Kisilevsky, Alexandra E; Mulligan, Sean J; Altier, Christophe; Iftinca, Mircea C; Varela, Diego; Tai, Chao; Chen, Lina; Hameed, Shahid; Hamid, Jawed; Macvicar, Brian A; Zamponi, Gerald W
2008-05-22
Dopamine signaling through D1 receptors in the prefrontal cortex (PFC) plays a critical role in the maintenance of higher cognitive functions, such as working memory. At the cellular level, these functions are predicated to involve alterations in neuronal calcium levels. The dendrites of PFC neurons express D1 receptors and N-type calcium channels, yet little information exists regarding their coupling. Here, we show that D1 receptors potently inhibit N-type channels in dendrites of rat PFC neurons. Using coimmunoprecipitation, we demonstrate the existence of a D1 receptor-N-type channel signaling complex in this region, and we provide evidence for a direct receptor-channel interaction. Finally, we demonstrate the importance of this complex to receptor-channel colocalization in heterologous systems and in PFC neurons. Our data indicate that the N-type calcium channel is an important physiological target of D1 receptors and reveal a mechanism for D1 receptor-mediated regulation of cognitive function in the PFC.
Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi
2016-01-01
NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405
Schwiebert, Erik M; Liang, Lihua; Cheng, Nai-Lin; Williams, Clintoria Richards; Olteanu, Dragos; Welty, Elisabeth A; Zsembery, Akos
2005-12-01
In this review, we focus on two attributes of P2X receptor channel function, one essential and one novel. First, we propose that P2X receptors are extracellular sensors as well as receptors and ion channels. In particular, the large extracellular domain (that comprises 70% of the molecular mass of the receptor channel protein) lends itself to be a cellular sensor. Moreover, its exquisite sensitivity to extracellular pH, ionic strength, and multiple ligands evokes the function of a sensor. Second, we propose that P2X receptors are extracellular zinc receptors as well as receptors for nucleotides. We provide novel data in multiple publications and illustrative data in this invited review to suggest that zinc triggers ATP-independent activation of P2X receptor channel function. In this light, P2X receptors are the cellular site of integration between autocrine and paracrine zinc signaling and autocrine and paracrine purinergic signaling. P2X receptors may sense changes in these ligands as well as in extracellular pH and ionic strength and transduce these sensations via calcium and/or sodium entry and changes in membrane potential.
A modern ionotropic glutamate receptor with a K(+) selectivity signature sequence.
Janovjak, H; Sandoz, G; Isacoff, E Y
2011-01-01
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and gates non-selective cation channels. The origins of glutamate receptors are not well understood as they differ structurally and functionally from simple bacterial ligand-gated ion channels. Here we report the discovery of an ionotropic glutamate receptor that combines the typical eukaryotic domain architecture with the 'TXVGYG' signature sequence of the selectivity filter found in K(+) channels. This receptor exhibits functional properties intermediate between bacterial and eukaryotic glutamate-gated ion channels, suggesting a link in the evolution of ionotropic glutamate receptors.
Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels
Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E.
2011-01-01
σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ1- and σ2-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na+ channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na+ channel Nav1.5. Patch-clamp recording in this cell line tested Na+ current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ1-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ2-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ1-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions. PMID:21084640
Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels.
Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E; Jackson, Meyer B
2011-02-01
σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ(1)- and σ(2)-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na(+) channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na(+) channel Na(v)1.5. Patch-clamp recording in this cell line tested Na(+) current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ(1)-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ(2)-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ(1)-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions.
Yadav, Rajeev; Lu, H Peter
2018-03-28
The N-methyl-d-aspartate (NMDA) receptor ion-channel is activated by the binding of ligands, along with the application of action potential, important for synaptic transmission and memory functions. Despite substantial knowledge of the structure and function, the gating mechanism of the NMDA receptor ion channel for electric on-off signals is still a topic of debate. We investigate the NMDA receptor partition distribution and the associated channel's open-close electric signal trajectories using a combined approach of correlating single-molecule fluorescence photo-bleaching, single-molecule super-resolution imaging, and single-channel electric patch-clamp recording. Identifying the compositions of NMDA receptors, their spatial organization and distributions over live cell membranes, we observe that NMDA receptors are organized inhomogeneously: nearly half of the receptor proteins are individually dispersed; whereas others exist in heterogeneous clusters of around 50 nm in size as well as co-localized within the diffraction limited imaging area. We demonstrate that inhomogeneous interactions and partitions of the NMDA receptors can be a cause of the heterogeneous gating mechanism of NMDA receptors in living cells. Furthermore, comparing the imaging results with the ion-channel electric current recording, we propose that the clustered NMDA receptors may be responsible for the variation in the current amplitude observed in the on-off two-state ion-channel electric signal trajectories. Our findings shed new light on the fundamental structure-function mechanism of NMDA receptors and present a conceptual advancement of the ion-channel mechanism in living cells.
Parajuli, Shankar P.; Zheng, Yun-Min; Levin, Robert; Wang, Yong-Xiao
2016-01-01
ABSTRACT Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions. PMID:27101440
[Architecture of receptor-operated ionic channels of biological membranes].
Bregestovski, P D
2011-01-01
Ion channels of biological membranes are the key proteins, which provide bioelectric functioning of living systems. These proteins are homo- or heterooligomers assembled from several identical or different subunits. Understanding the architectural organization and functioning of ion channels has been significantly extended due to resolving the crystal structure of several types of voltage-gated and receptor-operated channels. This review summarizes the information obtained from crystal structures of potassium, nicotinic acetylcholine receptor, P2X, and other ligand-gated ion channels. Despite the differences in the function, topology, ionic selectivity, and the subunit stoichiometry, a high similarity in the principles of organization of these macromolecular complexes has been revealed.
NASA Astrophysics Data System (ADS)
Miledi, R.; Dueñas, Z.; Martinez-Torres, A.; Kawas, C. H.; Eusebi, F.
2004-02-01
About a decade ago, cell membranes from the electric organ of Torpedo and from the rat brain were transplanted to frog oocytes, which thus acquired functional Torpedo and rat neurotransmitter receptors. Nevertheless, the great potential that this method has for studying human diseases has remained virtually untapped. Here, we show that cell membranes from the postmortem brains of humans that suffered Alzheimer's disease can be microtransplanted to the plasma membrane of Xenopus oocytes. We show also that these postmortem membranes carry neurotransmitter receptors and voltage-operated channels that are still functional, even after they have been kept frozen for many years. This method provides a new and powerful approach to study directly the functional characteristics and structure of receptors, channels, and other membrane proteins of the Alzheimer's brain. This knowledge may help in understanding the basis of Alzheimer's disease and also help in developing new treatments. -aminobutyric acid receptors | sodium channels | calcium channels | postmortem brain
Shabir, Saqib; Cross, William; Kirkwood, Lisa A; Pearson, Joanna F; Appleby, Peter A; Walker, Dawn; Eardley, Ian; Southgate, Jennifer
2013-08-01
In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca²⁺. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca²⁺ and in a scratch repair assay. The results confirmed the functional expression of P2Y₄ receptors and excluded nonexpressed receptors/channels (P2X₁, P2X₃, P2X₆, P2Y₆, P2Y₁₁, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X₂, P2X₄, P2Y₁, P2Y₂, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca²⁺ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting.
Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian
2013-01-01
In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349
The TiPS/TINS lecture: the molecular biology of mammalian glutamate receptor channels.
Seeburg, P H
1993-08-01
In native brain membranes the principal excitatory neurotransmitter L-glutamate activates cation-conducting channels with distinct biophysical and pharmacological properties. Molecular cloning has revealed the existence of 16 channel subunits that can assemble in homomeric or heteromeric configurations in vitro to form receptor channels with disparate functional properties. This review describes the different channel types obtained by recombinant means and the genetic mechanisms controlling the expression of functionally important channel structures.
The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels.
Seeburg, P H
1993-09-01
In native brain membranes the principal excitatory neurotransmitter L-glutamate activates cation-conducting channels with distinct biophysical and pharmacological properties. Molecular cloning has revealed the existence of 16 channel subunits that can assemble in homomeric or heteromeric configurations in vitro to form receptor channels with disparate functional properties. This review describes the different channel types obtained by recombinant means and the genetic mechanisms controlling the expression of functionally important channel structures.
Villmann, Carmen; Hoffmann, Jutta; Werner, Markus; Kott, Sabine; Strutz-Seebohm, Nathalie; Nilsson, Tanja; Hollmann, Michael
2008-10-01
Although considerable progress has been made in characterizing the physiological function of the high-affinity kainate (KA) receptor subunits KA1 and KA2, no homomeric ion channel function has been shown. An ion channel transplantation approach was employed in this study to directly test if homomerically expressed KA1 and KA2 pore domains are capable of conducting currents. Transplantation of the ion pore of KA1 or KA2 into GluR6 generated perfectly functional ion channels that allowed characterization of those electrophysiological and pharmacological properties that are determined exclusively by the ion pore of KA1 or KA2. This demonstrates for the first time that KA1 and KA2 ion pore domains are intrinsically capable of conducting ions even in homomeric pore assemblies. NMDA receptors, similar to KA1- or KA2-containing receptors, function only as heteromeric complexes. They are composed of NR1 and NR2 subunits, which both are non-functional when expressed homomerically. In contrast to NR1, the homomeric NR2B ion pore failed to translate ligand binding into pore opening when transplanted into GluR6. Similarly, heteromeric coexpression of the ion channel domains of both NR1 and NR2 inserted into GluR6 failed to produce functional channels. Therefore, we conclude that the mechanism underlying the ion channel opening in the obligatorily heterotetrameric NMDA receptors differs significantly from that in the facultatively heterotetrameric alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate and KA receptors.
Function and structure in glycine receptors and some of their relatives.
Colquhoun, David; Sivilotti, Lucia G
2004-06-01
In the field of ligand-gated ion channels, recent developments, both in the knowledge of structure and in the measurement of function at the single-channel level, have allowed a sensible start to be made on understanding the relationship between structure and function in these proteins. In this review, the cases of glycine, nicotinic ACh and glutamate receptors are compared and contrasted, and problems such as how binding of agonist causes the channel to open, and why partial agonists are partial, are considered. Some observations, both structural and functional, suggest that more attention needs to be paid to conformational changes that occur before the channel opens. Such changes might account for the interaction found between subunits of the glycine receptor while it is still shut and, perhaps, the agonist-dependent structural changes seen in AMPA receptors. They might also complicate our understanding of the binding-gating problem.
Transient receptor potential channel superfamily: Role in lower urinary tract function.
Ogawa, Teruyuki; Imamura, Tetsuya; Nakazawa, Masaki; Hiragata, Shiro; Nagai, Takashi; Minagawa, Tomonori; Yokoyama, Hitoshi; Ishikawa, Masakuni; Domen, Takahisa; Ishizuka, Osamu
2015-11-01
Lower urinary tract symptoms associated with neurogenic bladder and overactive bladder syndrome are mediated in part by members of the transient receptor potential channel superfamily. The best studied member of this superfamily is the vanilloid receptor. Other transient receptor potential channels, such as the melastatin receptor and the ankyrin receptor, are also active in the pathogenesis of lower urinary tract dysfunction. However, the detailed mechanisms by which the transient receptor potential channels contribute to lower urinary tract symptoms are still not clear, and the therapeutic benefits of modulating transient receptor potential channel activity have not been proved in the clinical setting. In the present review, to better understand the pathophysiology and therapeutic potential for lower urinary tract symptoms, we summarize the presence and role of different members of the transient receptor potential channel superfamily in the lower urinary tract. © 2015 The Japanese Urological Association.
Reconstitution of Homomeric GluA2flop Receptors in Supported Lipid Membranes
Baranovic, Jelena; Ramanujan, Chandra S.; Kasai, Nahoko; Midgett, Charles R.; Madden, Dean R.; Torimitsu, Keiichi; Ryan, John F.
2013-01-01
AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer. To provide a basis for investigating AMPAR structure in a membrane environment, we developed an optimized reconstitution protocol using a receptor whose structure has previously been characterized by electron microscopy. Single-channel recordings of reconstituted homomeric GluA2flop receptors recapitulate key electrophysiological parameters of the channels expressed in native cellular membranes. Atomic force microscopy studies of the reconstituted samples provide high-resolution images of membrane-embedded full-length AMPARs at densities comparable to those in postsynaptic membranes. The data demonstrate the effect of protein density on conformational flexibility and dimensions of the receptors and provide the first structural characterization of functional membrane-embedded AMPARs, thus laying the foundation for correlated structure-function analyses of the predominant mediators of excitatory synaptic signals in the brain. PMID:23382380
Sato, Keisaku; Pollock, Neil; Stowell, Kathryn M
2010-06-01
Malignant hyperthermia is associated with mutations within the gene encoding the skeletal muscle ryanodine receptor, the calcium channel that releases Ca from sarcoplasmic reticulum stores triggering muscle contraction, and other metabolic activities. More than 200 variants have been identified in the ryanodine receptor, but only some of these have been shown to functionally affect the calcium channel. To implement genetic testing for malignant hyperthermia, variants must be shown to alter the function of the channel. A number of different ex vivo methods can be used to demonstrate functionality, as long as cells from human patients can be obtained and cultured from at least two unrelated families. Because malignant hyperthermia is an uncommon disorder and many variants seem to be private, including the newly identified H4833Y mutation, these approaches are limited. The authors cloned the human skeletal muscle ryanodine receptor complementary DNA and expressed both normal and mutated forms in HEK-293 cells and carried out functional analysis using ryanodine binding assays in the presence of a specific agonist, 4-chloro-m-cresol, and the antagonist Mg. Transiently expressed human ryanodine receptor proteins colocalized with an endoplasmic reticulum marker in HEK-293 cells. Ryanodine binding assays confirmed that mutations causing malignant hyperthermia resulted in a hypersensitive channel, while those causing central core disease resulted in a hyposensitive channel. The functional assays validate recombinant human skeletal muscle ryanodine receptor for analysis of variants and add an additional mutation (H4833Y) to the repertoire of mutations that can be used for the genetic diagnosis of malignant hyperthermia.
Ion channels for mechanotransduction in the crayfish stretch receptor.
Rydqvist, Bo
2007-01-01
Mechanosensitivity is found in almost every cell in all organisms from bacteria to vertebrates and covers a wide spectrum of function from osmosensing to mechanical sensing in the specialized receptors, such as the hair cells of the cochlea. The molecular substrate for such mechanosensitivity is thought to be mechanosensitive ion channels (MSCs). Because most development regarding the molecular aspects of the MSC has been made in nonsensory or sensory systems, which have not been accessible to recordings from ion channels, it is important to focus on the mechanosensitivity of sensory organs where their functional importance is undisputed. The stretch receptor organ (SRO) of the crustaceans is a suitable preparation for such studies. Each organ contains two receptors: one slowly and one rapidly adapting receptor neurons. The primary mechanosensitivity is generated by two types of MSC of hitherto unknown molecular type located in the neuronal dendrites, which are inserted into a receptor muscle fiber. In addition to the MSCs, the neurons contain voltage-gated Na(+) channels, which seem to be differently located in the slowly and rapidly adapting neurons. At least three types of voltage-gated K(+) channels are present in the sensory neurons, the location of which is not known. The spatial distribution of ion channels and the kinetics of the channels, together with the viscoelastic properties of the receptor muscles, determine the overall transducer properties and impulse firing of the two receptor neurons, including their typical adaptive characteristics. © 2007, Elsevier Inc. All right reserved.
Interactions of Pannexin1 channels with purinergic and NMDA receptor channels.
Li, Shuo; Bjelobaba, Ivana; Stojilkovic, Stanko S
2018-01-01
Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Published by Elsevier B.V.
Bavencoffe, Alexis; Zhu, Michael Xi; Tian, Jin-Bin
2017-01-01
Transient receptor potential canonical (TRPC) proteins were identified as molecular candidates of receptor- and/or store-operated channels because of their close homology to the Drosophila TRP and TRPL. Functional studies have revealed that TRPC channels play an integrated part of phospholipase C-transduced cell signaling, mediating the influx of both Ca 2+ and Na + into cells. As a consequence, the TRPC channels have diverse functional roles in different cell types, including metabotropic receptor-evoked membrane depolarization and intracellular Ca 2+ concentration elevation. Depending on the cellular environment and the protein partners present in the channel complex, the TRPC channels display different biophysical properties and mechanisms of regulation, including but not limited to the Ca 2+ filling state of the endoplasmic reticulum. Despite the overwhelming focus on STIM-regulated Orai channels for store-operated Ca 2+ entry, evidence is growing for STIM-operated TRPC channel activities in various cell types, demonstrating both store-dependent and store-independent mechanisms of TRPC channel gating. The existence of physical and functional interactions between plasma membrane-localized TRPC channels and other proteins involved in sensing and regulating the intracellular Ca 2+ store contents, such as inositol trisphosphate receptors, Junctate, and Homer, further argues for the role of TRPC proteins in linking plasma membrane ion transport with intracellular Ca 2+ stores. The interplay among these proteins will likely define the functional significance of TRPC channel activation in different cellular contexts and under different modes of stimulations.
Emerging structural insights into the function of ionotropic glutamate receptors
Karakas, Erkan; Regan, Michael C.; Furukawa, Hiro
2015-01-01
Summary Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate excitatory neurotransmission crucial for brain development and function including learning and memory formation. Recently a wealth of structural studies on iGluRs, including AMPA receptors (AMPARs), kainate receptors, and NMDA receptors (NMDARs) became available.. These studies showed structures of non-NMDARs including AMPAR and kainate receptor in various functional states, thereby providing the first visual sense of how non-NMDAR iGluRs may function in the context of homotetramers. Furthermore, they provided the first view of heterotetrameric NMDAR ion channels, which illuminated the similarities with and differences from non-NMDARs, thus raising a mechanistic distinction between the two groups of iGluRs. Here we review mechanistic insights into iGluR functions gained through structural studies of multiple groups. PMID:25941168
Anesthetic sites and allosteric mechanisms of action on Cys-loop ligand-gated ion channels.
Forman, Stuart A; Miller, Keith W
2011-02-01
The Cys-loop ligand-gated ion channel superfamily is a major group of neurotransmitter-activated receptors in the central and peripheral nervous system. The superfamily includes inhibitory receptors stimulated by γ-aminobutyric acid (GABA) and glycine and excitatory receptors stimulated by acetylcholine and serotonin. The first part of this review presents current evidence on the location of the anesthetic binding sites on these channels and the mechanism by which binding to these sites alters their function. The second part of the review addresses the basis for this selectivity, and the third part describes the predictive power of a quantitative allosteric model showing the actions of etomidate on γ-aminobutyric acid type A receptors (GABA(A)Rs). General anesthetics at clinical concentrations inhibit the excitatory receptors and enhance the inhibitory receptors. The location of general anesthetic binding sites on these receptors is being defined by photoactivable analogues of general anesthetics. The receptor studied most extensively is the muscle-type nicotinic acetylcholine receptor (nAChR), and progress is now being made with GABA(A)Rs. There are three categories of sites that are all in the transmembrane domain: 1) within a single subunit's four-helix bundle (intrasubunit site; halothane and etomidate on the δ subunit of AChRs); 2) between five subunits in the transmembrane conduction pore (channel lumen sites; etomidate and alcohols on nAChR); and 3) between two subunits (subunit interface sites; etomidate between the α1 and β2/3 subunits of the GABA(A)R). These binding sites function allosterically. Certain conformations of a receptor bind the anesthetic with greater affinity than others. Time-resolved photolabelling of some sites occurs within milliseconds of channel opening on the nAChR but not before. In GABA(A)Rs, electrophysiological data fit an allosteric model in which etomidate binds to and stabilizes the open state, increasing both the fraction of open channels and their lifetime. As predicted by the model, the channel-stabilizing action of etomidate is so strong that higher concentrations open the channel in the absence of agonist. The formal functional paradigm presented for etomidate may apply to other potent general anesthetic drugs. Combining photolabelling with structure-function mutational studies in the context of allosteric mechanisms should lead us to a more detailed understanding of how and where these important drugs act.
Transient Receptor Potential Channels in the Vasculature
Earley, Scott; Brayden, Joseph E.
2015-01-01
The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca2+ levels or subcellular Ca2+ signaling events. In addition to directly mediating Ca2+ entry, TRP channels influence intracellular Ca2+ dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions. PMID:25834234
Prolactin receptor in regulation of neuronal excitability and channels
Patil, Mayur J; Henry, Michael A; Akopian, Armen N
2014-01-01
Prolactin (PRL) activates PRL receptor isoforms to exert regulation of specific neuronal circuitries, and to control numerous physiological and clinically-relevant functions including; maternal behavior, energy balance and food intake, stress and trauma responses, anxiety, neurogenesis, migraine and pain. PRL controls these critical functions by regulating receptor potential thresholds, neuronal excitability and/or neurotransmission efficiency. PRL also influences neuronal functions via activation of certain neurons, resulting in Ca2+ influx and/or electrical firing with subsequent release of neurotransmitters. Although PRL was identified almost a century ago, very little specific information is known about how PRL regulates neuronal functions. Nevertheless, important initial steps have recently been made including the identification of PRL-induced transient signaling pathways in neurons and the modulation of neuronal transient receptor potential (TRP) and Ca2+-dependent K+ channels by PRL. In this review, we summarize current knowledge and recent progress in understanding the regulation of neuronal excitability and channels by PRL. PMID:24758841
General Anesthetics Have Additive Actions on Three Ligand-Gated Ion Channels
Jenkins, Andrew; Lobo, Ingrid A.; Gong, Diane; Trudell, James R.; Solt, Ken; Harris, R. Adron; Eger, Edmond I
2008-01-01
Background The purpose of this study was to determine whether pairs of compounds, including general anesthetics, could simultaneously modulate receptor function in a synergistic manner, thus demonstrating the existence of multiple intra-protein anesthetic binding sites. Methods Using standard electrophysiologic methods, we measured the effects of at least one combination of benzene, isoflurane, halothane, chloroform, flunitrazepam, zinc and pentobarbital on at least one of the following ligand gated ion channels: N-methyl-D-aspartate receptors (NMDARs), glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs). Results All drug-drug-receptor combinations were found to exhibit additive, not synergistic modulation. Isoflurane with benzene additively depressed NMDAR function. Isoflurane with halothane additively enhanced GlyR function, as did isoflurane with zinc. Isoflurane with halothane additively enhanced GABAAR function as did all of the following: halothane with chloroform, pentobarbital with isoflurane, and flunitrazepam with isoflurane. Conclusions The simultaneous allosteric modulation of ligand gated ion channels by general anesthetics is entirely additive. Where pairs of general anesthetic drugs interact synergistically to produce general anesthesia, they must do so on systems more complex than a single receptor. PMID:18633027
Action of tremorgenic mycotoxins on GABA/sub A/ receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gant, D.B.; Cole, R.J.; Valdes, J.J.
1987-11-09
The effects of four tremorgenic and one nontremorgenic mycotoxins were studied on ..gamma..-aminobutyric acid (GABA/sub A/) receptor binding and function in rat brain and on binding of a voltage-operated Cl/sup -/ channel in Torpedo electric organ. None of the mycotoxins had significant effect on (/sup 3/H)muscimol or (/sup 3/H)flunitrazepam binding to the GAMA/sup A/ receptor. However, only the four tremorgenic mycotoxins inhibited GABA-induced /sup 36/Cl/sup -/ influx and (/sup 35/S)t-butylbicyclophosphorothionate ((/sup 35/S)TBPS) binding in rate brain membranes, while the nontremorgenic verruculotoxin had no effect. Inhibition of (/sup 35/S)TBPS binding by paspalinine was non-competitive. This suggests that tremorgenic mycotoxins inhibit GABA/submore » A/ receptor function by binding close to the receptor's Cl/sup -/ channel. On the voltage-operated Cl/sup -/ channel, only high concentrations of verruculogen and verruculotoxin caused significant inhibition of the channel's binding of (/sup 35/S)TBPS. The data suggest that the tremorgenic action of these mycotoxins may be due in part to their inhibition of GABA/sub A/ receptor function. 21 references, 4 figures, 2 tables.« less
Linden, Anni-Maija; Aller, M Isabel; Leppä, Elli; Rosenberg, Per H; Wisden, William; Korpi, Esa R
2008-10-01
TASK two-pore-domain leak K(+) channels occur throughout the brain. However, TASK-1 and TASK-3 knockout (KO) mice have few neurological impairments and only mildly reduced sensitivities to inhalational anesthetics, contrasting with the anticipated functions and importance of these channels. TASK-1/-3 channel expression can compensate for the absence of GABA(A) receptors in GABA(A) alpha6 KO mice. To investigate the converse, we analyzed the behavior of TASK-1 and -3 KO mice after administering drugs with preferential efficacies at GABA(A) receptor subtypes: benzodiazepines (diazepam and flurazepam, active at alpha1betagamma2, alpha2betagamma2, alpha3betagamma2, and alpha5betagamma2 subtypes), zolpidem (alpha1betagamma2 subtype), propofol (beta2-3-containing receptors), gaboxadol (alpha4betadelta and alpha6betadelta subtypes), pregnanolone, and pentobarbital (many subtypes). TASK-1 KO mice showed increased motor impairment in rotarod and beam-walking tests after diazepam and flurazepam administration but not after zolpidem. They also showed prolonged loss of righting reflex induced by propofol and pentobarbital. Autoradiography indicated no change in GABA(A) receptor ligand binding levels. These altered behavioral responses to GABAergic drugs suggest functional up-regulation of alpha2beta2/3gamma2 and alpha3beta2/3gamma2 receptor subtypes in TASK-1 KO mice. In addition, female, but not male, TASK-1 KO mice were more sensitive to gaboxadol, suggesting an increased influence of alpha4betadelta or alpha6betadelta subtypes. The benzodiazepine sensitivity of TASK-3 KO mice was marginally increased. Our results underline that TASK-1 channels perform such key functions in the brain that compensation is needed for their absence. Furthermore, because inhalation anesthetics act partially through GABA(A) receptors, the up-regulation of GABA(A) receptor function in TASK-1 KO mice might mask TASK-1 channel's significance as a target for inhalation anesthetics.
Emerging structural insights into the function of ionotropic glutamate receptors.
Karakas, Erkan; Regan, Michael C; Furukawa, Hiro
2015-06-01
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate excitatory neurotransmission crucial for brain development and function, including learning and memory formation. Recently a wealth of structural studies on iGluRs including AMPA receptors (AMPARs), kainate receptors, and NMDA receptors (NMDARs) became available. These studies showed structures of non-NMDARs including AMPAR and kainate receptor in various functional states, thereby providing the first visual sense of how non-NMDAR iGluRs may function in the context of homotetramers. Furthermore, they provided the first view of heterotetrameric NMDAR ion channels, and this illuminated the similarities with and differences from non-NMDARs, thus raising a mechanistic distinction between the two groups of iGluRs. We review mechanistic insights into iGluR functions gained through structural studies of multiple groups. Copyright © 2015 Elsevier Ltd. All rights reserved.
Molecular Targets for Antiepileptic Drug Development
Meldrum, Brian S.; Rogawski, Michael A.
2007-01-01
Summary This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the α subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, α2–δ voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABAA receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABAB and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABAA receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the pathophysiology of epilepsy and the structural and functional characterization of the molecular targets provide many opportunities to create improved epilepsy therapies. PMID:17199015
Molecular structure of P2X receptors.
Egan, Terrance M; Cox, Jane A; Voigt, Mark M
2004-01-01
P2X receptors are ligand-gated ion channels that transduce many of the physiological effects of extracellular ATP. There has been a dramatic increase in awareness of these receptors over the past 5 or so years, in great part due to their molecular cloning and characterization. The availability of cDNA clones for the various subunits has led to rapid progress in identifying their tissue-specific expression, resulting in new ideas concerning the functional roles these receptors might play in physiological and pathophysiological processes. In addition, molecular approaches have yielded much information regarding the structure and function of the receptor proteins themselves. In this review we seek to review recent findings concerning the molecular determinants of receptor-channel function, with particular focus on ligand binding and gating, ion selectivity, and subunit assembly.
Tracking the Molecular Evolution of Calcium Permeability in a Nicotinic Acetylcholine Receptor
Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G.; Boffi, Juan C.; Millar, Neil S.; Fuchs, Paul A.; Katz, Eleonora; Elgoyhen, Ana Belén
2014-01-01
Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338
Zhao, Wen-Shan; Sun, Meng-Yang; Sun, Liang-Fei; Liu, Yan; Yang, Yang; Huang, Li-Dong; Fan, Ying-Zhe; Cheng, Xiao-Yang; Cao, Peng; Hu, You-Min; Li, Lingyong; Tian, Yun; Wang, Rui; Yu, Ye
2016-04-08
Significant progress has been made in understanding the roles of crucial residues/motifs in the channel function of P2X receptors during the pre-structure era. The recent structural determination of P2X receptors allows us to reevaluate the role of those residues/motifs. Residues Arg-309 and Asp-85 (rat P2X4 numbering) are highly conserved throughout the P2X family and were involved in loss-of-function polymorphism in human P2X receptors. Previous studies proposed that they participated in direct ATP binding. However, the crystal structure of P2X demonstrated that those two residues form an intersubunit salt bridge located far away from the ATP-binding site. Therefore, it is necessary to reevaluate the role of this salt bridge in P2X receptors. Here, we suggest the crucial role of this structural element both in protein stability and in channel gating rather than direct ATP interaction and channel assembly. Combining mutagenesis, charge swap, and disulfide cross-linking, we revealed the stringent requirement of this salt bridge in normal P2X4 channel function. This salt bridge may contribute to stabilizing the bending conformation of the β2,3-sheet that is structurally coupled with this salt bridge and the α2-helix. Strongly kinked β2,3 is essential for domain-domain interactions between head domain, dorsal fin domain, right flipper domain, and loop β7,8 in P2X4 receptors. Disulfide cross-linking with directions opposing or along the bending angle of the β2,3-sheet toward the α2-helix led to loss-of-function and gain-of-function of P2X4 receptors, respectively. Further insertion of amino acids with bulky side chains into the linker between the β2,3-sheet or the conformational change of the α2-helix, interfering with the kinked conformation of β2,3, led to loss-of-function of P2X4 receptors. All these findings provided new insights in understanding the contribution of the salt bridge between Asp-85 and Arg-309 and its structurally coupled β2,3-sheet to the function of P2X receptors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lee, Kuan-I; Lin, Hui-Ching; Lee, Hsueh-Te; Tsai, Feng-Chuan; Lee, Tzong-Shyuan
2017-07-01
The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that helps regulate inflammatory pain sensation and nociception and the development of inflammatory diseases. However, the potential role of the TRPA1 channel and the underlying mechanism in brain functions are not fully resolved. In this study, we demonstrated that genetic deletion of the TRPA1 channel in mice or pharmacological inhibition of its activity increased neurite outgrowth. In vivo study in mice provided evidence of the TRPA1 channel as a negative regulator in hippocampal functions; functional ablation of the TRPA1 channel in mice enhanced hippocampal functions, as evidenced by less anxiety-like behavior, and enhanced fear-related or spatial learning and memory, and novel location recognition as well as social interactions. However, the TRPA1 channel appears to be a prerequisite for motor function; functional loss of the TRPA1 channel in mice led to axonal bundle fragmentation, downregulation of myelin basic protein, and decreased mature oligodendrocyte population in the brain, for impaired motor function. The TRPA1 channel may play a crucial role in neuronal development and oligodendrocyte maturation and be a potential regulator in emotion, cognition, learning and memory, and social behavior.
Toulmé, Estelle; Soto, Florentina; Garret, Maurice; Boué-Grabot, Eric
2006-02-01
Although P2X receptors within the central nervous system mediate excitatory ATP synaptic transmission, the identity of central ATP-gated channels has not yet been elucidated. P2X(4), the most widely expressed subunit in the brain, was previously shown to undergo clathrin-dependent constitutive internalization by direct interaction between activator protein (AP)2 adaptors and a tyrosine-based sorting signal specifically present in the cytosolic C-terminal tail of mammalian P2X(4) sequences. In this study, we first used internalization-deficient P2X(4) receptor mutants to show that suppression of the endocytosis motif significantly increased the apparent sensitivity to ATP and the ionic permeability of P2X(4) channels. These unique properties, observed at low channel density, suggest that interactions with AP2 complexes may modulate the function of P2X(4) receptors. In addition, ivermectin, an allosteric modulator of several receptor channels, including mammalian P2X(4), did not potentiate the maximal current of internalization-deficient rat or human P2X(4) receptors. We demonstrated that binding of ivermectin onto wild-type P2X(4) channels increased the fraction of plasma membrane P2X(4) receptors, whereas surface expression of internalization-deficient P2X(4) receptors remained unchanged. Disruption of the clathrin-mediated endocytosis with the dominant-negative mutants Eps15 or AP-50 abolished the ivermectin potentiation of wild-type P2X(4) channel currents. Likewise, ivermectin increased the membrane fraction of nicotinic alpha7 acetylcholine (nalpha7ACh) receptors and the potentiation of acetylcholine current by ivermectin was suppressed when the same dominant-negative mutants were expressed. These data showed that potentiation by ivermectin of both P2X(4) and nalpha7ACh receptors was primarily caused by an increase in the number of cell surface receptors resulting from a mechanism dependent on clathrin/AP2-mediated endocytosis.
Wie, Jinhong; Jeong, SeungJoo; Kwak, Misun; Myeong, Jongyun; Chae, MeeRee; Park, Jong Kwan; Lee, Sung Won; So, Insuk
2017-06-01
The transient receptor potential (TRP) protein superfamily consists of a diverse group of cation channels that bear structural similarities to the fruit fly Drosophila TRP. The TRP superfamily is distinct from other groups of ion channels in displaying a large diversity in ion selectivity, modes of activation, and physiological functions. Classical TRP (transient receptor potential canonical (TRPC)) channels are activated by stimulation of Gq-PLC-coupled receptors and modulated by phosphorylation. The cyclic guanosine monophosphate (cGMP)-PKG pathway is involved in the regulation of TRPC3 and TRPC6 channels. Phosphodiesterase (PDE) 5 inhibitor induced muscle relaxation in corporal smooth muscle cells and was used to treat erectile dysfunction by inhibiting cGMP degradation. Here, we report the functional relationship between TRPC4 and cGMP. In human embryonic kidney (HEK) 293 cells overexpressing TRPC4, cGMP selectively activated TRPC4 channels and increased cytosolic calcium level through TRPC4 channel. We investigated phosphorylation sites in TRPC4 channels and identified S688 as an important phosphorylation site for the cGMP-PKG pathway. Cyclic GMP also activated TRPC4-like current with doubly rectifying current-voltage relationship in prostate smooth muscle cell lines. Taken together, these results show that TRPC4 is phosphorylated by the cGMP-PKG pathway and might be an important target for modulating prostate function by PDE5 inhibitors.
Neuroactive Steroids: Receptor Interactions and Responses
Tuem, Kald Beshir; Atey, Tesfay Mehari
2017-01-01
Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone) have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity. PMID:28894435
Post-translational regulation of P2X receptor channels: modulation by phospholipids
Bernier, Louis-Philippe; Ase, Ariel R.; Séguéla, Philippe
2013-01-01
P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn) are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane. All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e., homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C (PLC)-linked metabotropic receptors and P2X receptor channels in dorsal root ganglion sensory neurons and microglia. PMID:24324400
Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons
Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen
2013-01-01
Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337
Asuthkar, Swapna; Demirkhanyan, Lusine; Sun, Xiaohui; Elustondo, Pia A; Krishnan, Vivek; Baskaran, Padmamalini; Velpula, Kiran Kumar; Thyagarajan, Baskaran; Pavlov, Evgeny V; Zakharian, Eleonora
2015-01-30
Testosterone is a key steroid hormone in the development of male reproductive tissues and the regulation of the central nervous system. The rapid signaling mechanism induced by testosterone affects numerous behavioral traits, including sexual drive, aggressiveness, and fear conditioning. However, the currently identified testosterone receptor(s) is not believed to underlie the fast signaling, suggesting an orphan pathway. Here we report that an ion channel from the transient receptor potential family, TRPM8, commonly known as the cold and menthol receptor is the major component of testosterone-induced rapid actions. Using cultured and primary cell lines along with the purified TRPM8 protein, we demonstrate that testosterone directly activates TRPM8 channel at low picomolar range. Specifically, testosterone induced TRPM8 responses in primary human prostate cells, PC3 prostate cancer cells, dorsal root ganglion neurons, and hippocampal neurons. Picomolar concentrations of testosterone resulted in full openings of the purified TRPM8 channel in planar lipid bilayers. Furthermore, acute applications of testosterone on human skin elicited a cooling sensation. Our data conclusively demonstrate that testosterone is an endogenous and highly potent agonist of TRPM8, suggesting a role of TRPM8 channels well beyond their well established function in somatosensory neurons. This discovery may further imply TRPM8 channel function in testosterone-dependent behavioral traits. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Cyclic nucleotide- and inositol phosphate-gated ion channels in lobster olfactory receptor neurons.
Hatt, H; Ache, B W
1994-01-01
The idea of having two second messenger pathways in olfaction, one mediated by cAMP and the other by inositol 1,4,5-trisphosphate, is supported by evidence that both second messengers directly activate distinct ion channels in the outer dendrite of lobster olfactory receptor neurons. Evidence that both types of second messenger-gated channels can occur in the same patch of membrane suggests that channels of both types can be expressed in one neuron. Evidence of more than one type of inositol phosphate-gated channel in this highly specialized region of the neuron furthers the idea that the output of individual olfactory receptor cells is regulated through multiple effectors and allows that effector diversity may contribute to functional diversity among olfactory receptor cells. Images PMID:7517547
NASA Astrophysics Data System (ADS)
Bezprozvanny, Llya; Watras, James; Ehrlich, Barbara E.
1991-06-01
RELEASE of calcium from intracellular stores occurs by two pathways, an inositol 1,4,5-trisphosphate (InsP3)-gated channel1-3 and a calcium-gated channel (ryanodine receptor)4-6. Using specific antibodies, both receptors were found in Purkinje cells of cerebellum7,8. We have now compared the functional properties of the channels corresponding to the two receptors by incorporating endoplasmic reticulum vesicles from canine cerebellum into planar bilayers. InsP3-gated channels were observed most frequently. Another channel type was activated by adenine nucleotides or caffeine, inhibited by ruthenium red, and modified by ryanodine, characteristics of the ryanodine receptor/channel6. The open probability of both channel types displayed a bell-shaped curve for dependence on calcium. For the InsP3-gated channel, the maximum probability of opening occurred at 0.2 µM free calcium, with sharp decreases on either side of the maximum. Maximum activity for the ryanodine receptor/channel was maintained between 1 and 100 µM calcium. Thus, within the physiological range of cytoplasmic calcium, the InsP3-gated channel itself allows positive feed-back and then negative feedback for calcium release, whereas the ryanodine receptor/channel behaves solely as a calcium-activated channel. The existence in the same cell of two channels with different responses to calcium and different ligand sensitivities provides a basis for complex patterns of intracellular calcium regulation.
Principles and properties of ion flow in P2X receptors
Samways, Damien S. K.; Li, Zhiyuan; Egan, Terrance M.
2014-01-01
P2X receptors are a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). These receptors have long been a subject of intense research interest by virtue of their vital role in mediating the rapid and direct effects of extracellular ATP on membrane potential and cytosolic Ca2+ concentration, which in turn underpin the ability of ATP to regulate a diverse range of clinically significant physiological functions, including those associated with the cardiovascular, sensory, and immune systems. An important aspect of an ion channel's function is, of course, the means by which it transports ions across the biological membrane. A concerted effort by investigators over the last two decades has culminated in significant advances in our understanding of how P2X receptors conduct the inward flux of Na+ and Ca2+ in response to binding by ATP. However, this work has relied heavily on results from current recordings of P2X receptors altered by site-directed mutagenesis. In the absence of a 3-dimensional channel structure, this prior work provided only a vague and indirect appreciation of the relationship between structure, ion selectivity and flux. The recent publication of the crystal structures for both the closed and open channel conformations of the zebrafish P2X4 receptor has thus proved a significant boon, and has provided an important opportunity to overview the amassed functional data in the context of a working 3-dimensional model of a P2X receptor. In this paper, we will attempt to reconcile the existing functional data regarding ion permeation through P2X receptors with the available crystal structure data, highlighting areas of concordance and discordance as appropriate. PMID:24550775
Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles
Tykocki, Nathan R.; Boerman, Erika M.; Jackson, William F.
2017-01-01
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body’s tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. PMID:28333380
Murayama, Takashi; Maruyama, Ichiro N
2015-11-01
Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.
Functionally heterogenous ryanodine receptors in avian cerebellum.
Sierralta, J; Fill, M; Suárez-Isla, B A
1996-07-19
The functional heterogeneity of the ryanodine receptor (RyR) channels in avian cerebellum was defined. Heavy endoplasmic reticulum microsomes had significant levels of ryanodine and inositol 1,4,5-trisphosphate binding. Scatchard analysis and kinetic studies indicated the existence of at least two distinct ryanodine binding sites. Ryanodine binding was calcium-dependent but was not significantly enhanced by caffeine. Incorporation of microsomes into planar lipid bilayers revealed ion channels with pharmacological features (calcium, magnesium, ATP, and caffeine sensitivity) similar to the RyR channels found in mammalian striated muscle. Despite a wide range of unitary conductances (220-500 picosiemens, symmetrical cesium methanesulfonate), ryanodine locked both channels into a characteristic slow gating subconductance state, positively identifying them as RyR channels. Two populations of avian RyR channels were functionally distinguished by single channel calcium sensitivity. One population was defined by a bell-shaped calcium sensitivity analogous to the skeletal muscle RyR isoform (type I). The calcium sensitivity of the second RyR population was sigmoidal and analogous to the cardiac muscle RyR isoform (type II). These data show that there are at least two functionally distinct RyR channel populations in avian cerebellum. This leads to the possibility that these functionally distinct RyR channels are involved in different intracellular calcium signaling pathways.
The TRPM8 Protein Is a Testosterone Receptor
Asuthkar, Swapna; Demirkhanyan, Lusine; Sun, Xiaohui; Elustondo, Pia A.; Krishnan, Vivek; Baskaran, Padmamalini; Velpula, Kiran Kumar; Thyagarajan, Baskaran; Pavlov, Evgeny V.; Zakharian, Eleonora
2015-01-01
Testosterone is a key steroid hormone in the development of male reproductive tissues and the regulation of the central nervous system. The rapid signaling mechanism induced by testosterone affects numerous behavioral traits, including sexual drive, aggressiveness, and fear conditioning. However, the currently identified testosterone receptor(s) is not believed to underlie the fast signaling, suggesting an orphan pathway. Here we report that an ion channel from the transient receptor potential family, TRPM8, commonly known as the cold and menthol receptor is the major component of testosterone-induced rapid actions. Using cultured and primary cell lines along with the purified TRPM8 protein, we demonstrate that testosterone directly activates TRPM8 channel at low picomolar range. Specifically, testosterone induced TRPM8 responses in primary human prostate cells, PC3 prostate cancer cells, dorsal root ganglion neurons, and hippocampal neurons. Picomolar concentrations of testosterone resulted in full openings of the purified TRPM8 channel in planar lipid bilayers. Furthermore, acute applications of testosterone on human skin elicited a cooling sensation. Our data conclusively demonstrate that testosterone is an endogenous and highly potent agonist of TRPM8, suggesting a role of TRPM8 channels well beyond their well established function in somatosensory neurons. This discovery may further imply TRPM8 channel function in testosterone-dependent behavioral traits. PMID:25480785
Howlett, A. C.; Abood, M. E.; Alexander, S. P. H.; Di Marzo, V.; Elphick, M. R.; Greasley, P. J.; Hansen, H. S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R. A.
2010-01-01
There are at least two types of cannabinoid receptors (CB1 and CB2). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ9-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB1 and/or CB2 receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel “CB3” cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB1, non-CB2 pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB3 receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB1 receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB1/CB2 receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB1, non-CB2 cannabinoid receptors; and 4) current cannabinoid receptor nomenclature. PMID:21079038
Pertwee, R G; Howlett, A C; Abood, M E; Alexander, S P H; Di Marzo, V; Elphick, M R; Greasley, P J; Hansen, H S; Kunos, G; Mackie, K; Mechoulam, R; Ross, R A
2010-12-01
There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non-CB(2) established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB(1) and/or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2) cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.
Rangel-Yescas, Gisela E; Vazquez-Cuevas, Francisco G; Garay, Edith; Arellano, Rogelio O
2012-01-01
P2X receptors are trimeric, ATP-gated cation channels. In mammals seven P2X subtypes have been reported (P2X1-P2X7), as well as several variants generated by alternative splicing. Variants confer to the homomeric or heteromeric channels distinct functional and/or pharmacological properties. Molecular biology, biochemical, and functional analysis by electrophysiological methods were used to identify and study a new variant of the P2X1 receptor named P2X1b. This new variant, identified in rat optic nerve, was also expressed in other tissues. P2X1b receptors lack amino acids 182 to 208 of native P2X1, a region that includes residues that are highly conserved among distinct P2X receptors. When expressed in Xenopus oocytes, P2X1b was not functional as a homomer; however, when co-expressed with P2X1, it downregulated the electrical response generated by ATP compared with that of oocytes expressing P2X1 alone, and it seemed to form heteromeric channels with a modestly enhanced ATP potency. A decrease in responses to ATP in oocytes co-expressing different ratios of P2X1b to P2X1 was completely eliminated by overnight pretreatment with apyrase. Thus, it is suggested that P2X1b regulates, through a use-dependent mechanism, the availability, in the plasma membrane, of receptor channels that can be operated by ATP.
Jewell, Mark L.; Breyer, Richard M.
2011-01-01
Prostaglandin (PG) E2 controls numerous physiological functions through a family of cognate G protein-coupled receptors (EP1–EP4). Targeting specific EP receptors might be therapeutically useful and reduce side effects associated with nonsteroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors that block prostanoid synthesis. Systemic immune challenge and inflammatory cytokines have been shown to increase expression of the synthetic enzymes for PGE2 in the adrenal gland. Catecholamines and other hormones, released from adrenal chromaffin cells in response to Ca2+ influx through voltage-gated Ca2+ channels, play central roles in homeostatic function and the coordinated stress response. However, long-term elevation of circulating catecholamines contributes to the pathogenesis of hypertension and heart failure. Here, we investigated the EP receptor(s) and cellular mechanisms by which PGE2 might modulate chromaffin cell function. PGE2 did not alter resting intracellular [Ca2+] or the peak amplitude of nicotinic acetylcholine receptor currents, but it did inhibit CaV2 voltage-gated Ca2+ channel currents (ICa). This inhibition was voltage-dependent and mediated by pertussis toxin-sensitive G proteins, consistent with a direct Gβγ subunit-mediated mechanism common to other Gi/o-coupled receptors. mRNA for all four EP receptors was detected, but using selective pharmacological tools and EP receptor knockout mice, we demonstrated that EP3 receptors mediate the inhibition of ICa. Finally, changes in membrane capacitance showed that Ca2+-dependent exocytosis was reduced in parallel with ICa. To our knowledge, this is the first study of EP receptor signaling in mouse chromaffin cells and identifies a molecular mechanism for paracrine regulation of neuroendocrine function by PGE2. PMID:21383044
Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system
Holzer, Peter
2011-01-01
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. PMID:21420431
Kadurin, Ivan; Rothwell, Simon W.; Lana, Beatrice; Nieto-Rostro, Manuela; Dolphin, Annette C.
2017-01-01
Voltage-gated Ca2+ (CaV) channels consist of a pore-forming α1 subunit, which determines the main functional and pharmacological attributes of the channel. The CaV1 and CaV2 channels are associated with auxiliary β- and α2δ-subunits. The molecular mechanisms involved in α2δ subunit trafficking, and the effect of α2δ subunits on trafficking calcium channel complexes remain poorly understood. Here we show that α2δ-1 is a ligand for the Low Density Lipoprotein (LDL) Receptor-related Protein-1 (LRP1), a multifunctional receptor which mediates trafficking of cargoes. This interaction with LRP1 is direct, and is modulated by the LRP chaperone, Receptor-Associated Protein (RAP). LRP1 regulates α2δ binding to gabapentin, and influences calcium channel trafficking and function. Whereas LRP1 alone reduces α2δ-1 trafficking to the cell-surface, the LRP1/RAP combination enhances mature glycosylation, proteolytic processing and cell-surface expression of α2δ-1, and also increase plasma-membrane expression and function of CaV2.2 when co-expressed with α2δ-1. Furthermore RAP alone produced a small increase in cell-surface expression of CaV2.2, α2δ-1 and the associated calcium currents. It is likely to be interacting with an endogenous member of the LDL receptor family to have these effects. Our findings now provide a key insight and new tools to investigate the trafficking of calcium channel α2δ subunits. PMID:28256585
The N-terminal domain of GluR6-subtype glutamate receptor ion channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Janesh; Schuck, Peter; Jin, Rongsheng
2009-09-25
The amino-terminal domain (ATD) of glutamate receptor ion channels, which controls their selective assembly into AMPA, kainate and NMDA receptor subtypes, is also the site of action of NMDA receptor allosteric modulators. Here we report the crystal structure of the ATD from the kainate receptor GluR6. The ATD forms dimers in solution at micromolar protein concentrations and crystallizes as a dimer. Unexpectedly, each subunit adopts an intermediate extent of domain closure compared to the apo and ligand-bound complexes of LIVBP and G protein-coupled glutamate receptors (mGluRs), and the dimer assembly has a markedly different conformation from that found in mGluRs.more » This conformation is stabilized by contacts between large hydrophobic patches in the R2 domain that are absent in NMDA receptors, suggesting that the ATDs of individual glutamate receptor ion channels have evolved into functionally distinct families.« less
Ezak , Meredith J.; Hong , Elizabeth; Chaparro-Garcia , Angela; Ferkey , Denise M.
2010-01-01
Olfaction and some forms of taste (including bitter) are mediated by G protein-coupled signal transduction pathways. Olfactory and gustatory ligands bind to chemosensory G protein-coupled receptors (GPCRs) in specialized sensory cells to activate intracellular signal transduction cascades. G protein-coupled receptor kinases (GRKs) are negative regulators of signaling that specifically phosphorylate activated GPCRs to terminate signaling. Although loss of GRK function usually results in enhanced cellular signaling, Caenorhabditis elegans lacking GRK-2 function are not hypersensitive to chemosensory stimuli. Instead, grk-2 mutant animals do not chemotax toward attractive olfactory stimuli or avoid aversive tastes and smells. We show here that loss-of-function mutations in the transient receptor potential vanilloid (TRPV) channels OSM-9 and OCR-2 selectively restore grk-2 behavioral avoidance of bitter tastants, revealing modality-specific mechanisms for TRPV channel function in the regulation of C. elegans chemosensation. Additionally, a single amino acid point mutation in OCR-2 that disrupts TRPV channel-mediated gene expression, but does not decrease channel function in chemosensory primary signal transduction, also restores grk-2 bitter taste avoidance. Thus, loss of GRK-2 function may lead to changes in gene expression, via OSM-9/OCR-2, to selectively alter the levels of signaling components that transduce or regulate bitter taste responses. Our results suggest a novel mechanism and multiple modality-specific pathways that sensory cells employ in response to aberrant signal transduction. PMID:20176974
Functional Annotation of Ion Channel Structures by Molecular Simulation.
Trick, Jemma L; Chelvaniththilan, Sivapalan; Klesse, Gianni; Aryal, Prafulla; Wallace, E Jayne; Tucker, Stephen J; Sansom, Mark S P
2016-12-06
Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT 3 R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT 3 R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
The use of dwell time cross-correlation functions to study single-ion channel gating kinetics.
Ball, F G; Kerry, C J; Ramsey, R L; Sansom, M S; Usherwood, P N
1988-01-01
The derivation of cross-correlation functions from single-channel dwell (open and closed) times is described. Simulation of single-channel data for simple gating models, alongside theoretical treatment, is used to demonstrate the relationship of cross-correlation functions to underlying gating mechanisms. It is shown that time irreversibility of gating kinetics may be revealed in cross-correlation functions. Application of cross-correlation function analysis to data derived from the locust muscle glutamate receptor-channel provides evidence for multiple gateway states and time reversibility of gating. A model for the gating of this channel is used to show the effect of omission of brief channel events on cross-correlation functions. PMID:2462924
Törnquist, Kid; Sukumaran, Pramod; Kemppainen, Kati; Löf, Christoffer; Viitanen, Tero
2014-11-01
In addition to the TSH-cyclic AMP signalling pathway, calcium signalling is of crucial importance in thyroid cells. Although the importance of calcium signalling has been thoroughly investigated for several decades, the nature of the calcium channels involved in signalling is unknown. In a recent series of investigations using the well-studied rat thyroid FRTL-5 cell line, we showed that these cells exclusively express the transient receptor potential canonical 2 (TRPC2) channel. Our results suggested that the TRPC2 channel is of significant importance in regulating thyroid cell function. These investigations were the first to show that thyroid cells express a member of the TRPC family of ion channels. In this review, we will describe the importance of the TRPC2 channel in regulating TSH receptor expression, thyroglobulin maturation, intracellular calcium and iodide homeostasis and that the channel also regulates thyroid cell proliferation.
Effects of Volatile Aromatic Anesthetics on Voltage-Gated Na+ Channels Expressed in Xenopus Oocytes
Horishita, Takafumi; Eger, Edmond I; Harris, R. Adron
2008-01-01
Background Many inhaled anesthetics inhibit voltage-gated sodium channels at clinically relevant concentrations, and suppression of neurotransmitter release by these agents results, at least partly, from decreased presynaptic sodium channel activity. Volatile aromatic anesthetics can inhibit N-methyl-D-aspartate (NMDA) receptor function and enhance γ-amino butyric acid A (GABAA) receptor function, but these effects depend strongly on the chemical properties of the aromatic ompounds. The present study tested whether diverse aromatic anesthetics consistently inhibit sodium channel function. Methods We studied the effect of eight aromatic anesthetics on Nav1.2 sodium channels with β1 subunits, using whole-cell, two-electrode voltage-clamp techniques in Xenopus oocytes. Results All aromatic anesthetics inhibited INa (sodium currents) at a holding potential which produce half-maximal current (V1/2) (partial depolarization); inhibition was modest with 1,3,5-trifluorobenzene (8 ± 2%), pentafluorobenzene (13 ± 2%), and hexafluorobenzene (13 ± 2%), but greater with benzene (37 ± 2%), fluorobenzene (39 ± 2%), 1,2-difluorobenzene (48 ± 2%), 1,4-difluorobenzene (31 ± 3%), and 1,2,4-trifluorobenzene (33 ± 1%). Such dichotomous effects were noted by others for NMDA and GABAA receptors. Parallel, but much smaller inhibition, was found for INa at a holding potential which produced near maximal current (−90 mV) (VH-90), and hexafluorobenzene caused small (6 ± 1%) potentiation of this current. These changes in sodium channel function were correlated with effectiveness for inhibiting NMDA receptors, with lipid solubility of the compounds, with molecular volume, and with cation-π interactions. Conclusion Aromatic compounds vary in their actions on the kinetics of sodium channel gating and this may underlie their variable inhibition. The range of inhibition produced by MAC concentrations of inhaled anesthetics indicates that sodium channel inhibition may underlie the action of some of these anesthetics but not others. PMID:18931215
NASA Astrophysics Data System (ADS)
Miledi, Ricardo; Eusebi, Fabrizio; Martínez-Torres, Ataúlfo; Palma, Eleonora; Trettel, Flavia
2002-10-01
The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to -aminobutyric acid, -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders.
Comitani, Federico; Melis, Claudio; Molteni, Carla
2015-04-01
Pentameric ligand-gated ion channels (pLGICs) are important biomolecules that mediate fast synaptic transmission. Their malfunctions are linked to serious neuronal disorders and they are major pharmaceutical targets; in invertebrates, they are involved in insecticide resistance. The complexity of pLGICs and the limited crystallographic information available prevent a detailed understanding of how they function. State-of-the-art computational techniques are therefore crucial to build an accurate picture at the atomic level of the mechanisms which drive the activation of pLGICs, complementing the available experimental data. We have used a series of simulation methods, including homology modelling, ligand-protein docking, density functional theory, molecular dynamics and metadynamics, a powerful scheme for accelerating rare events, with the guidance of mutagenesis electrophysiology experiments, to explore ligand-binding mechanisms, the effects of mutations and the potential role of a proline molecular switch for the gating of the ion channels. Results for the insect RDL receptor, the GABAC receptor, the 5-HT3 receptor and the nicotinic acetylcholine receptor will be reviewed.
The role of transient receptor potential channels in joint diseases.
Krupkova, O; Zvick, J; Wuertz-Kozak, K
2017-10-10
Transient receptor potential channels (TRP channels) are cation selective transmembrane receptors with diverse structures, activation mechanisms and physiological functions. TRP channels act as cellular sensors for a plethora of stimuli, including temperature, membrane voltage, oxidative stress, mechanical stimuli, pH and endogenous, as well as, exogenous ligands, thereby illustrating their versatility. As such, TRP channels regulate various functions in both excitable and non-excitable cells, mainly by mediating Ca2+ homeostasis. Dysregulation of TRP channels is implicated in many pathologies, including cardiovascular diseases, muscular dystrophies and hyperalgesia. However, the importance of TRP channel expression, physiological function and regulation in chondrocytes and intervertebral disc (IVD) cells is largely unexplored. Osteoarthritis (OA) and degenerative disc disease (DDD) are chronic age-related disorders that significantly affect the quality of life by causing pain, activity limitation and disability. Furthermore, currently available therapies cannot effectively slow-down or stop progression of these diseases. Both OA and DDD are characterised by reduced tissue cellularity, enhanced inflammatory responses and molecular, structural and mechanical alterations of the extracellular matrix, hence affecting load distribution and reducing joint flexibility. However, knowledge on how chondrocytes and IVD cells sense their microenvironment and respond to its changes is still limited. In this review, we introduced six families of mammalian TRP channels, their mechanisms of activation, as well as, activation-driven cellular consequences. We summarised the current knowledge on TRP channel expression and activity in chondrocytes and IVD cells, as well as, the significance of TRP channels as therapeutic targets for the treatment of OA and DDD.
Martin, Gregory M.; Rex, Emily A.; Devaraneni, Prasanna; Denton, Jerod S.; Boodhansingh, Kara E.; DeLeon, Diva D.; Stanley, Charles A.; Shyng, Show-Ling
2016-01-01
ATP-sensitive potassium (KATP) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of KATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by KATP channel openers. Cross-linking experiments showed that KATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the KATP channel opener diazoxide. Our study expands the list of KATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. PMID:27573238
2013-01-01
This review aims to create an overview of the currently available results of site-directed mutagenesis studies on transient receptor potential vanilloid type 1 (TRPV1) receptor. Systematization of the vast number of data on the functionally important amino acid mutations of TRPV1 may provide a clearer picture of this field, and may promote a better understanding of the relationship between the structure and function of TRPV1. The review summarizes information on 112 unique mutated sites along the TRPV1, exchanged to multiple different residues in many cases. These mutations influence the effect or binding of different agonists, antagonists, and channel blockers, alter the responsiveness to heat, acid, and voltage dependence, affect the channel pore characteristics, and influence the regulation of the receptor function by phosphorylation, glycosylation, calmodulin, PIP2, ATP, and lipid binding. The main goal of this paper is to publish the above mentioned data in a form that facilitates in silico molecular modelling of the receptor by promoting easier establishment of boundary conditions. The better understanding of the structure-function relationship of TRPV1 may promote discovery of new, promising, more effective and safe drugs for treatment of neurogenic inflammation and pain-related diseases and may offer new opportunities for therapeutic interventions. PMID:23800232
Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert
2011-04-01
The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges.
Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert
2011-01-01
Abstract The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges. PMID:21300746
Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3
Liu, Beiying; Qin, Feng
2017-01-01
Thermal transient receptor potential (TRP) channels, a group of ion channels from the transient receptor potential family, play important functions in pain and thermal sensation. These channels are directly activated by temperature and possess strong temperature dependence. Furthermore, their temperature sensitivity can be highly dynamic and use-dependent. For example, the vanilloid receptor transient receptor potential 3 (TRPV3), which has been implicated as a warmth detector, becomes responsive to warm temperatures only after intensive stimulation. Upon initial activation, the channel exhibits a high-temperature threshold in the noxious temperature range above 50 °C. This use dependence of heat sensitivity thus provides a mechanism for sensitization of thermal channels. However, how the channels acquire the use dependence remains unknown. Here, by comparative studies of chimeric channels between use-dependent and use-independent homologs, we have determined the molecular basis that underlies the use dependence of temperature sensitivity of TRPV3. Remarkably, the restoration of a single residue that is apparently missing in the use-dependent homologs could largely eliminate the use dependence of heat sensitivity of TRPV3. The location of the region suggests a mechanism of temperature-dependent gating of thermal TRP channels involving an intracellular region assembled around the TRP domain. PMID:28154143
GABA(C) receptors: a molecular view.
Enz, R
2001-08-01
In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacological and electrophysiological properties. The predominant type, termed GABA(A), and a recently identified GABA(C) type, form ligand-gated chloride channels, whereas GABA(B) receptors activate separate cation channels via G proteins. Based on their homology to nicotinic acetylcholine receptors, GABA(C) receptors are believed to be oligomeric protein complexes composed of five subunits in a pentameric arrangement. To date up to five different GABA(C) receptors subunits have been identified in various species. Recent studies have shed new light on the biological characteristics of GABA(C) receptors, including the chromosomal localization of its subunit genes and resulting links to deseases, the cloning of new splice variants, the identification of GABA(C) receptor-associated proteins, the identification of domains involved in subunit assembly, and finally structure/function studies examining functional consequences of introduced mutations. This review summarizes recent data in view of the molecular structure of GABA(C) receptors and presents new insights into the biological function of this protein in the retina.
Heusser, Stephanie A.; Howard, Rebecca J.; Borghese, Cecilia M.; Cullins, Madeline A.; Broemstrup, Torben; Lee, Ui S.; Lindahl, Erik; Carlsson, Jens
2013-01-01
GABAA receptors play a crucial role in the actions of general anesthetics. The recently published crystal structure of the general anesthetic propofol bound to Gloeobacter violaceus ligand-gated ion channel (GLIC), a bacterial homolog of GABAA receptors, provided an opportunity to explore structure-based ligand discovery for pentameric ligand-gated ion channels (pLGICs). We used molecular docking of 153,000 commercially available compounds to identify molecules that interact with the propofol binding site in GLIC. In total, 29 compounds were selected for functional testing on recombinant GLIC, and 16 of these compounds modulated GLIC function. Active compounds were also tested on recombinant GABAA receptors, and point mutations around the presumed binding pocket were introduced into GLIC and GABAA receptors to test for binding specificity. The potency of active compounds was only weakly correlated with properties such as lipophilicity or molecular weight. One compound was found to mimic the actions of propofol on GLIC and GABAA, and to be sensitive to mutations that reduce the action of propofol in both receptors. Mutant receptors also provided insight about the position of the binding sites and the relevance of the receptor’s conformation for anesthetic actions. Overall, the findings support the feasibility of the use of virtual screening to discover allosteric modulators of pLGICs, and suggest that GLIC is a valid model system to identify novel GABAA receptor ligands. PMID:23950219
TRP channel functions in the gastrointestinal tract.
Yu, Xiaoyun; Yu, Mingran; Liu, Yingzhe; Yu, Shaoyong
2016-05-01
Transient receptor potential (TRP) channels are predominantly distributed in both somatic and visceral sensory nervous systems and play a crucial role in sensory transduction. As the largest visceral organ system, the gastrointestinal (GI) tract frequently accommodates external inputs, which stimulate sensory nerves to initiate and coordinate sensory and motor functions in order to digest and absorb nutrients. Meanwhile, the sensory nerves in the GI tract are also able to detect potential tissue damage by responding to noxious irritants. This nocifensive function is mediated through specific ion channels and receptors expressed in a subpopulation of spinal and vagal afferent nerve called nociceptor. In the last 18 years, our understanding of TRP channel expression and function in GI sensory nervous system has been continuously improved. In this review, we focus on the expressions and functions of TRPV1, TRPA1, and TRPM8 in primary extrinsic afferent nerves innervated in the esophagus, stomach, intestine, and colon and briefly discuss their potential roles in relevant GI disorders.
Vector-averaged gravity does not alter acetylcholine receptor single channel properties
NASA Technical Reports Server (NTRS)
Reitstetter, R.; Gruener, R.
1994-01-01
To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.
Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import
Buchanan, Susan K; Lukacik, Petra; Grizot, Sylvestre; Ghirlando, Rodolfo; Ali, Maruf M U; Barnard, Travis J; Jakes, Karen S; Kienker, Paul K; Esser, Lothar
2007-01-01
Colicin Ia is a 69 kDa protein that kills susceptible Escherichia coli cells by binding to a specific receptor in the outer membrane, colicin I receptor (70 kDa), and subsequently translocating its channel forming domain across the periplasmic space, where it inserts into the inner membrane and forms a voltage-dependent ion channel. We determined crystal structures of colicin I receptor alone and in complex with the receptor binding domain of colicin Ia. The receptor undergoes large and unusual conformational changes upon colicin binding, opening at the cell surface and positioning the receptor binding domain of colicin Ia directly above it. We modelled the interaction with full-length colicin Ia to show that the channel forming domain is initially positioned 150 Å above the cell surface. Functional data using full-length colicin Ia show that colicin I receptor is necessary for cell surface binding, and suggest that the receptor participates in translocation of colicin Ia across the outer membrane. PMID:17464289
Fang, Xiao-Qian; Qiao, Haifa; Groveman, Bradley R; Feng, Shuang; Pflueger, Melissa; Xin, Wen-Kuan; Ali, Mohammad K; Lin, Shuang-Xiu; Xu, Jindong; Duclot, Florian; Kabbaj, Mohamed; Wang, Wei; Ding, Xin-Sheng; Santiago-Sim, Teresa; Jiang, Xing-Hong; Salter, Michael W; Yu, Xian-Min
2015-11-19
Constitutive and regulated internalization of cell surface proteins has been extensively investigated. The regulated internalization has been characterized as a principal mechanism for removing cell-surface receptors from the plasma membrane, and signaling to downstream targets of receptors. However, so far it is still not known whether the functional properties of remaining (non-internalized) receptor/channels may be regulated by internalization of the same class of receptor/channels. The N-methyl-D-aspartate receptor (NMDAR) is a principal subtype of glutamate-gated ion channel and plays key roles in neuronal plasticity and memory functions. NMDARs are well-known to undergo two types of regulated internalization - homologous and heterologous, which can be induced by high NMDA/glycine and DHPG, respectively. In the present work, we investigated effects of regulated NMDAR internalization on the activity of residual cell-surface NMDARs and neuronal functions. In electrophysiological experiments we discovered that the regulated internalization of NMDARs not only reduced the number of cell surface NMDARs but also caused an inhibition of the activity of remaining (non-internalized) surface NMDARs. In biochemical experiments we identified that this functional inhibition of remaining surface NMDARs was mediated by increased serine phosphorylation of surface NMDARs, resulting from the activation of protein kinase D1 (PKD1). Knockdown of PKD1 did not affect NMDAR internalization but prevented the phosphorylation and inhibition of remaining surface NMDARs and NMDAR-mediated synaptic functions. These data demonstrate a novel concept that regulated internalization of cell surface NMDARs not only reduces the number of NMDARs on the cell surface but also causes an inhibition of the activity of remaining surface NMDARs through intracellular signaling pathway(s). Furthermore, modulating the activity of remaining surface receptors may be an effective approach for treating receptor internalization-induced changes in neuronal functions of the CNS.
Analysis of odorant receptor protein function in the yellow fever mosquito, aedes aegypti
USDA-ARS?s Scientific Manuscript database
Odorant receptors (ORs) in insects are ligand-gated ion channels comprised of two subunits: a variable receptor and an obligatory co-receptor (Orco). This protein receptor complex of unknown stoichiometry interacts with an odor molecule leading to changes in permeability of the sensory dendrite, th...
Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system.
Holzer, Peter
2011-07-01
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. Copyright © 2011 Elsevier Inc. All rights reserved.
Ionotropic glutamate receptors: regulation by G-protein-coupled receptors.
Rojas, Asheebo; Dingledine, Raymond
2013-04-01
The function of many ion channels is under dynamic control by coincident activation of G-protein-coupled receptors (GPCRs), particularly those coupled to the Gαs and Gαq family members. Such regulation is typically dependent on the subunit composition of the ionotropic receptor or channel as well as the GPCR subtype and the cell-specific panoply of signaling pathways available. Because GPCRs and ion channels are so highly represented among targets of U.S. Food and Drug Administration-approved drugs, functional cross-talk between these drug target classes is likely to underlie many therapeutic and adverse effects of marketed drugs. GPCRs engage a myriad of signaling pathways that involve protein kinases A and C (PKC) and, through PKC and interaction with β-arrestin, Src kinase, and hence the mitogen-activated-protein-kinase cascades. We focus here on the control of ionotropic glutamate receptor function by GPCR signaling because this form of regulation can influence the strength of synaptic plasticity. The amino acid residues phosphorylated by specific kinases have been securely identified in many ionotropic glutamate (iGlu) receptor subunits, but which of these sites are GPCR targets is less well known even when the kinase has been identified. N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and heteromeric kainate receptors are all downstream targets of GPCR signaling pathways. The details of GPCR-iGlu receptor cross-talk should inform a better understanding of how synaptic transmission is regulated and lead to new therapeutic strategies for neuropsychiatric disorders.
Epinephrine stimulation of anion secretion in the Calu-3 serous cell model
Banga, Amiraj; Flaig, Stephanie; Lewis, Shanta; Winfree, Seth
2014-01-01
Calu-3 is a well-differentiated human bronchial cell line with the characteristics of the serous cells of airway submucosal glands. The submucosal glands play a major role in mucociliary clearance because they secrete electrolytes that facilitate airway hydration. Given the significance of both long- and short-term β-adrenergic receptor agonists in the treatment of respiratory diseases, it is important to determine the role of these receptors and their ligands in normal physiological function. The present studies were designed to characterize the effect of epinephrine, the naturally occurring β-adrenergic receptor agonist, on electrolyte transport of the airway serous cells. Interestingly, epinephrine stimulated two anion secretory channels, the cystic fibrosis transmembrane conductance regulator and a Ca2+-activated Cl− channel, with the characteristics of transmembrane protein 16A, thereby potentially altering mucociliary clearance via multiple channels. Consistent with the dual channel activation, epinephrine treatment resulted in increases in both intracellular cAMP and Ca2+. Furthermore, the present results extend previous reports indicating that the two anion channels are functionally linked. PMID:24705724
Phosphorylation-Dependent Regulation of Ryanodine Receptors
Marx, Steven O.; Reiken, Steven; Hisamatsu, Yuji; Gaburjakova, Marta; Gaburjakova, Jana; Yang, Yi-Ming; Rosemblit, Nora; Marks, Andrew R.
2001-01-01
Ryanodine receptors (RyRs), intracellular calcium release channels required for cardiac and skeletal muscle contraction, are macromolecular complexes that include kinases and phosphatases. Phosphorylation/dephosphorylation plays a key role in regulating the function of many ion channels, including RyRs. However, the mechanism by which kinases and phosphatases are targeted to ion channels is not well understood. We have identified a novel mechanism involved in the formation of ion channel macromolecular complexes: kinase and phosphatase targeting proteins binding to ion channels via leucine/isoleucine zipper (LZ) motifs. Activation of kinases and phosphatases bound to RyR2 via LZs regulates phosphorylation of the channel, and disruption of kinase binding via LZ motifs prevents phosphorylation of RyR2. Elucidation of this new role for LZs in ion channel macromolecular complexes now permits: (a) rapid mapping of kinase and phosphatase targeting protein binding sites on ion channels; (b) predicting which kinases and phosphatases are likely to regulate a given ion channel; (c) rapid identification of novel kinase and phosphatase targeting proteins; and (d) tools for dissecting the role of kinases and phosphatases as modulators of ion channel function. PMID:11352932
2015-09-01
results in increased activity/expression of key pain-sensing receptor channels, such as TRPV1 , such that the channels are constitutively activated...Keywords: Prostate Cancer Bone Metastasis, Bone Cancer Pain, Heterotrimeric G protein betagamma subunits, G protein coupled receptors (GPCRs), TRPV1 ...vitro, as well as mediating GPCR-regulated TRPV1 channel function in cultured mouse sensory neurons (Aim 1) Major Goal/Objective 1: Determine the
2014-07-01
sensing receptor channels, such as TRPV1 , such that the channels are constitutively activated, leading to the sensation of chronic pain without any...Cancer Pain, Heterotrimeric G protein betagamma subunits, G protein coupled receptors (GPCRs), TRPV1 , Nociceptor Sensitization 3. Overall project...well as mediating GPCR-regulated TRPV1 channel function in cultured mouse sensory neurons (Aim 1). Major Goal/Objective 1: Determine the role of G
2013-07-01
results in increased activity/expression of key pain-sensing receptor channels, such as TRPV1 , such that the channels are constitutively activated...Keywords: Prostate Cancer Bone Metastasis, Bone Cancer Pain, Heterotrimeric G protein betagamma subunits, G protein coupled receptors (GPCRs), TRPV1 ...cell growth, migration and invasion in vitro, as well as mediating GPCR-regulated TRPV1 channel function in cultured mouse sensory neurons (Aim 1
The Physiology and Biochemistry of Receptors.
ERIC Educational Resources Information Center
Spitzer, Judy A., Ed.
1983-01-01
The syllabus for a refresher course on the physiology and biochemistry of receptors (presented at the 1983 American Physiological Society meeting) is provided. Topics considered include receptor regulation, structural/functional aspects of receptors for insulin and insulin-like growth factors, calcium channel inhibitors, and role of lipoprotein…
GABA receptors and T-type Ca2+ channels crosstalk in thalamic networks.
Leresche, Nathalie; Lambert, Régis C
2017-06-07
Although the thalamus presents a rather limited repertoire of GABAergic cell types compare to other CNS area, this structure is a privileged system to study how GABA impacts neuronal network excitability. Indeed both glutamatergic thalamocortical (TC) and GABAergic nucleus reticularis thalami (NRT) neurons present a high expression of T-type voltage-dependent Ca 2+ channels whose activation that shapes the output of the thalamus critically depends upon a preceding hyperpolarisation. Because of this strict dependence, a tight functional link between GABA mediated hyperpolarization and T-currents characterizes the thalamic network excitability. In this review we summarize a number of studies showing that the relationships between the various thalamic GABA A/B receptors and T-channels are complex and bidirectional. We discuss how this dynamic interaction sets the global intrathalamic network activity and its long-term plasticity and highlight how the functional relationship between GABA release and T-channel-dependent excitability is finely tuned by the T-channel activation itself. Finally, we illustrate how an impaired balance between T-channels and GABA receptors can lead to pathologically abnormal cellular and network behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.
Receptors, channels, and signalling in the urothelial sensory system in the bladder
Merrill, Liana; Gonzalez, Eric J.; Girard, Beatrice M.; Vizzard, Margaret A.
2017-01-01
The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation. PMID:26926246
Gnanasekaran, Aswini; Bele, Tanja; Hullugundi, Swathi; Simonetti, Manuela; Ferrari, Michael D; van den Maagdenberg, Arn M J M; Nistri, Andrea; Fabbretti, Elsa
2013-12-02
ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine.
Engelke, Michael; Friedrich, Olaf; Budde, Petra; Schäfer, Christina; Niemann, Ursula; Zitt, Christof; Jüngling, Eberhard; Rocks, Oliver; Lückhoff, Andreas; Frey, Jürgen
2002-07-17
Transient receptor potential proteins (TRP) are supposed to participate in the formation of store-operated Ca(2+) influx channels by co-assembly. However, little is known which domains facilitate the interaction of subunits. Contribution of the N-terminal coiled-coil domain and ankyrin-like repeats and the putative pore region of the mouse TRP1beta (mTRP1beta) variant to the formation of functional cation channels were analyzed following overexpression in HEK293 (human embryonic kidney) cells. MTRP1beta expressing cells exhibited enhanced Ca(2+) influx and enhanced whole-cell membrane currents compared to mTRP1beta deletion mutants. Using a yeast two-hybrid assay only the coiled-coil domain facilitated homodimerization of the N-terminus. These results suggest that the N-terminus of mTRP1beta is required for structural organization thus forming functional channels.
Modulation of Gardos channel activity by cytokines in sickle erythrocytes.
Rivera, Alicia; Jarolim, Petr; Brugnara, Carlo
2002-01-01
It has recently been shown that the Gardos channel activity of mouse erythrocytes can be modified by endothelins, suggesting a functional linkage between endothelin receptors and the Gardos channel. Using (86)Rubidium ((86)Rb) influx, effects were estimated of proinflammatory molecules such as platelet activator factor (PAF), endothelin-1 (ET-1), interleukin-10 (IL-10), and regulated on activation normal T cells expressed and secreted (RANTES) on the Gardos channel activity in human normal and sickle red cells. It was found that PAF (EC(50): 15 +/- 7 nM), RANTES (EC(50), 9 +/- 6 ng/mL [1.2 +/- 0.8 nM]), IL-10 (EC(50), 11 +/- 8 ng/mL [204 +/- 148 nM]), and ET-1 (EC(50), 123 +/- 34 nM) induce a significant increase in Gardos channel activity-between 28% and 84%-over the control. In addition, these agents modify the Gardos channel affinity for internal Ca(++) (K(0.5)) by 2- to 6-fold. Biochemical evidence is provided for the presence of ET receptor subtype B in sickle and normal red cells. Furthermore, it was found that ET-1, PAF, RANTES, and IL-10 induce a significant increase in red cell density (P <.05). These data suggest that activation of the Gardos channel is functionally coupled to receptor motifs such as C-X-C (PAF), C-C (RANTES), and ET receptor subtype B. Thus, cell volume regulation or erythrocyte hydration states might be altered by activation of the Gardos channel by cytokines in vivo. The role of these mediators in promoting sickle cell dehydration in vivo is under investigation.
Martin, Gregory M; Rex, Emily A; Devaraneni, Prasanna; Denton, Jerod S; Boodhansingh, Kara E; DeLeon, Diva D; Stanley, Charles A; Shyng, Show-Ling
2016-10-14
ATP-sensitive potassium (K ATP ) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of K ATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by K ATP channel openers. Cross-linking experiments showed that K ATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the K ATP channel opener diazoxide. Our study expands the list of K ATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Pottosin, Igor; Delgado-Enciso, Iván; Bonales-Alatorre, Edgar; Nieto-Pescador, María G; Moreno-Galindo, Eloy G; Dobrovinskaya, Oxana
2015-01-01
Mechanosensitive channels are present in almost every living cell, yet the evidence for their functional presence in T lymphocytes is absent. In this study, by means of the patch-clamp technique in attached and inside-out modes, we have characterized cationic channels, rapidly activated by membrane stretch in Jurkat T lymphoblasts. The half-activation was achieved at a negative pressure of ~50mm Hg. In attached mode, single channel currents displayed an inward rectification and the unitary conductance of ~40 pS at zero command voltage. In excised inside-out patches the rectification was transformed to an outward one. Mechanosensitive channels weakly discriminated between mono- and divalent cations (PCa/PNa~1) and were equally permeable for Ca²⁺ and Mg²⁺. Pharmacological analysis showed that the mechanosensitive channels were potently blocked by amiloride (1mM) and Gd³⁺ (10 μM) in a voltage-dependent manner. They were also almost completely blocked by ruthenium red (1 μM) and SKF 96365 (250 μM), inhibitors of transient receptor potential vanilloid 2 (TRPV2) channels. At the same time, the channels were insensitive to 2-aminoethoxydiphenyl borate (2-APB, 100 μM) or N-(p-amylcinnamoyl)anthranilic acid (ACA, 50 μM), antagonists of transient receptor potential canonical (TRPC) or transient receptor potential melastatin (TRPM) channels, respectively. Human TRPV2 siRNA virtually abolished the stretch-activated current. TRPV2 are channels with multifaceted functions and regulatory mechanisms, with potentially important roles in the lymphocyte Ca²⁺ signaling. Implications of their regulation by mechanical stress are discussed in the context of lymphoid cells functions. Copyright © 2014 Elsevier B.V. All rights reserved.
Shim, Jaewon; Han, Woongsu; Lee, Jinu; Bae, Yong Chul; Chung, Yun Doo; Kim, Chul Hoon; Moon, Seok Jun
2013-01-01
Mechanically gated ion channels convert sound into an electrical signal for the sense of hearing. In Drosophila melanogaster, several transient receptor potential (TRP) channels have been implicated to be involved in this process. TRPN (NompC) and TRPV (Inactive) channels are localized in the distal and proximal ciliary zones of auditory receptor neurons, respectively. This segregated ciliary localization suggests distinct roles in auditory transduction. However, the regulation of this localization is not fully understood. Here we show that the Drosophila Tubby homolog, King tubby (hereafter called dTULP) regulates ciliary localization of TRPs. dTULP-deficient flies show uncoordinated movement and complete loss of sound-evoked action potentials. Inactive and NompC are mislocalized in the cilia of auditory receptor neurons in the dTulp mutants, indicating that dTULP is required for proper cilia membrane protein localization. This is the first demonstration that dTULP regulates TRP channel localization in cilia, and suggests that dTULP is a protein that regulates ciliary neurosensory functions. PMID:24068974
Slack, Slick, and Sodium-Activated Potassium Channels
Kaczmarek, Leonard K.
2013-01-01
The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675
Optical control of trimeric P2X receptors and acid-sensing ion channels.
Browne, Liam E; Nunes, João P M; Sim, Joan A; Chudasama, Vijay; Bragg, Laricia; Caddick, Stephen; North, R Alan
2014-01-07
P2X receptors are trimeric membrane proteins that function as ion channels gated by extracellular ATP. We have engineered a P2X2 receptor that opens within milliseconds by irradiation at 440 nm, and rapidly closes at 360 nm. This requires bridging receptor subunits via covalent attachment of 4,4'-bis(maleimido)azobenzene to a cysteine residue (P329C) introduced into each second transmembrane domain. The cis-trans isomerization of the azobenzene pushes apart the outer ends of the transmembrane helices and opens the channel in a light-dependent manner. Light-activated channels exhibited similar unitary currents, rectification, calcium permeability, and dye uptake as P2X2 receptors activated by ATP. P2X3 receptors with an equivalent mutation (P320C) were also light sensitive after chemical modification. They showed typical rapid desensitization, and they could coassemble with native P2X2 subunits in pheochromocytoma cells to form light-activated heteromeric P2X2/3 receptors. A similar approach was used to open and close human acid-sensing ion channels (ASICs), which are also trimers but are unrelated in sequence to P2X receptors. The experiments indicate that the opening of the permeation pathway requires similar and substantial movements of the transmembrane helices in both P2X receptors and ASICs, and the method will allow precise optical control of P2X receptors or ASICs in intact tissues.
Optical control of trimeric P2X receptors and acid-sensing ion channels
Browne, Liam E.; Nunes, João P. M.; Sim, Joan A.; Chudasama, Vijay; Bragg, Laricia; Caddick, Stephen; Alan North, R.
2014-01-01
P2X receptors are trimeric membrane proteins that function as ion channels gated by extracellular ATP. We have engineered a P2X2 receptor that opens within milliseconds by irradiation at 440 nm, and rapidly closes at 360 nm. This requires bridging receptor subunits via covalent attachment of 4,4'-bis(maleimido)azobenzene to a cysteine residue (P329C) introduced into each second transmembrane domain. The cis–trans isomerization of the azobenzene pushes apart the outer ends of the transmembrane helices and opens the channel in a light-dependent manner. Light-activated channels exhibited similar unitary currents, rectification, calcium permeability, and dye uptake as P2X2 receptors activated by ATP. P2X3 receptors with an equivalent mutation (P320C) were also light sensitive after chemical modification. They showed typical rapid desensitization, and they could coassemble with native P2X2 subunits in pheochromocytoma cells to form light-activated heteromeric P2X2/3 receptors. A similar approach was used to open and close human acid-sensing ion channels (ASICs), which are also trimers but are unrelated in sequence to P2X receptors. The experiments indicate that the opening of the permeation pathway requires similar and substantial movements of the transmembrane helices in both P2X receptors and ASICs, and the method will allow precise optical control of P2X receptors or ASICs in intact tissues. PMID:24367083
From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules
Nasiripourdori, Adak; Taly, Valérie; Grutter, Thomas; Taly, Antoine
2011-01-01
Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted. PMID:22069709
Hristov, Kiril L.; Smith, Amy C.; Parajuli, Shankar P.; Malysz, John; Rovner, Eric S.
2016-01-01
Transient receptor potential melastatin 4 (TRPM4) channels are Ca2+-activated nonselective cation channels that have been recently identified as regulators of detrusor smooth muscle (DSM) function in rodents. However, their expression and function in human DSM remain unexplored. We provide insights into the functional role of TRPM4 channels in human DSM under physiological conditions. We used a multidisciplinary experimental approach, including RT-PCR, Western blotting, immunohistochemistry and immunocytochemistry, patch-clamp electrophysiology, and functional studies of DSM contractility. DSM samples were obtained from patients without preoperative overactive bladder symptoms. RT-PCR detected mRNA transcripts for TRPM4 channels in human DSM whole tissue and freshly isolated single cells. Western blotting and immunohistochemistry with confocal microscopy revealed TRPM4 protein expression in human DSM. Immunocytochemistry further detected TRPM4 protein expression in DSM single cells. Patch-clamp experiments showed that 9-phenanthrol, a selective TRPM4 channel inhibitor, significantly decreased the transient inward cation currents and voltage step-induced whole cell currents in freshly isolated human DSM cells. In current-clamp mode, 9-phenanthrol hyperpolarized the human DSM cell membrane potential. Furthermore, 9-phenanthrol attenuated the spontaneous phasic, carbachol-induced and nerve-evoked contractions in human DSM isolated strips. Significant species-related differences in TRPM4 channel activity between human, rat, and guinea pig DSM were revealed, suggesting a more prominent physiological role for the TRPM4 channel in the regulation of DSM function in humans than in rodents. In conclusion, TRPM4 channels regulate human DSM excitability and contractility and are critical determinants of human urinary bladder function. Thus, TRPM4 channels could represent promising novel targets for the pharmacological or genetic control of overactive bladder. PMID:26791488
Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix
2017-01-01
Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828
von Stein, Richard T.; Silver, Kristopher S.; Soderlund, David M.
2013-01-01
Sodium channel inhibitor (SCI) insecticides were discovered almost four decades ago but have only recently yielded important commercial products (eg., indoxacarb and metaflumizone). SCI insecticides inhibit sodium channel function by binding selectively to slow-inactivated (non-conducting) sodium channel states. Characterization of the action of SCI insecticides on mammalian sodium channels using both biochemical and electrophysiological approaches demonstrates that they bind at or near a drug receptor site, the "local anesthetic (LA) receptor." This mechanism and site of action on sodium channels differentiates SCI insecticides from other insecticidal agents that act on sodium channels. However, SCI insecticides share a common mode of action with drugs currently under investigation as anticonvulsants and treatments for neuropathic pain. In this paper we summarize the development of the SCI insecticide class and the evidence that this structurally diverse group of compounds have a common mode of action on sodium channels. We then review research that has used site-directed mutagenesis and heterologous expression of cloned mammalian sodium channels in Xenopus laevis oocytes to further elucidate the site and mechanism of action of SCI insecticides. The results of these studies provide new insight into the mechanism of action of SCI insecticides on voltage-gated sodium channels, the location of the SCI insecticide receptor, and its relationship to the LA receptor that binds therapeutic SCI agents. PMID:24072940
Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice
USDA-ARS?s Scientific Manuscript database
Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...
Drosophila TRP channels and animal behavior
Fowler, Melissa A.; Montell, Craig
2012-01-01
Multiple classes of cell surface receptors and ion channels participate in the detection of changes in environmental stimuli, and thereby influence animal behavior. Among the many classes of ion channels, Transient Receptor Potential (TRP) cation channels are notable in contributing to virtually every sensory modality, and in controlling a daunting array of behaviors. TRP channels appear to be conserved in all metazoan organisms including worms, insects and humans. Flies encode 13 TRPs, most of which are expressed and function in sensory neurons, and impact behaviors ranging from phototaxis to thermotaxis, gravitaxis, the avoidance of noxious tastants and smells and proprioception. Multiple diseases result from defects in TRPs, and flies provide an excellent animal model for dissecting the mechanisms underlying “TRPopathies.” Drosophila TRPs also function in the sensation of botanically derived insect repellents, and related TRPs in insect pests are potential targets for the development of improved repellents to combat insect-borne diseases. PMID:22877650
Kupferschmidt, David A; Lovinger, David M
2015-01-01
Cortical inputs to the dorsolateral striatum (DLS) are dynamically regulated during skill learning and habit formation, and are dysregulated in disorders characterized by impaired action control. Therefore, a mechanistic investigation of the processes regulating corticostriatal transmission is key to understanding DLS-associated circuit function, behaviour and pathology. Presynaptic GABAB and group II metabotropic glutamate (mGlu2/3) receptors exert marked inhibitory control over corticostriatal glutamate release in the DLS, yet the signalling pathways through which they do so are unclear. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 to assess presynaptic Ca2+ in corticostriatal projections to the DLS. Using simultaneous photometric presynaptic Ca2+ and striatal field potential recordings, we report that relative to P/Q-type Ca2+ channels, N-type channels preferentially contributed to evoked presynaptic Ca2+ influx in motor cortex projections to, and excitatory transmission in, the DLS. Activation of GABAB or mGlu2/3 receptors inhibited both evoked presynaptic Ca2+ transients and striatal field potentials. mGlu2/3 receptor-mediated depression did not require functional N-type Ca2+ channels, but was attenuated by blockade of P/Q-type channels. These findings reveal presynaptic mechanisms of inhibitory modulation of corticostriatal function that probably contribute to the selection and shaping of behavioural repertoires. Key points Plastic changes at cortical inputs to the dorsolateral striatum (DLS) underlie skill learning and habit formation, so characterizing the mechanisms by which these inputs are regulated is important for understanding the neural basis of action control. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 and brain slice photometry to assess evoked presynaptic Ca2+ transients in cortical inputs to the DLS and study their regulation by GABAB and mGlu2/3 receptors. GABAB and mGlu2/3 receptor activation caused clear reductions in electrical stimulus-evoked presynaptic Ca2+ transients in corticostriatal inputs to the DLS. Functional P/Q-type voltage-gated Ca2+ channels were required for the normal inhibitory action of corticostriatal mGlu2/3 receptors. We provide direct evidence of presynaptic Ca2+ inhibition by G protein-coupled receptors at corticostriatal projections. PMID:25781000
Niescierowicz, Katarzyna; Caro, Lydia; Cherezov, Vadim; Vivaudou, Michel; Moreau, Christophe J
2014-01-07
Structural studies of G protein-coupled receptors (GPCRs) extensively use the insertion of globular soluble protein domains to facilitate their crystallization. However, when inserted in the third intracellular loop (i3 loop), the soluble protein domain disrupts their coupling to G proteins and impedes the GPCRs functional characterization by standard G protein-based assays. Therefore, activity tests of crystallization-optimized GPCRs are essentially limited to their ligand binding properties using radioligand binding assays. Functional characterization of additional thermostabilizing mutations requires the insertion of similar mutations in the wild-type receptor to allow G protein-activation tests. We demonstrate that ion channel-coupled receptor technology is a complementary approach for a comprehensive functional characterization of crystallization-optimized GPCRs and potentially of any engineered GPCR. Ligand-induced conformational changes of the GPCRs are translated into electrical signal and detected by simple current recordings, even though binding of G proteins is sterically blocked by the added soluble protein domain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Marine Toxins Targeting Ion Channels
Arias, Hugo R.
2006-01-01
This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs), as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs), are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR), and the ATP-activated (P2XnR) receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+), whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−). In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers) of ion channel functions to treat or to alleviate a specific ion channel-linked disease (e.g., channelopaties).
Parajuli, Shankar P.; Hristov, Kiril L.; Cheng, Qiuping; Malysz, John; Rovner, Eric S.; Petkov, Georgi V.
2014-01-01
Activation of muscarinic acetylcholine receptors (mAChRs) constitutes the primary mechanism for enhancing excitability and contractility of human detrusor smooth muscle (DSM). Since the large conductance Ca2+-activated K+ (KCa1.1) channels are key regulators of human DSM function, we investigated whether mAChR activation increases human DSM excitability by inhibiting KCa1.1 channels. We used the mAChR agonist, carbachol, to determine the changes in KCa1.1 channel activity upon mAChR activation in freshly-isolated human DSM cells obtained from open bladder surgeries using the perforated whole cell and single KCa1.1 channel patch-clamp recordings. Human DSM cells were collected from 29 patients (23 males and 6 females, average age of 65.9±1.5 years). Carbachol inhibited the amplitude and frequency of KCa1.1 channel-mediated spontaneous transient outward currents and spontaneous transient hyperpolarizations, which are triggered by the release of Ca2+ from ryanodine receptors. Carbachol also caused membrane potential depolarization, which was not observed in the presence of iberiotoxin, a KCa1.1 channel inhibitor, indicating the critical role of the KCa1.1 channels. The potential direct carbachol effects on KCa1.1channels were examined under conditions of removing the major cellular Ca2+ sources for KCa1.1 channel activation with pharmacological inhibitors (thapsigargin, ryanodine, and nifedipine). In the presence of these inhibitors, carbachol did not affect the single KCa1.1 channel open probability and mean KCa1.1 channel conductance (cell-attached configuration) or depolarization-induced whole cell steady-state KCa1.1 currents. The data support the concept that mAChR activation triggers indirect functional KCa1.1 channel inhibition mediated by intracellular Ca2+, thus increasing the excitability in human DSM cells. PMID:24867682
Structure and assembly mechanism for heteromeric kainate receptors.
Kumar, Janesh; Schuck, Peter; Mayer, Mark L
2011-07-28
Native glutamate receptor ion channels are tetrameric assemblies containing two or more different subunits. NMDA receptors are obligate heteromers formed by coassembly of two or three divergent gene families. While some AMPA and kainate receptors can form functional homomeric ion channels, the KA1 and KA2 subunits are obligate heteromers which function only in combination with GluR5-7. The mechanisms controlling glutamate receptor assembly involve an initial step in which the amino terminal domains (ATD) assemble as dimers. Here, we establish by sedimentation velocity that the ATDs of GluR6 and KA2 coassemble as a heterodimer of K(d) 11 nM, 32,000-fold lower than the K(d) for homodimer formation by KA2; we solve crystal structures for the GluR6/KA2 ATD heterodimer and heterotetramer assemblies. Using these structures as a guide, we perform a mutant cycle analysis to probe the energetics of assembly and show that high-affinity ATD interactions are required for biosynthesis of functional heteromeric receptors. Copyright © 2011 Elsevier Inc. All rights reserved.
EVALUATING MOLECULAR SITES OF ACTION FOR TOLUENE USING AN IN VIVO MODEL.
In vitro studies have demonstrated that toluene disrupts the function of several ion channels localized in the brain, including the NMDA-glutamate receptor. This has led to the hypothesis that effects on ion channel function may contribute to toluene neurotoxicity, CNS depres...
Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling.
Gelband, C H; Sumners, C; Lu, D; Raizada, M K
1997-10-31
The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.
Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling.
Gelband, C H; Sumners, C; Lu, D; Raizada, M K
1998-02-27
The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.
Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi
2016-01-01
Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca2+-activated K+ (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (I NMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated I NMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on I NMDA-OUT. A direct perfusion of 3,5′-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated I NMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of I NMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516
Ion channels in EEG: isolating channel dysfunction in NMDA receptor antibody encephalitis.
Symmonds, Mkael; Moran, Catherine H; Leite, M Isabel; Buckley, Camilla; Irani, Sarosh R; Stephan, Klaas Enno; Friston, Karl J; Moran, Rosalyn J
2018-06-01
See Roberts and Breakspear (doi:10.1093/brain/awy136) for a scientific commentary on this article.Neurological and psychiatric practice frequently lack diagnostic probes that can assess mechanisms of neuronal communication non-invasively in humans. In N-methyl-d-aspartate (NMDA) receptor antibody encephalitis, functional molecular assays are particularly important given the presence of NMDA antibodies in healthy populations, the multifarious symptomology and the lack of radiological signs. Recent advances in biophysical modelling techniques suggest that inferring cellular-level properties of neural circuits from macroscopic measures of brain activity is possible. Here, we estimated receptor function from EEG in patients with NMDA receptor antibody encephalitis (n = 29) as well as from encephalopathic and neurological patient controls (n = 36). We show that the autoimmune patients exhibit distinct fronto-parietal network changes from which ion channel estimates can be obtained using a microcircuit model. Specifically, a dynamic causal model of EEG data applied to spontaneous brain responses identifies a selective deficit in signalling at NMDA receptors in patients with NMDA receptor antibody encephalitis but not at other ionotropic receptors. Moreover, though these changes are observed across brain regions, these effects predominate at the NMDA receptors of excitatory neurons rather than at inhibitory interneurons. Given that EEG is a ubiquitously available clinical method, our findings suggest a unique re-purposing of EEG data as an assay of brain network dysfunction at the molecular level.
Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling.
Takekura, H; Takeshima, H; Nishimura, S; Takahashi, M; Tanabe, T; Flockerzi, V; Hofmann, F; Franzini-Armstrong, C
1995-10-01
Ryanodine receptors and dihydropyridine receptors are located opposite each other at the junctions between sarcoplasmic reticulum and either the surface membrane or the transverse tubules in skeletal muscle. Ryanodine receptors are the calcium release channels of the sarcoplasmic reticulum and their cytoplasmic domains form the feet, connecting sarcoplasmic reticulum to transverse tubules. Dihydropyridine receptors are L-type calcium channels that act as the voltage sensors of excitation-contraction coupling: they sense surface membrane and transverse tubule depolarization and induce opening of the sarcoplasmic reticulum release channels. In skeletal muscle, ryanodine receptors are arranged in extensive arrays and dihydropyridine receptors are grouped into tetrads, which in turn are associated with the four subunits of ryanodine receptors. The disposition allows for a direct interaction between the two sets of molecules. CHO cells were stably transformed with plasmids for skeletal muscle ryanodine receptors and either the skeletal dihydropyridine receptor, or a skeletal-cardiac dihydropyridine receptor chimera (CSk3) which can functionally substitute for the skeletal dihydropyridine receptor, in addition to plasmids for the alpha 2, beta and gamma subunits. RNA blot hybridization gave positive results for all components. Immunoblots, ryanodine binding, electron microscopy and exposure to caffeine show that the expressed ryanodine receptors forms functional tetrameric channels, which are correctly inserted into the endoplasmic reticulum membrane, and form extensive arrays with the same spacings as in skeletal muscle. Since formation of arrays does not require coexpression of dihydropyridine receptors, we conclude that self-aggregation is an independent property of ryanodine receptors. All dihydropyridine receptor-expressing clones show high affinity binding for dihydropyridine and immunolabelling with antibodies against dihydropyridine receptor. The presence of calcium currents with fast kinetics and immunolabelling for dihydropyridine receptors in the surface membrane of CSk3 clones indicate that CSk3-dihydropyridine receptors are appropriately targeted to the cell's plasmalemma. The expressed skeletal-type dihydropyridine receptors, however, remain mostly located within perinuclear membranes. In cells coexpressing functional dihydropyridine receptors and ryanodine receptors, no junctions between feet-bearing endoplasmic reticulum elements and surface membrane are formed, and dihydropyridine receptors do not assemble into tetrads. A separation between dihydropyridine receptors and ryanodine receptors is not unique to CHO cells, but is found also in cardiac muscle, in muscles of invertebrates and, under certain conditions, in skeletal muscle. We suggest that failure to form junctions in co-transfected CHO cell may be due to lack of an essential protein necessary either for the initial docking of the endoplasmic reticulum to the surface membrane or for maintaining the interaction between dihydropyridine receptors and ryanodine receptors. We also conclude that formation of tetrads requires a close interaction between dihydropyridine receptors and ryanodine receptors.
Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Bergeron, Richard
2007-01-01
The sigma receptor (σR), once considered a subtype of the opioid receptor, is now described as a distinct pharmacological entity. Modulation of N-methyl-d-aspartate receptor (NMDAR) functions by σR-1 ligands is well documented; however, its mechanism is not fully understood. Using patch-clamp whole-cell recordings in CA1 pyramidal cells of rat hippocampus and (+)pentazocine, a high-affinity σR-1 agonist, we found that σR-1 activation potentiates NMDAR responses and long-term potentiation (LTP) by preventing a small conductance Ca2+-activated K+ current (SK channels), known to shunt NMDAR responses, to open. Therefore, the block of SK channels and the resulting increased Ca2+ influx through the NMDAR enhances NMDAR responses and LTP. These results emphasize the importance of the σR-1 as postsynaptic regulator of synaptic transmission. PMID:17068104
Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Bergeron, Richard
2007-01-01
The sigma receptor (sigmaR), once considered a subtype of the opioid receptor, is now described as a distinct pharmacological entity. Modulation of N-methyl-D-aspartate receptor (NMDAR) functions by sigmaR-1 ligands is well documented; however, its mechanism is not fully understood. Using patch-clamp whole-cell recordings in CA1 pyramidal cells of rat hippocampus and (+)pentazocine, a high-affinity sigmaR-1 agonist, we found that sigmaR-1 activation potentiates NMDAR responses and long-term potentiation (LTP) by preventing a small conductance Ca2+-activated K+ current (SK channels), known to shunt NMDAR responses, to open. Therefore, the block of SK channels and the resulting increased Ca2+ influx through the NMDAR enhances NMDAR responses and LTP. These results emphasize the importance of the sigmaR-1 as postsynaptic regulator of synaptic transmission.
Bates, S E; Sansom, M S; Ball, F G; Ramsey, R L; Usherwood, P N
1990-01-01
Gigaohm recordings have been made from glutamate receptor channels in excised, outside-out patches of collagenase-treated locust muscle membrane. The channels in the excised patches exhibit the kinetic state switching first seen in megaohm recordings from intact muscle fibers. Analysis of channel dwell time distributions reveals that the gating mechanism contains at least four open states and at least four closed states. Dwell time autocorrelation function analysis shows that there are at least three gateways linking the open states of the channel with the closed states. A maximum likelihood procedure has been used to fit six different gating models to the single channel data. Of these models, a cooperative model yields the best fit, and accurately predicts most features of the observed channel gating kinetics. PMID:1696510
2013-01-01
Background ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. Results KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. Conclusions We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine. PMID:24294842
Alicia, Sampieri; Angélica, Zepeda; Carlos, Saldaña; Alfonso, Salgado; Vaca, Luis
2008-11-01
While the role of members from the TRPC family of channels as receptor-operated channels (ROC) is well established and supported by numerous studies, the role of this family of channels as store-operated channels (SOC) has been the focus of a heated controversy over the last few years. In the present study, we have explored the modulation of STIM1 on human TRPC1 channel. We show that the association of STIM1 to TRPC1 favors the insertion of TRPC1 into lipid rafts, where TRPC1 functions as a SOC. In the absence of STIM1, TRPC1 associates to other members from the TRPC family of channels to form ROCs. A novel TIRFM-FRET method illustrates the relevance of the dynamic association between STIM1 and TRPC1 for the activation of SOC and the lipid raft localization of the STIM1-TRPC1 complex. This study provides new evidence about the dual activity of TRPC1 (forming ROC or SOC) and the partners needed to determine TRPC1 functional fate. It highlights also the role of plasma membrane microdomains and ER-PM junctions in modulating TRPC1 channel function and its association to STIM1.
G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action.
Lewohl, J M; Wilson, W R; Mayfield, R D; Brozowski, S J; Morrisett, R A; Harris, R A
1999-12-01
G-protein-coupled inwardly rectifying potassium channels (GIRKs) are important for regulation of synaptic transmission and neuronal firing rates. Because of their key role in brain function, we asked if these potassium channels are targets of alcohol action. Ethanol enhanced function of cerebellar granule cell GIRKs coupled to GABAB receptors. Enhancement of GIRK function by ethanol was studied in detail using Xenopus oocytes expressing homomeric or heteromeric channels. Function of all GIRK channels was enhanced by intoxicating concentrations of ethanol, but other, related inwardly rectifying potassium channels were not affected. GIRK2/IRK1 chimeras and GIRK2 truncation mutants were used to identify a region of 43 amino acids in the carboxyl (C) terminus that is critical for the action of ethanol on these channels.
Xiao, Xiong; Liu, Hui-Xia; Shen, Kuo; Cao, Wei; Li, Xiao-Qiang
2017-09-01
The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca 2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.
Zhou, Qing; Verdoorn, Todd A; Lovinger, David M
1998-01-01
5-HT3 receptor-mediated ion current was recorded from NCB-20 neuroblastoma cells using the whole-cell patch-clamp technique. Rapid drug superfusion was used to study the mechanism of alcohol potentiation of 5-HT3 receptor function and to analyse effects of alcohols on receptor-channel kinetics in detail.Trichloroethanol (TCEt) increased in a dose-dependent way the initial slope, 20–80 % rise time and measured desensitization rate of the current induced by low concentrations (1–2 μm) of 5-HT. Ethanol (EtOH) and butanol (ButOH) had similar effects on the 5-HT3 receptor-induced current.TCEt and ButOH decreased the measured desensitization rate of current induced by 10 μm 5-HT, a maximally effective concentration of agonist. These alcohols also increased the relative amplitude of steady state to peak current induced by 2 or 10 μm 5-HT, indicating a possible decrease in the intrinsic rate of desensitization.TCEt also decreased the deactivation rate of the current activated by 2 μm 5-HT after a short pulse of agonist application.Current sweeps generated by 1 μm 5-HT in the presence or absence of 10 mm TCEt or 100 mm EtOH were well fitted using a modified standard kinetic model derived from the nicotinic acetylcholine receptor. This analysis indicated that potentiation by alcohols could be accounted for by increases in the association rate constant coupled with decreases in the dissociation and desensitization rate constants.This study suggests that alcohols potentiate 5-HT3 receptor-mediated current by both increasing the rate of channel activation and stabilizing the open state by decreasing the rates of channel deactivation and desensitization. PMID:9518697
Calcium channels in chicken sperm regulate motility and the acrosome reaction.
Nguyen, Thi Mong Diep; Duittoz, Anne; Praud, Christophe; Combarnous, Yves; Blesbois, Elisabeth
2016-05-01
Intracellular cytoplasmic calcium ([Ca(2+) ]i ) has an important regulatory role in gamete functions. However, the biochemical components involved in Ca(2+) transport are still unknown in birds, an animal class that has lost functional sperm-specific CatSper channels. Here, we provide evidence for the presence and expression of various Ca(2+) channels in chicken sperm, including high voltage-activated channels (L and R types), the store-operated Ca(2+) channel (SOC) component Orai1, the transient receptor potential channel (TRPC1) and inositol-1,4,5-trisphosphate receptors (IP3 R1). L- and R-type channels were mainly localized in the acrosome and the midpiece, and T-type channels were not detected in chicken sperm. Orai1 was found in all compartments, but with a weak, diffuse signal in the flagellum. TRCP1 was mainly localized in the acrosome and the midpiece, but a weak diffuse signal was also observed in the nucleus and the flagellum. IP3 R1 was mainly detected in the nucleus. The L-type channel inhibitor nifedipine, the R-type channel inhibitor SNX-482 and the SOC inhibitors MRS-1845, 2-APB and YM-58483 decreased [Ca(2+) ]i sperm motility and acrosome reaction capability, with the SOC inhibitors inhibiting these functions most efficiently. Furthermore, we showed that Ca(2+) -mediated induction of AMP-activated protein kinase (AMPK) phosphorylation was blocked by SOC inhibition. Our identification of important regulators of Ca(2+) signaling in avian sperm suggests that SOCs play a predominant role in gamete function, whereas T-type channels may not be involved. In addition, Ca(2+) entry via SOCs appears to be the most likely pathway for AMPK activation and energy-requiring sperm functions such as motility and the acrosome reaction. © 2016 Federation of European Biochemical Societies.
Greger, Ingo H; Watson, Jake F; Cull-Candy, Stuart G
2017-05-17
AMPA receptors (AMPARs) are tetrameric ion channels that together with other ionotropic glutamate receptors (iGluRs), the NMDA and kainate receptors, mediate a majority of excitatory neurotransmission in the central nervous system. Whereas NMDA receptors gate channels with slow kinetics, responsible primarily for generating long-term synaptic potentiation and depression, AMPARs are the main fast transduction elements at synapses and are critical for the expression of plasticity. The kinetic and conductance properties of AMPARs are laid down during their biogenesis and are regulated by post-transcriptional RNA editing, splice variation, post-translational modification, and subunit composition. Furthermore, AMPAR assembly, trafficking, and functional heterogeneity depends on a large repertoire of auxiliary subunits-a feature that is particularly striking for this type of iGluR. Here, we discuss how the subunit structure, stoichiometry, and auxiliary subunits generate a heterogeneous plethora of receptors, each tailored to fulfill a vital role in fast synaptic signaling and plasticity. Copyright © 2017 Elsevier Inc. All rights reserved.
Eisenhut, Michael; Wallace, Helen
2011-04-01
Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.
Activation of muscle nicotinic acetylcholine receptor channels by nicotinic and muscarinic agonists
Akk, Gustav; Auerbach, Anthony
1999-01-01
The dose-response parameters of recombinant mouse adult neuromuscular acetylcholine receptor channels (nAChR) activated by carbamylcholine, nicotine, muscarine and oxotremorine were measured. Rate constants for agonist association and dissociation, and channel opening and closing, were estimated from single-channel kinetic analysis.The dissociation equilibrium constants were (mM): ACh (0.16)
Insulin receptor regulates photoreceptor CNG channel activity
Gupta, Vivek K.; Rajala, Ammaji
2012-01-01
Photoreceptor cyclic nucleotide gated (CNG) channels are critical elements in phototransduction and light adaptation. Here we report that insulin receptor (IR), an integral membrane protein, directly phosphorylates the CNGA1 subunit of CNG channels that in turn affects the function of these channels negatively. The IR phosphorylates Tyr498 and Tyr503 residues on CNGA1 that are situated at the membrane-cytoplasmic interface. The IR tyrosine kinase activity is essential for the inhibition of CNG channel. To maintain the channels in an off state, it is necessary not only to have a precise balance of the cGMP levels but also to have a control on the cGMP sensitivity of the CNG channels itself. In this study, we observed that the channel opens at a lower concentration of cGMP in IR−/− mice. These studies suggest that IR regulates the modulation of CNG channel activity in vivo. PMID:23032687
Insulin receptor regulates photoreceptor CNG channel activity.
Gupta, Vivek K; Rajala, Ammaji; Rajala, Raju V S
2012-12-01
Photoreceptor cyclic nucleotide gated (CNG) channels are critical elements in phototransduction and light adaptation. Here we report that insulin receptor (IR), an integral membrane protein, directly phosphorylates the CNGA1 subunit of CNG channels that in turn affects the function of these channels negatively. The IR phosphorylates Tyr(498) and Tyr(503) residues on CNGA1 that are situated at the membrane-cytoplasmic interface. The IR tyrosine kinase activity is essential for the inhibition of CNG channel. To maintain the channels in an off state, it is necessary not only to have a precise balance of the cGMP levels but also to have a control on the cGMP sensitivity of the CNG channels itself. In this study, we observed that the channel opens at a lower concentration of cGMP in IR(-/-) mice. These studies suggest that IR regulates the modulation of CNG channel activity in vivo.
Receptor for protons: First observations on Acid Sensing Ion Channels.
Krishtal, Oleg
2015-07-01
The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'. Copyright © 2015. Published by Elsevier Ltd.
Miller, Melissa; Shi, Jie; Zhu, Yingmin; Kustov, Maksym; Tian, Jin-bin; Stevens, Amy; Wu, Meng; Xu, Jia; Long, Shunyou; Yang, Pu; Zholos, Alexander V.; Salovich, James M.; Weaver, C. David; Hopkins, Corey R.; Lindsley, Craig W.; McManus, Owen; Li, Min; Zhu, Michael X.
2011-01-01
Transient receptor potential canonical (TRPC) channels are Ca2+-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca2+ rise in response to stimulation of mouse TRPC4β by μ-opioid receptors. ML204 inhibited TRPC4β-mediated intracellular Ca2+ rise with an IC50 value of 0.96 μm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4β currents activated through either μ-opioid receptor stimulation or intracellular dialysis of guanosine 5′-3-O-(thio)triphosphate (GTPγS), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10–20 μm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTPγS, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4. PMID:21795696
Khiroug, Serguei S; Harkness, Patricia C; Lamb, Patricia W; Sudweeks, Sterling N; Khiroug, Leonard; Millar, Neil S; Yakel, Jerrel L
2002-01-01
Rat hippocampal interneurons express diverse subtypes of functional nicotinic acetylcholine receptors (nAChRs), including α7-containing receptors that have properties unlike those expected for homomeric α7 nAChRs. We previously reported a strong correlation between expression of the α7 and of the β2 subunits in individual neurons. To explore whether co-assembly of the α7 and β2 subunits might occur, these subunits were co-expressed in Xenopus oocytes and the functional properties of heterologously expressed nAChRs were characterized by two-electrode voltage clamp. Co-expression of the β2 subunit, both wild-type and mutant forms, with the α7 subunit significantly slowed the rate of nAChR desensitization and altered the pharmacological properties. Whereas ACh, carbachol and choline were full or near-full agonists for homomeric α7 receptor channels, both carbachol and choline were only partial agonists in oocytes expressing both α7 and β2 subunits. In addition the EC50 values for all three agonists significantly increased when the β2 subunit was co-expressed with the α7 subunit. Co-expression with the β2 subunit did not result in any significant change in the current-voltage curve. Biochemical evidence for the co-assembly of the α7 and β2 subunits was obtained by co-immunoprecipitation of these subunits from transiently transfected human embryonic kidney (TSA201) cells. These data provide direct biophysical and molecular evidence that the nAChR α7 and β2 subunits co-assemble to form a functional heteromeric nAChR with functional and pharmacological properties different from those of homomeric α7 channels. This co-assembly may help to explain nAChR channel diversity in rat hippocampal interneurons, and perhaps in other areas of the nervous system. PMID:11956333
Herguedas, Beatriz; Krieger, James; Greger, Ingo H
2013-01-01
The composition and spatial arrangement of subunits in ion channels are essential for their function. Diverse stoichiometries are possible in a multitude of channels. These depend upon cell type-specific subunit expression, which can be tuned in a developmentally regulated manner and in response to activity, on subunit stability in the endoplasmic reticulum, intersubunit affinities, and potentially subunit diffusion within the ER membrane. In concert, these parameters shape channel biogenesis and ultimately tune cellular response properties. The complexity of this assembly process is particularly well illustrated by the ionotropic glutamate receptors, the main mediators of excitatory neurotransmission. These tetrameric cation channels predominantly assemble into heteromers, which is "obligatory" for some iGluR subfamilies but "preferential" for others. Here, we discuss recent insights into the rules underlying these two pathways, the role of individual domains based on an ever increasing list of crystal structures, and how these assembly parameters tune assembly across diverse receptor oligomers. Copyright © 2013 Elsevier Inc. All rights reserved.
Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses
Ward, John M.; Mäser, Pascal; Schroeder, Julian I.
2016-01-01
Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100
Plant ion channels: gene families, physiology, and functional genomics analyses.
Ward, John M; Mäser, Pascal; Schroeder, Julian I
2009-01-01
Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.
Channel-Opening Kinetic Mechanism of Wild-Type GluK1 Kainate Receptors and a C-Terminal Mutant
Han, Yan; Wang, Congzhou; Park, Jae Seon; Niu, Li
2012-01-01
GluK1 is a kainate receptor subunit in the ionotropic glutamate receptor family and can form functional channels when expressed, for instance, in HEK-293 cells. However, the channel-opening mechanism of GluK1 is poorly understood. One major challenge to studying the GluK1 channel is its apparent low surface expression, which results in a low whole-cell current response even to a saturating concentration of agonist. The low surface expression is thought to be contributed by an endoplasmic reticulum (ER) retention signal sequence. When this sequence motif is present as in the wild-type GluK1-2b C-terminus, the receptor is significantly retained in the ER. Conversely, when this sequence is lacking, as in wild-type GluK1-2a (i.e., a different alternatively spliced isoform at the C-terminus) and in a GluK1-2b mutant (i.e., R896A, R897A, R900A and K901A) that disrupts the ER retention signal, there is higher surface expression and greater whole-cell current response. Here we characterize the channel-opening kinetic mechanism for these three GluK1 receptors expressed in HEK-293 cells by using a laser-pulse photolysis technique. Our results show that the wild-type GluK1-2a, wild-type GluK1-2b and the mutant GluK1-2b have identical channel-opening and channel-closing rate constants. These results indicate that the C-terminal ER retention signal sequence, which affects receptor trafficking/expression, does not affect channel-gating properties. Furthermore, as compared with the GluK2 kainate receptor, the GluK1 channel is faster to open, close, and desensitize by at least two-fold, yet the EC50 value of GluK1 is similar to that of GluK2. PMID:22191429
Jackson, Michael F
2015-12-15
Pannexin channels are recognized as important conduits for the release of ATP, which contributes to purinergic signalling. Pathologically, ATP release via these channels acts as a find-me signal for apoptotic cell clearance. Accordingly, there is considerable and growing interest in understanding the function and regulation of pannexin channels. In a recent issue of the Biochemical Journal, Boyce et al. provide evidence that the surface expression of pannexin channels is regulated by extracellular ATP. They propose a model in which ATP triggers pannexin channel internalization through a pathway involving clathrin- and caveolin-independent entry into early endosomes. Intriguingly, their evidence suggests that internalization is initiated through the association of ATP with pannexin channels themselves as well as ionotropic purinergic receptor 7 (P2X7) receptors. © 2015 Authors; published by Portland Press Limited.
Stoichiometry for activation of neuronal α7 nicotinic receptors
Andersen, Natalia; Corradi, Jeremías; Sine, Steven M.; Bouzat, Cecilia
2013-01-01
Neuronal α7 nicotinic receptors elicit rapid cation influx in response to acetylcholine (ACh) or its hydrolysis product choline. They contribute to cognition, synaptic plasticity, and neuroprotection and have been implicated in neurodegenerative and neuropsychiatric disorders. α7, however, often localizes distal to sites of nerve-released ACh and binds ACh with low affinity, and thus elicits its biological response with low agonist occupancy. To assess the function of α7 when ACh occupies fewer than five of its identical binding sites, we measured the open-channel lifetime of individual receptors in which four of the five ACh binding sites were disabled. To improve the time resolution of the inherently brief α7 channel openings, background mutations or a potentiator was used to increase open duration. We find that, in receptors with only one intact binding site, the open-channel lifetime is indistinguishable from receptors with five intact binding sites, counter to expectations from prototypical neurotransmitter-gated ion channels where the open-channel lifetime increases with the number of binding sites occupied by agonist. Replacing the membrane-embedded domain of α7 by that of the related 5-HT3A receptor increases the number of sites that need to be occupied to achieve the maximal open-channel lifetime, thus revealing a unique interdependence between the detector and actuator domains of these receptors. The distinctive ability of a single occupancy to elicit a full biological response adapts α7 to volume transmission, a prevalent mechanism of ACh-mediated signaling in the nervous system and nonneuronal cells. PMID:24297903
Agonist trapped in ATP-binding sites of the P2X2 receptor.
Jiang, Ruotian; Lemoine, Damien; Martz, Adeline; Taly, Antoine; Gonin, Sophie; Prado de Carvalho, Lia; Specht, Alexandre; Grutter, Thomas
2011-05-31
ATP-gated P2X receptors are trimeric ion channels, as recently confirmed by X-ray crystallography. However, the structure was solved without ATP and even though extracellular intersubunit cavities surrounded by conserved amino acid residues previously shown to be important for ATP function were proposed to house ATP, the localization of the ATP sites remains elusive. Here we localize the ATP-binding sites by creating, through a proximity-dependent "tethering" reaction, covalent bonds between a synthesized ATP-derived thiol-reactive P2X2 agonist (NCS-ATP) and single cysteine mutants engineered in the putative binding cavities of the P2X2 receptor. By combining whole-cell and single-channel recordings, we report that NCS-ATP covalently and specifically labels two previously unidentified positions N140 and L186 from two adjacent subunits separated by about 18 Å in a P2X2 closed state homology model, suggesting the existence of at least two binding modes. Tethering reaction at both positions primes subsequent agonist binding, yet with distinct functional consequences. Labeling of one position impedes subsequent ATP function, which results in inefficient gating, whereas tethering of the other position, although failing to produce gating by itself, enhances subsequent ATP function. Our results thus define a large and dynamic intersubunit ATP-binding pocket and suggest that receptors trapped in covalently agonist-bound states differ in their ability to gate the ion channel.
Zhou, Xikun; Ye, Yan; Sun, Yuyang; Li, Xuefeng; Wang, Wenxue; Privratsky, Breanna; Tan, Shirui; Zhou, Zongguang; Huang, Canhua; Wei, Yu-Quan; Birnbaumer, Lutz; Singh, Brij B; Wu, Min
2015-08-01
Transient receptor potential channel 1 (TRPC1) is a nonselective cation channel that is required for Ca(2+) homeostasis necessary for cellular functions. However, whether TRPC1 is involved in infectious disease remains unknown. Here, we report a novel function for TRPC1 in host defense against Gram-negative bacteria. TRPC1(-/-) mice exhibited decreased survival, severe lung injury, and systemic bacterial dissemination upon infection. Furthermore, silencing of TRPC1 showed decreased Ca(2+) entry, reduced proinflammatory cytokines, and lowered bacterial clearance. Importantly, TRPC1 functioned as an endogenous Ca(2+) entry channel critical for proinflammatory cytokine production in both alveolar macrophages and epithelial cells. We further identified that bacterium-mediated activation of TRPC1 was dependent on Toll-like receptor 4 (TLR4), which induced endoplasmic reticulum (ER) store depletion. After activation of phospholipase Cγ (PLC-γ), TRPC1 mediated Ca(2+) entry and triggered protein kinase Cα (PKCα) activity to facilitate nuclear translocation of NF-κB/Jun N-terminal protein kinase (JNK) and augment the proinflammatory response, leading to tissue damage and eventually mortality. These findings reveal that TRPC1 is required for host defense against bacterial infections through the TLR4-TRPC1-PKCα signaling circuit. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Cannady, Reginald; McGonigal, Justin T.; Newsom, Ryan J.; Woodward, John J.
2017-01-01
Identifying novel treatments that facilitate extinction learning could enhance cue-exposure therapy and reduce high relapse rates in alcoholics. Activation of mGlu5 receptors in the infralimbic prefrontal cortex (IL-PFC) facilitates learning during extinction of cue-conditioned alcohol-seeking behavior. Small-conductance calcium-activated potassium (KCa2) channels have also been implicated in extinction learning of fear memories, and mGlu5 receptor activation can reduce KCa2 channel function. Using a combination of electrophysiological, pharmacological, and behavioral approaches, this study examined KCa2 channels as a novel target to facilitate extinction of alcohol-seeking behavior in rats. This study also explored related neuronal and synaptic mechanisms within the IL-PFC that underlie mGlu5-dependent enhancement of extinction learning. Using whole-cell patch-clamp electrophysiology, activation of mGlu5 in ex vivo slices significantly reduced KCa2 channel currents in layer V IL-PFC pyramidal neurons, confirming functional downregulation of KCa2 channel activity by mGlu5 receptors. Additionally, positive modulation of KCa2 channels prevented mGlu5 receptor-dependent facilitation of long-term potentiation in the IL-PFC. Systemic and intra-IL-PFC treatment with apamin (KCa2 channel allosteric inhibitor) significantly enhanced extinction of alcohol-seeking behavior across multiple extinction sessions, an effect that persisted for 3 weeks, but was not observed after apamin microinfusions into the prelimbic PFC. Positive modulation of IL-PFC KCa2 channels significantly attenuated mGlu5-dependent facilitation of alcohol cue-conditioned extinction learning. These data suggest that mGlu5-dependent facilitation of extinction learning and synaptic plasticity in the IL-PFC involves functional inhibition of KCa2 channels. Moreover, these findings demonstrate that KCa2 channels are a novel target to facilitate long-lasting extinction of alcohol-seeking behavior. SIGNIFICANCE STATEMENT Alcohol use disorder is a chronic relapsing disorder that is associated with compulsive alcohol-seeking behavior. One of the main causes of alcohol relapse is the craving caused by environmental cues that are associated with alcohol. These cues are formed by normal learning and memory principles, and the understanding of the brain mechanisms that help form these associations can lead to the development of drugs and/or behavior therapies that reduce the impact that these cues have on relapse in alcoholics. PMID:28320841
Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Tae Hee; Dharkar, Poorva; Mayer, Mark L.
The Drosophila larval neuromuscular junction (NMJ), at which glutamate acts as the excitatory neurotransmitter, is a widely used model for genetic analysis of synapse function and development. Despite decades of study, the inability to reconstitute NMJ glutamate receptor function using heterologous expression systems has complicated the analysis of receptor function, such that it is difficult to resolve the molecular basis for compound phenotypes observed in mutant flies. In this paper, we find that Drosophila Neto functions as an essential component required for the function of NMJ glutamate receptors, permitting analysis of glutamate receptor responses in Xenopus oocytes. Finally, in combinationmore » with a crystallographic analysis of the GluRIIB ligand binding domain, we use this system to characterize the subunit dependence of assembly, channel block, and ligand selectivity for Drosophila NMJ glutamate receptors.« less
Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors
Han, Tae Hee; Dharkar, Poorva; Mayer, Mark L.; ...
2015-04-27
The Drosophila larval neuromuscular junction (NMJ), at which glutamate acts as the excitatory neurotransmitter, is a widely used model for genetic analysis of synapse function and development. Despite decades of study, the inability to reconstitute NMJ glutamate receptor function using heterologous expression systems has complicated the analysis of receptor function, such that it is difficult to resolve the molecular basis for compound phenotypes observed in mutant flies. In this paper, we find that Drosophila Neto functions as an essential component required for the function of NMJ glutamate receptors, permitting analysis of glutamate receptor responses in Xenopus oocytes. Finally, in combinationmore » with a crystallographic analysis of the GluRIIB ligand binding domain, we use this system to characterize the subunit dependence of assembly, channel block, and ligand selectivity for Drosophila NMJ glutamate receptors.« less
Shibukawa, Yoshiyuki; Sato, Masaki; Kimura, Maki; Sobhan, Ubaidus; Shimada, Miyuki; Nishiyama, Akihiro; Kawaguchi, Aya; Soya, Manabu; Kuroda, Hidetaka; Katakura, Akira; Ichinohe, Tatsuya; Tazaki, Masakazu
2015-04-01
Various stimuli induce pain when applied to the surface of exposed dentin. However, the mechanisms underlying dentinal pain remain unclear. We investigated intercellular signal transduction between odontoblasts and trigeminal ganglion (TG) neurons following direct mechanical stimulation of odontoblasts. Mechanical stimulation of single odontoblasts increased the intracellular free calcium concentration ([Ca(2+)]i) by activating the mechanosensitive-transient receptor potential (TRP) channels TRPV1, TRPV2, TRPV4, and TRPA1, but not TRPM8 channels. In cocultures of odontoblasts and TG neurons, increases in [Ca(2+)]i were observed not only in mechanically stimulated odontoblasts, but also in neighboring odontoblasts and TG neurons. These increases in [Ca(2+)]i were abolished in the absence of extracellular Ca(2+) and in the presence of mechanosensitive TRP channel antagonists. A pannexin-1 (ATP-permeable channel) inhibitor and ATP-degrading enzyme abolished the increases in [Ca(2+)]i in neighboring odontoblasts and TG neurons, but not in the stimulated odontoblasts. G-protein-coupled P2Y nucleotide receptor antagonists also inhibited the increases in [Ca(2+)]i. An ionotropic ATP (P2X3) receptor antagonist inhibited the increase in [Ca(2+)]i in neighboring TG neurons, but not in stimulated or neighboring odontoblasts. During mechanical stimulation of single odontoblasts, a connexin-43 blocker did not have any effects on the [Ca(2+)]i responses observed in any of the cells. These results indicate that ATP, released from mechanically stimulated odontoblasts via pannexin-1 in response to TRP channel activation, transmits a signal to P2X3 receptors on TG neurons. We suggest that odontoblasts are sensory receptor cells and that ATP released from odontoblasts functions as a neurotransmitter in the sensory transduction sequence for dentinal pain.
Functional antagonistic properties of clozapine at the 5-HT3 receptor.
Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R
1996-08-23
The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.
Vandenberg, R J; French, C R; Barry, P H; Shine, J; Schofield, P R
1992-01-01
The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. Glycine activation of the receptor is antagonized by the convulsant alkaloid strychnine. Using in vitro mutagenesis and functional analysis of the cDNA encoding the alpha 1 subunit of the human GlyR, we have identified several amino acid residues that form the strychnine-binding site. These residues were identified by transient expression of mutated cDNAs in mammalian (293) cells and examination of resultant [3H]strychnine binding, glycine displacement of [3H]strychnine, and electrophysiological responses to the application of glycine and strychnine. This mutational analysis revealed that residues from two separate domains within the alpha 1 subunit form the binding site for the antagonist strychnine. The first domain includes the amino acid residues Gly-160 and Tyr-161, and the second domain includes the residues Lys-200 and Tyr-202. These results, combined with analyses of other ligand-gated ion channel receptors, suggest a conserved tertiary structure and a common mechanism for antagonism in this receptor superfamily. PMID:1311851
Ryanodine receptors/calcium release channels in heart failure and sudden cardiac death.
Marks, A R
2001-04-01
Calcium (Ca2+) ions are second messengers in signaling pathways in all types of cells. They regulate muscle contraction, electrical signals which determine the cardiac rhythm and cell growth pathways in the heart. In the past decade cDNA cloning has provided clues as to the molecular structure of the intracellular Ca2+ release channels (ryanodine receptors, RyR, and inositol 1,4,5-trisphosphate receptors, IP3R) on the sarcoplasmic and endoplasmic reticulum (SR/ER) and an understanding of how these molecules regulate Ca2+ homeostasis in the heart is beginning to emerge. The intracellular Ca2+ release channels form a distinct class of ion channels distinguished by their structure, size, and function. Both RyRs and IP3Rs have gigantic cytoplasmic domains that serve as scaffolds for modulatory proteins that regulate the channel pore located in the carboxy terminal 10% of the channel sequence. The channels are tetramers comprised of four RyR or IP3R subunits. RyR2 is required for excitation-contraction (EC) coupling in the heart. Using co-sedimentation and co-immunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein mAKAP. We have shown that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (P(o)). In failing human hearts RyR2 is PKA hyperphosphorylated resulting in defective channel function due to increased sensitivity to Ca2+-induced activation.
Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases
Xiao, Xiong; Liu, Hui-Xia; Shen, Kuo; Cao, Wei; Li, Xiao-Qiang
2017-01-01
The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases. PMID:28274093
X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolevsky, Alexander I.; Rosconi, Michael P.; Gouaux, Eric
2010-02-02
Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system and function by opening a transmembrane ion channel upon binding of glutamate. Despite their crucial role in neurobiology, the architecture and atomic structure of an intact ionotropic glutamate receptor are unknown. Here we report the crystal structure of the {alpha}-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive, homotetrameric, rat GluA2 receptor at 3.6 {angstrom} resolution in complex with a competitive antagonist. The receptor harbours an overall axis of two-fold symmetry with the extracellular domains organized as pairs of local dimers and with the ion channel domain exhibiting four-fold symmetry. A symmetry mismatchmore » between the extracellular and ion channel domains is mediated by two pairs of conformationally distinct subunits, A/C and B/D. Therefore, the stereochemical manner in which the A/C subunits are coupled to the ion channel gate is different from the B/D subunits. Guided by the GluA2 structure and site-directed cysteine mutagenesis, we suggest that GluN1 and GluN2A NMDA (N-methyl-D-aspartate) receptors have a similar architecture, with subunits arranged in a 1-2-1-2 pattern. We exploit the GluA2 structure to develop mechanisms of ion channel activation, desensitization and inhibition by non-competitive antagonists and pore blockers.« less
Jones, Andrew K.; Rayes, Diego; Al-Diwani, Adam; Maynard, Thomas P. R.; Jones, Rachel; Hernando, Guillermina; Buckingham, Steven D.; Bouzat, Cecilia; Sattelle, David B.
2011-01-01
The nematode Caenorhabditis elegans is an established model organism for studying neurobiology. UNC-63 is a C. elegans nicotinic acetylcholine receptor (nAChR) α-subunit. It is an essential component of the levamisole-sensitive muscle nAChR (L-nAChR) and therefore plays an important role in cholinergic transmission at the nematode neuromuscular junction. Here, we show that worms with the unc-63(x26) allele, with its αC151Y mutation disrupting the Cys-loop, have deficient muscle function reflected by impaired swimming (thrashing). Single-channel recordings from cultured muscle cells from the mutant strain showed a 100-fold reduced frequency of opening events and shorter channel openings of L-nAChRs compared with those of wild-type worms. Anti-UNC-63 antibody staining in both cultured adult muscle and embryonic cells showed that L-nAChRs were expressed at similar levels in the mutant and wild-type cells, suggesting that the functional changes in the receptor, rather than changes in expression, are the predominant effect of the mutation. The kinetic changes mimic those reported in patients with fast-channel congenital myasthenic syndromes. We show that pyridostigmine bromide and 3,4-diaminopyridine, which are drugs used to treat fast-channel congenital myasthenic syndromes, partially rescued the motility defect seen in unc-63(x26). The C. elegans unc-63(x26) mutant may therefore offer a useful model to assist in the development of therapies for syndromes produced by altered function of human nAChRs. PMID:20966081
Transient Receptor Potential Channels as Targets for Phytochemicals
2015-01-01
To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802
Tetrachromacy of human vision: spectral channels and primary colors
NASA Astrophysics Data System (ADS)
Gavrik, Vitali V.
2002-06-01
Full-color imaging requires four channels as, in contrast to a colorimeter, can add no primary to matched scene colors themselves. An ideal imaging channel should have the same spectral sensitivity of scene recording as a retinal receptor and evoke the same primary color sensation. The alternating matching functions of a triad of real primaries are inconsistent with the three cones but explicable of two pairs of independent opponent receptors with their alternating blue-yellow and green-red chromatic axes in the color space. Much other controversy of trichromatic approach can also be explained with the recently proposed intra- receptor processes in the photopic rod and cone, respectively. Each of their four primary sensations, unmixed around 465, 495, 575, and 650 nm, is evoked within a different spectral region. The current trichromatic photographic systems have been found separately to approximate the blue and red receptors, as well as their spectral opponency against the respective yellow and blue- green receptors simulated with a single middle-wave imaging channel. The channel sensitivities are delimited by the neutral points of rod and cone and cannot simulate the necessary overlap of non-opponent channels for properly to render some mixed colors. The yellow and cyan positive dyes closely control the brightness of blue and red sensations, respectively. Those red and blue respectively to control the yellow and blue-green sensations on brightness scales are replaced by magenta dye, controlling them together. Accurate rendering of natural saturation metameric colors, problematic blue-green, purple-red, and low-illumination colors requires to replace the hybrid 'green' channel with the blue-green and yellow channels.
Borroto-Escuela, Dasiel O.; Romero-Fernandez, Wilber; Rivera, Alicia; Van Craenenbroeck, Kathleen; Tarakanov, Alexander O.; Agnati, Luigi F.; Fuxe, Kjell
2013-01-01
The modulatory role of allosteric receptor-receptor interactions in the pain pathways of the Central Nervous System and the peripheral nociceptors has become of increasing interest. As integrators of nociceptive and antinociceptive wiring and volume transmission signals, with a major role for the opioid receptor heteromers, they likely have an important role in the pain circuits and may be involved in acupuncture. The delta opioid receptor (DOR) exerts an antagonistic allosteric influence on the mu opioid receptor (MOR) function in a MOR-DOR heteromer. This heteromer contributes to morphine-induced tolerance and dependence, since it becomes abundant and develops a reduced G-protein-coupling with reduced signaling mainly operating via β-arrestin2 upon chronic morphine treatment. A DOR antagonist causes a return of the Gi/o binding and coupling to the heteromer and the biological actions of morphine. The gender- and ovarian steroid-dependent recruitment of spinal cord MOR/kappa opioid receptor (KOR) heterodimers enhances antinociceptive functions and if impaired could contribute to chronic pain states in women. MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR) in the spinal cord, mediating morphine induced itch. Other mechanism for the antinociceptive actions of acupuncture along meridians may be that it enhances the cross-desensitization of the TRPA1 (chemical nociceptor)-TRPV1 (capsaicin receptor) heteromeric channel complexes within the nociceptor terminals located along these meridians. Selective ionotropic cannabinoids may also produce cross-desensitization of the TRPA1-TRPV1 heteromeric nociceptor channels by being negative allosteric modulators of these channels leading to antinociception and antihyperalgesia. PMID:23956775
Velykopols'ka, O Iu; Man'ko, B O; Man'ko, V V
2012-01-01
Using Clark oxygen electrode, dependence of mitochondrial functions on Ca(2+)-release channels activity of Chironomus plumosus L. larvae salivary glands suspension was investigated. Cells were ATP-permeabilized in order to enable penetration of exogenous oxidative substrates. Activation of plasmalemmal P2X-receptors (as well as P2Y-receptors) per se does not modify the endogenous respiration of salivary gland suspension. That is, Ca(2+)-influx from extracellular medium does not influence functional activity of mitochondria, although they are located along the basal part of the plasma membrane. Activation of RyRs intensifies endogenous respiration and pyruvate-malate-stimulated respiration, but not succinate-stimulated respiration. Neither activation of IP3Rs (via P2Y-receptors activation), nor their inhibition alters endogenous respiration. Nevertheless, IP3Rs inhibition by 2-APB intensifies succinate-stimulated respiration. All abovementioned facts testify that Ca2+, released from stores via channels, alters functional activity of mitochondria, and undoubtedly confirm the existence of endoplasmic-mitochondrial Ca(2+)-functional unit in Ch. plumosus larvae salivary glands secretory cells. In steady state of endoplasmic-mitochondrial Ca(2+)-functional unit the spontaneous activity of IP3Rs is observed; released through IP3Rs, Ca2+ is accumulated in mitochondria via uniporter and modulates oxidative processes. Activation of RyRs induces the transition of endoplasmic-mitochondrial Ca(2+)-functional unit to the active state, which is required to intensify cell respiration and oxidative phosphorylation. As expected, the transition of endoplasmic-mitochondrial Ca(2+)-functional unit to inactivated state (i. e. inhibition of Ca(2+)-release channels at excessive [Ca2+]i) limits the duration of signal transduction, has protective nature and prevents apoptosis.
Lev, Shaya; Katz, Ben; Tzarfaty, Vered; Minke, Baruch
2012-01-06
In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P(2) in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P(2) was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P(2) is not an inhibitor of TRPL channel activation. PI(4,5)P(2) hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P(2) levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P(2) is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating.
Padilla-Morales, Luis F.; Morales-Pérez, Claudio L.; De La Cruz-Rivera, Pamela C.; Asmar-Rovira, Guillermo; Báez-Pagán, Carlos A.
2011-01-01
Over the past three decades, the Torpedo californica nicotinic acetylcholine receptor (nAChR) has been one of the most extensively studied membrane protein systems. However, the effects of detergent solubilization on nAChR stability and function are poorly understood. The use of lipid-analog detergents for nAChR solubilization has been shown to preserve receptor stability and functionality. The present study used lipid-analog detergents from phospholipid-analog and cholesterol-analog detergent families for solubilization and affinity purification of the receptor and probed nAChR ion channel function using planar lipid bilayers (PLBs) and stability using analytical size exclusion chromatography (A-SEC) in the detergent-solubilized state. We also examined receptor mobility on the lipidic cubic phase (LCP) by measuring the nAChR mobile fraction and diffusion coefficient through fluorescence recovery after photobleaching (FRAP) experiments using lipid-analog and non-lipid-analog detergents. Our results show that it is possible to isolate stable and functional nAChRs using lipid-analog detergents, with characteristic ion channel currents in PLBs and minimal aggregation as observed in A-SEC. Furthermore, fractional mobility and diffusion coefficient values observed in FRAP experiments were similar to the values observed for these parameters in the recently LCP-crystallized β2-adrenergic receptor. The overall results show that phospholipid-analog detergents with 16 carbon acyl-chains support nAChR stability, functionality and LCP mobility. PMID:21922299
Molecular Biology of Insect Sodium Channels and Pyrethroid Resistance
Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S.
2015-01-01
Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Most of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors. PMID:24704279
Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu
2012-03-15
The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structuremore » of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.« less
Changes in IP3 Receptor Expression and Function in Aortic Smooth Muscle of Atherosclerotic Mice
Ewart, Marie-Ann; Ugusman, Azizah; Vishwanath, Anisha; Almabrouk, Tarek A.M.; Alganga, Husam; Katwan, Omar J.; Hubanova, Pavlina; Currie, Susan; Kennedy, Simon
2017-01-01
Peroxynitrite is an endothelium-independent vasodilator that induces relaxation via membrane hyperpolarization. The activation of IP3 receptors triggers the opening of potassium channels and hyperpolarization. Previously we found that relaxation to peroxynitrite was maintained during the development of atherosclerosis due to changes in the expression of calcium-regulatory proteins. In this study we investigated: (1) the mechanism of peroxynitrite-induced relaxation in the mouse aorta, (2) the effect of atherosclerosis on relaxation to peroxynitrite and other vasodilators, and (3) the effect of atherosclerosis on the expression and function of the IP3 receptor. Aortic function was studied using wire myography, and atherosclerosis was induced by fat-feeding ApoE−/− mice. The expression of IP3 receptors was studied using Western blotting and immunohistochemistry. Relaxation to peroxynitrite was attenuated by the IP3 antagonists 2-APB and xestospongin C and also the Kv channel blocker 4-aminopyridine (4-AP). Atherosclerosis attenuated vasodilation to cromakalim and the AMPK activator A769662 but not peroxynitrite. Relaxation was attenuated to a greater extent by 2-APB in atherosclerotic aortae despite the reduced expression of IP3 receptors. 4-AP was less effective in ApoE−/− mice fat-fed for 4 months. Peroxynitrite relaxation involves an IP3-induced calcium release and KV channel activation. This mechanism becomes less important as atherosclerosis develops, and relaxation to peroxynitrite may be maintained by increased calcium extrusion. PMID:28365690
Balasuriya, Dilshan; D'Sa, Lauren; Talker, Ronel; Dupuis, Elodie; Maurin, Fabrice; Martin, Patrick; Borgese, Franck; Soriani, Olivier; Edwardson, J. Michael
2014-01-01
The sigma-1 receptor is an endoplasmic reticulum chaperone protein, widely expressed in central and peripheral tissues, which can translocate to the plasma membrane and modulate the function of various ion channels. The human ether-à-go-go-related gene encodes hERG, a cardiac voltage-gated K+ channel that is abnormally expressed in many human cancers and is known to interact functionally with the sigma-1 receptor. Our aim was to investigate the nature of the interaction between the sigma-1 receptor and hERG. We show that the two proteins can be co-isolated from a detergent extract of stably transfected HEK-293 cells, consistent with a direct interaction between them. Atomic force microscopy imaging of the isolated protein confirmed the direct binding of the sigma-1 receptor to hERG monomers, dimers, and tetramers. hERG dimers and tetramers became both singly and doubly decorated by sigma-1 receptors; however, hERG monomers were only singly decorated. The distribution of angles between pairs of sigma-1 receptors bound to hERG tetramers had two peaks, at ∼90 and ∼180° in a ratio of ∼2:1, indicating that the sigma-1 receptor interacts with hERG with 4-fold symmetry. Homogeneous time-resolved fluorescence (HTRF®) allowed the detection of the interaction between the sigma-1 receptor and hERG within the plane of the plasma membrane. This interaction was resistant to sigma ligands, but was decreased in response to cholesterol depletion of the membrane. We suggest that the sigma-1 receptor may bind to hERG in the endoplasmic reticulum, aiding its assembly and trafficking to the plasma membrane. PMID:25266722
Immunohistochemical localization of ionotropic glutamate receptors in the rat red nucleus
Minbay, Zehra; Kocoglu, Sema Serter; Yurtseven, Duygu Gok; Eyigor, Ozhan
2017-01-01
In this study, we aimed to determine the presence as well as the diverse distribution of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor subunits in the rat red nucleus. Using adult Sprague-Dawley rats as the experimental animals, immunohistochemistry was performed on 30 µm thick coronal brain sections with antibodies against α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (GluA1-4), kainate (GluK1, GluK2/3, and GluK5), and NMDA (GluN1 and GluN2A) receptor subunits. The results showed that all ionotropic glutamate receptor subunits are expressed in the red nucleus. Specific staining was localized in the neuron bodies and processes. However, the pattern of immunoreactivity and the number of labeled neurons changed depending on the type of ionotropic glutamate receptor subunits and the localization of neurons in the red nucleus. The neurons localized in the magnocellular part of the red nucleus were particularly immunopositive for GluA2, GluA4, GluK2/3, GluK5, GluN1, and GluN2A receptor proteins. In the parvocellular part of the red nucleus, ionotropic glutamate receptor subunit immunoreactivity of variable intensity (lightly to moderately stained) was detected in the neurons. These results suggest that red nucleus neurons in rat heterogeneously express ionotropic glutamate receptor subunits to form functional receptor channels. In addition, the likelihood of the coexpression of different subunits in the same subgroup of neurons suggests the formation of receptor channels with diverse structure by way of different subunit combination, and the possibility of various neuronal functions through these channels in the red nucleus. PMID:28027456
Immunohistochemical localization of ionotropic glutamate receptors in the rat red nucleus.
Minbay, Zehra; Serter Kocoglu, Sema; Gok Yurtseven, Duygu; Eyigor, Ozhan
2017-02-21
In this study, we aimed to determine the presence as well as the diverse distribution of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor subunits in the rat red nucleus. Using adult Sprague-Dawley rats as the experimental animals, immunohistochemistry was performed on 30 µm thick coronal brain sections with antibodies against α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (GluA1-4), kainate (GluK1, GluK2/3, and GluK5), and NMDA (GluN1 and GluN2A) receptor subunits. The results showed that all ionotropic glutamate receptor subunits are expressed in the red nucleus. Specific staining was localized in the neuron bodies and processes. However, the pattern of immunoreactivity and the number of labeled neurons changed depending on the type of ionotropic glutamate receptor subunits and the localization of neurons in the red nucleus. The neurons localized in the magnocellular part of the red nucleus were particularly immunopositive for GluA2, GluA4, GluK2/3, GluK5, GluN1, and GluN2A receptor proteins. In the parvocellular part of the red nucleus, ionotropic glutamate receptor subunit immunoreactivity of variable intensity (lightly to moderately stained) was detected in the neurons. These results suggest that red nucleus neurons in rat heterogeneously express ionotropic glutamate receptor subunits to form functional receptor channels. In addition, the likelihood of the coexpression of different subunits in the same subgroup of neurons suggests the formation of receptor channels with diverse structure by way of different subunit combination, and the possibility of various neuronal functions through these channels in the red nucleus.
2012-01-01
Lacosamide ((R)-1) is a recently marketed, first-in-class, antiepileptic drug. Patch-clamp electrophysiology studies are consistent with the notion that (R)-1 modulates voltage-gated Na+ channel function by increasing and stabilizing the slow inactivation state without affecting fast inactivation. The molecular pathway(s) that regulate slow inactivation are poorly understood. Affinity baits are chemical reactive units, which when appended to a ligand (drug) can lead to irreversible, covalent modification of the receptor thus permitting drug binding site identification including, possibly, the site of ligand function. We describe, herein, the synthesis of four (R)-1 affinity baits, (R)-N-(4″-isothiocyanatobiphenyl-4′-yl)methyl 2-acetamido-3-methoxypropionamide ((R)-8), (S)-N-(4″-isothiocyanatobiphenyl-4′-yl)methyl 2-acetamido-3-methoxypropionamide ((S)-8), (R)-N-(3″-isothiocyanatobiphenyl-4′-yl)methyl 2-acetamido-3-methoxypropionamide ((R)-9), and (R)-N-(3″-acrylamidobiphenyl-4′-yl)methyl 2-acetamido-3-methoxypropionamide ((R)-10). The affinity bait compounds were designed to interact with the receptor(s) responsible for (R)-1-mediated slow inactivation. We show that (R)-8 and (R)-9 are potent inhibitors of Na+ channel function and function by a pathway similar to that observed for (R)-1. We further demonstrate that (R)-8 function is stereospecific. The calculated IC50 values determined for Na+ channel slow inactivation for (R)-1, (R)-8, and (R)-9 were 85.1, 0.1, and 0.2 μM, respectively. Incubating (R)-9 with the neuronal-like CAD cells led to appreciable levels of Na+ channel slow inactivation after cellular wash, and the level of slow inactivation only modestly decreased with further incubation and washing. Collectively, these findings have identified a promising structural template to investigate the voltage-gated Na+ channel slow inactivation process. PMID:23509982
Ahern, Chris A; Vallejo, Paola; Mortenson, Lindsay; Coronado, Roberto
2001-01-01
Background The L-type Ca2+ channel formed by the dihydropyridine receptor (DHPR) of skeletal muscle senses the membrane voltage and opens the ryanodine receptor (RyR1). This channel-to-channel coupling is essential for Ca2+ signaling but poorly understood. We characterized a single-base frame-shift mutant of α1S, the pore subunit of the DHPR, that has the unusual ability to function voltage sensor for excitation-contraction (EC) coupling by virtue of expressing two complementary hemi-Ca2+ channel fragments. Results Functional analysis of cDNA transfected dysgenic myotubes lacking α1S were carried out using voltage-clamp, confocal Ca2+ indicator fluoresence, epitope immunofluorescence and immunoblots of expressed proteins. The frame-shift mutant (fs-α1S) expressed the N-terminal half of α1S (M1 to L670) and the C-terminal half starting at M701 separately. The C-terminal fragment was generated by an unexpected restart of translation of the fs-α1S message at M701 and was eliminated by a M701I mutation. Protein-protein complementation between the two fragments produced recovery of skeletal-type EC coupling but not L-type Ca2+ current. Discussion A premature stop codon in the II-III loop may not necessarily cause a loss of DHPR function due to a restart of translation within the II-III loop, presumably by a mechanism involving leaky ribosomal scanning. In these cases, function is recovered by expression of complementary protein fragments from the same cDNA. DHPR-RyR1 interactions can be achieved via protein-protein complementation between hemi-Ca2+ channel proteins, hence an intact II-III loop is not essential for coupling the DHPR voltage sensor to the opening of RyR1 channel. PMID:11806762
Electrophysiological characterization of recombinant and native P2X receptors.
Niforatos, Wende; Jarvis, Michael F
2004-10-01
ATP acts as a fast neurotransmitter by activating a family of ligand-gated ion channels, the P2X receptors. Functional homomeric P2X(3) and heteromeric P2X(2/3) receptors are highly localized on primary sensory afferent neurons that transmit nociceptive sensory information. Activation of these P2X(3)-containing channels may provide a specific mechanism whereby ATP, released via synaptic transmission or by cellular injury, elicits pain. The experimental procedures described in this unit are useful for the electorphysiological characterization of P2X receptors. In addition, these protocols provide methods for the evaluation of ligands that interact with P2X receptors that are either natively expressed on excitable cells or cloned and expressed in heterologous cell systems. These methods are derived from standard electrophysiological principles and procedures that are applicable to a wide variety of ligand-gated ion channels. Specific attention is given here to the reliable electrophysiological measurement of both quickly (P2X(3)) and more slowly (P2X(2) and P2X(2/3)) desensitizing receptors.
TRP channels in the digestive system
Holzer, Peter
2011-01-01
Several of the 28 mammalian transient receptor potential (TRP) channel subunits are expressed throughout the alimentary canal where they play important roles in taste, chemo- and mechanosensation, thermoregulation, pain and hyperalgesia, mucosal function and homeostasis, control of motility by neurons, interstitial cells of Cajal and muscle cells, and vascular function. While the implications of some TRP channels, notably TRPA1, TRPC4, TRPM5, TRPM6, TRPM7, TRPV1, TRPV4, and TRPV6, have been investigated in much detail, the understanding of other TRP channels in their relevance to digestive function lags behind. The polymodal chemo- and mechanosensory function of TRPA1, TRPM5, TRPV1 and TRPV4 is particularly relevant to the alimentary canal whose digestive and absorptive function depends on the surveillance and integration of many chemical and physical stimuli. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 appear to be essential for the absorption of Ca2+ and Mg2+, respectively, while TRPM7 appears to contribute to the pacemaker activity of the interstitial cells of Cajal, and TRPC4 transduces smooth muscle contraction evoked by muscarinic acetylcholine receptor activation. The implication of some TRP channels in pathological processes has raised enormous interest in exploiting them as a therapeutic target. This is particularly true for TRPV1, TRPV4 and TRPA1, which may be targeted for the treatment of several conditions of chronic abdominal pain. Consequently, blockers of these TRP channels have been developed, and their clinical usefulness has yet to be established. PMID:20932260
Tinnitus: Prospects for Pharmacological Interventions With a Seesaw Model.
Tetteh, Hannah; Lee, Minseok; Lau, C Geoffrey; Yang, Sunggu; Yang, Sungchil
2017-10-01
Chronic tinnitus, the perception of lifelong constant ringing in ear, is one capital cause of disability in modern society. It is often present with various comorbid factors that severely affect quality of life, including insomnia, deficits in attention, anxiety, and depression. Currently, there are limited therapeutic treatments for alleviation of tinnitus. Tinnitus can involve a shift in neuronal excitation/inhibition (E/I) balance, which is largely modulated by ion channels and receptors. Thus, ongoing research is geared toward pharmaceutical approaches that modulate the function of ion channels and receptors. Here, we propose a seesaw model that delineates how tinnitus-related ion channels and receptors are involved in homeostatic E/I balance of neurons. This review provides a thorough account of our current mechanistic understanding of tinnitus and insight into future direction of drug development.
Aspects of the homeostaic plasticity of GABAA receptor-mediated inhibition
Mody, Istvan
2005-01-01
Plasticity of ligand-gated ion channels plays a critical role in nervous system development, circuit formation and refinement, and pathological processes. Recent advances have mainly focused on the plasticity of channels gated by excitatory amino acids, including their acclaimed role in learning and memory. These receptors, together with voltage-gated ion channels, have also been known to be subjected to a homeostatic form of plasticity that prevents destabilization of the neurone's function and that of the network during various physiological processes. To date, the plasticity of GABAA receptors has been examined mainly from a developmental and a pathological point of view. Little is known about homeostatic mechanisms governing their plasticity. This review summarizes some of the findings on the homeostatic plasticity of tonic and phasic inhibitory activity. PMID:15528237
ERIC Educational Resources Information Center
Guclu, Burak; Oztek, Cigdem
2007-01-01
Tactile perception depends on the contributions of four psychophysical tactile channels mediated by four corresponding receptor systems. The sensitivity of the tactile channels is determined by detection thresholds that vary as a function of the stimulus frequency. It has been widely reported that tactile thresholds increase (i.e., sensitivity…
Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels
Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.
2015-01-01
All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261
Gibbs, Gerard M.; Orta, Gerardo; Reddy, Thulasimala; Koppers, Adam J.; Martínez-López, Pablo; Luis de la Vega-Beltràn, José; Lo, Jennifer C. Y.; Veldhuis, Nicholas; Jamsai, Duangporn; McIntyre, Peter; Darszon, Alberto; O'Bryan, Moira K.
2011-01-01
The cysteine-rich secretory proteins (CRISPs) are a group of four proteins in the mouse that are expressed abundantly in the male reproductive tract, and to a lesser extent in other tissues. Analysis of reptile CRISPs and mouse CRISP2 has shown that CRISPs can regulate cellular homeostasis via ion channels. With the exception of the ability of CRISP2 to regulate ryanodine receptors, the in vivo targets of mammalian CRISPs function are unknown. In this study, we have characterized the ion channel regulatory activity of epididymal CRISP4 using electrophysiology, cell assays, and mouse models. Through patch-clamping of testicular sperm, the CRISP4 CRISP domain was shown to inhibit the transient receptor potential (TRP) ion channel TRPM8. These data were confirmed using a stably transfected CHO cell line. TRPM8 is a major cold receptor in the body, but is found in other tissues, including the testis and on the tail and head of mouse and human sperm. Functional assays using sperm from wild-type mice showed that TRPM8 activation significantly reduced the number of sperm undergoing the progesterone-induced acrosome reaction following capacitation, and that this response was reversed by the coaddition of CRISP4. In accordance, sperm from Crisp4 null mice had a compromised ability to undergo to the progesterone-induced acrosome reaction. Collectively, these data identify CRISP4 as an endogenous regulator of TRPM8 with a role in normal sperm function. PMID:21482758
Agonist trapped in ATP-binding sites of the P2X2 receptor
Jiang, Ruotian; Lemoine, Damien; Martz, Adeline; Taly, Antoine; Gonin, Sophie; Prado de Carvalho, Lia; Specht, Alexandre; Grutter, Thomas
2011-01-01
ATP-gated P2X receptors are trimeric ion channels, as recently confirmed by X-ray crystallography. However, the structure was solved without ATP and even though extracellular intersubunit cavities surrounded by conserved amino acid residues previously shown to be important for ATP function were proposed to house ATP, the localization of the ATP sites remains elusive. Here we localize the ATP-binding sites by creating, through a proximity-dependent “tethering” reaction, covalent bonds between a synthesized ATP-derived thiol-reactive P2X2 agonist (NCS-ATP) and single cysteine mutants engineered in the putative binding cavities of the P2X2 receptor. By combining whole-cell and single-channel recordings, we report that NCS-ATP covalently and specifically labels two previously unidentified positions N140 and L186 from two adjacent subunits separated by about 18 Å in a P2X2 closed state homology model, suggesting the existence of at least two binding modes. Tethering reaction at both positions primes subsequent agonist binding, yet with distinct functional consequences. Labeling of one position impedes subsequent ATP function, which results in inefficient gating, whereas tethering of the other position, although failing to produce gating by itself, enhances subsequent ATP function. Our results thus define a large and dynamic intersubunit ATP-binding pocket and suggest that receptors trapped in covalently agonist-bound states differ in their ability to gate the ion channel. PMID:21576497
A shifted repertoire of endocannabinoid genes in the zebrafish (Danio rerio).
McPartland, J M; Glass, Michelle; Matias, Isabel; Norris, Ryan W; Kilpatrick, C William
2007-05-01
The zebrafish has served as a model organism for developmental biology. Sequencing its genome has expanded zebrafish research into physiology and drug-development testing. Several cannabinoid pharmaceuticals are in development, but expression of endocannabinoid receptors and enzymes remains unknown in this species. We conducted a bioinformatics analysis of the zebrafish genome using 17 human endocannabinoid genes as a reference set. Putative zebrafish orthologs were identified in filtered BLAST searches as reciprocal best hits. Orthology was confirmed by three in silico methods: phylogenetic testing, synteny analysis, and functional mapping. Zebrafish expressed orthologs of cannabinoid receptor 1, transient receptor potential channel vanilloid receptor 4, GPR55 receptor, fatty acid amide hydrolase 1, monoacylglycerol lipase, NAPE-selective phospholipase D, abhydrolase domain-containing protein 4, and diacylglycerol lipase alpha and beta; and paired paralogs of cannabinoid receptor 2, fatty acid amide hydrolase 2, peroxisome proliferator-activated receptor alpha, prostaglandin-endoperoxide synthase 2, and transient receptor potential cation channel subtype A1. Functional mapping suggested the orthologs of transient receptor potential vanilloid receptor 1 and peroxisome proliferator-activated receptor gamma lack specific amino acids critical for cannabinoid ligand binding. No orthologs of N-acylethanolamine acid amidase or protein tyrosine phosphatase, non-receptor type 22 were identified. In conclusion, the zebrafish genome expresses a shifted repertoire of endocannabinoid genes. In vitro analyses are warranted before using zebrafish for cannabinoid development testing.
1996-01-01
Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is proposed for the DHP-sensitive Ca channel, which pictures the normal pathway of activation of the calcium channel as two voltage-dependent steps in sequence, plus a voltage-independent step which is rate limiting. The model reproduced well the fast and slow gating models of the calcium channel, and the effects of conditioning pulses. It is possible that the voltage-sensitive gating transitions of the DHP receptor, which occur early in the calcium channel activation sequence, could underlie the role of the voltage sensor and yield the rapid excitation-contraction coupling in skeletal muscle, through either electrostatic or allosteric linkage to the ryanodine receptors/calcium release channels. PMID:8882865
NASA Astrophysics Data System (ADS)
Taft, William C.; Delorenzo, Robert J.
1984-05-01
Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.
Taft, W C; DeLorenzo, R J
1984-01-01
Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance. PMID:6328498
Baptista-Hon, Daniel T.; Deeb, Tarek Z.; Lambert, Jeremy J.; Peters, John A.; Hales, Tim G.
2013-01-01
The 5-HT3A receptor homology model, based on the partial structure of the nicotinic acetylcholine receptor from Torpedo marmorata, reveals an asymmetric ion channel with five portals framed by adjacent helical amphipathic (HA) stretches within the 114-residue loop between the M3 and M4 membrane-spanning domains. The positive charge of Arg-436, located within the HA stretch, is a rate-limiting determinant of single channel conductance (γ). Further analysis reveals that positive charge and volume of residue 436 are determinants of 5-HT3A receptor inward rectification, exposing an additional role for portals. A structurally unresolved stretch of 85 residues constitutes the bulk of the M3-M4 loop, leaving a >45-Å gap in the model between M3 and the HA stretch. There are no additional structural data for this loop, which is vestigial in bacterial pentameric ligand-gated ion channels and was largely removed for crystallization of the Caenorhabditis elegans glutamate-activated pentameric ligand-gated ion channels. We created 5-HT3A subunit loop truncation mutants, in which sequences framing the putative portals were retained, to determine the minimum number of residues required to maintain their functional integrity. Truncation to between 90 and 75 amino acids produced 5-HT3A receptors with unaltered rectification. Truncation to 70 residues abolished rectification and increased γ. These findings reveal a critical M3-M4 loop length required for functions attributable to cytoplasmic portals. Examination of all 44 subunits of the human neurotransmitter-activated Cys-loop receptors reveals that, despite considerable variability in their sequences and lengths, all M3-M4 loops exceed 70 residues, suggesting a fundamental requirement for portal integrity. PMID:23740249
Wu, Long-Jun; Sweet, Tara-Beth
2010-01-01
Transient receptor potential (TRP) channels are a large family of ion channel proteins, surpassed in number in mammals only by voltage-gated potassium channels. TRP channels are activated and regulated through strikingly diverse mechanisms, making them suitable candidates for cellular sensors. They respond to environmental stimuli such as temperature, pH, osmolarity, pheromones, taste, and plant compounds, and intracellular stimuli such as Ca2+ and phosphatidylinositol signal transduction pathways. However, it is still largely unknown how TRP channels are activated in vivo. Despite the uncertainties, emerging evidence using TRP channel knockout mice indicates that these channels have broad function in physiology. Here we review the recent progress on the physiology, pharmacology and pathophysiological function of mammalian TRP channels. PMID:20716668
Tóth, Balázs I; Oláh, Attila; Szöllősi, Attila Gábor; Bíró, Tamás
2014-05-01
Emerging evidence suggests that transient receptor potential (TRP) ion channels not only act as 'polymodal cellular sensors' on sensory neurons but are also functionally expressed by a multitude of non-neuronal cell types. This is especially true in the skin, one of the largest organs of the body, where they appear to be critically involved in regulating various cutaneous functions both under physiological and pathophysiological conditions. In this review, we focus on introducing the roles of several cutaneous TRP channels in the regulation of the skin barrier, skin cell proliferation and differentiation, and immune functions. Moreover, we also describe the putative involvement of several TRP channels in the development of certain skin diseases and identify future TRP channel-targeted therapeutic opportunities. © 2013 The British Pharmacological Society.
Lear, Pamela V.; González-Touceda, David; Porteiro Couto, Begoña; Viaño, Patricia; Guymer, Vanessa; Remzova, Elena; Tunn, Ruth; Chalasani, Annapurna; García-Caballero, Tomás; Hargreaves, Iain P.; Tynan, Patricia W.; Christian, Helen C.; Nogueiras, Rubén
2015-01-01
Intracellular calcium-permeable channels have been implicated in thermogenic function of murine brown and brite/beige adipocytes, respectively transient receptor potential melastin-8 and transient receptor potential vanilloid-4. Because the endo-lysosomal two-pore channels (TPCs) have also been ascribed with metabolic functionality, we studied the effect of simultaneously knocking out TPC1 and TPC2 on body composition and energy balance in male mice fed a chow diet. Compared with wild-type mice, TPC1 and TPC2 double knockout (Tpcn1/2−/−) animals had a higher respiratory quotient and became obese between 6 and 9 months of age. Although food intake was unaltered, interscapular brown adipose tissue (BAT) maximal temperature and lean-mass adjusted oxygen consumption were lower in Tpcn1/2−/− than in wild type mice. Phosphorylated hormone-sensitive lipase expression, lipid density and expression of β-adrenergic receptors were also lower in Tpcn1/2−/− BAT, whereas mitochondrial respiratory chain function and uncoupling protein-1 expression remained intact. We conclude that Tpcn1/2−/− mice show mature-onset obesity due to reduced lipid availability and use, and a defect in β-adrenergic receptor signaling, leading to impaired thermogenic activity, in BAT. PMID:25545384
Alfonso, Salgado; Benito, Ordaz; Alicia, Sampieri; Angélica, Zepeda; Patricia, Glazebrook; Diana, Kunze; Vaca, Luis; Luis, Vaca
2008-04-01
Members of the Canonical Transient Receptor Potential (TRPC) family of ionic channels are able to form homo- and heterotetrameric channels. Depending on the study, TRPC1 has been detected on both the surface and inside the cell, probably in the endoplasmic reticulum (ER). Likewise, TRPC1 has been described both as a store-operated channel and as one unable to function when forming a homotetramer. It is possible that the apparent differences in the expression and function of TRPC1 are due to its association with other proteins, possibly from the same TRPC family. In the present study we used confocal microscopy and a fluorescently tagged TRPC1 to examine the localization of this protein when co-expressed with other members of the TRPC family. Whole-cell and single channel electrophysiological recordings were conducted to study the function of TRPC1 expressed alone or co-expressed with other members of the TRPC family. A FRET-based calcium sensor fused to TRPC1 was used to assess the functionality of the intracellular TRPC1. Our results showed that TRPC4 and TRPC5 were able to increase the amount of membrane-expressed TRPC1 as evaluated by confocal microscopy and patch clamp recordings. The FRET-based calcium sensor fused to TRPC1 strongly suggests that this protein forms ER-expressed functional homotetrameric channels activated by agonists coupled to the IP(3) cascade. These results indicate that TRPC1 is a multifunctional protein able to form intracellular calcium release channels when expressed alone, and plasma membrane channels when co-expressed with TRPC4 or TRPC5, but not TRPC3 or TRPC6. Both (ER and plasma membrane) forms of the channel are activated upon addition of agonists coupled to the IP(3) cascade.
Electron cryo-microscopy structure of the canonical TRPC4 ion channel
Vinayagam, Deivanayagabarathy; Mager, Thomas; Apelbaum, Amir; Bothe, Arne; Merino, Felipe; Hofnagel, Oliver; Gatsogiannis, Christos
2018-01-01
Canonical transient receptor channels (TRPC) are non-selective cation channels. They are involved in receptor-operated Ca2+ signaling and have been proposed to act as store-operated channels (SOC). Their malfunction is related to cardiomyopathies and their modulation by small molecules has been shown to be effective against renal cancer cells. The molecular mechanism underlying the complex activation and regulation is poorly understood. Here, we report the electron cryo-microscopy structure of zebrafish TRPC4 in its unliganded (apo), closed state at an overall resolution of 3.6 Å. The structure reveals the molecular architecture of the cation conducting pore, including the selectivity filter and lower gate. The cytoplasmic domain contains two key hubs that have been shown to interact with modulating proteins. Structural comparisons with other TRP channels give novel insights into the general architecture and domain organization of this superfamily of channels and help to understand their function and pharmacology. PMID:29717981
Cannady, Reginald; McGonigal, Justin T; Newsom, Ryan J; Woodward, John J; Mulholland, Patrick J; Gass, Justin T
2017-04-19
Identifying novel treatments that facilitate extinction learning could enhance cue-exposure therapy and reduce high relapse rates in alcoholics. Activation of mGlu 5 receptors in the infralimbic prefrontal cortex (IL-PFC) facilitates learning during extinction of cue-conditioned alcohol-seeking behavior. Small-conductance calcium-activated potassium (K Ca 2) channels have also been implicated in extinction learning of fear memories, and mGlu 5 receptor activation can reduce K Ca 2 channel function. Using a combination of electrophysiological, pharmacological, and behavioral approaches, this study examined K Ca 2 channels as a novel target to facilitate extinction of alcohol-seeking behavior in rats. This study also explored related neuronal and synaptic mechanisms within the IL-PFC that underlie mGlu 5 -dependent enhancement of extinction learning. Using whole-cell patch-clamp electrophysiology, activation of mGlu 5 in ex vivo slices significantly reduced K Ca 2 channel currents in layer V IL-PFC pyramidal neurons, confirming functional downregulation of K Ca 2 channel activity by mGlu 5 receptors. Additionally, positive modulation of K Ca 2 channels prevented mGlu 5 receptor-dependent facilitation of long-term potentiation in the IL-PFC. Systemic and intra-IL-PFC treatment with apamin (K Ca 2 channel allosteric inhibitor) significantly enhanced extinction of alcohol-seeking behavior across multiple extinction sessions, an effect that persisted for 3 weeks, but was not observed after apamin microinfusions into the prelimbic PFC. Positive modulation of IL-PFC K Ca 2 channels significantly attenuated mGlu 5 -dependent facilitation of alcohol cue-conditioned extinction learning. These data suggest that mGlu 5 -dependent facilitation of extinction learning and synaptic plasticity in the IL-PFC involves functional inhibition of K Ca 2 channels. Moreover, these findings demonstrate that K Ca 2 channels are a novel target to facilitate long-lasting extinction of alcohol-seeking behavior. SIGNIFICANCE STATEMENT Alcohol use disorder is a chronic relapsing disorder that is associated with compulsive alcohol-seeking behavior. One of the main causes of alcohol relapse is the craving caused by environmental cues that are associated with alcohol. These cues are formed by normal learning and memory principles, and the understanding of the brain mechanisms that help form these associations can lead to the development of drugs and/or behavior therapies that reduce the impact that these cues have on relapse in alcoholics. Copyright © 2017 the authors 0270-6474/17/374359-11$15.00/0.
Design, synthesis, and evaluation of polyamine-memantine hybrids as NMDA channel blockers.
Kumamoto, Takuya; Nakajima, Marie; Uga, Reina; Ihayazaka, Naoko; Kashihara, Haruna; Katakawa, Kazuaki; Ishikawa, Tsutomu; Saiki, Ryotaro; Nishimura, Kazuhiro; Igarashi, Kazuei
2018-02-01
N-Methyl-d-aspartate (NMDA) receptors have been implicated in learning and memory, and may also play a central role in various conditions leading to neuronal degradation. NMDA receptor antagonists could therefore be of therapeutic benefit for a number of neurological disorders. We have designed hybrid compounds of polyamines and memantine, both of which function as NMDA channel blockers. The triamine derivative with a guanidine moiety showed more potent antagonistic activity than memantine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wilhelm, M.; Swandulla, D.
2012-01-01
In this study, we have investigated how the function of native and recombinant nicotinic acetylcholine receptors (nAChRs) is modulated by the monoterpenoid alcohol from peppermint (−) menthol. In trigeminal neurons (TG), we found that nicotine (75 μM)-activated whole-cell currents through nAChRs were reversibly reduced by menthol in a concentration-dependent manner with an IC50 of 111 μM. To analyze the mechanism underlying menthol's action in more detail, we used single channel and whole-cell recordings from recombinant human α4β2 nAChR expressed in HEK tsA201 cells. Here, we found a shortening of channel open time and a prolongation of channel closed time, and an increase in single channel amplitude leading in summary to a reduction in single channel current. Furthermore, menthol did not affect nicotine's EC50 value for currents through recombinant human α4β2 nAChRs but caused a significant reduction in nicotine's efficacy. Taken together, these findings indicate that menthol is a negative allosteric modulator of nAChRs. PMID:22281529
NASA Technical Reports Server (NTRS)
Ye, C. P.; Yamaguchi, T.; Chattopadhyay, N.; Sanders, J. L.; Vassilev, P. M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)
2000-01-01
The existence in osteoblasts of the G-protein-coupled extracellular calcium (Ca(o)(2+))-sensing receptor (CaR) that was originally cloned from parathyroid and kidney remains controversial. In our recent studies, we utilized multiple detection methods to demonstrate the expression of CaR transcripts and protein in several osteoblastic cell lines, including murine MC3T3-E1 cells. Although we and others have shown that high Ca(o)(2+) and other polycationic CaR agonists modulate the function of MC3T3-E1 cells, none of these actions has been unequivocally shown to be mediated by the CaR. Previous investigations using neurons and lens epithelial cells have shown that activation of the CaR stimulates Ca(2+)-activated K(+) channels. Because osteoblastic cells express a similar type of channel, we have examined the effects of specific "calcimimetic" CaR activators on the activity of a Ca(2+)-activated K(+) channel in MC3T3-E1 cells as a way of showing that the CaR is not only expressed in those cells but is functionally active. Patch-clamp analysis in the cell-attached mode showed that raising Ca(o)(2+) from 0.75 to 2.75 mmol/L elicited about a fourfold increase in the open state probability (P(o)) of an outward K(+) channel with a conductance of approximately 92 pS. The selective calcimimetic CaR activator, NPS R-467 (0.5 micromol/L), evoked a similar activation of the channel, while its less active stereoisomer, NPSS-467 (0.5 micromol/L), did not. Thus, the CaR is not only expressed in MC3T3-E1 cells, but is also functionally coupled to the activity of a Ca(2+)-activated K(+) channel. This receptor, therefore, could transduce local or systemic changes in Ca(o)(2+) into changes in the activity of this ion channel and related physiological processes in these and perhaps other osteoblastic cells.
Palma, Eleonora; Fucile, Sergio; Barabino, Benedetta; Miledi, Ricardo; Eusebi, Fabrizio
1999-01-01
Recent work has shown that strychnine, the potent and selective antagonist of glycine receptors, is also an antagonist of nicotinic acetylcholine (AcCho) receptors including neuronal homomeric α7 receptors, and that mutating Leu-247 of the α7 nicotinic AcCho receptor-channel domain (L247Tα7; mut1) converts some nicotinic antagonists into agonists. Therefore, a study was made of the effects of strychnine on Xenopus oocytes expressing the chick wild-type α7 or L247Tα7 receptors. In these oocytes, strychnine itself did not elicit appreciable membrane currents but reduced the currents elicited by AcCho in a reversible and dose-dependent manner. In sharp contrast, in oocytes expressing L247Tα7 receptors with additional mutations at Cys-189 and Cys-190, in the extracellular N-terminal domain (L247T/C189–190Sα7; mut2), micromolar concentrations of strychnine elicited inward currents that were reversibly inhibited by the nicotinic receptor blocker α-bungarotoxin. Single-channel recordings showed that strychnine gated mut2-channels with two conductance levels, 56 pS and 42 pS, and with kinetic properties similar to AcCho-activated channels. We conclude that strychnine is a modulator, as well as an activator, of some homomeric nicotinic α7 receptors. After injecting oocytes with mixtures of cDNAs encoding mut1 and mut2 subunits, the expressed hybrid receptors were activated by strychnine, similar to the mut2, and had a high affinity to AcCho like the mut1. A pentameric symmetrical model yields the striking conclusion that two identical α7 subunits may be sufficient to determine the functional properties of α7 receptors. PMID:10557336
Atak, Sinem; Langlhofer, Georg; Schaefer, Natascha; Kessler, Denise; Meiselbach, Heike; Delto, Carolyn; Schindelin, Hermann; Villmann, Carmen
2015-01-01
Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GlyR) undergoes direct interaction with the incoming ligand via a cation-π interaction. Recently, we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GlyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GlyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER toward the ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is delivered to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, T162 affects primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof. PMID:26733802
Molecular biology of insect sodium channels and pyrethroid resistance.
Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S
2014-07-01
Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Many of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors. Copyright © 2014 Elsevier Ltd. All rights reserved.
A biomimetic bioelectronic tongue: A switch for On- and Off- response of acid sensations.
Zhang, Wei; Chen, Peihua; Zhou, Lianqun; Qin, Zhen; Gao, Keqiang; Yao, Jia; Li, Chuanyu; Wang, Ping
2017-06-15
The perception of sour taste in mammals is important for its basic modality properties and avoiding toxic substances. We explore a biomimetic bioelectronic tongue, which integrate MEA (microelectrode array) and taste receptor cell for acid detection as a switch. However, the acid-sensing mechanism and coding of the taste receptor cells in the periphery is not well understood, with long-standing debate. Therefore, we firstly construct a Hodgkin-Huxley type mathematical model of whole-cell acid-sensing taste receptor cells based on the electrophysiologic patch clamp recordings with different acid sensitive receptor expressing and different acidic stimulations. ASICs and PKDL channels are two most promising candidates for acidic sensation. ASICs channels contribute to the On response, and PKDL channels coding the Offset stimulations respectively, which function as a pair for switch. Therefore, with the advantage of effective and noninvasive detection for MEA, a sour taste biosensor based on MEA and taste receptor cells was designed and established to detect sour response from the elementary acid sensitive taste receptor cells during and after stimulus. From simulation and extracelluar potential recordings, we found the biomimetic bioelectronic tongue was acid-sensitive, as acid stimulation pH decrease, the firing frequency significantly increase. Furthermore, this reliable and effective MEA based bioelectronic tongue functioned as a switch for stimulation On and Off. This study provided a powerful platform to recognize sour stimulation and help elucidate the sour taste sensation and coding mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.
Polycystin-2 Expression and Function in Adult Mouse Lacrimal Acinar Cells
Hilgenberg, Jill D.; Rybalchenko, Volodymyr; Medina-Ortiz, Wanda E.; Gregg, Elaine V.; Koulen, Peter
2011-01-01
Purpose. Lacrimal glands regulate the production and secretion of tear fluid. Dysfunction of lacrimal gland acinar cells can ultimately result in ocular surface disorders, such as dry eye disease. Ca2+ homeostasis is tightly regulated in the cellular environment, and secretion from the acinar cells of the lacrimal gland is regulated by both cholinergic and adrenergic stimuli, which both result in changes in the cytosolic Ca2+ concentration. We have previously described the detailed intracellular distribution of inositol-1,4,5-trisphosphate receptors (IP3Rs), and ryanodine receptors (RyRs) in lacrimal acinar cells, however, little is known regarding the expression and distribution of the third major class of intracellular Ca2+ release channels, transient receptor potential polycystin family (TRPP) channels. Methods. Studies were performed in adult lacrimal gland tissue of Swiss-Webster mice. Expression, localization, and intracellular distribution of TRPP Ca2+ channels were investigated using immunocytochemistry, immunohistochemistry, and electron microscopy. The biophysical properties of single polycystin-2 channels were investigated using a planar lipid bilayer electrophysiology system. Results. All channel-forming isoforms of TRPP channels (polycystin-2, polycystin-L, and polycystin-2L2) were expressed in adult mouse lacrimal gland. Subcellular analysis of immunogold labeling revealed strongest polycystin-2 expression on the membranes of the endoplasmic reticulum, Golgi, and nucleus. Biophysical properties of lacrimal gland polycystin-2 channels were similar to those described for other tissues. Conclusions. The expression of TRPP channels in lacrimal acinar cells suggests a functional role of the proteins in the regulation of lacrimal fluid secretion under physiological and disease conditions, and provides the basis for future studies focusing on physiology and pharmacology. PMID:21508103
Mittal, Rahul; Chan, Brandon; Grati, M'hamed; Mittal, Jeenu; Patel, Kunal; Debs, Luca H; Patel, Amit P; Yan, Denise; Chapagain, Prem; Liu, Xue Zhong
2016-08-01
The P2X purinergic receptors are cation-selective channels gated by extracellular adenosine 5'-triphosphate (ATP). These purinergic receptors are found in virtually all mammalian cell types and facilitate a number of important physiological processes. Within the past few years, the characterization of crystal structures of the zebrafish P2X4 receptor in its closed and open states has provided critical insights into the mechanisms of ligand binding and channel activation. Understanding of this gating mechanism has facilitated to design and interpret new modeling and structure-function experiments to better elucidate how different agonists and antagonists can affect the receptor with differing levels of potency. This review summarizes the current knowledge on the structure, activation, allosteric modulators, function, and location of the different P2X receptors. Moreover, an emphasis on the P2X2 receptors has been placed in respect to its role in the auditory system. In particular, the discovery of three missense mutations in P2X2 receptors could become important areas of study in the field of gene therapy to treat progressive and noise-induced hearing loss. J. Cell. Physiol. 231: 1656-1670, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain.
Ortíz-Rentería, Miguel; Juárez-Contreras, Rebeca; González-Ramírez, Ricardo; Islas, León D; Sierra-Ramírez, Félix; Llorente, Itzel; Simon, Sidney A; Hiriart, Marcia; Rosenbaum, Tamara; Morales-Lázaro, Sara L
2018-02-13
The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in nociceptors where, when activated by chemical or thermal stimuli, it functions as an important transducer of painful and itch-related stimuli. Although the interaction of TRPV1 with proteins that regulate its function has been previously explored, their modulation by chaperones has not been elucidated, as is the case for other mammalian TRP channels. Here we show that TRPV1 physically interacts with the Sigma 1 Receptor (Sig-1R), a chaperone that binds progesterone, an antagonist of Sig-1R and an important neurosteroid associated to the modulation of pain. Antagonism of Sig-1R by progesterone results in the down-regulation of TRPV1 expression in the plasma membrane of sensory neurons and, consequently, a decrease in capsaicin-induced nociceptive responses. This is observed both in males treated with a synthetic antagonist of Sig-1R and in pregnant females where progesterone levels are elevated. This constitutes a previously undescribed mechanism by which TRPV1-dependent nociception and pain can be regulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamatchi, G.L.; Ticku, M.K.
1991-02-01
The stimulation of postsynaptic gamma-aminobutyric acid (GABA)B receptors leads to slow inhibitory postsynaptic potentials due to the influx of K(+)-ions. This was studied biochemically, in vitro in mammalian cultured spinal cord neurons by using 86Rb as a substitute for K+. (-)-Baclofen, a GABAB receptor agonist, produced a concentration-dependent increase in the 86Rb-influx. This effect was stereospecific and blocked by GABAB receptor antagonists like CGP 35 348 (3-aminopropyl-diethoxymethyl-phosphonic acid) and phaclofen. Apart from the GABAB receptors, both adenosine via adenosine1 receptors and 5-hydroxytryptamine (5-HT) via 5-HT1 alpha agonists also increased the 86Rb-influx. These agonists failed to show any additivity between themmore » when they were combined in their maximal concentration. In addition, their effect was antagonized specifically by their respective antagonists without influencing the others. These findings suggest the presence of GABAB, adenosine1 and 5-HT1 alpha receptors in the cultured spinal cord neurons, which exhibit a heterologous regulation of the same K(+)-channel. The effect of these agonists were antagonized by phorbol 12,13-didecanoate, an activator of protein kinase C, and pretreatment with pertussis toxin. This suggests that these agonists by acting on their own receptors converge on the same K(+)-channel through the Gi/Go proteins. In summary, we have developed a biochemical functional assay for studying and characterizing GABAB synaptic pharmacology in vitro, using spinal cord neurons.« less
Chakrabarti, Sampurna; Qian, Mingxing; Krishnan, Kathiresan; Covey, Douglas F.; Mennerick, Steven
2016-01-01
Neuroactive steroids are efficacious modulators of γ-aminobutyric acid type A receptor (GABAA) receptor function. The effects of steroids on the GABAA receptor are typically determined by comparing steady-state single-channel open probability or macroscopic peak responses elicited by GABA in the absence and presence of a steroid. Due to differences in activation conditions (exposure duration, concentration of agonist), it is not obvious whether modulation measured using typical experimental protocols can be used to accurately predict the effect of a modulator on native receptors under physiologic conditions. In the present study, we examined the effects of 14 neuroactive steroids and analogs on the properties of spontaneous inhibitory postsynaptic currents (sIPSCs) in cultured rat hippocampal neurons. The goal was to determine whether the magnitude of modulation of the decay time course of sIPSCs correlates with the extent of modulation and kinetic properties of potentiation as determined in previous single-channel studies. The steroids were selected to cover a wide range of efficacy on heterologously expressed rat α1β2γ2L GABAA receptors, ranging from essentially inert to highly efficacious (strong potentiators of single-channel and macroscopic peak responses). The data indicate a strong correlation between prolongation of the decay time course of sIPSCs and potentiation of single-channel open probability. Furthermore, changes in intracluster closed time distributions were the single best predictor of prolongation of sIPSCs. We infer that the information obtained in steady-state single-channel recordings can be used to forecast modulation of synaptic currents. PMID:26769414
Functional architecture of olfactory ionotropic glutamate receptors.
Abuin, Liliane; Bargeton, Benoîte; Ulbrich, Maximilian H; Isacoff, Ehud Y; Kellenberger, Stephan; Benton, Richard
2011-01-13
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate chemical communication between neurons at synapses. A variant iGluR subfamily, the Ionotropic Receptors (IRs), was recently proposed to detect environmental volatile chemicals in olfactory cilia. Here, we elucidate how these peripheral chemosensors have evolved mechanistically from their iGluR ancestors. Using a Drosophila model, we demonstrate that IRs act in combinations of up to three subunits, comprising individual odor-specific receptors and one or two broadly expressed coreceptors. Heteromeric IR complex formation is necessary and sufficient for trafficking to cilia and mediating odor-evoked electrophysiological responses in vivo and in vitro. IRs display heterogeneous ion conduction specificities related to their variable pore sequences, and divergent ligand-binding domains function in odor recognition and cilia localization. Our results provide insights into the conserved and distinct architecture of these olfactory and synaptic ion channels and offer perspectives into the use of IRs as genetically encoded chemical sensors. Copyright © 2011 Elsevier Inc. All rights reserved.
Palmitoylation as a Functional Regulator of Neurotransmitter Receptors
Naumenko, Vladimir S.
2018-01-01
The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior. PMID:29849559
Purohit, Prasad
2011-01-01
The extent to which agonists activate synaptic receptor-channels depends on both the intrinsic tendency of the unliganded receptor to open and the amount of agonist binding energy realized in the channel-opening process. We examined mutations of the nicotinic acetylcholine receptor transmitter binding site (α subunit loop B) with regard to both of these parameters. αGly147 is an “activation” hinge where backbone flexibility maintains high values for intrinsic gating, the affinity of the resting conformation for agonists and net ligand binding energy. αGly153 is a “deactivation” hinge that maintains low values for these parameters. αTrp149 (between these two glycines) serves mainly to provide ligand binding energy for gating. We propose that a concerted motion of the two glycine hinges (plus other structural elements at the binding site) positions αTrp149 so that it provides physiologically optimal binding and gating function at the nerve-muscle synapse. PMID:21115636
Flynn, Robyn; Chapman, Kevin; Iftinca, Mircea; Aboushousha, Reem; Varela, Diego; Altier, Christophe
2014-01-01
The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief. PMID:24808184
Flynn, Robyn; Chapman, Kevin; Iftinca, Mircea; Aboushousha, Reem; Varela, Diego; Altier, Christophe
2014-06-13
The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Pharmacogenetics of new analgesics
Lötsch, Jörn; Geisslinger, Gerd
2011-01-01
Patient phenotypes in pharmacological pain treatment varies between individuals, which could be partly assigned to their genotypes regarding the targets of classical analgesics (OPRM1, PTGS2) or associated signalling pathways (KCNJ6). Translational and genetic research have identified new targets, for which new analgesics are being developed. This addresses voltage-gated sodium, calcium and potassium channels, for which SCN9A, CACNA1B, KCNQ2 and KCNQ3, respectively, are primary gene candidates because they code for the subunits of the respective channels targeted by analgesics currently in clinical development. Mutations in voltage gated transient receptor potential (TRPV) channels are known from genetic pain research and may modulate the effects of analgesics under development targeting TRPV1 or TRPV3. To this add ligand-gated ion channels including nicotinic acetylcholine receptors, ionotropic glutamate-gated receptors and ATP-gated purinergic P2X receptors with most important subunits coded by CHRNA4, GRIN2B and P2RX7. Among G protein coupled receptors, δ-opioid receptors (coded by OPRD1), cannabinoid receptors (CNR1 and CNR2), metabotropic glutamate receptors (mGluR5 coded by GRM5), bradykinin B1 (BDKRB1) and 5-HT1A (HTR1A) receptors are targeted by new analgesic substances. Finally, nerve growth factor (NGFB), its tyrosine kinase receptor (NTRK1) and the fatty acid amide hydrolase (FAAH) have become targets of interest. For most of these genes, functional variants have been associated with neuro-psychiatric disorders and not yet with analgesia. However, research on the genetic modulation of pain has already identified variants in these genes, relative to pain, which may facilitate the pharmacogenetic assessments of new analgesics. The increased number of candidate pharmacogenetic modulators of analgesic actions may open opportunities for the broader clinical implementation of genotyping information. PMID:20942817
Mahaut-Smith, Martyn P; Taylor, Kirk A; Evans, Richard J
2016-01-01
Ligand-gated ion channels on the cell surface are directly activated by the binding of an agonist to their extracellular domain and often referred to as ionotropic receptors. P2X receptors are ligand-gated non-selective cation channels with significant permeability to Ca(2+) whose principal physiological agonist is ATP. This chapter focuses on the mechanisms by which P2X1 receptors, a ubiquitously expressed member of the family of ATP-gated channels, can contribute to cellular responses in non-excitable cells. Much of the detailed information on the contribution of P2X1 to Ca(2+) signalling and downstream functional events has been derived from the platelet. The underlying primary P2X1-generated signalling event in non-excitable cells is principally due to Ca(2+) influx, although Na(+) entry will also occur along with membrane depolarization. P2X1 receptor stimulation can lead to additional Ca(2+) mobilization via a range of routes such as amplification of G-protein-coupled receptor-dependent Ca(2+) responses. This chapter also considers the mechanism by which cells generate extracellular ATP for autocrine or paracrine activation of P2X1 receptors. For example cytosolic ATP efflux can result from opening of pannexin anion-permeable channels or following damage to the cell membrane. Alternatively, ATP stored in specialised secretory vesicles can undergo quantal release via the process of exocytosis. Examples of physiological or pathophysiological roles of P2X1-dependent signalling in non-excitable cells are also discussed, such as thrombosis and immune responses.
Differential Effects of TRPA and TRPV Channels on Behaviors of Caenorhabditis elegans
Thies, Jennifer; Neutzler, Vanessa; O’Leary, Fidelma; Liu, He
2016-01-01
TRPA and TRPV ion channels are members of the transient receptor potential (TRP) cation channel superfamily, which mediates various sensory transductions. In Caenorhabditis elegans, the TRPV channels are known to affect chemosensation, while the TRPA-1 channel is associated with thermosensation and mechanosensation. We examined thermosensation, chemosensation, and osmosensation in strains lacking TRPA-1 or TRPV channels. We found that TRPV channel knockout worms exhibited similar behavioral deficits associated with thermotaxis as the TRPA-1 channel knockout, suggesting a dual role for TRPV channels. In contrast, chemosensation responses, assessed by both avoidance reversal behavior and NaCl osmosensation, were dependent on TRPV channels but seemed independent of TRPA-1 channel. Our findings suggest that, in addition to TRPA-1 channel, TRPV channels are necessary for thermotaxis and may activate, or modulate, the function of TRPA-1 channels. In contrast, TRPA-1 channels do not have a dual responsibility, as they have no functional role in odorant avoidance or osmosensation. PMID:27168724
The sigma-1 receptor: a regulator of cancer cell electrical plasticity?
Crottès, David; Guizouarn, Hélène; Martin, Patrick; Borgese, Franck; Soriani, Olivier
2013-01-01
Originally mistaken as an opioid receptor, the sigma-1 receptor (Sig1R) is a ubiquitous membrane protein that has been involved in many cellular processes. While the precise function of Sig1R has long remained mysterious, recent studies have shed light on its role and the molecular mechanisms triggered. Sig1R is in fact a stress-activated chaperone mainly associated with the ER-mitochondria interface that can regulate cell survival through the control of calcium homeostasis. Sig1R functionally regulates ion channels belonging to various molecular families and it has thus been involved in neuronal plasticity and central nervous system diseases. Interestingly, Sig1R is frequently expressed in tumors but its function in cancer has not been yet clarified. In this review, we discuss the current understanding of Sig1R. We suggest herein that Sig1R shapes cancer cell electrical signature upon environmental conditions. Thus, Sig1R may be used as a novel therapeutic target to specifically abrogate pro-invasive functions of ion channels in cancer tissue. PMID:23882221
Two-Photon Scanning Photochemical Microscopy: Mapping Ligand-Gated Ion Channel Distributions
NASA Astrophysics Data System (ADS)
Denk, Winfried
1994-07-01
The locations and densities of ionotropic membrane receptors, which are responsible for receiving synaptic transmission throughout the nervous system, are of prime importance in understanding the function of neural circuits. It is shown that the highly localized liberation of "caged" neurotransmitters by two-photon absorption-mediated photoactivation can be used in conjunction with recording the induced whole-cell current to determine the distribution of ligand-gated ion channels. The technique is potentially sensitive enough to detect individual channels with diffraction-limited spatial resolution. Images of the distribution of nicotinic acetylcholine receptors on cultured BC3H1 cells were obtained using a photoactivatable precursor of the nicotinic agonist carbamoylcholine.
Slow synaptic transmission mediated by TRPV1 channels in CA3 interneurons of the hippocampus.
Eguchi, Noriomi; Hishimoto, Akitoyo; Sora, Ichiro; Mori, Masahiro
2016-03-11
Metabotropic glutamate receptors (mGluRs) modulate various neuronal functions in the central nervous system. Many studies reported that mGluRs have linkages to neuronal disorders such as schizophrenia and autism related disorders, indicating that mGluRs are involved in critical functions of the neuronal circuits. To study this possibility further, we recorded mGluR-induced synaptic responses in the interneurons of the CA3 stratum radiatum using rat hippocampal organotypic slice cultures. Electrical stimulation in the CA3 pyramidal cell layer evoked a slow inward current in the interneurons at a holding potential of -70mV in the presence of antagonists for AMPA/kainate receptors, NMDA receptors, GABAA receptors and GABAB receptors. The slow inward current was blocked in the absence of extracellular calcium, suggesting that this was a synaptic response. The slow excitatory postsynaptic current (EPSC) reversed near 0mV, reflecting an increase in a non-selective cationic conductance. The slow EPSC is mediated by group I mGluRs, as it was blocked by AP3, a group I mGluR antagonist. Neither a calcium chelator BAPTA nor a phospholipase C (PLC) inhibitor U73122 affected the slow EPSC. La(3+), a general TRP channel blocker or capsazepine, a selective TRPV1 channel antagonist significantly suppressed the slow EPSC. DHPG, a selective group I mGluRs agonist induced an inward current, which was suppressed by capsazepine. These results indicate that in the interneurons of the hippocampal CA3 stratum radiatum group I mGluRs activate TRPV1 channels independently of PLC and intracellular Ca(2+), resulting in the slow EPSC in the interneurons. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Castelló-Ruiz, María; Salom, Juan B; Fernández-Musoles, Ricardo; Burguete, María C; López-Morales, Mikahela A; Arduini, Alessandro; Jover-Mengual, Teresa; Hervás, David; Torregrosa, Germán; Alborch, Enrique
2016-10-01
We have previously shown that the selective estrogen receptor modulator, bazedoxifene, improves the consequences of ischemic stroke. Now we aimed to characterize the effects and mechanisms of action of bazedoxifene in cerebral arteries. Male rabbit isolated basilar arteries were used for isometric tension recording and quantitative polymerase chain reaction. Bazedoxifene relaxed cerebral arteries, as 17-β-estradiol, 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol [estrogen receptor (ER) α agonist], and G1 [G protein-coupled ER (GPER) agonist] did it (4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol > bazedoxifene = G1 > 17-β-estradiol). 2,3-Bis(4-hydroxyphenyl)-propionitrile (ERβ agonist) had no effect. Expression profile of genes encoding for ERα (ESR1), ERβ (ESR2), and GPER was GPER > ESR1 > ESR2. As to the endothelial mechanisms, endothelium removal, N-nitro-L-arginine methyl ester, and indomethacin, did not modify the relaxant responses to bazedoxifene. As to the K channels, both a high-K medium and the Kv blocker, 4-aminopyridine, inhibited the bazedoxifene-induced relaxations, whereas tetraethylammonium (nonselective K channel blocker), glibenclamide (selective KATP blocker) or iberiotoxin (selective KCa blocker) were without effect. Bazedoxifene also inhibited both Ca- and Bay K8644-elicited contractions. Therefore, bazedoxifene induces endothelium-independent relaxations of cerebral arteries through (1) activation of GPER and ERα receptors; (2) increase of K conductance through Kv channels; and (3) inhibition of Ca entry through L-type Ca channels. Such a profile is compatible with the beneficial effects of estrogenic compounds (eg, SERMs) on vascular function and, specifically, that concerning the brain. Therefore, bazedoxifene could be useful in the treatment of cerebral disorders in which the cerebrovascular function is compromised (eg, stroke).
Soldo, Brandi L; Moises, Hylan C
1998-01-01
The whole-cell voltage-clamp technique was used to examine opioid regulation of Ba2+ currents (IBa) through voltage-sensitive Ca2+ channels in isolated magnocellular supraoptic neurones (MNCs). The effects of local application of μ-, δ- or κ-opioid receptor selective agonists were examined on specific components of high voltage-activated (HVA) IBa, pharmacologically isolated by use of Ca2+ channel-subtype selective antagonists. The μ-opioid receptor selective agonist, DAMGO, suppressed HVA IBa (in 64/71 neurones) in a naloxone-reversible and concentration-dependent manner (EC50 = 170 nm, Emax = 19.5 %). The DAMGO-induced inhibition was rapid in onset, associated with kinetic slowing and voltage dependent, being reversed by strong depolarizing prepulses. Low-voltage activated (LVA) IBa was not modulated by DAMGO. Administration of κ- (U69 593) or δ-selective (DPDPE) opioid receptor agonists did not affect IBa. However, immunostaining of permeabilized MNCs with an antibody specific for κ1-opioid receptors revealed the presence of this opioid receptor subtype in a large number of isolated somata. μ-Opioid-induced inhibition in IBa was largely abolished after blockade of N-type and P-type channel currents by ω-conotoxin GVIA (1 μm) and ω-agatoxin IVA (100 nm), respectively. Quantitation of antagonist effects on DAMGO-induced reductions in IBa revealed that N- and P-type channels contributed roughly equally to the μ-opioid sensitive portion of total IBa. These results indicate that μ-opioid receptors are negatively coupled to N- and P-type Ca2+ channels in the somatodendritic regions of MNCs, possibly via a membrane-delimited G-protein-dependent pathway. They also support a scheme in which opioids may act in part to modulate cellular activity and regulate neurosecretory function by their direct action on the neuroendocrine neurones of the hypothalamic supraoptic neucleus. PMID:9824718
Tóth, Balázs I; Oláh, Attila; Szöllősi, Attila Gábor; Bíró, Tamás
2014-01-01
Emerging evidence suggests that transient receptor potential (TRP) ion channels not only act as ‘polymodal cellular sensors’ on sensory neurons but are also functionally expressed by a multitude of non-neuronal cell types. This is especially true in the skin, one of the largest organs of the body, where they appear to be critically involved in regulating various cutaneous functions both under physiological and pathophysiological conditions. In this review, we focus on introducing the roles of several cutaneous TRP channels in the regulation of the skin barrier, skin cell proliferation and differentiation, and immune functions. Moreover, we also describe the putative involvement of several TRP channels in the development of certain skin diseases and identify future TRP channel-targeted therapeutic opportunities. Linked Articles This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24372189
Villarroya, M; Gandía, L; López, M G; García, A G; Cueto, S; García-Navio, J L; Alvarez-Builla, J
1996-08-01
Taking as models the polyamine toxin fraction FTX from the funnel-web spider venom, and the guanidinium moiety of guanethidine, a series of azaalkane-1, omega-diguanidinium salts were obtained. Some of them blocked ion fluxes through the neuronal nicotinic receptors for acetylcholine (nAChR). The blockade was exerted at submicromolar concentrations, suggesting a highly selective interaction with the nAChR. In fact, the active compounds on the nAChR ion channel did not recognize the voltage-dependent Na+ or Ca2+ channels of bovine adrenal chromaffin cells. Therefore, these compounds may be useful tools to clarify the functions of nAChR receptors in the central and peripheral nervous systems.
Gentet, Luc J; Clements, John D
2002-01-01
The kinetic properties of the human α1 homomeric glycine receptor were investigated. Receptors were expressed in HEK 293 cells, and glycine was applied to outside-out membrane patches with sub-millisecond solution exchange. The activation time course of the glycine response was used to investigate receptor stoichiometry. The unbinding of three strychnine molecules and the cooperative binding of two glycine molecules were required to activate the channel. The effects of phosphorylation on glycine receptor kinetics were investigated by pretreating cells with phosphorylators or with phosphatases. Phosphorylation accelerated desensitisation, but slowed deactivation and recovery from desensitisation. A chemical-kinetic model was developed that reproduced the experimental observations. The model suggests that only three binding sites on the glycine channel are functional, while the remaining two binding sites are ‘silent’, possibly due to strong negative cooperativity. PMID:12356883
Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond.
Rytz, Raphael; Croset, Vincent; Benton, Richard
2013-09-01
Ionotropic Receptors (IRs) are a recently characterized family of olfactory receptors in the fruit fly, Drosophila melanogaster. IRs are not related to insect Odorant Receptors (ORs), but rather have evolved from ionotropic glutamate receptors (iGluRs), a conserved family of synaptic ligand-gated ion channels. Here, we review the expression and function of IRs in Drosophila, highlighting similarities and differences with iGluRs. We also briefly describe the organization of the neuronal circuits in which IRs function, comparing and contrasting them with the sensory pathways expressing ORs. Finally, we summarize the bioinformatic identification and initial characterization of IRs in other species, which imply an evolutionarily conserved role for these receptors in chemosensation in insects and other protostomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Therien, J P Daniel; Baenziger, John E
2017-03-27
Although transmembrane helix-helix interactions must be strong enough to drive folding, they must still permit the inter-helix movements associated with conformational change. Interactions between the outermost M4 and adjacent M1 and M3 α-helices of pentameric ligand-gated ion channels have been implicated in folding and function. Here, we evaluate the role of different physical interactions at this interface in the function of two prokaryotic homologs, GLIC and ELIC. Strikingly, disruption of most interactions in GLIC lead to either a reduction or a complete loss of expression and/or function, while analogous disruptions in ELIC often lead to gains in function. Structural comparisons suggest that GLIC and ELIC represent distinct transmembrane domain archetypes. One archetype, exemplified by GLIC, the glycine and GABA receptors and the glutamate activated chloride channel, has extensive aromatic contacts that govern M4-M1/M3 interactions and that are essential for expression and function. The other archetype, exemplified by ELIC and both the nicotinic acetylcholine and serotonin receptors, has relatively few aromatic contacts that are detrimental to function. These archetypes likely have evolved different mechanisms to balance the need for strong M4 "binding" to M1/M3 to promote folding/expression, and the need for weaker interactions that allow for greater conformational flexibility.
Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors.
Currie, Kevin P M
2010-11-01
Catecholamines and other transmitters released from adrenal chromaffin cells play central roles in the "fight-or-flight" response and exert profound effects on cardiovascular, endocrine, immune, and nervous system function. As such, precise regulation of chromaffin cell exocytosis is key to maintaining normal physiological function and appropriate responsiveness to acute stress. Chromaffin cells express a number of different G protein coupled receptors (GPCRs) that sense the local environment and orchestrate this precise control of transmitter release. The primary trigger for catecholamine release is Ca2+ entry through voltage-gated Ca2+ channels, so it makes sense that these channels are subject to complex regulation by GPCRs. In particular G protein βγ heterodimers (Gbc) bind to and inhibit Ca2+ channels. Here I review the mechanisms by which GPCRs inhibit Ca2+ channels in chromaffin cells and how this might be altered by cellular context. This is related to the potent autocrine inhibition of Ca2+ entry and transmitter release seen in chromaffin cells. Recent data that implicate an additional inhibitory target of Gβγ on the exocytotic machinery and how this might fine tune neuroendocrine secretion are also discussed.
Insulin Action in Brain Regulates Systemic Metabolism and Brain Function
Kleinridders, André; Ferris, Heather A.; Cai, Weikang
2014-01-01
Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. PMID:24931034
Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets
Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.
2016-01-01
Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858
Sonkusare, Swapnil K; Dalsgaard, Thomas; Bonev, Adrian D; Nelson, Mark T
2016-06-15
Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel inhibitors (Ba(2+) , ML-133) or in the arteries from EC-Kir2.1(-/-) mice. Potassium-induced dilatations were unaffected by inhibitors of TRPV4, IK and SK channels. The Kir channel blocker, Ba(2+) , did not affect currents through TRPV4, IK or SK channels. Endothelial cell-dependent vasodilatations in response to activation of muscarinic receptors, TRPV4 channels or IK/SK channels were reduced, but not eliminated, by Kir channel inhibitors or EC-Kir2.1(-/-) . In angiotensin II-induced hypertension, the Kir channel function was not altered, although the endothelium-dependent vasodilatation was severely impaired. Our results support the concept that EC Kir2 channels boost vasodilatory signals that are generated by Ca(2+) -dependent activation of IK and SK channels. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Dalsgaard, Thomas; Bonev, Adrian D.; Nelson, Mark T.
2016-01-01
Key points Increase in endothelial cell (EC) calcium activates calcium‐sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium‐dependent vasodilatation.Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium‐dependent vasodilatation is not clear.In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform.Endothelium‐dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown.These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Abstract Endothelium‐dependent vasodilators, such as acetylcholine, increase intracellular Ca2+ through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca2+‐sensitive intermediate and small conductance K+ (IK and SK, respectively) channels. Although strong inward rectifier K+ (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC‐dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC‐dependent vasodilatation of resistance‐sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC‐specific Kir2.1 knockdown (EC‐Kir2.1 −/−) mice. Elevation of extracellular K+ to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel inhibitors (Ba2+, ML‐133) or in the arteries from EC‐Kir2.1 −/− mice. Potassium‐induced dilatations were unaffected by inhibitors of TRPV4, IK and SK channels. The Kir channel blocker, Ba2+, did not affect currents through TRPV4, IK or SK channels. Endothelial cell‐dependent vasodilatations in response to activation of muscarinic receptors, TRPV4 channels or IK/SK channels were reduced, but not eliminated, by Kir channel inhibitors or EC‐Kir2.1 −/−. In angiotensin II‐induced hypertension, the Kir channel function was not altered, although the endothelium‐dependent vasodilatation was severely impaired. Our results support the concept that EC Kir2 channels boost vasodilatory signals that are generated by Ca2+‐dependent activation of IK and SK channels. PMID:26840527
Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki
2014-01-01
Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.
The Acetylcholine Receptor and Its Ionic Channel as Targets for Drugs and Toxins
1981-12-10
mlecular target that can have any number of different binding sites and is able to generate levels of energy barriers which &re a direct function of the...Albuquerque, E.X. XEatrachotoxi.-A 20- a -benzoate: A new radioactive ligand for voltage- sensitive sodium channels. Cell. Mol. Neurobio .. 1: 19-40
Salzer, Isabella; Erdem, Fatma Asli; Chen, Wei-Qiang; Heo, Seok; Koenig, Xaver; Schicker, Klaus W; Kubista, Helmut; Lubec, Gert; Boehm, Stefan; Yang, Jae-Won
2017-02-01
Phosphatidylinositol-4,5-bisphosphate (PIP 2 ) is a key regulator of many membrane proteins, including voltage-gated Kv7.2 channels. In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP 2 -binding domains in Kv7.2. Dephosphorylation of these residues reduced the sensitivity of Kv7.2 channels towards PIP 2 . Dephosphorylation of Kv7.2 affected channel inhibition via M 1 muscarinic receptors, but not via bradykinin receptors. Our data indicated that phosphorylation of the Kv7.2 channel was necessary to maintain its low affinity for PIP 2 , thereby ensuring the tight regulation of the channel via G protein-coupled receptors. The function of numerous ion channels is tightly controlled by G protein-coupled receptors (GPCRs). The underlying signalling mechanisms may involve phosphorylation of channel proteins and participation of phosphatidylinositol-4,5-bisphosphate (PIP 2 ). Although the roles of both mechanisms have been investigated extensively, thus far only little has been reported on their interaction in channel modulation. GPCRs govern Kv7 channels, the latter playing a major role in the regulation of neuronal excitability by determining the levels of PIP 2 and through phosphorylation. Using liquid chromatography-coupled mass spectrometry for Kv7.2 immunoprecipitates of rat brain membranes and transfected cells, we mapped a cluster of five phosphorylation sites in one of the PIP2-binding domains. To evaluate the effect of phosphorylation on PIP 2 -mediated Kv7.2 channel regulation, a quintuple alanine mutant of these serines (S427/S436/S438/S446/S455; A 5 mutant) was generated to mimic the dephosphorylated state. Currents passing through these mutated channels were less sensitive towards PIP 2 depletion via the voltage-sensitive phosphatase Dr-VSP than were wild-type channels. In vitro phosphorylation assays with the purified C-terminus of Kv7.2 revealed that CDK5, p38 MAPK, CaMKIIα and PKA were able to phosphorylate the five serines. Inhibition of these protein kinases reduced the sensitivity of wild-type but not mutant Kv7.2 channels towards PIP 2 depletion via Dr-VSP. In superior cervical ganglion neurons, the protein kinase inhibitors attenuated Kv7 current regulation via M 1 receptors, but left unaltered the control by B2 receptors. Our results revealed that the phosphorylation status of serines located within a putative PIP 2 -binding domain determined the phospholipid sensitivity of Kv7.2 channels and supported GPCR-mediated channel regulation. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Salzer, Isabella; Erdem, Fatma Asli; Chen, Wei‐Qiang; Heo, Seok; Koenig, Xaver; Schicker, Klaus W.; Kubista, Helmut; Lubec, Gert; Boehm, Stefan
2016-01-01
Key points Phosphatidylinositol‐4,5‐bisphosphate (PIP2) is a key regulator of many membrane proteins, including voltage‐gated Kv7.2 channels.In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP2‐binding domains in Kv7.2.Dephosphorylation of these residues reduced the sensitivity of Kv7.2 channels towards PIP2.Dephosphorylation of Kv7.2 affected channel inhibition via M1 muscarinic receptors, but not via bradykinin receptors.Our data indicated that phosphorylation of the Kv7.2 channel was necessary to maintain its low affinity for PIP2, thereby ensuring the tight regulation of the channel via G protein‐coupled receptors. Abstract The function of numerous ion channels is tightly controlled by G protein‐coupled receptors (GPCRs). The underlying signalling mechanisms may involve phosphorylation of channel proteins and participation of phosphatidylinositol‐4,5‐bisphosphate (PIP2). Although the roles of both mechanisms have been investigated extensively, thus far only little has been reported on their interaction in channel modulation. GPCRs govern Kv7 channels, the latter playing a major role in the regulation of neuronal excitability by determining the levels of PIP2 and through phosphorylation. Using liquid chromatography‐coupled mass spectrometry for Kv7.2 immunoprecipitates of rat brain membranes and transfected cells, we mapped a cluster of five phosphorylation sites in one of the PIP2‐binding domains. To evaluate the effect of phosphorylation on PIP2‐mediated Kv7.2 channel regulation, a quintuple alanine mutant of these serines (S427/S436/S438/S446/S455; A5 mutant) was generated to mimic the dephosphorylated state. Currents passing through these mutated channels were less sensitive towards PIP2 depletion via the voltage‐sensitive phosphatase Dr‐VSP than were wild‐type channels. In vitro phosphorylation assays with the purified C‐terminus of Kv7.2 revealed that CDK5, p38 MAPK, CaMKIIα and PKA were able to phosphorylate the five serines. Inhibition of these protein kinases reduced the sensitivity of wild‐type but not mutant Kv7.2 channels towards PIP2 depletion via Dr‐VSP. In superior cervical ganglion neurons, the protein kinase inhibitors attenuated Kv7 current regulation via M1 receptors, but left unaltered the control by B2 receptors. Our results revealed that the phosphorylation status of serines located within a putative PIP2‐binding domain determined the phospholipid sensitivity of Kv7.2 channels and supported GPCR‐mediated channel regulation. PMID:27621207
Mellor, J R; Wisden, W; Randall, A D
2000-07-10
Electrophysiological investigation of cultured cerebellar murine granule cells revealed differences between the GABA(A) receptors at inhibitory synapses and those on the cell body. Specifically, mIPSCs decayed more rapidly than cell body receptors deactivated, the mean single channel conductance at the synapse (32 pS) was greater than that at cell body (21 pS) and only cell body receptors were sensitive to Zn(2+) (150 microM), which depressed response amplitude by 82+/-5% and almost doubled the rate of channel deactivation. The GABA(A) receptor alpha6 subunit is selectively expressed in cerebellar granule cells. Although concentrated at synapses, it is also found on extrasynaptic membranes. Using a mouse line (Deltaalpha6lacZ) lacking this subunit, we investigated its role in the somato-synaptic differences in GABA(A) receptor function. All differences between cell body and synaptic GABA(A) receptors observed in wild-type (WT) granule cells persisted in Deltaalpha6lacZ cells, thus demonstrating that they are not specifically due to the cellular distribution of the alpha6 subunit. However, mIPSCs from WT and Deltaalpha6lacZ cells differed in both their kinetics (faster decay in WT cells) and underlying single channel conductance (32 pS WT, 25 pS Deltaalpha6lacZ). This provides good evidence for a functional contribution of the alpha6 subunit to postsynaptic GABA(A) receptors in these cells. Despite this, deactivation kinetics of mIPSCs in WT and Deltaalpha6lacZ granule cells exhibited similar benzodiazepene (BDZ) sensitivity. This suggests that the enhanced BDZ-induced ataxia seen in Deltaalpha6lacZ mice may reflect physiological activity at extrasynaptic receptors which, unlike those at synapses, display differential BDZ-sensitivity in WT and Deltaalpha6lacZ granule cells (Jones, A.M., Korpi, E.R., McKernan, R.M., Nusser, Z., Pelz, R., Makela, R., Mellor, J.R., Pollard, S., Bahn, S., Stephenson, F.A., Randall, A.D., Sieghart, W., Somogyi, P., Smith, A.J.H., Wisden, W., 1997. Ligand-gated ion channel partnerships: GABA(A) receptor alpha(6) subunit inactivation inhibits delta subunit expression. Journal of Neuroscience 17, 1350-1362).
1995-01-01
Acetylcholine-evoked currents mediated by activation of nicotinic receptors in rat parasympathetic neurons were examined using whole-cell voltage clamp. The relative permeability of the neuronal nicotinic acetylcholine (nACh) receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements. The channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Cs+ > K+ > Rb+ > Na+ > Li+, and permeability ratios relative to Na+ (Px/PNa) ranging from 1.27 to 0.75. The selectivity of the alkaline earths was also weak, with the sequence of Mg2+ > Sr2+ > Ba2+ > Ca2+, and relative permeabilities of 1.10 to 0.65. The relative Ca2+ permeability (PCa/PNa) of the neuronal nACh receptor channel is approximately fivefold higher than that of the motor endplate channel (Adams, D. J., T. M. Dwyer, and B. Hille. 1980. Journal of General Physiology. 75:493-510). The transition metal cation, Mn2+ was permeant (Px/PNa = 0.67), whereas Ni2+, Zn2+, and Cd2+ blocked ACh-evoked currents with half-maximal inhibition (IC50) occurring at approximately 500 microM, 5 microM and 1 mM, respectively. In contrast to the muscle endplate AChR channel, that at least 56 organic cations which are permeable to (Dwyer et al., 1980), the majority of organic cations tested were found to completely inhibit ACh- evoked currents in rat parasympathetic neurons. Concentration-response curves for guanidinium, ethylammonium, diethanolammonium and arginine inhibition of ACh-evoked currents yielded IC50's of approximately 2.5- 6.0 mM. The organic cations, hydrazinium, methylammonium, ethanolammonium and Tris, were measureably permeant, and permeability ratios varied inversely with the molecular size of the cation. Modeling suggests that the pore has a minimum diameter of 7.6 A. Thus, there are substantial differences in ion permeation and block between the nACh receptor channels of mammalian parasympathetic neurons and amphibian skeletal muscle which represent functional consequences of differences in the primary structure of the subunits of the ACh receptor channel. PMID:7561740
Functional dynamics of cell surface membrane proteins
NASA Astrophysics Data System (ADS)
Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio
2014-04-01
Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.
Functional dynamics of cell surface membrane proteins.
Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio
2014-04-01
Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.
Molecular dissection of purinergic P2X receptor channels.
Stojilkovic, Stanko S; Tomic, Melanija; He, Mu-Lan; Yan, Zonghe; Koshimizu, Taka-Aki; Zemkova, Hana
2005-06-01
The P2X receptors (P2XRs) are a family of ATP-gated channels expressed in the plasma membrane of numerous excitable and nonexcitable cells and play important roles in control of cellular functions, such as neurotransmission, hormone secretion, transcriptional regulation, and protein synthesis. P2XRs are homomeric or heteromeric proteins, formed by assembly of at least three of seven subunits named P2X(1)-P2X(7). All subunits possess intracellular N- and C-termini, two transmembrane domains, and a relatively large extracellular ligand-binding loop. ATP binds to still an unidentified extracellular domain, leading to a sequence of conformational transitions between closed, open, and desensitized states. Removal of extracellular ATP leads to deactivation and resensitization of receptors. Activated P2XRs generate inward currents caused by Na(+) and Ca(2+) influx through the pore of channels, and thus mediate membrane depolarization and facilitation of voltage-gated calcium entry in excitable cells. No crystal structures are available for P2XRs and these receptors have no obvious similarity to other ion channels or ATP binding proteins, which limits the progress in understanding the relationship between molecular structure and conformational transitions of receptor in the presence of agonist and after its washout. We summarize here the alternative approaches in studies on molecular properties of P2XRs, including heteromerization, chimerization, mutagenesis, and biochemical studies.
Peptide-gated ion channels and the simple nervous system of Hydra.
Gründer, Stefan; Assmann, Marc
2015-02-15
Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses. © 2015. Published by The Company of Biologists Ltd.
Imbrici, Paola; Tricarico, Domenico; Mangiatordi, Giuseppe Felice; Nicolotti, Orazio; Lograno, Marcello Diego; Conte, Diana; Liantonio, Antonella
2017-07-01
Human ClC-K chloride channels are highly attractive targets for drug discovery as they have a variety of important physiological functions and are associated with genetic disorders. These channels are crucial in the kidney as they control chloride reabsorption and water diuresis. In addition, loss-of-function mutations of CLCNKB and BSND genes cause Bartter's syndrome (BS), whereas CLCNKA and CLCNKB gain-of-function polymorphisms predispose to a rare form of salt sensitive hypertension. Both disorders lack a personalized therapy that is in most cases only symptomatic. The aim of this study was to identify novel ClC-K ligands from drugs already on the market, by exploiting the pharmacological side activity of drug molecules available from the FDA Adverse Effects Reporting System database. We searched for drugs having a Bartter-like syndrome as a reported side effect, with the assumption that BS could be causatively related to the block of ClC-K channels. The ability of the selected BS-causing drugs to bind and block ClC-K channels was then validated through an integrated experimental and computational approach based on patch clamp electrophysiology in HEK293 cells and molecular docking simulations. Valsartan and olmesartan were able to block ClC-Ka channels and the molecular requirements for effective inhibition of these channels have been identified. These results suggest additional mechanisms of action for these sartans further to their primary AT 1 receptor antagonism and propose these compounds as leads for designing new potent ClC-K ligands. © 2017 The British Pharmacological Society.
MacKay, Charles E; Knock, Greg A
2015-01-01
Abstract Reactive oxygen species (ROS) are now recognised as second messenger molecules that regulate cellular function by reversibly oxidising specific amino acid residues of key target proteins. Amongst these are the Src-family kinases (SrcFKs), a multi-functional group of non-receptor tyrosine kinases highly expressed in vascular smooth muscle (VSM). In this review we examine the evidence supporting a role for ROS-induced SrcFK activity in normal VSM contractile function and in vascular remodelling in cardiovascular disease. VSM contractile responses to G-protein-coupled receptor stimulation, as well as hypoxia in pulmonary artery, are shown to be dependent on both ROS and SrcFK activity. Specific phosphorylation targets are identified amongst those that alter intracellular Ca2+ concentration, including transient receptor potential channels, voltage-gated Ca2+ channels and various types of K+ channels, as well as amongst those that regulate actin cytoskeleton dynamics and myosin phosphatase activity, including focal adhesion kinase, protein tyrosine kinase-2, Janus kinase, other focal adhesion-associated proteins, and Rho guanine nucleotide exchange factors. We also examine a growing weight of evidence in favour of a key role for SrcFKs in multiple pro-proliferative and anti-apoptotic signalling pathways relating to oxidative stress and vascular remodelling, with a particular focus on pulmonary hypertension, including growth-factor receptor transactivation and downstream signalling, hypoxia-inducible factors, positive feedback between SrcFK and STAT3 signalling and positive feedback between SrcFK and NADPH oxidase dependent ROS production. We also discuss evidence for and against the potential therapeutic targeting of SrcFKs in the treatment of pulmonary hypertension. PMID:25384773
Liu, Ping; Chen, Bojun; Wang, Zhao-Wen
2014-01-01
Slo2 channels are prominent K+ channels in mammalian neurons but their physiological functions are not well understood. Here we investigate physiological functions and regulation of the C. elegans homologue SLO-2 in motor neurons through electrophysiological analyses of wild-type and mutant worms. We find that SLO-2 is the primary K+ channel conducting delayed outward current in cholinergic motor neurons, and one of two K+ channels with this function in GABAergic motor neurons. Loss-of-function mutation of slo-2 increases the duration and charge transfer rate of spontaneous postsynaptic current bursts at the neuromuscular junction, which are physiological signals used by motor neurons to control muscle cells, without altering postsynaptic receptor sensitivity. SLO-2 activity in motor neurons depends on Ca2+ entry through EGL-19, an L-type voltage-gated Ca2+ channel (CaV1), but not on other proteins implicated in either Ca2+ entry or intracellular Ca2+ release. Thus, SLO-2 is functionally coupled with CaV1 and regulates neurotransmitter release. PMID:25300429
Krieger, James; Lee, Ji Young; Greger, Ingo H; Bahar, Ivet
2018-02-23
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are key players in synaptic transmission and plasticity. They are composed of four subunits, each containing four functional domains, the quaternary packing and collective structural dynamics of which are important determinants of their molecular mechanism of function. With the explosion of structural studies on different members of the family, including the structures of activated open channels, the mechanisms of action of these central signaling machines are now being elucidated. We review the current state of computational studies on two major members of the family, AMPA and NMDA receptors, with focus on molecular simulations and elastic network model analyses that have provided insights into the coupled movements of extracellular and transmembrane domains. We describe the newly emerging mechanisms of activation, allosteric signaling and desensitization, as mainly a selective triggering of pre-existing soft motions, as deduced from computational models and analyses that leverage structural data on intact AMPA and NMDA receptors in different states. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Beyond the Channel: Metabotropic Signaling by Nicotinic Receptors.
Kabbani, Nadine; Nichols, Robert A
2018-04-01
The α7 nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel (LGIC) that plays an important role in cellular calcium signaling and contributes to several neurological diseases. Agonist binding to the α7 nAChR induces fast channel activation followed by inactivation and prolonged desensitization while triggering long-lasting calcium signaling. These activities foster neurotransmitter release, synaptic plasticity, and somatodendritic regulation in the brain. We discuss here the ability of α7 nAChRs to operate in ionotropic (α7 i ) and metabotropic (α7 m ) modes, leading to calcium-induced calcium release (CICR) and G protein-associated inositol trisphosphate (IP 3 )-induced calcium release (IICR), respectively. Metabotropic activity extends the spatial and temporal aspects of calcium signaling by the α7 channel beyond its ionotropic limits, persisting into the desensitized state. Delineation of the ionotropic and metabotropic properties of the α7 nAChR will provide definitive indicators of moment-to-moment receptor functional status that will, in turn, spearhead new drug development. Copyright © 2018 Elsevier Ltd. All rights reserved.
TRPP2 ion channels: Critical regulators of organ morphogenesis in health and disease.
Busch, Tilman; Köttgen, Michael; Hofherr, Alexis
2017-09-01
Ion channels control the membrane potential and mediate transport of ions across membranes. Archetypical physiological functions of ion channels include processes such as regulation of neuronal excitability, muscle contraction, or transepithelial ion transport. In that regard, transient receptor potential ion channel polycystin 2 (TRPP2) is remarkable, because it controls complex morphogenetic processes such as the establishment of properly shaped epithelial tubules and left-right-asymmetry of organs. The fascinating question of how an ion channel regulates morphogenesis has since captivated the attention of scientists in different disciplines. Four loosely connected key insights on different levels of biological complexity ranging from protein to whole organism have framed our understanding of TRPP2 physiology: 1) TRPP2 is a non-selective cation channel; 2) TRPP2 is part of a receptor-ion channel complex; 3) TRPP2 localizes to primary cilia; and 4) TRPP2 is required for organ morphogenesis. In this review, we will discuss the current knowledge in these key areas and highlight some of the challenges ahead. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jeon, Jae-Pyo; Thakur, Dhananjay P; Tian, Jin-Bin; So, Insuk; Zhu, Michael X
2016-05-15
Transient receptor potential canonical 4 (TRPC4) forms non-selective cation channels implicated in the regulation of diverse physiological functions. Previously, TRPC4 was shown to be activated by the Gi/o subgroup of heterotrimeric G-proteins involving Gαi/o, rather than Gβγ, subunits. Because the lifetime and availability of Gα-GTP are regulated by regulators of G-protein signalling (RGS) and Gαi/o-Loco (GoLoco) domain-containing proteins via their GTPase-activating protein (GAP) and guanine-nucleotide-dissociation inhibitor (GDI) functions respectively, we tested how RGS and GoLoco domain proteins affect TRPC4 currents activated via Gi/o-coupled receptors. Using whole-cell patch-clamp recordings, we show that both RGS and GoLoco proteins [RGS4, RGS6, RGS12, RGS14, LGN or activator of G-protein signalling 3 (AGS3)] suppress receptor-mediated TRPC4 activation without causing detectable basal current or altering surface expression of the channel protein. The inhibitory effects are dependent on the GAP and GoLoco domains and facilitated by enhancing membrane targeting of the GoLoco protein AGS3. In addition, RGS, but not GoLoco, proteins accelerate desensitization of receptor-activation evoked TRPC4 currents. The inhibitory effects of RGS and GoLoco domains are additive and are most prominent with RGS12 and RGS14, which contain both RGS and GoLoco domains. Our data support the notion that the Gα, but not Gβγ, arm of the Gi/o signalling is involved in TRPC4 activation and unveil new roles for RGS and GoLoco domain proteins in fine-tuning TRPC4 activities. The versatile and diverse functions of RGS and GoLoco proteins in regulating G-protein signalling may underlie the complexity of receptor-operated TRPC4 activation in various cell types under different conditions. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Comparing Plant and Animal Glutamate Receptors: Common Traits but Different Fates?
Wudick, Michael M; Michard, Erwan; Oliveira Nunes, Custódio; Feijó, José A
2018-04-19
Animal ionotropic glutamate receptors (iGluRs) are ligand-gated channels whose evolution is intimately linked to the one of the nervous system, where the agonist glutamate and co-agonists glycine/D-serine act as neuro-transmitters or -modulators. While iGluRs are specialized in neuronal communication, plant glutamate receptor-like (GLR) homologues have evolved many plant-specific physiological functions, such as sperm signaling in moss, pollen tube growth, root meristem proliferation, innate immune and wound responses. GLRs have been associated with Ca2+ signaling by directly channeling its extracellular influx into the cytosol. Nevertheless, very limited information on functional properties of GLRs is available, and we mostly rely on structure/function data obtained for animal iGluRs to interpret experimental results obtained for plant GLRs. Yet, a deeper characterization and better understanding of plant GLRs is progressively unveiling original and different mode of functions when compared to their mammalian counterparts. Here, we review the function of plant GLRs comparing their predicted structure and physiological roles to the well-documented ones of iGluRs. We conclude that interpreting GLR function based on comparison to their animal counterparts calls for caution, especially when presuming physiological roles and mode of action for plant GLRs from comparison to iGluRs in peripheral, non-neuronal tissues.
Wan, Qian; Zhuo, Ji-Bin; Wang, Xiao-Xue; Lin, Cai-Xia; Yuan, Yao-Feng
2015-03-28
A structurally simple, 2,2-diferrocenylpropane-based ion pair receptor 1 was synthesized and characterized by (1)H NMR, (13)C NMR, HRMS, elemental analyses, and single-crystal X-ray diffraction. The ion pair receptor 1 showed excellent selectivity and sensitivity towards Pb(2+) with multi-channel responses: a fluorescence enhancement (more than 42-fold), a notable color change from yellow to red, redox anodic shift (ΔE1/2 = 151 mV), while HSO4(-) promoted fluorescence enhancement when Pb(2+) or Zn(2+) was bonded to the cation binding-site. (1)H NMR titration and density functional theory were performed to reveal the sensing mechanism based on photo-induced electron transfer (PET).
Functional kainate-selective glutamate receptors in cultured hippocampal neurons.
Lerma, J; Paternain, A V; Naranjo, J R; Mellström, B
1993-12-15
Glutamate mediates fast synaptic transmission at the majority of excitatory synapses throughout the central nervous system by interacting with different types of receptor channels. Cloning of glutamate receptors has provided evidence for the existence of several structurally related subunit families, each composed of several members. It has been proposed that KA1 and KA2 and GluR-5, GluR-6, and GluR-7 families represent subunit classes of high-affinity kainate receptors and that in vivo different kainate receptor subtypes might be constructed from these subunits in heteromeric assembly. However, despite some indications from autoradiographic studies and binding data in brain membranes, no functional pure kainate receptors have so far been detected in brain cells. We have found that early after culturing, a high percentage of rat hippocampal neurons express functional, kainate-selective glutamate receptors. These kainate receptors show pronounced desensitization with fast onset and very slow recovery and are also activated by quisqualate and domoate, but not by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate. Our results provide evidence for the existence of functional glutamate receptors of the kainate type in nerve cells, which are likely to be native homomeric GluR-6 receptors.
Functional kainate-selective glutamate receptors in cultured hippocampal neurons.
Lerma, J; Paternain, A V; Naranjo, J R; Mellström, B
1993-01-01
Glutamate mediates fast synaptic transmission at the majority of excitatory synapses throughout the central nervous system by interacting with different types of receptor channels. Cloning of glutamate receptors has provided evidence for the existence of several structurally related subunit families, each composed of several members. It has been proposed that KA1 and KA2 and GluR-5, GluR-6, and GluR-7 families represent subunit classes of high-affinity kainate receptors and that in vivo different kainate receptor subtypes might be constructed from these subunits in heteromeric assembly. However, despite some indications from autoradiographic studies and binding data in brain membranes, no functional pure kainate receptors have so far been detected in brain cells. We have found that early after culturing, a high percentage of rat hippocampal neurons express functional, kainate-selective glutamate receptors. These kainate receptors show pronounced desensitization with fast onset and very slow recovery and are also activated by quisqualate and domoate, but not by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate. Our results provide evidence for the existence of functional glutamate receptors of the kainate type in nerve cells, which are likely to be native homomeric GluR-6 receptors. PMID:7505445
Olfactory Ionotropic Receptors in Mosquito Aedes albopictus (Diptera: Culicidae).
Chen, Qian; Man, Yahui; Li, Jianyong; Pei, Di; Wu, Wenjian
2017-09-01
Ionotropic glutamate receptors (iGluRs) are a conserved family of ligand-gated ion channels that primarily function to mediate neuronal communication at synapses. A variant subfamily of iGluRs, the ionotropic receptors (IRs), was recently identified in insects and proved with the function in odorant recognition. Ionotropic receptors participate in a distinct olfactory signaling pathway that is independent of olfactory receptors activity. In the present study, we identify 102 putative IR genes, dubbed as AalbIr genes, in mosquito Aedes albopictus (Skuse) by in silico comparative sequence analysis. Among AalbIr genes, 19 show expression in the female antenna by RT-PCR. These putative olfactory AalbIRs share four conservative hydrophobic domains of amino acids, similar to the transmembrane and ion channel pore regions found in conventional iGluRs. To determine the potential function of these olfactory AalbIRs in host-seeking, we compared their transcript expression levels in the antennae of blood-fed females with that of non-blood-fed females by quantitative real-time RT-PCR. Three AalbIr genes showed downregulation when the mosquito finished a bloodmeal. These results may help to improve our understanding of the IR-mediated olfactory signaling in mosquitoes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Medicinal chemistry of P2X receptors: allosteric modulators.
Müller, Christa E
2015-01-01
P2X receptors are trimeric ligand-gated ion channels whose potential as novel drug targets for a number of diseases has been recognized. They are mainly involved in inflammatory processes, including neuroinflammation, and pain sensation. The orthosteric binding site is lined by basic amino acid residues that bind the negatively charged agonist ATP. Therefore it is not easy to develop orthosteric ligands that possess drug-like properties for such a highly polar binding site. However, ligand-gated ion channels offer multiple additional binding sites for allosteric ligands, positive or negative allosteric modulators enhancing or blocking receptor function. So far, the P2X3 (and P2X2/3), as well as the P2X7 receptor subtype have been the main focus of drug development efforts. A number of potent and selective allosteric antagonists have been developed to block these receptors. We start to see the development of novel allosteric ligands also for the other P2X receptor subtypes, P2X1, P2X2 and especially P2X4. The times when only poor, non-selective, non-drug-like tools for studying P2X receptor function were available have been overcome. The first clinical studies with allosteric P2X3 and P2X7 antagonists suggest that P2X therapeutics may soon become a reality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Y.
1989-01-01
The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively,more » of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.« less
Moreau, Christophe J.; Revilloud, Jean; Caro, Lydia N.; Dupuis, Julien P.; Trouchet, Amandine; Estrada-Mondragón, Argel; Nieścierowicz, Katarzyna; Sapay, Nicolas; Crouzy, Serge; Vivaudou, Michel
2017-01-01
Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications. PMID:28145461
Cohen, Matthew R.; Johnson, William M.; Pilat, Jennifer M.; Kiselar, Janna; DeFrancesco-Lisowitz, Alicia; Zigmond, Richard E.
2015-01-01
Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca2+-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca2+-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca2+ signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca2+ signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function. PMID:26416880
[New aspects of the molecular effect of anti-arrhythmia agents].
Honerjäger, P
1990-04-01
Excitation propagation is mediated by the brief opening of voltage-dependent Na-channels in the plasma membranes of cells of the conduction system and working myocardium. The refractory period is a function of the re-availability of the Na-channel for renewed opening. Most antiarrhythmic agents block cardiac Na-channels and, consequently, affect the desired refractory period prolongation. At the same time, however, dependent on the concentration and the substance, they slow conduction; an effect which can facilitate reentry excitation in the injured heart. The Na-channel blocking drugs, class I antiarrhythmic agents, are distinguished from the beta-receptor blockers, class II, repolarizing prolonging drugs, class III, and the cardiac Ca-channel blocking drugs (class IV) (Table 1). MOLECULAR STRUCTURE OF THE CARDIAC NA-CHANNEL: Voltage-dependent Na-channels which have been structurally elucidated to date are glycoprotein macromolecules of about 2000 amino acids with a molecular weight of about 260,000. Beginning at the amino terminal, four consecutive homologous domains can be differentiated which are composed of six transmembranous segments each. The terminal portion of the chain as well as the connecting segments between the domains appear intracellular. There are important relationships between the molecular structure and the function of the Na-channel (Figure 1). On comparison of the primary structures of neuronal and cardiac Na-channels, domains I to IV as well as the connecting segment between domains III and IV, are nearly identical. Homology in all of the remaining molecular regions, in contrast, is less than 70%. These segments as well as the differing structure of the four S5-S6 connecting chains may be responsible for the varying functional response of the cardiac Na-channels. MOLECULAR SITE OF ACTION OF ANTIARRHYTHMIC AGENTS AT THE CARDIAC NA-CHANNEL: Since most antiarrhythmic agents are weak bases with pK values between 7.5 and 9.5, in the physiologic range of pH, they are present in part in the protonated, positively-charged form, in part as uncharged free base. It is assumed that the Na-channel of nerve and skeletal muscle has one receptor for local anesthetics at which both the protonated and the uncharged molecular forms bind. The receptor is thought to be located on the inner wall of the ion pore about half of the distance between the intracellular and the extracellular channel opening. The uncharged form of the Na-channel blocker penetrates directly from the lipid phase of the surrounding cell membrane, the protonated form only from the intracellular space during the short opening of the channel at the beginning of the action potential. Through binding on the receptor, the Na-channel is blocked. Dissociation of the molecular forms takes place in the same manner. The peptide region on which antiarrhythmic drugs bind, however, has not been identified. By means of the patch-clamp technique, it has been shown that on extracellular application of the quaternary lidocaine derivative QX-314 there is a rapid and marked reduction of Na-flux in cardiac Purkinje fibers in contrast to the effects at neuronal and skeletal muscle Na-channels. Intracellular application similarly leads to blockade but only in the course of repetitive depolarizations indicating that the cardiac Na-channel may have a second binding site for local anesthetics at the extracellular side.(ABSTRACT TRUNCATED AT 400 WORDS)
Marques-Neto, Silvio Rodrigues; Ferraz, Emanuelle Baptista; Rodrigues, Deivid Carvalho; Njaine, Brian; Rondinelli, Edson; Campos de Carvalho, Antônio Carlos; Nascimento, Jose Hamilton Matheus
2014-04-01
Myocardial tolerance to ischaemia/reperfusion (I/R) injury is improved by exercise training, but this cardioprotection is impaired by the chronic use of anabolic androgenic steroids (AAS). The present study evaluated whether blockade of angiotensin II receptor (AT1-R) with losartan and aldosterone receptor (mineralocorticoid receptor, MR) with spironolactone could prevent the deleterious effect of AAS on the exercise-induced cardioprotection. Male Wistar rats were exercised and treated with either vehicle, nandrolone decanoate (10 mg/kg/week i.m.) or the same dose of nandrolone plus losartan or spironolactone (20 mg/kg/day orally) for 8 weeks. Langendorff-perfused hearts were subjected to I/R and evaluated for the postischaemic recovery of left ventricle (LV) function and infarct size. mRNA and protein expression of angiotensin II type 1 receptor (AT1-R), mineralocorticoid receptor (MR), and KATP channels were determined by reverse-transcriptase polymerase chain reaction and Western blotting. Postischaemic recovery of LV function was better and infarct size was smaller in the exercised rat hearts than in the sedentary rat hearts. Nandrolone impaired the exercise-induced cardioprotection, but this effect was prevented by losartan (AT1-R antagonist) and spironolactone (MR antagonist) treatments. Myocardial AT1-R and MR expression levels were increased, and the expression of the KATP channel subunits SUR2a and Kir6.1 was decreased and Kir6.2 increased in the nandrolone-treated rat hearts. The nandrolone-induced changes of AT1-R, MR, and KATP subunits expression was normalized by the losartan and spironolactone treatments. The chronic nandrolone treatment impairs the exercise-induced cardioprotection against ischaemia/reperfusion injury by activating the cardiac renin-angiotensin-aldosterone system and downregulating KATP channel expression.
Douthwaite, Julie A; Finch, Donna K; Mustelin, Tomas; Wilkinson, Trevor C I
2017-01-01
The development of recombinant antibody therapeutics continues to be a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Therapeutic drug targets such as soluble cytokines, growth factors and single transmembrane spanning receptors have been successfully targeted by recombinant monoclonal antibodies and the development of new product candidates continues. Despite this growth, however, certain classes of important disease targets have remained intractable to therapeutic antibodies due to the complexity of the target molecules. These complex target molecules include G protein-coupled receptors and ion channels which represent a large target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these important regulators of cell function. Given this opportunity, a significant effort has been applied to address the challenges of targeting these complex molecules and a number of targets are linked to the pathophysiology of respiratory diseases. In this review, we provide a summary of the importance of GPCRs and ion channels involved in respiratory disease and discuss advantages offered by antibodies as therapeutics at these targets. We highlight some recent GPCRs and ion channels linked to respiratory disease mechanisms and describe in detail recent progress made in the strategies for discovery of functional antibodies against challenging membrane protein targets such as GPCRs and ion channels. Copyright © 2016 Elsevier Inc. All rights reserved.
Mintert, Elisa; Bösche, Leif I; Rinne, Andreas; Timpert, Mathias; Kienitz, Marie-Cécile; Pott, Lutz; Bender, Kirsten
2007-11-15
Apart from gating by interaction with betagamma subunits from heterotrimeric G proteins upon stimulation of appropriate receptors, Kir.3 channels have been shown to be gated by intracellular Na+. However, no information is available on how Na+-dependent gating affects endogenous Kir3.1/Kir3.4 channels in mammalian atrial myocytes. We therefore studied how loading of adult atrial myocytes from rat hearts via the patch pipette filling solution with different concentrations of Na+ ([Na+]pip) affects Kir3 current. Surprisingly, in a range between 0 and 60 mm, Na+ neither had an effect on basal inward-rectifier current nor on the current activated by acetylcholine. Overexpression of Kir3.4 in adult atrial myocytes forced by adenoviral gene transfer results in formation of functional homomeric channels that interact with betagamma subunits upon activation of endogenous muscarinic receptors. These channels are activated at [Na+]pip >or= 15 mm, resulting in a receptor-independent basal inward rectifier current (I bir). I bir was neither affected by pertussis toxin nor by GDP-beta-S, suggesting G-protein-independent activation. PIP(2) depletion via endogenous PLC-coupled alpha1 adrenergic receptors causes inhibition of endogenous Kir3.1/3.4 channel currents by about 75%. In contrast, inhibition of Na+-activated I bir amounts to < 20%. The effect of the Kir3 channel blocker tertiapin-Q can be described using an IC50 of 12 nm (endogenous I K(ACh)) and 0.61 nm (I bir). These data clearly identify I bir as a homotetrameric Kir3.4 channel current with novel properties of regulation and pharmacology. Ibir shares some properties with a basal current recently described in atrial myocytes from an animal model of atrial fibrillation (AF) and AF patients.
Barro-Soria, Rene; Stindl, Julia; Müller, Claudia; Foeckler, Renate; Todorov, Vladimir; Castrop, Hayo; Strauß, Olaf
2012-01-01
Angiotensin II (AngII) receptor (ATR) is involved in pathologic local events such as neovascularisation and inflammation including in the brain and retina. The retinal pigment epithelium (RPE) expresses ATR in its AT1R form, angiotensin-receptor-associated protein (Atrap), and transient-receptor-potential channel-V2 (TRPV2). AT1R and Atrap co-localize to the basolateral membrane of the RPE, as shown by immunostaining. Stimulation of porcine RPE (pRPE) cells by AngII results in biphasic increases in intracellular free Ca(2+)inhibited by losartan. Xestospongin C (xest C) and U-73122, blockers of IP3R and PLC respectively, reduced AngII-evoked Ca(2+)response. RPE cells from Atrap(-/-) mice showed smaller AngII-evoked Ca(2+)peak (by 22%) and loss of sustained Ca(2+)elevation compared to wild-type. The TRPV channel activator cannabidiol (CBD) at 15 µM stimulates intracellular Ca(2+)-rise suggesting that porcine RPE cells express TRPV2 channels. Further evidence supporting the functional expression of TRPV2 channels comes from experiments in which 100 µM SKF96365 (a TRPV channel inhibitor) reduced the cannabidiol-induced Ca(2+)-rise. Application of SKF96365 or reduction of TRPV2 expression by siRNA reduced the sustained phase of AngII-mediated Ca(2+)transients by 53%. Thus systemic AngII, an effector of the local renin-angiotensin system stimulates biphasic Ca(2+)transients in the RPE by releasing Ca(2+)from cytosolic IP3-dependent stores and activating ATR/Atrap and TRPV2 channels to generate a sustained Ca(2+)elevation.
Barro-Soria, Rene; Stindl, Julia; Müller, Claudia; Foeckler, Renate; Todorov, Vladimir; Castrop, Hayo; Strauß, Olaf
2012-01-01
Angiotensin II (AngII) receptor (ATR) is involved in pathologic local events such as neovascularisation and inflammation including in the brain and retina. The retinal pigment epithelium (RPE) expresses ATR in its AT1R form, angiotensin-receptor-associated protein (Atrap), and transient-receptor-potential channel-V2 (TRPV2). AT1R and Atrap co-localize to the basolateral membrane of the RPE, as shown by immunostaining. Stimulation of porcine RPE (pRPE) cells by AngII results in biphasic increases in intracellular free Ca2+inhibited by losartan. Xestospongin C (xest C) and U-73122, blockers of IP3R and PLC respectively, reduced AngII-evoked Ca2+response. RPE cells from Atrap−/− mice showed smaller AngII-evoked Ca2+peak (by 22%) and loss of sustained Ca2+elevation compared to wild-type. The TRPV channel activator cannabidiol (CBD) at 15 µM stimulates intracellular Ca2+-rise suggesting that porcine RPE cells express TRPV2 channels. Further evidence supporting the functional expression of TRPV2 channels comes from experiments in which 100 µM SKF96365 (a TRPV channel inhibitor) reduced the cannabidiol-induced Ca2+-rise. Application of SKF96365 or reduction of TRPV2 expression by siRNA reduced the sustained phase of AngII-mediated Ca2+transients by 53%. Thus systemic AngII, an effector of the local renin-angiotensin system stimulates biphasic Ca2+transients in the RPE by releasing Ca2+from cytosolic IP3-dependent stores and activating ATR/Atrap and TRPV2 channels to generate a sustained Ca2+elevation. PMID:23185387
Physical and functional interaction between integrins and hERG potassium channels.
Arcangeli, A; Becchetti, A; Cherubini, A; Crociani, O; Defilippi, P; Guasti, L; Hofmann, G; Pillozzi, S; Olivotto, M; Wanke, E
2004-11-01
Integrins are adhesion receptors capable of transmitting intracellular signals that regulate many different cellular functions. Among integrin-mediated signals, the activation of ion channels can be included. We demonstrated that a long-lasting activation of hERG (human ether-a-go-go-related gene) potassium channels occurs in both human neuroblastoma and leukaemia cells after the activation of the beta1 integrin subunit. This activation is apparently a determining factor inducing neurite extension and osteoclastic differentiation in both the cell types. More recently, we provided evidences that beta1 integrins and hERG channels co-precipitate in both the cell types. Preliminary results suggest that a macromolecular signalling complex indeed occurs between integrins and the hERG1 protein and that hERG channel activity can modulate integrin downstream signalling.
[The role of the serotonin system in the stress response of various cells
NASA Technical Reports Server (NTRS)
Belzhelarskaia, S. N.; Satton, F. F.; Sutton, F. (Principal Investigator)
2003-01-01
The recombinant mouse brain serotonin receptor (5HT1c) was used to study the response of plant cells and oocytes to a stress signal activated by the serotonin-serotonin receptor interaction and associated Ca2+ flow. Based on plant expression vectors, recombinant constructs were obtained to direct production of 5HT1c fused with the green fluorescent protein in plant cells. The mRNAs for hybrid proteins were synthesized in an in vitro transcription system. The expression and function of the hybrid protein and the function of the associated ion channels were electrophysiologically studied in Xenopus laevis oocytes injected with the hybrid mRNA. The hybrid protein was functional and changed the operation of the Ca2+ channel in oocytes. To study the expression of the hybrid constructs in plant cells, the in vitro transcription product was inoculated in tobacco leaves, which then fluoresced.
Glycosylation of β2 Subunits Regulates GABAA Receptor Biogenesis and Channel Gating*
Lo, Wen-yi; Lagrange, Andre H.; Hernandez, Ciria C.; Harrison, Rebecca; Dell, Anne; Haslam, Stuart M.; Sheehan, Jonathan H.; Macdonald, Robert L.
2010-01-01
γ-Aminobutyric acid type A (GABAA) receptors are heteropentameric glycoproteins. Based on consensus sequences, the GABAA receptor β2 subunit contains three potential N-linked glycosylation sites, Asn-32, Asn-104, and Asn-173. Homology modeling indicates that Asn-32 and Asn-104 are located before the α1 helix and in loop L3, respectively, near the top of the subunit-subunit interface on the minus side, and that Asn-173 is located in the Cys-loop near the bottom of the subunit N-terminal domain. Using site-directed mutagenesis, we demonstrated that all predicted β2 subunit glycosylation sites were glycosylated in transfected HEK293T cells. Glycosylation of each site, however, produced specific changes in α1β2 receptor surface expression and function. Although glycosylation of Asn-173 in the Cys-loop was important for stability of β2 subunits when expressed alone, results obtained with flow cytometry, brefeldin A treatment, and endo-β-N-acetylglucosaminidase H digestion suggested that glycosylation of Asn-104 was required for efficient α1β2 receptor assembly and/or stability in the endoplasmic reticulum. Patch clamp recording revealed that mutation of each site to prevent glycosylation decreased peak α1β2 receptor current amplitudes and altered the gating properties of α1β2 receptor channels by reducing mean open time due to a reduction in the proportion of long open states. In addition to functional heterogeneity, endo-β-N-acetylglucosaminidase H digestion and glycomic profiling revealed that surface β2 subunit N-glycans at Asn-173 were high mannose forms that were different from those of Asn-32 and N104. Using a homology model of the pentameric extracellular domain of α1β2 channel, we propose mechanisms for regulation of GABAA receptors by glycosylation. PMID:20639197
Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime
2015-09-01
Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.
Sui, Feng; Zhou, Hai-Yu; Meng, Jing; Du, Xin-Liang; Sui, Yun-Peng; Zhou, Zhi-Kun; Dong, Cheng; Wang, Zhu-Ju; Wang, Wei-Hao; Dai, Li; Ma, Hai; Huo, Hai-Ru; Jiang, Ting-Liang
2016-01-01
Shaoyao-Gancao Tang (SGT) is one of the most frequently used compound formulas in the treatment of pain-related diseases in the medical practice of traditional Chinese medicine (TCM). To investigate the anti-inflammatory and antinociceptive effects, as well as to uncover the molecular mechanism of SGT, the rat pain model of arthritis was experimentally induced by single unilateral injection of rats' left hind paw with Freund's complete adjuvant (FCA). SGT was orally administered to the rats daily at three doses individually for a period of 16 days post-model induction. Swollen degrees and pain thresholds of the rats in different groups were measured for evaluation of the anti-inflammatory and anti-nociceptive effects of SGT. Furthermore, the mRNA and protein expression levels of transient receptor potential ion channel protein vanilloid receptor 1 (TRPV1) channel as well as its calcium-mediating function in the isolated DRG neurons were further detected to provide indexes for exploration of the molecular mechanisms mediating anti-arthritic activities of SGT. As a result, FCA injection induced significant allodynia, inflammation and edema, accompanied by a significant increase in both expression and calcium-mediating function of the TRPV1 channel. Pharmacologically, oral administration of SGT at a high or middle dose demonstrated a significant relief from the above-mentioned pathological conditions in a dose-dependent manner. Simultaneously the mRNA and protein expressional levels of TRPV1 channel, as well as its calcium-mediating function, were down-regulated greatly. These findings suggest that SGT possesses a significant analgesic and anti-inflammatory effect on arthritis rats; its therapeutic activities might be achieved through reversing the elevated expression and function of TRPV1 channel evoked by FCA.
KATP Channel Mutations and Neonatal Diabetes.
Shimomura, Kenju; Maejima, Yuko
2017-09-15
Since the discovery of the K ATP channel in 1983, numerous studies have revealed its physiological functions. The K ATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the K ATP channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the K ATP channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the K ATP channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.
Mowrey, David D; Liu, Qiang; Bondarenko, Vasyl; Chen, Qiang; Seyoum, Edom; Xu, Yan; Wu, Jie; Tang, Pei
2013-12-13
Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7β2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in β2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified β2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, β2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9'). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.
Chen, Pei-Chun; Olson, Erik M; Zhou, Qing; Kryukova, Yelena; Sampson, Heidi M; Thomas, David Y; Shyng, Show-Ling
2013-07-19
ATP-sensitive potassium (KATP) channels consisting of sulfonylurea receptor 1 (SUR1) and the potassium channel Kir6.2 play a key role in insulin secretion by coupling metabolic signals to β-cell membrane potential. Mutations in SUR1 and Kir6.2 that impair channel trafficking to the cell surface lead to loss of channel function and congenital hyperinsulinism. We report that carbamazepine, an anticonvulsant, corrects the trafficking defects of mutant KATP channels previously identified in congenital hyperinsulinism. Strikingly, of the 19 SUR1 mutations examined, only those located in the first transmembrane domain of SUR1 responded to the drug. We show that unlike that reported for several other protein misfolding diseases, carbamazepine did not correct KATP channel trafficking defects by activating autophagy; rather, it directly improved the biogenesis efficiency of mutant channels along the secretory pathway. In addition to its effect on channel trafficking, carbamazepine also inhibited KATP channel activity. Upon subsequent removal of carbamazepine, however, the function of rescued channels was recovered. Importantly, combination of the KATP channel opener diazoxide and carbamazepine led to enhanced mutant channel function without carbamazepine washout. The corrector effect of carbamazepine on mutant KATP channels was also demonstrated in rat and human β-cells with an accompanying increase in channel activity. Our findings identify carbamazepine as a novel small molecule corrector that may be used to restore KATP channel expression and function in a subset of congenital hyperinsulinism patients.
Iwanowicz, Luke R; Stafford, James L; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W; Blazer, Vicki S
2014-09-01
Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines. Published by Elsevier Ltd.
Zhou, Qing; Garin, Intza; Castaño, Luis; Argente, Jesús; Muñoz-Calvo, Ma. Teresa; Perez de Nanclares, Guiomar; Shyng, Show-Ling
2010-01-01
Context: ATP-sensitive potassium (KATP) channels regulate insulin secretion by coupling glucose metabolism to β-cell membrane potential. Gain-of-function mutations in the sulfonylurea receptor 1 (SUR1) or Kir6.2 channel subunit underlie neonatal diabetes. Objective: The objective of the study was to determine the mechanisms by which two SUR1 mutations, E208K and V324M, associated with transient neonatal diabetes affect KATP channel function. Design: E208K or V324M mutant SUR1 was coexpressed with Kir6.2 in COS cells, and expression and gating properties of the resulting channels were assessed biochemically and electrophysiologically. Results: Both E208K and V324M augment channel response to MgADP stimulation without altering sensitivity to ATP4− or sulfonylureas. Surprisingly, whereas E208K causes only a small increase in MgADP response consistent with the mild transient diabetes phenotype, V324M causes a severe activating gating defect. Unlike E208K, V324M also impairs channel expression at the cell surface, which is expected to dampen its functional impact on β-cells. When either mutation was combined with a mutation in the second nucleotide binding domain of SUR1 previously shown to abolish Mg-nucleotide response, the activating effect of E208K and V324M was also abolished. Moreover, combination of E208K and V324M results in channels with Mg-nucleotide sensitivity greater than that seen in individual mutations alone. Conclusion: The results demonstrate that E208K and V324M, located in distinct domains of SUR1, enhance transduction of Mg-nucleotide stimulation from the SUR1 nucleotide binding folds to Kir6.2. Furthermore, they suggest that diabetes severity is determined by interplay between effects of a mutation on channel expression and channel gating. PMID:20810569
Principalli, Maria A; Dupuis, Julien P; Moreau, Christophe J; Vivaudou, Michel; Revilloud, Jean
2015-01-01
ATP-sensitive potassium channels (K-ATP channels) play a key role in adjusting the membrane potential to the metabolic state of cells. They result from the unique combination of two proteins: the sulfonylurea receptor (SUR), an ATP-binding cassette (ABC) protein, and the inward rectifier K+ channel Kir6.2. Both subunits associate to form a heterooctamer (4 SUR/4 Kir6.2). SUR modulates channel gating in response to the binding of nucleotides or drugs and Kir6.2 conducts potassium ions. The activity of K-ATP channels varies with their localization. In pancreatic β-cells, SUR1/Kir6.2 channels are partly active at rest while in cardiomyocytes SUR2A/Kir6.2 channels are mostly closed. This divergence of function could be related to differences in the interaction of SUR1 and SUR2A with Kir6.2. Three residues (E1305, I1310, L1313) located in the linker region between transmembrane domain 2 and nucleotide-binding domain 2 of SUR2A were previously found to be involved in the activation pathway linking binding of openers onto SUR2A and channel opening. To determine the role of the equivalent residues in the SUR1 isoform, we designed chimeras between SUR1 and the ABC transporter multidrug resistance-associated protein 1 (MRP1), and used patch clamp recordings on Xenopus oocytes to assess the functionality of SUR1/MRP1 chimeric K-ATP channels. Our results reveal that the same residues in SUR1 and SUR2A are involved in the functional association with Kir6.2, but they display unexpected side-chain specificities which could account for the contrasted properties of pancreatic and cardiac K-ATP channels. PMID:26416970
P2 receptor signaling in neurons and glial cells of the central nervous system.
Köles, Laszlo; Leichsenring, Anna; Rubini, Patrizia; Illes, Peter
2011-01-01
Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes. Copyright © 2011 Elsevier Inc. All rights reserved.
Hou, Zhi-Shuai; Ulloa-Aguirre, Alfredo; Tao, Ya-Xiong
2018-06-01
Conformational diseases are caused by structurally abnormal proteins that cannot fold properly and achieve their native conformation. Misfolded proteins frequently originate from genetic mutations that may lead to loss-of-function diseases involving a variety of structurally diverse proteins including enzymes, ion channels, and membrane receptors. Pharmacoperones are small molecules that cross the cell surface plasma membrane and reach their target proteins within the cell, serving as molecular scaffolds to stabilize the native conformation of misfolded or well-folded but destabilized proteins, to prevent their degradation and promote correct trafficking to their functional site of action. Because of their high specificity toward the target protein, pharmacoperones are currently the focus of intense investigation as therapy for several conformational diseases. Areas covered: This review summarizes data on the mechanisms leading to protein misfolding and the use of pharmacoperone drugs as an experimental approach to rescue function of distinct misfolded/misrouted proteins associated with a variety of diseases, such as lysosomal storage diseases, channelopathies, and G protein-coupled receptor misfolding diseases. Expert commentary: The fact that many misfolded proteins may retain function, offers a unique therapeutic opportunity to cure disease by directly correcting misrouting through administering pharmacoperone drugs thereby rescuing function of disease-causing, conformationally abnormal proteins.
Kwaaitaal, Mark; Maintz, Jens; Cavdar, Meltem; Panstruga, Ralph
2012-11-01
The generation of intracellular microbe-associated molecular pattern (MAMP)-triggered Ca²⁺ transients was recently demonstrated to involve ionotropic Glutamate Receptor (iGluR)-like channels in Arabidopsis and tobacco. Here we elaborate on our previous findings and refine our insights in the putative agonist binding profile and potential mode of desensitization of MAMP-activated plant iGluRs. Based on results from pharmacological inhibition and desensitization experiments, we propose that plant iGluR complexes responsible for the MAMP-triggered Ca²⁺ signature have a binding profile that combines the specificities of mammalian NMDA-and non-NMDA types of iGluRs, possibly reflecting the evolutionary history of plant and animal iGluRs. We further hypothesize that, analogous to the mammalian NMDA-NR1 receptor, desensitization of plant iGluR-like channels might involve binding of the ubiquitous Ca²⁺ sensor calmodulin to a cytoplasmic C-terminal domain.
Rutter, A Richard; Ma, Qing-Ping; Leveridge, Mathew; Bonnert, Timothy P
2005-11-07
Coassociation of the vanilloid transient receptor potential (Trp) ion channels, TrpV1 and TrpV2, was investigated by immunoprecipitation and immunofluorescence in transfected mammalian cell lines, rat dorsal root ganglia and spinal cord. TrpV1/TrpV2 heteromeric complexes were coimmunoprecipitated from human embryonic kidney cells and F-11 dorsal root ganglion hybridoma cells following their transient coexpression. Immunofluorescent labelling of transfected F-11 cells revealed colocalization of TrpV1 and TrpV2 at the cell surface. Immunoprecipitation from rat dorsal root ganglion lysates identified a minor population of receptor complexes composed of TrpV1/TrpV2 heteromers, consistent with a small proportion of cells double-labelled with TrpV1 and TrpV2 antibodies in rat dorsal root ganglion sections. TrpV1/TrpV2 receptor complexes may represent a functionally distinct ion channel complex that may increase the diversity observed within the Trp ion channel family.
Dunn, Kathryn M; Hill-Eubanks, David C; Liedtke, Wolfgang B; Nelson, Mark T
2013-04-09
In the CNS, astrocytes are sensory and regulatory hubs that play important roles in cerebral homeostatic processes, including matching local cerebral blood flow to neuronal metabolism (neurovascular coupling). These cells possess a highly branched network of processes that project from the soma to neuronal synapses as well as to arterioles and capillaries, where they terminate in "endfeet" that encase the blood vessels. Ca(2+) signaling within the endfoot mediates neurovascular coupling; thus, these functional microdomains control vascular tone and local perfusion in the brain. Transient receptor potential vanilloid 4 (TRPV4) channels--nonselective cation channels with considerable Ca(2+) conductance--have been identified in astrocytes, but their function is largely unknown. We sought to characterize the influence of TRPV4 channels on Ca(2+) dynamics in the astrocytic endfoot microdomain and assess their role in neurovascular coupling. We identified local TRPV4-mediated Ca(2+) oscillations in endfeet and further found that TRPV4 Ca(2+) signals are amplified and propagated by Ca(2+)-induced Ca(2+) release from inositol trisphosphate receptors (IP3Rs). Moreover, TRPV4-mediated Ca(2+) influx contributes to the endfoot Ca(2+) response to neuronal activation, enhancing the accompanying vasodilation. Our results identify a dynamic synergy between TRPV4 channels and IP3Rs in astrocyte endfeet and demonstrate that TRPV4 channels are engaged in and contribute to neurovascular coupling.
Interaction with Phosphoinositides Confers Adaptation onto the TRPV1 Pain Receptor
Yao, Jing; Qin, Feng
2009-01-01
Adaptation is a common feature of many sensory systems. But its occurrence to pain sensation has remained elusive. Here we address the problem at the receptor level and show that the capsaicin ion channel TRPV1, which mediates nociception at the peripheral nerve terminals, possesses properties essential to the adaptation of sensory responses. Ca2+ influx following the channel opening caused a profound shift (∼14-fold) of the agonist sensitivity, but did not alter the maximum attainable current. The shift was adequate to render the channel irresponsive to normally saturating concentrations, leaving the notion that the channel became no longer functional after desensitization. By simultaneous patch-clamp recording and total internal reflection fluorescence (TIRF) imaging, it was shown that the depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) induced by Ca2+ influx had a rapid time course synchronous to the desensitization of the current. The extent of the depletion was comparable to that by rapamycin-induced activation of a PIP2 5-phosphatase, which also caused a significant reduction of the agonist sensitivity without affecting the maximum response. These results support a prominent contribution of PIP2 depletion to the desensitization of TRPV1 and suggest the adaptation as a possible physiological function for the Ca2+ influx through the channel. PMID:19243225
Wang, Xinrui; Fitts, Robert H
2017-08-01
Regular exercise training is known to affect the action potential duration (APD) and improve heart function, but involvement of β-adrenergic receptor (β-AR) subtypes and/or the ATP-sensitive K + (K ATP ) channel is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to voluntary wheel-running or control groups; they were anesthetized after 6-8 wk of training, and myocytes were isolated. Exercise training significantly increased APD of apex and base myocytes at 1 Hz and decreased APD at 10 Hz. Ca 2+ transient durations reflected the changes in APD, while Ca 2+ transient amplitudes were unaffected by wheel running. The nonselective β-AR agonist isoproterenol shortened the myocyte APD, an effect reduced by wheel running. The isoproterenol-induced shortening of APD was largely reversed by the selective β 1 -AR blocker atenolol, but not the β 2 -AR blocker ICI 118,551, providing evidence that wheel running reduced the sensitivity of the β 1 -AR. At 10 Hz, the K ATP channel inhibitor glibenclamide prolonged the myocyte APD more in exercise-trained than control rats, implicating a role for this channel in the exercise-induced APD shortening at 10 Hz. A novel finding of this work was the dual importance of altered β 1 -AR responsiveness and K ATP channel function in the training-induced regulation of APD. Of physiological importance to the beating heart, the reduced response to adrenergic agonists would enhance cardiac contractility at resting rates, where sympathetic drive is low, by prolonging APD and Ca 2+ influx; during exercise, an increase in K ATP channel activity would shorten APD and, thus, protect the heart against Ca 2+ overload or inadequate filling. NEW & NOTEWORTHY Our data demonstrated that regular exercise prolonged the action potential and Ca 2+ transient durations in myocytes isolated from apex and base regions at 1-Hz and shortened both at 10-Hz stimulation. Novel findings were that wheel running shifted the β-adrenergic receptor agonist dose-response curve rightward compared with controls by reducing β 1 -adrenergic receptor responsiveness and that, at the high activation rate, myocytes from trained animals showed higher K ATP channel function. Copyright © 2017 the American Physiological Society.
Sheikhi, Mehdi; Shirzadian, Armin; Dehdashtian, Amir; Amiri, Shayan; Ostadhadi, Sattar; Ghasemi, Mehdi; Dehpour, Ahmad Reza
2016-09-01
Zolpidem is a hypnotic medication that mainly exerts its function through activating γ-aminobutyric acid (GABA)A receptors. There is some evidence that zolpidem may have anticonvulsive effects. However, the mechanisms underlying this effect have not been elucidated yet. In the present study, we used the pentylentetrazole (PTZ)-induced generalized seizure model in mice to investigate whether zolpidem can affect seizure threshold. We also further evaluated the roles of ATP-sensitive potassium (KATP) channels as well as μ-opioid receptors in the effects of zolpidem on seizure threshold. Our data showed that zolpidem in a dose-dependent manner increased the PTZ-induced seizure threshold. The noneffective (i.e., did not significantly alter the PTZ-induced seizure threshold by itself) doses of KATP channel blocker (glibenclamide) and nonselective opioid receptor antagonist (naloxone) were able to inhibit the anticonvulsive effect of zolpidem. Additionally, noneffective doses of either KATP channel opener (cromakalim) or nonselective μ-opioid receptor agonist (morphine) in combination with a noneffective dose of zolpidem exerted a significant anticonvulsive effect on PTZ-induced seizures in mice. A combination of noneffective doses of naloxone and glibenclamide, which separately did not affect zolpidem effect on seizure threshold, inhibited the anticonvulsive effects of zolpidem. These results suggest a role for KATP channels and the opioid system, alone or in combination, in the anticonvulsive effects of zolpidem. Copyright © 2016 Elsevier Inc. All rights reserved.
Activation and Regulation of Purinergic P2X Receptor Channels
Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo
2011-01-01
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531
Xiang, Kun; Tietz, Elizabeth I
2007-09-01
Withdrawal from 1-week oral administration of the benzodiazepine, flurazepam (FZP) is associated with increased alpha-amino-3-hydroxy-5-methylisoxasole-4-propionic acid (AMPA) receptor (AMPAR) miniature excitatory postsynaptic currents (mEPSCs) but reduction of N-methyl-D-aspartic acid (NMDA) receptor (NMDAR)-evoked (e)EPSCs in hippocampal CA1 neurons. A positive correlation was observed between increased AMPAR-mediated mEPSC amplitude and anxiety-like behavior in 1-day FZP-withdrawn rats. These effects were disrupted by systemic AMPAR antagonist administration (GYKI-52466, 0.5 mg/kg, intraperitoneal) at withdrawal onset, strengthening the hypothesis that CA1 neuron AMPAR-mediated hyperexcitability is a central component of a functional anatomic circuit associated with the expression of withdrawal anxiety. Abolition of AMPAR current upregulation in 2-day FZP withdrawn rats by GYKI-52466 injection also reversed the reduction in NMDAR-mediated eEPSC amplitude in CA1 neurons from the same rats, suggesting that downregulation of NMDAR function may serve a protective, negative-feedback role to prevent AMPAR-mediated neuronal overexcitation. NMDAR antagonist administration (MK-801, 0.25 mg/kg intraperitoneally) had no effect on modifying increased glutamatergic strength or on withdrawal anxiety, whereas injection of an L-type voltage-gated calcium channel antagonist, nimodipine (10 mg/kg, intraperitoneally) averted AMPAR current enhancement and anxiety-like behavior, suggesting that these manifestations may be initiated by a voltage-gated calcium channel-dependent signal transduction pathway. An evidence-based model of likely cellular mechanisms in the hippocampus contributing to benzodiazepine withdrawal anxiety was proposed implicating regulation of multiple CA1 neuron ion channels.
Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.
Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F
2016-09-01
Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. Copyright © 2016 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, P.M.; Wohllk, N.; Huang, E.
1996-09-01
Familial persistent hyperinsulinemic hypoglycemia of infancy is a disorder of glucose homeostasis and is characterized by unregulated insulin secretion and profound hypoglycemia. Loss-of-function mutations in the second nucleotide-binding fold of the sulfonylurea receptor, a subunit of the pancreatic-islet {beta}-cell ATP-dependent potassium channel, has been demonstrated to be causative for persistent hyperinsulinemic hypoglycemia of infancy. We now describe three additional mutations in the first nucleotide-binding fold of the sulfonylurea-receptor gene. One point mutation disrupts the highly conserved Walker A motif of the first nucleotide-binding-fold region. The other two mutations occur in noncoding sequences required for RNA processing and are predicted tomore » disrupt the normal splicing pathway of the sulfonylurea-receptor mRNA precursor. These data suggest that both nucleotide-binding-fold regions of the sulfortylurea receptor are required for normal regulation of {beta}-cell ATP-dependent potassium channel activity and insulin secretion. 32 refs., 4 figs., 1 tab.« less
Roles of Ca(v) channels and AHNAK1 in T cells: the beauty and the beast.
Matza, Didi; Flavell, Richard A
2009-09-01
T lymphocytes require Ca2+ entry though the plasma membrane for their activation and function. Recently, several routes for Ca2+ entry through the T-cell plasma membrane after activation have been described. These include calcium release-activated channels (CRAC), transient receptor potential (TRP) channels, and inositol-1,4,5-trisphosphate receptors (IP3Rs). Herein we review the emergence of a fourth new route for Ca2+ entry, composed of Ca(v) channels (also known as L-type voltage-gated calcium channels) and the scaffold protein AHNAK1 (AHNAK/desmoyokin). Both helper (CD4+) and killer (CD8+) T cells express high levels of Ca(v)1 alpha1 subunits (alpha1S, alpha1C, alpha1D, and alpha1F) and AHNAK1 after their differentiation and require these molecules for Ca2+ entry during an immune response. In this article, we describe the observations and open questions that ultimately suggest the involvement of multiple consecutive routes for Ca2+ entry into lymphocytes, one of which may be mediated by Ca(v) channels and AHNAK1.
Lubiprostone targets prostanoid EP₄ receptors in ovine airways.
Cuthbert, A W
2011-01-01
Lubiprostone, a prostaglandin E₁ derivative, is reported to activate ClC-2 chloride channels located in the apical membranes of a number of transporting epithelia. Lack of functioning CFTR chloride channels in epithelia is responsible for the genetic disease cystic fibrosis, therefore, surrogate channels that can operate independently of CFTR are of interest. This study explores the target receptor(s) for lubiprostone in airway epithelium. All experiments were performed on the ventral tracheal epithelium of sheep. Epithelia were used to measure anion secretion from the apical surface as short circuit current or as fluid secretion from individual airway submucosal glands, using an optical method. The EP₄ antagonists L-161982 and GW627368 inhibited short circuit current responses to lubiprostone, while EP₁(,)₂(&)₃ receptor antagonists were without effect. Similarly, lubiprostone induced secretion in airway submucosal glands was inhibited by L-161982. L-161982 effectively competed with lubiprostone with a K(d) value of 0.058 µM, close to its value for binding to human EP₄ receptors (0.024 µM). The selective EP₄ agonist L-902688 and lubiprostone behaved similarly with respect to EP₄ receptor antagonists. Results of experiments with H89, a protein kinase A inhibitor, were consistent with lubiprostone acting through a G(s) -protein coupled EP₄ receptor/cAMP cascade. Lubiprostone-induced short-circuit currents and submucosal gland secretions were inhibited by selective EP₄ receptor antagonists. The results suggest EP₄ receptor activation by lubiprostone triggers cAMP production necessary for CFTR activation and the secretory responses, a possibility precluded in CF tissues. © 2010 The Author. British Journal of Pharmacology © 2010 The British Pharmacological Society.
Holbrook, Joanna D; Gill, Catherine H; Zebda, Noureddine; Spencer, Jon P; Leyland, Rebecca; Rance, Kim H; Trinh, Han; Balmer, Gemma; Kelly, Fiona M; Yusaf, Shahnaz P; Courtenay, Nicola; Luck, Jane; Rhodes, Andrew; Modha, Sundip; Moore, Stephen E; Sanger, Gareth J; Gunthorpe, Martin J
2009-01-01
The 5-HT(3) receptor is a member of the 'Cys-loop' family of ligand-gated ion channels that mediate fast excitatory and inhibitory transmission in the nervous system. Current evidence points towards native 5-HT(3) receptors originating from homomeric assemblies of 5-HT(3A) or heteromeric assembly of 5-HT(3A) and 5-HT(3B). Novel genes encoding 5-HT(3C), 5-HT(3D), and 5-HT(3E) have recently been described but the functional importance of these proteins is unknown. In the present study, in silico analysis (confirmed by partial cloning) indicated that 5-HT(3C), 5-HT(3D), and 5-HT(3E) are not human-specific as previously reported: they are conserved in multiple mammalian species but are absent in rodents. Expression profiles of the novel human genes indicated high levels in the gastrointestinal tract but also in the brain, Dorsal Root Ganglion (DRG) and other tissues. Following the demonstration that these subunits are expressed at the cell membrane, the functional properties of the recombinant human subunits were investigated using patch clamp electrophysiology. 5-HT(3C), 5-HT(3D), and 5-HT(3E) were all non-functional when expressed alone. Co-transfection studies to determine potential novel heteromeric receptor interactions with 5-HT(3A) demonstrated that the expression or function of the receptor was modified by 5-HT(3C) and 5-HT(3E), but not 5-HT(3D). The lack of distinct effects on current rectification, kinetics or pharmacology of 5-HT(3A) receptors does not however provide unequivocal evidence to support a direct contribution of 5-HT(3C) or 5-HT(3E) to the lining of the ion channel pore of novel heteromeric receptors. The functional and pharmacological contributions of these novel subunits to human biology and diseases such as irritable bowel syndrome for which 5-HT(3) receptor antagonists have major clinical usage, therefore remains to be fully determined.
G protein modulation of CaV2 voltage-gated calcium channels.
Currie, Kevin P M
2010-01-01
Voltage-gated Ca(2+) channels translate the electrical inputs of excitable cells into biochemical outputs by controlling influx of the ubiquitous second messenger Ca(2+) . As such the channels play pivotal roles in many cellular functions including the triggering of neurotransmitter and hormone release by CaV2.1 (P/Q-type) and CaV2.2 (N-type) channels. It is well established that G protein coupled receptors (GPCRs) orchestrate precise regulation neurotransmitter and hormone release through inhibition of CaV2 channels. Although the GPCRs recruit a number of different pathways, perhaps the most prominent, and certainly most studied among these is the so-called voltage-dependent inhibition mediated by direct binding of Gβγ to the α1 subunit of CaV2 channels. This article will review the basics of Ca(2+) -channels and G protein signaling, and the functional impact of this now classical inhibitory mechanism on channel function. It will also provide an update on more recent developments in the field, both related to functional effects and crosstalk with other signaling pathways, and advances made toward understanding the molecular interactions that underlie binding of Gβγ to the channel and the voltage-dependence that is a signature characteristic of this mechanism.
Kojima, Itaru; Nagasawa, Masahiro
2014-01-01
Transient receptor potential vanilloid type 2, TRPV2, is a calcium-permeable cation channel belonging to the TRPV channel family. This channel is activated by heat (>52 °C), various ligands, and mechanical stresses. In most of the cells, a large portion of TRPV2 is located in the endoplasmic reticulum under unstimulated conditions. Upon stimulation of the cells with phosphatidylinositol 3-kinase-activating ligands, TRPV2 is translocated to the plasma membrane and functions as a cation channel. Mechanical stress may also induce translocation of TRPV2 to the plasma membrane. The expression of TRPV2 is high in some types of cells including neurons, neuroendocrine cells, immune cells involved in innate immunity, and certain types of cancer cells. TRPV2 may modulate various cellular functions in these cells.
Chimote, Ameet A; Hajdu, Peter; Kucher, Vladimir; Boiko, Nina; Kuras, Zerrin; Szilagyi, Orsolya; Yun, Yeo-Heung; Conforti, Laura
2013-12-15
Adenosine, a purine nucleoside, is present at high concentrations in tumors, where it contributes to the failure of immune cells to eliminate cancer cells. The mechanisms responsible for the immunosuppressive properties of adenosine are not fully understood. We tested the hypothesis that adenosine's immunosuppressive functions in human T lymphocytes are in part mediated via modulation of ion channels. The activity of T lymphocytes relies on ion channels. KCa3.1 and Kv1.3 channels control cytokine release and, together with TRPM7, regulate T cell motility. Adenosine selectively inhibited KCa3.1, but not Kv1.3 and TRPM7, in activated human T cells. This effect of adenosine was mainly mediated by A2A receptors, as KCa3.1 inhibition was reversed by SCH58261 (selective A2A receptor antagonist), but not by MRS1754 (A2B receptor antagonist), and it was mimicked by the A2A receptor agonist CGS21680. Furthermore, it was mediated by the cAMP/protein kinase A isoform (PKAI) signaling pathway, as adenylyl-cyclase and PKAI inhibition prevented adenosine effect on KCa3.1. The functional implication of the effect of adenosine on KCa3.1 was determined by measuring T cell motility on ICAM-1 surfaces. Adenosine and CGS21680 inhibited T cell migration. Comparable effects were obtained by KCa3.1 blockade with TRAM-34. Furthermore, the effect of adenosine on cell migration was abolished by pre-exposure to TRAM-34. Additionally, adenosine suppresses IL-2 secretion via KCa3.1 inhibition. Our data indicate that adenosine inhibits KCa3.1 in human T cells via A2A receptor and PKAI, thereby resulting in decreased T cell motility and cytokine release. This mechanism is likely to contribute to decreased immune surveillance in solid tumors.
Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations
Liu, Lu Tian; Xu, Yan; Tang, Pei
2010-01-01
Inhibition of N-methyl-D-aspartate (NMDA) receptors has been viewed as a primary cause of xenon anesthesia, yet the mechanism is unclear. Here, we investigated interactions between xenon and the ligand-binding domain (LBD) of a NMDA receptor and examined xenon-induced structural and dynamical changes that are relevant to functional changes of the NMDA receptor. Several comparative molecular dynamics simulations were performed on two X-ray structures representing the open- and closed-cleft LBD of the NMDA receptor. We identified plausible xenon action sites in the LBD, including those nearby agonist sites, in the hinge region, and at the interface between two subunits. The xenon binding energy varies from −5.3 to −0.7 kcal/mol. Xenon's effect on the NMDA receptor is conformation-dependent and is produced through both competitive and non-competitive mechanisms. Xenon can promote cleft opening in the absence of agonists and consequently stabilizes the closed channel. Xenon can also bind at the interface of two subunits, alter the inter-subunit interaction, and lead to a reduction of the distance between GT-links. This reduction corresponds to a rearrangement of the channel toward a direction of pore size decreasing, implying a closed or desensitized channel. In addition to these non-competitive actions, xenon was found to weaken the glutamate binding, which could lead to low agonist efficacy and appear as competitive inhibition. PMID:20560662
Wu, Meilin; Liu, Clifford Z.; Joiner, William J.
2016-01-01
Ly6 proteins are endogenous prototoxins found in most animals. They show striking structural and functional parallels to snake α-neurotoxins, including regulation of ion channels and cholinergic signaling. However, the structural contributions of Ly6 proteins to regulation of effector molecules is poorly understood. This question is particularly relevant to the Ly6 protein QUIVER/SLEEPLESS (QVR/SSS), which has previously been shown to suppress excitability and synaptic transmission by upregulating potassium (K) channels and downregulating nicotinic acetylcholine receptors (nAChRs) in wake-promoting neurons to facilitate sleep in Drosophila. Using deletion mutagenesis, co-immunoprecipitations, ion flux assays, surface labeling and confocal microscopy, we demonstrate that only loop 2 is required for many of the previously described properties of SSS in transfected cells, including interactions with K channels and nAChRs. Collectively our data suggest that QVR/SSS, and by extension perhaps other Ly6 proteins, target effector molecules using limited protein motifs. Mapping these motifs may be useful in rational design of drugs that mimic or suppress Ly6-effector interactions to modulate nervous system function. PMID:26828958
Parajuli, Shankar P.
2013-01-01
Large conductance voltage- and Ca2+-activated K+ (BK) channels are key regulators of detrusor smooth muscle (DSM) contraction and relaxation during urine voiding and storage. Here, we explored whether BK channels are regulated by muscarinic receptors (M-Rs) in native freshly isolated rat DSM cells under physiological conditions using the perforated whole cell patch-clamp technique and pharmacological inhibitors. M-R activation with carbachol (1 μM) initially evoked large transient outward BK currents, followed by inhibition of the spontaneous transient outward BK currents (STBKCs) in DSM cells. Carbachol (1 μM) also inhibited the amplitude and frequency of spontaneous transient hyperpolarizations (STHs) and depolarized the DSM cell membrane potential. Selective inhibition of the muscarinic M3 receptors (M3-Rs) with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 0.1 μM), but not muscarinic M2 receptors with methoctramine (1 μM), blocked the carbachol inhibitory effects on STBKCs. Furthermore, blocking the inositol 1,4,5-triphosphate (IP3) receptors with xestospongin-C (1 μM) inhibited the carbachol-induced large transient outward BK currents without affecting carbachol inhibitory effects on STBKCs. Upon pharmacological inhibition of all known cellular sources of Ca2+ for BK channel activation, carbachol (1 μM) did not affect the voltage-step-induced steady-state BK currents, suggesting that the muscarinic effects in DSM cells are mediated by mobilization of intracellular Ca2+. In conclusion, our findings provide strong evidence that activation of M3-Rs leads to inhibition of the STBKCs, STHs, and depolarization of DSM cells. Collectively, the data suggest the existence of functional interactions between BK channels and M3-Rs at a cellular level in DSM. PMID:23703523
Löf, Christoffer; Sukumaran, Pramod; Viitanen, Tero; Vainio, Minna; Kemppainen, Kati; Pulli, Ilari; Näsman, Johnny; Kukkonen, Jyrki P.
2012-01-01
Transient receptor potential (TRP) cation channels are widely expressed and function in many physiologically important processes. Perturbations in the expression or mutations of the channels have implications for diseases. Many thyroid disorders, as excessive growth or disturbed thyroid hormone production, can be a result of dysregulated TSH signaling. In the present study, we found that of TRP canonicals (TRPCs), only TRPC2 was expressed in Fischer rat thyroid low-serum 5% cells (FRTL-5 cells). To investigate the physiological importance of the channel, we developed stable TRPC2 knockdown cells using short hairpin RNA (shTRPC2 cells). In these cells, the ATP-evoked entry of calcium was significantly decreased. This led to increased cAMP production, because inhibitory signals from calcium to adenylate cyclase 5/6 were decreased. Enhanced cAMP signaling projected to Ras-related protein 1-MAPK kinase 1 (MAPK/ERK kinase 1) pathway leading to phosphorylation of ERK1/2. The activated ERK1/2 pathway increased the expression of the TSH receptor. In contrast, secretion of thyroglobulin was decreased in shTRPC2 cells, due to improper folding and glycosylation of the protein. We show here a novel role for TRPC2 in regulating thyroid cell function. PMID:23015753
Dopamine receptors – IUPHAR Review 13
Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R
2015-01-01
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228
When the endogenous hallucinogenic trace amine N,N-dimethyltryptamine meets the sigma-1 receptor.
Su, Tsung-Ping; Hayashi, Teruo; Vaupel, D Bruce
2009-03-10
N,N-dimethyltryptamine (DMT) is a hallucinogen found endogenously in human brain that is commonly recognized to target the 5-hydroxytryptamine 2A receptor or the trace amine-associated receptor to exert its psychedelic effect. DMT has been recently shown to bind sigma-1 receptors, which are ligand-regulated molecular chaperones whose function includes inhibiting various voltage-sensitive ion channels. Thus, it is possible that the psychedelic action of DMT might be mediated in part through sigma-1 receptors. Here, we present a hypothetical signaling scheme that might be triggered by the binding of DMT to sigma-1 receptors.
When the Endogenous Hallucinogenic Trace Amine N,N-Dimethyltryptamine Meets the Sigma-1 Receptor
Su, Tsung-Ping; Hayashi, Teruo; Vaupel, D. Bruce
2011-01-01
N,N-dimethyltryptamine (DMT) is a hallucinogen found endogenously in human brain that is commonly recognized to target the 5-hydroxytryptamine 2A receptor or the trace amine–associated receptor to exert its psychedelic effect. DMT has been recently shown to bind sigma-1 receptors, which are ligand-regulated molecular chaperones whose function includes inhibiting various voltage-sensitive ion channels. Thus, it is possible that the psychedelic action of DMT might be mediated in part through sigma-1 receptors. Here, we present a hypothetical signaling scheme that might be triggered by the binding of DMT to sigma-1 receptors. PMID:19278957
Flores, Pedro L.; Rodríguez, Emma; Zapata, Estrella; Carbó, Roxana; Farías, José María; Martínez, Martín
2017-01-01
Maitotoxin (MTX) is the most potent marine toxin known to date. It is responsible for a particular human intoxication syndrome called ciguatera fish poisoning (CFP). Several reports indicate that MTX is an activator of non-selective cation channels (NSCC) in different cell types. The molecular identity of these channels is still an unresolved topic, and it has been proposed that the transient receptor potential (TRP) channels are involved in this effect. In Xenopus laevis oocytes, MTX at picomolar (pM) concentrations induces the activation of NSCC with functional and pharmacological properties that resemble the activity of TRP channels. The purpose of this study was to characterize the molecular identity of the TRP channel involved in the MTX response, using the small interference RNA (siRNA) approach and the two-electrode voltage-clamp technique (TEVC). The injection of a specifically designed siRNA to silence the transient receptor potential canonical type 1 (TRPC1) protein expression abolished the MTX response. MTX had no effect on oocytes, even at doses 20-fold higher compared to cells without injection. Total mRNA and protein levels of TRPC1 were notably diminished. The TRPC4 siRNA did not change the MTX effect, even though it was important to note that the protein level was reduced by the silencing of TRPC4. Our results suggest that MTX could be a selective activator of TRPC1 channels in X. laevis oocytes and a useful pharmacological tool for further studies on these TRP channels. PMID:28672825
Flores, Pedro L; Rodríguez, Emma; Zapata, Estrella; Carbó, Roxana; Farías, José María; Martínez, Martín
2017-06-25
Maitotoxin (MTX) is the most potent marine toxin known to date. It is responsible for a particular human intoxication syndrome called ciguatera fish poisoning (CFP). Several reports indicate that MTX is an activator of non-selective cation channels (NSCC) in different cell types. The molecular identity of these channels is still an unresolved topic, and it has been proposed that the transient receptor potential (TRP) channels are involved in this effect. In Xenopus laevis oocytes, MTX at picomolar (pM) concentrations induces the activation of NSCC with functional and pharmacological properties that resemble the activity of TRP channels. The purpose of this study was to characterize the molecular identity of the TRP channel involved in the MTX response, using the small interference RNA (siRNA) approach and the two-electrode voltage-clamp technique (TEVC). The injection of a specifically designed siRNA to silence the transient receptor potential canonical type 1 (TRPC1) protein expression abolished the MTX response. MTX had no effect on oocytes, even at doses 20-fold higher compared to cells without injection. Total mRNA and protein levels of TRPC1 were notably diminished. The TRPC4 siRNA did not change the MTX effect, even though it was important to note that the protein level was reduced by the silencing of TRPC4. Our results suggest that MTX could be a selective activator of TRPC1 channels in X. laevis oocytes and a useful pharmacological tool for further studies on these TRP channels.
PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels
Itsuki, Kyohei; Imai, Yuko; Hase, Hideharu; Okamura, Yasushi; Inoue, Ryuji
2014-01-01
Transient receptor potential classical (or canonical) (TRPC)3, TRPC6, and TRPC7 are a subfamily of TRPC channels activated by diacylglycerol (DAG) produced through the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) by phospholipase C (PLC). PI(4,5)P2 depletion by a heterologously expressed phosphatase inhibits TRPC3, TRPC6, and TRPC7 activity independently of DAG; however, the physiological role of PI(4,5)P2 reduction on channel activity remains unclear. We used Förster resonance energy transfer (FRET) to measure PI(4,5)P2 or DAG dynamics concurrently with TRPC6 or TRPC7 currents after agonist stimulation of receptors that couple to Gq and thereby activate PLC. Measurements made at different levels of receptor activation revealed a correlation between the kinetics of PI(4,5)P2 reduction and those of receptor-operated TRPC6 and TRPC7 current activation and inactivation. In contrast, DAG production correlated with channel activation but not inactivation; moreover, the time course of channel inactivation was unchanged in protein kinase C–insensitive mutants. These results suggest that inactivation of receptor-operated TRPC currents is primarily mediated by the dissociation of PI(4,5)P2. We determined the functional dissociation constant of PI(4,5)P2 to TRPC channels using FRET of the PLCδ Pleckstrin homology domain (PHd), which binds PI(4,5)P2, and used this constant to fit our experimental data to a model in which channel gating is controlled by PI(4,5)P2 and DAG. This model predicted similar FRET dynamics of the PHd to measured FRET in either human embryonic kidney cells or smooth muscle cells, whereas a model lacking PI(4,5)P2 regulation failed to reproduce the experimental data, confirming the inhibitory role of PI(4,5)P2 depletion on TRPC currents. Our model also explains various PLC-dependent characteristics of channel activity, including limitation of maximum open probability, shortening of the peak time, and the bell-shaped response of total current. In conclusion, our studies demonstrate a fundamental role for PI(4,5)P2 in regulating TRPC6 and TRPC7 activity triggered by PLC-coupled receptor stimulation. PMID:24470487
Control of neuronal excitability by Group I metabotropic glutamate receptors.
Correa, Ana Maria Bernal; Guimarães, Jennifer Diniz Soares; Dos Santos E Alhadas, Everton; Kushmerick, Christopher
2017-10-01
Metabotropic glutamate (mGlu) receptors couple through G proteins to regulate a large number of cell functions. Eight mGlu receptor isoforms have been cloned and classified into three Groups based on sequence, signal transduction mechanisms and pharmacology. This review will focus on Group I mGlu receptors, comprising the isoforms mGlu 1 and mGlu 5 . Activation of these receptors initiates both G protein-dependent and -independent signal transduction pathways. The G-protein-dependent pathway involves mainly Gα q , which can activate PLCβ, leading initially to the formation of IP 3 and diacylglycerol. IP 3 can release Ca 2+ from cellular stores resulting in activation of Ca 2+ -dependent ion channels. Intracellular Ca 2+ , together with diacylglycerol, activates PKC, which has many protein targets, including ion channels. Thus, activation of the G-protein-dependent pathway affects cellular excitability though several different effectors. In parallel, G protein-independent pathways lead to activation of non-selective cationic currents and metabotropic synaptic currents and potentials. Here, we provide a survey of the membrane transport proteins responsible for these electrical effects of Group I metabotropic glutamate receptors.
X-ray structures define human P2X3 receptor gating cycle and antagonist action
Mansoor, Steven E.; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric
2016-01-01
Summary P2X receptors are trimeric, non-selective cation channels activated by ATP that play important roles in cardiovascular, neuronal and immune systems. Despite their central function in human physiology and as potential targets of therapeutic agents, there are no structures of human P2X receptors. Mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structure of the pore-forming transmembrane domains remain unclear. We report x-ray crystal structures of human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/desensitized and antagonist-bound closed states. The open state structure harbors an intracellular motif we term the “cytoplasmic cap”, that stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. Competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements underpinning P2X receptor gating and provide a foundation for development of new pharmacologic agents. PMID:27626375
Sarmiento, Daniela; Montorfano, Ignacio; Cerda, Oscar; Cáceres, Mónica; Becerra, Alvaro; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Tapia, Pablo; Velásquez, Luis A; Varela, Diego; Simon, Felipe
2015-03-01
A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
High throughput functional assays for P2X receptors.
Namovic, Marian T; Jarvis, Michael F; Donnelly-Roberts, Diana
2012-06-01
Adenosine triphosphate (ATP) activates two receptor superfamilies, metabotropic P2Y and ionotropic P2X receptors. The P2X receptors are nonselective cation channels that are widely expressed on excitable cells including neurons, glia, and smooth muscle cells. The protocols in this unit are useful for evaluating ligands that interact with P2X receptors on native cells or that are cloned and expressed in recombinant heterologous cell systems. Calcium imaging methods are described for the pharmacological characterization of fast or slowly desensitizing P2X receptors. While these methods are readily applicable to a wide variety of ligand-gated ion channels, the protocols provided herein detail how they can be used to measure activation of homomeric P2X3 (fast desensitizing) and heteromeric P2X2/3 (slowly desensitizing) receptors. Appropriate agonists and/or calcium dyes can be substituted to assess activity at other P2X receptor subtypes. An additional protocol is provided for measuring P2X7 receptor-mediated pore formation in THP-1, a native human acute monocytic leukemia cell line that can be used to study homomeric P2X7 (non-desensitizing) receptors that are expressed on macrophages and microglial cells. © 2012 by John Wiley & Sons, Inc.
Mechanism-Based Mathematical Model for Gating of Ionotropic Glutamate Receptors.
Dai, Jian; Wollmuth, Lonnie P; Zhou, Huan-Xiang
2015-08-27
We present a mathematical model for ionotropic glutamate receptors (iGluR's) that is built on mechanistic understanding and yields a number of thermodynamic and kinetic properties of channel gating. iGluR's are ligand-gated ion channels responsible for the vast majority of fast excitatory neurotransmission in the central nervous system. The effects of agonist-induced closure of the ligand-binding domain (LBD) are transmitted to the transmembrane channel (TMC) via interdomain linkers. Our model demonstrates that, relative to full agonists, partial agonists may reduce either the degree of LBD closure or the curvature of the LBD free energy basin, leading to less stabilization of the channel open state and hence lower channel open probability. A rigorous relation is derived between the channel closed-to-open free energy difference and the tension within the linker. Finally, by treating LBD closure and TMC opening as diffusive motions, we obtain gating trajectories that resemble stochastic current traces from single-channel recordings and calculate the rate constants for transitions between the channel open and closed states. Our model can be implemented by molecular dynamics simulations to realistically depict iGluR gating and may guide functional experiments in gaining deeper insight into this essential family of channel proteins.
Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold.
Gao, Bin; Harvey, Peta J; Craik, David J; Ronjat, Michel; De Waard, Michel; Zhu, Shunyi
2013-06-27
The ICK (inhibitor cystine knot) defines a large superfamily of polypeptides with high structural stability and functional diversity. Here, we describe a new scorpion venom-derived K+ channel toxin (named λ-MeuKTx-1) with an ICK fold through gene cloning, chemical synthesis, nuclear magnetic resonance spectroscopy, Ca2+ release measurements and electrophysiological recordings. λ-MeuKTx-1 was found to adopt an ICK fold that contains a three-strand anti-parallel β-sheet and a 310-helix. Functionally, this peptide selectively inhibits the Drosophila Shaker K+ channel but is not capable of activating skeletal-type Ca2+ release channels/ryanodine receptors, which is remarkably different from the previously known scorpion venom ICK peptides. The removal of two C-terminal residues of λ-MeuKTx-1 led to the loss of the inhibitory activity on the channel, whereas the C-terminal amidation resulted in the emergence of activity on four mammalian K+ channels accompanied by the loss of activity on the Shaker channel. A combination of structural and pharmacological data allows the recognition of three putative functional sites involved in channel blockade of λ-MeuKTx-1. The presence of a functional dyad in λ-MeuKTx-1 supports functional convergence among scorpion venom peptides with different folds. Furthermore, similarities in precursor organization, exon-intron structure, 3D-fold and function suggest that scorpion venom ICK-type K+ channel inhibitors and Ca2+ release channel activators share a common ancestor and their divergence occurs after speciation between buthidae and non-buthids. The structural and functional characterizations of the first scorpion venom ICK toxin with K+ channel-blocking activity sheds light on functionally divergent and convergent evolution of this conserved scaffold of ancient origin.
Kruse, Martin; Schulze-Bahr, Eric; Corfield, Valerie; Beckmann, Alf; Stallmeyer, Birgit; Kurtbay, Güven; Ohmert, Iris; Schulze-Bahr, Ellen; Brink, Paul; Pongs, Olaf
2009-09-01
Progressive familial heart block type I (PFHBI) is a progressive cardiac bundle branch disease in the His-Purkinje system that exhibits autosomal-dominant inheritance. In 3 branches of a large South African Afrikaner pedigree with an autosomal-dominant form of PFHBI, we identified the mutation c.19G-->A in the transient receptor potential cation channel, subfamily M, member 4 gene (TRPM4) at chromosomal locus 19q13.3. This mutation predicted the amino acid substitution p.E7K in the TRPM4 amino terminus. TRPM4 encodes a Ca2+-activated nonselective cation (CAN) channel that belongs to the transient receptor potential melastatin ion channel family. Quantitative analysis of TRPM4 mRNA content in human cardiac tissue showed the highest expression level in Purkinje fibers. Cellular expression studies showed that the c.19G-->A missense mutation attenuated deSUMOylation of the TRPM4 channel. The resulting constitutive SUMOylation of the mutant TRPM4 channel impaired endocytosis and led to elevated TRPM4 channel density at the cell surface. Our data therefore revealed a gain-of-function mechanism underlying this type of familial heart block.
Kruse, Martin; Schulze-Bahr, Eric; Corfield, Valerie; Beckmann, Alf; Stallmeyer, Birgit; Kurtbay, Güven; Ohmert, Iris; Schulze-Bahr, Ellen; Brink, Paul; Pongs, Olaf
2009-01-01
Progressive familial heart block type I (PFHBI) is a progressive cardiac bundle branch disease in the His-Purkinje system that exhibits autosomal-dominant inheritance. In 3 branches of a large South African Afrikaner pedigree with an autosomal-dominant form of PFHBI, we identified the mutation c.19G→A in the transient receptor potential cation channel, subfamily M, member 4 gene (TRPM4) at chromosomal locus 19q13.3. This mutation predicted the amino acid substitution p.E7K in the TRPM4 amino terminus. TRPM4 encodes a Ca2+-activated nonselective cation (CAN) channel that belongs to the transient receptor potential melastatin ion channel family. Quantitative analysis of TRPM4 mRNA content in human cardiac tissue showed the highest expression level in Purkinje fibers. Cellular expression studies showed that the c.19G→A missense mutation attenuated deSUMOylation of the TRPM4 channel. The resulting constitutive SUMOylation of the mutant TRPM4 channel impaired endocytosis and led to elevated TRPM4 channel density at the cell surface. Our data therefore revealed a gain-of-function mechanism underlying this type of familial heart block. PMID:19726882
Nakaya, Haruaki; Miki, Takashi; Seino, Susumu; Yamada, Katsuya; Inagaki, Nobuya; Suzuki, Masashi; Sato, Toshiaki; Yamada, Mitsuhiko; Matsushita, Kenji; Kurachi, Yoshihisa; Arita, Makoto
2003-09-01
ATP-sensitive K(+) (K(ATP)) channels comprise the pore-forming subunit (Kir6.1 or Kir6.2) and the regulatory subunit sulfonylurea receptors (SUR1 or SUR2). K(ATP) channels with different combinations of these subunits are present in various tissues and regulate cellular functions. From the analysis of mouse models with targeted deletion of the gene encoding the pore-forming subunit Kir6.1 or Kir6.2, functional roles of K(ATP) channels in various organs have been clarified. Kir6.1(-/-) mice showed sudden death associated with ST elevation and atrioventricular block in ECG, a phenotype resembling Prinzmetal angina in humans. Kir6.2(-/-) mice were more susceptible to generalized seizure during hypoxia than wild-type (WT) mice, suggesting that neuronal K(ATP) channels, probably composed of Kir6.2 and SUR1, play a crucial role for the protection of the brain against lethal damage due to seizure. In Kir6.2(-/-) mice lacking the sarcolemmal K(ATP) channel activity in cardiac cells, ischemic preconditioning failed to reduce the infarct size, suggesting that sarcolemmal K(ATP) channels play an important role in cardioprotection against ischemia/reperfusion injuries in the heart. Mitochondrial K(ATP) channels have been also proposed to play a crucial role in cardioprotection, although the molecular identity of the channel has not been established. Nicorandil and minoxidil, K(+) channel openers activating mitochondrial K(ATP) channels, decreased the mitochondrial membrane potential, thereby preventing the Ca(2+) overload in the mitochondria of guinea-pig ventricular cells. SURs are the receptors for K(+) channel openers and the activating effects on sarcolemmal K(ATP) channels in cardiovascular tissues could be modulated by the interaction of nucleotides. Due to the molecular diversity of the accessory and pore subunits of K(ATP) channels, there would be considerable differences in the tissue selectivity of K(ATP) channel-acting drugs. Studies of Kir6.1 and Kir6.2 knockout mice indicate that K(ATP) channels are involved in the mechanisms of the protection against metabolic stress. Further clarification of physiological as well as pathophysiological roles of K(ATP) channels may lead to a new therapeutic strategy to improve the quality of life.
Mukhtasimova, Nuriya; daCosta, Corrie J.B.
2016-01-01
The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents through single muscle AChR channels with improved temporal resolution approaching half an order of magnitude over our previous best. A range of concentrations of full and partial agonists are used to elicit currents from human wild-type and gain-of-function mutant AChRs. For each agonist–receptor combination, rate constants are estimated from maximum likelihood analysis using a kinetic scheme comprised of agonist binding, priming, and channel gating steps. The kinetic scheme and rate constants are tested by stochastic simulation, followed by incorporation of the experimental step response, sampling rate, background noise, and filter bandwidth. Analyses of the simulated data confirm all rate constants except those for channel gating, which are overestimated because of the established effect of noise on the briefest dwell times. Estimates of the gating rate constants were obtained through iterative simulation followed by kinetic fitting. The results reveal that the agonist association rate constants are independent of agonist occupancy but depend on receptor state, whereas those for agonist dissociation depend on occupancy but not on state. The priming rate and equilibrium constants increase with successive agonist occupancy, and for a full agonist, the forward rate constant increases more than the equilibrium constant; for a partial agonist, the forward rate and equilibrium constants increase equally. The gating rate and equilibrium constants also increase with successive agonist occupancy, but unlike priming, the equilibrium constants increase more than the forward rate constants. As observed for a full and a partial agonist, the gain-of-function mutation affects the relationship between rate and equilibrium constants for priming but not for channel gating. Thus, resolving brief single channel currents distinguishes priming from gating steps and reveals how the corresponding rate and equilibrium constants depend on agonist occupancy. PMID:27353445
A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors.
Alsaloum, Matthew; Kazi, Rashek; Gan, Quan; Amin, Johansen; Wollmuth, Lonnie P
2016-03-02
AMPA and NMDA receptors are glutamate-gated ion channels that mediate fast excitatory synaptic transmission throughout the nervous system. In the continual presence of glutamate, AMPA and NMDA receptors containing the GluN2A or GluN2B subunit enter into a nonconducting, desensitized state that can impact synaptic responses and glutamate-mediated excitotoxicity. The process of desensitization is dramatically different between subtypes, but the basis for these differences is unknown. We generated an extensive sequence alignment of ionotropic glutamate receptors (iGluRs) from diverse animal phyla and identified a highly conserved motif, which we termed the "hydrophobic box," located at the extracellular interface of transmembrane helices. A single position in the hydrophobic box differed between mammalian AMPA and NMDA receptors. Surprisingly, we find that an NMDAR-to-AMPAR exchange mutation at this position in the rat GluN2A or GluN2B subunit had a dramatic and highly specific effect on NMDAR desensitization, making it AMPAR-like. In contrast, a reverse exchange mutation in AMPARs had minimal effects on desensitization. These experiments highlight differences in desensitization between iGluR subtypes and the highly specific contribution of the GluN2 subunit to this process. Rapid communication between cells in the nervous system depends on ion channels that are directly activated by neurotransmitter molecules. Here, we studied ionotropic glutamate receptors (iGluRs), which are ion channels activated by the neurotransmitter glutamate. By comparing the sequences of a vast number of iGluR proteins from diverse animal species, assisted by available structural information, we identified a highly conserved motif. We showed that a single amino acid difference in this motif between mammalian iGluR subtypes has dramatic effects on receptor function. These results have implications in both the evolution of synaptic function, as well as the role of iGluRs in health and disease. Copyright © 2016 the authors 0270-6474/16/362617-06$15.00/0.
Characterization of Three Venom Peptides from the Spitting Spider Scytodes thoracica
Ariki, Nathanial K.; Muñoz, Lisa E.; Armitage, Elizabeth L.; Goodstein, Francesca R.; George, Kathryn G.; Smith, Vanessa L.; Vetter, Irina; Herzig, Volker; King, Glenn F.; Loening, Nikolaus M.
2016-01-01
We present the solution-state NMR structures and preliminary functional characterizations of three venom peptides identified from the spitting spider Scytodes thoracica. Despite little sequence identity to other venom peptides, structural characterization reveals that these peptides contain an inhibitor cystine knot motif common to many venom peptides. These are the first structures for any peptide or protein from spiders of the Scytodidae family. Many venom peptides target neuronal ion channels or receptors. However, we have not been able to determine the target of these Scytodes peptides so we can only state with certainty the channels and receptors that they do not target. PMID:27227898
Laing, Robyn J; Dhaka, Ajay
2015-01-01
The ability of the body to perceive noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors. The molecular receptors of noxious mechanical, temperature or chemical stimuli are expressed in these neurons and have drawn considerable attention as possible targets for analgesic development to improve treatment for the millions who suffer from chronic pain conditions. A number of thermoTRPs, a subset of the transient receptor potential family of ion channels, are activated by a wide range on noxious stimuli. In this review, we review the function of these channels and examine the evidence that thermoTRPs play a vital role in acute, inflammatory and neuropathic nociception. PMID:25608689
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forman, S.A.
1989-01-01
Modulation of the nicotinic acethylcholine receptor from Torpedo by cholinergic agonists, local anesthetics, and n-alkanols was studied using {sup 86}Rb{sup +} flux studies in sealed native Torpedo electroplaque membrane vesicles. Reliable concentration-response and kinetic data were obtained using manual ten sec filtration assays in vesicles partially blocked with alpha-bungarotoxin to remove spare receptors and quenched-flow assays to assess initial {sup 86}Rb{sup +} flux rates or the rate of drug-induced receptor inactivation. Concentration response relationships for the agonists acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, and (-)-nicotine are all bell-shape due to stimulation of cation channel opening at low concentrations and inhibition of channelsmore » at higher concentrations. The rate of agonist-induced fast desensitization (k{sub d}) increases with (acetylcholine) in parallel with channel activation, suggesting that desensitization proceeds from the open state and/or states in rapid equilibrium with it. At self-inhibitory acetylcholine concentrations, a new rapid inactivation (rate = k{sub f}) is observed before fast desensitization. The rate and extent of rapid inactivation is compatible with bimolecular association between acethylcholine and inhibitory site with K{sub B} = 40 mM.« less
Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo
2016-08-26
Agmatine, a putative endogenous ligand of imidazoline receptors, suppresses cardiovascular function by inhibiting peripheral sympathetic tone. However, the molecular identity of imidazoline receptor subtypes and its cellular mechanism underlying the agmatine-induced sympathetic suppression remains unknown. Meanwhile, N-type Ca(2+) channels are important for the regulation of NA release in the peripheral sympathetic nervous system. Therefore, it is possible that agmatine suppresses NA release in peripheral sympathetic nerve terminals by inhibiting Ca(2+) influx through N-type Ca(2+) channels. We tested this hypothesis by investigating agmatine effect on electrical field stimulation (EFS)-evoked contraction and NA release in endothelium-denuded rat superior mesenteric arterial strips. We also investigated the effect of agmatine on the N-type Ca(2+) current in superior cervical ganglion (SCG) neurons in rats. Our study demonstrates that agmatine suppresses peripheral sympathetic outflow via the imidazoline I2 receptor in rat mesenteric arteries. In addition, the agmatine-induced suppression of peripheral vascular sympathetic tone is mediated by modulating voltage-dependent N-type Ca(2+) channels in sympathetic nerve terminals. These results suggest a potential cellular mechanism for the agmatine-induced suppression of peripheral sympathetic tone. Furthermore, they provide basic and theoretical information regarding the development of new agents to treat hypertension. Copyright © 2016 Elsevier Inc. All rights reserved.
High temperature sensitivity is intrinsic to voltage-gated potassium channels
Yang, Fan; Zheng, Jie
2014-01-01
Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivity comparable to that of TRPV1, which is detectable under specific conditions when the voltage sensor is functionally decoupled from the activation gate through either intrinsic mechanisms or mutations. Interestingly, mutations could tune Shaker channel to be either heat-activated or heat-deactivated. Therefore, high temperature sensitivity is intrinsic to both TRP and Kv channels. Our findings suggest important physiological roles of heat-induced variation in Kv channel activities. Mechanistically our findings indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain; instead, non-obligatory allosteric gating permits the intrinsic heat sensitivity to drive channel activation, allowing temperature-sensitive TRP channels to function as polymodal nociceptors. DOI: http://dx.doi.org/10.7554/eLife.03255.001 PMID:25030910
Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels
Martin, Gregory M.; Chen, Pei-Chun; Devaraneni, Prasanna; Shyng, Show-Ling
2013-01-01
ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed. PMID:24399968
Lund, Trine M; Ploug, Kenneth B; Iversen, Anne; Jensen, Anders A; Jansen-Olesen, Inger
2015-03-01
Glucose is the main energy substrate for neurons, and ketone bodies are known to be alternative substrates. However, the capacity of ketone bodies to support different neuronal functions is still unknown. Thus, a change in energy substrate from glucose alone to a combination of glucose and β-hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β-hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown an effect of β-hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β-hydroxybutyrate was present in these neurons. In addition, the NMDA receptor-induced calcium responses in the neurons were diminished in the presence of β-hydroxybutyrate, whereas a direct effect of the ketone body on transmitter release was absent. However, the presence of β-hydroxybutyrate augmented transmitter release induced by the KATP channel blocker glibenclamide, thus giving an indirect indication of the involvement of KATP channels in the effects of ketone bodies on transmitter release. Energy metabolism and neurotransmission are linked and involve ATP-sensitive potassium (KATP ) channels. However, it is still unclear how and to what degree available energy substrate affects this link. We investigated the effect of changing energy substrate from only glucose to a combination of glucose and R-β-hydroxybutyrate in cultured neurons. Using the latter combination, glycolysis was diminished, NMDA receptor-induced calcium responses were lower, and the KATP channel blocker glibenclamide caused a higher transmitter release. © 2014 International Society for Neurochemistry.
Unconventional secretory processing diversifies neuronal ion channel properties
Hanus, Cyril; Geptin, Helene; Tushev, Georgi; Garg, Sakshi; Alvarez-Castelao, Beatriz; Sambandan, Sivakumar; Kochen, Lisa; Hafner, Anne-Sophie; Langer, Julian D; Schuman, Erin M
2016-01-01
N-glycosylation – the sequential addition of complex sugars to adhesion proteins, neurotransmitter receptors, ion channels and secreted trophic factors as they progress through the endoplasmic reticulum and the Golgi apparatus – is one of the most frequent protein modifications. In mammals, most organ-specific N-glycosylation events occur in the brain. Yet, little is known about the nature, function and regulation of N-glycosylation in neurons. Using imaging, quantitative immunoblotting and mass spectrometry, we show that hundreds of neuronal surface membrane proteins are core-glycosylated, resulting in the neuronal membrane displaying surprisingly high levels of glycosylation profiles that are classically associated with immature intracellular proteins. We report that while N-glycosylation is generally required for dendritic development and glutamate receptor surface expression, core-glycosylated proteins are sufficient to sustain these processes, and are thus functional. This atypical glycosylation of surface neuronal proteins can be attributed to a bypass or a hypo-function of the Golgi apparatus. Core-glycosylation is regulated by synaptic activity, modulates synaptic signaling and accelerates the turnover of GluA2-containing glutamate receptors, revealing a novel mechanism that controls the composition and sensing properties of the neuronal membrane. DOI: http://dx.doi.org/10.7554/eLife.20609.001 PMID:27677849
α7 nicotinic ACh receptors as a ligand-gated source of Ca(2+) ions: the search for a Ca(2+) optimum.
Uteshev, Victor V
2012-01-01
The spatiotemporal distribution of cytosolic Ca(2+) ions is a key determinant of neuronal behavior and survival. Distinct sources of Ca(2+) ions including ligand- and voltage-gated Ca(2+) channels contribute to intracellular Ca(2+) homeostasis. Many normal physiological and therapeutic neuronal functions are Ca(2+)-dependent, however an excess of cytosolic Ca(2+) or a lack of the appropriate balance between Ca(2+) entry and clearance may destroy cellular integrity and cause cellular death. Therefore, the existence of optimal spatiotemporal patterns of cytosolic Ca(2+) elevations and thus, optimal activation of ligand- and voltage-gated Ca(2+) ion channels are postulated to benefit neuronal function and survival. Alpha7 nicotinic -acetylcholine receptors (nAChRs) are highly permeable to Ca(2+) ions and play an important role in modulation of neurotransmitter release, gene expression and neuroprotection in a variety of neuronal and non-neuronal cells. In this review, the focus is placed on α7 nAChR-mediated currents and Ca(2+) influx and how this source of Ca(2+) entry compares to NMDA receptors in supporting cytosolic Ca(2+) homeostasis, neuronal function and survival.
Zwart, Ruud; Reed, Hannah; Clarke, Sophie; Sher, Emanuele
2016-11-15
Inhibition of KCNQ (Kv7) potassium channels by activation of muscarinic acetylcholine receptors has been well established, and the ion currents through these channels have been long known as M-currents. We found that this cross-talk can be reconstituted in Xenopus oocytes by co-transfection of human recombinant muscarinic M1 receptors and KCNQ2/3 potassium channels. Application of the muscarinic acetylcholine receptor agonist Oxotremorine-methiodide (Oxo-M) between voltage pulses to activate KCNQ2/3 channels caused inhibition of the subsequent KCNQ2/3 responses. This effect of Oxo-M was blocked by the muscarinic acetylcholine receptor antagonist atropine. We also found that KCNQ2/3 currents were inhibited when Oxo-M was applied during an ongoing KCNQ2/3 response, an effect that was not blocked by atropine, suggesting that Oxo-M inhibits KCNQ2/3 channels directly. Indeed, also in oocytes that were transfected with only KCNQ2/3 channels, but not with muscarinic M1 receptors, Oxo-M inhibited the KCNQ2/3 response. These results show that besides the usual muscarinic acetylcholine receptor-mediated inhibition, Oxo-M also inhibits KCNQ2/3 channels by a direct mechanism. We subsequently tested xanomeline, which is a chemically distinct muscarinic acetylcholine receptor agonist, and oxotremorine, which is a close analogue of Oxo-M. Both compounds inhibited KCNQ2/3 currents via activation of M1 muscarinic acetylcholine receptors but, in contrast to Oxo-M, they did not directly inhibit KCNQ2/3 channels. Xanomeline and oxotremorine do not contain a positively charged trimethylammonium moiety that is present in Oxo-M, suggesting that such a charged moiety could be a crucial component mediating this newly described direct inhibition of KCNQ2/3 channels. Copyright © 2016 Elsevier B.V. All rights reserved.
Lev, Shaya; Katz, Ben; Tzarfaty, Vered; Minke, Baruch
2012-01-01
In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P2 in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P2 was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P2 is not an inhibitor of TRPL channel activation. PI(4,5)P2 hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P2 levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P2 is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating. PMID:22065576
Reaves, B J; Wolstenholme, A J
2007-02-01
TRP (transient receptor potential) cationic channels are key molecules that are involved in a variety of diverse biological processes ranging from fertility to osmosensation and nociception. Increasing our knowledge of these channels will help us to understand a range of physiological and pathogenic processes, as well as highlighting potential therapeutic drug targets. The founding members of the TRP family, Drosophila TRP and TRPL (TRP-like) proteins, were identified within the last two decades and there has been a subsequent explosion in the number and type of TRP channel described. Although information is accumulating as to the function of some of the TRP channels, the activation and inactivation mechanisms, structure, and interacting proteins of many, if not most, are awaiting elucidation. The Cell and Molecular Biology of TRP Channels Meeting held at the University of Bath included speakers working on a number of the different subfamilies of TRP channels and provided a basis for highlighting both similarities and differences between these groups. As the TRP channels mediate diverse functions, this meeting also brought together an audience with wide-ranging research interests, including biochemistry, cell biology, physiology and neuroscience, and inspired lively discussion on the issues reviewed herein.
The multidimensional ionotropic receptors of Drosophila melanogaster.
Rimal, S; Lee, Y
2018-02-01
Ionotropic receptors (IRs), which form ion channels, can be categorized into conserved 'antennal IRs', which define the first olfactory receptor family of insects, and species-specific 'divergent IRs', which are expressed in gustatory receptor neurones. These receptors are located primarily in cell bodies and dendrites, and are highly enriched in the tips of the dendritic terminals that convey sensory information to higher brain centres. Antennal IRs play important roles in odour and thermosensation, whereas divergent IRs are involved in other important biological processes such as taste sensation. Some IRs are known to play specific biological roles in the perception of various molecules; however, many of their functions have not yet been defined. Although progress has been made in this field, many functions and mechanisms of these receptors remain unknown. In this review, we provide a comprehensive summary of the current state of knowledge in this field. © 2017 The Royal Entomological Society.
Functions of intrinsic disorder in transmembrane proteins.
Kjaergaard, Magnus; Kragelund, Birthe B
2017-09-01
Intrinsic disorder is common in integral membrane proteins, particularly in the intracellular domains. Despite this observation, these domains are not always recognized as being disordered. In this review, we will discuss the biological functions of intrinsically disordered regions of membrane proteins, and address why the flexibility afforded by disorder is mechanistically important. Intrinsically disordered regions are present in many common classes of membrane proteins including ion channels and transporters; G-protein coupled receptors (GPCRs), receptor tyrosine kinases and cytokine receptors. The functions of the disordered regions are many and varied. We will discuss selected examples including: (1) Organization of receptors, kinases, phosphatases and second messenger sources into signaling complexes. (2) Modulation of the membrane-embedded domain function by ball-and-chain like mechanisms. (3) Trafficking of membrane proteins. (4) Transient membrane associations. (5) Post-translational modifications most notably phosphorylation and (6) disorder-linked isoform dependent function. We finish the review by discussing the future challenges facing the membrane protein community regarding protein disorder.
Möykkynen, Tommi; Coleman, Sarah K.; Semenov, Artur; Keinänen, Kari
2014-01-01
AMPA receptors are tetrameric glutamate-gated ion channels that mediate fast synaptic neurotransmission in mammalian brain. Their subunits contain a two-lobed N-terminal domain (NTD) that comprises over 40% of the mature polypeptide. The NTD is not obligatory for the assembly of tetrameric receptors, and its functional role is still unclear. By analyzing full-length and NTD-deleted GluA1–4 AMPA receptors expressed in HEK 293 cells, we found that the removal of the NTD leads to a significant reduction in receptor transport to the plasma membrane, a higher steady state-to-peak current ratio of glutamate responses, and strongly increased sensitivity to glutamate toxicity in cell culture. Further analyses showed that NTD-deleted receptors display both a slower onset of desensitization and a faster recovery from desensitization of agonist responses. Our results indicate that the NTD promotes the biosynthetic maturation of AMPA receptors and, for membrane-expressed channels, enhances the stability of the desensitized state. Moreover, these findings suggest that interactions of the NTD with extracellular/synaptic ligands may be able to fine-tune AMPA receptor-mediated responses, in analogy with the allosteric regulatory role demonstrated for the NTD of NMDA receptors. PMID:24652293
Inhibition of cardiac inward rectifier currents by cationic amphiphilic drugs.
van der Heyden, M A G; Stary-Weinzinger, A; Sanchez-Chapula, J A
2013-09-01
Cardiac inward rectifier channels belong to three different classes of the KIR channel protein family. The KIR2.x proteins generate the classical inward rectifier current, IK1, while KIR3 and KIR6 members are responsible for the acetylcholine responsive and ATP sensitive inward rectifier currents IKAch and IKATP, respectively. Aberrant function of these channels has been correlated with severe cardiac arrhythmias, indicating their significant contribution to normal cardiac electrophysiology. A common feature of inward rectifier channels is their dependence on the lipid phosphatidyl-4,5-bisphospate (PIP2) interaction for functional activity. Cationic amphiphilic drugs (CADs) are one of the largest classes of pharmaceutical compounds. Several widely used CADs have been associated with inward rectifier current disturbances, and recent evidence points to interference of the channel-PIP2 interaction as the underlying mechanism of action. Here, we will review how six of these well known drugs, used for treatment in various different conditions, interfere in cardiac inward rectifier functioning. In contrast, KIR channel inhibition by the anionic anesthetic thiopental is achieved by a different mechanism of channel-PIP2 interference. We will discuss the latest basic science insights of functional inward rectifier current characteristics, recently derived KIR channel structures and specific PIP2-receptor interactions at the molecular level and provide insight in how these drugs interfere in the structure-function relationships.
Ohkita, Masashi; Saito, Shigeru; Imagawa, Toshiaki; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio
2012-01-01
The functional difference of thermosensitive transient receptor potential (TRP) channels in the evolutionary context has attracted attention, but thus far little information is available on the TRP vanilloid 1 (TRPV1) function of amphibians, which diverged earliest from terrestrial vertebrate lineages. In this study we cloned Xenopus tropicalis frog TRPV1 (xtTRPV1), and functional characterization was performed using HeLa cells heterologously expressing xtTRPV1 (xtTRPV1-HeLa) and dorsal root ganglion neurons isolated from X. tropicalis (xtDRG neurons) by measuring changes in the intracellular calcium concentration ([Ca2+]i). The channel activity was also observed in xtTRPV1-expressing Xenopus oocytes. Furthermore, we tested capsaicin- and heat-induced nocifensive behaviors of the frog X. tropicalis in vivo. At the amino acid level, xtTRPV1 displays ∼60% sequence identity to other terrestrial vertebrate TRPV1 orthologues. Capsaicin induced [Ca2+]i increases in xtTRPV1-HeLa and xtDRG neurons and evoked nocifensive behavior in X. tropicalis. However, its sensitivity was extremely low compared with mammalian orthologues. Low extracellular pH and heat activated xtTRPV1-HeLa and xtDRG neurons. Heat also evoked nocifensive behavior. In oocytes expressing xtTRPV1, inward currents were elicited by heat and low extracellular pH. Mutagenesis analysis revealed that two amino acids (tyrosine 523 and alanine 561) were responsible for the low sensitivity to capsaicin. Taken together, our results indicate that xtTRPV1 functions as a polymodal receptor similar to its mammalian orthologues. The present study demonstrates that TRPV1 functions as a heat- and acid-sensitive channel in the ancestor of terrestrial vertebrates. Because it is possible to examine vanilloid and heat sensitivities in vitro and in vivo, X. tropicalis could be the ideal experimental lower vertebrate animal for the study of TRPV1 function. PMID:22130664
X-ray structures define human P2X(3) receptor gating cycle and antagonist action.
Mansoor, Steven E; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric
2016-10-06
P2X receptors are trimeric, non-selective cation channels activated by ATP that have important roles in the cardiovascular, neuronal and immune systems. Despite their central function in human physiology and although they are potential targets of therapeutic agents, there are no structures of human P2X receptors. The mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structures of the pore-forming transmembrane domains of these receptors remain unclear. Here we report X-ray crystal structures of the human P2X 3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/closed-pore/desensitized and antagonist-bound/closed states. The open state structure harbours an intracellular motif we term the 'cytoplasmic cap', which stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. The competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements that underlie P2X receptor gating and provide a foundation for the development of new pharmacological agents.
USDA-ARS?s Scientific Manuscript database
As signal integrators that respond to various physical and chemical stimuli, transient receptor potential (TRP) channels fulfil critical functional roles in the sensory systems of both vertebrate and invertebrate organisms. Here, four variants of TRP ankyrin 1 (TRPA1) were identified and cloned from...
Diaz-Garcia, Carlos Manlio; Sanchez-Soto, Carmen; Hiriart, Marcia
2013-03-01
Transient receptor potential channels, especially the members of the melastatin family (TRPM), participate in insulin secretion. Some of them are substrates for protein kinases, which are involved in several neurotransmitter, incretin and hormonal signaling cascades in β cells. The functional relationships between protein kinases and TRPM channels in systems of heterologous expression and native tissues rise issues about novel regulation pathways of pancreatic β-cell excitability. The aim of the present work is to review the evidences about phosphorylation of TRPM channels in β cells and to discuss the perspectives on insulin secretion.
The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells
Bertin, Samuel; Aoki-Nonaka, Yukari; de Jong, Petrus Rudolf; Stanwood, Shawna R.; Srikanth, Sonal; Lee, Jihyung; To, Keith; Abramson, Lior; Yu, Timothy; Han, Tiffany; Touma, Ranim; Li, Xiangli; González-Navajas, José M.; Herdman, Scott; Corr, Maripat; Fu, Guo; Dong, Hui; Gwack, Yousang; Franco, Alessandra; Jefferies, Wilfred A.; Raz, Eyal
2016-01-01
TRPV1 is a Ca2+-permeable channel mostly studied as a pain receptor in sensory neurons. However, its role in other cell types is poorly understood. Here, we demonstrate that TRPV1 is functionally expressed in CD4+ T cells where it acts as a non-store-operated Ca2+ channel and contributes to T cell receptor (TCR)-induced Ca2+ influx, TCR signaling and T cell activation. In models of T cell-mediated colitis, TRPV1 promotes colitogenic T cell responses and intestinal inflammation. Furthermore, genetic and pharmacological inhibition of TRPV1 in human CD4+ T cells recapitulates the phenotype of murine Trpv1−/− CD4+ T cells. These findings suggest that TRPV1 inhibition could represent a new therapeutic strategy to restrain proinflammatory T cell responses. PMID:25282159
Matsui, Aya; Williams, John T
2010-01-01
BACKGROUND AND PURPOSE Methadone activates opioid receptors to increase a potassium conductance mediated by G-protein-coupled, inwardly rectifying, potassium (KIR3) channels. Methadone also blocks KIR3 channels and N-methyl-D-aspartic acid (NMDA) receptors. However, the concentration dependence and stereospecificity of receptor activation and channel blockade by methadone on single neurons has not been characterized. EXPERIMENTAL APPROACH Intracellular and whole-cell recording were made from locus coeruleus neurons in brain slices and the activation of µ-opioid receptors and blockade of KIR3 and NMDA channels with l- and d-methadone was examined. KEY RESULTS The potency of l-methadone, measured by the amplitude of hyperpolarization was 16.5-fold higher than with d-methadone. A maximum hyperpolarization was caused by both enantiomers (∼30 mV); however, the maximum outward current measured with whole-cell voltage-clamp recording was smaller than the current induced by [Met]5enkephalin. The KIR3 conductance induced by activation of α2-adrenoceptors was decreased with high concentrations of l- and d-methadone (10–30 µM). In addition, methadone blocked the resting inward rectifying conductance (KIR). Both l- and d-methadone blocked the NMDA receptor-dependent current. The block of NMDA receptor-dependent current was voltage-dependent suggesting that methadone acted as a channel blocker. CONCLUSIONS AND IMPLICATIONS Methadone activated µ-opioid receptors at low concentrations in a stereospecific manner. KIR3 and NMDA receptor channel block was not stereospecific and required substantially higher concentrations. The separation in the concentration range suggests that the activation of µ-opioid receptors rather than the channel blocking properties mediate both the therapeutic and toxic actions of methadone. PMID:20659105
Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.
Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo
2016-04-26
Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).
Chen, L; Kaßmann, M; Sendeski, M; Tsvetkov, D; Marko, L; Michalick, L; Riehle, M; Liedtke, W B; Kuebler, W M; Harteneck, C; Tepel, M; Patzak, A; Gollasch, M
2015-02-01
Transient receptor potential vanilloid 1 (TRPV1) and vanilloid 4 (TRPV4) cation channels have been recently identified to promote endothelium-dependent relaxation of mouse mesenteric arteries. However, the role of TRPV1 and TRPV4 in the renal vasculature is largely unknown. We hypothesized that TRPV1/4 plays a role in endothelium-dependent vasodilation of renal blood vessels. We studied the distribution of functional TRPV1/4 along different segments of the renal vasculature. Mesenteric arteries were studied as control vessels. The TRPV1 agonist capsaicin relaxed mouse mesenteric arteries with an EC50 of 25 nm, but large mouse renal arteries or rat descending vasa recta only at >100-fold higher concentrations. The vasodilatory effect of capsaicin in the low-nanomolar concentration range was endothelium-dependent and absent in vessels of Trpv1 -/- mice. The TRPV4 agonist GSK1016790A relaxed large conducting renal arteries, mesenteric arteries and vasa recta with EC50 of 18, 63 nm and ~10 nm respectively. These effects were endothelium-dependent and inhibited by a TRPV4 antagonist, AB159908 (10 μm). Capsaicin and GSK1016790A produced vascular dilation in isolated mouse perfused kidneys with EC50 of 23 and 3 nm respectively. The capsaicin effects were largely reduced in Trpv1 -/- kidneys, and the effects of GSK1016790A were inhibited in Trpv4 -/- kidneys. Our results demonstrate that two TRPV channels have unique sites of vasoregulatory function in the kidney with functional TRPV1 having a narrow, discrete distribution in the resistance vasculature and TRPV4 having more universal, widespread distribution along different vascular segments. We suggest that TRPV1/4 channels are potent therapeutic targets for site-specific vasodilation in the kidney. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Lasala, Matías; Corradi, Jeremías; Bruzzone, Ariana; Esandi, María Del Carmen; Bouzat, Cecilia
2018-05-21
The cholinergic α7 nicotinic receptor gene, CHRNA7, encodes a subunit that forms the homopentameric α7 receptor, involved in learning and memory. In humans, exons 5-10 in CHRNA7 are duplicated and fused to the FAM7A genetic element, giving rise to the hybrid gene CHRFAM7A. Its product, dupα7, is a truncated subunit lacking part of the N-terminal extracellular ligand-binding domain and is associated with neurological disorders, including schizophrenia, and immunomodulation.We combined dupα7 expression on mammalian cells with patch clamp recordings to understand its functional role. Transfected cells expressed dupα7 protein, but they exhibited neither surface binding of the α7 antagonist α-bungarotoxin nor responses to acetylcholine (ACh) or to an allosteric agonist that binds to the conserved transmembrane region. To determine if dupα7 assembles with α7, we generated receptors comprising α7 and dupα7 subunits, one of which was tagged with conductance substitutions that report subunit stoichiometry and monitored ACh-elicited channel openings elicited by ACh in the presence of a positive allosteric α7 modulator. We found that α7 and dupα7 subunits co-assemble into functional heteromeric receptors, that at least two α7 subunits are required for channel opening, and that dupα7's presence in the pentameric arrangement does not affect the duration of the potentiated events compare with that of α7. Using an α7 subunit mutant, we found that activation of (α7)2(dupα7)3 receptors occurs through ACh binding at the α7/α7 interfacial binding site. Our study contributes to the understanding of the modulation of α7 function by the human specific, duplicated subunit, associated with human disorders. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Lubiprostone targets prostanoid EP4 receptors in ovine airways
Cuthbert, AW
2011-01-01
BACKGROUND AND PURPOSE Lubiprostone, a prostaglandin E1 derivative, is reported to activate ClC-2 chloride channels located in the apical membranes of a number of transporting epithelia. Lack of functioning CFTR chloride channels in epithelia is responsible for the genetic disease cystic fibrosis, therefore, surrogate channels that can operate independently of CFTR are of interest. This study explores the target receptor(s) for lubiprostone in airway epithelium. EXPERIMENTAL APPROACH All experiments were performed on the ventral tracheal epithelium of sheep. Epithelia were used to measure anion secretion from the apical surface as short circuit current or as fluid secretion from individual airway submucosal glands, using an optical method. KEY RESULTS The EP4 antagonists L-161982 and GW627368 inhibited short circuit current responses to lubiprostone, while EP1,2&3 receptor antagonists were without effect. Similarly, lubiprostone induced secretion in airway submucosal glands was inhibited by L-161982. L-161982 effectively competed with lubiprostone with a Kd value of 0.058 µM, close to its value for binding to human EP4 receptors (0.024 µM). The selective EP4 agonist L-902688 and lubiprostone behaved similarly with respect to EP4 receptor antagonists. Results of experiments with H89, a protein kinase A inhibitor, were consistent with lubiprostone acting through a Gs-protein coupled EP4 receptor/cAMP cascade. CONCLUSIONS AND IMPLICATIONS Lubiprostone-induced short-circuit currents and submucosal gland secretions were inhibited by selective EP4 receptor antagonists. The results suggest EP4 receptor activation by lubiprostone triggers cAMP production necessary for CFTR activation and the secretory responses, a possibility precluded in CF tissues. PMID:20883477
A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor
NASA Astrophysics Data System (ADS)
Beckstein, Oliver; Sansom, Mark S. P.
2006-06-01
The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the 'Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, γ-aminobutyric acid and serotonin. Cryo-electron microscopy has yielded a three-dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 Å. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height about 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 Å radius hydrophobic pore can form a functional barrier to the permeation of a 1 Å radius Na+ ion. Using a united-atom force field for the protein instead of an all-atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.
Thermally activated TRP channels: molecular sensors for temperature detection.
Castillo, Karen; Diaz-Franulic, Ignacio; Canan, Jonathan; Gonzalez-Nilo, Fernando; Latorre, Ramon
2018-01-24
Temperature sensing is one of the oldest capabilities of living organisms, and is essential for sustaining life, because failure to avoid extreme noxious temperatures can result in tissue damage or death. A subset of members of the transient receptor potential (TRP) ion channel family is finely tuned to detect temperatures ranging from extreme cold to noxious heat, giving rise to thermoTRP channels. Structural and functional experiments have shown that thermoTRP channels are allosteric proteins, containing different domains that sense changes in temperature, among other stimuli, triggering pore opening. Although temperature-dependence is well characterized in thermoTRP channels, the molecular nature of temperature-sensing elements remains unknown. Importantly, thermoTRP channels are involved in pain sensation, related to pathological conditions. Here, we provide an overview of thermoTRP channel activation. We also discuss the structural and functional evidence supporting the existence of an intrinsic temperature sensor in this class of channels, and we explore the basic thermodynamic principles for channel activation. Finally, we give a view of their role in painful pathophysiological conditions.
Deciphering the function of the CNGB1b subunit in olfactory CNG channels.
Nache, Vasilica; Wongsamitkul, Nisa; Kusch, Jana; Zimmer, Thomas; Schwede, Frank; Benndorf, Klaus
2016-07-11
Olfactory cyclic nucleotide-gated (CNG) ion channels are key players in the signal transduction cascade of olfactory sensory neurons. The second messengers cAMP and cGMP directly activate these channels, generating a depolarizing receptor potential. Olfactory CNG channels are composed of two CNGA2 subunits and two modulatory subunits, CNGA4, and CNGB1b. So far the exact role of the modulatory subunits for channel activation is not fully understood. By measuring ligand binding and channel activation simultaneously, we show that in functional heterotetrameric channels not only the CNGA2 subunits and the CNGA4 subunit but also the CNGB1b subunit binds cyclic nucleotides and, moreover, also alone translates this signal to open the pore. In addition, we show that the CNGB1b subunit is the most sensitive subunit in a heterotetrameric channel to cyclic nucleotides and that it accelerates deactivation to a similar extent as does the CNGA4 subunit. In conclusion, the CNGB1b subunit participates in ligand-gated activation of olfactory CNG channels and, particularly, contributes to rapid termination of odorant signal in an olfactory sensory neuron.
Molecular dissection of botulinum neurotoxin reveals interdomain chaperone function.
Fischer, Audrey; Montal, Mauricio
2013-12-01
Clostridium botulinum neurotoxin (BoNT) is a multi-domain protein made up of the approximately 100 kDa heavy chain (HC) and the approximately 50 kDa light chain (LC). The HC can be further subdivided into two halves: the N-terminal translocation domain (TD) and the C-terminal Receptor Binding Domain (RBD). We have investigated the minimal requirements for channel activity and LC translocation. We utilize a cellular protection assay and a single channel/single molecule LC translocation assay to characterize in real time the channel and chaperone activities of BoNT/A truncation constructs in Neuro 2A cells. The unstructured, elongated belt region of the TD is demonstrated to be dispensable for channel activity, although may be required for productive LC translocation. We show that the RBD is not necessary for channel activity or LC translocation, however it dictates the pH threshold of channel insertion into the membrane. These findings indicate that each domain functions as a chaperone for the others in addition to their individual functions, working in concert to achieve productive intoxication. Copyright © 2013 Elsevier Ltd. All rights reserved.
Identification of a tetrameric assembly domain in the C terminus of heat-activated TRPV1 channels.
Zhang, Feng; Liu, Shuang; Yang, Fan; Zheng, Jie; Wang, KeWei
2011-04-29
Transient receptor potential (TRP) channels as cellular sensors are thought to function as tetramers. Yet, the molecular determinants governing channel multimerization remain largely elusive. Here we report the identification of a segment comprising 21 amino acids (residues 752-772 of mouse TRPV1) after the known TRP-like domain in the channel C terminus that functions as a tetrameric assembly domain (TAD). Purified recombinant C-terminal proteins of TRPV1-4, but not the N terminus, mediated the protein-protein interaction in an in vitro pulldown assay. Western blot analysis combined with electrophysiology and calcium imaging demonstrated that TAD exerted a robust dominant-negative effect on wild-type TRPV1. When fused with the membrane-tethered peptide Gap43, the TAD blocked the formation of stable homomultimers. Calcium imaging and current recordings showed that deletion of the TAD in a poreless TRPV1 mutant subunit suppressed its dominant-negative phenotype, confirming the involvement of the TAD in assembly of functional channels. Our findings suggest that the C-terminal TAD in TRPV1 channels functions as a domain that is conserved among TRPV1-4 and mediates a direct subunit-subunit interaction for tetrameric assembly.
Basal activity of GIRK5 isoforms.
Salvador, Carolina; Mora, Silvia I; Ordaz, Benito; Antaramian, Anaid; Vaca, Luis; Escobar, Laura I
2003-02-14
G protein-coupled inwardly rectifying K(+) channels (GIRK or Kir3) form functional heterotetramers gated by Gbetagamma subunits. GIRK channels are critical for functions as diverse as heart rate modulation and neuronal post-synaptic inhibition. GIRK5 (Kir3.5) is the oocyte homologue of the mammalian GIRK subunits that conform the K(ACh) channel. It has been claimed that even when the oocytes express GIRK5 proteins they do not form functional channels. However, the GIRK5 gene shows three initiation sites that suggest the existence of three isoforms. In a previous work we demonstrated the functionality of homomultimers of the shortest isoform overexpressed in the own oocytes. Remarkably, the basal GIRK5-Delta25 inward currents were not coupled to the activation of a G-protein receptor in the oocytes. These results encouraged us to study this channel in another expression system. In this work we show that Sf21 insect cells can be successfully transfected with this channel. GIRK5-Delta25 homomultimers produce time-dependent inward currents only with GTPgammaS in the recording pipette. Therefore, alternative modes of stimulus input to heterotrimeric G-proteins should be present in the oocytes to account for these results.
Single-channel autocorrelation functions: the effects of time interval omission.
Ball, F G; Sansom, M S
1988-01-01
We present a general mathematical framework for analyzing the dynamic aspects of single channel kinetics incorporating time interval omission. An algorithm for computing model autocorrelation functions, incorporating time interval omission, is described. We show, under quite general conditions, that the form of these autocorrelations is identical to that which would be obtained if time interval omission was absent. We also show, again under quite general conditions, that zero correlations are necessarily a consequence of the underlying gating mechanism and not an artefact of time interval omission. The theory is illustrated by a numerical study of an allosteric model for the gating mechanism of the locust muscle glutamate receptor-channel. PMID:2455553
Structure of the TRPA1 ion channel suggests regulatory mechanisms.
Paulsen, Candice E; Armache, Jean-Paul; Gao, Yuan; Cheng, Yifan; Julius, David
2015-04-23
The TRPA1 ion channel (also known as the wasabi receptor) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here we use single-particle electron cryo- microscopy to determine the structure of full-length human TRPA1 to ∼4 Å resolution in the presence of pharmacophores, including a potent antagonist. Several unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted transient receptor potential (TRP)-like allosteric domain. These findings provide new insights into the mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents.
Xu, Xiaojun; Sepich, Caraline; Lukas, Ronald J; Zhu, Guonian; Chang, Yongchang
2016-01-01
Avermectins are a group of compounds isolated from a soil-dwelling bacterium. They have been widely used as parasiticides and insecticides, acting by relatively irreversible activation of invertebrate chloride channels. Emamectin is a soluble derivative of an avermectin. It is an insecticide, which persistently activates glutamate-gated chloride channels. However, its effects on mammalian ligand-gated ion channels are unknown. To this end, we tested the effect of emamectin on two cation selective nicotinic receptors and two GABA-gated chloride channels expressed in Xenopus oocytes using two-electrode voltage clamp. Our results demonstrate that emamectin could directly activate α7 nAChR, α4β2 nAChR, α1β2γ2 GABAA receptor and ρ1 GABAC receptor concentration dependently, with similar potencies for each channel. However, the potencies for it to activate these channels were at least two orders of magnitude lower than its potency of activating invertebrate glutamate-gated chloride channel. In contrast, ivermectin only activated the α1β2γ2 GABAA receptor. PMID:27049309
Xu, Xiaojun; Sepich, Caraline; Lukas, Ronald J; Zhu, Guonian; Chang, Yongchang
2016-05-13
Avermectins are a group of compounds isolated from a soil-dwelling bacterium. They have been widely used as parasiticides and insecticides, acting by relatively irreversible activation of invertebrate chloride channels. Emamectin is a soluble derivative of an avermectin. It is an insecticide, which persistently activates glutamate-gated chloride channels. However, its effects on mammalian ligand-gated ion channels are unknown. To this end, we tested the effect of emamectin on two cation selective nicotinic receptors and two GABA-gated chloride channels expressed in Xenopus oocytes using two-electrode voltage clamp. Our results demonstrate that emamectin could directly activate α7 nAChR, α4β2 nAChR, α1β2γ2 GABAA receptor and ρ1 GABAC receptor concentration dependently, with similar potencies for each channel. However, the potencies for it to activate these channels were at least two orders of magnitude lower than its potency of activating invertebrate glutamate-gated chloride channel. In contrast, ivermectin only activated the α1β2γ2 GABAA receptor. Copyright © 2016 Elsevier Inc. All rights reserved.
Multisteric TRPV1 nocisensor: a target for analgesics.
Szolcsányi, János; Sándor, Zoltán
2012-12-01
Cloning of the transient receptor potential vanilloid type 1 (TRPV1), the heat-gated cation channel/capsaicin receptor expressed by sensory neurons, has opened the door for development of new types of analgesics that selectively act on nociceptors. Here we summarize mutagenetic evidence for selective loss of responsiveness to vanilloids, protons, and heat stimuli to provide clues for avoiding on-target side effects of hyperthermia and burn risk. It is suggested that the complex chemoceptive thermosensor function of TRPV1 (which is modulated by depolarizing stimuli) can be attributed to multisteric gating functions. In this way, it forms the prototype of a new class of ion channels different from the canonical voltage-gated and ligand-gated ones. Several endogenous lipid ligands activate and inhibit TRPV1 and its gating initiates sensory transducer and mediator-releasing functions. Second generation TRPV1 antagonists that do not induce hyperthermia are under development, and a dermal capsaicin patch is already on the market for long-term treatment of neuropathic pain. Copyright © 2012 Elsevier Ltd. All rights reserved.
Banciu, Adela; Banciu, Daniel Dumitru; Mustaciosu, Cosmin Catalin; Radu, Mihai; Cretoiu, Dragos; Xiao, Junjie; Cretoiu, Sanda Maria; Suciu, Nicolae; Radu, Beatrice Mihaela
2018-05-09
Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human uterine myometrium and their gene expression regulation by beta-estradiol in pregnant conditions. Further exploration of the calcium signaling in TCs and its modulation by estrogen hormones will contribute to the understanding of labor and pregnancy mechanisms and to the development of effective strategies to reduce the risk of premature birth.
Opioid, cannabinoid, and transient receptor potential (TRP) systems: effects on body temperature
Rawls, Scott M.; Benamar, Khalid
2014-01-01
Cannabinoid and opioid drugs produce marked changes in body temperature. Recent findings have extended our knowledge about the thermoregulatory effects of cannabinoids and opioids, particularly as related to delta opioid receptors, endogenous systems, and transient receptor potential (TRP) channels. Although delta opioid receptors were originally thought to play only a minor role in thermoregulation compared to mu and kappa opioid receptors, their activation has been shown to produce hypothermia in multiple species. Endogenous opioids and cannabinoids also regulate body temperature. Mu and kappa opioid receptors are thought to be in tonic balance, with mu and kappa receptor activation producing hyperthermia and hypothermia, respectively. Endocannabinoids participate in the febrile response, but more studies are needed to determine if a cannabinoid CB1 receptor tone exerts control over basal body temperature. A particularly intense research focus is TRP channels, where TRPV1 channel activation produces hypothermia whereas TRPA1 and TRPM8 channel activation causes hyperthermia. The marked hyperthermia produced by TRPV1 channel antagonists suggests these warm channels tonically control body temperature. A better understanding of the roles of cannabinoid, opioid, and TRP systems in thermoregulation may have broad clinical implications and provide insights into interactions among neurotransmitter systems involved in thermoregulation. PMID:21622235
High-affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling.
Fernandes, Herman B; Catches, Justin S; Petralia, Ronald S; Copits, Bryan A; Xu, Jian; Russell, Theron A; Swanson, Geoffrey T; Contractor, Anis
2009-09-24
Kainate receptors signal through both ionotropic and metabotropic pathways. The high-affinity subunits, GluK4 and GluK5, are unique among the five receptor subunits, as they do not form homomeric receptors but modify the properties of heteromeric assemblies. Disruption of the Grik4 gene locus resulted in a significant reduction in synaptic kainate receptor currents. Moreover, ablation of GluK4 and GluK5 caused complete loss of synaptic ionotropic kainate receptor function. The principal subunits were distributed away from postsynaptic densities and presynaptic active zones. There was also a profound alteration in the activation properties of the remaining kainate receptors. Despite this, kainate receptor-mediated inhibition of the slow afterhyperpolarization current (I(sAHP)), which is dependent on metabotropic pathways, was intact in GluK4/GluK5 knockout mice. These results uncover a previously unknown obligatory role for the high-affinity subunits for ionotropic kainate receptor function and further demonstrate that kainate receptor participation in metabotropic signaling pathways does not require their classic role as ion channels.
1988-01-01
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS- solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms cationic channels selective for divalent ions. Ryanodine receptor channels were identical to the Ca-release channels described in native sarcoplasmic reticulum using the same techniques. In the present work, four criteria were used to establish this identity: (a) activation of channels by micromolar Ca and millimolar ATP and inhibition by micromolar ruthenium red, (b) a main channel conductance of 110 +/- 10 pS in 54 mM trans Ca, (c) a long- term open state of lower unitary conductance induced by ryanodine concentrations as low as 20 nM, and (d) a permeability ratio PCa/PTris approximately equal to 14. In addition, we show that the purified ryanodine receptor channel displays a saturable conductance in both monovalent and divalent cation solutions (gamma max for K and Ca = 1 nS and 172 pS, respectively). In the absence of Ca, channels had a broad selectivity for monovalent cations, but in the presence of Ca, they were selectively permeable to Ca against K by a permeability ratio PCa/PK approximately equal to 6. Receptor channels displayed several equivalent conductance levels, which suggest an oligomeric pore structure. We conclude that the 450,000-dalton polypeptide ryanodine receptor is the Ca-release channel of the sarcoplasmic reticulum and is the target site of ruthenium red and ryanodine. PMID:2459298
Shen, Wen; Slaughter, Malcolm M
1998-01-01
Glutamate suppressed high-voltage-activated barium currents (IBa,HVA) in tiger salamander retinal ganglion cells. Both ionotropic (iGluR) and metabotropic (mGluR) receptors contributed to this calcium channel inhibition. Trans-ACPD (1-aminocyclopentane-trans-1S,3R-dicarboxylic acid), a broad-spectrum metabotropic glutamate receptor agonist, suppressed a dihydropyridine-sensitive barium current. Kainate, an ionotropic glutamate receptor agonist, reduced an ω-conotoxin GVIA-sensitive current. The relative effectiveness of selective agonists indicated that the predominant metabotropic receptor was the L-2-amino-4-phosphonobutyrate (l-AP4)-sensitive, group III receptor. This receptor reversed the action of forskolin, but this was not responsible for calcium channel suppression. l-AP4 raised internal calcium concentration. Antagonists of phospholipase C, inositol trisphosphate (IP3) receptors and ryanodine receptors inhibited the action of metabotropic agonists, indicating that group III receptor transduction was linked to this pathway. The action of kainate was partially suppressed by BAPTA, by calmodulin antagonists and by blockers of calmodulin-dependent phosphatase. Suppression by kainate of the calcium channel current was more rapid when calcium was the charge carrier, instead of barium. The results indicate that calcium influx through kainate-sensitive glutamate receptors can activate calmodulin, which stimulates phosphatases that may directly suppress voltage-sensitive calcium channels. Thus, ionotropic and metabotropic glutamate receptors inhibit distinct calcium channels. They could act synergistically, since both increase internal calcium. These pathways provide negative feedback that can reduce calcium influx when ganglion cells are depolarized. PMID:9660896
Molecular and functional properties of P2X receptors--recent progress and persisting challenges.
Kaczmarek-Hájek, Karina; Lörinczi, Eva; Hausmann, Ralf; Nicke, Annette
2012-09-01
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Fedele, Laura; Newcombe, Joseph; Topf, Maya; Gibb, Alasdair; Harvey, Robert J; Smart, Trevor G
2018-03-06
Genetic and bioinformatic analyses have identified missense mutations in GRIN2B encoding the NMDA receptor GluN2B subunit in autism, intellectual disability, Lennox Gastaut and West Syndromes. Here, we investigated several such mutations using a near-complete, hybrid 3D model of the human NMDAR and studied their consequences with kinetic modelling and electrophysiology. The mutants revealed reductions in glutamate potency; increased receptor desensitisation; and ablation of voltage-dependent Mg 2+ block. In addition, we provide new views on Mg 2+ and NMDA channel blocker binding sites. We demonstrate that these mutants have significant impact on excitatory transmission in developing neurons, revealing profound changes that could underlie their associated neurological disorders. Of note, the NMDAR channel mutant GluN2B V618G unusually allowed Mg 2+ permeation, whereas nearby N615I reduced Ca 2+ permeability. By identifying the binding site for an NMDAR antagonist that is used in the clinic to rescue gain-of-function phenotypes, we show that drug binding may be modified by some GluN2B disease-causing mutations.
Application of amphipols for structure-functional analysis of TRP channels.
Huynh, Kevin W; Cohen, Matthew R; Moiseenkova-Bell, Vera Y
2014-10-01
Amphipathic polymers (amphipols), such as A8-35 and SApol, are a new tool for stabilizing integral membrane proteins in detergent-free conditions for structural and functional studies. Transient receptor potential (TRP) ion channels function as tetrameric protein complexes in a diverse range of cellular processes including sensory transduction. Mammalian TRP channels share ~20 % sequence similarity and are categorized into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPA (ankyrin), TRPM (melastatin), TRPP (polycystin), and TRPML (mucolipin). Due to the inherent difficulties in purifying eukaryotic membrane proteins, structural studies of TRP channels have been limited. Recently, A8-35 was essential in resolving the molecular architecture of the nociceptor TRPA1 and led to the determination of a high-resolution structure of the thermosensitive TRPV1 channel by cryo-EM. Newly developed maltose-neopentyl glycol (MNG) detergents have also proven to be useful in stabilizing TRP channels for structural analysis. In this review, we will discuss the impacts of amphipols and MNG detergents on structural studies of TRP channels by cryo-EM. We will compare how A8-35 and MNG detergents interact with the hydrophobic transmembrane domains of TRP channels. In addition, we will discuss what these cryo-EM studies reveal on the importance of screening different types of surfactants toward determining high-resolution structures of TRP channels.
Application of amphipols for structure-functional analysis of TRP channels
Huynh, Kevin W.; Cohen, Matthew R.; Moiseenkova-Bell, Vera Y.
2014-01-01
Amphipathic polymers (amphipols), such as A8-35 and SApol, are a new tool for stabilizing integral membrane proteins in detergent-free conditions for structural and functional studies. Transient receptor potential (TRP) ion channels function as tetrameric protein complexes in a diverse range of cellular processes including sensory transduction. Mammalian TRP channels share ~20% sequence similarity and are categorized into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPA (ankyrin), TRPM (melastatin), TRPP (polycystin), and TRPML (mucolipin). Due to the inherent difficulties in purifying eukaryotic membrane proteins, structural studies of TRP channels have been limited. Recently, A8-35 was essential in resolving the molecular architecture of the nociceptor TRPA1 and led to the determination of a high resolution structure of the thermosensitive TRPV1 channel by cryo-EM. Newly developed maltose-neopentyl glycol (MNG) detergents have also proven useful in stabilizing TRP channels for structural analysis. In this review, we will discuss the impact of amphipols and MNG detergents on structural studies of TRP channels by cryo-EM. We will compare how A8-35 and MNG detergents interact with the hydrophobic transmembrane (TM) domains of TRP channels. In addition, we will discuss what these cryo-EM studies reveal on the importance of screening different types of surfactants towards determining high resolution structures of TRP channels. PMID:24894720
Gonzalez-Gutierrez, Giovanni; Lukk, Tiit; Agarwal, Vinayak; Papke, David; Nair, Satish K.; Grosman, Claudio
2012-01-01
The determination of structural models of the various stable states of an ion channel is a key step toward the characterization of its conformational dynamics. In the case of nicotinic-type receptors, different structures have been solved but, thus far, these different models have been obtained from different members of the superfamily. In the case of the bacterial member ELIC, a cysteamine-gated channel from Erwinia chrisanthemi, a structural model of the protein in the absence of activating ligand (and thus, conceivably corresponding to the closed state of this channel) has been previously generated. In this article, electrophysiological characterization of ELIC mutants allowed us to identify pore mutations that slow down the time course of desensitization to the extent that the channel seems not to desensitize at all for the duration of the agonist applications (>20 min). Thus, it seems reasonable to conclude that the probability of ELIC occupying the closed state is much lower for the ligand-bound mutants than for the unliganded wild-type channel. To gain insight into the conformation adopted by ELIC under these conditions, we solved the crystal structures of two of these mutants in the presence of a concentration of cysteamine that elicits an intracluster open probability of >0.9. Curiously, the obtained structural models turned out to be nearly indistinguishable from the model of the wild-type channel in the absence of bound agonist. Overall, our findings bring to light the limited power of functional studies in intact membranes when it comes to inferring the functional state of a channel in a crystal, at least in the case of the nicotinic-receptor superfamily. PMID:22474383
Role of Orai1 and store-operated calcium entry in mouse lacrimal gland signalling and function.
Xing, Juan; Petranka, John G; Davis, Felicity M; Desai, Pooja N; Putney, James W; Bird, Gary S
2014-03-01
Lacrimal glands function to produce an aqueous layer, or tear film, that helps to nourish and protect the ocular surface. Lacrimal glands secrete proteins, electrolytes and water, and loss of gland function can result in tear film disorders such as dry eye syndrome, a widely encountered and debilitating disease in ageing populations. To combat these disorders, understanding the underlying molecular signalling processes that control lacrimal gland function will give insight into corrective therapeutic approaches. Previously, in single lacrimal cells isolated from lacrimal glands, we demonstrated that muscarinic receptor activation stimulates a phospholipase C-coupled signalling cascade involving the inositol trisphosphate-dependent mobilization of intracellular calcium and the subsequent activation of store-operated calcium entry (SOCE). Since intracellular calcium stores are finite and readily exhausted, the SOCE pathway is a critical process for sustaining and maintaining receptor-activated signalling. Recent studies have identified the Orai family proteins as critical components of the SOCE channel activity in a wide variety of cell types. In this study we characterize the role of Orai1 in the function of lacrimal glands using a mouse model in which the gene for the calcium entry channel protein, Orai1, has been deleted. Our data demonstrate that lacrimal acinar cells lacking Orai1 do not exhibit SOCE following activation of the muscarinic receptor. In comparison with wild-type and heterozygous littermates, Orai1 knockout mice showed a significant reduction in the stimulated tear production following injection of pilocarpine, a muscarinic receptor agonist. In addition, calcium-dependent, but not calcium-independent exocytotic secretion of peroxidase was eliminated in glands from knockout mice. These studies indicate a critical role for Orai1-mediated SOCE in lacrimal gland signalling and function.
Function and dysfunction of CNG channels: insights from channelopathies and mouse models.
Biel, Martin; Michalakis, Stylianos
2007-06-01
Channels directly gated by cyclic nucleotides (CNG channels) are important cellular switches that mediate influx of Na+ and Ca2+ in response to increases in the intracellular concentration of cAMP and cGMP. In photoreceptors and olfactory receptor neurons, these channels serve as final targets for cGMP and cAMP signaling pathways that are initiated by the absorption of photons and the binding of odorants, respectively. CNG channels have been also found in other types of neurons and in non-excitable cells. However, in most of these cells, the physiological role of CNG channels has yet to be determined. CNG channels have a complex heteromeric structure. The properties of individual subunits that assemble in specific stoichiometries to the native channels have been extensively investigated in heterologous expression systems. Recently, mutations in human CNG channel genes leading to inherited diseases (so-called channelopathies) have been functionally characterized. Moreover, mouse knockout models were generated to define the role of CNG channel proteins in vivo. In this review, we will summarize recent insights into the physiological and pathophysiological role of CNG channel proteins that have emerged from genetic studies in mice and humans.
Tachykinin receptor expression and function in human esophageal smooth muscle.
Kovac, Jason R; Chrones, Tom; Preiksaitis, Harold G; Sims, Stephen M
2006-08-01
Tachykinins are present in enteric nerves of the gastrointestinal tract and cause contraction of esophageal smooth muscle; however, the mechanisms involved are not understood. Our aim was to characterize tachykinin signaling in human esophageal smooth muscle. We investigated functional effects of tachykinins on human esophageal smooth muscle using tension recordings and isolated cells, receptor expression with reverse transcription (RT)-polymerase chain reaction (PCR) and immunoblotting, intracellular Ca2+ responses using fluorescent indicator dyes, and membrane currents with patch-clamp electrophysiology. The mammalian tachykinins [substance P and neurokinin (NK) A and NKB] elicited concentration-dependent contractions of human esophageal smooth muscle. These responses were not affected by muscarinic receptor or neuronal blockade indicating a direct effect on smooth muscle cells (SMCs). Immunofluorescence and RT-PCR identified tachykinin receptors (NK1, NK2, and NK3) on SMCs. Contraction was mediated through a combination of Ca2+ release from intracellular stores and influx through L-type Ca2+ channels. NK2 receptor blockade inhibited the largest proportion of tachykinin-evoked responses. NKA evoked a nonselective cation current (I(NSC)) with properties similar to that elicited by muscarinic stimulation. The following paradigm is suggested: tachykinin receptor binding to SMCs releases Ca2+ from stores along with activation of I(NSC), which in turn results in membrane depolarization, L-type Ca2+ channel opening, rise of Ca2+ concentration, and contraction. These studies reveal new aspects of tachykinin signaling in human esophageal SMCs. Excitatory tachykinin pathways may represent targets for pharmacological intervention in disorders of esophageal dysmotility.
Protons stabilize the closed conformation of gain-of-function mutants of the TRPV1 channel.
Boukalova, Stepana; Teisinger, Jan; Vlachova, Viktorie
2013-03-01
The vanilloid transient receptor potential channel TRPV1 is a molecular integrator of noxious stimuli, including capsaicin, heat and protons. Despite clear similarities between the overall architecture of TRPV1 and voltage-dependent potassium (Kv) channels, the extent of conservation in the molecular logic for gating is unknown. In Kv channels, a small contact surface between S1 and the pore-helix is required for channel functioning. To explore the function of S1 in TRPV1, we used tryptophan-scanning mutagenesis and characterized the responses to capsaicin and protons. Wild-type-like currents were generated in 9 out of 17 mutants; three mutants (M445W, A452W, R455W) were non-functional. The conservative mutation R455K in the extracellular extent of S1 slowed down capsaicin-induced activation and prevented normal channel closure. This mutant was neither activated nor potentiated by protons, on the contrary, protons promoted a rapid deactivation of its currents. Similar phenotypes were found in two other gain-of-function mutants and also in the pore-helix mutant T633A, known to uncouple proton activation. We propose that the S1 domain contains a functionally important region that may be specifically involved in TRPV1 channel gating, and thus be important for the energetic coupling between S1-S4 sensor activation and gate opening. Analogous to Kv channels, the S1-pore interface might serve to stabilize conformations associated with TRPV1 channel gating. Copyright © 2012 Elsevier B.V. All rights reserved.
Peng, Guangda; Kashio, Makiko; Li, Tianbang; Dong, Xiaofeng; Tominaga, Makoto; Kadowaki, Tatsuhiko
2016-01-01
The transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is conserved between many arthropods, and in some has been shown to function as a chemosensor for noxious compounds. Activation of arthropod TRPA1 channels by temperature fluctuations has been tested in only a few insect species, and all of them were shown to be activated by heat. The recent identification of chemosensitive TRPA1 channels from two honey bee ectoparasitic mite species (VdTRPA1 and TmTRPA1) have provided an opportunity to study the temperature-dependent activation and the temperature-associated physiological functions of TRPA1 channels in non-insect arthropods. We found that both mite TRPA1 channels are heat sensitive and capable of rescuing the temperature-related behavioral defects of a Drosophila melanogaster trpA1 mutant. These results suggest that heat-sensitivity of TRPA1 could be conserved between many arthropods despite its amino acid sequence diversity. Nevertheless, the ankyrin repeats (ARs) 6 and 7 are well-conserved between six heat-sensitive arthropod TRPA1 channels and have critical roles for the heat activation of VdTRPA1. PMID:27761115
Dental enamel cells express functional SOCE channels
Nurbaeva, Meerim K.; Eckstein, Miriam; Concepcion, Axel R.; Smith, Charles E.; Srikanth, Sonal; Paine, Michael L.; Gwack, Yousang; Hubbard, Michael J.; Feske, Stefan; Lacruz, Rodrigo S.
2015-01-01
Dental enamel formation requires large quantities of Ca2+ yet the mechanisms mediating Ca2+ dynamics in enamel cells are unclear. Store-operated Ca2+ entry (SOCE) channels are important Ca2+ influx mechanisms in many cells. SOCE involves release of Ca2+ from intracellular pools followed by Ca2+ entry. The best-characterized SOCE channels are the Ca2+ release-activated Ca2+ (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca2+ uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca2+ release mechanism. Passive depletion of ER Ca2+ stores with thapsigargin resulted in a significant raise in [Ca2+]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca2+ entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca2+ uptake in enamel formation. PMID:26515404
Dental enamel cells express functional SOCE channels.
Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S
2015-10-30
Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.
Yan, Zonghe; Kong, Wenjuan; Liu, Beiying; Li, Xia; Yao, Jing; Zhang, Yuexuan; Qin, Feng; Ding, Jiuping
2013-01-01
The transient receptor potential vanilloid receptor 1 (TRPV1) channel is a nonselective cation channel activated by a variety of exogenous and endogenous physical and chemical stimuli, such as temperature (≥42 °C), capsaicin, a pungent compound in hot chili peppers, and allyl isothiocyanate. Large-conductance calcium- and voltage-activated potassium (BK) channels regulate the electric activities and neurotransmitter releases in excitable cells, responding to changes in membrane potentials and elevation of cytosolic calcium ions (Ca2+). However, it is unknown whether the TRPV1 channels are coupled with the BK channels. Using patch-clamp recording combined with an infrared laser device, we found that BK channels could be activated at 0 mV by a Ca2+ influx through TRPV1 channels not the intracellular calcium stores in submilliseconds. The local calcium concentration around BK is estimated over 10 μM. The crosstalk could be affected by 10 mM BAPTA, whereas 5 mM EGTA was ineffectual. Fluorescence and co-immunoprecipitation experiments also showed that BK and TRPV1 were able to form a TRPV1-BK complex. Furthermore, we demonstrated that the TRPV1-BK coupling also occurs in dosal root ganglion (DRG) cells, which plays a critical physiological role in regulating the “pain” signal transduction pathway in the peripheral nervous system. PMID:24147119
Cooperative regulation by G proteins and Na+ of neuronal GIRK2 K+ channels
Wang, Weiwei; Touhara, Kouki K; Weir, Keiko; Bean, Bruce P; MacKinnon, Roderick
2016-01-01
G protein gated inward rectifier K+ (GIRK) channels open and thereby silence cellular electrical activity when inhibitory G protein coupled receptors (GPCRs) are stimulated. Here we describe an assay to measure neuronal GIRK2 activity as a function of membrane-anchored G protein concentration. Using this assay we show that four Gβγ subunits bind cooperatively to open GIRK2, and that intracellular Na+ – which enters neurons during action potentials – further amplifies opening mostly by increasing Gβγ affinity. A Na+ amplification function is characterized and used to estimate the concentration of Gβγ subunits that appear in the membrane of mouse dopamine neurons when GABAB receptors are stimulated. We conclude that GIRK2, through its dual responsiveness to Gβγ and Na+, mediates a form of neuronal inhibition that is amplifiable in the setting of excess electrical activity. DOI: http://dx.doi.org/10.7554/eLife.15751.001 PMID:27074662
Functional nicotinic acetylcholine receptor reconstitution in Au(111)-supported thiolipid monolayers
NASA Astrophysics Data System (ADS)
Pissinis, Diego E.; Diaz, Carolina; Maza, Eliana; Bonini, Ida C.; Barrantes, Francisco J.; Salvarezza, Roberto C.; Schilardi, Patricia L.
2015-09-01
The insertion and function of the muscle-type nicotinic acetylcholine receptor (nAChR) in Au(111)-supported thiolipid self-assembled monolayers have been studied by atomic force microscopy (AFM), surface plasmon resonance (SPR), and electrochemical techniques. It was possible for the first time to resolve the supramolecular arrangement of the protein spontaneously inserted in a thiolipid monolayer in an aqueous solution. Geometric supramolecular arrays of nAChRs were observed, most commonly in a triangular form compatible with three nAChR dimers of ~20 nm each. Addition of the full agonist carbamoylcholine activated and opened the nAChR ion channel, as revealed by the increase in capacitance relative to that of the nAChR-thiolipid system under basal conditions. Thus, the self-assembled system appears to be a viable biomimetic model to measure ionic conductance mediated by ion-gated ion channels under different experimental conditions, with potential applications in biotechnology and pharmacology.
Keavy, Deborah; Bristow, Linda J.; Sivarao, Digavalli V.; Batchelder, Margaret; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E.; Weed, Michael R.
2016-01-01
The antidepressant activity of the N-methyl-D-aspartate (NMDA) receptor channel blocker, ketamine, has led to the investigation of negative allosteric modulators (NAMs) selective for the NR2B receptor subtype. The clinical development of NR2B NAMs would benefit from a translational pharmacodynamic biomarker that demonstrates brain penetration and functional inhibition of NR2B receptors in preclinical species and humans. Quantitative electroencephalography (qEEG) is a translational measure that can be used to demonstrate pharmacodynamic effects across species. NMDA receptor channel blockers, such as ketamine and phencyclidine, increase the EEG gamma power band, which has been used as a pharmacodynamic biomarker in the development of NMDA receptor antagonists. However, detailed qEEG studies with ketamine or NR2B NAMs are lacking in nonhuman primates. The aim of the present study was to determine the effects on the qEEG power spectra of the NR2B NAMs traxoprodil (CP-101,606) and BMT-108908 in nonhuman primates, and to compare them to the NMDA receptor channel blockers, ketamine and lanicemine. Cynomolgus monkeys were surgically implanted with EEG radio-telemetry transmitters, and qEEG was measured after vehicle or drug administration. The relative power for a number of frequency bands was determined. Ketamine and lanicemine increased relative gamma power, whereas the NR2B NAMs traxoprodil and BMT-108908 had no effect. Robust decreases in beta power were elicited by ketamine, traxoprodil and BMT-108908; and these agents also produced decreases in alpha power and increases in delta power at the doses tested. These results suggest that measurement of power spectra in the beta and delta bands may represent a translational pharmacodynamic biomarker to demonstrate functional effects of NR2B NAMs. The results of these studies may help guide the selection of qEEG measures that can be incorporated into early clinical evaluation of NR2B NAMs in healthy humans. PMID:27035340
Role of TRP channels in the cardiovascular system
Yue, Zhichao; Xie, Jia; Yu, Albert S.; Stock, Jonathan; Du, Jianyang
2014-01-01
The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca2+-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca2+ entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases. PMID:25416190
Role of TRP channels in the cardiovascular system.
Yue, Zhichao; Xie, Jia; Yu, Albert S; Stock, Jonathan; Du, Jianyang; Yue, Lixia
2015-02-01
The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases. Copyright © 2015 the American Physiological Society.
Hughes, Benjamin A.; Smothers, Corigan T.; Woodward, John J.
2013-01-01
N-methyl-D-aspartate (NMDA) receptors are ion channels activated by the neurotransmitter glutamate and are highly expressed by neurons. These receptors are critical for excitatory synaptic signaling and inhibition of NMDA receptors leads to impaired cognition and learning. Ethanol inhibits NMDA currents at concentrations associated with intoxication and this action may underlie some of the behavioral effects of ethanol. Although numerous sites and mechanisms of action have been tested, the manner in which ethanol inhibits NMDA receptors remains unclear. Recent findings in the literature suggest that ethanol, via facilitation of tyrosine phosphatase activity, may dephosphorylate key tyrosine residues in the C-terminus of GluN2B subunits resulting in diminished channel function. To directly test this hypothesis, we engineered GluN2B mutants that contained phenylalanine in place of tyrosine at three different sites and transiently expressed them with the GluN1 subunit in human embryonic kidney (HEK) cells. Whole-cell patch clamp electrophysiology was used to record glutamate-activated currents in the absence and presence of ethanol (10–600 mM). All mutants were functional and did not differ from one another with respect to current amplitude, steady-state to peak ratio, or magnesium block. Analysis of ethanol dose-response curves showed no significant difference in IC50 values between wild-type receptors and Y1252F, Y1336F, Y1472F or triple Y-F mutants. These findings suggest that dephosphorylation of C-terminal tyrosine residues does not account for ethanol inhibition of GluN2B receptors. PMID:23357553
Benke, Timothy A; Lüthi, Andreas; Palmer, Mary J; Wikström, Martin A; Anderson, William W; Isaac, John T R; Collingridge, Graham L
2001-01-01
The molecular properties of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors are an important factor determining excitatory synaptic transmission in the brain. Changes in the number (N) or single-channel conductance (γ) of functional AMPA receptors may underlie synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD). These parameters have been estimated using non-stationary fluctuation analysis (NSFA). The validity of NSFA for studying the channel properties of synaptic AMPA receptors was assessed using a cable model with dendritic spines and a microscopic kinetic description of AMPA receptors. Electrotonic, geometric and kinetic parameters were altered in order to determine their effects on estimates of the underlying γ. Estimates of γ were very sensitive to the access resistance of the recording (RA) and the mean open time of AMPA channels. Estimates of γ were less sensitive to the distance between the electrode and the synaptic site, the electrotonic properties of dendritic structures, recording electrode capacitance and background noise. Estimates of γ were insensitive to changes in spine morphology, synaptic glutamate concentration and the peak open probability (Po) of AMPA receptors. The results obtained using the model agree with biological data, obtained from 91 dendritic recordings from rat CA1 pyramidal cells. A correlation analysis showed that RA resulted in a slowing of the decay time constant of excitatory postsynaptic currents (EPSCs) by approximately 150 %, from an estimated value of 3.1 ms. RA also greatly attenuated the absolute estimate of γ by approximately 50-70 %. When other parameters remain constant, the model demonstrates that NSFA of dendritic recordings can readily discriminate between changes in γvs. changes in N or Po. Neither background noise nor asynchronous activation of multiple synapses prevented reliable discrimination between changes in γ and changes in either N or Po. The model (available online) can be used to predict how changes in the different properties of AMPA receptors may influence synaptic transmission and plasticity. PMID:11731574
Functional Properties of the Drosophila melanogaster Inositol 1,4,5-Trisphosphate Receptor Mutants
Srikanth, Sonal; Wang, Zhengnan; Tu, Huiping; Nair, Shalima; Mathew, M. K.; Hasan, Gaiti; Bezprozvanny, Ilya
2004-01-01
The inositol (1,4,5)-trisphosphate receptor (InsP3R) is an intracellular calcium (Ca2+) release channel that plays a crucial role in cell signaling. In Drosophila melanogaster a single InsP3R gene (itpr) encodes a protein (DmInsP3R) that is ∼60% conserved with mammalian InsP3Rs. A number of itpr mutant alleles have been identified in genetic screens and studied for their effect on development and physiology. However, the functional properties of wild-type or mutant DmInsP3Rs have never been described. Here we use the planar lipid bilayer reconstitution technique to describe single-channel properties of embryonic and adult head DmInsP3R splice variants. The three mutants chosen in this study reside in each of the three structural domains of the DmInsP3R—the amino-terminal ligand binding domain (ug3), the middle-coupling domain (wc703), and the channel-forming region (ka901). We discovered that 1), the major functional properties of DmInsP3R (conductance, gating, and sensitivity to InsP3 and Ca2+) are remarkably conserved with the mammalian InsP3R1; 2), single-channel conductance of the adult head DmInsP3R isoform is 89 pS and the embryonic DmInsP3R isoform is 70 pS; 3), ug3 mutation affects sensitivity of the DmInsP3Rs to activation by InsP3, but not their InsP3-binding properties; 4), wc703 channels have increased sensitivity to modulation by Ca2+; and 5), homomeric ka901 channels are not functional. We correlated the results obtained in planar lipid bilayer experiments with measurements of InsP3-induced Ca2+ fluxes in microsomes isolated from wild-type and heterozygous itpr mutants. Our study validates the use of D. melanogaster as an appropriate model for InsP3R structure-function studies and provides novel insights into the fundamental mechanisms of the InsP3R function. PMID:15189860
Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel.
Fischer, Audrey; Sambashivan, Shilpa; Brunger, Axel T; Montal, Mauricio
2012-01-13
Botulinum neurotoxin, the causative agent of the paralytic disease botulism, is an endopeptidase composed of a catalytic domain (or light chain (LC)) and a heavy chain (HC) encompassing the translocation domain (TD) and receptor-binding domain. Upon receptor-mediated endocytosis, the LC and TD are proposed to undergo conformational changes in the acidic endocytic environment resulting in the formation of an LC protein-conducting TD channel. The mechanism of channel formation and the conformational changes in the toxin upon acidification are important but less well understood aspects of botulinum neurotoxin intoxication. Here, we have identified a minimum channel-forming truncation of the TD, the "beltless" TD, that forms transmembrane channels with ion conduction properties similar to those of the full-length TD. At variance with the holotoxin and the HC, channel formation for both the TD and the beltless TD occurs independent of a transmembrane pH gradient. Furthermore, acidification in solution induces moderate secondary structure changes. The subtle nature of the conformational changes evoked by acidification on the TD suggests that, in the context of the holotoxin, larger structural rearrangements and LC unfolding occur preceding or concurrent to channel formation. This notion is consistent with the hypothesis that although each domain of the holotoxin functions individually, each domain serves as a chaperone for the others.
Evolutionarily Conserved, Multitasking TRP Channels: Lessons from Worms and Flies
Venkatachalam, Kartik; Luo, Junjie; Montell, Craig
2015-01-01
The Transient Receptor Potential (TRP) channel family is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling. TRPs allow animals to detect chemicals, mechanical force, light, and changes in temperature. Consequently, these channels control a plethora of animal behaviors. Moreover, their functions are not limited to the classical senses, as they are cellular sensors, which are critical for ionic homeostasis and metabolism. Two genetically tractable invertebrate model organisms, Caenorhabditis elegans and Drosophila melanogaster, have led the way in revealing a wide array of sensory roles and behaviors that depend on TRP channels. Two overriding themes have emerged from these studies. First, TRPs are multitasking proteins, and second, many functions and modes of activation of these channels are evolutionarily conserved, including some that were formerly thought to be unique to invertebrates, such as phototransduction. Thus, worms and flies offer the potential to decipher roles for mammalian TRPs, which would otherwise not be suspected. PMID:24961975
Marco, José L; de los Ríos, Cristóbal; García, Antonio G; Villarroya, Mercedes; Carreiras, M Carmo; Martins, Carla; Eleutério, Ana; Morreale, Antonio; Orozco, M; Luque, F Javier
2004-05-01
The synthesis and the biological activity of compounds 5-40 as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as modulators of voltage-dependent Ca(2+) channels and nicotinic receptors, are described. These molecules are tacrine analogues, which have been prepared from polyfunctionalized 6-amino-5-cyano-4H-pyrans, 6-amino-5-cyano-pyridines and 5-amino-2-aryl-3-cyano-1,3-oxazoles via Friedländer reaction with selected cycloalkanones. These compounds are moderate acetylcholinesterase and butyrylcholinesterase inhibitors, the BuChE/AChE selectivity of the most active molecules ranges from 10.0 (compound 29) to 76.9 (compound 16). Interestingly, the 'oxazolo-tacrine' derivatives are devoid of any activity. All compounds showed an important inhibitory effect on the nicotinic acetylcholine receptor. Most of them also blocked L-type Ca(2+) channels, and three of them, 64, 19 and 67, the non-L type of Ca(2+) channels. Molecular modelling studies suggest that these compounds might bind at the peripheral binding site of AChE, which opens the possibility to design inhibitors able to bind at both, the catalytic and peripheral binding sites of the enzyme.
Santoni, Giorgio; Farfariello, Valerio; Liberati, Sonia; Morelli, Maria B.; Nabissi, Massimo; Santoni, Matteo; Amantini, Consuelo
2013-01-01
The transient receptor potential vanilloid type-2 (TRPV2), belonging to the transient receptor potential channel family, is a specialized ion channel expressed in human and other mammalian immune cells. This channel has been found to be expressed in CD34+ hematopoietic stem cells, where its cytosolic Ca2+ activity is crucial for stem/progenitor cell cycle progression, growth, and differentiation. In innate immune cells, TRPV2 is expressed in granulocytes, macrophages, and monocytes where it stimulates fMet-Leu-Phe migration, zymosan-, immunoglobulin G-, and complement-mediated phagocytosis, and lipopolysaccharide-induced tumor necrosis factor-alpha and interleukin-6 production. In mast cells, activation of TRPV2 allows intracellular Ca2+ ions flux, thus stimulating protein kinase A-dependent degranulation. In addition, TRPV2 is highly expressed in CD56+ natural killer cells. TRPV2 orchestrates Ca2+ signal in T cell activation, proliferation, and effector functions. Moreover, messenger RNA for TRPV2 are expressed in CD4+ and CD8+ T lymphocytes. Finally, TRPV2 is expressed in CD19+ B lymphocytes where it regulates Ca2+ release during B cell development and activation. Overall, the specific expression of TRPV2 in immune cells suggests a role in immune-mediated diseases and offers new potential targets for immunomodulation. PMID:23420671
Kainate receptors coming of age: milestones of two decades of research
Contractor, Anis; Mulle, Christophe; Swanson, Geoffrey T
2011-01-01
Two decades have passed since the first report of the cloning of a kainate receptor (KAR) subunit. The intervening years have seen a rapid growth in our understanding of the biophysical properties and function of kainate receptors in the brain. This research has led to an appreciation that kainate receptors play quite distinct roles at synapses relative to other members of the glutamate-gated ion channel receptor family, despite structural and functional commonalities. The surprisingly diverse and complex nature of KAR signaling underlies their unique impact on neuronal networks through their direct and indirect effects on synaptic transmission, and their prominent role in regulating cellular excitability. This review pieces together highlights from the two decades of research subsequent to the cloning of the first subunit, and provides an overview of our current understanding of the role of KARs in the CNS and their potential importance to neurological and neuropsychiatric disorders. PMID:21256604
Shen, Xin-Ming; Brengman, Joan; Neubauer, David; Sine, Steven M; Engel, Andrew G
2016-02-12
We identify two heteroallelic mutations in the acetylcholine receptor δ-subunit from a patient with severe myasthenic symptoms since birth: a novel δD140N mutation in the signature Cys-loop and a mutation in intron 7 of the δ-subunit gene that disrupts splicing of exon 8. The mutated Asp residue, which determines the disease phenotype, is conserved in all eukaryotic members of the Cys-loop receptor superfamily. Studies of the mutant acetylcholine receptor expressed in HEK 293 cells reveal that δD140N attenuates cell surface expression and apparent channel gating, predicting a reduced magnitude and an accelerated decay of the synaptic response, thus reducing the safety margin for neuromuscular transmission. Substituting Asn for Asp at equivalent positions in the α-, β-, and ϵ-subunits also suppresses apparent channel gating, but the suppression is much greater in the α-subunit. Mutant cycle analysis applied to single and pairwise mutations reveals that αAsp-138 is energetically coupled to αArg-209 in the neighboring pre-M1 domain. Our findings suggest that the conserved αAsp-138 and αArg-209 contribute to a principal pathway that functionally links the ligand binding and pore domains. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Wei, Wei-Chun; Huang, Wan-Chen; Lin, Yu-Ping; Becker, Esther B E; Ansorge, Olaf; Flockerzi, Veit; Conti, Daniele; Cenacchi, Giovanna; Glitsch, Maike D
2017-08-15
The proton sensing ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) promotes expression of the canonical transient receptor potential channel subunit TRPC4 in normal and transformed cerebellar granule precursor (DAOY) cells. OGR1 and TRPC4 are prominently expressed in healthy cerebellar tissue throughout postnatal development and in primary cerebellar medulloblastoma tissues. Activation of TRPC4-containing channels in DAOY cells, but not non-transformed granule precursor cells, results in prominent increases in [Ca 2+ ] i and promotes cell motility in wound healing and transwell migration assays. Medulloblastoma cells not arising from granule precursor cells show neither prominent rises in [Ca 2+ ] i nor enhanced motility in response to TRPC4 activation unless they overexpressTRPC4. Our results suggest that OGR1 enhances expression of TRPC4-containing channels that contribute to enhanced invasion and metastasis of granule precursor-derived human medulloblastoma. Aberrant intracellular Ca 2+ signalling contributes to the formation and progression of a range of distinct pathologies including cancers. Rises in intracellular Ca 2+ concentration occur in response to Ca 2+ influx through plasma membrane channels and Ca 2+ release from intracellular Ca 2+ stores, which can be mobilized in response to activation of cell surface receptors. Ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) is a proton-sensing G q -coupled receptor that is most highly expressed in cerebellum. Medulloblastoma (MB) is the most common paediatric brain tumour that arises from cerebellar precursor cells. We found that nine distinct human MB samples all expressed OGR1. In both normal granule cells and the transformed human cerebellar granule cell line DAOY, OGR1 promoted expression of the proton-potentiated member of the canonical transient receptor potential (TRPC) channel family, TRPC4. Consistent with a role for TRPC4 in MB, we found that all MB samples also expressed TRPC4. In DAOY cells, activation of TRPC4-containing channels resulted in large Ca 2+ influx and enhanced migration, while in normal cerebellar granule (precursor) cells and MB cells not derived from granule precursors, only small levels of Ca 2+ influx and no enhanced migration were observed. Our results suggest that OGR1-dependent increases in TRPC4 expression may favour formation of highly Ca 2+ -permeable TRPC4-containing channels that promote transformed granule cell migration. Increased motility of cancer cells is a prerequisite for cancer invasion and metastasis, and our findings may point towards a key role for TRPC4 in progression of certain types of MB. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Lynagh, Timothy; Lynch, Joseph W.
2010-01-01
The ability to silence the electrical activity of defined neuronal populations in vivo is dramatically advancing our understanding of brain function. This technology may eventually be useful clinically for treating a variety of neuropathological disorders caused by excessive neuronal activity. Several neuronal silencing methods have been developed, with the bacterial light-activated halorhodopsin and the invertebrate allatostatin-activated G protein-coupled receptor proving the most successful to date. However, both techniques may be difficult to implement clinically due to their requirement for surgically implanted stimulus delivery methods and their use of nonhuman receptors. A third silencing method, an invertebrate glutamate-gated chloride channel receptor (GluClR) activated by ivermectin, solves the stimulus delivery problem as ivermectin is a safe, well tolerated drug that reaches the brain following systemic administration. However, the limitations of this method include poor functional expression, possibly due to the requirement to coexpress two different subunits in individual neurons, and the nonhuman origin of GluClR. Here, we describe the development of a modified human α1 glycine receptor as an improved ivermectin-gated silencing receptor. The crucial development was the identification of a mutation, A288G, which increased ivermectin sensitivity almost 100-fold, rendering it similar to that of GluClR. Glycine sensitivity was eliminated via the F207A mutation. Its large unitary conductance, homomeric expression, and human origin may render the F207A/A288G α1 glycine receptor an improved silencing receptor for neuroscientific and clinical purposes. As all known highly ivermectin-sensitive GluClRs contain an endogenous glycine residue at the corresponding location, this residue appears essential for exquisite ivermectin sensitivity. PMID:20308070
Role of ER Export Signals in Controlling Surface Potassium Channel Numbers
NASA Astrophysics Data System (ADS)
Ma, Dzwokai; Zerangue, Noa; Lin, Yu-Fung; Collins, Anthony; Yu, Mei; Jan, Yuh Nung; Yeh Jan, Lily
2001-01-01
Little is known about the identity of endoplasmic reticulum (ER) export signals and how they are used to regulate the number of proteins on the cell surface. Here, we describe two ER export signals that profoundly altered the steady-state distribution of potassium channels and were required for channel localization to the plasma membrane. When transferred to other potassium channels or a G protein-coupled receptor, these ER export signals increased the number of functional proteins on the cell surface. Thus, ER export of membrane proteins is not necessarily limited by folding or assembly, but may be under the control of specific export signals.
2013-01-01
Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724
The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2.
Sklodowski, Kamil; Riedelsberger, Janin; Raddatz, Natalia; Riadi, Gonzalo; Caballero, Julio; Chérel, Isabelle; Schulze, Waltraud; Graf, Alexander; Dreyer, Ingo
2017-03-16
The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H + -ATPase-energized K + uptake. Moreover, through reversible post-translational modifications it can also function as an open, K + -selective channel, which taps a 'potassium battery', providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.
The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2
NASA Astrophysics Data System (ADS)
Sklodowski, Kamil; Riedelsberger, Janin; Raddatz, Natalia; Riadi, Gonzalo; Caballero, Julio; Chérel, Isabelle; Schulze, Waltraud; Graf, Alexander; Dreyer, Ingo
2017-03-01
The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H+-ATPase-energized K+ uptake. Moreover, through reversible post-translational modifications it can also function as an open, K+-selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.
The role of Drosophila Piezo in mechanical nociception.
Kim, Sung Eun; Coste, Bertrand; Chadha, Abhishek; Cook, Boaz; Patapoutian, Ardem
2012-02-19
Transduction of mechanical stimuli by receptor cells is essential for senses such as hearing, touch and pain. Ion channels have a role in neuronal mechanotransduction in invertebrates; however, functional conservation of these ion channels in mammalian mechanotransduction is not observed. For example, no mechanoreceptor potential C (NOMPC), a member of transient receptor potential (TRP) ion channel family, acts as a mechanotransducer in Drosophila melanogaster and Caenorhabditis elegans; however, it has no orthologues in mammals. Degenerin/epithelial sodium channel (DEG/ENaC) family members are mechanotransducers in C. elegans and potentially in D. melanogaster; however, a direct role of its mammalian homologues in sensing mechanical force has not been shown. Recently, Piezo1 (also known as Fam38a) and Piezo2 (also known as Fam38b) were identified as components of mechanically activated channels in mammals. The Piezo family are evolutionarily conserved transmembrane proteins. It is unknown whether they function in mechanical sensing in vivo and, if they do, which mechanosensory modalities they mediate. Here we study the physiological role of the single Piezo member in D. melanogaster (Dmpiezo; also known as CG8486). Dmpiezo expression in human cells induces mechanically activated currents, similar to its mammalian counterparts. Behavioural responses to noxious mechanical stimuli were severely reduced in Dmpiezo knockout larvae, whereas responses to another noxious stimulus or touch were not affected. Knocking down Dmpiezo in sensory neurons that mediate nociception and express the DEG/ENaC ion channel pickpocket (ppk) was sufficient to impair responses to noxious mechanical stimuli. Furthermore, expression of Dmpiezo in these same neurons rescued the phenotype of the constitutive Dmpiezo knockout larvae. Accordingly, electrophysiological recordings from ppk-positive neurons revealed a Dmpiezo-dependent, mechanically activated current. Finally, we found that Dmpiezo and ppk function in parallel pathways in ppk-positive cells, and that mechanical nociception is abolished in the absence of both channels. These data demonstrate the physiological relevance of the Piezo family in mechanotransduction in vivo, supporting a role of Piezo proteins in mechanosensory nociception.
Urothelium update: how the bladder mucosa measures bladder filling.
Janssen, D A W; Schalken, J A; Heesakkers, J P F A
2017-06-01
This review critically evaluates the evidence on mechanoreceptors and pathways in the bladder urothelium that are involved in normal bladder filling signalling. Evidence from in vitro and in vivo studies on (i) signalling pathways like the adenosine triphosphate pathway, cholinergic pathway and nitric oxide and adrenergic pathway, and (ii) different urothelial receptors that are involved in bladder filling signalling like purinergic receptors, sodium channels and TRP channels will be evaluated. Other potential pathways and receptors will also be discussed. Bladder filling results in continuous changes in bladder wall stretch and exposure to urine. Both barrier and afferent signalling functions in the urothelium are constantly adapting to cope with these dynamics. Current evidence shows that the bladder mucosa hosts essential pathways and receptors that mediate bladder filling signalling. Intracellular calcium ion increase is a dominant factor in this signalling process. However, there is still no complete understanding how interacting receptors and pathways create a bladder filling signal. Currently, there are still novel receptors investigated that could also be participating in bladder filling signalling. Normal bladder filling sensation is dependent on multiple interacting mechanoreceptors and signalling pathways. Research efforts need to focus on how these pathways and receptors interact to fully understand normal bladder filling signalling. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Effect of acetaminophen on osteoblastic differentiation and migration of MC3T3-E1 cells.
Nakatsu, Yoshihiro; Nakagawa, Fumio; Higashi, Sen; Ohsumi, Tomoko; Shiiba, Shunji; Watanabe, Seiji; Takeuchi, Hiroshi
2018-02-01
N-acetyl-p-aminophenol (APAP, acetaminophen, paracetamol) is a widely used analgesic/antipyretic with weak inhibitory effects on cyclooxygenase (COX) compared to non-steroidal anti-inflammatory drugs (NSAIDs). The mechanism of action of APAP is mediated by its metabolite that activates transient receptor potential channels, including transient receptor potential vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) or the cannabinoid receptor type 1 (CB1). However, the exact molecular mechanism and target underlying the cellular actions of APAP remain unclear. Therefore, we investigated the effect of APAP on osteoblastic differentiation and cell migration, with a particular focus on TRP channels and CB1. Effects of APAP on osteoblastic differentiation and cell migration of MC3T3-E1, a mouse pre-osteoblast cell line, were assessed by the increase in alkaline phosphatase (ALP) activity, and both wound-healing and transwell-migration assays, respectively. APAP dose-dependently inhibited osteoblastic differentiation, which was well correlated with the effects on COX activity compared with other NSAIDs. In contrast, cell migration was promoted by APAP, and this effect was not correlated with COX inhibition. None of the agonists or antagonists of TRP channels and the CB receptor affected the APAP-induced cell migration, while the effect of APAP on cell migration was abolished by down-regulating TRPV4 gene expression. APAP inhibited osteoblastic differentiation via COX inactivation while it promoted cell migration independently of previously known targets such as COX, TRPV1, TRPA1 channels, and CB receptors, but through the mechanism involving TRPV4. APAP may have still unidentified molecular targets that modify cellular functions. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Lewinter, R D; Scherrer, G; Basbaum, A I
2008-01-02
The transient receptor potential cation channel, vanilloid family, type 2 (TRPV2) is a member of the TRPV family of proteins and is a homologue of the capsaicin/vanilloid receptor (transient receptor potential cation channel, vanilloid family, type 1, TRPV1). Like TRPV1, TRPV2 is expressed in a subset of dorsal root ganglia (DRG) neurons that project to superficial laminae of the spinal cord dorsal horn. Because noxious heat (>52 degrees C) activates TRPV2 in transfected cells this channel has been implicated in the processing of high intensity thermal pain messages in vivo. In contrast to TRPV1, however, which is restricted to small diameter DRG neurons, there is significant TRPV2 immunoreactivity in a variety of CNS regions. The present report focuses on a subset of neurons in the brainstem and spinal cord of the rat including the dorsal lateral nucleus (DLN) of the spinal cord, the nucleus ambiguus, and the motor trigeminal nucleus. Double label immunocytochemistry with markers of motoneurons, combined with retrograde labeling, established that these cells are, in fact, motoneurons. With the exception of their smaller diameter, these cells did not differ from other motoneurons, which are only lightly TRPV2-immunoreactive. As for the majority of DLN neurons, the densely-labeled populations co-express androgen receptor and follow normal DLN ontogeny. The functional significance of the very intense TRPV2 expression in these three distinct spinal cord and brainstem motoneurons groups remains to be determined.
Sato, Masaki; Ogura, Kazuhiro; Kimura, Maki; Nishi, Koichi; Ando, Masayuki; Tazaki, Masakazu; Shibukawa, Yoshiyuki
2018-06-01
Various stimuli to the dentin surface elicit dentinal pain by inducing dentinal fluid movement causing cellular deformation in odontoblasts. Although odontoblasts detect deformation by the activation of mechanosensitive ionic channels, it is still unclear whether odontoblasts are capable of establishing neurotransmission with myelinated A delta (Aδ) neurons. Additionally, it is still unclear whether these neurons evoke action potentials by neurotransmitters from odontoblasts to mediate sensory transduction in dentin. Thus, we investigated evoked inward currents and evoked action potentials form trigeminal ganglion (TG) neurons after odontoblast mechanical stimulation. We used patch clamp recordings to identify electrophysiological properties and record evoked responses in TG neurons. We classified TG cells into small-sized and medium-sized neurons. In both types of neurons, we observed voltage-dependent inward currents. The currents from medium-sized neurons showed fast inactivation kinetics. When mechanical stimuli were applied to odontoblasts, evoked inward currents were recorded from medium-sized neurons. Antagonists for the ionotropic adenosine triphosphate receptor (P2X 3 ), transient receptor potential channel subfamilies, and Piezo1 channel significantly inhibited these inward currents. Mechanical stimulation to odontoblasts also generated action potentials in the isolectin B 4 -negative medium-sized neurons. Action potentials in these isolectin B 4 -negative medium-sized neurons showed a short duration. Overall, electrophysiological properties of neurons indicate that the TG neurons with recorded evoked responses after odontoblast mechanical stimulation were myelinated Aδ neurons. Odontoblasts established neurotransmission with myelinated Aδ neurons via P2X 3 receptor activation. The results also indicated that mechanosensitive TRP/Piezo1 channels were functionally expressed in odontoblasts. The activation of P2X 3 receptors induced an action potential in the Aδ neurons, underlying a sensory generation mechanism of dentinal pain. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer.
Shen, Yin; Rampino, Melissa Ann F; Carroll, Reed C; Nawy, Scott
2012-05-29
ON bipolar cells are critical for the function of the ON pathway in the visual system. They express a metabotropic glutamate receptor (mGluR6) that, when activated, couples to the G(o) class of G protein. The channel that is primarily responsible for the synaptic response has been recently identified as the transient receptor potential cation channel subfamily M member 1 (TRPM1); TRPM1 is negatively coupled to the mGluR6/Go cascade such that activation of the cascade results in closure of the channel. Light indirectly opens TRPM1 by reducing transmitter release from presynaptic photoreceptors, resulting in a decrease in mGluR6 activation. Conversely, in the dark, binding of synaptic glutamate to mGluR6 inhibits TRPM1 current. Closure of TRPM1 by G-protein activation in the dark is a critical step in the process of ON bipolar cell signal transduction, but the precise pathway linking these two events is not understood. To address this question, we measured TRPM1 activity in retinal bipolar cells, in human ependymal melanocytes (HEMs) that endogenously express TRPM1, and in HEK293 cells transfected with TRPM1. Dialysis of the Gβγ subunit dimer, but not Gα(o), closed TRPM1 channels in every cell type that we tested. In addition, activation of an endogenous G-protein-coupled receptor pathway in HEK293 cells that releases Gβγ without activating Go protein also closed TRPM1 channels. These results suggest a model in which the Gβγ dimer that is released as a result of the dissociation from Gα(o) upon activation of mGluR6 closes the TRPM1 channel, perhaps via a direct interaction.
Orellana, Juan A.; Busso, Dolores; Ramírez, Gigliola; Campos, Marlys; Rigotti, Attilio; Eugenín, Jaime; von Bernhardi, Rommy
2014-01-01
Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter release through Cx43 and Panx1 unopposed channels may participate in brain alterations observed in offspring of mothers exposed to tobacco smoke during pregnancy. PMID:25520621
Barygin, Oleg I; Komarova, Margarita S; Tikhonova, Tatiana B; Tikhonov, Denis B
2015-04-01
Antidepressants have many targets in the central nervous system. A growing body of data demonstrates the influence of antidepressants on glutamatergic neurotransmission. In the present work, we studied the inhibition of native Ca(2+)-permeable and Ca(2+)-impermeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in rat brain neurons by fluoxetine. The Ca(2+)-impermeable AMPA receptors in CA1 hippocampal pyramidal neurons were weakly affected. The IC50 value for the inhibition of Ca(2+)-permeable AMPA receptors in giant striatal interneurons was 43 ± 7 μM. The inhibition of Ca(2+)-permeable AMPA receptors was voltage dependent, suggesting deep binding in the pore. However, the use dependence of fluoxetine action differed markedly from that of classical AMPA receptor open-channel blockers. Moreover, fluoxetine did not compete with other channel blockers. In contrast to fluoxetine, its membrane-impermeant quaternary analog demonstrated all of the features of channel inhibition typical for open-channel blockers. It is suggested that fluoxetine reaches the binding site through a hydrophobic access pathway. Such a mechanism of block is described for ligands of sodium and calcium channels, but was never found in AMPA receptors. Molecular modeling suggests binding of fluoxetine in the subunit interface; analogous binding was proposed for local anesthetics in closed sodium channels and for benzothiazepines in calcium channels. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Modulation of low-voltage-activated T-type Ca²⁺ channels.
Zhang, Yuan; Jiang, Xinghong; Snutch, Terrance P; Tao, Jin
2013-07-01
Low-voltage-activated T-type Ca²⁺ channels contribute to a wide variety of physiological functions, most predominantly in the nervous, cardiovascular and endocrine systems. Studies have documented the roles of T-type channels in sleep, neuropathic pain, absence epilepsy, cell proliferation and cardiovascular function. Importantly, novel aspects of the modulation of T-type channels have been identified over the last few years, providing new insights into their physiological and pathophysiological roles. Although there is substantial literature regarding modulation of native T-type channels, the underlying molecular mechanisms have only recently begun to be addressed. This review focuses on recent evidence that the Ca(v)3 subunits of T-type channels, Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3, are differentially modulated by a multitude of endogenous ligands including anandamide, monocyte chemoattractant protein-1, endostatin, and redox and oxidizing agents. The review also provides an overview of recent knowledge gained concerning downstream pathways involving G-protein-coupled receptors. This article is part of a Special Issue entitled: Calcium channels. Copyright © 2012 Elsevier B.V. All rights reserved.
Rimmerman, N; Ben-Hail, D; Porat, Z; Juknat, A; Kozela, E; Daniels, M P; Connelly, P S; Leishman, E; Bradshaw, H B; Shoshan-Barmatz, V; Vogel, Z
2013-01-01
Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells. It is not an agonist of the classical CB1/CB2 cannabinoid receptors and the mechanism by which it functions is unknown. Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells. Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death. Density gradient fractionation analysis by mass spectrometry and western blotting showed colocalization of CBD with protein markers of mitochondria. Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance. Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD. Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD. The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD. PMID:24309936
Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo.
Katz, Ben; Oberacker, Tina; Richter, David; Tzadok, Hanan; Peters, Maximilian; Minke, Baruch; Huber, Armin
2013-07-15
Family members of the cationic transient receptor potential (TRP) channels serve as sensors and transducers of environmental stimuli. The ability of different TRP channel isoforms of specific subfamilies to form heteromultimers and the structural requirements for channel assembly are still unresolved. Although heteromultimerization of different mammalian TRP channels within single subfamilies has been described, even within a subfamily (such as TRPC) not all members co-assemble with each other. In Drosophila photoreceptors two TRPC channels, TRP and TRP-like protein (TRPL) are expressed together in photoreceptors where they generate the light-induced current. The formation of functional TRP-TRPL heteromultimers in cell culture and in vitro has been reported. However, functional in vivo assays have shown that each channel functions independently of the other. Therefore, the issue of whether TRP and TRPL form heteromultimers in vivo is still unclear. In the present study we investigated the ability of TRP and TRPL to form heteromultimers, and the structural requirements for channel assembly, by studying assembly of GFP-tagged TRP and TRPL channels and chimeric TRP and TRPL channels, in vivo. Interaction studies of tagged and native channels as well as native and chimeric TRP-TRPL channels using co-immunoprecipitation, immunocytochemistry and electrophysiology, critically tested the ability of TRP and TRPL to interact. We found that TRP and TRPL assemble exclusively as homomultimeric channels in their native environment. The above analyses revealed that the transmembrane regions of TRP and TRPL do not determine assemble specificity of these channels. However, the C-terminal regions of both TRP and TRPL predominantly specify the assembly of homomeric TRP and TRPL channels.
Albensi, Benedict C
2007-01-01
A recent search on PubMed for the phrase NMDA receptor results in 2,190 hits on this topic for review articles and 20,100 hits for experimental papers. This is a direct reflection of the intensiveness, significance, and complexity associated with the research on this key receptor protein over the last several decades. In this review, we briefly describe the NMDA receptor structure, discuss the role of NMDA receptors in modulating synaptic plasticity and excitotoxicity, explore age-dependent changes in NMDA receptor functioning, and survey interesting NMDA receptor blockers. Given the huge existing literature on the subject, an exhaustive review has not been endeavored. Instead, an attempt was made to point out those studies that have been instrumental in the field or that are of special interest.
Novel Functional Properties of Drosophila CNS Glutamate Receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Dharkar, Poorva; Han, Tae-Hee
Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation bymore » its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation.« less
Novel Functional Properties of Drosophila CNS Glutamate Receptors.
Li, Yan; Dharkar, Poorva; Han, Tae-Hee; Serpe, Mihaela; Lee, Chi-Hon; Mayer, Mark L
2016-12-07
Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation by its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation. VIDEO ABSTRACT. Published by Elsevier Inc.
Ghosh, Arijit; Kaur, Navneet; Kumar, Abhishek; Goswami, Chandan
2016-09-02
Every individual varies in character and so do their sensory functions and perceptions. The molecular mechanism and the molecular candidates involved in these processes are assumed to be similar if not same. So far several molecular factors have been identified which are fairly conserved across the phylogenetic tree and are involved in these complex sensory functions. Among all, members belonging to Transient Receptor Potential (TRP) channels have been widely characterized for their involvement in thermo-sensation. These include TRPV1 to TRPV4 channels which reveal complex thermo-gating behavior in response to changes in temperature. The molecular evolution of these channels is highly correlative with the thermal response of different species. However, recent 2504 human genome data suggest that these thermo-sensitive TRPV channels are highly variable and carry possible deleterious mutations in human population. These unexpected findings may explain the individual differences in terms of complex sensory functions.
Structural Insight into the Assembly of TRPV Channels
Huynh, Kevin W.; Cohen, Matthew R.; Chakrapani, Sudha; Holdaway, Heather A.; Stewart, Phoebe L.; Moiseenkova-Bell, Vera Y.
2017-01-01
SUMMARY Transient receptor potential (TRP) proteins are a large family of polymodal nonselective cation channels. The TRP vanilloid (TRPV) subfamily consists of six homologous members with diverse functions. TRPV1–TRPV4 are nonselective cation channels proposed to play a role in nociception, while TRPV5 and TRPV6 are involved in epithelial Ca2+ homeostasis. Here we present the cryo-electron microscopy (cryo-EM) structure of functional, full-length TRPV2 at 13.6 Å resolution. The map reveals that the TRPV2 cytoplasmic domain displays a 4-fold petal-like shape in which high-resolution N-terminal ankyrin repeat domain (ARD) structures can be unambiguously fitted. Fitting of the available ARD structures for other TRPV subfamily members into the TRPV2 EM map suggests that TRPV subfamily members have highly homologous structural topologies. These results allowed us to postulate a structural explanation for the functional diversity among TRPV channels and their differential regulation by proteins and ligands. PMID:24373766
The TRPM6 Kinase Domain Determines the Mg·ATP Sensitivity of TRPM7/M6 Heteromeric Ion Channels*
Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea
2014-01-01
The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg2+) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg2+ and therefore unlikely to be active at physiological levels of [Mg2+]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex. PMID:24385424
The TRPM6 kinase domain determines the Mg·ATP sensitivity of TRPM7/M6 heteromeric ion channels.
Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea
2014-02-21
The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg(2+)) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg(2+) and therefore unlikely to be active at physiological levels of [Mg(2+)]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex.
Current Research on Opioid Receptor Function
Feng, Yuan; He, Xiaozhou; Yang, Yilin; Chao, Dongman; Lazarus, Lawrence H.; Xia, Ying
2012-01-01
The use of opioid analgesics has a long history in clinical settings, although the comprehensive action of opioid receptors is still less understood. Nonetheless, recent studies have generated fresh insights into opioid receptor-mediated functions and their underlying mechanisms. Three major opioid receptors (μ-opioid receptor, MOR; δ-opioid receptor, DOR; and κ-opioid receptor, KOR) have been cloned in many species. Each opioid receptor is functionally sub-classified into several pharmacological subtypes, although, specific gene corresponding each of these receptor subtypes is still unidentified as only a single gene has been isolated for each opioid receptor. In addition to pain modulation and addiction, opioid receptors are widely involved in various physiological and pathophysiological activities, including the regulation of membrane ionic homeostasis, cell proliferation, emotional response, epileptic seizures, immune function, feeding, obesity, respiratory and cardiovascular control as well as some neurodegenerative disorders. In some species, they play an essential role in hibernation. One of the most exciting findings of the past decade is the opioid-receptor, especially DOR, mediated neuroprotection and cardioprotection. The up-regulation of DOR expression and DOR activation increase the neuronal tolerance to hypoxic/ischemic stress. The DOR signal triggers (depending on stress duration and severity) different mechanisms at multiple levels to preserve neuronal survival, including the stabilization of homeostasis and increased pro-survival signaling (e.g., PKC-ERK-Bcl 2) and anti-oxidative capacity. In the heart, PKC and KATP channels are involved in the opioid receptor-mediated cardioprotection. The DOR-mediated neuroprotection and cardioprotection have the potential to significantly alter the clinical pharmacology in terms of prevention and treatment of life-threatening conditions like stroke and myocardial infarction. The main purpose of this article is to review the recent work done on opioids and their receptor functions. It shall provide an informative reference for better understanding the opioid system and further elucidation of the opioid receptor function from a physiological and pharmacological point of view. PMID:22204322
Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi
2016-09-01
The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.
A Functional Nuclear Localization Sequence in the C. elegans TRPV Channel OCR-2
Ezak, Meredith J.; Ferkey, Denise M.
2011-01-01
The ability to modulate gene expression in response to sensory experience is critical to the normal development and function of the nervous system. Calcium is a key activator of the signal transduction cascades that mediate the process of translating a cellular stimulus into transcriptional changes. With the recent discovery that the mammalian Cav1.2 calcium channel can be cleaved, enter the nucleus and act as a transcription factor to control neuronal gene expression, a more direct role for the calcium channels themselves in regulating transcription has begun to be appreciated. Here we report the identification of a nuclear localization sequence (NLS) in the C. elegans transient receptor potential vanilloid (TRPV) cation channel OCR-2. TRPV channels have previously been implicated in transcriptional regulation of neuronal genes in the nematode, although the precise mechanism remains unclear. We show that the NLS in OCR-2 is functional, being able to direct nuclear accumulation of a synthetic cargo protein as well as the carboxy-terminal cytosolic tail of OCR-2 where it is endogenously found. Furthermore, we discovered that a carboxy-terminal portion of the full-length channel can localize to the nucleus of neuronal cells. These results suggest that the OCR-2 TRPV cation channel may have a direct nuclear function in neuronal cells that was not previously appreciated. PMID:21957475
The signaling role for chloride in the bidirectional communication between neurons and astrocytes.
Wilson, Corinne S; Mongin, Alexander A
2018-01-09
It is well known that the electrical signaling in neuronal networks is modulated by chloride (Cl - ) fluxes via the inhibitory GABA A and glycine receptors. Here, we discuss the putative contribution of Cl - fluxes and intracellular Cl - to other forms of information transfer in the CNS, namely the bidirectional communication between neurons and astrocytes. The manuscript (i) summarizes the generic functions of Cl - in cellular physiology, (ii) recaps molecular identities and properties of Cl - transporters and channels in neurons and astrocytes, and (iii) analyzes emerging studies implicating Cl - in the modulation of neuroglial communication. The existing literature suggests that neurons can alter astrocytic Cl - levels in a number of ways; via (a) the release of neurotransmitters and activation of glial transporters that have intrinsic Cl - conductance, (b) the metabotropic receptor-driven changes in activity of the electroneutral cation-Cl - cotransporter NKCC1, and (c) the transient, activity-dependent changes in glial cell volume which open the volume-regulated Cl - /anion channel VRAC. Reciprocally, astrocytes are thought to alter neuronal [Cl - ] i through either (a) VRAC-mediated release of the inhibitory gliotransmitters, GABA and taurine, which open neuronal GABA A and glycine receptor/Cl - channels, or (b) the gliotransmitter-driven stimulation of NKCC1. The most important recent developments in this area are the identification of the molecular composition and functional heterogeneity of brain VRAC channels, and the discovery of a new cytosolic [Cl - ] sensor - the Wnk family protein kinases. With new work in the field, our understanding of the role of Cl - in information processing within the CNS is expected to be significantly updated. Copyright © 2018 Elsevier B.V. All rights reserved.
Riccio, Antonio; Li, Yan; Tsvetkov, Evgeny; Gapon, Svetlana; Yao, Gui Lan; Smith, Kiersten S.; Engin, Elif; Rudolph, Uwe; Bolshakov, Vadim Y.
2014-01-01
Transient receptor potential (TRP) channels are abundant in the brain where they regulate transmission of sensory signals. The expression patterns of different TRPC subunits (TRPC1, 4, and 5) are consistent with their potential role in fear-related behaviors. Accordingly, we found recently that mutant mice lacking a specific TRP channel subunit, TRPC5, exhibited decreased innate fear responses. Both TRPC5 and another member of the same subfamily, TRPC4, form heteromeric complexes with the TRPC1 subunit (TRPC1/5 and TRPC1/4, respectively). As TRP channels with specific subunit compositions may have different functional properties, we hypothesized that fear-related behaviors could be differentially controlled by TRPCs with distinct subunit arrangements. In this study, we focused on the analysis of mutant mice lacking the TRPC4 subunit, which, as we confirmed in experiments on control mice, is expressed in brain areas implicated in the control of fear and anxiety. In behavioral experiments, we found that constitutive ablation of TRPC4 was associated with diminished anxiety levels (innate fear). Furthermore, knockdown of TRPC4 protein in the lateral amygdala via lentiviral-mediated gene delivery of RNAi mimicked the behavioral phenotype of constitutive TRPC4-null (TRPC4−/−) mouse. Recordings in brain slices demonstrated that these behavioral modifications could stem from the lack of TRPC4 potentiation in neurons in the lateral nucleus of the amygdala through two Gαq/11 protein-coupled signaling pathways, activated via Group I metabotropic glutamate receptors and cholecystokinin 2 receptors, respectively. Thus, TRPC4 and the structurally and functionally related subunit, TRPC5, may both contribute to the mechanisms underlying regulation of innate fear responses. PMID:24599464
Non-ionotropic signaling by the NMDA receptor: controversy and opportunity.
Gray, John A; Zito, Karen; Hell, Johannes W
2016-01-01
Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction.
Non-ionotropic signaling by the NMDA receptor: controversy and opportunity
Gray, John A.; Zito, Karen; Hell, Johannes W.
2016-01-01
Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction. PMID:27303637
Mori, Masayuki X; Itsuki, Kyohei; Hase, Hideharu; Sawamura, Seishiro; Kurokawa, Tatsuki; Mori, Yasuo; Inoue, Ryuji
2015-01-01
Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable, nonselective cation channels that carry receptor-operated Ca(2+) currents (ROCs) triggered by receptor-induced, phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Within the vasculature, TRPC channel ROCs contribute to smooth muscle cell depolarization, vasoconstriction, and vascular remodeling. However, TRPC channel ROCs exhibit a variable response to receptor-stimulation, and the regulatory mechanisms governing TRPC channel activity remain obscure. The variability of ROCs may be explained by their complex regulation by PI(4,5)P2 and its metabolites, which differentially affect TRPC channel activity. To resolve the complex regulation of ROCs, the use of voltage-sensing phosphoinositide phosphatases and model simulation have helped to reveal the time-dependent contribution of PI(4,5)P2 and the possible role of PI(4,5)P2 in the regulation of ROCs. These approaches may provide unprecedented insight into the dynamics of PI(4,5)P2 regulation of TRPC channels and the fundamental mechanisms underlying transmembrane ion flow. Within that context, we summarize the regulation of TRPC channels and their coupling to receptor-mediated signaling, as well as the application of voltage-sensing phosphoinositide phosphatases to this research. We also discuss the controversial bidirectional effects of PI(4,5)P2 using a model simulation that could explain the complicated effects of PI(4,5)P2 on different ROCs.
Molecular mechanism of ATP binding and ion channel activation in P2X receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattori, Motoyuki; Gouaux, Eric
P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure ofmore » the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.« less
NMDA-receptor dependent synaptic activation of TRPC channels in olfactory bulb granule cells
Stroh, Olga; Freichel, Marc; Kretz, Oliver; Birnbaumer, Lutz; Hartmann, Jana; Egger, Veronica
2012-01-01
TRPC channels are widely expressed throughout the nervous system including the olfactory bulb where their function is largely unknown. Here we describe their contribution to central synaptic processing at the reciprocal mitral and tufted cell - granule cell microcircuit, the most abundant synapse of the mammalian olfactory bulb. Suprathreshold activation of the synapse causes sodium action potentials in mouse granule cells and a subsequent long-lasting depolarization (LLD) linked to a global dendritic postsynaptic calcium signal recorded with two-photon laser scanning microscopy. These signals are not observed after action potentials evoked by current injection in the same cells. The LLD persists in the presence of group I metabotropic glutamate receptor antagonists but is entirely absent from granule cells deficient for the NMDA receptor subunit NR1. Moreover, both depolarization and Ca2+ rise are sensitive to the blockade of NMDA receptors. The LLD and the accompanying Ca2+ rise are also absent in granule cells from mice deficient for both TRPC channel subtypes 1 and 4, whereas the deletion of either TRPC1 or TRPC4 results in only a partial reduction of the LLD. Recordings from mitral cells in the absence of both subunits reveal a reduction of asynchronous neurotransmitter release from the granule cells during recurrent inhibition. We conclude that TRPC1 and TRPC4 can be activated downstream of NMDA receptor activation and contribute to slow synaptic transmission in the olfactory bulb, including the calcium dynamics required for asynchronous release from the granule cell spine. PMID:22539836
Billen, Bert; Brams, Marijke; Debaveye, Sarah; Remeeva, Alina; Alpizar, Yeranddy A.; Waelkens, Etienne; Kreir, Mohamed; Brüggemann, Andrea; Talavera, Karel; Nilius, Bernd; Voets, Thomas; Ulens, Chris
2015-01-01
TRPV3 is a thermosensitive ion channel primarily expressed in epithelial tissues of the skin, nose, and tongue. The channel has been implicated in environmental thermosensation, hyperalgesia in inflamed tissues, skin sensitization, and hair growth. Although transient receptor potential (TRP) channel research has vastly increased our understanding of the physiological mechanisms of nociception and thermosensation, the molecular mechanics of these ion channels are still largely elusive. In order to better comprehend the functional properties and the mechanism of action in TRP channels, high-resolution three-dimensional structures are indispensable, because they will yield the necessary insights into architectural intimacies at the atomic level. However, structural studies of membrane proteins are currently hampered by difficulties in protein purification and in establishing suitable crystallization conditions. In this report, we present a novel protocol for the purification of membrane proteins, which takes advantage of a C-terminal GFP fusion. Using this protocol, we purified human TRPV3. We show that the purified protein is a fully functional ion channel with properties akin to the native channel using planar patch clamp on reconstituted channels and intrinsic tryptophan fluorescence spectroscopy. Using intrinsic tryptophan fluorescence spectroscopy, we reveal clear distinctions in the molecular interaction of different ligands with the channel. Altogether, this study provides powerful tools to broaden our understanding of ligand interaction with TRPV channels, and the availability of purified human TRPV3 opens up perspectives for further structural and functional studies. PMID:25829496
Crystal Structures of the Glutamate Receptor Ion Channel GluK3 and GluK5 Amino-Terminal Domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Janesh; Mayer, Mark L.
2010-11-30
Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory synaptic neurotransmission in the central nervous system. The selective assembly of iGluRs into AMPA, kainate, and N-methyl-d-aspartic acid (NMDA) receptor subtypes is regulated by their extracellular amino-terminal domains (ATDs). Kainate receptors are further classified into low-affinity receptor families (GluK1-GluK3) and high-affinity receptor families (GluK4-GluK5) based on their affinity for the neurotoxin kainic acid. These two families share a 42% sequence identity for the intact receptor but only a 27% sequence identity at the level of ATD. We have determined for the first time the high-resolution crystal structures of GluK3 andmore » GluK5 ATDs, both of which crystallize as dimers but with a strikingly different dimer assembly at the R1 interface. By contrast, for both GluK3 and GluK5, the R2 domain dimer assembly is similar to those reported previously for other non-NMDA iGluRs. This observation is consistent with the reports that GluK4-GluK5 cannot form functional homomeric ion channels and require obligate coassembly with GluK1-GluK3. Our analysis also reveals that the relative orientation of domains R1 and R2 in individual non-NMDA receptor ATDs varies by up to 10{sup o}, in contrast to the 50{sup o} difference reported for the NMDA receptor GluN2B subunit. This restricted domain movement in non-NMDA receptor ATDs seems to result both from extensive intramolecular contacts between domain R1 and domain R2 and from their assembly as dimers, which interact at both R1 and R2 domains. Our results provide the first insights into the structure and function of GluK4-GluK5, the least understood family of iGluRs.« less
Mechanosensitive Piezo Channels in the Gastrointestinal Tract
Alcaino, C.; Farrugia, G.; Beyder, A.
2017-01-01
Sensation of mechanical forces is critical for normal function of the gastrointestinal (GI) tract and abnormalities in mechanosensation are linked to GI pathologies. In the GI tract there are several mechanosensitive cell types—epithelial enterochromaffin cells, intrinsic and extrinsic enteric neurons, smooth muscle cells and interstitial cells of Cajal. These cells use mechanosensitive ion channels that respond to mechanical forces by altering transmembrane ionic currents in a process called mechanoelectrical coupling. Several mechanosensitive ionic conductances have been identified in the mechano-sensory GI cells, ranging from mechanosensitive voltage-gated sodium and calcium channels to the mechanogated ion channels, such as the two-pore domain potassium channels K2P (TREK-1) and nonselective cation channels from the transient receptor potential family. The recently discovered Piezo channels are increasingly recognized as significant contributors to cellular mechanosensitivity. Piezo1 and Piezo2 are nonselective cationic ion channels that are directly activated by mechanical forces and have well-defined biophysical and pharmacologic properties. The role of Piezo channels in the GI epithelium is currently under investigation and their role in the smooth muscle syncytium and enteric neurons is still not known. In this review, we outline the current state of knowledge on mechanosensitive ion channels in the GI tract, with a focus on the known and potential functions of the Piezo channels. PMID:28728818
Lee, Min Jung; Cho, Kang Hun; Park, Hyun Min; Sung, Hyun Jung; Choi, Sunghak; Im, Weonbin
2014-07-15
DA-6886, the gastrointestinal prokinetic benzamide derivative is a novel 5-HT4 receptor agonist being developed for the treatment of constipation-predominant irritable bowel syndrome (IBS-C). The purpose of this study was to characterize in vitro and in vivo pharmacological profile of DA-6886. We used various receptor binding assay, cAMP accumulation assay, organ bath experiment and colonic transit assay in normal and chemically constipated mice. DA-6886 exhibited high affinity and selectivity to human 5-HT4 receptor splice variants, with mean pKi of 7.1, 7.5, 7.9 for the human 5-HT4a, 5-HT4b and 5-HT4d, respectively. By contrast, DA-6886 did not show significant affinity for several receptors including dopamine D2 receptor, other 5-HT receptors except for 5-HT2B receptor (pKi value of 6.2). The affinity for 5-HT4 receptor was translated into functional agonist activity in Cos-7 cells expressing 5-HT4 receptor splice variants. Furthermore, DA-6886 induced relaxation of the rat oesophagus preparation (pEC50 value of 7.4) in a 5-HT4 receptor antagonist-sensitive manner. The evaluation of DA-6886 in CHO cells expressing hERG channels revealed that it inhibited hERG channel current with an pIC50 value of 4.3, indicating that the compound was 1000-fold more selective for the 5-HT4 receptor over hERG channels. In the normal ICR mice, oral administration of DA-6886 (0.4 and 2mg/kg) resulted in marked stimulation of colonic transit. Furthermore, in the loperamide-induced constipation mouse model, 2mg/kg of DA-6886 significantly improved the delay of colonic transit, similar to 10mg/kg of tegaserod. Taken together, DA-6886 is a highly potent and selective 5-HT4 receptor agonist to accelerate colonic transit in mice, which might be therapeutic agent having a favorable safety profile in the treatment of gastrointestinal motor disorders such as IBS-C and chronic constipation. Copyright © 2014 Elsevier B.V. All rights reserved.
Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans
2010-01-01
N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375
Involvement of ectodomain Leu 214 in ATP binding and channel desensitization of the P2X4 receptor.
Zhang, Longmei; Xu, Huijuan; Jie, Yanling; Gao, Chao; Chen, Wanjuan; Yin, Shikui; Samways, Damien S K; Li, Zhiyuan
2014-05-13
P2X receptors are trimeric ATP-gated cation permeable ion channels. When ATP binds, the extracellular head and dorsal fin domains are predicted to move closer to each other. However, there are scant functional data corroborating the role of the dorsal fin in ligand binding. Here using site-directed mutagenesis and electrophysiology, we show that a dorsal fin leucine, L214, contributes to ATP binding. Mutant receptors containing a single substitution of alanine, serine, glutamic acid, or phenylalanine at L214 of the rat P2X4 receptor exhibited markedly reduced sensitivities to ATP. Mutation of other dorsal fin side chains, S216, T223, and D224, did not significantly alter ATP sensitivity. Exposure of L214C to sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES(-)) or (2-aminoethyl) methanethiosulfonate hydrobromide in the absence of ATP blocked responses evoked by subsequent ATP application. In contrast, when MTSES(-) was applied in the presence of ATP, no current inhibition was observed. Furthermore, L214A also slightly reduced the inhibitory effect of the antagonist 2',3'-O-(2,4,6-trinitrophenyl)-ATP, and the blockade was more rapidly reversible after washout. Certain L214 mutants also showed effects on current desensitization in the continued presence of ATP. L214I exhibited an accelerated current decline, whereas L214M exhibited a slower rate. Taken together, these data reveal that position L214 participates in both ATP binding and conformational changes accompanying channel opening and desensitization, providing compelling evidence that the dorsal fin domain indeed has functional properties that are similar to those previously reported for the body domains.
Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.
Hao, Yuan; Ko, Wing-hung
2014-02-25
The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells.
Chloride channels as drug targets
Verkman, Alan S.; Galietta, Luis J. V.
2013-01-01
Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558
Moffatt, Luciano; Hume, Richard I.
2007-01-01
To gain insight into the way that P2X2 receptors localized at synapses might function, we explored the properties of outside-out patches containing many of these channels as ATP was very rapidly applied and removed. Using a new method to calibrate the speed of exchange of solution over intact patches, we were able to reliably produce applications of ATP lasting <200 μs. For all concentrations of ATP, there was a delay of at least 80 μs between the time when ATP arrived at the receptor and the first detectable flow of inward current. In response to 200-μs pulses of ATP, the time constant of the rising phase of the current was ∼600 μs. Thus, most channel openings occurred when no free ATP was present. The current deactivated with a time constant of ∼60 ms. The amplitude of the peak response to a brief pulse of a saturating concentration of ATP was ∼70% of that obtained during a long application of the same concentration of ATP. Thus, ATP leaves fully liganded channels without producing an opening at least 30% of the time. Extensive kinetic modeling revealed three different schemes that fit the data well, a sequential model and two allosteric models. To account for the delay in opening at saturating ATP, it was necessary to incorporate an intermediate closed state into all three schemes. These kinetic properties indicate that responses to ATP at synapses that use homomeric P2X2 receptors would be expected to greatly outlast the duration of the synaptic ATP transient produced by a single presynaptic spike. Like NMDA receptors, P2X2 receptors provide the potential for complex patterns of synaptic integration over a time scale of hundreds of milliseconds. PMID:17664346
Inoue, Koichi; O'Bryant, Zaven; Xiong, Zhi-Gang
2015-01-01
Zinc (Zn2+) is one of the most important trace metals in the body. It is necessary for the normal function of a large number of proteins including enzymes and transcription factors. While extracellular fluid may contain up to micromolar Zn2+, intracellular Zn2+ concentration is generally maintained at a subnanomolar level; this steep gradient across the cell membrane is primarily attributable to Zn2+ extrusion by Zn2+ transporting systems. Interestingly, systematic investigation has revealed that activities, previously believed to be dependent on calcium (Ca2+), may be partially mediated by Zn2+. This is also supported by new findings that some Ca2+-permeable channels such as voltage-dependent calcium channels (VDCCs), N-methyl-D-aspartate receptors (NMDA), and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPA-Rs) are also permeable to Zn2+. Thus, the importance of Zn2+ in physiological and pathophysiological processes is now more widely appreciated. In this review, we describe Zn2+-permeable membrane molecules, especially Zn2+-permeable ion channels, in intracellular Zn2+dynamics and Zn2+ mediated physiology/pathophysiology. PMID:25666796
French, Robert J.; Yoshikami, Doju; Sheets, Michael F.; Olivera, Baldomero M.
2010-01-01
Neurotoxin receptor site 1, in the outer vestibule of the conducting pore of voltage-gated sodium channels (VGSCs), was first functionally defined by its ability to bind the guanidinium-containing agents, tetrodotoxin (TTX) and saxitoxin (STX). Subsequent studies showed that peptide μ-conotoxins competed for binding at site 1. All of these natural inhibitors block single sodium channels in an all-or-none manner on binding. With the discovery of an increasing variety of μ-conotoxins, and the synthesis of numerous derivatives, observed interactions between the channel and these different ligands have become more complex. Certain μ-conotoxin derivatives block single-channel currents partially, rather than completely, thus enabling the demonstration of interactions between the bound toxin and the channel’s voltage sensor. Most recently, the relatively small μ-conotoxin KIIIA (16 amino acids) and its variants have been shown to bind simultaneously with TTX and exhibit both synergistic and antagonistic interactions with TTX. These interactions raise new pharmacological possibilities and place new constraints on the possible structures of the bound complexes of VGSCs with these toxins. PMID:20714429
Manabe, Noriaki; Wong, Banny S; Camilleri, Michael
2010-06-01
Gastrointestinal (GI) dysmotility is an important mechanism in functional GI disorders (FGIDs) including constipation, irritable bowel syndrome, functional dyspepsia, and gastroparesis. 5-hydroxytryptamine(4) (5-HT(4)) receptors are targets for the treatment of GI motility disorders. However, older 5-HT(4) receptor agonists had limited clinical success because they were associated with changes in the function of the cardiac HERG potassium channel. We conducted a PubMed search using the following key words alone or in combination: 5-HT(4), safety, toxicity, pharmacokinetics, pharmacodynamics, clinical trial, cardiac, hERG, arrhythmia, potassium current, elderly, prucalopride, ATI-7505, and velusetrag (TD-5108), to review mechanisms of action, clinical efficacy, safety and tolerability of three new-generation 5-HT(4) receptor agonists. Prucalopride, ATI-7505, and velusetrag (TD-5108) are highly selective, high-affinity 5-HT(4) receptor agonists that are devoid of action on other receptors within their therapeutic range. Their efficacy has been demonstrated in pharmacodynamic studies which demonstrate acceleration of colonic transit and, to a variable degree, in clinical trials that significantly relieve chronic constipation. Currently available evidence shows that the new 5-HT(4) receptor agonists have safe cardiac profiles. New-generation 5-HT(4) receptor agonists and future drugs targeting organ-specific splice variants are promising approaches to treat GI dysmotility, particularly colonic diseases.
Nivison-Smith, Lisa; Khoo, Pauline; Acosta, Monica L; Kalloniatis, Michael
2018-02-01
Retinal ischemia is involved in the pathogenesis of many major vision threatening diseases. Vinpocetine is a natural drug, which has a range of neuroprotective actions against retinal ischemia including modulating cation flow, improving metabolic activity and preventing apoptosis. The exact mechanism behind these actions remains unknown but may involve glutamate receptors, major components of the ischemic cascade. This study examined the effects of vinpocetine in association with specific ionotropic glutamate receptor agonists: N-methyl-D-aspartate (NMDA) and kainate. Vinpocetine's actions to improve cation channel permeability and cell marker immunoreactivity following ischemia appeared to be limited to NMDA activation with no changes observed following kainate stimulation. Vinpocetine's actions were lost in the presence of an NMDA receptor inhibitor further suggesting they may be secondary to NMDA receptor activation. NMDA receptor function was also necessary for vinpocetine's actions on glucose availability during ischemia but not lactate dehydrogenase (LDH) activity in the ischemic retina suggesting not all of vinpocetine's actions are linked to NMDA receptor function. These results may explain vinpocetine's effectiveness as a neuroprotective agent as the NMDA receptor is implicated in the pathogenesis of ischemia in a range of tissues of the central nervous system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ji, Li; Zhu, Huayuan; Chen, Hong; Fan, Wenyong; Chen, Junjie; Chen, Jing; Zhu, Guoqing; Wang, Juejin
2015-12-01
Neuropeptide W (NPW), an endogenous ligand for the G protein-coupled receptor 7 (GPR7), was first found to make important roles in central nerve system. In periphery, NPW was also present and regulated intracellular calcium homeostasis by L-type calcium channels. This study was designed to discover the effects of NPW-GPR7 on the function of CaV1.2 calcium channels in the vascular smooth muscle cells (VSMCs) and vasotone of arterial vessels. By whole-cell patch clamp, we studied the effects of NPW-23, the active form of NPW, on the CaV1.2 channels in the heterologously transfected human embryonic kidney 293 cells and VSMCs isolated from rat. Living system was used to explore the physiological function of NPW-23 in arterial myogenic tone. To investigate the pathological relevance, NPW mRNA level of mesenteric arteries was measured in the hypertensive and normotensive rats. NPW's receptor GPR7 was coexpressed with CaV1.2 channels in arterial smooth muscle. NPW-23 increased the ICa,L in transfected human embryonic kidney 293 cells and VSMCs via GPR7, which could be abrogated by phospholipase C (PLC)/protein kinase C (PKC) inhibitors, not protein kinase A or protein kinase G inhibitor. After NPW-23 application, the expression of pan phospho-PKC was increased; moreover, intracellular diacylglycerol level, the second messenger catalyzed by PLC, was increased 1.5-2-fold. Application with NPW-23 increased pressure-induced vasotone of the rat mesenteric arteries. Importantly, the expression of NPW was decreased in the hypertensive rats. NPW-23 regulates ICa,L via GPR7, which is mediated by PLC/PKC signaling, and such a mechanism plays a role in modulating vascular myogenic tone, which may involve in the development of vascular hypertension.
Cooper, B Y; Johnson, R D; Nutter, T J
2016-05-01
Chronic pain is a component of the multisymptom disease known as Gulf War Illness (GWI). There is evidence that pain symptoms could have been a consequence of prolonged and/or excessive exposure to anticholinesterases and other GW chemicals. We previously reported that rats exposed, for 8 weeks, to a mixture of anticholinesterases (pyridostigmine bromide, chlorpyrifos) and a Nav (voltage activated Na(+) channel) deactivation-inhibiting pyrethroid, permethrin, exhibited a behavior pattern that was consistent with a delayed myalgia. This myalgia-like behavior was accompanied by persistent changes to Kv (voltage activated K(+)) channel physiology in muscle nociceptors (Kv7, KDR). In the present study, we examined how exposure to the above agents altered the reactivity of Kv channels to a muscarinic receptor (mAChR) agonist (oxotremorine-M). Comparisons between muscle nociceptors harvested from vehicle and GW chemical-exposed rats revealed that mAChR suppression of Kv7 activity was enhanced in exposed rats. Yet in these same muscle nociceptors, a Stromatoxin-insensitive component of the KDR (voltage activated delayed rectifier K(+) channel) exhibited decreased sensitivity to activation of mAChR. We have previously shown that a unique mAChR-induced depolarization and burst discharge (MDBD) was exaggerated in muscle nociceptors of rats exposed to GW chemicals. We now provide evidence that both muscle and vascular nociceptors of naïve rats exhibit MDBD. Examination of the molecular basis of the MDBD in naïve animals revealed that while the mAChR depolarization was independent of Kv7, the action potential burst was modulated by Kv7 status. mAChR depolarizations were shown to be dependent, in part, on TRPA1. We argue that dysfunction of the MDBD could be a functional convergence point for maladapted ion channels and receptors consequent to exposure to GW chemicals. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi
2016-11-01
Inward rectifier K + channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP 2 ). Stimulation of the Ca 2+ -sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both G q/11 , which decreases PIP 2 , and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP 2 . How membrane PIP 2 levels are regulated by CaR activation and whether these changes modulate inward rectifier K + are unknown. In this study, we found that activation of CaR by the allosteric agonist, NPSR568, increased inward rectifier K + current (I K1 ) in guinea pig ventricular myocytes and currents mediated by Kir2.1 channels exogenously expressed in HEK293T cells with a similar sensitivity. Moreover, using the fluorescent PIP 2 reporter tubby-R332H-cYFP to monitor PIP 2 levels, we found that CaR activation in HEK293T cells increased membrane PIP 2 concentrations. Pharmacological studies showed that both phospholipase C (PLC) and PI-4-K are activated by CaR stimulation with the latter played a dominant role in regulating membrane PIP 2 and, thus, Kir currents. These results provide the first direct evidence that CaR activation upregulates currents through inward rectifier K + channels by accelerating PIP 2 synthesis. The regulation of I K1 plays a critical role in the stability of the electrical properties of many excitable cells, including cardiac myocytes and neurons. Further, synthetic allosteric modulators that increase CaR activity have been used to treat hyperparathyroidism, and negative CaR modulators are of potential importance in the treatment of osteoporosis. Thus, our results provide further insight into the roles played by CaR in the cardiovascular system and are potentially valuable for heart disease treatment and drug safety.
Gilbert, Jessica R.; Symmonds, Mkael; Hanna, Michael G.; Dolan, Raymond J.; Friston, Karl J.; Moran, Rosalyn J.
2016-01-01
Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. PMID:26342528
USDA-ARS?s Scientific Manuscript database
Two ghrelin receptor (GHS-R) genes were isolated from channel catfish tissue and a bacterial artificial chromosome (BAC) library. The two receptors were characterized by determining tissue distribution, ontogeny of receptor mRNA expression, and effects of exogenous homologous ghrelin administration ...
Yuan, Kuichang; Cao, Chunhua; Bai, Guang Yi; Kim, Sung Zoo; Kim, Suhn Hee
2007-07-01
Diadenosine polyphosphates (APnAs) are endogenous compounds and exert diverse cardiovascular functions. However, the effects of APnAs on atrial ANP release and contractility have not been studied. In this study, the effects of diadenosine tetraphosphate (AP4A) on atrial ANP release and contractility, and their mechanisms were studied using isolated perfused rat atria. Treatment of atria with AP4A resulted in decreases in atrial contractility and extracellular fluid (ECF) translocation whereas ANP secretion and cAMP levels in perfusate were increased in a dose-dependent manner. These effects of AP4A were attenuated by A(1) receptor antagonist but not by A(2A) or A(3) receptor antagonist. Other purinoceptor antagonists also did not show any effects on AP4A-induced ANF release and contractility. The increment of ANP release and negative inotropy induced by AP4A was similar to those induced by AP3A, AP5A, and AP6A. Protein kinase A inhibitors accentuated AP4A-induced ANP secretion. In contrast, an inhibitor of phospholipase C, protein kinase C or sarcolemma K(ATP) channel completely blocked AP4A-induced ANP secretion. However, an inhibitor of adenylyl cyclase or mitochondria K(ATP) channel had no significant modification of AP4A effects. These results suggest that AP4A regulates atrial inotropy and ANP release mainly through A(1) receptor signaling involving phospholipase C-protein kinase C and sarcolemmal K(ATP) channel and that protein kinase A negatively modulates the effects of AP4A.
Unveiling TRPV1 Spatio-Temporal Organization in Live Cell Membranes
Storti, Barbara; Di Rienzo, Carmine; Cardarelli, Francesco; Bizzarri, Ranieri; Beltram, Fabio
2015-01-01
Transient Receptor Potential Vanilloid 1 (TRPV1) is a non-selective cation channel that integrates several stimuli into nociception and neurogenic inflammation. Here we investigated the subtle TRPV1 interplay with candidate membrane partners in live cells by a combination of spatio-temporal fluctuation techniques and fluorescence resonance energy transfer (FRET) imaging. We show that TRPV1 is split into three populations with fairly different molecular properties: one binding to caveolin-1 and confined into caveolar structures, one actively guided by microtubules through selective binding, and one which diffuses freely and is not directly implicated in regulating receptor functionality. The emergence of caveolin-1 as a new interactor of TRPV1 evokes caveolar endocytosis as the main desensitization pathway of TRPV1 receptor, while microtubule binding agrees with previous data suggesting the receptor stabilization in functional form by these cytoskeletal components. Our results shed light on the hitherto unknown relationships between spatial organization and TRPV1 function in live-cell membranes. PMID:25764349
Ontogeny of the cortisol stress response in channel catfish (Ictalurus punctatus)
USDA-ARS?s Scientific Manuscript database
Cortisol is a glucocorticoid hormone which is an endocrine signaling molecule in all vertebrates and acts through intracellular glucocorticoid receptors (GR). Cortisol affects many biological functions including immunity, stress, growth, ion homeostasis, and reproduction. The objective of this stu...
Du, Yuan; Zhang, Junbo; Xi, Yutao; Wu, Geru; Han, Ke; Huang, Xin; Ma, Aiqun; Wang, Tingzhong
2016-06-01
Bisoprolol, an antagonist of β1-adrenergic receptors, is effective in reducing the morbidity and mortality in patients with heart failure (HF). It has been found that HF is accompanied with dysfunction of the sinoatrial node (SAN). However, whether bisoprolol reverses the decreased SAN function in HF and how the relevant ion channels in SAN change were relatively less studied. SAN function and messenger RNA (mRNA) expression of sodium channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channel subunits were assessed in sham-operated rats, abdominal arterio-venous shunt (volume overload)-induced HF rats, and bisoprolol- treated HF rats. SAN cells of rats were isolated by laser capture microdissection. Quantitative real-time PCR analysis was used to quantify mRNA expression of sodium channels and HCN channel subunits in SAN. Intrinsic heart rate declined and sinus node recovery time prolonged in HF rats, indicating the suppressed SAN function, which could be improved by bisoprolol treatment. Nav1.1, Nav1.6, and HCN4 mRNA expressions were reduced in SAN in HF rats compared with that in control rats. Treatment with bisoprolol could reverse both the SAN function and the Nav1.1, Nav1.6, and HCN4 mRNA expression partially. These data indicated that bisoprolol is effective in HF treatment partially due to improved SAN function by reversing the down-regulation of sodium channels (Nav1.1 and Nav1.6) and HCN channel (HCN4) subunits in SAN in failing hearts.
Chloride channels as tools for developing selective insecticides.
Bloomquist, Jeffrey R
2003-12-01
Ligand-gated chloride channels underlie inhibition in excitable membranes and are proven target sites for insecticides. The gamma-aminobutyric acid (GABA(1)) receptor/chloride ionophore complex is the primary site of action for a number of currently used insecticides, such as lindane, endosulfan, and fipronil. These compounds act as antagonists by stabilizing nonconducting conformations of the chloride channel. Blockage of the GABA-gated chloride channel reduces neuronal inhibition, which leads to hyperexcitation of the central nervous system, convulsions, and death. We recently investigated the mode of action of the silphinenes, plant-derived natural compounds that structurally resemble picrotoxinin. These materials antagonize the action of GABA on insect neurons and block GABA-mediated chloride uptake into mouse brain synaptoneurosomes in a noncompetitive manner. In mammals, avermectins have a blocking action on the GABA-gated chloride channel consistent with a coarse tremor, whereas at longer times and higher concentrations, activation of the channel suppresses neuronal activity. Invertebrates display ataxia, paralysis, and death as the predominant signs of poisoning, with a glutamate-gated chloride channel playing a major role. Additional target sites for the avermectins or other chloride channel-directed compounds might include receptors gated by histamine, serotonin, or acetylcholine.The voltage-sensitive chloride channels form another large gene family of chloride channels. Voltage-dependent chloride channels are involved in a number of physiological processes including: maintenance of electrical excitability, chloride ion secretion and resorption, intravesicular acidification, and cell volume regulation. A subset of these channels is affected by convulsants and insecticides in mammals, although the role they play in acute lethality in insects is unclear. Given the wide range of functions that they mediate, these channels are also potential targets for insecticide development. Copyright 2003 Wiley-Liss, Inc.
Synaptic Neurotransmitter-Gated Receptors
Smart, Trevor G.; Paoletti, Pierre
2012-01-01
Since the discovery of the major excitatory and inhibitory neurotransmitters and their receptors in the brain, many have deliberated over their likely structures and how these may relate to function. This was initially satisfied by the determination of the first amino acid sequences of the Cys-loop receptors that recognized acetylcholine, serotonin, GABA, and glycine, followed later by similar determinations for the glutamate receptors, comprising non-NMDA and NMDA subtypes. The last decade has seen a rapid advance resulting in the first structures of Cys-loop receptors, related bacterial and molluscan homologs, and glutamate receptors, determined down to atomic resolution. This now provides a basis for determining not just the complete structures of these important receptor classes, but also for understanding how various domains and residues interact during agonist binding, receptor activation, and channel opening, including allosteric modulation. This article reviews our current understanding of these mechanisms for the Cys-loop and glutamate receptor families. PMID:22233560
Cui, Yuanyuan; Yang, Fan; Cao, Xu; Yarov-Yarovoy, Vladimir
2012-01-01
The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate. PMID:22412190
TRP ion channels in thermosensation, thermoregulation and metabolism
Wang, Hong; Siemens, Jan
2015-01-01
In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control. PMID:27227022
Assessment of TRPM7 functions by drug-like small molecules.
Chubanov, Vladimir; Ferioli, Silvia; Gudermann, Thomas
2017-11-01
Transient receptor potential cation channel subfamily M member 7 (TRPM7) is a plasma membrane ion channel linked to a cytosolic protein kinase domain. Genetic inactivation of this bi-functional protein revealed its crucial role in Ca 2+ signalling, Mg 2+ metabolism, immune responses, cell motility, proliferation and differentiation. Malfunctions of TRPM7 are associated with anoxic neuronal death, cardiac fibrosis, tumour progression and macrothrombocytopenia. Recently, several groups have identified small organic compounds acting as inhibitors or activators of the TRPM7 channel. In follow-up studies, the identified TRPM7 modulators were successfully used to uncover new cellular functions of TRPM7 in situ including a crucial role of TRPM7 in Ca 2+ signaling and Ca 2+ dependent cellular processes. Hence, TRPM7 has been defined as a promising drug target. Here, we summarize the progress in this quickly developing field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Bo; Guo, Wenting; Tian, Xixi; Yao, Jinjing; Zhang, Lin; Wang, Ruiwu; Chen, S R Wayne
2016-12-09
The ryanodine receptor (RyR) channel pore is formed by four S6 inner helices, with its intracellular gate located at the S6 helix bundle crossing region. The cytoplasmic region of the extended S6 helix is held by the U motif of the central domain and is thought to control the opening and closing of the S6 helix bundle. However, the functional significance of the S6 cytoplasmic region in channel gating is unknown. Here we assessed the role of the S6 cytoplasmic region in the function of cardiac RyR (RyR2) via structure-guided site-directed mutagenesis. We mutated each residue in the S6 cytoplasmic region of the mouse RyR2 ( 4876 QQEQVKEDM 4884 ) and characterized their functional impact. We found that mutations Q4876A, V4880A, K4881A, and M4884A, located mainly on one side of the S6 helix that faces the U motif, enhanced basal channel activity and the sensitivity to Ca 2+ or caffeine activation, whereas mutations Q4877A, E4878A, Q4879A, and D4883A, located largely on the opposite side of S6, suppressed channel activity. Furthermore, V4880A, a cardiac arrhythmia-associated mutation, markedly enhanced the frequency of spontaneous openings and the sensitivity to cytosolic and luminal Ca 2+ activation of single RyR2 channels. V4880A also increased the propensity and reduced the threshold for arrhythmogenic spontaneous Ca 2+ release in HEK293 cells. Collectively, our data suggest that interactions between the cytoplasmic region of S6 and the U motif of RyR2 are important for stabilizing the closed state of the channel. Mutations in the S6/U motif domain interface likely destabilize the closed state of RyR2, resulting in enhanced basal channel activity and sensitivity to activation and increased propensity for spontaneous Ca 2+ release and cardiac arrhythmias. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Bkaily, Ghassan; El-Bizri, Nesrine; Bui, Michel; Sukarieh, Rami; Jacques, Danielle; Fu, Michael L X
2003-03-01
The effects of methoxamine, a selective alpha1-adrenergic receptor agonist, and the autoantibody directed against the second extracellular loop of alpha1-adrenoceptors were studied on intracellular free Ca2+ levels using confocal microscopy and ionic currents using the whole-cell patch clamp technique in single cells of 10-day-old embryonic chick and 20-week-old fetal human hearts. We observed that like methoxamine, the autoantibody directed against the second extracellular loop of alpha1-adrenoreceptors significantly increased the L-type calcium current (I(Ca(L))) but had no effect on the T-type calcium current (I(Ca(T))), the delayed outward potassium current, or the fast sodium current. This effect of the autoantibody was prevented by a prestimulation of the receptors with methoxamine and vice versa. Moreover, treating the cells with prazosin, a selective alpha1-adrenergic receptor antagonist blocked the methoxamine and the autoantibody-induced increase in I(Ca(L)), respectively. In absence of prazosin, both methoxamine and the autoantibody showed a substantial enhancement in the frequency of cell contraction and that of the concomitant cytosolic and nuclear free Ca2+ variations. The subsequent addition of nifedipine, a specific L-type Ca2+ channel blocker, reversed not only the methoxamine or the autoantibody-induced effect but also completely abolished cell contraction. These results demonstrated that functional alpha1-adrenoceptors exist in both 10-day-old embryonic chick and 20-week-old human fetal hearts and that the autoantibody directed against the second extracellular loop of this type of receptors plays an important role in stimulating their activity via activation of L-type calcium channels. This loop seems to have a functional significance by being the target of alpha1-receptor agonists like methoxamine.
Functional nonequality of the cardiac and skeletal ryanodine receptors.
Nakai, J; Ogura, T; Protasi, F; Franzini-Armstrong, C; Allen, P D; Beam, K G
1997-02-04
Dihydropyridine receptors (DHPRs), which are voltage-gated Ca2+ channels, and ryanodine receptors (RyRs), which are intracellular Ca2+ release channels, are expressed in diverse cell types, including skeletal and cardiac muscle. In skeletal muscle, there appears to be reciprocal signaling between the skeletal isoforms of both the DHPR and the RyR (RyR-1), such that Ca2+ release activity of RyR-1 is controlled by the DHPR and Ca2+ channel activity of the DHPR is controlled by RyR-1. Dyspedic skeletal muscle cells, which do not express RyR-1, lack excitation-contraction coupling and have an approximately 30-fold reduction in L-type Ca2+ current density. Here we have examined the ability of the predominant cardiac and brain RyR isoform, RyR-2, to substitute for RyR-1 in interacting with the skeletal DHPR. When RyR-2 is expressed in dyspedic muscle cells, it gives rise to spontaneous intracellular Ca2+ oscillations and supports Ca2+ entry-induced Ca2+ release. However, unlike RyR-1, the expressed RyR-2 does not increase the Ca2+ channel activity of the DHPR, nor is the gating of RyR-2 controlled by the skeletal DHPR. Thus, the ability to participate in skeletal-type reciprocal signaling appears to be a unique feature of RyR-1.
Huidobro-Toro, J Pablo; Lorca, Ramón A; Coddou, Claudio
2008-03-01
Zinc and copper are indispensable trace metals for life with a recognized role as catalysts in enzyme actions. We now review evidence supporting the role of trace metals as novel allosteric modulators of ionotropic receptors: a new and fundamental physiological role for zinc and copper in neuronal and brain excitability. The review is focussed on ionotropic receptor channels including nucleotide receptors, in particular the P2X receptor family. Since zinc and copper are stored within synaptic vesicles in selected brain regions, and released to the synaptic cleft upon electrical nerve ending depolarization, it is plausible that zinc and copper reach concentrations in the synapse that profoundly affect ligand-gated ionic channels, including the ATP-gated currents of P2X receptors. The identification of key P2X receptor amino acids that act as ligands for trace metal coordination, carves the structural determinants underlying the allosteric nature of the trace metal modulation. The recognition that the identified key residues such as histidines, aspartic and glutamic acids or cysteines in the extracellular domain are different for each P2X receptor subtype and may be different for each metal, highlights the notion that each P2X receptor subtype evolved independent strategies for metal coordination, which form upon the proper three-dimensional folding of the receptor channels. The understanding of the molecular mechanism of allosteric modulation of ligand-operated ionic channels by trace metals is a new contribution to metallo-neurobiology.
Minami, Kouichiro; Uezono, Yasuhito
2013-04-01
The exact mechanisms of action behind anesthetics and analgesics are still unclear. Much attention was focused on ion channels in the central nervous system as targets for anesthetics and analgesics in the 1980s. During the 1990s, major advances were made in our understanding of the physiology and pharmacology of G protein coupled receptor (GPCR) signaling. Thus, several lines of studies have shown that G protein coupled receptors (GPCRs) are one of the targets for anesthetics and analgesics and especially, that some of them inhibit the functions of GPCRs, i.e,, muscarinic receptors and substance P receptors. However, these studies had been focused on only G(q) coupled receptors. There has been little work on G(s)- and G(i)-coupled receptors. In the last decade, a new assay system, using chimera G(i/o)-coupled receptor fused to Gq(i5), has been established and the effects of anesthetics and analgesics on the function of G(i)-coupled receptors is now more easily studied. This review highlights the recent progress of the studies regarding the effects of anesthetics and analgesics on GPCRs.
A novel PKD2L1 C-terminal domain critical for trimerization and channel function.
Zheng, Wang; Hussein, Shaimaa; Yang, JungWoo; Huang, Jun; Zhang, Fan; Hernandez-Anzaldo, Samuel; Fernandez-Patron, Carlos; Cao, Ying; Zeng, Hongbo; Tang, Jingfeng; Chen, Xing-Zhen
2015-03-30
As a transient receptor potential (TRP) superfamily member, polycystic kidney disease 2-like-1 (PKD2L1) is also called TRPP3 and has similar membrane topology as voltage-gated cation channels. PKD2L1 is involved in hedgehog signaling, intestinal development, and sour tasting. PKD2L1 and PKD1L3 form heterotetramers with 3:1 stoichiometry. C-terminal coiled-coil-2 (CC2) domain (G699-W743) of PKD2L1 was reported to be important for its trimerization but independent studies showed that CC2 does not affect PKD2L1 channel function. It thus remains unclear how PKD2L1 proteins oligomerize into a functional channel. By SDS-PAGE, blue native PAGE and mutagenesis we here identified a novel C-terminal domain called C1 (K575-T622) involved in stronger homotrimerization than the non-overlapping CC2, and found that the PKD2L1 N-terminus is critical for dimerization. By electrophysiology and Xenopus oocyte expression, we found that C1, but not CC2, is critical for PKD2L1 channel function. Our co-immunoprecipitation and dynamic light scattering experiments further supported involvement of C1 in trimerization. Further, C1 acted as a blocking peptide that inhibits PKD2L1 trimerization as well as PKD2L1 and PKD2L1/PKD1L3 channel function. Thus, our study identified C1 as the first PKD2L1 domain essential for both PKD2L1 trimerization and channel function, and suggest that PKD2L1 and PKD2L1/PKD1L3 channels share the PKD2L1 trimerization process.
Han, Dong-Yun; Guan, Bo-Jhih; Wang, Ya-Juan; Hatzoglou, Maria; Mu, Ting-Wei
2015-09-18
Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory ion channels in the mammalian central nervous system and play an essential role in regulating inhibition-excitation balance in neural circuits. The α1 subunit harboring the D219N mutation of GABAA receptors was reported to be retained in the endoplasmic reticulum (ER) and traffic inefficiently to the plasma membrane, leading to a loss of function of α1(D219N) subunits and thus idiopathic generalized epilepsy (IGE). We present the use of small molecule proteostasis regulators to enhance the forward trafficking of α1(D219N) subunits to restore their function. We showed that treatment with verapamil (4 μM, 24 h), an L-type calcium channel blocker, substantially increases the α1(D219N) subunit cell surface level in both HEK293 cells and neuronal SH-SY5Y cells and remarkably restores the GABA-induced maximal chloride current in HEK293 cells expressing α1(D219N)β2γ2 receptors to a level that is comparable to wild type receptors. Our drug mechanism study revealed that verapamil treatment promotes the ER to Golgi trafficking of the α1(D219N) subunits post-translationally. To achieve that, verapamil treatment enhances the interaction between the α1(D219N) subunit and β2 subunit and prevents the aggregation of the mutant protein by shifting the protein from the detergent-insoluble fractions to detergent-soluble fractions. By combining (35)S pulse-chase labeling and MG-132 inhibition experiments, we demonstrated that verapamil treatment does not inhibit the ER-associated degradation of the α1(D219N) subunit. In addition, its effect does not involve a dynamin-1 dependent endocytosis. To gain further mechanistic insight, we showed that verapamil increases the interaction between the mutant protein and calnexin and calreticulin, two major lectin chaperones in the ER. Moreover, calnexin binding promotes the forward trafficking of the mutant subunit. Taken together, our data indicate that verapamil treatment enhances the calnexin-assisted forward trafficking and subunit assembly, which leads to substantially enhanced functional surface expression of the mutant receptors. Since verapamil is an FDA-approved drug that crosses blood-brain barrier and has been used as an additional medication for some epilepsies, our findings suggest that verapamil holds great promise to be developed to ameliorate IGE resulting from α1(D219N) subunit trafficking deficiency.
Update on the mechanism of action of antiepileptic drugs.
Meldrum, B S
1996-01-01
Novel antiepileptic drugs (AEDs) are thought to act on voltage-sensitive ion channels, on inhibitory neurotransmission or on excitatory neurotransmission. Two successful examples of rational AED design that potentiate GABA-mediated inhibition are vigabatrin (VGB) by irreversible inhibition of GABA-transaminase, and tiagabine (TGB) by blocking GABA uptake. Lamotrigine (LTG) prolongs inactivation of voltage-dependent sodium channels. The anticonvulsant action of remacemide (RCM) is probably largely due to blockade of NMDA receptors and prolonged inactivation of sodium channels induced by its desglycinated metabolite. Felbamate (FBM) apparently blocks NMDA receptors, potentiates GABA-mediated responses, blocks L-type calcium channels, and possibly also prolongs sodium channel inactivation. Similarly, topiramate (TPM) has multiple probable sites of action, including sodium channels, GABA receptors, and glutamate (AMPA) receptors. Gabapentin (GBP) apparently has a completely novel type of action, probably involving potentiation of GABA-mediated inhibition and possibly also inactivation of sodium channels. The therapeutic advantages of the novel AEDs are as yet only partially explained by our present understanding of their mechanisms of action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yoon Kyung; Park, Joon Ha; Baek, Yi-Yong
Carbon monoxide (CO), derived by the enzymatic reaction of heme oxygenase (HO), is a cellular regulator of energy metabolism and cytoprotection; however, its underlying mechanism has not been clearly elucidated. Astrocytes pre-exposed to the CO-releasing compound CORM-2 increased mitochondrial biogenesis, mitochondrial electron transport components (cytochrome c, Cyt c; cytochrome c oxidase subunit 2, COX2), and ATP synthesis. The increased mitochondrial function was correlated with activation of AMP-activated protein kinase α and upregulation of HO-1, peroxisome proliferators-activated receptor γ-coactivator-1α (PGC-1α), and estrogen-related receptor α (ERRα). These events elicited by CORM-2 were suppressed by Ca{sup 2+} chelators, a HO inhibitor, and anmore » L-type Ca{sup 2+} channel blocker, but not other Ca{sup 2+} channel inhibitors. Among the HO byproducts, combined CORM-2 and bilirubin treatment effectively increased PGC-1α, Cyt c and COX2 expression, mitochondrial biogenesis, and ATP synthesis, and these increases were blocked by Ca{sup 2+} chelators. Moreover, cerebral ischemia significantly increased HO-1, PGC-1α, and ERRα levels, subsequently increasing Cyt c and COX2 expression, in wild-type mice, compared with HO-1{sup +/−} mice. These results suggest that HO-1-derived CO enhances mitochondrial biogenesis in astrocytes by activating L-type Ca{sup 2+} channel-mediated PGC-1α/ERRα axis, leading to maintenance of astrocyte function and neuroprotection/recovery against damage of brain function. - Highlights: • CORM-pretreated astrocytes induces mitochondrial biogenesis by activating L-type Ca{sup 2+} channel-mediated PGC-1α stabilization. • Cerebral ischemia increased electron transport chain proteins (e.g. Cyt c and COX2), in WT mice, compared with HO-1{sup +/−} mice. • CO/HO-1 pathway increases astrocytic mitochondrial functions via a PGC-1α/ERRα axis.« less
NASA Astrophysics Data System (ADS)
Naik, Parvaiz Ahmad; Pardasani, Kamal Raj
2013-11-01
Oocyte is a female gametocyte or germ cell involved in reproduction. Calcium ions (Ca2+) impact nearly all aspects of cellular life as they play an important role in a variety of cellular functions. Calcium ions contributes to egg activation upon fertilization. Since it is the internal stores which provide most of the calcium signal, much attention has been focused on the intracellular channels. There are mainly two types of calcium channels which release calcium from the internal stores to the cytoplasm in many cell types. These channels are IP3-Receptor and Ryanodine Receptor (RyR). Further it is essential to maintain low cytosolic calcium concentration, the cell engages the Serco/Endoplasmic reticulum Ca2+ ATPases (SERCA) present on the ER or SR membrane for the re-uptake of cytosolic calcium at the expense of ATP hydrolysis. In view of above an attempt has been made to study the effect of the Ryanodine receptor (RyR) and the SERCA pump on the calcium distribution in oocytes. The main aim of this paper is to study the calcium concentration in absence and presence of these parameters. The FEM is used to solve the proposed Mathematical model under appreciate initial and boundary conditions. The program has been developed in MATLAB 7.10 for the entire problem to get numerical results.
Zhu, Shujia; Riou, Morgane; Yao, C Andrea; Carvalho, Stéphanie; Rodriguez, Pamela C; Bensaude, Olivier; Paoletti, Pierre; Ye, Shixin
2014-04-22
Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo-cross-linker p-azido-L-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion.
Reilly-O'Donnell, Benedict; Robertson, Gavin B; Karumbi, Angela; McIntyre, Connor; Bal, Wojciech; Nishi, Miyuki; Takeshima, Hiroshi; Stewart, Alan J; Pitt, Samantha J
2017-08-11
Aberrant Zn 2+ homeostasis is associated with dysregulated intracellular Ca 2+ release, resulting in chronic heart failure. In the failing heart a small population of cardiac ryanodine receptors (RyR2) displays sub-conductance-state gating leading to Ca 2+ leakage from sarcoplasmic reticulum (SR) stores, which impairs cardiac contractility. Previous evidence suggests contribution of RyR2-independent Ca 2+ leakage through an uncharacterized mechanism. We sought to examine the role of Zn 2+ in shaping intracellular Ca 2+ release in cardiac muscle. Cardiac SR vesicles prepared from sheep or mouse ventricular tissue were incorporated into phospholipid bilayers under voltage-clamp conditions, and the direct action of Zn 2+ on RyR2 channel function was examined. Under diastolic conditions, the addition of pathophysiological concentrations of Zn 2+ (≥2 nm) caused dysregulated RyR2-channel openings. Our data also revealed that RyR2 channels are not the only SR Ca 2+ -permeable channels regulated by Zn 2+ Elevating the cytosolic Zn 2+ concentration to 1 nm increased the activity of the transmembrane protein mitsugumin 23 (MG23). The current amplitude of the MG23 full-open state was consistent with that previously reported for RyR2 sub-conductance gating, suggesting that in heart failure in which Zn 2+ levels are elevated, RyR2 channels do not gate in a sub-conductance state, but rather MG23-gating becomes more apparent. We also show that in H9C2 cells exposed to ischemic conditions, intracellular Zn 2+ levels are elevated, coinciding with increased MG23 expression. In conclusion, these data suggest that dysregulated Zn 2+ homeostasis alters the function of both RyR2 and MG23 and that both ion channels play a key role in diastolic SR Ca 2+ leakage. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Stretch-activated TRPV2 channels: Role in mediating cardiopathies.
Aguettaz, Elizabeth; Bois, Patrick; Cognard, Christian; Sebille, Stéphane
2017-11-01
Transient receptor potential vanilloid type 2, TRPV2, is a calcium-permeable cation channel belonging to the TRPV channel family. Although this channel has been first characterized as a noxious heat sensor, its mechanosensor property recently gained importance in various physiological functions. TRPV2 has been described as a stretch-mediated channel and a regulator of calcium homeostasis in several cell types and has been shown to be involved in the stretch-dependent responses in cardiomyocytes. Hence, several studies in the last years support the idea that TRPV2 play a key role in the function and structure of the heart, being involved in the cardiac compensatory mechanisms in response to pathologic or exercise-induced stress. We present here an overview of the current literature and concepts of TRPV2 channels involvement (i) in the mechanical coupling mechanisms in heart and (ii) in the mechanisms that lead to cardiomyopathies. All these studies lead us to think that TRPV2 may also be an important cardiac drug target based on its major physiological roles in heart. Copyright © 2017 Elsevier Ltd. All rights reserved.
This work, which will be presented at SOT 2014, demonstrates that a single exposure to either ozone or acrolein causes decrements in cardiac function and altered electrical activity (i.e. arrhythmia). The results suggest that this effect is mediated by the airway sensor TRPA1. ...
Sigma receptors [σRs]: biology in normal and diseased states
Rousseaux, Colin G.; Greene, Stephanie F.
2016-01-01
Abstract This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them. PMID:26056947
Novel role of transient receptor potential vanilloid 2 in the regulation of cardiac performance
Lasko, Valerie M.; Koch, Sheryl E.; Singh, Vivek P.; Carreira, Vinicius; Robbins, Nathan; Patel, Amit R.; Jiang, Min; Bidwell, Philip; Kranias, Evangelia G.; Jones, W. Keith; Lorenz, John N.
2013-01-01
Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid. PMID:24322617
Identification of a tetramerization domain in the C terminus of the vanilloid receptor.
García-Sanz, Nuria; Fernández-Carvajal, Asia; Morenilla-Palao, Cruz; Planells-Cases, Rosa; Fajardo-Sánchez, Emmanuel; Fernández-Ballester, Gregorio; Ferrer-Montiel, Antonio
2004-06-09
TRPV1 (transient receptor potential vanilloid receptor subtype 1) is a member of the TRP channel family gated by vanilloids, protons, and heat. Structurally, TRPV1 appears to be a tetramer formed by the assembly of four identical subunits around a central aqueous pore. The molecular determinants that govern its subunit oligomerization remain elusive. Here, we report the identification of a segment comprising 684Glu-721Arg (referred to as the TRP-like domain) in the C terminus of TRPV1 as an association domain (AD) of the protein. Purified recombinant C terminus of TRPV1 (TRPV1-C) formed discrete and stable multimers in vitro. Yeast two-hybrid and pull-down assays showed that self-association of the TRPV1-C is blocked when segment 684Glu-721Arg is deleted. Biochemical and immunological analysis indicate that removal of the AD from full-length TRPV1 monomers blocks the formation of stable heteromeric assemblies with wild-type TRPV1 subunits. Deletion of the AD in a poreless TRPV1 subunit suppressed its robust dominant-negative phenotype. Together, these findings are consistent with the tenet that the TRP-like domain in TRPV1 is a molecular determinant of the tetramerization of receptor subunits into functional channels. Our observations suggest that the homologous TRP domain in the TRP protein family may function as a general, evolutionary conserved AD involved in subunit multimerization.
Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo
Katz, Ben; Oberacker, Tina; Richter, David; Tzadok, Hanan; Peters, Maximilian; Minke, Baruch; Huber, Armin
2013-01-01
Summary Family members of the cationic transient receptor potential (TRP) channels serve as sensors and transducers of environmental stimuli. The ability of different TRP channel isoforms of specific subfamilies to form heteromultimers and the structural requirements for channel assembly are still unresolved. Although heteromultimerization of different mammalian TRP channels within single subfamilies has been described, even within a subfamily (such as TRPC) not all members co-assemble with each other. In Drosophila photoreceptors two TRPC channels, TRP and TRP-like protein (TRPL) are expressed together in photoreceptors where they generate the light-induced current. The formation of functional TRP–TRPL heteromultimers in cell culture and in vitro has been reported. However, functional in vivo assays have shown that each channel functions independently of the other. Therefore, the issue of whether TRP and TRPL form heteromultimers in vivo is still unclear. In the present study we investigated the ability of TRP and TRPL to form heteromultimers, and the structural requirements for channel assembly, by studying assembly of GFP-tagged TRP and TRPL channels and chimeric TRP and TRPL channels, in vivo. Interaction studies of tagged and native channels as well as native and chimeric TRP–TRPL channels using co-immunoprecipitation, immunocytochemistry and electrophysiology, critically tested the ability of TRP and TRPL to interact. We found that TRP and TRPL assemble exclusively as homomultimeric channels in their native environment. The above analyses revealed that the transmembrane regions of TRP and TRPL do not determine assemble specificity of these channels. However, the C-terminal regions of both TRP and TRPL predominantly specify the assembly of homomeric TRP and TRPL channels. PMID:23687378
Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae
Mitchell, Robert F.; Hughes, David T.; Luetje, Charles W.; Millar, Jocelyn G.; Soriano-Agatón, Flor; Hanks, Lawrence M.; Robertson, Hugh M.
2012-01-01
Odorant receptors (Ors) are a unique family of ligand-gated ion channels and the primary mechanism by which insects detect volatile chemicals. Here, we describe 57 putative Ors sequenced from an antennal transcriptome of the cerambycid beetle Megacyllene caryae (Gahan). The male beetles produce a pheromone blend of nine components, and we functionally characterized Ors tuned to three of these chemicals: receptor McOr3 is sensitive to (S)-2-methyl-1-butanol; McOr20 is sensitive to (2S,3R)-2,3-hexanediol; and McOr5 is sensitive to 2-phenylethanol. McOr3 and McOr20 are also sensitive to structurally-related chemicals that are pheromones of other cerambycid beetles, suggesting that orthologous receptors may be present across many cerambycid species. These Ors are the first to be functionally characterized from any species of beetle and lay the groundwork for understanding the evolution of pheromones within the Cerambycidae. PMID:22504490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen-Armon, M.; Garty, H.; Sokolovsky, M.
1988-01-12
The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinicallymore » induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.« less
Imai, Yuko; Itsuki, Kyohei; Okamura, Yasushi; Inoue, Ryuji; Mori, Masayuki X
2012-01-01
Activation of transient receptor potential (TRP) canonical TRPC3/C6/C7 channels by diacylglycerol (DAG) upon stimulation of phospholipase C (PLC)-coupled receptors results in the breakdown of phosphoinositides (PIPs). The critical importance of PIPs to various ion-transporting molecules is well documented, but their function in relation to TRPC3/C6/C7 channels remains controversial. By using an ectopic voltage-sensing PIP phosphatase (DrVSP), we found that dephosphorylation of PIPs robustly inhibits currents induced by carbachol (CCh), 1-oleolyl-2-acetyl-sn-glycerol (OAG) or RHC80267 in TRPC3, TRPC6 and TRPC7 channels, though the strength of the DrVSP-mediated inhibition (VMI) varied among the channels with a rank order of C7 > C6 > C3. Pharmacological and molecular interventions suggest that depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is most likely the critical event for VMI in all three channels. When the PLC catalytic signal was vigorously activated through overexpression of the muscarinic type-I receptor (M1R), the inactivation of macroscopic TRPC currents was greatly accelerated in the same rank order as the VMI, and VMI of these currents was attenuated or lost. VMI was also rarely detected in vasopressin-induced TRPC6-like currents in A7r5 vascular smooth muscle cells, indicating that the inactivation by PI(4,5)P2 depletion underlies the physiological condition. Simultaneous fluorescence resonance energy transfer (FRET)-based measurement of PI(4,5)P2 levels and TRPC6 currents confirmed that VMI magnitude reflects the degree of PI(4,5)P2 depletion. These results demonstrate that TRPC3/C6/C7 channels are differentially regulated by depletion of PI(4,5)P2, and that the bimodal signal produced by PLC activation controls these channels in a self-limiting manner. PMID:22183723
Laha, Kurt T; Ghosh, Borna; Czajkowski, Cynthia
2013-01-01
Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs). Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus (GLIC) in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively) were relatively fast with time constants of 24.9 ± 5.1 ms and 1.2 ± 0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3 ± 0.3 s and deactivated even slower with a time constant of 4.6 ± 1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover mechanisms underlying pLGIC gating transitions.
The food dye FD&C Blue No. 1 is a selective inhibitor of the ATP release channel Panx1.
Wang, Junjie; Jackson, David George; Dahl, Gerhard
2013-05-01
The food dye FD&C Blue No. 1 (Brilliant Blue FCF [BB FCF]) is structurally similar to the purinergic receptor antagonist Brilliant Blue G (BBG), which is a well-known inhibitor of the ionotropic P2X7 receptor (P2X7R). The P2X7R functionally interacts with the membrane channel protein pannexin 1 (Panx1) in inflammasome signaling. Intriguingly, ligands to the P2X7R, regardless of whether they are acting as agonists or antagonists at the receptor, inhibit Panx1 channels. Thus, because both P2X7R and Panx1 are inhibited by BBG, the diagnostic value of the drug is limited. Here, we show that the food dye BB FCF is a selective inhibitor of Panx1 channels, with an IC50 of 0.27 µM. No significant effect was observed with concentrations as high as 100 µM of BB FCF on P2X7R. Differing by just one hydroxyl group from BB FCF, the food dye FD&C Green No. 3 exhibited similar selective inhibition of Panx1 channels. A reverse selectivity was observed for the P2X7R antagonist, oxidized ATP, which in contrast to other P2X7R antagonists had no significant inhibitory effect on Panx1 channels. Based on its selective action, BB FCF can be added to the repertoire of drugs to study the physiology of Panx1 channels. Furthermore, because Panx1 channels appear to be involved directly or indirectly through P2X7Rs in several disorders, BB FCF and derivatives of this "safe" food dye should be given serious consideration for pharmacological intervention of conditions such as acute Crohn's disease, stroke, and injuries to the central nervous system.
Iftinca, Mircea; Flynn, Robyn; Basso, Lilian; Melo, Helvira; Aboushousha, Reem; Taylor, Lauren; Altier, Christophe
2016-01-01
Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund's Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund's Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Our work identified Hsc70 and its ATPase activity as a central cofactor of TRPV1 channel function and points to the role of this stress protein in pain associated with neurodegenerative and/or metabolic disorders, including aging. © The Author(s) 2016.
Modulation of neuronal and recombinant GABAA receptors by redox reagents
Amato, Alessandra; Connolly, Christopher N; Moss, Stephen J; Smart, Trevor G
1999-01-01
The functional role played by the postulated disulphide bridge in γ-aminobutyric acid type A (GABAA) receptors and its susceptibility to oxidation and reduction were studied using recombinant (murine receptor subunits expressed in human embryonic kidney cells) and rat neuronal GABAA receptors in conjunction with whole-cell and single channel patch-clamp techniques. The reducing agent dithiothreitol (DTT) reversibly potentiated GABA-activated responses (IGABA) of α1β1 or α1β2 receptors while the oxidizing reagent 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB) caused inhibition. Redox modulation of IGABA was independent of GABA concentration, membrane potential and the receptor agonist and did not affect the GABA EC50 or Hill coefficient. The endogenous antioxidant reduced glutathione (GSH) also potentiated IGABA in α1β2 receptors, while both the oxidized form of DTT and glutathione (GSSG) caused small inhibitory effects. Recombinant receptors composed of α1β1γ2S or α1β2γ2S were considerably less sensitive to DTT and DTNB. For neuronal GABAA receptors, IGABA was enhanced by flurazepam and relatively unaffected by redox reagents. However, in cultured sympathetic neurones, nicotinic acetylcholine-activated responses were inhibited by DTT whilst in cerebellar granule neurones, NMDA-activated currents were potentiated by DTT and inhibited by DTNB. Single GABA-activated ion channel currents exhibited a conductance of 16 pS for α1β1 constructs. DTT did not affect the conductance or individual open time constants determined from dwell time histograms, but increased the mean open time by affecting the channel open probability without increasing the number of cell surface receptors. A kinetic model of the effects of DTT and DTNB suggested that the receptor existed in equilibrium between oxidized and reduced forms. DTT increased the rate of entry into reduced receptor forms and also into desensitized states. DTNB reversed these kinetic effects. Our results indicate that GABAA receptors formed by α and β subunits are susceptible to regulation by redox agents. Inclusion of the γ2 subunit in the receptor, or recording from some neuronal GABAA receptors, resulted in reduced sensitivity to DTT and DTNB. Given the suggested existence of αβ subunit complexes in some areas of the central nervous system together with the generation and release of endogenous redox compounds, native GABAA receptors may be subject to regulation by redox mechanisms. PMID:10226147
Crystal structure of the ATP-gated P2X[subscript 4] ion channel in the closed state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawate, Toshimitsu; Michel, Jennifer Carlisle; Birdsong, William T.
2009-08-13
P2X receptors are cation-selective ion channels gated by extracellular ATP, and are implicated in diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste and pain. Because P2X receptors are not related to other ion channel proteins of known structure, there is at present no molecular foundation for mechanisms of ligand-gating, allosteric modulation and ion permeation. Here we present crystal structures of the zebrafish P2X{sub 4} receptor in its closed, resting state. The chalice-shaped, trimeric receptor is knit together by subunit-subunit contacts implicated in ion channel gating and receptor assembly. Extracellular domains, rich in {beta}-strands, have largemore » acidic patches that may attract cations, through fenestrations, to vestibules near the ion channel. In the transmembrane pore, the 'gate' is defined by an {approx}8 {angstrom} slab of protein. We define the location of three non-canonical, intersubunit ATP-binding sites, and suggest that ATP binding promotes subunit rearrangement and ion channel opening.« less
Anion-Cation Permeability Correlates with Hydrated Counterion Size in Glycine Receptor Channels
Sugiharto, Silas; Lewis, Trevor M.; Moorhouse, Andrew J.; Schofield, Peter R.; Barry, Peter H.
2008-01-01
The functional role of ligand-gated ion channels depends critically on whether they are predominantly permeable to cations or anions. However, these, and other ion channels, are not perfectly selective, allowing some counterions to also permeate. To address the mechanisms by which such counterion permeation occurs, we measured the anion-cation permeabilities of different alkali cations, Li+ Na+, and Cs+, relative to either Cl− or \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{NO}}_{3}^{-}\\end{equation*}\\end{document} anions in both a wild-type glycine receptor channel (GlyR) and a mutant GlyR with a wider pore diameter. We hypothesized and showed that counterion permeation in anionic channels correlated inversely with an equivalent or effective hydrated size of the cation relative to the channel pore radius, with larger counterion permeabilities being observed in the wider pore channel. We also showed that the anion component of conductance was independent of the nature of the cation. We suggest that anions and counterion cations can permeate through the pore as neutral ion pairs, to allow the cations to overcome the large energy barriers resulting from the positively charged selectivity filter in small GlyR channels, with the permeability of such ion pairs being dependent on the effective hydrated diameter of the ion pair relative to the pore diameter. PMID:18708455
Angiotensin II receptor blocker-based therapy in Japanese elderly, high-risk, hypertensive patients.
Ogawa, Hisao; Kim-Mitsuyama, Shokei; Matsui, Kunihiko; Jinnouchi, Tomio; Jinnouchi, Hideaki; Arakawa, Kikuo
2012-10-01
It is unknown whether high-dose angiotensin II receptor blocker therapy or angiotensin II receptor blocker + calcium channel blocker combination therapy is better in elderly hypertensive patients with high cardiovascular risk. The objective of the study was to compare the efficacy of these treatments in elderly, high-risk Japanese hypertensive patients. The OlmeSartan and Calcium Antagonists Randomized (OSCAR) study was a multicenter, prospective, randomized, open-label, blinded-end point study of 1164 hypertensive patients aged 65 to 84 years with type 2 diabetes or cardiovascular disease. Patients with uncontrolled hypertension during treatment with olmesartan 20 mg/d were randomly assigned to receive 40 mg/d olmesartan (high-dose angiotensin II receptor blocker) or a calcium channel blocker + 20 mg/d olmesartan (angiotensin II receptor blocker + calcium channel blocker). The primary end point was a composite of cardiovascular events and noncardiovascular death. During a 3-year follow-up, blood pressure was significantly lower in the angiotensin II receptor blocker + calcium channel blocker group than in the high-dose angiotensin II receptor blocker group. Mean blood pressure at 36 months was 135.0/74.3 mm Hg in the high-dose angiotensin II receptor blocker group and 132.6/72.6 mm Hg in the angiotensin II receptor blocker + calcium channel blocker group. More primary end points occurred in the high-dose angiotensin II receptor blocker group than in the angiotensin II receptor blocker + calcium channel blocker group (58 vs 48 events, hazard ratio [HR], 1.31, 95% confidence interval, 0.89-1.92; P=.17). In patients with cardiovascular disease at baseline, more primary events occurred in the high-dose angiotensin II receptor blocker group (HR, 1.63, P=.03); in contrast, fewer events were observed in the subgroup without cardiovascular disease (HR, 0.52, P=.14). This treatment-by-subgroup interaction was significant (P=.02). The angiotensin II receptor blocker and calcium channel blocker combination lowered blood pressure more than the high-dose angiotensin II receptor blocker and reduced the incidence of primary end points more than the high-dose angiotensin II receptor blocker in patients with cardiovascular disease. The addition of a second antihypertensive agent is more effective at lowering blood pressure than simply doubling the dose of an existing agent. Copyright © 2012 Elsevier Inc. All rights reserved.
Potential therapeutic targets for ATP-gated P2X receptor ion channels.
Li, Zhiyuan; Liang, Dong; Chen, Ling
2008-04-01
P2X receptors make up a novel family of ligand-gated ion channels that are activated by binding of extracellular ATP. These receptors can form a number of homomeric and heteromeric ion channels, which are widely distributed throughout the human body. They are thought to play an important role in many cellular processes, including synaptic transmission and thrombocyte aggregation. These ion channels are also involved in the pathology of several disease states, including chronic inflammation and neuropathic pain, and thus are the potential targets for drug development. The recent discovery of potent and highly selective antagonists for P2X(7) receptors, through the use of high-throughput screening, has helped to further understand the P2X receptor pharmacology and provided new evidence that P2X(7) receptors play a specific role in chronic pain states. In this review, we discuss how the P2X family of ion channels has distinguished itself as a potential new drug target. We are optimistic that safe and effective candidate drugs will be suitable for progression into clinical development.
Sui, Feng; Lin, Na; Guo, Jian-You; Zhang, Chang-Bin; Du, Xin-Liang; Zhao, Bao-Sheng; Liu, Hong-Bin; Yang, Na; Li, Lan-Fang; Guo, Shu-Ying; Huo, Hai-Ru; Jiang, Ting-Liang
2010-01-01
Cinnamaldehyde (1) is a pharmacologically active ingredient isolated from cassia twig (Ramulus Cinnamomi), which is commonly used in herbal remedies to treat fever-related diseases. Both TRPV1 and TRPM8 ion channel proteins are abundantly expressed in sensory neurons, and are assumed to act as a thermosensor, with the former mediating the feeling of warmth and the latter the feeling of cold in the body. Both of them have recently been reported to be involved in thermoregulation. The purpose of this paper is to further uncover the antipyretic mechanisms of 1 by investigating its effects on the mRNA expression levels and functions of both TRPV1 and TRPM8. The results showed that 1 could up-regulate the mRNA expression levels of TRPV1 at both 37 and 39 degrees C, and its calcium-mediating function was significantly increased at 39 degrees C, all of which could not be blocked by pretreatment of the neuronal cells with ruthenium red, a general transient receptor potential (TRP) blocker, indicating that the action of 1 was achieved through a non-TRPA1 channel pathway. In conclusion, the findings in our in vitro studies might account for part of the peripheral molecular mechanisms for the antipyretic action of 1.
Betaine acts on a ligand-gated ion channel in the nervous system of the nematode C. elegans
Peden, Aude S.; Mac, Patrick; Fei, You-Jun; Castro, Cecilia; Jiang, Guoliang; Murfitt, Kenneth J.; Miska, Eric A.; Griffin, Julian L.; Ganapathy, Vadivel; Jorgensen, Erik M.
2014-01-01
Prior to the advent of synthetic nematocides, natural products such as seaweed were used to control nematode infestations. The nematocidal agent in seaweed is betaine, an amino acid that functions as an osmolyte and methyl donor. However, the molecular mechanisms of betaine toxicity are unknown. Here, we identify the betaine transporter SNF-3 and a betaine receptor ACR-23 in the nematode C. elegans. Mutating snf-3 in a sensitized background causes the animals to be hypercontracted and paralyzed, presumably because of excess extracellular betaine. These behavioral defects are suppressed by mutations in acr-23, which encodes a ligand-gated cation channel of the cys-loop family. ACR-23 is activated by betaine and functions in the mechanosensory neurons to maintain basal levels of locomotion. However, overactivation of the receptor by excess betaine or by the allosteric modulator monepantel causes hypercontraction and death of the nematode. Thus, monepantel targets a betaine signaling pathway in nematodes. PMID:24212673
Wilkinson, Trevor C I
2016-06-15
The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira
2014-06-27
Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Dupuis, Julien P; Revilloud, Jean; Moreau, Christophe J; Vivaudou, Michel
2008-01-01
Cardiac ATP-sensitive potassium (KATP) channels are metabolic sensors formed by the association of the inward rectifier potassium channel Kir6.2 and the sulphonylurea receptor SUR2A. SUR2A adjusts channel gating as a function of intracellular ATP and ADP and is the target of pharmaceutical openers and blockers which, respectively, up- and down-regulate Kir6.2. In an effort to understand how effector binding to SUR2A translates into Kir6.2 gating modulation, we examined the role of a 65-residue SUR2A fragment linking transmembrane domain TMD2 and nucleotide-binding domain NBD2 that has been shown to interact with Kir6.2. This fragment of SUR2A was replaced by the equivalent residues of its close homologue, the multidrug resistance protein MRP1. The chimeric construct was expressed in Xenopus oocytes and characterized using the patch-clamp technique. We found that activation by MgADP and synthetic openers was greatly attenuated although apparent affinities were unchanged. Further chimeragenetic and mutagenetic studies showed that mutation of three residues, E1305, I1310 and L1313 (rat numbering), was sufficient to confer this defective phenotype. The same mutations had no effects on channel block by the sulphonylurea glibenclamide or by ATP, suggesting a role for these residues in activatory – but not inhibitory – transduction processes. These results indicate that, within the KATP channel complex, the proximal C-terminal of SUR2A is a critical link between ligand binding to SUR2A and Kir6.2 up-regulation. PMID:18450778
Phelan, Kevin D.; Mock, Matthew M.; Kretz, Oliver; Shwe, U. Thaung; Kozhemyakin, Maxim; Greenfield, L. John; Dietrich, Alexander; Birnbaumer, Lutz; Freichel, Marc; Flockerzi, Veit
2012-01-01
Canonical transient receptor potential channels (TRPCs) are receptor-operated cation channels that are activated in response to phospholipase C signaling. Although TRPC1 is ubiquitously expressed in the brain, TRPC4 expression is the most restrictive, with the highest expression level limited to the lateral septum. The subunit composition of neuronal TRPC channels remains uncertain because of conflicting data from recombinant expression systems. Here we report that the large depolarizing plateau potential that underlies the epileptiform burst firing induced by metabotropic glutamate receptor agonists in lateral septal neurons was completely abolished in TRPC1/4 double-knockout mice, and was abolished in 74% of lateral septal neurons in TRPC1 knockout mice. Furthermore, neuronal cell death in the lateral septum and the cornu ammonis 1 region of hippocampus after pilocarpine-induced severe seizures was significantly ameliorated in TRPC1/4 double-knockout mice. Our data suggest that both TRPC1 and TRPC4 are essential for an intrinsic membrane conductance mediating the plateau potential in lateral septal neurons, possibly as heteromeric channels. Moreover, excitotoxic neuronal cell death, an underlying process for many neurological diseases, is not mediated merely by ionotropic glutamate receptors but also by heteromeric TRPC channels activated by metabotropic glutamate receptors. TRPC channels could be an unsuspected but critical molecular target for clinical intervention for excitotoxicity. PMID:22144671
Phelan, Kevin D; Mock, Matthew M; Kretz, Oliver; Shwe, U Thaung; Kozhemyakin, Maxim; Greenfield, L John; Dietrich, Alexander; Birnbaumer, Lutz; Freichel, Marc; Flockerzi, Veit; Zheng, Fang
2012-03-01
Canonical transient receptor potential channels (TRPCs) are receptor-operated cation channels that are activated in response to phospholipase C signaling. Although TRPC1 is ubiquitously expressed in the brain, TRPC4 expression is the most restrictive, with the highest expression level limited to the lateral septum. The subunit composition of neuronal TRPC channels remains uncertain because of conflicting data from recombinant expression systems. Here we report that the large depolarizing plateau potential that underlies the epileptiform burst firing induced by metabotropic glutamate receptor agonists in lateral septal neurons was completely abolished in TRPC1/4 double-knockout mice, and was abolished in 74% of lateral septal neurons in TRPC1 knockout mice. Furthermore, neuronal cell death in the lateral septum and the cornu ammonis 1 region of hippocampus after pilocarpine-induced severe seizures was significantly ameliorated in TRPC1/4 double-knockout mice. Our data suggest that both TRPC1 and TRPC4 are essential for an intrinsic membrane conductance mediating the plateau potential in lateral septal neurons, possibly as heteromeric channels. Moreover, excitotoxic neuronal cell death, an underlying process for many neurological diseases, is not mediated merely by ionotropic glutamate receptors but also by heteromeric TRPC channels activated by metabotropic glutamate receptors. TRPC channels could be an unsuspected but critical molecular target for clinical intervention for excitotoxicity.
Suman, Matteo; Sharpe, Jenny A; Bentham, Robert B; Kotiadis, Vassilios N; Menegollo, Michela; Pignataro, Viviana; Molgó, Jordi; Muntoni, Francesco; Duchen, Michael R; Pegoraro, Elena; Szabadkai, Gyorgy
2018-07-01
Core myopathies are a group of childhood muscle disorders caused by mutations of the ryanodine receptor (RyR1), the Ca2+ release channel of the sarcoplasmic reticulum. These mutations have previously been associated with elevated inositol trisphosphate receptor (IP3R) levels in skeletal muscle myotubes derived from patients. However, the functional relevance and the relationship of IP3R mediated Ca2+ signalling with the pathophysiology of the disease is unclear. It has also been suggested that mitochondrial dysfunction underlies the development of central and diffuse multi-mini-cores, devoid of mitochondrial activity, which is a key pathological consequence of RyR1 mutations. Here we used muscle biopsies of central core and multi-minicore disease patients with RyR1 mutations, as well as cellular and in vivo mouse models of the disease to characterize global cellular and mitochondrial Ca2+ signalling, mitochondrial function and gene expression associated with the disease. We show that RyR1 mutations that lead to the depletion of the channel are associated with increased IP3-mediated nuclear and mitochondrial Ca2+ signals and increased mitochondrial activity. Moreover, western blot and microarray analysis indicated enhanced mitochondrial biogenesis at the transcriptional and protein levels and was reflected in increased mitochondrial DNA content. The phenotype was recapitulated by RYR1 silencing in mouse cellular myotube models. Altogether, these data indicate that remodelling of skeletal muscle Ca2+ signalling following loss of functional RyR1 mediates bioenergetic adaptation.
Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.
Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo
2016-07-02
Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.
Regulation of IP 3 Receptors by IP 3 and Ca 2+
NASA Astrophysics Data System (ADS)
Taylor, Colin W.; Swatton, Jane E.
Inositol 1,4,5-trisphosphate ( IP 3) receptors are intracellular Ca 2+ channels that mediate release of Ca 2+ from intracellular stores. The channels are oligomeric assemblies of four subunits, each of which has an N-terminal IP 3-binding domain and each of which contributes to formation of the Ca 2+ channel. In mammals, three different genes encode IP 3 receptors subunits and the type 1 receptor (and perhaps the type 2 receptor) is also expressed as splice variants. Further diversity arises from assembly of the receptor in hetero- and homo-tetrameric channels. The subtypes differ in their expression and regulation, but they share the key property of being regulated by both IP3 and cytosolic Ca 2+. All three mammalian IP 3 subtypes, and probably also the IP 3 receptors expressed in invertebrates, are biphasically regulated by cytosolic Ca2+, although the underlying mechanisms appear to differ between subtypes. The interactions between IP 3 and Ca 2+ in controlling IP 3 receptor gating, and the physiological significance of such regulation will be reviewed.
Fan, Zhuo; Lin, Wei; Lv, Nanying; Ye, Yanrui; Tan, Wen
2016-11-01
This study investigated the effect of the β 2 receptor agonist terbutaline on the single channel activity of BK Ca channel. The effects of racemate and two isomers of terbutaline were all assessed. β 2 adrenoceptors were stably overexpressed on HEK293 cells by lentiviral transduction method and chicken BK Ca channels were transiently expressed on normal HEK293 cell line or HEK293 cells overexpressing β 2 receptors. Data showed that terbutaline significantly increased the single channel open probability of BK Ca channel within 10min. The channel activating effects of terbutaline are stereoselective and mainly stay with the R-enantiomers. The opening probability of BK Ca channel at 10min after drug application normalized to that just before drug application (Po10/Po0s) for R- and S-terbutaline were 7.85±3.20 and 1.06±0.45 respectively at 1μM concentration, corresponding to 28.37±9.96 and 2.68±1.09 at the higher concentration of 10μM. ICI 118551 blocked the effect of R- but not S-terbutaline (10μM), whereas atropine blocked the channel activating effects of S-terbutaline of higher concentration. In addition, the muscarinic receptor agonist carbachol increased the BK Ca channel activity in an atropine-sensitive manner as an positive control experiment, which indicate the involvement of M receptor in the channel activating effect of S-terbutaline. Copyright © 2016. Published by Elsevier B.V.
High susceptibility to fatty liver disease in two-pore channel 2-deficient mice.
Grimm, Christian; Holdt, Lesca M; Chen, Cheng-Chang; Hassan, Sami; Müller, Christoph; Jörs, Simone; Cuny, Hartmut; Kissing, Sandra; Schröder, Bernd; Butz, Elisabeth; Northoff, Bernd; Castonguay, Jan; Luber, Christian A; Moser, Markus; Spahn, Saskia; Lüllmann-Rauch, Renate; Fendel, Christina; Klugbauer, Norbert; Griesbeck, Oliver; Haas, Albert; Mann, Matthias; Bracher, Franz; Teupser, Daniel; Saftig, Paul; Biel, Martin; Wahl-Schott, Christian
2014-08-21
Endolysosomal organelles play a key role in trafficking, breakdown and receptor-mediated recycling of different macromolecules such as low-density lipoprotein (LDL)-cholesterol, epithelial growth factor (EGF) or transferrin. Here we examine the role of two-pore channel (TPC) 2, an endolysosomal cation channel, in these processes. Embryonic mouse fibroblasts and hepatocytes lacking TPC2 display a profound impairment of LDL-cholesterol and EGF/EGF-receptor trafficking. Mechanistically, both defects can be attributed to a dysfunction of the endolysosomal degradation pathway most likely on the level of late endosome to lysosome fusion. Importantly, endolysosomal acidification or lysosomal enzyme function are normal in TPC2-deficient cells. TPC2-deficient mice are highly susceptible to hepatic cholesterol overload and liver damage consistent with non-alcoholic fatty liver hepatitis. These findings indicate reduced metabolic reserve of hepatic cholesterol handling. Our results suggest that TPC2 plays a crucial role in trafficking in the endolysosomal degradation pathway and, thus, is potentially involved in the homoeostatic control of many macromolecules and cell metabolites.
Allosteric modulation of ATP-gated P2X receptor channels
Coddou, Claudio; Stojilkovic, Stanko S.; Huidobro-Toro, J. Pablo
2013-01-01
Seven mammalian purinergic receptor subunits, denoted P2X1 to P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca2+ influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites. PMID:21639805
Morton, Russell A; Valenzuela, C Fernando
2016-02-15
Developmental ethanol exposure damages the hippocampus, a brain region involved in learning and memory. Alterations in synaptic transmission and plasticity may play a role in this effect of ethanol. We previously reported that acute and repeated exposure to ethanol during the third trimester-equivalent inhibits long-term potentiation of GABAA receptor-dependent synaptic currents in CA3 pyramidal neurons through a mechanism that depends on retrograde release of brain-derived neurotrophic factor driven by activation of voltage-gated Ca(2+) channels (Zucca and Valenzuela, 2010). We found evidence indicating that voltage-gated Ca(2+) channels are inhibited in the presence of ethanol, an effect that may play a role in its mechanism of action. Here, we further investigated the acute effect of ethanol on the function of voltage-gated Ca(2+) channels in CA3 pyramidal neurons using Ca(2+) imaging techniques. These experiments revealed that acute ethanol exposure inhibits voltage-gated Ca(2+) channels both in somatic and proximal dendritic compartments. To investigate the long-term consequences of ethanol on voltage-gated Ca(2+) channels, we used patch-clamp electrophysiological techniques to assess the function of L-type voltage-gated Ca(2+) channels during and following ten days of vapor ethanol exposure. During ethanol withdrawal periods, the function of these channels was not significantly affected by vapor chamber exposure. Taken together with our previous findings, our results suggest that 3(rd) trimester-equivalent ethanol exposure transiently inhibits L-type voltage-gated Ca(2+) channel function in CA3 pyramidal neurons and that compensatory mechanisms restore their function during ethanol withdrawal. Transient inhibition of these channels by ethanol may be, in part, responsible for the hippocampal abnormalities associated with developmental exposure to this agent. Copyright © 2015 Elsevier B.V. All rights reserved.
Wacker, Soren; Noskov, Sergei Yu; Perissinotti, Laura L
2017-01-01
The rapid delayed rectifier current IKr is one of the major K+ currents involved in repolarization of the human cardiac action potential. Various inherited or drug-induced forms of the long QT syndrome (LQTS) in humans are linked to functional and structural modifications in the IKr conducting channels. IKr is carried by the potassium channel Kv11.1 encoded by the gene KCNH2 (commonly referred to as human ether-a-go-go-related gene or hERG) [1, 2]. The first necessary step for predicting emergent drug effects on the heart is determining and modeling the binding thermodynamics and kinetics of primary and major off-target drug interactions with subcellular targets. The bulk of drugs that target hERG channels are known to have complex interactions at the atomic scale. Accordingly, one of the goals for this review is to provide comprehensive guide in the universe of computational models aiming to refine our understanding of structure-function relations in Kv11.1 and its isoforms. The special emphasis is placed on the mapping of drug binding sites and tentative mechanisms of channel inhibition and activation by drugs. An overview over recent structural models and mapping of binding sites for blockers and activators of IKr current along with the discussion on agreements and discrepancies among different models is presented. There is an apparent reciprocity or feedback loop between drug binding and action potential of the cardiac myocytes. Thus one has to connect drug binding to a particular receptor so that its functional consequences impact on the action potential duration. The natural pathway is to develop multi-scale models that connect between receptor and cellular scales. The potential for such multi-scale model development is discussed through the lens of common gating models. Accordingly, the second part of this review covers an ongoing development of the kinetic models of gating transitions and cardiac ion currents carried by hERG channels with and without drug bound. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Fucile, Sergio
2017-01-01
Nicotinic acetylcholine receptors (nAChRs) are cation-selective ligand-gated ion channels exhibiting variable Ca 2+ permeability depending on their subunit composition. The Ca 2+ permeability is a crucial functional parameter to understand the physiological role of nAChRs, in particular considering their ability to modulate Ca 2+ -dependent processes such as neurotransmitter release. The rings of extracellular and intracellular charged amino acid residues adjacent to the pore-lining TM2 transmembrane segment have been shown to play a key role in the cation selectivity of these receptor channels, but to date a quantitative relationship between these structural determinants and the Ca 2+ permeability of nAChRs is lacking. In the last years the Ca 2+ permeability of several nAChR subtypes has been experimentally evaluated, in terms of fractional Ca 2+ current ( Pf , i.e., the percentage of the total current carried by Ca 2+ ions). In the present study, the available Pf -values of nAChRs are used to build a simplified modular model describing the contribution of the charged residues in defined regions flanking TM2 to the selectivity filter controlling Ca 2+ influx. This model allows to predict the currently unknown Pf -values of existing nAChRs, as well as the hypothetical Ca 2+ permeability of subunit combinations not able to assemble into functional receptors. In particular, basing on the amino acid sequences, a Pf > 50% would be associated with homomeric nAChRs composed by different α subunits, excluding α7, α9, and α10. Furthermore, according to the model, human α7β2 receptors should have Pf -values ranging from 3.6% (4:1 ratio) to 0.1% (1:4 ratio), much lower than the 11.4% of homomeric α7 nAChR. These results help to understand the evolution and the function of the large diversity of the nicotinic receptor family.
Steered Molecular Dynamics Simulations Predict Conformational Stability of Glutamate Receptors.
Musgaard, Maria; Biggin, Philip C
2016-09-26
The stability of protein-protein interfaces can be essential for protein function. For ionotropic glutamate receptors, a family of ligand-gated ion channels vital for normal function of the central nervous system, such an interface exists between the extracellular ligand binding domains (LBDs). In the full-length protein, the LBDs are arranged as a dimer of dimers. Agonist binding to the LBDs opens the ion channel, and briefly after activation the receptor desensitizes. Several residues at the LBD dimer interface are known to modulate desensitization, and conformational changes around these residues are believed to be involved in the state transition. The general hypothesis is that the interface is disrupted upon desensitization, and structural evidence suggests that the disruption might be substantial. However, when cross-linking the central part of this interface, functional data suggest that the receptor can still undergo desensitization, contradicting the hypothesis of major interface disruption. Here, we illustrate how opening the dimer interface using steered molecular dynamics (SMD) simulations, and analyzing the work values required, provides a quantitative measure for interface stability. For one subtype of glutamate receptors, which is regulated by ion binding to the dimer interface, we show that opening the interface without ions bound requires less work than with ions present, suggesting that ion binding indeed stabilizes the interface. Likewise, for interface mutants with longer-lived active states, the interface is more stable, while the work required to open the interface is reduced for less active mutants. Moreover, a cross-linked mutant can still undergo initial interface opening motions similar to the native receptor and at similar energetic cost. Thus, our results support that interface opening is involved in desensitization. Furthermore, they provide reconciliation of apparently opposing data and demonstrate that SMD simulations can give relevant biological insight into longer time scale processes without the need for expensive calculations.
Epithelial Sodium and Acid-Sensing Ion Channels
NASA Astrophysics Data System (ADS)
Kellenberger, Stephan
The epithelial Na+ channel (ENaC) and acid-sensing ion channels (ASICs) are non-voltage-gated Na+ channels that form their own subfamilies within the ENaC/degenerin ion channel family. ASICs are sensors of extracellular pH, and ENaC, whose main function is trans-epithelial Na+ transport, can sense extra- and intra-cellular Na+. In aldosterone-responsive epithelial cells of the kidney, ENaC plays a critical role in the control of sodium balance, blood volume and blood pressure. In airway epithelia, ENaC has a distinct role in controlling fluid reabsorption at the air-liquid interface, thereby determining the rate of mucociliary transport. In taste receptor cells of the tongue, ENaC is involved in salt taste sensation. ASICs have emerged as key sensors for extracellular protons in central and peripheral neurons. Although not all of their physiological and pathological functions are firmly established yet, there is good evidence for a role of ASICs in the brain in learning, expression of fear, and in neurodegeneration after ischaemic stroke. In sensory neurons, ASICs are involved in nociception and mechanosensation. ENaC and ASIC subunits share substantial sequence homology and the conservation of several functional domains. This chapter summarises our current understanding of the physiological functions and of the mechanisms of ion permeation, gating and regulation of ENaC and ASICs.
TRPM4 channel: a new player in urinary bladder smooth muscle function in rats
Smith, Amy C.; Parajuli, Shankar P.; Hristov, Kiril L.; Cheng, Qiuping; Soder, Rupal P.; Afeli, Serge A. Y.; Earley, Scott; Xin, Wenkuan; Malysz, John
2013-01-01
The TRPM4 channel is a Ca2+-activated, monovalent cation-selective channel of the melastatin transient receptor potential (TRPM) family. The TRPM4 channel is implicated in the regulation of many cellular processes including the immune response, insulin secretion, and pressure-induced vasoconstriction of cerebral arteries. However, the expression and function of the TRPM4 channels in detrusor smooth muscle (DSM) have not yet been explored. Here, we provide the first molecular, electrophysiological, and functional evidence for the presence of TRPM4 channels in rat DSM. We detected the expression of TRPM4 channels at mRNA and protein levels in freshly isolated DSM single cells and DSM tissue using RT-PCR, Western blotting, immunohistochemistry, and immunocytochemistry. 9-Hydroxyphenanthrene (9-phenanthrol), a novel selective inhibitor of TRPM4 channels, was used to examine their role in DSM function. In perforated patch-clamp recordings using freshly isolated rat DSM cells, 9-phenanthrol (30 μM) decreased the spontaneous inward current activity at −70 mV. Real-time DSM live-cell Ca2+ imaging showed that selective inhibition of TRPM4 channels with 9-phenanthrol (30 μM) significantly reduced the intracellular Ca2+ levels. Isometric DSM tension recordings revealed that 9-phenanthrol (0.1–30 μM) significantly inhibited the amplitude, muscle force integral, and frequency of the spontaneous phasic and pharmacologically induced contractions of rat DSM isolated strips. 9-Phenanthrol also decreased the amplitude and muscle force integral of electrical field stimulation-induced contractions. In conclusion, this is the first study to examine the expression and provide evidence for TRPM4 channels as critical regulators of rat DSM excitability and contractility. PMID:23283997
Understanding Cytokine and Growth Factor Receptor Activation Mechanisms
Atanasova, Mariya; Whitty, Adrian
2012-01-01
Our understanding of the detailed mechanism of action of cytokine and growth factor receptors – and particularly our quantitative understanding of the link between structure, mechanism and function – lags significantly behind our knowledge of comparable functional protein classes such as enzymes, G protein-coupled receptors, and ion channels. In particular, it remains controversial whether such receptors are activated by a mechanism of ligand-induced oligomerization, versus a mechanism in which the ligand binds to a pre-associated receptor dimer or oligomer that becomes activated through subsequent conformational rearrangement. A major limitation to progress has been the relative paucity of methods for performing quantitative mechanistic experiments on unmodified receptors expressed at endogenous levels on live cells. In this article we review the current state of knowledge on the activation mechanisms of cytokine and growth factor receptors, critically evaluate the evidence for and against the different proposed mechanisms, and highlight other key questions that remain unanswered. New approaches and techniques have led to rapid recent progress in this area, and the field is poised for major advances in the coming years, which promises to revolutionize our understanding of this large and biologically and medically important class of receptors. PMID:23046381
Structural basis for subtype-specific inhibition of the P2X7 receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karasawa, Akira; Kawate, Toshimitsu
The P2X7 receptor is a non-selective cation channel activated by extracellular adenosine triphosphate (ATP). Chronic activation of P2X7 underlies many health problems such as pathologic pain, yet we lack effective antagonists due to poorly understood mechanisms of inhibition. Here we present crystal structures of a mammalian P2X7 receptor complexed with five structurally-unrelated antagonists. Unexpectedly, these drugs all bind to an allosteric site distinct from the ATP-binding pocket in a groove formed between two neighboring subunits. This novel drug-binding pocket accommodates a diversity of small molecules mainly through hydrophobic interactions. Functional assays propose that these compounds allosterically prevent narrowing of themore » drug-binding pocket and the turret-like architecture during channel opening, which is consistent with a site of action distal to the ATP-binding pocket. These novel mechanistic insights will facilitate the development of P2X7-specific drugs for treating human diseases.« less
A Presynaptic Gain Control Mechanism Fine-Tunes Olfactory Behavior
Root, Cory M.; Masuyama, Kaoru; Green, David S.; Enell, Lina E.; Nässel, Dick R.; Lee, Chi-Hon; Wang, Jing W.
2008-01-01
Early sensory processing can play a critical role in sensing environmental cues. We have investigated the physiological and behavioral function of gain control at the first synapse of olfactory processing in Drosophila. We report that olfactory receptor neurons (ORNs) express the GABAB receptor (GABABR) and its expression expands the dynamic range of ORN synaptic transmission that is preserved in projection neuron responses. Strikingly, we find that different ORN channels have unique baseline levels of GABABR expression. ORNs that sense the aversive odorant CO2 do not express GABABRs nor exhibit any presynaptic inhibition. In contrast, pheromone-sensing ORNs express a high level of GABABRs and exhibit strong presynaptic inhibition. Furthermore, a behavioral significance of presynaptic inhibition was revealed by a courtship behavior in which pheromone-dependent mate localization is impaired in flies that lack GABABRs in specific ORNs. Together, these findings indicate that different olfactory receptor channels may employ heterogeneous presynaptic gain control as a mechanism to allow an animal’s innate behavioral responses to match its ecological needs. PMID:18667158
Sub-cellular distribution and translocation of TRP channels.
Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian
2011-01-01
Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.
NASA Astrophysics Data System (ADS)
Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd
The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.
Spauschus, A; Lentes, K U; Wischmeyer, E; Dissmann, E; Karschin, C; Karschin, A
1996-02-01
Transcripts of a gene, GIRK4, that encodes for a 419-amino-acid protein and shows high structural similarity to other subfamily members of G-protein-activated inwardly rectifying K+ channels (GIRK) have been identified in the human hippocampus. When expressed in Xenopus oocytes, GIRK4 yielded functional GIRK channels with activity that was enhanced by the stimulation of coexpressed serotonin 1A receptors. GIRK4 potentiated basal and agonist-induced currents mediated by other GIRK channels, possibly because of channel heteromerization. Despite the structural similarity to a putative rat KATP channel, no ATP sensitivity or KATP-typical pharmacology was observed for GIRK4 alone or GIRK4 transfected in conjunction with other GIRK channels in COS-7 cells. In rat brain, GIRK4 is expressed together with three other subfamily members, GIRK1-3, most likely in identical hippocampal neurons. Thus, heteromerization or an unknown molecular interaction may cause the physiological diversity observed within this class of K+ channels.
Deng, Yanli; Han, Xuefeng; Tang, Shaoxun; Xiao, Wenjun; Tan, Zhiliang; Zhou, Chuanshe; Wang, Min; Kang, Jinghe
2015-05-15
To explore the regulatory mechanisms of magnolol and honokiol on calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea mice, the concentrations of serum chloride ion (Cl(-)), sodium ion (Na(+)), potassium ion (K(+)) and calcium ion (Ca(2+)) were measured. Additionally, the mRNA expressions of calmodulin 1 (CaM), calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) and beta subunit (CaMKIIβ), ryanodine receptor 1, inositol 1,4,5-trisphosphate receptors (IP3 receptors), protein kinases C (PKC), potassium intermediate/small conductance calcium-activated channels (SK) and potassium large conductance calcium-activated channels(BK)were determined. A diarrhea mouse model was established using ETEC suspensions (3.29×10(9)CFU/ml) at a dosage of 0.02ml/g live body weight (BW). Magnolol or honokiol was intragastrically administered at dosages of 100 (M100 or H100), 300 (M300 or H300) and 500 (M500 or H500) mg/kg BW according to a 3×3 factorial arrangement. Magnolol and honokiol increased the Cl(-) and K(+) concentrations, further, upregulated the CaM, BKα1 and BKβ3 mRNA levels but downregulated the IP3 receptors 1, PKC, SK1, SK2, SK3, SK4 and BKβ4 mRNA expressions. Magnolol and honokiol did not alter the CaMKIIα, CaMKIIβ, ryanodine receptor 1, IP3 receptor 2, IP3 receptor 3, BKβ1 and BKβ2 mRNA expressions. These results clarify that magnolol and honokiol, acting through Ca(2+) channel blockade, inhibit the activation of IP3 receptor 1 to regulate the IP3-Ca(2+) store release, activate CaM to inhibit SK channels, and effectively suppress PKC kinases to promote BKα1 and BKβ3 channels opening and BKβ4 channel closing, which modulates the intestinal ion secretion. Copyright © 2015 Elsevier B.V. All rights reserved.
Mechanosensitive Piezo Channels in the Gastrointestinal Tract.
Alcaino, C; Farrugia, G; Beyder, A
2017-01-01
Sensation of mechanical forces is critical for normal function of the gastrointestinal (GI) tract and abnormalities in mechanosensation are linked to GI pathologies. In the GI tract there are several mechanosensitive cell types-epithelial enterochromaffin cells, intrinsic and extrinsic enteric neurons, smooth muscle cells and interstitial cells of Cajal. These cells use mechanosensitive ion channels that respond to mechanical forces by altering transmembrane ionic currents in a process called mechanoelectrical coupling. Several mechanosensitive ionic conductances have been identified in the mechanosensory GI cells, ranging from mechanosensitive voltage-gated sodium and calcium channels to the mechanogated ion channels, such as the two-pore domain potassium channels K2P (TREK-1) and nonselective cation channels from the transient receptor potential family. The recently discovered Piezo channels are increasingly recognized as significant contributors to cellular mechanosensitivity. Piezo1 and Piezo2 are nonselective cationic ion channels that are directly activated by mechanical forces and have well-defined biophysical and pharmacologic properties. The role of Piezo channels in the GI epithelium is currently under investigation and their role in the smooth muscle syncytium and enteric neurons is still not known. In this review, we outline the current state of knowledge on mechanosensitive ion channels in the GI tract, with a focus on the known and potential functions of the Piezo channels. Copyright © 2017 Elsevier Inc. All rights reserved.
Hayashi, Shusaku; Kurata, Naoto; Yamaguchi, Aya; Amagase, Kikuko; Takeuchi, Koji
2014-06-01
Lubiprostone, a bicyclic fatty acid derived from prostaglandin E1, has been used to treat chronic constipation and irritable bowel syndrome, and its mechanism of action has been attributed to the stimulation of intestinal fluid secretion via the activation of the chloride channel protein 2/cystic fibrosis transmembrane regulator (ClC-2/CFTR) chloride channels. We examined the effects of lubiprostone on indomethacin-induced enteropathy and investigated the functional mechanisms involved, including its relationship with the EP4 receptor subtype. Male Sprague-Dawley rats were administered indomethacin (10 mg/kg p.o.) and killed 24 hours later to examine the hemorrhagic lesions that developed in the small intestine. Lubiprostone (0.01-1 mg/kg) was administered orally twice 30 minutes before and 9 h after the indomethacin treatment. Indomethacin markedly damaged the small intestine, accompanied by intestinal hypermotility, a decrease in mucus and fluid secretion, and an increase in enterobacterial invasion as well as the up-regulation of inducible nitric-oxide synthase (iNOS) and tumor necrosis factor α (TNFα) mRNAs. Lubiprostone significantly reduced the severity of these lesions, with the concomitant suppression of the functional changes. The effects of lubiprostone on the intestinal lesions and functional alterations were significantly abrogated by the coadministration of AE3-208 [4-(4-cyano-2-(2-(4-fluoronaphthalen-1-yl)propionylamino)phenyl)butyric acid], a selective EP4 antagonist, but not by CFTR(inh)-172, a CFTR inhibitor. These results suggest that lubiprostone may prevent indomethacin-induced enteropathy via an EP4 receptor-dependent mechanism. This effect may be functionally associated with the inhibition of intestinal hypermotility and increase in mucus/fluid secretion, resulting in the suppression of bacterial invasion and iNOS/TNFα expression, which are major pathogenic events in enteropathy. The direct activation of CFTR/ClC-2 chloride channels is not likely to have contributed to the protective effects of lubiprostone.
T-cell receptor accessory and co-receptor molecules in channel catfish
USDA-ARS?s Scientific Manuscript database
T cell receptor (TCR) associated invariant chains CD3gamma/delta,epsilon, and zeta as well as TCR co-receptors CD8alpha and CD8beta were isolated from the channel catfish, Ictalurus punctatus, at both the gene and cDNA levels. All of catfish CD3 sequences encode for proteins that resemble their resp...
Li, Shilin; Wang, Xinghuan; Ye, Haixia; Gao, Weicheng; Pu, Xiaoyong; Yang, Zhonghua
2010-03-01
In the present study, we aimed to investigate the expression and distribution of transient receptor potential melastatin (TRPM)- and vanilloid (TRPV)- related channels in rat spermatogenic cells and spermatozoa. Spermatogenic cells and spermatozoa were obtained from male Sprague-Dawley rats. Reverse transcription polymerase chain reaction (RT-PCR) were used to detect the expression of all TRPM and TRPV channel members with specific primers. Western blot analysis was applied for detecting the expression of TRPM and TRPV channel proteins. Immunohistochemistry staining for TRPM4, TRPM7 and TRPV5 was also performed in rat testis. The mRNAs of TRPM3, TRPM4, TRPM7 and TRPV5 were detected in the spermatogenic cells and spermatozoa in rat. Western blot analysis verified the expression of TRPM4, TRPM7 and TRPV5 in the rat spermatogenic cells and spermatozoa. Immunocytochemistry staining for TRPM and TRPV channel families indicated that TRPM4 and TRPM7 proteins were highly expressed in different stages of spermatogenic cells and spermatozoa, while TRPV5 protein was lowly expressed in these cells. Our results demonstrate that mRNAs or proteins for TRPM3, TRPM4, TRPM7 and TRPV5 exist in rat spermatogenic cells and spermatozoa. These data presented here may assist in elucidating the possible physiological function of TRPM and TRPV channels in spermatogenic cells and spermatozoa.
Mestek, A; Hurley, J H; Bye, L S; Campbell, A D; Chen, Y; Tian, M; Liu, J; Schulman, H; Yu, L
1995-03-01
Opioids are some of the most efficacious analgesics used in humans. Prolonged administration of opioids, however, often causes the development of drug tolerance, thus limiting their effectiveness. To explore the molecular basis of those mechanisms that may contribute to opioid tolerance, we have isolated a cDNA for the human mu opioid receptor, the target of such opioid narcotics as morphine, codeine, methadone, and fentanyl. The receptor encoded by this cDNA is 400 amino acids long with 94% sequence similarity to the rat mu opioid receptor. Transient expression of this cDNA in COS-7 cells produced high-affinity binding sites to mu-selective agonists and antagonists. This receptor displays functional coupling to a recently cloned G-protein-activated K+ channel. When both proteins were expressed in Xenopus oocytes, functional desensitization developed upon repeated stimulation of the mu opioid receptor, as observed by a reduction in K+ current induced by the second mu receptor activation relative to that induced by the first. The extent of desensitization was potentiated by both the multifunctional calcium/calmodulin-dependent protein kinase and protein kinase C. These results demonstrate that kinase modulation is a molecular mechanism by which the desensitization of mu receptor signaling may be regulated at the cellular level, suggesting that this cellular mechanism may contribute to opioid tolerance in humans.
Dopamine negatively modulates the NCA ion channels in C. elegans
Topalidou, Irini; Pereira, Laura
2017-01-01
The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels. PMID:28968387
Dopamine negatively modulates the NCA ion channels in C. elegans.
Topalidou, Irini; Cooper, Kirsten; Pereira, Laura; Ailion, Michael
2017-10-01
The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.
Thinking in cycles: MWC is a good model for acetylcholine receptor-channels
Auerbach, Anthony
2012-01-01
Abstract Neuromuscular acetylcholine receptors have long been a model system for understanding the mechanisms of operation of ligand-gated ion channels and fast chemical synapses. These five subunit membrane proteins have two allosteric (transmitter) binding sites and a distant ion channel domain. Occupation of the binding sites by agonist molecules transiently increases the probability that the channel is ion-permeable. Recent experiments show that the Monod, Wyman and Changeux formalism for allosteric proteins, originally developed for haemoglobin, is an excellent model for acetylcholine receptors. By using mutations and single-channel electrophysiology, the gating equilibrium constants for receptors with zero, one or two bound agonist molecules, and the agonist association and dissociation rate constants from both the closed- and open-channel conformations, have been estimated experimentally. The change in affinity for each transmitter molecule between closed and open conformations provides ∼–5.1 kcal mol−1 towards the global gating isomerization of the protein. PMID:21807612
Li-Smerin, Yingying; Swartz, Kenton J.
2000-01-01
Hanatoxin inhibits voltage-gated K+ channels by modifying the energetics of activation. We studied the molecular determinants and physical location of the Hanatoxin receptors on the drk1 voltage-gated K+ channel. First, we made multiple substitutions at three previously identified positions in the COOH terminus of S3 to examine whether these residues interact intimately with the toxin. We also examined a region encompassing S1–S3 using alanine-scanning mutagenesis to identify additional determinants of the toxin receptors. Finally, guided by the structure of the KcsA K+ channel, we explored whether the toxin interacts with the peripheral extracellular surface of the pore domain in the drk1 K+ channel. Our results argue for an intimate interaction between the toxin and the COOH terminus of S3 and suggest that the Hanatoxin receptors are confined within the voltage-sensing domains of the channel, at least 20–25 Å away from the central pore axis. PMID:10828242
Sabourin, Jessica; Bartoli, Fiona; Antigny, Fabrice; Gomez, Ana Maria; Benitah, Jean-Pierre
2016-06-17
Store-operated Ca(2+) entry (SOCE) has emerged as an important mechanism in cardiac pathology. However, the signals that up-regulate SOCE in the heart remain unexplored. Clinical trials have emphasized the beneficial role of mineralocorticoid receptor (MR) signaling blockade in heart failure and associated arrhythmias. Accumulated evidence suggests that the mineralocorticoid hormone aldosterone, through activation of its receptor, MR, might be a key regulator of Ca(2+) influx in cardiomyocytes. We thus assessed whether and how SOCE involving transient receptor potential canonical (TRPC) and Orai1 channels are regulated by aldosterone/MR in neonatal rat ventricular cardiomyocytes. Molecular screening using qRT-PCR and Western blotting demonstrated that aldosterone treatment for 24 h specifically increased the mRNA and/or protein levels of Orai1, TRPC1, -C4, -C5, and stromal interaction molecule 1 through MR activation. These effects were correlated with a specific enhancement of SOCE activities sensitive to store-operated channel inhibitors (SKF-96365 and BTP2) and to a potent Orai1 blocker (S66) and were prevented by TRPC1, -C4, and Orai1 dominant negative mutants or TRPC5 siRNA. A mechanistic approach showed that up-regulation of serum- and glucocorticoid-regulated kinase 1 mRNA expression by aldosterone is involved in enhanced SOCE. Functionally, 24-h aldosterone-enhanced SOCE is associated with increased diastolic [Ca(2+)]i, which is blunted by store-operated channel inhibitors. Our study provides the first evidence that aldosterone promotes TRPC1-, -C4-, -C5-, and Orai1-mediated SOCE in cardiomyocytes through an MR and serum- and glucocorticoid-regulated kinase 1 pathway. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Transient Receptor Potential Canonical (TRPC)/Orai1-dependent Store-operated Ca2+ Channels
Sabourin, Jessica; Bartoli, Fiona; Antigny, Fabrice; Gomez, Ana Maria; Benitah, Jean-Pierre
2016-01-01
Store-operated Ca2+ entry (SOCE) has emerged as an important mechanism in cardiac pathology. However, the signals that up-regulate SOCE in the heart remain unexplored. Clinical trials have emphasized the beneficial role of mineralocorticoid receptor (MR) signaling blockade in heart failure and associated arrhythmias. Accumulated evidence suggests that the mineralocorticoid hormone aldosterone, through activation of its receptor, MR, might be a key regulator of Ca2+ influx in cardiomyocytes. We thus assessed whether and how SOCE involving transient receptor potential canonical (TRPC) and Orai1 channels are regulated by aldosterone/MR in neonatal rat ventricular cardiomyocytes. Molecular screening using qRT-PCR and Western blotting demonstrated that aldosterone treatment for 24 h specifically increased the mRNA and/or protein levels of Orai1, TRPC1, -C4, -C5, and stromal interaction molecule 1 through MR activation. These effects were correlated with a specific enhancement of SOCE activities sensitive to store-operated channel inhibitors (SKF-96365 and BTP2) and to a potent Orai1 blocker (S66) and were prevented by TRPC1, -C4, and Orai1 dominant negative mutants or TRPC5 siRNA. A mechanistic approach showed that up-regulation of serum- and glucocorticoid-regulated kinase 1 mRNA expression by aldosterone is involved in enhanced SOCE. Functionally, 24-h aldosterone-enhanced SOCE is associated with increased diastolic [Ca2+]i, which is blunted by store-operated channel inhibitors. Our study provides the first evidence that aldosterone promotes TRPC1-, -C4-, -C5-, and Orai1-mediated SOCE in cardiomyocytes through an MR and serum- and glucocorticoid-regulated kinase 1 pathway. PMID:27129253
Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A
2016-09-01
Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Structural and Molecular Modeling Features of P2X Receptors
Alves, Luiz Anastacio; da Silva, João Herminio Martins; Ferreira, Dinarte Neto Moreira; Fidalgo-Neto, Antonio Augusto; Teixeira, Pedro Celso Nogueira; de Souza, Cristina Alves Magalhães; Caffarena, Ernesto Raúl; de Freitas, Mônica Santos
2014-01-01
Currently, adenosine 5′-triphosphate (ATP) is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors. PMID:24637936
The desensitization gate of inhibitory Cys-loop receptors
NASA Astrophysics Data System (ADS)
Gielen, Marc; Thomas, Philip; Smart, Trevor G.
2015-04-01
Cys-loop neurotransmitter-gated ion channels are vital for communication throughout the nervous system. Following activation, these receptors enter into a desensitized state in which the ion channel shuts even though the neurotransmitter molecules remain bound. To date, the molecular determinants underlying this most fundamental property of Cys-loop receptors have remained elusive. Here we present a generic mechanism for the desensitization of Cys-loop GABAA (GABAARs) and glycine receptors (GlyRs), which both mediate fast inhibitory synaptic transmission. Desensitization is regulated by interactions between the second and third transmembrane segments, which affect the ion channel lumen near its intracellular end. The GABAAR and GlyR pore blocker picrotoxin prevented desensitization, consistent with its deep channel-binding site overlapping a physical desensitization gate.
Ładno, W; Gawlak, M; Szulczyk, P; Nurowska, E
2017-06-15
TREK-2-like channels were identified on the basis of electrophysiological and pharmacological tests performed on freshly isolated and enzymatically/mechanically dispersed pyramidal neurons of the rat medial prefrontal cortex (mPFC). Single-channel currents were recorded in cell-attached configuration and the impact of adrenergic receptors (α 1 , α 2 , β) stimulation on spontaneously appearing TREK-2-like channel activity was tested. The obtained results indicate that noradrenaline decreases the mean open probability of TREK-2-like channel currents by activation of β 1 but not of α 1 - and α 2 -adrenergic receptors. Mean open time and channel conductance were not affected. The system of intracellular signaling pathways depends on the activation of protein kinase A. We also show that adrenergic control of TREK-2-like channel currents by adrenergic receptors was similar in pyramidal neurons isolated from young, adolescent, and adult rats. Immunofluorescent confocal scans of mPFC slices confirmed the presence of the TREK-2 protein, which was abundant in layer V pyramidal neurons. The role of TREK-2-like channel control by adrenergic receptors is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Ionotropic and metabotropic receptor mediated airway sensory nerve activation.
Lee, Min-Goo; Kollarik, Marian; Chuaychoo, Benjamas; Undem, Bradley J
2004-01-01
There are several receptors capable of inducing activating generator potentials in cough-associated afferent terminals in the airways. The chemical receptors leading to generator potentials can be subclassified into ionotropic and metabotropic types. An ionotropic receptor has an agonist-binding domain, and also serves directly as an ion channel that is opened upon binding of the agonist. Examples of ionotropic receptors found in airway sensory nerve terminals include receptors for serotonin (5-HT3 receptors), ATP (P2X receptors), acetylcholine (nicotinic receptors), receptors for capsaicin and related vanilloids (TRPV1 receptors), and acid receptors (acid sensing ion channels). Afferent nerve terminals can also be depolarized via activation of metabotropic or G-protein coupled receptors (GPCRs). Among the GPCRs that can lead to activation of airway afferent fibers include bradykinin B2 and adenosine A1 receptors. The signaling events leading to GPCR-mediated membrane depolarization are more complex than that seen with ionotropic receptors. The GPCR-mediated effects are thought to occur through classical second messenger systems such as activation of phospholipase C. This may lead to membrane depolarization through interaction with specific ionotropic receptors (such as TRPV1) and/or various types of calcium activated channels.
ATP-activated P2X2 current in mouse spermatozoa
Navarro, Betsy; Miki, Kiyoshi; Clapham, David E.
2011-01-01
Sperm cells acquire hyperactivated motility as they ascend the female reproductive tract, which enables them to overcome barriers and penetrate the cumulus and zona pellucida surrounding the egg. This enhanced motility requires Ca2+ entry via cation channel of sperm (CatSper) Ca2+-selective ion channels in the sperm tail. Ca2+ entry via CatSper is enhanced by the membrane hyperpolarization mediated by Slo3, a K+ channel also present in the sperm tail. To date, no transmitter-mediated currents have been reported in sperm and no currents have been detected in the head or midpiece of mature spermatozoa. We screened a number of neurotransmitters and biomolecules to examine their ability to induce ion channel currents in the whole spermatozoa. Surprisingly, we find that none of the previously reported neurotransmitter receptors detected by antibodies alone are functional in mouse spermatozoa. Instead, we find that mouse spermatozoa have a cation-nonselective current in the midpiece of spermatozoa that is activated by external ATP, consistent with an ATP-mediated increase in intracellular Ca2+ as previously reported. The ATP-dependent current is not detected in mice lacking the P2X2 receptor gene (P2rx2−/−). Furthermore, the slowly desensitizing and strongly outwardly rectifying ATP-gated current has the biophysical and pharmacological properties that mimic heterologously expressed mouse P2X2. We conclude that the ATP-induced current on mouse spermatozoa is mediated by the P2X2 purinergic receptor/channel. Despite the loss of ATP-gated current, P2rx2−/− spermatozoa have normal progressive motility, hyperactivated motility, and acrosome reactions. However, fertility of P2rx2−/− males declines with frequent mating over days, suggesting that P2X2 receptor adds a selection advantage under these conditions. PMID:21831833
Kobrinsky, E; Ondrias, K; Marks, A R
1995-12-01
Two structurally related forms of intracellular calcium release channels that can mediate the release of intracellular calcium have been identified: the ryanodine receptors (RyR) and the inositol 1,4,5-trisphosphate receptors (IP3R). Each channel responds to distinct pathways for activation. The IP3R is activated by IP3 and the RyR is thought to be activated by calcium or by another second messenger cADP ribose. It has been proposed that each type of channel subserves a specialized pool of intracellular calcium, and it is not understood why some cell types require more than one form of intracellular calcium release channel. The present study was designed to examine whether the RyR can substitute for the IP3R during oocyte maturation. IP3R expression was inhibited in Xenopus laevis oocytes using antisense oligonucleotides. These oocytes, with reduced levels of IP3R, demonstrated a marked delay in the time course of progesterone-induced maturation. The cloned skeletal muscle RyR1 was then expressed in X. laevis oocytes that were deficient in IP3R. Functional studies showed that the properties of the cloned RyR1, expressed in oocytes, were comparable to those of the native RyR1. X. laevis oocytes deficient in IP3R, but expressing RyR1, were able to undergo progesterone-induced maturation with a time course comparable to that seen in wild-type oocytes when caffeine was used to activate RyR and induce intracellular calcium release. These studies show that RyR1 can substitute for the IP3R as the intracellular calcium release channel required for Xenopus oocyte maturation and that intracellular calcium release is important for controlling the rate of progesterone-induced maturation.
Comparative functional expression of nAChR subtypes in rodent DRG neurons.
Smith, Nathan J; Hone, Arik J; Memon, Tosifa; Bossi, Simon; Smith, Thomas E; McIntosh, J Michael; Olivera, Baldomero M; Teichert, Russell W
2013-01-01
We investigated the functional expression of nicotinic acetylcholine receptors (nAChRs) in heterogeneous populations of dissociated rat and mouse lumbar dorsal root ganglion (DRG) neurons by calcium imaging. By this experimental approach, it is possible to investigate the functional expression of multiple receptor and ion-channel subtypes across more than 100 neuronal and glial cells simultaneously. Based on nAChR expression, DRG neurons could be divided into four subclasses: (1) neurons that express predominantly α3β4 and α6β4 nAChRs; (2) neurons that express predominantly α7 nAChRs; (3) neurons that express a combination of α3β4/α6β4 and α7 nAChRs; and (4) neurons that do not express nAChRs. In this comparative study, the same four neuronal subclasses were observed in mouse and rat DRG. However, the expression frequency differed between species: substantially more rat DRG neurons were in the first three subclasses than mouse DRG neurons, at all developmental time points tested in our study. Approximately 70-80% of rat DRG neurons expressed functional nAChRs, in contrast to only ~15-30% of mouse DRG neurons. Our study also demonstrated functional coupling between nAChRs, voltage-gated calcium channels, and mitochondrial Ca(2) (+) transport in discrete subsets of DRG neurons. In contrast to the expression of nAChRs in DRG neurons, we demonstrated that a subset of non-neuronal DRG cells expressed muscarinic acetylcholine receptors and not nAChRs. The general approach to comparative cellular neurobiology outlined in this paper has the potential to better integrate molecular and systems neuroscience by uncovering the spectrum of neuronal subclasses present in a given cell population and the functionally integrated signaling components expressed in each subclass.