDAR internalization priming mechanism by the presence of GlyT1-dependent uptake. PMID:15064326

  14. Differential effects of systemic cholinergic receptor blockade on Pavlovian incentive motivation and goal-directed action selection.

    PubMed

    Ostlund, Sean B; Kosheleff, Alisa R; Maidment, Nigel T

    2014-05-01

    Reward-seeking actions can be guided by external cues that signal reward availability. For instance, when confronted with a stimulus that signals sugar, rats will prefer an action that produces sugar over a second action that produces grain pellets. Action selection is also sensitive to changes in the incentive value of potential rewards. Thus, rats that have been prefed a large meal of sucrose will prefer a grain-seeking action to a sucrose-seeking action. The current study investigated the dependence of these different aspects of action selection on cholinergic transmission. Hungry rats were given differential training with two unique stimulus-outcome (S1-O1 and S2-O2) and action-outcome (A1-O1 and A2-O2) contingencies during separate training phases. Rats were then given a series of Pavlovian-to-instrumental transfer tests, an assay of cue-triggered responding. Before each test, rats were injected with scopolamine (0, 0.03, or 0.1 mg/kg, intraperitoneally), a muscarinic receptor antagonist, or mecamylamine (0, 0.75, or 2.25 mg/kg, intraperitoneally), a nicotinic receptor antagonist. Although the reward-paired cues were capable of biasing action selection when rats were tested off-drug, both anticholinergic treatments were effective in disrupting this effect. During a subsequent round of outcome devaluation testing-used to assess the sensitivity of action selection to a change in reward value--we found no effect of either scopolamine or mecamylamine. These results reveal that cholinergic signaling at both muscarinic and nicotinic receptors mediates action selection based on Pavlovian reward expectations, but is not critical for flexibly selecting actions using current reward values.

  15. Counteraction by repetitive daily exposure to static magnetism against sustained blockade of N-methyl-D-aspartate receptor channels in cultured rat hippocampal neurons.

    PubMed

    Hirai, Takao; Taniura, Hideo; Goto, Yasuaki; Tamaki, Keisuke; Oikawa, Hirotaka; Kambe, Yuki; Ogura, Masato; Ohno, Yu; Takarada, Takeshi; Yoneda, Yukio

    2005-05-15

    In rat hippocampal neurons cultured with the antagonist for N-methyl-D-aspartate (NMDA) receptors dizocilpine (MK-801) for 8 days in vitro (DIV), a significant decrease was seen in the expression of microtubule-associated protein-2 (MAP-2) as well as mRNA for both brain-derived neurotrophic factor (BDNF) and growth-associated protein-43 (GAP-43), in addition to decreased viability. MK-801 not only decreased the expression of the NR1 subunit of NMDA receptors but also increased NR2A expression, without affecting NR2B expression. Repetitive daily exposure to static magnetic fields at 100 mT for 15 min led to a decrease in the expression of MAP-2, without significantly affecting cell viability or the expression of neuronal nuclei (NeuN) and GAP-43. However, the repetitive magnetism prevented decreases in both BDNF mRNA and MAP-2 and additionally increased the expression of NR2A subunit, without altering NR1 expression in neurons cultured in the presence of MK-801. Repetitive magnetism was also effective in preventing the decrease by MK-801 in the ability of NMDA to increase intracellular free Ca2+ ions, without affecting the decrease in the maximal response. These results suggest that repetitive magnetism may at least in part counteract the neurotoxicity of MK-801 through modulation of the expression of particular NMDA receptor subunits in cultured rat hippocampal neurons.

  16. D1 dopamine receptor blockade prevents the facilitation of amphetamine self-administration induced by prior exposure to the drug.

    PubMed

    Pierre, P J; Vezina, P

    1998-07-01

    Prior exposure to amphetamine leads to sensitized locomotor responding to subsequent injections and an enhanced predisposition to self-administer low doses of the drug. Because D1 dopamine (DA) receptors have been shown to play an important role in the development of sensitized locomotor responding to amphetamine, the present experiment assessed their contribution to the development of facilitated amphetamine self-administration produced by prior exposure to the drug. During a pre-exposure phase, rats were administered two injections on each of 10 consecutive days. The first injection (saline, 1 ml/kg, i.p., or the D1 DA receptor antagonist SCH23390, 0.04 mg/kg, s.c.) preceded the second (saline or amphetamine, 1.5 mg/kg, i.p.) by 30 min. Starting 10 days after the last injection, animals were given the opportunity to lever press for a low dose of amphetamine (10 microg/kg per infusion) in a two-lever (active versus inactive) continuous reinforcement operant task, in each of seven daily sessions. Consistent with previous reports, prior exposure to amphetamine resulted in an increase in active versus inactive lever pressing. Blocking D1 DA receptors with SCH23390 prior to each of the amphetamine pre-exposure injections prevented the development of this enhanced self-administration of amphetamine. When animals were grouped according to their locomotor response to a novel environment (assessed prior to the experiment), it was found, again in agreement with previous reports, that enhanced drug self-administration (as indicated by increased active versus inactive lever pressing as well as shorter latencies to emit the first active lever press, shorter inter-response times and more time-out responses on this lever) was observed only in amphetamine pre-exposed rats that had shown a locomotor response to novelty above the median of the subject sample (high responders). Preceding the amphetamine pre-exposure injections with SCH23390 blocked the development of enhanced drug

  17. In Utero Exposure to Di-(2-Ethylhexyl) Phthalate Decreases Mineralocorticoid Receptor Expression in the Adult Testis

    PubMed Central

    Martinez-Arguelles, D. B.; Culty, M.; Zirkin, B. R.; Papadopoulos, V.

    2009-01-01

    In utero exposure to di-(2-ethylhexyl) phthalate (DEHP) has been shown to result in decreased androgen formation by fetal and adult rat testes. In the fetus, decreased androgen is accompanied by the reduced expression of steroidogenic enzymes. The mechanism by which in utero exposure results in reduced androgen formation in the adult, however, is unknown. We hypothesized that deregulation of the nuclear steroid receptors might explain the effects of in utero DEHP exposure on adult testosterone production. To test this hypothesis, pregnant Sprague Dawley dams were gavaged with 100–950 mg DEHP per kilogram per day from gestational d 14–19, and testes were collected at gestational d 20 and postnatal days (PND) 3, 21, and 60. Among the nuclear receptors studied, the mineralocorticoid receptor (MR) mRNA and protein levels were reduced in PND60 interstitial Leydig cells, accompanied by reduced mRNA expression of MR-regulated genes. Methylation-sensitive PCR showed effects on the nuclear receptor subfamilies NR3A and -3C, but only MR was affected at PND60. Pyrosequencing of two CpG islands within the MR gene promoter revealed a loss of methylation in DEHP-treated animals that was correlated with reduced MR. Because MR activation is known to stimulate Leydig cell testosterone formation, and MR inhibition to be repressive, our results are consistent with the hypothesis that in utero exposure to DEHP leads to MR dysfunction and thus to depressed testosterone production in the adult. We suggest that decreased MR, possibly epigenetically mediated, is a novel mechanism by which phthalates may affect diverse functions later in life. PMID:19819939

  18. Effect of adrenergic receptor blockade on cortisol and GH response to insulin-induced hypoglycemia in man.

    PubMed

    Jezová-Repceková, D; Klimes, I; Jurcovicová, J; Vigas, M

    1979-02-01

    The effect of several drugs presumably influencing central catecholaminergic receptors on plasma cortisol and GH response to insulin-induced hypoglycemia was studied in healthy adult males. The intravenous infusion of alpha-adrenergic blocking agents tolazoline or phentolamine supressed plasma cortisol and GH response to insulin-induced hypoglycemia. After an infusion of beta-adrenergic antagonist propranolol both hypoglycemia and rise in plasma cortisol and GH were prolonged. Finally, the administration of dopaminergic blocker pimozide failed to affect the plasma cortisol response, but slightly suppressed the enhancement of GH release during hypoglycemia. Caution is recommended before making suggestions about neuroendocrine regulations from the data obtained after systemic administration of drugs. Nevertheless, it may be concluded that the hypothesis on the inhibitory role of the central alpha-adrenergic system on ACTH secretion suggested in rats and dogs was not confirmed by our results obtained in man.

  19. Blockade of hippocampal bradykinin B1 receptors improves spatial learning and memory deficits in middle-aged rats.

    PubMed

    Bitencourt, Rafael M; Guerra de Souza, Ana C; Bicca, Maíra A; Pamplona, Fabrício A; de Mello, Nelson; Passos, Giselle F; Medeiros, Rodrigo; Takahashi, Reinaldo N; Calixto, João B; Prediger, Rui D

    2017-01-01

    Previous studies have demonstrated that targeting bradykinin receptors is a promising strategy to counteract the cognitive impairment related with aging and Alzheimer's disease (AD). The hippocampus is critical for cognition, and abnormalities in this brain region are linked to the decline in mental ability. Nevertheless, the impact of bradykinin signaling on hippocampal function is unknown. Therefore, we sought to determine the role of hippocampal bradykinin receptors B1R and B2R on the cognitive decline of middle-aged rats. Twelve-month-old rats exhibited impaired ability to acquire and retrieve spatial information in the Morris water maze task. A single intra-hippocampal injection of the selective B1R antagonist des-Arg(9)-[Leu(8)]-bradykinin (DALBK, 3 nmol), but not the selective B2R antagonist D-Arg-[Hyp(3),Thi(5),D-Tic(7),Oic(8)]-BK (Hoe 140, 3 nmol), reversed the spatial learning and memory deficits on these animals. However, both drugs did not affect the cognitive function in 3-month-old rats, suggesting absence of nootropic properties. Molecular biology analysis revealed an up-regulation of B1R expression in the hippocampal CA1 sub-region and in the pre-frontal cortex of 12-month-old rats, whereas no changes in the B2R expression were observed in middle-aged rats. These findings provide new evidence that inappropriate hippocampal B1R expression and activation exert a critical role on the spatial learning and memory deficits in middle-aged rats. Therefore, selective B1R antagonists, especially orally active non-peptide antagonists, may represent drugs of potential interest to counteract the age-related cognitive decline.

  20. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits: Reversal by blockade of CRF1 receptors.

    PubMed

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-10-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear.

  1. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor

    PubMed Central

    Aungraheeta, Riyaad; Conibear, Alexandra; Butler, Mark; Kelly, Eamonn; Nylander, Sven; Mumford, Andrew

    2016-01-01

    Ticagrelor is a potent antagonist of the P2Y12 receptor (P2Y12R) and consequently an inhibitor of platelet activity effective in the treatment of atherothrombosis. Here, we sought to further characterize its molecular mechanism of action. Initial studies showed that ticagrelor promoted a greater inhibition of adenosine 5′-diphosphate (ADP)–induced Ca2+ release in washed platelets vs other P2Y12R antagonists. This additional effect of ticagrelor beyond P2Y12R antagonism was in part as a consequence of ticagrelor inhibiting the equilibrative nucleoside transporter 1 (ENT1) on platelets, leading to accumulation of extracellular adenosine and activation of Gs-coupled adenosine A2A receptors. This contributed to an increase in basal cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P). In addition, ticagrelor increased platelet cAMP and VASP-P in the absence of ADP in an adenosine receptor–independent manner. We hypothesized that this increase originated from a direct effect on basal agonist-independent P2Y12R signaling, and this was validated in 1321N1 cells stably transfected with human P2Y12R. In these cells, ticagrelor blocked the constitutive agonist-independent activity of the P2Y12R, limiting basal Gi-coupled signaling and thereby increasing cAMP levels. These data suggest that ticagrelor has the pharmacological profile of an inverse agonist. Based on our results showing insurmountable inhibition of ADP-induced Ca2+ release and forskolin-induced cAMP, the mode of antagonism of ticagrelor also appears noncompetitive, at least functionally. In summary, our studies describe 2 novel modes of action of ticagrelor, inhibition of platelet ENT1 and inverse agonism at the P2Y12R that contribute to its effective inhibition of platelet activation. PMID:27694321

  2. Selective cannabinoid-1 receptor blockade benefits fatty acid and triglyceride metabolism significantly in weight-stable nonhuman primates.

    PubMed

    Vaidyanathan, Vidya; Bastarrachea, Raul A; Higgins, Paul B; Voruganti, V Saroja; Kamath, Subhash; DiPatrizio, Nicholas V; Piomelli, Daniele; Comuzzie, Anthony G; Parks, Elizabeth J

    2012-09-01

    The goal of this study was to determine whether administration of the CB₁ cannabinoid receptor antagonist rimonabant would alter fatty acid flux in nonhuman primates. Five adult baboons (Papio Sp) aged 12.1 ± 4.7 yr (body weight: 31.9 ± 2.1 kg) underwent repeated metabolic tests to determine fatty acid and TG flux before and after 7 wk of treatment with rimonabant (15 mg/day). Animals were fed ad libitum diets, and stable isotopes were administered via diet (d₃₁-tripalmitin) and intravenously (¹³C₄-palmitate, ¹³C₁-acetate). Plasma was collected in the fed and fasted states, and blood lipids were analyzed by GC-MS. DEXA was used to assess body composition and a hyperinsulinemic euglycemic clamp used to assess insulin-mediated glucose disposal. During the study, no changes were observed in food intake, body weight, plasma, and tissue endocannabinoid concentrations or the quantity of liver-TG fatty acids originating from de novo lipogenesis (19 ± 6 vs. 16 ± 5%, for pre- and posttreatment, respectively, P = 0.39). However, waist circumference was significantly reduced 4% in the treated animals (P < 0.04), glucose disposal increased 30% (P = 0.03), and FFA turnover increased 37% (P = 0.02). The faster FFA flux was consistent with a 43% reduction in these fatty acids used for TRL-TG synthesis (40 ± 3 vs. 23 ± 4%, P = 0.02) and a twofold increase in TRL-TG turnover (1.5 ± 0.9 vs. 3.1 ± 1.4 μmol·kg⁻¹·h⁻¹, P = 0.03). These data support the potential for a strong effect of CB₁ receptor antagonism at the level of adipose tissue, resulting in improvements in fasting turnover of fatty acids at the whole body level, central adipose storage, and significant improvements in glucose homeostasis.

  3. Decreased GABAA receptor binding in the medullary serotonergic system in the sudden infant death syndrome.

    PubMed

    Broadbelt, Kevin G; Paterson, David S; Belliveau, Richard A; Trachtenberg, Felicia L; Haas, Elisabeth A; Stanley, Christina; Krous, Henry F; Kinney, Hannah C

    2011-09-01

    γ-Aminobutyric acid (GABA) neurons in the medulla oblongata help regulate homeostasis, in part through interactions with the medullary serotonergic (5-HT) system. Previously, we reported abnormalities in multiple 5-HT markers in the medullary 5-HT system of infants dying from sudden infant death syndrome (SIDS), suggesting that 5-HT dysfunction is involved in its pathogenesis. Here, we tested the hypothesis that markers of GABAA receptors are decreased in the medullary 5-HT system in SIDS cases compared with controls. Using tissue receptor autoradiography with the radioligand H-GABA, we found 25% to 52% reductions in GABAA receptor binding density in 7 of 10 key nuclei sampled of the medullary 5-HT system in the SIDS cases (postconceptional age [PCA] = 51.7 ± 8.3, n = 28) versus age-adjusted controls (PCA = 55.3 ± 13.5, n = 8) (p ≤ 0.04). By Western blotting, there was 46.2% reduction in GABAAα3 subunit levels in the gigantocellularis (component of the medullary 5-HT system) of SIDS cases (PCA = 53.9 ± 8.4, n = 24) versus controls (PCA = 55.3 ± 8.3, n = 8) (56.8% standard in SIDS cases vs 99.35% in controls; p = 0.026). These data suggest that medullary GABAA receptors are abnormal in SIDS infants and that SIDS is a complex disorder of a homeostatic network in the medulla that involves deficits of the GABAergic and 5-HT systems.

  4. Thymic involution in the suspended rat model for weightlessness - Decreased glucocorticoid receptor concentration

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1984-01-01

    Hindlimb muscle atrophy, thymic involution and adrenal hypertrophy in rats during spaceflight can be simulated using suspension models. Skeletal muscle and thymus are sensitive to gluco-corticoids (GC), and previous studies have demonstrated that muscle atrophy in suspended rats is associated with increased GC receptor concentration. The objectives were to confirm thymic involution during suspension, and determine if involution correlated with increased GC receptor concentration. Seven days of antiorthostatic (AO) suspension of rats produced a significant (P less than 0.001) reduction in thymic wet weight not associated with an alteration of percent water content. GC receptor concentration (pmol/mg protein) decreased 20 percent (P less than 0.025) in thymus glands from 7 day AO suspended rats. Suspension, therefore, is associated with involution of the thymus, but this is not dependent upon AO positioning. Thymus GC receptor concentrations were depressed in 7-day suspended rats, in contrast with previous observations on skeletal muscle, suggesting that different mechanisms may underlie these responses.

  5. Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons.

    PubMed

    Yin, Hong Z; Sensi, Stefano L; Ogoshi, Fumio; Weiss, John H

    2002-02-15

    Synaptic release of Zn2+ and its translocation into postsynaptic neurons probably contribute to neuronal injury after ischemia or epilepsy. Studies in cultured neurons have revealed that of the three major routes of divalent cation entry, NMDA channels, voltage-sensitive Ca2+ channels (VSCCs), and Ca2+-permeable AMPA/kainate (Ca-A/K) channels, Ca-A/K channels exhibit the highest permeability to exogenously applied Zn2+. However, routes through which synaptically released Zn2+ gains entry to postsynaptic neurons have not been characterized in vivo. To model ischemia-induced Zn2+ movement in a system approximating the in vivo situation, we subjected mouse hippocampal slice preparations to controlled periods of oxygen and glucose deprivation (OGD). Timm's staining revealed little reactive Zn2+ in CA1 and CA3 pyramidal neurons of slices exposed in the presence of O2 and glucose. However, 15 min of OGD resulted in marked labeling in both regions. Whereas strong Zn2+ labeling persisted if both the NMDA antagonist MK-801 and the VSCC blocker Gd3+ were present during OGD, the presence of either the Ca-A/K channel blocker 1-naphthyl acetyl spermine (NAS) or the extracellular Zn2+ chelator Ca2+ EDTA substantially decreased Zn2+ accumulation in pyramidal neurons of both subregions. In parallel experiments, slices were subjected to 5 min OGD exposures as described above, followed 4 hr later by staining with the cell-death marker propidium iodide. As in the Timm's staining experiments, substantial CA1 or CA3 pyramidal neuronal damage occurred despite the presence of MK-801 and Gd3+, whereas injury was decreased by NAS or by Ca2+ EDTA (in CA1).

  6. Adenosine A1-receptor blockade impairs the ability of rat pups to autoresuscitate from primary apnea during repeated exposure to hypoxia

    PubMed Central

    Fewell, James E; Lun, Rongzhi

    2015-01-01

    Failure of gasping to bring about autoresuscitation from hypoxia-induced apnea has been suggested to play a role in sudden unexpected infant death. Little is known, however, about factors that influence the ability of gasping to restore life during severe hypoxia in newborns. Given that adenosine modulates cardiac function during hypoxia-induced apnea and that cardiac dysfunction plays a role in mediating autoresuscitation failure, the present experiments were carried out on 34, 5- to 6-, and 10- to 11-day-old rat pups to investigate their ability to autoresuscitate from hypoxia-induced apnea during repeated exposure to hypoxia after adenosine A1-receptor blockade. Each pup was placed into a temperature-controlled chamber regulated to 37 ± 1°C and repeatedly exposed to an anoxic gas mixture (97% N2 and 3% CO2) until the occurrence of autoresuscitation failure. One group was studied following administration of the selective adenosine A1-receptor antagonist 8-Cyclopentyl-1,3,-dipropylxanthine (DPCPX) and one group was studied following vehicle. DPCPX significantly attenuated bradycardia during hypoxia-induced apnea and impaired the ability of both age groups of pups to autoresuscitate during repeated exposure to hypoxia (5–6 days tolerated – vehicle 17 ± 4 vs. DPCPX 10 ± 2 hypoxia exposures [P < 0.05]; 10–11 days tolerated – vehicle 10 ± 2 vs. DPCPX 7 ± 2 hypoxia exposures [P < 0.05]). Death in all pups resulted from the inability of gasping to restore cardiovascular function during hypoxia-induced apnea although the mechanism of cardiovascular dysfunction/failure was influenced and the occurrence hastened by DPCPX. Thus, our data provide evidence that adenosine acting via adenosine A1-receptors enhances the ability of rat pups to tolerate repeated exposure to severe hypoxia during early postnatal maturation. PMID:26272732

  7. Selective Blockade of Dopamine D3 Receptors Enhances while D2 Receptor Antagonism Impairs Social Novelty Discrimination and Novel Object Recognition in Rats: A Key Role for the Prefrontal Cortex

    PubMed Central

    Watson, David JG; Loiseau, Florence; Ingallinesi, Manuela; Millan, Mark J; Marsden, Charles A; Fone, Kevin CF

    2012-01-01

    Dopamine D3 receptor antagonists exert pro-cognitive effects in both rodents and primates. Accordingly, this study compared the roles of dopamine D3 vs D2 receptors in social novelty discrimination (SND), which relies on olfactory cues, and novel object recognition (NOR), a visual-recognition task. The dopamine D3 receptor antagonist, S33084 (0.04–0.63 mg/kg), caused a dose-related reversal of delay-dependent impairment in both SND and NOR procedures in adult rats. Furthermore, mice genetically deficient in dopamine D3 receptors displayed enhanced discrimination in the SND task compared with wild-type controls. In contrast, acute treatment with the preferential dopamine D2 receptor antagonist, L741,626 (0.16–5.0 mg/kg), or with the dopamine D3 agonist, PD128,907 (0.63–40 μg/kg), caused a dose-related impairment in performance in rats in both tasks after a short inter-trial delay. Bilateral microinjection of S33084 (2.5 μg/side) into the prefrontal cortex (PFC) of rats increased SND and caused a dose-related (0.63–2.5 μg/side) improvement in NOR, while intra-striatal injection (2.5 μg/side) had no effect on either. In contrast, bilateral microinjection of L741,626 into the PFC (but not striatum) caused a dose-related (0.63–2.5 μg/side) impairment of NOR. These observations suggest that blockade of dopamine D3 receptors enhances both SND and NOR, whereas D3 receptor activation or antagonism of dopamine D2 receptor impairs cognition in these paradigms. Furthermore, these actions are mediated, at least partly, by the PFC. These data have important implications for exploitation of dopaminergic mechanisms in the treatment of schizophrenia and other CNS disorders, and support the potential therapeutic utility of dopamine D3 receptor antagonism. PMID:22030711

  8. Dihydroergotoxine decreases blood pressure in spontaneously hypertensive rats by interacting with peripheral dopamine receptors.

    PubMed

    Memo, M; Sagheddu, G; Carruba, M O; Spano, P

    1985-04-22

    Dihydroergotoxine (10 micrograms/kg s.c.) decreased mean carotid blood pressure in urethane-anaesthetized spontaneously hypertensive rats but failed to modify the same parameter in normotensive rats. The effect was statistically significant 20 min after the injection and relatively long lasting (up to 90 min). Pharmacological characterization of the phenomenon indicated that it is mediated by stimulation of dopamine receptors, since pretreatment with haloperidol, cis-flupentixol but not with trans-flupentixol, completely prevent the reduction in blood pressure induced by dihydroergotoxine. Moreover, a challenge dose of dihydroergotoxine did not reduce mean blood pressure values in spontaneously hypertensive rats pretreated with domperidone or (-)sulpiride, but not with (+)sulpiride. These results suggest that the ergot derivative modifies the cardiovascular system by interaction with peripheral dopamine receptors of the DA2 type.

  9. The Dual Orexin Receptor Antagonist Almorexant Induces Sleep and Decreases Orexin-Induced Locomotion by Blocking Orexin 2 Receptors

    PubMed Central

    Mang, Géraldine M.; Dürst, Thomas; Bürki, Hugo; Imobersteg, Stefan; Abramowski, Dorothee; Schuepbach, Edi; Hoyer, Daniel; Fendt, Markus; Gee, Christine E.

    2012-01-01

    Study Objectives: Orexin peptides activate orexin 1 and orexin 2 receptors (OX1R and OX2R), regulate locomotion and sleep-wake. The dual OX1R/OX2R antagonist almorexant reduces activity and promotes sleep in multiple species, including man. The relative contributions of the two receptors in locomotion and sleep/wake regulation were investigated in mice. Design: Mice lacking orexin receptors were used to determine the contribution of OX1R and OX2R to orexin A-induced locomotion and to almorexant-induced sleep. Setting: N/A. Patients or Participants: C57BL/6J mice and OX1R+/+, OX1R-/-, OX2R+/+, OX2R-/- and OX1R-/-/OX2R-/- mice. Interventions: Intracerebroventricular orexin A; oral dosing of almorexant. Measurements and Results: Almorexant attenuated orexin A-induced locomotion. As in other species, almorexant dose-dependently increased rapid eye movement sleep (REM) and nonREM sleep in mice. Almorexant and orexin A were ineffective in OX1R-/-/OX2R-/- mice. Both orexin A-induced locomotion and sleep induction by almorexant were absent in OX2R-/- mice. Interestingly, almorexant did not induce cataplexy in wild-type mice under conditions where cataplexy was seen in mice lacking orexins and in OX1R-/-/OX2R-/- mice. Almorexant dissociates very slowly from OX2R as measured functionally and in radioligand binding. Under non equilibrium conditions in vitro, almorexant was a dual antagonist whereas at equilibrium, almorexant became OX2R selective. Conclusions: In vivo, almorexant specifically inhibits the actions of orexin A. The two known orexin receptors mediate sleep induction by almorexant and orexin A-induced locomotion. However, OX2R activation mediates locomotion induction by orexin A and antagonism of OX2R is sufficient to promote sleep in mice. Citation: Mang GM; Dürst T; Bürki H; Imobersteg S; Abramowski D; Schuepbach E; Hoyer D; Fendt M; Gee CE. The dual orexin receptor antagonist almorexant induces sleep and decreases orexin-induced locomotion by blocking orexin

  10. Stimulation of 5-HT1B receptors decreases cocaine- and sucrose-seeking behavior.

    PubMed

    Acosta, Jazmin I; Boynton, Floren A; Kirschner, Kenneth F; Neisewander, Janet L

    2005-02-01

    Serotonin systems have been implicated in incentive motivation for cocaine, yet little is known about the role of 5-HT(1B) receptors in these processes. We used the extinction/reinstatement model to examine the effects of the 5-HT(1B/1A) receptor agonist, RU24969, on reinstatement of extinguished cocaine-seeking behavior. Rats trained to self-administer cocaine subsequently underwent extinction. They were then tested twice for cue and cocaine-primed reinstatement of extinguished cocaine-seeking behavior, receiving saline pretreatment 1 day and their assigned dose of RU24969 (0.3, 1.0, 3.0 mg/kg) the other day. Rats were later trained on a schedule of sucrose reinforcement in novel chambers and then tested for effects of RU24969 on cue reinstatement of sucrose-seeking behavior and locomotion. RU24969 decreased cue and cocaine reinstatement of cocaine-seeking behavior and cue reinstatement of sucrose-seeking behavior. Locomotion was increased only at the highest RU24969 dose (3 mg/kg). A subsequent experiment demonstrated that the effects of RU24969 (1 mg/kg) on extinguished cocaine-seeking behavior were reversed by the 5-HT(1B) antagonist GR127935 (3 mg/kg). These findings suggest that the effects of RU24969 on cue and cocaine reinstatement of cocaine-seeking behavior are 5-HT(1B) receptor-mediated. Overall, the results suggest that stimulation of 5-HT(1B) receptors may produce a general decrease in motivation.

  11. A neurocomputational account of catalepsy sensitization induced by D2 receptor blockade in rats: context dependency, extinction, and renewal

    PubMed Central

    Wiecki, Thomas V.; Riedinger, Katrin; von Ameln-Mayerhofer, Andreas; Schmidt, Werner J.; Frank, Michael J.

    2011-01-01

    Rationale Repeated haloperidol treatment in rodents results in a day-to-day intensification of catalepsy (i.e., sensitization). Prior experiments suggest that this sensitization is context-dependent and resistant to extinction training. Objectives The aim of this study was to provide a neurobiological mechanistic explanation for these findings. Materials and methods We use a neurocomputational model of the basal ganglia and simulate two alternative models based on the reward prediction error and novelty hypotheses of dopamine function. We also conducted a behavioral rat experiment to adjudicate between these models. Twenty male Sprague–Dawley rats were challenged with 0.25 mg/kg haloperidol across multiple days and were subsequently tested in either a familiar or novel context. Results Simulation results show that catalepsy sensitization, and its context dependency, can be explained by “NoGo” learning via simulated D2 receptor antagonism in striatopallidal neurons, leading to increasingly slowed response latencies. The model further exhibits a nonextinguishable component of catalepsy sensitization due to latent NoGo representations that are prevented from being expressed, and therefore from being unlearned, during extinction. In the rat experiment, context dependency effects were not dependent on the novelty of the context, ruling out the novelty model's account of context dependency. Conclusions Simulations lend insight into potential complex mechanisms leading to context-dependent catalepsy sensitization, extinction, and renewal. PMID:19169674

  12. Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice.

    PubMed

    Dau, Alejandro; Gladding, Clare M; Sepers, Marja D; Raymond, Lynn A

    2014-02-01

    In the YAC128 mouse model of Huntington disease (HD), elevated extrasynaptic NMDA receptor (Ex-NMDAR) expression contributes to the onset of striatal dysfunction and atrophy. A shift in the balance of synaptic-extrasynaptic NMDAR signaling and localization is paralleled by early stage dysregulation of intracellular calcium signaling pathways, including calpain and p38 MAPK activation, that couple to pro-death cascades. However, whether aberrant calcium signaling is a consequence of elevated Ex-NMDAR expression in HD is unknown. Here, we aimed to identify calcium-dependent pathways downstream of Ex-NMDARs in HD. Chronic (2-month) treatment of YAC128 and WT mice with memantine (1 and 10mg/kg/day), which at a low dose selectively blocks Ex-NMDARs, reduced striatal Ex-NMDAR expression and current in 4-month old YAC128 mice without altering synaptic NMDAR levels. In contrast, calpain activity was not affected by memantine treatment, and was elevated in untreated YAC128 mice at 1.5months but not 4months of age. In YAC128 mice, memantine at 1mg/kg/day rescued CREB shut-off, while both doses suppressed p38 MAPK activation to WT levels. Taken together, our results indicate that Ex-NMDAR activity perpetuates increased extrasynaptic NMDAR expression and drives dysregulated p38 MAPK and CREB signaling in YAC128 mice. Elucidation of the pathways downstream of Ex-NMDARs in HD could help provide novel therapeutic targets for this disease.

  13. Enhancing Effects of NMDA-Receptor Blockade on Extinction Learning and Related Brain Activation Are Modulated by BMI

    PubMed Central

    Golisch, Anne; Heba, Stefanie; Glaubitz, Benjamin; Tegenthoff, Martin; Lissek, Silke

    2017-01-01

    A distributed network including prefrontal and hippocampal regions is involved in context-related extinction learning as well as in renewal. Renewal describes the recovery of an extinguished response if the context of extinction differs from the context of recall. Animal studies have demonstrated that prefrontal, but not hippocampal N-methyl-D-aspartate receptor (NMDAR) antagonism disrupted extinction learning and processing of task context. However, human studies of NMDAR in extinction learning are lacking, while NMDAR antagonism yielded contradictory results in other learning tasks. This fMRI study investigated the role of NMDAR for human behavioral and brain activation correlates of extinction and renewal. Healthy volunteers received a single dose of the NMDAR antagonist memantine prior to extinction of previously acquired stimulus-outcome associations presented in either identical or novel contexts. We observed better, and partly faster, extinction learning in participants receiving the NMDAR antagonist compared to placebo. However, memantine did not affect renewal. In both extinction and recall, the memantine group showed a deactivation in extinction-related brain regions, particularly in the prefrontal cortex, while hippocampal activity was increased. This higher hippocampal activation was in turn associated with the participants' body mass index (BMI) and extinction errors. Our results demonstrate potentially dose-related enhancing effects of memantine and highlight involvement of hippocampal NMDAR in context-related extinction learning. PMID:28326025

  14. The effects of combining serotonin reuptake inhibition and 5-HT7 receptor blockade on circadian rhythm regulation in rodents.

    PubMed

    Westrich, Ligia; Sprouse, Jeffrey; Sánchez, Connie

    2013-02-17

    Disruption of circadian rhythms may lead to mood disorders. The present study investigated the potential therapeutic utility of combining a 5-HT7 antagonist with a selective serotonin (5-HT) reuptake inhibitor (SSRI), the standard of care in depression, on circadian rhythm regulation. In tissue explants of the suprachiasmatic nucleus (SCN) from PER2::LUC mice genetically modified to report changes in the expression of a key clock protein, the period length of PER2 bioluminescence was shortened in the presence of AS19, a 5-HT7 partial agonist. This reduction was blocked by SB269970, a selective 5-HT7 antagonist. The SSRI, escitalopram, had no effect alone on period length, but a combination with SB269970, yielded significant increases. Dosed in vivo, escitalopram had little impact on the occurrence of activity onsets in rats given access to running wheels, whether the drug was given acutely or sub-chronically. However, preceding the escitalopram treatment with a single acute dose of SB269970 produced robust phase delays, in keeping with the in vitro explant data. Taken together, these findings suggest that the combination of an SSRI and a 5-HT7 receptor antagonist has a greater impact on circadian rhythms than that observed with either agent alone, and that such a multimodal approach may be of therapeutic value in treating patients with poor clock function.

  15. The effectiveness and safety of angiotensin-converting enzyme inhibition or receptor blockade in vascular diseases in patients with hemodialysis

    PubMed Central

    Liao, Kuang-Ming; Cheng, Hui-Teng; Lee, Yi-Hsuan; Chen, Chung-Yu

    2017-01-01

    Abstract Patients with end-stage renal disease (ESRD) who are on hemodialysis have high risk of vascular diseases. Our study sought to examine whether angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin type 1 receptor blockers (ARBs) could reduce the frequencies of cardiovascular and cerebrovascular events in patients receiving hemodialysis using the medication possession ratio (MPR) method of analysis. This retrospective cohort study identified cases of ESRD with dialysis from the National Health Insurance Research Database between 1999 and 2006, and used Cox-regression methods to evaluate risk of poor outcomes. Primary outcomes, including death from any cause, and secondary outcomes, including admission for stroke, myocardial infarction, and heart failure, were examined. Compared to the nonuser group, the adjusted HRs for mortality of the nonadherence group and the adherence group were 0.81 (95% CI: 0.76–0.86) and 0.98 (95% CI: 0.86–1.13), respectively. Cardiovascular events were more frequent in patients with ESRD receiving ACEIs /ARBs than in nonusers. Compared with nonusers, the hazard of secondary outcome significantly increased in the nonadherence group or adherence group in 10 years follow-up. Compared with patients with diabetes or chronic kidney disease, patients on hemodialysis may not experience the same cardiovascular and cerebrovascular benefits from ACEIs/ARBs use. PMID:28353612

  16. Decreased Cocaine Motor Sensitization and Self-Administration in Mice Overexpressing Cannabinoid CB2 Receptors

    PubMed Central

    Aracil-Fernández, Auxiliadora; Trigo, José M; García-Gutiérrez, María S; Ortega-Álvaro, Antonio; Ternianov, Alexander; Navarro, Daniela; Robledo, Patricia; Berbel, Pere; Maldonado, Rafael; Manzanares, Jorge

    2012-01-01

    The potential involvement of the cannabinoid CB2 receptors (CB2r) in the adaptive responses induced by cocaine was studied in transgenic mice overexpressing the CB2r (CB2xP) and in wild-type (WT) littermates. For this purpose, the acute and sensitized locomotor responses to cocaine, conditioned place preference, and cocaine intravenous self-administration were evaluated. In addition, we assessed whether CB2r were localized in neurons and/or astrocytes, and whether they colocalized with dopamine D1 and D2 receptors (D1Dr and D2Dr). Dopamine (DA) extracellular levels in the nucleus accumbens (NAcc), and gene expression of tyrosine hydroxylase (TH) and DA transporter (DAT) in the ventral tegmental area (VTA), and μ-opioid and cannabinoid CB1 receptors in the NAcc were also studied in both genotypes. CB2xP mice showed decreased motor response to acute administration of cocaine (10–20 mg/kg) and cocaine-induced motor sensitization compared with WT mice. CB2xP mice presented cocaine-induced conditioned place aversion and self-administered less cocaine than WT mice. CB2r were found in neurons and astrocytes and colocalized with D2Dr in the VTA and NAcc. No significant differences in extracellular DA levels in the NAcc were observed between genotypes after cocaine administration. Under baseline conditions, TH and DAT gene expression was higher and μ-opioid receptor gene expression was lower in CB2xP than in WT mice. However, both genotypes showed similar changes in TH and μ-opioid receptor gene expression after cocaine challenge independently of the pretreatment received. Importantly, the cocaine challenge decreased DAT gene expression to a lesser extent in cocaine-pretreated CB2xP than in cocaine-pretreated WT mice. These results revealed that CB2r are involved in cocaine motor responses and cocaine self-administration, suggesting that this receptor could represent a promising target to develop novel treatments for cocaine addiction. PMID:22414816

  17. Estrogen Receptor beta mediates decreased occlusal loading induced inhibition of chondrocyte maturation in female mice

    PubMed Central

    Polur, Ilona; Kamiya, Yosuke; Xu, Manshan; Cabri, Bianca S.; Alshabeeb, Marwa; Wadhwa, Sunil; Chen, Jing

    2015-01-01

    Objective Temporomandibular joint (TMJ) disorders predominantly afflict women, suggesting that estrogen may play a role in the disease process. Defects in mechanical loading-induced TMJ remodeling are believed to be a major etiological factor in TMJ degenerative disease. Previously, we found that, decreased occlusal loading caused a significant decrease in early chondrocyte maturation markers (Sox9 and Col 2) in female, but not male, C57BL/6 wild type mice (1). The goal of this study was to examine the role of Estrogen Receptor (ER) beta in mediating these effects. Design 21-day-old male (n=24) and female (n=25) ER beta KO mice were exposed to decreased occlusal loading (soft diet administration and incisor trimming) for 4 weeks. At 49 days of age the mice were sacrificed. Proliferation, gene expression, Col 2 immunohistochemistry and micro-CT analysis were performed on the mandibular condyles. Results Decreased occlusal loading triggered similar effects in male and female ER beta KO mice; specifically, significant decreases in Col 10 expression, subchondral total volume, bone volume, and trabecular number. Conclusion Decreased occlusal loading induced inhibition of chondrocyte maturation markers (Sox9 and Col 2) did not occur in female ER beta deficient mice. PMID:25791327

  18. GABAB receptor stimulation decreases amphetamine-induced behavior and neuropeptide gene expression in the striatum.

    PubMed

    Zhou, Wenxia; Mailloux, Adam W; Jung, Bruce J; Edmunds, Hayward S; McGinty, Jacqueline F

    2004-04-09

    The purpose of this study was to investigate whether GABA(B) receptor activation blocks acute amphetamine-induced behavioral activity, dopamine release, and neuropeptide mRNA expression in the striatum. Systemic administration of R-(+)-baclofen (1.25 mg/kg, i.p.) did not alter total distance traveled or vertical rearing induced by amphetamine (2.5 mg/kg, i.p.). At 2.5 mg/kg, baclofen did not alter spontaneous motor activity or total distance traveled, but completely blocked vertical rearing induced by amphetamine. At 5.0 mg/kg, baclofen completely blocked both total distance traveled and vertical rearing induced by amphetamine. Quantitative in situ hybridization histochemistry revealed that baclofen (2.5 mg/kg, i.p.) decreased the ability of amphetamine to increase preprodynorphin (PPD), preprotachykinin (PPT), preproenkephalin (PPE), and secretogranin II (SGII) mRNA levels in the striatum without altering the basal levels of these signals. Baclofen also blocked the amphetamine-induced rise in SGII mRNA in the core and shell of the nucleus accumbens and cingulate cortex. In a separate experiment, systemic baclofen (2.5 mg/kg) decreased the amphetamine-induced increase in dialysate dopamine levels in the striatum. These results suggest that reduced striatal dopamine release contributes to the ability of GABA(B) receptor activation to decrease acute amphetamine-induced behavioral activity and striatal neuropeptide gene expression.

  19. Blockade or deletion of transient receptor potential vanilloid 4 (TRPV4) is not protective in a murine model of sepsis

    PubMed Central

    Sand, Claire A.; Starr, Anna; Nandi, Manasi; Grant, Andrew D.

    2015-01-01

    Sepsis is a systemic inflammatory response triggered by microbial infection that can cause cardiovascular collapse, insufficient tissue perfusion and multi-organ failure. The cation channel transient receptor potential vanilloid 4 (TRPV4) is expressed in vascular endothelium and causes vasodilatation, but excessive TRPV4 activation leads to profound hypotension and circulatory collapse - key features of sepsis pathogenesis. We hypothesised that loss of TRPV4 signaling would protect against cardiovascular dysfunction in a mouse model of sepsis (endotoxaemia). Multi-parameter monitoring of conscious systemic haemodynamics (by radiotelemetry probe), mesenteric microvascular blood flow (laser speckle contrast imaging) and blood biochemistry (iSTAT blood gas analysis) was carried out in wild type (WT) and TRPV4 knockout (KO) mice. Endotoxaemia was induced by a single intravenous injection of lipopolysaccharide (LPS; 12.5 mg/kg) and systemic haemodynamics monitored for 24 h. Blood flow recording was then conducted under terminal anaesthesia after which blood was obtained for haematological/biochemical analysis. No significant differences were observed in baseline haemodynamics or mesenteric blood flow. Naïve TRPV4 KO mice were significantly acidotic relative to WT counterparts. Following induction of sepsis, all mice became significantly hypotensive, though there was no significant difference in the degree of hypotension between TRPV4 WT and KO mice. TRPV4 KO mice exhibited a higher sepsis severity score. While septic WT mice became significantly hypernatraemic relative to the naïve state, this was not observed in septic KO mice. Mesenteric blood flow was inhibited by topical application of the TRPV4 agonist GSK1016790A in naïve WT mice, but enhanced 24 h following LPS injection. Contrary to the initial hypothesis, loss of TRPV4 signaling (either through gene deletion or pharmacological antagonism) did not attenuate sepsis-induced cardiovascular dysfunction: in fact

  20. Cardiovascular and cerebrovascular outcomes of long-term angiotensin receptor blockade: meta-analyses of trials in essential hypertension.

    PubMed

    Akioyamen, Leo; Levine, Mitchell; Sherifali, Diana; O'Reilly, Daria; Frankfurter, Claudia; Pullenayegum, Eleanor; Goeree, Ron; Tsoi, Bernice

    2016-01-01

    Angiotensin receptor blockers (ARBs) are widely used in managing essential hypertension, with considerable evidence available on their short-term efficacy in lowering blood pressure (BP). However, there currently exists limited "pooled" data examining the long-term efficacy of ARB treatment in controlling BP or mitigating cardiovascular and cerebrovascular events. The purpose of this study was to conduct a systematic review and meta-analysis assessing the long-term effects of ARBs as a class on BP control, myocardial infarction, hospitalization for heart failure, cerebrovascular events (ie, stroke), cardiovascular mortality, and all-cause mortality. MEDLINE, EMBASE, PubMed, and the Cochrane Library databases were searched from inception to March 2015. Two evaluators independently reviewed studies for eligibility. Randomized controlled hypertension trials were included if they reported on ARB efficacy in either BP control (relative to placebo for periods ≥ 6 months) or cardiovascular/cerebrovascular outcomes (relative to non-ARB antihypertensive therapies for periods ≥ 24 months). Studies were pooled with a random-effects model using weighted mean differences (WMDs) and relative risks for continuous and dichotomous outcomes, respectively. A total of 11 articles were included in the narrative synthesis, representing seven unique trials (16,864 participants). Six ARB agents were studied: candesartan, eprosartan, irbesartan, olmesartan, losartan (each represented by one trial arm), and telmisartan (represented by two arms). ARB therapy significantly reduced mean systolic BP (WMD: -4.86; 95% CI: -6.19, -3.53 mm Hg) and diastolic BP (WMD: -2.75; 95% CI: -3.65, -1.86 mm Hg] compared to placebo. The risk of stroke was reduced by 21% in the ARB group compared with alternative antihypertensives (risk ratio: 0.79; 95% CI: 0.66, 0.96). ARBs did not, however, produce statistically significant reductions in the risk of myocardial infarction, heart failure hospitalization, or

  1. Estradiol decreases cortical reactive astrogliosis after brain injury by a mechanism involving cannabinoid receptors.

    PubMed

    López Rodríguez, Ana Belén; Mateos Vicente, Beatriz; Romero-Zerbo, Silvana Y; Rodriguez-Rodriguez, Noé; Bellini, María José; Rodriguez de Fonseca, Fernando; Bermudez-Silva, Francisco Javier; Azcoitia, Iñigo; Garcia-Segura, Luis M; Viveros, María-Paz

    2011-09-01

    The neuroactive steroid estradiol reduces reactive astroglia after brain injury by mechanisms similar to those involved in the regulation of reactive gliosis by endocannabinoids. In this study, we have explored whether cannabinoid receptors are involved in the effects of estradiol on reactive astroglia. To test this hypothesis, the effects of estradiol, the cannabinoid CB1 antagonist/inverse agonist AM251, and the cannabinoid CB2 antagonist/inverse agonist AM630 were assessed in the cerebral cortex of male rats after a stab wound brain injury. Estradiol reduced the number of vimentin immunoreactive astrocytes and the number of glial fibrillary acidic protein immunoreactive astrocytes in the proximity of the wound. The effect of estradiol was significantly inhibited by the administration of either CB1 or CB2 receptor antagonists. The effect of estradiol may be in part mediated by alterations in endocannabinoid signaling because the hormone increased in the injured cerebral cortex the messenger RNA levels of CB2 receptors and of some of the enzymes involved in the synthesis and metabolism of endocannabinoids. These findings suggest that estradiol may decrease reactive astroglia in the injured brain by regulating the activity of the endocannabinoid system.

  2. Decreased parvalbumin immunoreactivity in the cortex and striatum of mice lacking the CB1 receptor

    PubMed Central

    Fitzgerald, Megan L.; Lupica, Carl R.; Pickel, Virginia M.

    2011-01-01

    Cortical and striatal regions of the brain contain high levels of the cannabinoid-1 (CB1) receptor, the central neuronal mediator of activity-dependent synaptic plasticity evoked by endocannabinoids. The expression levels of parvalbumin, a calcium-binding protein found in fast-spiking interneurons of both regions, may be controlled in part by synaptic activity during critical periods of development. However, there is presently no evidence that CB1 receptor expression affects parvalbumin levels in either cortical or striatal interneurons. To assess this possibility, we examined parvalbumin immunoreactivity in the dorsolateral striatum, primary motor cortex (M1), and prefrontal cortex (PFC) of CB1 knockout and wild-type C57/BL6 mice. Quantitative densitometry showed a significant decrease in parvalbumin immunoreactivity within individual neurons in each of these regions of CB1 knockout mice relative to the controls. A significantly lower density (number of cells per unit area) of parvalbumin-labeled neurons was observed in the striatum, but not the cortical regions of CB1 knockout mice. These findings suggest that CB1 receptor deletion may elicit a compensatory mechanism for network homeostasis affecting parvalbumin-containing cortical and striatal interneurons. PMID:21445945

  3. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    PubMed

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects.

  4. Differentiation-associated decrease in muscarinic receptor sensitivity in human neuroblastoma cells

    SciTech Connect

    Heikkilae, J.E.; Scott, J.G.; Suominen, L.A.; Akerman, K.E.O.

    1987-01-01

    Muscarinic receptor-linked increases in intracellular free Ca/sup 2 +/ as measured with quin-2 and Ca/sup 2 +/ release from monolayers of cells have been measured in the human neuroblastoma cell line SH-SY5Y. Induction of differentiation with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to a decrease in the sensitivity of the cells to low concentrations of agonists with respect to the induced increase in cytosolic free Ca/sup 2 +/ and stimulation of Ca/sup 2 +/ efflux. No decrease in agonist binding affinity was observed when the displacement of a labelled antagonist, /sup 3/H-NMS, by a non-labelled agonist was studied.

  5. Tumour necrosis factor receptor I blockade shows that TNF-dependent and TNF-independent mechanisms synergise in TNF receptor associated periodic syndrome.

    PubMed

    Fairclough, Lucy C; Stoop, A Allart; Negm, Ola H; Radford, Paul M; Tighe, Patrick J; Todd, Ian

    2015-10-01

    TNF receptor associated periodic syndrome (TRAPS) is an autoinflammatory disease involving recurrent episodes of fever and inflammation. It is associated with autosomal dominant mutations in TNF receptor superfamily 1A gene localised to exons encoding the ectodomain of the p55 TNF receptor, TNF receptor-1 (TNFR1). The aim of this study was to investigate the role of cell surface TNFR1 in TRAPS, and the contribution of TNF-dependent and TNF-independent mechanisms to the production of cytokines. HEK-293 and SK-HEP-1 cell lines were stably transfected with WT or TRAPS-associated variants of human TNF receptor superfamily 1A gene. An anti-TNFR1 single domain antibody (dAb), and an anti-TNFR1 mAb, bound to cell surface WT and variant TNFR1s. In HEK-293 cells transfected with death domain-inactivated (R347A) TNFR1, and in SK-HEP-1 cells transfected with normal (full-length) TNFR1, cytokine production stimulated in the absence of exogenous TNF by the presence of certain TNFR1 variants was not inhibited by the anti-TNFR1 dAb. In SK-Hep-1 cells, specific TRAPS mutations increased the level of cytokine response to TNF, compared to WT, and this augmented cytokine production was suppressed by the anti-TNFR1 dAb. Thus, TRAPS-associated variants of TNFR1 enhance cytokine production by a TNF-independent mechanism and by sensitising cells to a TNF-dependent stimulation. The TNF-dependent mechanism requires cell surface expression of TNFR1, as this is blocked by TNFR1-specific dAb.

  6. Decreased GABAA Receptor Binding in the Medullary Serotonergic System In the Sudden Infant Death Syndrome

    PubMed Central

    Broadbelt, Kevin G.; Paterson, David S.; Belliveau, Richard A.; Trachtenberg, Felicia L.; Haas, Elisabeth A.; Stanley, Christina; Krous, Henry F.; Kinney, Hannah C.

    2011-01-01

    γ-Aminobutyric acid (GABA) neurons in the medulla oblongata help regulate homeostasis, in part through interactions with the medullary serotonergic (5-HT) system. Previously, we reported abnormalities in multiple 5-HT markers in the medullary 5-HT system of infants dying from sudden infant death syndrome (SIDS), suggesting that 5-HT dysfunction is involved in its pathogenesis. Here, we tested the hypothesis that markers of GABAA receptors are decreased in the medullary 5-HT system in SIDS cases compared to controls. Using tissue receptor autoradiography with the radioligand 3H-GABA, we found 25–52% reductions in GABAA receptor binding density in 7 of 10 key nuclei sampled of the medullary 5-HT system in the SIDS cases (postconceptional age [PCA] = 51.7 ± 8.3, n = 28) vs. age-adjusted controls (PCA = 55.3 ± 13.5, n = 8) (p ≤ 0.04). By Western blotting there was 46.2% reduction in GABAAα3 subunit levels in the gigantocellularis (component of the medullary 5-HT system) of SIDS cases (PCA = 53.9 ± 8.4, n = 24) vs. controls (PCA = 55.3 ± 8.3, n = 8) (56.8% standard in SIDS cases vs. 99.35% in controls; p = 0.026). These data suggest that medullary GABAA receptors are abnormal in SIDS infants and that SIDS is a complex disorder of a homeostatic network in the medulla that involves deficits of the GABAergic and 5-HT systems. PMID:21865888

  7. The effect of endothelin A and B receptor blockade on cutaneous vascular and sweating responses in young men during and following exercise in the heat.

    PubMed

    Fujii, Naoto; Singh, Maya S; Halili, Lyra; Louie, Jeffrey C; Kenny, Glen P

    2016-12-01

    During exercise, cutaneous vasodilation and sweating responses occur, whereas these responses rapidly decrease during postexercise recovery. We hypothesized that the activation of endothelin A (ETA) receptors, but not endothelin B (ETB) receptors, attenuate cutaneous vasodilation during high-intensity exercise and contribute to the subsequent postexercise suppression of cutaneous vasodilation. We also hypothesized that both receptors increase sweating during and following high-intensity exercise. Eleven men (24 ± 4 yr) performed an intermittent cycling protocol consisting of two 30-min bouts of moderate- (40% V̇o2peak) and high-intensity (75% V̇o2peak) exercise in the heat (35°C), each separated by a 20- and 40-min recovery period, respectively. Cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal microdialysis skin sites: 1) lactated Ringer (control), 2) 500 nM BQ123 (a selective ETA receptor blocker), 3) 300 nM BQ788 (a selective ETB receptor blocker), or 4) a combination of BQ123 + BQ788. There were no between-site differences in CVC during each exercise bout (all P > 0.05); however, CVC following high-intensity exercise was greater at BQ123 (56 ± 9%max) and BQ123 + BQ788 (55 ± 14%max) sites relative to the control site (43 ± 12%max) (all P ≤ 0.05). Sweat rate did not differ between sites throughout the protocol (all P > 0.05). We show that neither ETA nor ETB receptors modulate cutaneous vasodilation and sweating responses during and following moderate- and high-intensity exercise in the heat, with the exception that ETA receptors may partly contribute to the suppression of cutaneous vasodilation following high-intensity exercise.

  8. Decreased levels of muscarinic receptors in bladders from the alcohol preferring rat line

    SciTech Connect

    Smyth, R.J.; Ruggieri, M.R. ); Kiianmaa, K. )

    1992-01-01

    The B{sub max} for ({sup 3}H)QNB binding in the bladders of alcohol preferring (AA) rats was only approximately 60% of that in the alcohol non-preferring (ANA) rats. No significant change in B{sub max} for ({sup 3}H)QNB binding in bladder was observed between alcohol insensitive (AT) and alcohol sensitive (ANT) rats. No significant change in K{sub d} for ({sup 3}H)QNB binding in bladder was observed between the four different rat lines studied. Therefore, alcohol preference but not sensitivity is associated with a decrease in muscarinic receptor density in the rat bladder. Because all of the rats used in this study were ethanol-naive, the decrease in muscarinic receptor density in the bladders of alcohol preferring rats is associated genetic factors inherent to this rat line. Further studies are needed to determine if these observations are tissue specific or specific to the m2 subtype, which predominates in the rat bladder.

  9. Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens.

    PubMed

    Clotfelter, Ethan D; O'Hare, Erin P; McNitt, Meredith M; Carpenter, Russ E; Summers, Cliff H

    2007-01-01

    The role of the monoamine neurotransmitter serotonin (5-HT) in the modulation of conspecific aggression in the fighting fish (Betta splendens) was investigated using pharmacological manipulations. We used a fish's response to its mirror image as our index of aggressive behavior. We also investigated the effects of some manipulations on monoamine levels in the B. splendens brain. Acute treatment with 5-HT and with the 5-HT1A receptor agonist 8-OH-DPAT both decreased aggressive behavior; however, treatment with the 5-HT1A receptor antagonist WAY-100635 did not increase aggression. Chronic treatment with the selective serotonin reuptake inhibitor fluoxetine caused no significant changes in aggressive behavior and a significant decline in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations. Treatment with the serotonin synthesis inhibitor p-chlorophenylalanine resulted in no change in aggression, yet serotonergic activity decreased significantly. Finally, a diet supplemented with L-tryptophan (Trp), the precursor to 5-HT, showed no consistent effects on aggressive behavior or brain monoamine concentrations. These results suggest a complex role for serotonin in the expression of aggression in teleost fishes, and that B. splendens may be a useful model organism in pharmacological and toxicological studies.

  10. Prolactin decreases epidermal growth factor receptor kinase activity via a phosphorylation-dependent mechanism.

    PubMed

    Quijano, V J; Sheffield, L G

    1998-01-09

    Previously, we have shown that prolactin inhibits epidermal growth factor (EGF)-induced mitogenesis in mouse mammary epithelial cells without altering the response to other growth promoting agents. This effect has been associated with reduced EGF-induced EGF receptor (EGFR) tyrosine phosphorylation, Grb-2 association, and Ras activation. Our current hypothesis is that prolactin induces an alteration in EGFR kinase activity via a phosphorylation-dependent mechanism. To test this hypothesis, we treated normal murine mammary gland cells with or without 100 ng/ml prolactin. EGFR isolated by wheat germ agglutinin affinity chromatography from nontreated cells exhibited substantial ligand-induced phosphorylation, and EGFR isolated from prolactin-treated cells displayed minimal EGF-induced EGFR phosphorylation, as well as decreased kinase activity toward exogenous substrates. The observed decrease in ligand-induced EGFR phosphorylation could not be attributed to either differential amounts of EGFR, decreased EGF binding affinity, or the presence of a phosphotyrosine phosphatase or ATPase. EGFR isolated from prolactin-treated cells exhibited increased phosphorylation on threonine. Removal of this phosphorylation with alkaline phosphatase restored EGFR kinase activity to levels observed in nontreated cells. Therefore, these results suggest that prolactin antagonizes EGF signaling by increasing EGFR threonine phosphorylation and decreasing EGF-induced EGFR tyrosine phosphorylation.

  11. Caffeine and nicotine decrease acetylcholine receptor clustering in C2C12 myotube culture.

    PubMed

    Kordosky-Herrera, Kaia; Grow, Wade A

    2009-02-01

    As motor neurons approach skeletal muscle during development, agrin is released and induces acetylcholine receptor (AChR) clustering. Our laboratory investigates the effect of environmental agents on skeletal muscle development by using C2C12 cell culture. For the current project, we investigated both short-term and long-term exposure to caffeine, nicotine, or both, at physiologically relevant concentrations. Short-term exposure was limited to the last 48 h of myotube formation, whereas a long-term exposure of 2 weeks allowed for several generations of myoblast proliferation followed by myotube formation. Both agrin-induced and spontaneous AChR clustering frequencies were assessed. For agrin-induced AChR clustering, agrin was added for the last 16 h of myotube formation. Caffeine, nicotine, or both significantly decreased agrin-induced AChR clustering during short-term and long-term exposure. Furthermore, caffeine, nicotine, or both significantly decreased spontaneous AChR clustering during long-term, but not short-term exposure. Surprisingly, caffeine and nicotine in combination did not decrease AChR clustering beyond the effect of either treatment alone. We conclude that physiologically relevant concentrations of caffeine or nicotine decrease AChR clustering. Moreover, we predict that fetuses exposed to caffeine or nicotine may be less likely to form appropriate neuromuscular synapses.

  12. Human epidermal growth factor receptor 3 (HER3) blockade with U3-1287/AMG888 enhances the efficacy of radiation therapy in lung and head and neck carcinoma.

    PubMed

    Li, Chunrong; Brand, Toni M; Iida, Mari; Huang, Shyhmin; Armstrong, Eric A; van der Kogel, Albert; Wheeler, Deric L

    2013-09-01

    HER3 is a member of the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases. In the present study, we investigated the capacity of the HER3 blocking antibody, U3-1287/AMG888, to modulate the in vitro and in vivo radiation response of human squamous cell carcinomas of the lung and head and neck. We screened a battery of cell lines from these tumors for HER3 expression and demonstrated that all cell lines screened exhibited expression of HER3. Importantly, U3-1287/AMG888 treatment could block both basal HER3 activity and radiation induced HER3 activation. Proliferation assays indicated that HER3 blockade could decrease the proliferation of both HNSCC cell line SCC6 and NSCLC cell line H226. Further, we demonstrated that U3-1287/AMG888 can sensitize cells to radiation in clonogenic survival assays, in addition to increasing DNA damage as detected via λ-H2AX immunofluorescence. To determine if U3-1287/AMG888 could enhance radiation sensitivity in vivo we performed tumor growth delay experiments using SCC6, SCC1483, and H226 xenografts. The results of these experiments indicated that the combination of U3-1287/AMG888 and radiation could decrease tumor growth in studies using single or fractionated doses of radiation. Analysis of HER3 expression in tumor samples indicated that radiation treatment activated HER3 in vivo and that U3-1287/AMG888 could abrogate this activation. Immunohistochemistry analysis of SCC6 tumors treated with both U3-1287/AMG888 and a single dose of radiation demonstrated that various cell survival and proliferation markers could be reduced. Collectively our findings suggest that U3-1287/AMG888 in combination with radiation has an impact on cell and tumor growth by increasing DNA damage and cell death. These findings suggest that HER3 may play an important role in response to radiation therapy and blocking its activity in combination with radiation may be of therapeutic benefit in human tumors.

  13. Decreased atrial natriuretic factor receptors and impaired cGMP generation in glomeruli from the cardiomyopathic hamster.

    PubMed

    Levin, E R; Frank, H J; Chaudhari, A; Kirschenbaum, M A; Bandt, A; Mills, S

    1989-03-15

    To determine a possible basis for the decreased action of atrial natriuretic factors (ANF) in congestive heart failure, we compared the cardiomyopathic hamster (CMH) in frank congestive failure, and the age-matched, normal, F1B strain of Golden Syrian Hamsters. Scatchard analysis of competitive binding studies revealed two classes of glomerular receptors. The CMH exhibited decreased binding overall and a markedly decreased number of high affinity receptors but comparable receptor affinity compared to the F1B. In contrast, the low affinity receptor population in the CMH had a much greater affinity compared to the F1B while receptor number was similar. Plasma ANF levels were substantially elevated in the CMH compared to the F1B and in-vitro generation of cGMP was significantly lower in the CMH. Such abnormalities could contribute to the resistance to ANF in this disease.

  14. Neonatal NMDA Receptor Blockade Disrupts Spike Timing and Glutamatergic Synapses in Fast Spiking Interneurons in a NMDA Receptor Hypofunction Model of Schizophrenia

    PubMed Central

    Jones, Kevin S.; Corbin, Joshua G.; Huntsman, Molly M.

    2014-01-01

    The dysfunction of parvalbumin-positive, fast-spiking interneurons (FSI) is considered a primary contributor to the pathophysiology of schizophrenia (SZ), but deficits in FSI physiology have not been explicitly characterized. We show for the first time, that a widely-employed model of schizophrenia minimizes first spike latency and increases GluN2B-mediated current in neocortical FSIs. The reduction in FSI first-spike latency coincides with reduced expression of the Kv1.1 potassium channel subunit which provides a biophysical explanation for the abnormal spiking behavior. Similarly, the increase in NMDA current coincides with enhanced expression of the GluN2B NMDA receptor subunit, specifically in FSIs. In this study mice were treated with the NMDA receptor antagonist, MK-801, during the first week of life. During adolescence, we detected reduced spike latency and increased GluN2B-mediated NMDA current in FSIs, which suggests transient disruption of NMDA signaling during neonatal development exerts lasting changes in the cellular and synaptic physiology of neocortical FSIs. Overall, we propose these physiological disturbances represent a general impairment to the physiological maturation of FSIs which may contribute to schizophrenia-like behaviors produced by this model. PMID:25290690

  15. Decreased benzodiazepine receptor binding in epileptic El mice: A quantitative autoradiographic study

    SciTech Connect

    Shirasaka, Y.; Ito, M.; Tsuda, H.; Shiraishi, H.; Oguro, K.; Mutoh, K.; Mikawa, H. )

    1990-09-01

    Benzodiazepine receptors and subtypes were examined in El mice and normal ddY mice with a quantitative autoradiographic technique. Specific (3H)flunitrazepam binding in stimulated El mice, which had experienced repeated convulsions, was significantly lower in the cortex and hippocampus than in ddY mice and unstimulated El mice. In the amygdala, specific ({sup 3}H)flunitrazepam binding in stimulated El mice was lower than in ddY mice. There was a tendency for the ({sup 3}H)flunitrazepam binding in these regions in unstimulated El mice to be intermediate between that in stimulated El mice and that in ddY mice, but there was no significant difference between unstimulated El mice and ddY mice. ({sup 3}H)Flunitrazepam binding displaced by CL218,872 was significantly lower in the cortex of stimulated El mice than in that of the other two groups, and in the hippocampus of stimulated than of unstimulated El mice. These data suggest that the decrease in ({sup 3}H)flunitrazepam binding in stimulated El mice may be due mainly to that of type 1 receptor and may be the result of repeated convulsions.

  16. CREB decreases astrocytic excitability by modifying subcellular calcium fluxes via the sigma-1 receptor.

    PubMed

    Eraso-Pichot, A; Larramona-Arcas, R; Vicario-Orri, E; Villalonga, R; Pardo, L; Galea, E; Masgrau, R

    2017-03-01

    Astrocytic excitability relies on cytosolic calcium increases as a key mechanism, whereby astrocytes contribute to synaptic transmission and hence learning and memory. While it is a cornerstone of neurosciences that experiences are remembered, because transmitters activate gene expression in neurons, long-term adaptive astrocyte plasticity has not been described. Here, we investigated whether the transcription factor CREB mediates adaptive plasticity-like phenomena in astrocytes. We found that activation of CREB-dependent transcription reduced the calcium responses induced by ATP, noradrenaline, or endothelin-1. As to the mechanism, expression of VP16-CREB, a constitutively active CREB mutant, had no effect on basal cytosolic calcium levels, extracellular calcium entry, or calcium mobilization from lysosomal-related acidic stores. Rather, VP16-CREB upregulated sigma-1 receptor expression thereby increasing the release of calcium from the endoplasmic reticulum and its uptake by mitochondria. Sigma-1 receptor was also upregulated in vivo upon VP16-CREB expression in astrocytes. We conclude that CREB decreases astrocyte responsiveness by increasing calcium signalling at the endoplasmic reticulum-mitochondria interface, which might be an astrocyte-based form of long-term depression.

  17. Blockade of P2X4 Receptors Inhibits Neuropathic Pain-Related Behavior by Preventing MMP-9 Activation and, Consequently, Pronociceptive Interleukin Release in a Rat Model

    PubMed Central

    Jurga, Agnieszka M.; Piotrowska, Anna; Makuch, Wioletta; Przewlocka, Barbara; Mika, Joanna

    2017-01-01

    Neuropathic pain is still an extremely important problem in today’s medicine because opioids, which are commonly used to reduce pain, have limited efficacy in this type of pathology. Therefore, complementary therapy is needed. Our experiments were performed in rats to evaluate the contribution of the purinergic system, especially P2X4 receptor (P2X4R), in the modulation of glia activation and, consequently, the levels of nociceptive interleukins after chronic constriction injury (CCI) of the right sciatic nerve, a rat model of neuropathic pain. Moreover, we studied how intrathecal (ith.) injection of a P2X4R antagonist Tricarbonyldichlororuthenium (II) dimer (CORM-2) modulates nociceptive transmission and opioid effectiveness in the CCI model. Our results demonstrate that repeated ith. administration of CORM-2 once daily (20 μg/5 μl, 16 and 1 h before CCI and then daily) for eight consecutive days significantly reduced pain-related behavior and activation of both spinal microglia and/or astroglia induced by CCI. Moreover, even a single administration of CORM-2 on day 7 after CCI attenuated mechanical and thermal hypersensitivity as efficiently as morphine and buprenorphine. In addition, using Western blot, we have shown that repeated ith. administration of CORM-2 lowers the CCI-elevated level of MMP-9 and pronociceptive interleukins (IL-1β, IL-18, IL-6) in the dorsal L4-L6 spinal cord and/or DRG. Furthermore, in parallel, CORM-2 upregulates spinal IL-1Ra; however, it does not influence other antinociceptive factors, IL-10 and IL-18BP. Additionally, based on our biochemical results, we hypothesize that p38MAPK, ERK1/2 and PI3K/Akt but not the NLRP3/Caspase-1 pathway are partly involved in the CORM-2 analgesic effects in rat neuropathic pain. Our data provide new evidence that P2X4R may indeed play a significant role in neuropathic pain development by modulating neuroimmune interactions in the spinal cord and DRG, suggesting that its blockade may have potential

  18. Angiotensin Receptor Blockades Effect on Peripheral Muscular and Central Aortic Arterial Stiffness: A Meta-Analysis of Randomized Controlled Trials and Systematic Review

    PubMed Central

    Yen, Chih-Hsuan; Lai, Yau-Huei; Hung, Chung-Lieh; Lee, Ping-Ying; Kuo, Jen-Yuan; Yeh, Hung-I; Hou, Charles Jia-Yin; Chien, Kuo-Liong

    2014-01-01

    Background Previous clinical trials have demonstrated the impact of blocking upstream renin-angiotensin-axis with angiotensin converting enzyme inhibitors (ACEIs) on arterial stiffness as evaluated by pulse-wave velocity (PWV). We ran a meta-analysis to evaluate the anti-stiffness effect of powerful downstream angiotensin receptor blockades (ARBs) on peripheral and central arterial stiffness (brachial to ankle, ba-PWV; carotid to femoral, cf-PWV, respectively), using a systematic review to assess the clinical arterial stiffness issues. Methods For our study, we searched the PubMed and Cochrane Library databases from inception to June 2013, targeting randomized controlled trials. ARBs along with other antihypertensive agents, ACEIs, calcium channel blockers (CCBs), beta-blockers and diuretics were evaluated to ascertain their comparable effect on ba-PWV and cf-PWV, respectively. A meta-analysis was conducted utilizing the fixed or random effect of the weighted mean change difference between the ARB and comparator groups, depending on the I2 statistic heterogeneity measurement. Results In 2 trials treating patients with ARBs (n = 30), the ARBs insignificantly reduced levels of ba-PWV (pooled mean change difference -188, 95% CI -687, 311, p = 0.24 with significant heterogeneity) as compared to other hypertensive agents (ACEIs and CCBs, n = 77). Interestingly, ARBs (n = 20) had a superior capacity to reduce levels of ba-PWV than CCBs (n = 20) in single study results (mean change difference -400, 95% CI -477, -322, p < 0.05). In 7 trials which included a total of 653 patients, treatment with ARBs (n = 308) also insignificantly reduced cf-PWV (pool mean change difference -0.197, 95% CI -0.54, 0.14, p = 0.218) as compared to other anti-hypertensive agents. Conclusions Our data suggested that ARBs had a similar effect as other anti-hypertensive agents in reducing ba-PWV and cf-PWV. Upon systematic review, the renin-angiotensin-axis system mechanism seems more significant

  19. Angiotensin Receptor Blockade Recovers Hepatic UCP2 Expression and Aconitase and SDH Activities and Ameliorates Hepatic Oxidative Damage in Insulin Resistant Rats

    PubMed Central

    Montez, Priscilla; Vázquez-Medina, José Pablo; Rodríguez, Rubén; Thorwald, Max A.; Viscarra, José A.; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira

    2012-01-01

    Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity. PMID:23087176

  20. Angiotensin receptor blockade recovers hepatic UCP2 expression and aconitase and SDH activities and ameliorates hepatic oxidative damage in insulin resistant rats.

    PubMed

    Montez, Priscilla; Vázquez-Medina, José Pablo; Rodríguez, Rubén; Thorwald, Max A; Viscarra, José A; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2012-12-01

    Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity.

  1. Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity.

    PubMed

    Yu, Jinghua; Lo, Jane-L; Huang, Li; Zhao, Annie; Metzger, Edward; Adams, Alan; Meinke, Peter T; Wright, Samuel D; Cui, Jisong

    2002-08-30

    Bile salt export pump (BSEP) is a major bile acid transporter in the liver. Mutations in BSEP result in progressive intrahepatic cholestasis, a severe liver disease that impairs bile flow and causes irreversible liver damage. BSEP is a target for inhibition and down-regulation by drugs and abnormal bile salt metabolites, and such inhibition and down-regulation may result in bile acid retention and intrahepatic cholestasis. In this study, we quantitatively analyzed the regulation of BSEP expression by FXR ligands in primary human hepatocytes and HepG2 cells. We demonstrate that BSEP expression is dramatically regulated by ligands of the nuclear receptor farnesoid X receptor (FXR). Both the endogenous FXR agonist chenodeoxycholate (CDCA) and synthetic FXR ligand GW4064 effectively increased BSEP mRNA in both cell types. This up-regulation was readily detectable at as early as 3 h, and the ligand potency for BSEP regulation correlates with the intrinsic activity on FXR. These results suggest BSEP as a direct target of FXR and support the recent report that the BSEP promoter is transactivated by FXR. In contrast to CDCA and GW4064, lithocholate (LCA), a hydrophobic bile acid and a potent inducer of cholestasis, strongly decreased BSEP expression. Previous studies did not identify LCA as an FXR antagonist ligand in cells, but we show here that LCA is an FXR antagonist with partial agonist activity in cells. In an in vitro co-activator association assay, LCA decreased CDCA- and GW4064-induced FXR activation with an IC(50) of 1 microm. In HepG2 cells, LCA also effectively antagonized GW4064-enhanced FXR transactivation. These data suggest that the toxic and cholestatic effect of LCA in animals may result from its down-regulation of BSEP through FXR. Taken together, these observations indicate that FXR plays an important role in BSEP gene expression and that FXR ligands may be potential therapeutic drugs for intrahepatic cholestasis.

  2. Decreased blood pressure response in mice deficient of the α1b-adrenergic receptor

    PubMed Central

    Cavalli, Antonella; Lattion, Anne-Laure; Hummler, Edith; Nenniger, Monique; Pedrazzini, Thierry; Aubert, Jean-François; Michel, Martin C.; Yang, Ming; Lembo, Giuseppe; Vecchione, Carmine; Mostardini, Marina; Schmidt, Andrea; Beermann, Friedrich; Cotecchia, Susanna

    1997-01-01

    To investigate the functional role of different α1-adrenergic receptor (α1-AR) subtypes in vivo, we have applied a gene targeting approach to create a mouse model lacking the α1b-AR (α1b−/−). Reverse transcription–PCR and ligand binding studies were combined to elucidate the expression of the α1-AR subtypes in various tissues of α1b +/+ and −/− mice. Total α1-AR sites were decreased by 98% in liver, 74% in heart, and 42% in cerebral cortex of the α1b −/− as compared with +/+ mice. Because of the large decrease of α1-AR in the heart and the loss of the α1b-AR mRNA in the aorta of the α1b−/− mice, the in vivo blood pressure and in vitro aorta contractile responses to α1-agonists were investigated in α1b +/+ and −/− mice. Our findings provide strong evidence that the α1b-AR is a mediator of the blood pressure and the aorta contractile responses induced by α1 agonists. This was demonstrated by the finding that the mean arterial blood pressure response to phenylephrine was decreased by 45% in α1b −/− as compared with +/+ mice. In addition, phenylephrine-induced contractions of aortic rings also were decreased by 25% in α1b−/− mice. The α1b-AR knockout mouse model provides a potentially useful tool to elucidate the functional specificity of different α1-AR subtypes, to better understand the effects of adrenergic drugs, and to investigate the multiple mechanisms involved in the control of blood pressure. PMID:9326654

  3. Dopamine Transporter Blockade Increases LTP in the CA1 Region of the Rat Hippocampus via Activation of the D3 Dopamine Receptor

    ERIC Educational Resources Information Center

    Swant, Jarod; Wagner, John J.

    2006-01-01

    Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic…

  4. Estrogen receptor 1 gene polymorphisms and decreased risk of obesity in women

    PubMed Central

    Goulart, Alessandra C.; Zee, Robert Y.L.; Rexrode, Kathryn M.

    2009-01-01

    Estrogen receptor alpha gene (ESR1) polymorphisms have been associated with several diseases, but whether they are associated with obesity is uncertain. To elucidate the role of genetic variation in the ESR1 gene with body mass index (BMI), 543 Caucasian women (median age 63 years) from the Women’s Health Study were examined. Most were postmenopausal (99.3%). The relationships between rs2234693 and rs9340799 genotypes and their associated haplotypes with obesity (BMI ≥ 30kg/m2) and overweight (BMI≥25kg/m2) were evaluated. Among women with the rs2234693 TT genotype, 18.3% were obese, while only 8.2% of those with the CC genotype only were obese (p=0.04). In a logistic regression model assuming additive inheritance, rs2234693 was associated with decreased odds of obesity (BMI ≥ 30) (crude odds ratio [OR] = 0.63, 95%CI= 0.44-0.90, P=0.01). For rs9340799, only an inverse trend was observed for BMI (P=0.08). Haplotypes that included the variant C allele were associated with a reduced risk of obesity (crude OR=0.65, 95%CI=0.44-0.94, P= 0.02 for C-G). The rs2234693 C allele of ESR1 and its associated genotypes and haplotypes were inversely and consistently associated with obesity. One or more copies of the C allele were associated with decreased risk of obesity in white post-menopausal women. PMID:19375130

  5. Mineralocorticoid Receptor Stimulation Improves Cognitive Function and Decreases Cortisol Secretion in Depressed Patients and Healthy Individuals

    PubMed Central

    Otte, Christian; Wingenfeld, Katja; Kuehl, Linn K; Kaczmarczyk, Michael; Richter, Steffen; Quante, Arnim; Regen, Francesca; Bajbouj, Malek; Zimmermann-Viehoff, Frank; Wiedemann, Klaus; Hinkelmann, Kim

    2015-01-01

    Memory and executive function are often impaired in patients with major depression, while cortisol secretion is increased. Mineralocorticoid receptors (MR) are abundantly expressed in the hippocampus and in the prefrontal cortex, brain areas critical for memory, executive function, and cortisol inhibition. Here, we investigated whether MR stimulation with fludrocortisone (1) improves memory and executive function and (2) decreases cortisol secretion in depressed patients and healthy individuals. Twenty-four depressed patients without medication and 24 age-, sex-, and education-matched healthy participants received fludrocortisone (0.4 mg) or placebo in a randomized, double-blind, within-subject cross-over design. We measured verbal memory, visuospatial memory, executive function, psychomotor speed, and salivary cortisol secretion during cognitive testing between 1400 and 1700 hours. For verbal memory and executive function, we found better performance after fludrocortisone compared with placebo across groups. No treatment effect on other cognitive domains emerged. Depressed patients performed worse than healthy individuals in psychomotor speed and executive function. No group effect or group × treatment interaction emerged on other cognitive domains. Fludrocortisone decreased cortisol secretion across groups and there was a significant correlation between cortisol inhibition and verbal memory performance. Our data suggest a crucial role of MR in verbal memory and executive function and demonstrate the possibility to improve cognition in depressed patients and healthy individuals through MR stimulation. PMID:25035081

  6. Mineralocorticoid receptor stimulation improves cognitive function and decreases cortisol secretion in depressed patients and healthy individuals.

    PubMed

    Otte, Christian; Wingenfeld, Katja; Kuehl, Linn K; Kaczmarczyk, Michael; Richter, Steffen; Quante, Arnim; Regen, Francesca; Bajbouj, Malek; Zimmermann-Viehoff, Frank; Wiedemann, Klaus; Hinkelmann, Kim

    2015-01-01

    Memory and executive function are often impaired in patients with major depression, while cortisol secretion is increased. Mineralocorticoid receptors (MR) are abundantly expressed in the hippocampus and in the prefrontal cortex, brain areas critical for memory, executive function, and cortisol inhibition. Here, we investigated whether MR stimulation with fludrocortisone (1) improves memory and executive function and (2) decreases cortisol secretion in depressed patients and healthy individuals. Twenty-four depressed patients without medication and 24 age-, sex-, and education-matched healthy participants received fludrocortisone (0.4 mg) or placebo in a randomized, double-blind, within-subject cross-over design. We measured verbal memory, visuospatial memory, executive function, psychomotor speed, and salivary cortisol secretion during cognitive testing between 1400 and 1700 hours. For verbal memory and executive function, we found better performance after fludrocortisone compared with placebo across groups. No treatment effect on other cognitive domains emerged. Depressed patients performed worse than healthy individuals in psychomotor speed and executive function. No group effect or group × treatment interaction emerged on other cognitive domains. Fludrocortisone decreased cortisol secretion across groups and there was a significant correlation between cortisol inhibition and verbal memory performance. Our data suggest a crucial role of MR in verbal memory and executive function and demonstrate the possibility to improve cognition in depressed patients and healthy individuals through MR stimulation.

  7. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of mu(1)- and kappa-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus.

    PubMed

    Osaki, M Y; Castellan-Baldan, L; Calvo, F; Carvalho, A D; Felippotti, T T; de Oliveira, R; Ubiali, W A; Paschoalin-Maurin, T; Elias-Filho, D H; Motta, V; da Silva, L A; Coimbra, N C

    2003-12-05

    Deep layers of the superior colliculus (DLSC), the dorsal and ventral periaqueductal gray matter (PAG), and inferior colliculus (IC) are midbrain structures involved in the generation of defensive behavior. beta-Endorphin and Leu-enkephalin are some neurotransmitters that may modulate such behavior in mammals. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies for endogenous opioids in rat brainstem. Midbrain structures showed positive neurons to beta-endorphin and Leu-enkephalin in similar distributions in the experimental animals, but we also noted the presence of varicose fibers positive to endogenous opioids in the PAG. Neuroanatomical techniques showed varicose fibers from the central nucleus of the inferior colliculus to ventral aspects of the PAG, at more caudal levels. Naloxonazine and nor-binaltorphimine, competitive antagonists that block mu(1)- and kappa-opioid receptors, were then used in the present work to investigate the involvement of opioid peptide neural system in the control of the fear-induced reactions evoked by electrical stimulation of the neural substrates of the inferior colliculus. The fear-like responses were measured by electrical stimulation of the central nucleus of the inferior colliculus, eliciting the escape behavior, which is characterized by vigorous running and jumping. Central administration of opioid antagonists (2.5 microg/0.2 microl and 5.0 microg/0.2 microl) was performed in non-anesthetized animals (Rattus norvegicus), and the behavioral manifestations of fear were registered after 10 min, 2 h, and 24 h of the pretreatment. Naloxonazine caused an increase of the defensive threshold, as compared to control, suggesting an antiaversive effect of the antagonism on mu(1)-opioid receptor. This finding was corroborated with central administration of nor-binaltorphimine, which also induced a decrease of the fear-like responses

  8. Aldosterone-reversible decrease in the density of renal peripheral benzodiazepine receptors in the rat after adrenalectomy

    SciTech Connect

    Basile, A.S.; Ostrowski, N.L.; Skolnick, P.

    1987-03-01

    A statistically significant decrease in the density of peripheral benzodiazepine receptors was observed in renal membranes of rats beginning 2 weeks after adrenalectomy when compared with sham-operated controls. This decrease in peripheral benzodiazepine receptor density was manifest as a decrease in the maximum binding of two ligands, (/sup 3/H)Ro 5-4864 and (/sup 3/H)PK 11195, without accompanying changes in their Kd for this site. Similar changes were not seen in another aldosterone-sensitive organ, the submandibular salivary gland. The decrease in peripheral benzodiazepine receptor density observed in adrenalectomized rat renal membranes was restored to control levels after 1 week of aldosterone administration using a dose (12.5 micrograms/kg/day) that had no effect on peripheral benzodiazepine receptor density in sham-operated animals. In contrast, dexamethasone administration (50 micrograms/kg/day, 1 week) had no effect on renal peripheral benzodiazepine receptor density when administered to either adrenalectomized or sham-operated rats. Further, adrenal demedullation had no effect on renal peripheral benzodiazepine receptor density or affinity. The decrease in peripheral benzodiazepine receptor density was localized to the renal cortex and the outer stripe of the medulla by gross dissection of renal slices and renal tissue section autoradiography. The specific effect of adrenalectomy on renal peripheral benzodiazepine receptor density, the lack of direct effect of aldosterone on (/sup 3/H) Ro 5-4864 binding and the localization of the change in peripheral benzodiazepine receptor density to the renal cortex and outer stripe suggest that these changes may reflect an adaptation of the renal nephron (possibly the distal convoluted tubule, intermediate tubule and/or the collecting duct) to the loss of mineralocorticoid hormones.

  9. Estrogenic compounds decrease growth hormone receptor abundance and alter osmoregulation in Atlantic salmon

    USGS Publications Warehouse

    Lerner, Darren T.; Sheridan, Mark A.; McCormick, Stephen D.

    2012-01-01

    Exposure of Atlantic salmon smolts to estrogenic compounds is shown to compromise several aspects of smolt development. We sought to determine the underlying endocrine mechanisms of estrogen impacts on the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis. Smolts in freshwater (FW) were either injected 3 times over 10 days with 2 μg g−1 17β-estradiol (E2) or 150 μg g−1 4-nonylphenol (NP). Seawater (SW)-acclimated fish received intraperitoneal implants of 30 μg g−1 E2 over two weeks. Treatment with these estrogenic compounds increased hepatosomatic index and total plasma calcium. E2 and NP reduced maximum growth hormone binding by 30–60% in hepatic and branchial membranes in FW and SW, but did not alter the dissociation constant. E2 and NP treatment decreased plasma levels of IGF-I levels in both FW and SW. In FW E2 and NP decreased plasma GH whereas in SW plasma GH increased after E2 treatment. Compared to controls, plasma chloride concentrations of E2-treated fish were decreased 5.5 mM in FW and increased 10.5 mM in SW. There was no effect of NP or E2 on gill sodium–potassium adenosine triphosphatase (Na+/K+-ATPase) activity in FW smolts, whereas E2 treatment in SW reduced gill Na+/K+-ATPase activity and altered the number and size of ionocytes. Our data indicate that E2 downregulates the GH/IGF-I-axis and SW tolerance which may be part of its normal function for reproduction and movement into FW. We conclude that the mechanism of endocrine disruption of smolt development by NP is in part through alteration of the GH/IGF-I axis via reduced GH receptor abundance.

  10. Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats.

    PubMed Central

    Kimble, R B; Vannice, J L; Bloedow, D C; Thompson, R C; Hopfer, W; Kung, V T; Brownfield, C; Pacifici, R

    1994-01-01

    Interleukin-1 (IL-1), a cytokine produced by bone marrow cells and bone cells, has been implicated in the pathogenesis of postmenopausal osteoporosis because of its potent stimulatory effects on bone resorption in vitro and in vivo. To investigate whether IL-1 plays a direct causal role in post ovariectomy bone loss, 6-mo-old ovariectomized rats were treated with subcutaneous infusions of IL-1 receptor antagonist (IL-1ra), a specific competitor of IL-1, for 4 wk, beginning either at the time of surgery or 4 wk after ovariectomy. The bone density of the distal femur was measured non invasively by dual-energy X-ray absorptiometry. Bone turnover was assessed by bone histomorphometry and by measuring serum osteocalcin, a marker of bone formation, and the urinary excretion of pyridinoline cross-links, a marker of bone resorption. Ovariectomy caused a rapid increase in bone turnover and a marked decrease in bone density which were blocked by treatment with 17 beta estradiol. Ovariectomy also increased the production of IL-1 from cultured bone marrow cells. Ovariectomy induced-bone loss was significantly decreased by IL-1ra treatment started at the time of ovariectomy and completely blocked by IL-1ra treatment begun 4 wk after ovariectomy. In both studies IL-1ra also decreased bone resorption in a manner similar to estrogen, while it had no effect on bone formation. In contrast, treatment with IL-1ra had no effect on the bone density and the bone turnover of sham-operated rats, indicating that IL-1ra specifically blocked estrogen-dependent bone loss. In conclusion, these data indicate that IL-1, or mediators induced by IL-1, play an important causal role in the mechanism by which ovariectomy induces bone loss in rats, especially following the immediate post ovariectomy period. Images PMID:8182127

  11. AMPA Receptor Antagonist NBQX Decreased Seizures by Normalization of Perineuronal Nets

    PubMed Central

    Chen, Wen; Li, Yan-Shuang; Gao, Jing; Lin, Xiao-Ying; Li, Xiao-Hong

    2016-01-01

    Epilepsy is a serious brain disorder with diverse seizure types and epileptic syndromes. AMPA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzoquinoxaline-2,3-dione (NBQX) attenuates spontaneous recurrent seizures in rats. However, the anti-epileptic effect of NBQX in chronic epilepsy model is poorly understood. Perineuronal nets (PNNs), specialized extracellular matrix structures, surround parvalbumin-positive inhibitory interneurons, and play a critical role in neuronal cell development and synaptic plasticity. Here, we focused on the potential involvement of PNNs in the treatment of epilepsy by NBQX. Rats were intraperitoneally (i.p.) injected with pentylenetetrazole (PTZ, 50 mg/kg) for 28 consecutive days to establish chronic epilepsy models. Subsequently, NBQX (20 mg/kg, i.p.) was injected for 3 days for the observation of behavioral measurements of epilepsy. The Wisteria floribundi agglutinin (WFA)-labeled PNNs were measured by immunohistochemical staining to evaluate the PNNs. The levels of three components of PNNs such as tenascin-R, aggrecan and neurocan were assayed by Western blot assay. The results showed that there are reduction of PNNs and decrease of tenascin-R, aggrecan and neurocan in the medial prefrontal cortex (mPFC) in the rats injected with PTZ. However, NBQX treatment normalized PNNs, tenascin-R, aggrecan and neurocan levels. NBQX was sufficient to decrease seizures through increasing the latency to seizures, decrease the duration of seizure onset, and reduce the scores for the severity of seizures. Furthermore, the degradation of mPFC PNNs by chondroitinase ABC (ChABC) exacerbated seizures in PTZ-treated rats. Finally, the anti-epileptic effect of NBQX was reversed by pretreatment with ChABC into mPFC. These findings revealed that PNNs degradation in mPFC is involved in the pathophysiology of epilepsy and enhancement of PNNs may be effective for the treatment of epilepsy. PMID:27880801

  12. Monovalent Fc receptor blockade by an anti-Fcγ receptor/albumin fusion protein ameliorates murine ITP with abrogated toxicity.

    PubMed

    Yu, Xiaojie; Menard, Melissa; Prechl, József; Bhakta, Varsha; Sheffield, William P; Lazarus, Alan H

    2016-01-07

    Patients with immune thrombocytopenia (ITP) commonly have antiplatelet antibodies that cause thrombocytopenia through Fcγ receptors (FcγRs). Antibodies specific for FcγRs, designed to inhibit antibody-FcγR interaction, had been shown to improve ITP in refractory human patients. However, the development of such FcγR-specific antibodies has stalled because of adverse events, a phenomenon recapitulated in mouse models. One hypothesis behind these adverse events involved the function of the Fc region of the antibody, which engages FcγRs, leading to inflammatory responses. Unfortunately, inhibition of Fc function by deglycosylation failed to prevent this inflammatory response. In this work, we hypothesize that the bivalent antigen-binding fragment regions of immunoglobulin G are sufficient to trigger adverse events and have reasoned that designing a monovalent targeting strategy could circumvent the inflammatory response. To this end, we generated a fusion protein comprising a monovalent human FcγRIIIA-specific antibody linked in tandem to human serum albumin, which retained FcγR-binding activity in vitro. To evaluate clinically relevant in vivo FcγR-blocking function and inflammatory effects, we generated a murine version targeting the murine FcγRIII linked to murine albumin in a passive murine ITP model. Monovalent blocking of FcγR function dramatically inhibited antibody-dependent murine ITP and successfully circumvented the inflammatory response as assessed by changes in body temperature, basophil activation, and basophil depletion. Consistent with our hypothesis, in vivo cross-linking of the fusion protein induced these inflammatory effects, recapitulating the adverse events of the parent antibody. Thus, monovalent blocking of FcγR function demonstrates a proof of concept to successfully treat FcγR-mediated autoimmune diseases.

  13. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    PubMed Central

    Parnaudeau, Sébastien; Dongelmans, Marie-louise; Turiault, Marc; Ambroggi, Frédéric; Delbes, Anne-Sophie; Cansell, Céline; Luquet, Serge; Piazza, Pier-Vincenzo; Tronche, François; Barik, Jacques

    2014-01-01

    The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice. PMID:24574986

  14. Ketanserin, a 5-HT2 receptor antagonist, decreases nicotine self-administration in rats.

    PubMed

    Levin, Edward D; Slade, Susan; Johnson, Michael; Petro, Ann; Horton, Kofi; Williams, Paul; Rezvani, Amir H; Rose, Jed E

    2008-12-14

    Nicotine intake constitutes a principal mechanism for tobacco addiction. In addition to primary effects on nicotinic acetylcholine receptors, nicotine has cascading effects, which may also underlie its neurobehavioral actions. Nicotine induces serotonin (5-HT) release, which has not classically been thought to be involved in tobacco addiction as dopamine has. However, addiction can be characterized more as a disorder of compulsion than a disorder of enjoyment. 5-HT mechanisms play key roles in compulsive disorders. Nicotine-induced 5-HT release may be a key to tobacco addiction. Ketanserin, a 5-HT2a and 5-HT2c receptor antagonist, significantly attenuates nicotine effects on attention and memory. These studies were conducted to determine if ketanserin would reduce nicotine self-administration in rats. Male Sprague-Dawley rats (N=12) were given initial food pellet training and then 10 sessions of nicotine self-administration training (0.03 mg/kg/infusion, i.v.). Then the rats were administered ketanserin (1 or 2 mg/kg, s.c.) or the saline vehicle. Ketanserin (2 mg/kg) significantly decreased nicotine self-administration. This did not seem to be due to sedative or amnestic effects of ketanserin. In a second study, the effects of repeated administration of 2 mg/kg ketanserin (N=11) vs. saline injections (N=10) were examined. In the initial phase, the acute effectiveness of ketanserin in significantly reducing nicotine self-administration was replicated. The effect became attenuated during the following several sessions, but the significant effect became re-established during the final phases of this two-week study. 5-HT mechanisms play critical roles in the maintenance of nicotine self-administration. Better understanding of those roles may help lead to new 5-HT-based treatments for tobacco addiction.

  15. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen

    PubMed Central

    Sbragia, L.; Nassr, A.C.C.; Gonçalves, F.L.L.; Schmidt, A.F.; Zuliani, C.C.; Garcia, P.V.; Gallindo, R.M.; Pereira, L.A.V.

    2014-01-01

    Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression. PMID:24519134

  16. Histamine H3 receptor antagonist decreases cue-induced alcohol reinstatement in mice.

    PubMed

    Nuutinen, Saara; Mäki, Tiia; Rozov, Stanislav; Bäckström, Pia; Hyytiä, Petri; Piepponen, Petteri; Panula, Pertti

    2016-07-01

    We have earlier found that the histamine H3 receptor (H3R) antagonism diminishes motivational aspects of alcohol reinforcement in mice. Here we studied the role of H3Rs in cue-induced reinstatement of alcohol seeking in C57BL/6J mice using two different H3R antagonists. Systemic administration of H3R antagonists attenuated cue-induced alcohol seeking suggesting that H3R antagonists may reduce alcohol craving. To understand how alcohol affects dopamine and histamine release, a microdialysis study was performed on C57BL/6J mice and the levels of histamine, dopamine and dopamine metabolites were measured in the nucleus accumbens. Alcohol administration was combined with an H3R antagonist pretreatment to reveal whether modulation of H3R affects the effects of alcohol on neurotransmitter release. Alcohol significantly increased the release of dopamine in the nucleus accumbens but did not affect histamine release. Pretreatment with H3R antagonist ciproxifan did not modify the effect of alcohol on dopamine release. However, histamine release was markedly increased with ciproxifan. In conclusion, our findings demonstrate that H3R antagonism attenuates cue-induced reinstatement of alcohol seeking in mice. Alcohol alone does not affect histamine release in the nucleus accumbens but H3R antagonist instead increases histamine release significantly suggesting that the mechanism by which H3R antagonist inhibits alcohol seeking found in the present study and the decreased alcohol reinforcement, reward and consumption found earlier might include alterations in the histaminergic neurotransmission in the nucleus accumbens. These findings imply that selective antagonists of H3Rs could be a therapeutic strategy to prevent relapse and possibly diminish craving to alcohol use. This article is part of the Special Issue entitled 'Histamine Receptors'.

  17. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen.

    PubMed

    Sbragia, L; Nassr, A C C; Gonçalves, F L L; Schmidt, A F; Zuliani, C C; Garcia, P V; Gallindo, R M; Pereira, L A V

    2014-02-01

    Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression.

  18. Pregnenolone sulfate decreases intraocular pressure and changes expression of sigma receptor in a model of chronic ocular hypertension.

    PubMed

    Sun, Xian; Cheng, Fang; Meng, Bo; Yang, Binbin; Song, Wulian; Yuan, Huiping

    2012-06-01

    Sigma receptors are Ca(2+)-sensitive, ligand-operated receptor chaperones at the mitochondrion-associated endoplasmic reticulum membrane. This study describes the effect of the sigma receptor 1 agonist pregnenolone sulfate on intraocular pressure (IOP) and sigma receptor 1 expression in rat retinas after chronic ocular hypertension. Chronic ocular hypertension was induced by occlusion of episcleral veins. Retinal histological sections were obtained to determine inner plexiform layer thickness and the number of cell bodies in the ganglion cell layer. Sigma receptor expression in rat retinas was analyzed by RT-PCR and Western blotting. Cauterization caused IOP to increase >73%, and the pressure was maintained for 2 months. A time-dependent loss of ganglion cells and retinal thickness occurred at elevated IOP. High IOP decreased sigma receptor 1 expression during the first week, but expression was increased at 8 weeks. Injected pregnenolone significantly decreased IOP, prevented ganglion cell loss, protected inner plexiform layer thickness, and increased sigma receptor 1 expression in episcleral vein-cauterized rats. Sigma receptors appear to be neuroprotective and potential targets for glaucoma therapeutics.

  19. Decreased Pregnane X Receptor Expression in Children with Active Crohn’s Disease

    PubMed Central

    Vyhlidal, Carrie; Friesen, Craig; Hildreth, Amber; Singh, Vivekanand; Daniel, James; Kearns, Gregory L.; Leeder, J. Steven

    2016-01-01

    Expression of the pregnane X receptor (PXR) has been reported to be decreased in animal models of inflammatory bowel disease (IBD). To investigate the differential expression of PXR in children with Crohn’s disease, a type of IBD, RNA was extracted from archived intestinal biopsies from 18 children with Crohn’s disease (CD) and 12 age- and sex-matched controls (aged 7–17yrs). The aim of this investigation was to compare the relative mRNA expression of PXR, cytochrome p450 3A4 (CYP3A4), and villin 1 (VIL1) (a marker of epithelial cell integrity) in the inflamed terminal ileum (TI) versus noninflamed duodenum of children with CD. Relative expression was determined via reverse transcription real-time quantitative polymerase chain reaction, data normalized to glyceraldehyde 3-phosphate dehydrogenase, and differences in gene expression explored via paired t tests. PXR expression was decreased in the inflamed TI versus noninflamed duodenum (TI = 1.88 ± 0.89 versus duodenum = 2.5 ± 0.67; P < 0.001) in CD, but not controls (TI = 2.11 ± 0.41 versus duodenum = 2.26 ± 0.61; P = 0.52). CYP3A4 expression was decreased in CD (TI = –0.89 ± 3.11 versus duodenum = 1.90 ± 2.29; P < 0.05), but not controls (TI = 2.46 ± 0.51 versus duodenum = 2.60 ± 0.60; P = 0.61), as was VIL1 (CD TI = 3.80 ± 0.94 versus duodenum = 4.61 ± 0.52; P < 0.001; controls TI = 4.30 ± 0.35 versus duodenum = 4.47 ± 0.40; P = 0.29). PXR expression correlated with VIL1 (r = 0.78, P = 0.01) and CYP3A4 (r = 0.52, P = 0.01) expression. In conclusion, PXR, CYP3A4, and VIL1 expression was decreased only in the actively inflamed small intestinal tissue in children with CD. Our findings suggest that inflammation has the potential to influence expression of genes, and potentially intestinal proteins, important to drug disposition and response. The observed differential patterns of gene expression support further investigation of the role of PXR in the pathogenesis and/or treatment of pediatric Crohn

  20. M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition

    PubMed Central

    2012-01-01

    Background In the central nervous system (CNS), the muscarinic system plays key roles in learning and memory, as well as in the regulation of many sensory, motor, and autonomic processes, and is thought to be involved in the pathophysiology of several major diseases of the CNS, such as Alzheimer's disease, depression, and schizophrenia. Previous studies reveal that M4 muscarinic receptor knockout (M4R KO) mice displayed an increase in basal locomotor activity, an increase in sensitivity to the prepulse inhibition (PPI)-disrupting effect of psychotomimetics, and normal basal PPI. However, other behaviorally significant roles of M4R remain unclear. Results In this study, to further investigate precise functional roles of M4R in the CNS, M4R KO mice were subjected to a battery of behavioral tests. M4R KO mice showed no significant impairments in nociception, neuromuscular strength, or motor coordination/learning. In open field, light/dark transition, and social interaction tests, consistent with previous studies, M4R KO mice displayed enhanced locomotor activity compared to their wild-type littermates. In the open field test, M4R KO mice exhibited novelty-induced locomotor hyperactivity. In the social interaction test, contacts between pairs of M4R KO mice lasted shorter than those of wild-type mice. In the sensorimotor gating test, M4R KO mice showed a decrease in PPI, whereas in the startle response test, in contrast to a previous study, M4R KO mice demonstrated normal startle response. M4R KO mice also displayed normal performance in the Morris water maze test. Conclusions These findings indicate that M4R is involved in regulation of locomotor activity, social behavior, and sensorimotor gating in mice. Together with decreased PPI, abnormal social behavior, which was newly identified in the present study, may represent a behavioral abnormality related to psychiatric disorders including schizophrenia. PMID:22463818

  1. Mitofusin 2 decreases intracellular lipids in macrophages by regulating peroxisome proliferator-activated receptor

    SciTech Connect

    Liu, Chun; Ge, Beihai; He, Chao; Zhang, Yi; Liu, Xiaowen; Liu, Kejian; Qian, Cuiping; Zhang, Yu; Peng, Wenzhong; Guo, Xiaomei

    2014-07-18

    Highlights: • Mfn2 decreases cellular lipid accumulation by activating cholesterol transporters. • PPARγ is involved in the Mfn2-mediated increase of cholesterol transporter expressions. • Inactivation of ERK1/2 and p38 is involved in Mfn2-induced PPARγ expression. - Abstract: Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, an effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease.

  2. Calcium channel blockade in combination with angiotensin-converting enzyme inhibition or angiotensin II (AT(1)-receptor) antagonism in hypertensive diabetics and patients with renal disease and hypertension.

    PubMed

    Swales, Philip; Williams, Bryan

    2002-06-01

    Effective reduction in blood pressure (BP) improves survival and morbidity in hypertensive patients. Combination therapy with multiple antihypertensive agents is frequently required in clinical practice and therapeutic trials to achieve target BP. Patients at elevated cardiovascular risk achieve the greatest benefit from equivalent reduction in BP and also require more stringent BP control. In patients with hypertension and diabetes mellitus or renal disease, BP control is of primary importance and blockade of the renin-angiotensin system (RAS) should be the initial therapeutic intervention. Choice of combination therapy has been insufficiently studied in major clinical cardiovascular endpoint trials. Diuretic therapy remains the logical addition to RAS blockade. Despite previous debate, the available evidence suggests long-acting calcium-channel blockers are also a safe and very effective addition to improve BP control further. The choice of antihypertensive combination therapy should not override the fundamental necessity of lowering BP to target levels.

  3. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.

    PubMed

    Karimi Galougahi, Keyvan; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A; Hamilton, Elisha J; Figtree, Gemma A; Rasmussen, Helge H

    2015-09-01

    Dysregulated nitric oxide (NO)- and superoxide (O2 (·-))-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na(+)-K(+) pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na(+)-K(+) pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47(phox) to p22(phox) with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na(+)-K(+) pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22(phox) with p47(phox), abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na(+)-K(+) pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na(+)-K(+) pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes.

  4. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade

    PubMed Central

    Karimi Galougahi, Keyvan; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A.; Hamilton, Elisha J.; Figtree, Gemma A.

    2015-01-01

    Dysregulated nitric oxide (NO)- and superoxide (O2·−)-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na+-K+ pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na+-K+ pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47phox and membranous p22phox NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47phox to p22phox with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na+-K+ pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22phox with p47phox, abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na+-K+ pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na+-K+ pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes. PMID:26063704

  5. Decreased expression of thyroid receptor-associated protein 220 in temporal lobe tissue of patients with refractory epilepsy

    SciTech Connect

    Li Jinmei . E-mail: jinmeimery@Yahoo.com.cn; Wang Xuefeng . E-mail: rengang68@vip.sina.com; Xi Zhiqin; Gong Yun; Liu Fengying; Sun Jijun; Wu Yuan; Luan Guoming; Wang Yuping; Li Yunlin; Zhang Jianguo; Lu Yong; Li Hongwei

    2006-10-06

    Purpose: TRAP220 (thyroid hormone receptor-associated protein) functions as a coactivator for nuclear receptors and stimulates transcription by recruiting the TRAP mediator complex to hormone responsive promoter regions. Thus, TRAP220 enhances the function of thyroid/steroid hormone receptors such as thyroid hormone and oestrogen receptors. This study investigated the expression of TRAP220 mRNA and protein level in epileptic brains comparing with human control. Methods: We examined the expression of TRAP220 mRNA and protein levels in temporal lobes from patients with chronic pharmacoresistant epilepsy who have undergone surgery. Results: Expression of TRAP220 mRNA and protein was shown to be decreased significantly in the temporal cortex of the patients with epilepsy. Conclusions: Our work showed that a decrease in TRAP220 mRNA and protein levels may be involved in the pathophysiology of epilepsy and may be associated with impairment of the brain caused by frequent seizures.

  6. Decreased GABAB Receptors in the Cingulate Cortex and Fusiform Gyrus in Autism

    PubMed Central

    Gibbs, Terrell T.; Blatt, Gene J.

    2010-01-01

    Autism is a behaviorally defined neurodevelopmental disorder and among its symptoms are disturbances in face and emotional processing. Emerging evidence demonstrates abnormalities in the GABAergic (gamma-aminobutyric acid) system in autism, which likely contributes to these deficits. GABAB receptors play an important role in modulating synapses and maintaining the balance of excitation-inhibition in the brain. The density of GABAB receptors in subjects with autism and matched controls was quantified in the anterior and posterior cingulate cortex, important for socio-emotional and cognitive processing, and the fusiform gyrus, important for identification of faces and facial expressions. Significant reductions in GABAB receptor density were demonstrated in all three regions examined suggesting that alterations in this key inhibitory receptor subtype may contribute to the functional deficits in individuals with autism. Interestingly, the presence of seizure in a subset of autism cases did not have a significant effect on the density of GABAB receptors in any of the three regions. PMID:20557420

  7. Reduced sleep duration mediates decreases in striatal D2/D3 receptor availability in cocaine abusers

    PubMed Central

    Wiers, C E; Shumay, E; Cabrera, E; Shokri-Kojori, E; Gladwin, T E; Skarda, E; Cunningham, S I; Kim, S W; Wong, T C; Tomasi, D; Wang, G-J; Volkow, N D

    2016-01-01

    Neuroimaging studies have documented reduced striatal dopamine D2/D3 receptor (D2/D3R) availability in cocaine abusers, which has been associated with impaired prefrontal activity and vulnerability for relapse. However, the mechanism(s) underlying the decreases in D2/D3R remain poorly understood. Recent studies have shown that sleep deprivation is associated with a downregulation of striatal D2/D3R in healthy volunteers. As cocaine abusers have disrupted sleep patterns, here we investigated whether reduced sleep duration mediates the relationship between cocaine abuse and low striatal D2/D3R availability. We used positron emission tomography with [11C]raclopride to measure striatal D2/D3R availability in 24 active cocaine abusers and 21 matched healthy controls, and interviewed them about their daily sleep patterns. Compared with controls, cocaine abusers had shorter sleep duration, went to bed later and reported longer periods of sleep disturbances. In addition, cocaine abusers had reduced striatal D2/D3R availability. Sleep duration predicted striatal D2/D3R availability and statistically mediated the relationship between cocaine abuse and striatal D2/D3R availability. These findings suggest that impaired sleep patterns contribute to the low striatal D2/D3R availability in cocaine abusers. As sleep impairments are similarly observed in other types of substance abusers (for example, alcohol and methamphetamine), this mechanism may also underlie reductions in D2/D3R availability in these groups. The current findings have clinical implications suggesting that interventions to improve sleep patterns in cocaine abusers undergoing detoxification might be beneficial in improving their clinical outcomes. PMID:26954979

  8. RNAi mediated knockdown of the ryanodine receptor gene decreases chlorantraniliprole susceptibility in Sogatella furcifera.

    PubMed

    Yang, Yao; Wan, Pin-Jun; Hu, Xing-Xing; Li, Guo-Qing

    2014-01-01

    The diamide insecticides activate ryanodine receptors (RyRs) to release and deplete intracellular calcium stores from the sarcoplasmic reticulum of muscles and the endoplasmic reticulum of many types of cells. They rapidly interrupt feeding of the target pest and eventually kill the pest due to starvation. However, information about the structure and function of insect RyRs is still limited. In this study, we isolated a 15,985bp full-length cDNA (named SfRyR) from Sogatella furcifera, a serious rice planthopper pest throughout Asia. SfRyR encodes a 5140-amino acid protein, which shares 78-97% sequence identities with other insect homologues, and less than 50% identities with Homo sapiens RyR1-3. All hallmarks of the RyR proteins are conserved in SfRyR. In the N-terminus, SfRyR has a MIR domain, two RIH domains, three SPRY domains, four copies of RyR repeated domain and a RIH-associated domain. In the C-terminus, SfRyR possesses two consensus calcium ion-binding EF-hand motifs, and six transmembrane helices. Temporal and spatial expression analysis showed that SfRyR was widely found in all development stages including egg, first through fifth instar nymphs, macropterous adult females and males. On day 2 fifth-instar nymphs, SfRyR was ubiquitously expressed in the head, thorax and abdomen. Dietary ingestion of dsSfRyR1 and dsSfRyR2 significantly reduced the mRNA level of SfRyR in the treated nymphs by 77.9% and 81.8% respectively, and greatly decreased chlorantraniliprole-induced mortality. Thus, our results suggested that SfRyR gene encoded a functional RyR that mediates chlorantraniliprole toxicity to S. furcifera.

  9. Plasma soluble erythropoietin receptor is decreased during sleep in Andean highlanders with Chronic Mountain Sickness

    PubMed Central

    Corante, Noemí; Anza-Ramírez, Cecilia; Figueroa-Mujíca, Rómulo; Vizcardo-Galindo, Gustavo; Mercado, Andy; Macarlupú, José Luis; León-Velarde, Fabiola

    2016-01-01

    Excessive erythrocytosis (EE) is the main sign of Chronic Mountain Sickness (CMS), a highly prevalent syndrome in Andean highlanders. Low pulse O2 saturation (SpO2) during sleep and serum androgens have been suggested to contribute to EE in CMS patients. However, whether these factors have a significant impact on the erythropoietin (Epo) system leading to EE is still unclear. We have recently shown that morning soluble Epo receptor (sEpoR), an endogenous Epo antagonist, is decreased in CMS patients suggesting increased Epo availability (increased Epo/sEpoR). The present study aimed to characterize the nocturnal concentration profile of sEpoR and Epo and their relationship with SpO2, Hct, and serum testosterone in healthy highlanders (HH) and CMS patients. Epo and sEpoR concentrations were evaluated every 4 h (6 PM to 6 AM) and nighttime SpO2 was continuously monitored (10 PM to 6 AM) in 39 male participants (CMS, n = 23; HH, n = 16) aged 21-65 yr from Cerro de Pasco, Peru (4,340 m). CMS patients showed higher serum Epo concentrations throughout the night and lower sEpoR from 10 PM to 6 AM. Consequently, Epo/sEpoR was significantly higher in the CMS group at every time point. Mean sleep-time SpO2 was lower in CMS patients compared with HH, while the percentage of sleep time spent with SpO2 < 80% was higher. Multiple-regression analysis showed mean sleep-time SpO2 and Epo/sEpoR as significant predictors of hematocrit corrected for potential confounders (age, body mass index, and testosterone). Testosterone levels were associated neither with Hct nor with erythropoietic factors. In conclusion, our results show sustained erythropoietic stimulus driven by the Epo system in CMS patients, further enhanced by a continuous exposure to accentuated nocturnal hypoxemia. PMID:27125843

  10. Plasma soluble erythropoietin receptor is decreased during sleep in Andean highlanders with Chronic Mountain Sickness.

    PubMed

    Villafuerte, Francisco C; Corante, Noemí; Anza-Ramírez, Cecilia; Figueroa-Mujíca, Rómulo; Vizcardo-Galindo, Gustavo; Mercado, Andy; Macarlupú, José Luis; León-Velarde, Fabiola

    2016-07-01

    Excessive erythrocytosis (EE) is the main sign of Chronic Mountain Sickness (CMS), a highly prevalent syndrome in Andean highlanders. Low pulse O2 saturation (SpO2) during sleep and serum androgens have been suggested to contribute to EE in CMS patients. However, whether these factors have a significant impact on the erythropoietin (Epo) system leading to EE is still unclear. We have recently shown that morning soluble Epo receptor (sEpoR), an endogenous Epo antagonist, is decreased in CMS patients suggesting increased Epo availability (increased Epo/sEpoR). The present study aimed to characterize the nocturnal concentration profile of sEpoR and Epo and their relationship with SpO2, Hct, and serum testosterone in healthy highlanders (HH) and CMS patients. Epo and sEpoR concentrations were evaluated every 4 h (6 PM to 6 AM) and nighttime SpO2 was continuously monitored (10 PM to 6 AM) in 39 male participants (CMS, n = 23; HH, n = 16) aged 21-65 yr from Cerro de Pasco, Peru (4,340 m). CMS patients showed higher serum Epo concentrations throughout the night and lower sEpoR from 10 PM to 6 AM. Consequently, Epo/sEpoR was significantly higher in the CMS group at every time point. Mean sleep-time SpO2 was lower in CMS patients compared with HH, while the percentage of sleep time spent with SpO2 < 80% was higher. Multiple-regression analysis showed mean sleep-time SpO2 and Epo/sEpoR as significant predictors of hematocrit corrected for potential confounders (age, body mass index, and testosterone). Testosterone levels were associated neither with Hct nor with erythropoietic factors. In conclusion, our results show sustained erythropoietic stimulus driven by the Epo system in CMS patients, further enhanced by a continuous exposure to accentuated nocturnal hypoxemia.

  11. Interleukin-1 Receptor Antagonist Decreases Hypothalamic Oxidative Stress During Experimental Sepsis.

    PubMed

    Wahab, Fazal; Santos-Junior, Nilton N; de Almeida Rodrigues, Rodrigo Pereira; Costa, Luis Henrique A; Catalão, Carlos Henrique R; Rocha, Maria Jose A

    2016-08-01

    In our previous work, we demonstrated that the intracerebroventricular (i.c.v.) injection of an interleukin-1 receptor antagonist (IL-1ra) prevented the impairment in vasopressin secretion and increased survival rate in septic rats. Additionally, we saw a reduction in nitric oxide (NO) levels in cerebroventricular spinal fluid (CSF), suggesting that the IL-1ra prevents apoptosis that seems to occur in vasopressinergic neurons. Here, we investigated the effect of IL-1ra pre-treatment on the sepsis-induced increase in oxidative stress markers in the hypothalamus of rats. The animals were pre-treated by an i.c.v. injection of IL-1ra (9 nmol) or vehicle (0.01 M PBS) before being subjected to cecal ligation and puncture (CLP) or left as control (sham-operation or naive). After 4, 6, and 24 h, the animals were decapitated (n = 9/group) and the brain removed for hypothalamic tissue collection. Transcript and protein levels of IL-1, inducible nitric oxide synthase (iNOS), caspase-3, and hypoxia-inducible factor 1-alpha (HIF-1α) were measured by quantitative polymerase chain reaction (qPCR) and western blot, respectively. Hypothalamic mRNA levels of all these genes were significantly (P < 0.005) increased at 4, 6, and 24 h CLP, as compared to sham-operated animals. IL-1ra pre-treatment in these CLP animals significantly decreased IL-1 gene expression at all time points and also of iNOS, caspase-3, and HIF-1α at 24 h when compared to vehicle-treated CLP animals. The effect of the pre-treatment on protein expression was most clearly seen for IL-1β and iNOS at 24 h. Our results showed that blocking the IL-1-IL-1r signaling pathway by central administration of an IL-1ra decreases hypothalamic oxidative stress markers during sepsis.

  12. Stress-induced decrease of uterine blood flow in sheep is mediated by alpha 1-adrenergic receptors.

    PubMed

    Dreiling, Michelle; Bischoff, Sabine; Schiffner, Rene; Rupprecht, Sven; Kiehntopf, Michael; Schubert, Harald; Witte, Otto W; Nathanielsz, Peter W; Schwab, Matthias; Rakers, Florian

    2016-09-01

    Prenatal maternal stress can be transferred to the fetus via a catecholamine-dependent decrease of uterine blood flow (UBF). However, it is unclear which group of adrenergic receptors mediates this mechanism of maternal-fetal stress transfer. We hypothesized that in sheep, alpha 1-adrenergic receptors may play a key role in catecholamine mediated UBF decrease, as these receptors are mainly involved in peripheral vasoconstriction and are present in significant number in the uterine vasculature. After chronic instrumentation at 125 ± 1 days of gestation (dGA; term 150 dGA), nine pregnant sheep were exposed at 130 ± 1 dGA to acute isolation stress for one hour without visual, tactile, or auditory contact with their flockmates. UBF, blood pressure (BP), heart rate (HR), stress hormones, and blood gases were determined before and during this isolation challenge. Twenty-four hours later, experiments were repeated during alpha 1-adrenergic receptor blockage induced by a continuous intravenous infusion of urapidil. In both experiments, ewes reacted to isolation with an increase in serum norepinephrine, cortisol, BP, and HR as typical signs of activation of sympatho-adrenal and the hypothalamic-pituitary-adrenal axis. Stress-induced UBF decrease was prevented by alpha 1-adrenergic receptor blockage. We conclude that UBF decrease induced by maternal stress in sheep is mediated by alpha 1-adrenergic receptors. Future studies investigating prevention strategies of impact of prenatal maternal stress on fetal health should consider selective blockage of alpha 1-receptors to interrupt maternal-fetal stress transfer mediated by utero-placental malperfusion.

  13. Pancreatic digestive enzyme blockade in the small intestine prevents insulin resistance in hemorrhagic shock.

    PubMed

    DeLano, Frank A; Schmid-Schönbein, Geert W

    2014-01-01

    Hemorrhagic shock is associated with metabolic defects, including hyperglycemia and insulin resistance, but the mechanisms are unknown. We recently demonstrated that reduction of the extracellular domain of the insulin receptor by degrading proteases may lead to a reduced ability to maintain normal plasma glucose values. In shock, transfer of digestive enzymes from the lumen of the intestine into the systemic circulation after breakdown of the intestinal mucosal barrier causes inflammation and organ dysfunction. Suppression of the digestive enzymes in the lumen of the intestine with protease inhibitors is effective in reducing the level of the inflammatory reactions. To determine the degree to which blockade of digestive enzymes affects insulin resistance in shock, rats were exposed to acute hemorrhagic shock (mean arterial pressure of 30 mmHg for 2 h) at which time all shed blood volume was returned. Digestive proteases in the intestine were blocked with a serine protease inhibitor (tranexamic acid in polyethylene glycol and physiological electrolyte solution), and the density of the insulin receptor was measured with immunohistochemistry in the mesentery microcirculation. The untreated rat without enzyme blockade had significantly attenuated levels of insulin receptor density as compared with control and treated rats. Blockade of the digestive proteases after 60 min of hypotension in the lumen of the small intestine led to a lesser decrease in insulin receptor density compared with controls without protease blockade. Glucose tolerance test indicates a significant increase in plasma glucose levels 2 h after hemorrhagic shock, which are reduced to control values in the presence of protease inhibition in the lumen of the intestine. The transient reduction of the plasma glucose levels after an insulin bolus is significantly attenuated after shock but is restored when digestive enzymes in the lumen of the intestine are blocked. These results suggest that in

  14. Production by R-alpha-methylhistamine of a histamine H3 receptor-mediated decrease in basal vascular resistance in guinea-pigs.

    PubMed

    McLeod, R L; Gertner, S B; Hey, J A

    1993-10-01

    1. The effect of the selective histamine H3 receptor agonist, R-alpha-methylhistamine given intravenously (10-100 micrograms kg-1) was examined on baseline total peripheral resistance (TPR), and cardiovascular haemodynamics in bilaterally vagotomized, anaesthetized guinea-pigs. 2. R-alpha-methylhistamine produced a dose-dependent hypotension and fall in TPR at 30 and 100 micrograms kg-1. A decrease in heart rate (HR) was observed at a dose of 100 micrograms kg-1. R-alpha-methylhistamine (10-100 micrograms kg-1) also produced a dose-dependent fall in rate pressure product (RPP). There was no effect on cardiac output (CO) or stroke volume (SV) at these doses. 3. Histamine H1 and H2 blockade in animals pretreated with a combination of chlorpheniramine (0.3 mg kg-1) and cimetidine (3.0 mg kg-1) did not alter the haemodynamic actions of R-alpha-methyl-histamine (100 micrograms kg-1, i.v.). Pretreatment with the selective H3 antagonist, thioperamide (1 mg kg-1), completely blocked the action of R-alpha-methylhistamine on haemodynamic parameters. 4. To study the mechanism of action of R-alpha-methylhistamine, the vasodilator hydralazine (1 mg kg-1, i.v.) was used. Hydralazine lowered BP, TRP and RPP in guinea-pigs pretreated with ipratropium (50 micrograms kg-1, i.v.). Hydralazine had no effect on HR, SV or CO. 5. R-alpha-methylhistamine (100 micrograms kg-1) did not affect the vasopressor action and increases in TPR produced by adrenaline (1 and 3 micrograms kg-1). On the other hand, the vasodilator hydralazine (1 mg kg-1, i.v.) inhibited the effects of adrenaline (3 micrograms kg-1) on TPR and RPP. The effect of both doses of adrenaline on BP were attenuated by hydralazine. Therefore, the inhibitory effects of R-alpha-methylhistamine are not mediated through a direct action on vascular smooth muscle.6. In adrenalectomized guinea-pigs, R-alpha-methylhistamine (100 microg kg-1) produced a drop in BP and HR.There was no difference between the effects of R

  15. 5-HT2 receptor blockade exhibits 5-HT vasodilator effects via nitric oxide, prostacyclin and ATP-sensitive potassium channels in rat renal vasculature.

    PubMed

    García-Pedraza, J A; García, M; Martín, M L; Rodríguez-Barbero, A; Morán, A

    2016-04-01

    The aim of this study was to determine whether orally sarpogrelate (selective 5-HT2 antagonist) treatment (30 mg/kg/day; 14 days) could modify 5-HT renal vasoconstrictor responses, characterizing 5-HT receptors and mediator mechanisms involved in serotonergic responses in the in situ autoperfused rat kidney. Intra-arterial (i.a.) injections of 5-HT (0.00000125 to 0.1 μg/kg) decreased renal perfusion pressure (RPP) but did not affect the mean blood pressure (MBP). i.a. agonists 5-CT (5-HT1/7), CGS-12066B (5-HT1B), L-694,247 (5-HT1D) or AS-19 (5-HT7) mimicked renal 5-HT vasodilator effect. However, neither 8-OH-DPAT (5-HT1A) nor 1-phenylbiguanide (5-HT3) modified RPP. Moreover: (i) GR-55562 (5-HT1B antagonist) and L-NAME (nitric oxide synthase [NOS] inhibitor) blocked CGS-12066B-induced vasodilator response, (ii) LY310762 (5-HT1D antagonist) and indomethacin (non-selective cyclooxygenase inhibitor) blocked L-694,247-induced vasodilator response; (iii) SB-258719 (5-HT7 antagonist) and glibenclamide (ATP-sensitive K+ channel blocker) blocked AS-19-induced vasodilator response; and (iv) 5-HT- or 5-CT-elicited renal vasodilation was significantly blocked by the mixture of GR-55562 + LY310762 + SB-258719. Furthermore, eNOS and iNOS proteins and prostacyclin levels are overexpressed in sarpogrelate-treated rats. Our data suggest that 5-HT exerts renal vasodilator effect in the in situ autoperfused sarpogrelate-treated rat kidney, mediated by 5-HT1D, 5-HT1B and 5-HT7 receptors, involving cyclooxygenase-derived prostacyclin, nitric oxide synthesis/release and ATP-sensitive K+ channels, respectively.

  16. Selective blockade of nicotinic acetylcholine receptors by pimobendan, a drug for the treatment of heart failure: reduction of catecholamine secretion and synthesis in adrenal medullary cells.

    PubMed

    Toyohira, Yumiko; Kubo, Tatsuhiko; Watanabe, Miyabi; Uezono, Yasuhito; Ueno, Susumu; Shinkai, Koji; Tsutsui, Masato; Izumi, Futoshi; Yanagihara, Nobuyuki

    2005-02-01

    Pimobendan, a Ca(2+) sensitizer, is used clinically in the treatment of chronic heart failure. Although chronic heart failure is associated with activation of the sympathetic nervous system, it remains unknown whether pimobendan affects the function of sympathetic neurons and the adrenal medulla. Here, we report the inhibitory effects of pimobendan on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. Pimobendan decreased the catecholamine secretion (IC(50)=29.5 microM) elicited by carbachol, an agonist at nicotinic acetylcholine receptors, but not that elicited by veratridine, an activator of voltage-dependent Na(+) channels, or by high K(+), an activator of voltage-dependent Ca(2+) channels. Pimobendan also inhibited carbachol-induced influx of (22)Na(+) (IC(50)=25.9 microM) and (45)Ca(2+) (IC(50)=26.0 microM), but not veratridine-induced (22)Na(+) influx or high K(+)-induced (45)Ca(2+) influx. The reduction of catecholamine secretion caused by pimobendan was not overcome by increasing the concentration of carbachol. UD-CG 212, an active metabolite of pimobendan, lowered carbachol-induced catecholamine secretion with a concentration/inhibition curve similar to that of pimobendan. In experiments in situ, pimobendan suppressed both basal and carbachol-stimulated (14)C-catecholamine synthesis (IC(50)=5.3 and 4.9 microM) from [(14)C] tyrosine [but not from L: -3, 4-dihydroxyphenyl [3-(14)C] alanine ([(14)C]DOPA)], as well as tyrosine hydroxylase activity (IC(50)=3.8 and 4.3 microM). These findings suggest that pimobendan inhibits carbachol-induced catecholamines secretion and synthesis through suppression of nicotinic acetylcholine receptors.

  17. Activation of histamine H3 receptor decreased cytoplasmic Ca(2+) imaging during electrical stimulation in the skeletal myotubes.

    PubMed

    Chen, Yan; Paavola, Jere; Stegajev, Vasili; Stark, Holger; Chazot, Paul L; Wen, Jian Guo; Konttinen, Yrjö T

    2015-05-05

    Histamine is a neurotransmitter and chemical mediator in multiple physiological processes. Histamine H3 receptor is expressed in the nervous system, heart, and gastrointestinal tract; however, little is known about H3 receptor in skeletal muscle. The aim of this study was to investigate the role of H3 receptor in skeletal myotubes. The expression of H3 receptor and myosin heavy chain (MHC), a late myogenesis marker, was assessed by real-time PCR and immunostaining in C2C12 skeletal myogenesis and adult mid-urethral skeletal muscle tissues. H3 receptor mRNA showed a significant increase upon differentiation of C2C12 into myotubes: 1-, 26-, 91-, and 182-fold at days 0, 2, 4, and 6, respectively. H3 receptor immunostaining in differentiated C2C12 cells and adult skeletal muscles was positive and correlated with that of MHC. The functional role of H3receptor in differentiated myotubes was assessed using an H3 receptor agonist, (R)-a-methylhistamine ((R)-α-MeHA). Ca(2+) imaging, stimulated by electric pacing, was decreased by 55% after the treatment of mature C2C12 myotubes with 1μM (R)-α-MeHA for 10min and 20min, while treatment with 100nm (R)-α-MeHA for 5min caused 45% inhibition. These results suggested that H3 receptor may participate in the maintenance of the relaxed state and prevention of over-contraction in mature differentiated myotubes. The elucidation of the role of H3R in skeletal myogenesis and adult skeletal muscle may open a new direction in the treatment of skeletal muscle disorders, such as muscle weakness, atrophy, and myotonia in motion systems or peri-urethral skeletal muscle tissues.

  18. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    PubMed Central

    Root-Bernstein, Robert; Podufaly, Abigail; Dillon, Patrick F.

    2014-01-01

    Rationale: Insulin (INS) resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome, and obesity. The mechanism by which INS and estrogen interact is unknown. We hypothesize that estrogen binds directly to INS and the insulin receptor (IR) producing INS resistance. Objectives: To determine the binding constants of steroid hormones to INS, the IR, and INS-like peptides derived from the IR; and to investigate the effect of estrogens on the binding of INS to its receptor. Methods: Ultraviolet spectroscopy, capillary electrophoresis, and NMR demonstrated estrogen binding to INS and its receptor. Horse-radish peroxidase-linked INS was used in an ELISA-like procedure to measure the effect of estradiol on binding of INS to its receptor. Measurements: Binding constants for estrogens to INS and the IR were determined by concentration-dependent spectral shifts. The effect of estradiol on INS binding to its receptor was determined by shifts in the INS binding curve. Main Results: Estradiol bound to INS with a Kd of 12 × 10−9 M and to the IR with a Kd of 24 × 10−9 M, while other hormones had significantly less affinity. Twenty-two nanomolars of estradiol shifted the binding curve of INS to its receptor 0.8 log units to the right. Conclusion: Estradiol concentrations in hyperestrogenemic syndromes may interfere with INS binding to its receptor producing significant INS resistance. PMID:25101056

  19. Cadmium-induced cell death of basal forebrain cholinergic neurons mediated by muscarinic M1 receptor blockade, increase in GSK-3β enzyme, β-amyloid and tau protein levels.

    PubMed

    Del Pino, Javier; Zeballos, Gabriela; Anadón, María José; Moyano, Paula; Díaz, María Jesús; García, José Manuel; Frejo, María Teresa

    2016-05-01

    Cadmium is a neurotoxic compound which induces cognitive alterations similar to those produced by Alzheimer's disease (AD). However, the mechanism through which cadmium induces this effect remains unknown. In this regard, we described in a previous work that cadmium blocks cholinergic transmission and induces a more pronounced cell death on cholinergic neurons from basal forebrain which is partially mediated by AChE overexpression. Degeneration of basal forebrain cholinergic neurons, as happens in AD, results in memory deficits attributable to the loss of cholinergic modulation of hippocampal synaptic circuits. Moreover, cadmium has been described to activate GSK-3β, induce Aβ protein production and tau filament formation, which have been related to a selective loss of basal forebrain cholinergic neurons and development of AD. The present study is aimed at researching the mechanisms of cell death induced by cadmium on basal forebrain cholinergic neurons. For this purpose, we evaluated, in SN56 cholinergic mourine septal cell line from basal forebrain region, the cadmium toxic effects on neuronal viability through muscarinic M1 receptor, AChE splice variants, GSK-3β enzyme, Aβ and tau proteins. This study proves that cadmium induces cell death on cholinergic neurons through blockade of M1 receptor, overexpression of AChE-S and GSK-3β, down-regulation of AChE-R and increase in Aβ and total and phosphorylated tau protein levels. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on cholinergic neurons and suggest that cadmium could mediate these mechanisms by M1R blockade through AChE splices altered expression.

  20. House-dust mite allergen and ozone exposure decreases histamine H3 receptors in the brainstem respiratory nuclei

    SciTech Connect

    Sekizawa, Shin-ichi; Bechtold, Andrea G.; Tham, Rick C.; Kott, Kayleen S.; Hyde, Dallas M.; Joad, Jesse P.; Bonham, Ann C.

    2010-09-15

    Allergic airway diseases in children are a common and a growing health problem. Changes in the central nervous system (CNS) have been implicated in contributing to some of the symptoms. We hypothesized that airway allergic diseases are associated with altered histamine H3 receptor expression in the nucleus tractus solitarius (NTS) and caudal spinal trigeminal nucleus, where lung/airway and nasal sensory afferents terminate, respectively. Immunohistochemistry for histamine H3 receptors was performed on brainstem sections containing the NTS and the caudal spinal trigeminal nucleus from 6- and 12-month-old rhesus monkeys who had been exposed for 5 months to house dust mite allergen (HDMA) + O{sub 3} or to filtered air (FA). While histamine H3 receptors were found exclusively in astrocytes in the caudal spinal trigeminal nucleus, they were localized to both neuronal terminals and processes in the NTS. HDMA + O{sub 3} exposure significantly decreased histamine H3 receptor immunoreactivity in the NTS at 6 months and in the caudal spinal trigeminal nucleus at 12 months of age. In conclusion, exposing young primates to HDMA + O{sub 3} changed histamine H3 receptor expression in CNS pathways involving lung and nasal afferent nerves in an age-related manner. Histamine H3 receptors may be a therapeutic target for allergic asthma and rhinitis in children.