Sample records for receptor expression compared

  1. Expression profiling of G-protein-coupled receptors in human urothelium and related cell lines.

    PubMed

    Ochodnický, Peter; Humphreys, Sian; Eccles, Rachel; Poljakovic, Mirjana; Wiklund, Peter; Michel, Martin C

    2012-09-01

    What's known on the subject? and What does the study add? Urothelium emerged as a crucial integrator of sensory inputs and outputs in the bladder wall, and urothelial G-protein-coupled receptors (GPCRs) may represent plausible targets for treatment of various bladder pathologies. Urothelial cell lines provide a useful tool to study urothelial receptor function, but their validity as models for native human urothelium remains unclear. We characterize the mRNA expression of genes coding for GPCRs in human freshly isolated urothelium and compare the expression pattern with those in human urothelial cell lines. To characterize the mRNA expression pattern of genes coding for G-protein-coupled receptors (GPCRs) in human freshly isolated urothelium. To compare GPCR expression in human urothelium-derived cell lines to explore the suitability of these cell lines as model systems to study urothelial function. Native human urothelium (commercially sourced) and human urothelium-derived non-cancer (UROtsa and TERT-NHUC) and cancer (J82) cell lines were used. For mRNA expression profiling we used custom-designed real-time polymerase chain reaction array for 40 receptors and several related genes. Native urothelium expressed a wide variety of GPCRs, including α(1A), α(1D) and all subtypes of α(2) and β adrenoceptors. In addition, M(2) and M(3) cholinergic muscarinic receptors, angiotensin II AT(1) receptor, serotonin 5-HT(2A) receptor and all subtypes of bradykinin, endothelin, cannabinoid, tachykinin and sphingosine-1-phosphate receptors were detected. Nerve growth factor and both its low- and high-affinity receptors were also expressed in urothelium. In all cell lines expression of most GPCRs was markedly downregulated, with few exceptions. In UROtsa cells, but much less in other cell lines, the expression of β(2) adrenoceptors, M(3) muscarinic receptors, B(1) and B(2) bradykinin receptors, ET(B) endothelin receptors and several subtypes of sphingosine-1-phosphate receptors was largely retained. Human urothelium expresses a wide range of receptors which enables sensing and integration of various extracellular signals. Human urothelium-derived cell lines, especially UROtsa cells, show comparable mRNA expression to native tissue for several physiologically relevant GPCRs, but lose expression of many other receptors. The use of cell lines as model systems of human urothelium requires careful validation of suitability for the genes of interest. © 2012 BJU INTERNATIONAL.

  2. Differential adipokine receptor expression on circulating leukocyte subsets in lean and obese children.

    PubMed

    Keustermans, Genoveva; van der Heijden, Laila B; Boer, Berlinda; Scholman, Rianne; Nuboer, Roos; Pasterkamp, Gerard; Prakken, Berent; de Jager, Wilco; Kalkhoven, Eric; Janse, Arieke J; Schipper, Henk S

    2017-01-01

    Childhood obesity prevalence has increased worldwide and is an important risk factor for type 2 diabetes (T2D) and cardiovascular disease (CVD). The production of inflammatory adipokines by obese adipose tissue contributes to the development of T2D and CVD. While levels of circulating adipokines such as adiponectin and leptin have been established in obese children and adults, the expression of adiponectin and leptin receptors on circulating immune cells can modulate adipokine signalling, but has not been studied so far. Here, we aim to establish the expression of adiponectin and leptin receptors on circulating immune cells in obese children pre and post-lifestyle intervention compared to normal weight control children. 13 obese children before and after a 1-year lifestyle intervention were compared with an age and sex-matched normal weight control group of 15 children. Next to routine clinical and biochemical parameters, circulating adipokines were measured, and flow cytometric analysis of adiponectin receptor 1 and 2 (AdipoR1, AdipoR2) and leptin receptor expression on peripheral blood mononuclear cell subsets was performed. Obese children exhibited typical clinical and biochemical characteristics compared to controls, including a higher BMI-SD, blood pressure and circulating leptin levels, combined with a lower insulin sensitivity index (QUICKI). The 1-year lifestyle intervention resulted in stabilization of their BMI-SD. Overall, circulating leukocyte subsets showed distinct adipokine receptor expression profiles. While monocytes expressed high levels of all adipokine receptors, NK and iNKT cells predominantly expressed AdipoR2, and B-lymphocytes and CD4+ and CD8+ T-lymphocyte subsets expressed AdipoR2 as well as leptin receptor. Strikingly though, leukocyte subset numbers and adipokine receptor expression profiles were largely similar in obese children and controls. Obese children showed higher naïve B-cell numbers, and pre-intervention also higher numbers of immature transition B-cells and intermediate CD14++CD16+ monocytes combined with lower total monocyte numbers, compared to controls. Furthermore, adiponectin receptor 1 expression on nonclassical CD14+CD16++ monocytes was consistently upregulated in obese children pre-intervention, compared to controls. However, none of the differences in leukocyte subset numbers and adipokine receptor expression profiles between obese children and controls remained significant after multiple testing correction. First, the distinct adipokine receptor profiles of circulating leukocyte subsets may partly explain the differential impact of adipokines on leukocyte subsets. Second, the similarities in adipokine receptor expression profiles between obese children and normal weight controls suggest that adipokine signaling in childhood obesity is primarily modulated by circulating adipokine levels, instead of adipokine receptor expression.

  3. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors

    PubMed Central

    Farroni, Jeffrey S; McCool, Brian A

    2004-01-01

    Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology. PMID:15301692

  4. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors.

    PubMed

    Farroni, Jeffrey S; McCool, Brian A

    2004-08-09

    Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The beta-amino acid taurine possessed 30-50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for beta-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology.

  5. Expression of CCK Receptors in Carcinoma Gallbladder and Cholelithiasis: A Pilot Study.

    PubMed

    Faridi, Mohammad Shazib; Jaiswal, Mahabir Saran Das; Goel, Sudhir K

    2015-07-01

    Gastrin and cholecystokinin (CCK) receptors are trophic for various gastrointestinal malignancies. Their role in gallbladder cancer has not been widely studied. To identify expression of CCK-A and CCK-B receptors in the tissue and blood of patients suffering from carcinoma (CA) gallbladder and gallstone disease and to compare expression of CCK A and B receptors in the gall bladder tissue and blood of healthy individuals and patients of CA gallbladder, and gallstone diseases. Forty nine subjects of both genders were recruited, comprising of 22 patients of CA gall bladder, 19 cases of cholelithiasis and, 8 normal gallbladders obtained from patients operated for trauma of the biliary system or Whipple's procedure. RNA extraction and cDNA formation for CCK-A and CCK-B receptors were carried out. Real Time PCR was performed on cDNA and threshold cycle (Ct) value of each sample was obtained and ΔCt was calculated. Chi-square test for comparing two groups and ANOVA test for comparing multiple groups were applied and if p<0.05 then Dunnett-C test was performed. Both CCK-A and CCK-B receptors were expressed irrespective of its origin in all tissues and blood samples studied; be it normal, Cholelithiasis or CA gallbladder and there was no difference among them (p>0.05). This preliminary study showed higher expression of CCK-A receptors in patients of cholelithiasis and decreased expression of CCK-A receptors in patients of CA gallbladder as compared to normal gallbladder although it did not rise to statistical significance.

  6. Expression of CCK Receptors in Carcinoma Gallbladder and Cholelithiasis: A Pilot Study

    PubMed Central

    Jaiswal, Mahabir Saran Das; Goel, Sudhir K.

    2015-01-01

    Background: Gastrin and cholecystokinin (CCK) receptors are trophic for various gastrointestinal malignancies. Their role in gallbladder cancer has not been widely studied. Objectives: To identify expression of CCK-A and CCK-B receptors in the tissue and blood of patients suffering from carcinoma (CA) gallbladder and gallstone disease and to compare expression of CCK A and B receptors in the gall bladder tissue and blood of healthy individuals and patients of CA gallbladder, and gallstone diseases. Materials and Methods: Forty nine subjects of both genders were recruited, comprising of 22 patients of CA gall bladder, 19 cases of cholelithiasis and, 8 normal gallbladders obtained from patients operated for trauma of the biliary system or Whipple’s procedure. RNA extraction and cDNA formation for CCK-A and CCK-B receptors were carried out. Real Time PCR was performed on cDNA and threshold cycle (Ct) value of each sample was obtained and ΔCt was calculated. Chi-square test for comparing two groups and ANOVA test for comparing multiple groups were applied and if p<0.05 then Dunnett-C test was performed. Observation and Results: Both CCK-A and CCK-B receptors were expressed irrespective of its origin in all tissues and blood samples studied; be it normal, Cholelithiasis or CA gallbladder and there was no difference among them (p>0.05). Conclusion: This preliminary study showed higher expression of CCK-A receptors in patients of cholelithiasis and decreased expression of CCK-A receptors in patients of CA gallbladder as compared to normal gallbladder although it did not rise to statistical significance. PMID:26393162

  7. Cysteinyl Leukotriene 1 Receptor Expression Associated With Bronchial Inflammation in Severe Exacerbations of COPD

    PubMed Central

    Zhu, Jie; Bandi, Venkata; Qiu, Shengyang; Figueroa, David J.; Evans, Jilly F.; Barnes, Neil; Guntupalli, Kay K.

    2012-01-01

    Background: Cysteinyl leukotriene 1 (CysLT1) receptor expression is known to be increased in the airway mucosa of patients with asthma, especially during exacerbations; however, nothing is known of its expression in COPD. Methods: We applied immunohistochemistry and in situ hybridization to endobronchial biopsies to determine inflammatory cell CysLT1 receptor protein and mRNA expression in the following: (1) 15 nonsmoker control subjects (NSC), (2) 16 smokers with moderate to severe COPD in its stable phase (S-COPD), and (3) 15 smokers with COPD hospitalized for a severe exacerbation (SE-COPD). Results: The total number of bronchial mucosal inflammatory cells (CD45+) and those expressing CysLT1 receptor protein were significantly greater in SE-COPD (CysLT1 receptor protein: median [range] = 139 [31-634]) as compared with S-COPD (32 [6-114]) or NSC (16 [4-66]) (P < .001 for both). CysLT1 receptor gene expression showed similar differences. A greater proportion of CD451 cells expressed CysLT1 receptor protein in SE-COPD (median [range] = 22% [8-81]) compared with S-COPD (10% [4-32]) (P < .03) or NSC (7% [1-19]) (P < .002). In SE-COPD, the relative frequencies of CysLT1 receptor-expressing cells were as follows: tryptase1 mast cells > CD681 monocytes/macrophage > neutrophils > CD201 B lymphocytes = EG21 eosinophils. Moreover, there were positive correlations between the numbers of cells expressing CysLT1 receptor protein and the numbers of CD451 cells (r = 0.78; P < .003) and tryptase1 mast cells (r = 0.62; P < .02). Conclusions: Bronchial mucosal CysLT1 receptor-positive inflammatory cells are present in the bronchial mucosa in COPD in greatest number in those experiencing a severe exacerbation. PMID:22871757

  8. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    PubMed

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  9. Protease-activated receptor 2, a receptor involved in melanosome transfer, is upregulated in human skin by ultraviolet irradiation.

    PubMed

    Scott, G; Deng, A; Rodriguez-Burford, C; Seiberg, M; Han, R; Babiarz, L; Grizzle, W; Bell, W; Pentland, A

    2001-12-01

    Previous studies have shown that the protease-activated receptor 2 is involved in skin pigmentation through increased phagocytosis of melanosomes by keratinocytes. Ultraviolet irradiation is a potent stimulus for melanosome transfer. We show that protease-activated receptor 2 expression in human skin is upregulated by ultraviolet irradiation. Subjects with skin type I, II, or III were exposed to two or three minimal erythema doses of irradiation from a solar simulator. Biopsies were taken from nonexposed and irradiated skin 24 and 96 h after irradiation and protease-activated receptor 2 expression was detected using immunohistochemical staining. In nonirradiated skin, protease-activated receptor 2 expression was confined to keratinocytes in the lower one-third of the epidermis. After ultraviolet irradiation protease-activated receptor 2 expression was observed in keratinocytes in the upper two-thirds of the epidermis or the entire epidermis at both time points studied. Subjects with skin type I showed delayed upregulation of protease-activated receptor 2 expression, however, compared with subjects with skin types II and III. Irradiated cultured human keratinocytes showed upregulation in protease-activated receptor 2 expression as determined by immunofluorescence microscopy and Western blotting. Cell culture supernatants from irradiated keratinocytes also exhibited a dose-dependent increase in protease-activated receptor-2 cleavage activity. These results suggest an important role for protease-activated receptor-2 in pigmentation in vivo. Differences in protease-activated receptor 2 regulation in type I skin compared with skin types II and III suggest a potential mechanism for differences in tanning in subjects with different skin types.

  10. β3-Adrenergic receptors, adipokines and neuroendocrine activation during stress induced by repeated immune challenge in male and female rats.

    PubMed

    Csanova, Agnesa; Hlavacova, Natasa; Hasiec, Malgorzata; Pokusa, Michal; Prokopova, Barbora; Jezova, Daniela

    2017-05-01

    The main hypothesis of the study is that stress associated with repeated immune challenge has an impact on β 3 -adrenergic receptor gene expression in the brain. Sprague-Dawley rats were intraperitoneally injected with increasing doses of lipopolysaccharide (LPS) for five consecutive days. LPS treatment was associated with body weight loss and increased anxiety-like behavior. In LPS-treated animals of both sexes, β 3 -receptor gene expression was increased in the prefrontal cortex but not the hippocampus. LPS treatment decreased β 3 -receptor gene expression in white adipose tissue with higher values in males compared to females. In the adipose tissue, LPS reduced peroxisome proliferator-activated receptor-gamma, leptin and adiponectin gene expression, but increased interleukin-6 expression, irrespective of sex. Repeated immune challenge resulted in increased concentrations of plasma aldosterone and corticosterone with higher values of corticosterone in females compared to males. Concentrations of dehydroepiandrosterone (DHEA) in plasma were unaffected by LPS, while DHEA levels in the frontal cortex were lower in the LPS-treated animals compared to the controls. Thus, changes of DHEA levels in the brain take place irrespective of the changes of this neurosteroid in plasma. We have provided the first evidence on stress-induced increase in β 3 -adrenergic receptor gene expression in the brain. Greater reduction of β 3 -adrenergic receptor expression in the adipose tissue and of the body weight gain by repeated immune challenge in male than in female rats suggests sex differences in the role of β 3 -adrenergic receptors in the metabolic functions. LPS-induced changes in adipose tissue regulatory factors and hormone concentrations might be important for coping with chronic infections.

  11. Non-pharmacological treatment affects neuropeptide expression in neuropathic pain model.

    PubMed

    Santos, Fabio Martinez; Silva, Joyce Teixeira; Rocha, Igor Rafael Correia; Martins, Daniel Oliveira; Chacur, Marucia

    2018-05-15

    Chronic constriction injury (CCI) of the sciatic nerve elicits changes in neuropeptide expression on the dorsal root ganglia (DRG). The neural mobilization (NM) technique is a noninvasive method that has been proven clinically effective in reducing pain. The aim of this study was to analyze the expression of substance P, transient receptor potential vanilloid 1 (TRPV1) and opioid receptors in the DRG of rats with chronic constriction injury and to compare it to animals that received NM treatment. CCI was performed on adult male rats. Each animal was submitted to 10 sessions of neural mobilization every other day, starting 14 days after the CCI injury. At the end of the sessions, the DRG (L4-L6) were analyzed using Western blot assays for substance P, TRPV1 and opioid receptors (µ-opioid receptor, δ-opioid receptor and κ-opioid receptor). We observed a decreased substance P and TRPV1 expression (48% and 35%, respectively) and an important increase of µ-opioid receptor expression (200%) in the DRG after NM treatment compared to control animals. The data provide evidence that NM promotes substantial changes in neuropeptide expression in the DRG; these results may provide new options for treating neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effect of transient receptor potential vanilloid 6 gene silencing on the expression of calcium transport genes in chicken osteoblasts.

    PubMed

    Zhang, Jie; Deng, Yifeng; Ma, Huijie; Hou, Jiafa; Zhou, ZhenLei

    2015-03-01

    Ca2+ plays a major role in the regulation of signal transduction. Transient receptor potential vanilloid 6 is a Ca2+-selective channel that serves as an important rate-limiting step in the facilitation of Ca2+ entry into cells, but little is known about the regulation of transient receptor potential vanilloid 6 in chickens. In this study, we evaluated the effects of transient receptor potential vanilloid 6 gene interference on the expression of calbindin-D28K, Na+/Ca2+ exchangers, and plasma membrane Ca2+ ATPase 1b to investigate the mechanism underlying the regulation of transient receptor potential vanilloid 6. Three hairpin siRNA expression vectors targeting transient receptor potential vanilloid 6 (pSIREN- transient receptor potential vanilloid 6) and a negative control (pSIREN-control) were constructed and transfected into chicken osteoblasts. The mRNA and protein expression levels were evaluated by quantitative reverse transcription polymerase chain reaction and Western blot, respectively. The mRNA expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 45.7% (P<0.01) and 27.9% (P<0.01), respectively, 48 h after transfection with one of the three constructs (pSIREN- transient receptor potential vanilloid 6-3) compared with the level obtained in the untreated group. There was no significant difference in the mRNA expression levels of Na+/Ca2+ exchangers and plasma membrane Ca2+ ATPase 1b. The protein expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 40.2% (P<0.01) and 29.8% (P<0.01), respectively, 48 h after transfection with pSIREN-transient receptor potential vanilloid 6-3 compared with the level obtained in the untreated group. In conclusion, the vector-based transient receptor potential vanilloid 6-shRNA can efficiently suppress the mRNA and protein expression of transient receptor potential vanilloid 6 in chicken osteoblasts, and transient receptor potential vanilloid 6 regulates the expression of calbindin-D28K during Ca2+ transport. © 2015 Poultry Science Association Inc.

  13. Functional importance of GLP-1 receptor species and expression levels in cell lines.

    PubMed

    Knudsen, Lotte Bjerre; Hastrup, Sven; Underwood, Christina Rye; Wulff, Birgitte Schjellerup; Fleckner, Jan

    2012-04-10

    Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Comparative genomics reveals tissue-specific regulation of prolactin receptor gene expression

    USDA-ARS?s Scientific Manuscript database

    Prolactin (PRL), acting via the prolactin receptor, fulfills a diversity of biological functions including the maintenance of solute balance and mineral homeostasis via tissues such as the heart, kidneys and intestine. Expression and activity of the prolactin receptor (PRLR) is regulated by various ...

  15. TRAIL Death Receptor-4, Decoy Receptor-1 and Decoy Receptor-2 Expression on CD8+ T Cells Correlate with the Disease Severity in Patients with Rheumatoid Arthritis

    PubMed Central

    2010-01-01

    Background Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disorder. Although the pathogenesis of disease is unclear, it is well known that T cells play a major role in both development and perpetuation of RA through activating macrophages and B cells. Since the lack of TNF-Related Apoptosis Inducing Ligand (TRAIL) expression resulted in defective thymocyte apoptosis leading to an autoimmune disease, we explored evidence for alterations in TRAIL/TRAIL receptor expression on peripheral T lymphocytes in the molecular mechanism of RA development. Methods The expression of TRAIL/TRAIL receptors on T cells in 20 RA patients and 12 control individuals were analyzed using flow cytometry. The correlation of TRAIL and its receptor expression profile was compared with clinical RA parameters (RA activity scored as per DAS28) using Spearman Rho Analysis. Results While no change was detected in the ratio of CD4+ to CD8+ T cells between controls and RA patient groups, upregulation of TRAIL and its receptors (both death and decoy) was detected on both CD4+ and CD8+ T cells in RA patients compared to control individuals. Death Receptor-4 (DR4) and the decoy receptors DcR1 and DcR2 on CD8+ T cells, but not on CD4+ T cells, were positively correlated with patients' DAS scores. Conclusions Our data suggest that TRAIL/TRAIL receptor expression profiles on T cells might be important in revelation of RA pathogenesis. PMID:20799941

  16. Losartan suppresses the kainate-induced changes of angiotensin AT1 receptor expression in a model of comorbid hypertension and epilepsy.

    PubMed

    Atanasova, Dimitrinka; Tchekalarova, Jana; Ivanova, Natasha; Nenchovska, Zlatina; Pavlova, Ekaterina; Atanassova, Nina; Lazarov, Nikolai

    2018-01-15

    Experimental and clinical studies have demonstrated that components of renin-angiotensin system are elevated in the hippocampus in epileptogenic conditions. In the present work, we explored the changes in the expression of angiotensin II receptor, type 1 (AT 1 receptor) in limbic structures, as well as the effect of the AT1 receptor antagonist losartan in a model of comorbid hypertension and epilepsy. The expression of AT 1 receptors was compared between spontaneously hypertensive rats (SHRs) and Wistar rats by using immunohistochemistry in the kainate (KA) model of temporal lobe epilepsy (TLE). The effect of losartan was studied on AT 1 receptor expression in epileptic rats that were treated for a period of 4weeks after status epilepticus. The naive and epileptic SHRs were characterized by stronger protein expression of AT 1 receptor than normotensive Wistar rats in the CA1, CA3a, CA3b, CA3c field and the hilus of the dentate gyrus of the dorsal hippocampus but fewer cells were immunostained in the piriform cortex. Increased AT 1 immunostaining was observed in the basolateral amygdala of epileptic SHRs but not of epileptic Wistar rats. Losartan exerted stronger and structure-dependent suppression of AT 1 receptor expression in SHRs compared to Wistar rats. Our results confirm the important role of AT 1 receptor in epilepsy and suggest that the AT 1 receptor antagonists could be used as a therapeutic strategy for treatment of comorbid hypertension and epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    PubMed

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P < 0.01). In contrast, PGR expression was significantly down-regulated in the cancer group (P < 0.05). There were no significant differences in AR, ERalpha or PSA expression between the groups. This study represents the first to show an upregulation of ERbeta gene expression in laser microdissected prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  18. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses' Health Study.

    PubMed

    Collins, Laura C; Cole, Kimberly S; Marotti, Jonathan D; Hu, Rong; Schnitt, Stuart J; Tamimi, Rulla M

    2011-07-01

    Previous studies have demonstrated that androgen receptor is expressed in many breast cancers, but its expression in relation to the various breast cancer subtypes as defined by molecular profiling has not been studied in detail. We constructed tissue microarrays from 3093 breast cancers that developed in women enrolled in the Nurses' Health Study. Tissue microarray sections were immunostained for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), cytokeratin 5/6, epidermal growth factor receptor (EGFR) and androgen receptor (ER). Immunostain results were used to categorize each cancer as luminal A or B, HER2 and basal like. The relationships between androgen receptor expression and molecular subtype were analyzed. Overall, 77% of the invasive breast carcinomas were androgen receptor positive. Among 2171 invasive cancers, 64% were luminal A, 15% luminal B, 6% HER2 and 11% basal like. The frequency of androgen receptor expression varied significantly across the molecular phenotypes (P<0.0001). In particular, androgen receptor expression was commonly observed in luminal A (91%) and B (68%) cancers, but was less frequently seen in HER2 cancers (59%). Despite being defined by the absence of ER and PR expression and being considered hormonally unresponsive, 32% of basal-like cancers expressed androgen receptor. Among 246 cases of ductal carcinoma in situ, 86% were androgen receptor positive, but the frequency of androgen receptor expression differed significantly across the molecular phenotypes (P=0.001), and high nuclear grade lesions were less likely to be androgen receptor positive compared with lower-grade lesions. Androgen receptor expression is most commonly seen in luminal A and B invasive breast cancers. However, expression of androgen receptor is also seen in approximately one-third of basal-like cancers, providing further evidence that basal-like cancers represent a heterogeneous group. Our findings raise the possibility that targeting the androgen receptor pathway may represent a novel therapeutic approach to the management of patients with basal-like cancers.

  19. Characterization of an ICII82, 780-Induced, Estrogen Receptor (ER)-beta Mediated Apoptotic Pathway in Prostate Cancer Cells and Establishment of (ER)-beta-Regulated Electrophile-Processing Phase II Enzyme Downregulation as a Promotional Factor in Human Prostatic Carcinogenesis

    DTIC Science & Technology

    2001-05-01

    absent in higher-grade cancers. ERP3 expression reappeared in metastatic prostatic carcinomas . The results were also compared to ERMo and androgen...metastatic prostatic carcinomas in bone and lymph nodes. The results were compared to ERax and androgen receptor expressions in those samples. Taken... carcinomas of the peripheral zone were in contrast strongly positive for the 13 receptor whereas its expression in grade 415 cancers was negligible to

  20. Expression changes of serotonin receptor gene subtype 5HT3a in peripheral blood mononuclear cells from schizophrenic patients treated with haloperidol and Olanzapin.

    PubMed

    Shariati, Gholam Reza; Ahangari, Ghasem; Hossein-nezhad, Arash; Asadi, Seyed Mohammad; Pooyafard, Farzaneh; Ahmadkhaniha, Hamid Reza

    2009-09-01

    Serotonin receptors are involved in pathophysiology of schizophrenia and may mediate other neurotransmitter effects. We investigated serotonin receptors gene expression in peripheral blood mononuclear cells (PBMC) of naïve schizophrenic patients, before and after treatment. Also serotonin receptor gene expression was compared in two treatment groups including Haloperidol and Olanzapine. The PBMC was separated from whole blood by Ficoll-hypaque. The total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time PCR using primer pairs specific for 5HT(3a) serotonin receptor mRNA and beta-actin as internal control. The results showed the presence of subtype of serotonin receptor in lymphocytes. Serotonin gene expression showed significant changes in Olanzapine treatment group which correlated with Clinical Global Impression (CGI) score improvement. In conclusion, the present study has shown that human PBMC express serotonin receptors 5HT(3a). Moreover, clinical symptom improvement of Olanzapin may be demonstrated by a change in serotonin receptor gene expression.

  1. Chemokine and Chemokine Receptor Profiles in Metastatic Salivary Adenoid Cystic Carcinoma.

    PubMed

    Mays, Ashley C; Feng, Xin; Browne, James D; Sullivan, Christopher A

    2016-08-01

    To characterize the chemokine pattern in metastatic salivary adenoid cystic carcinoma (SACC). Real-time polymerase chain reaction (RT-PCR) was used to compare chemokine and chemokine receptor gene expression in two SACC cell lines: SACC-83 and SACC-LM (lung metastasis). Chemokines and receptor genes were then screened and their expression pattern characterized in human tissue samples of non-recurrent SACC and recurrent SACC with perineural invasion. Expression of chemokine receptors C5AR1, CCR1, CCR3, CCR6, CCR7, CCR9, CCR10, CXCR4, CXCR6, CXCR7, CCRL1 and CCRL2 were higher in SACC-83 compared to SACC-LM. CCRL1, CCBP2, CMKLR1, XCR1 and CXCR2 and 6 chemokine genes (CCL13, CCL27, CXCL14, CMTM1, CMTM2, CKLF) were more highly expressed in tissues of patients without tumor recurrence/perineural invasion compared to those with tumor recurrence. CCRL1 (receptor), CCL27, CMTM1, CMTM2, and CKLF (chemokine) genes were more highly expressed in SACC-83 and human tissues of patients without tumor recurrence/perineural invasion. CCRL1, CCL27, CMTM1, CMTM2 and CKLF may play important roles in the development of tumor metastases in SACC. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Feasibility Study of Odor Biosensor Using Dissociate Neuronal Culture with Gene Expression of Ionotropic Odorant Receptors

    NASA Astrophysics Data System (ADS)

    Tanada, Norio; Sakurai, Takeshi; Mitsuno, Hidefumi; Bakkum, Douglas; Kanzaki, Ryohei; Takahashi, Hirokazu

    We propose a highly sensitive and real-time odor biosensor by expressing ionotropic odorant receptors of insects into dissociated cultures of neurons of rats. The odorant-gated ion channel structure of insect odorant receptor is expected to allow easy functional expression into cells. The neuronal dissociated cultures of rats have two significant advantages: a long lifetime comparable to rats, i.e., a few years; and amplification ability from weak ionic currents of odorant receptors into easily detectable action potentials of neurons. In the present work, in order to show the feasibility of the proposed sensor, we attempt to express the pheromone receptors of silkmoth, Bombyx mori, into cultured neurons of rats. We demonstrate that 10% of neuronal cells transfected using Lipofectamine successfully expressed pheromone receptors, and that these cells showed significant increase of calcium signals by 50% at the presentation of pheromone.

  3. Endocannabinoid receptor deficiency affects maternal care and alters the dam's hippocampal oxytocin receptor and brain-derived neurotrophic factor expression.

    PubMed

    Schechter, M; Weller, A; Pittel, Z; Gross, M; Zimmer, A; Pinhasov, A

    2013-10-01

    Maternal care is the newborn's first experience of social interaction, and this influences infant survival, development and social competences throughout life. We recently found that postpartum blocking of the endocannabinoid receptor-1 (CB1R) altered maternal behaviour. In the present study, maternal care was assessed by the time taken to retrieve pups, pups' ultrasonic vocalisations (USVs) and pup body weight, comparing CB1R deleted (CB1R KO) versus wild-type (WT) mice. After culling on postpartum day 8, hippocampal expression of oxytocin receptor (OXTR), brain-derived neurotrophic factor (BDNF) and stress-mediating factors were evaluated in CB1R KO and WT dams. Comparisons were also performed with nulliparous (NP) CB1R KO and WT mice. Compared to WT, CB1R KO dams were slower to retrieve their pups. Although the body weight of the KO pups did not differ from the weight of WT pups, they emitted fewer USVs. This impairment of the dam-pup relationship correlated with a significant reduction of OXTR mRNA and protein levels among CB1R KO dams compared to WT dams. Furthermore, WT dams exhibited elevated OXTR mRNA expression, as well as increased levels of mineralocorticoid and glucocorticoid receptors, compared to WT NP mice. By contrast, CB1R KO dams showed no such elevation of OXTR expression, alongside lower BDNF and mineralocorticoid receptors, as well as elevated corticotrophin-releasing hormone mRNA levels, when compared to CB1R KO NP. Thus, it appears that the disruption of endocannabinoid signalling by CB1R deletion alters expression of the OXTR, apparently leading to deleterious effects upon maternal behaviour. © 2013 British Society for Neuroendocrinology.

  4. Expression profile of endothelin receptors (ETA and ETB) and microRNAs-155 and -199 in the corpus cavernosum of rats submitted to chronic alcoholism and diabetes mellitus.

    PubMed

    Gonçalves, F Z; Lizarte Neto, F S; Novais, P C; Gattas, D; Lourenço, L G; de Carvalho, C A M; Tirapelli, D P C; Molina, C A F; Tirapelli, L F; Tucci, S

    2018-03-01

    Recent evidence shows that chronic ethanol consumption increases endothelin (ET)-1 induced sustained contraction of trabecular smooth muscle cells of the corpora cavernosa in corpus cavernosum of rats by a mechanism that involves increased expression of ETA and ETB receptors. Our goal was to evaluate the effects of alcohol and diabetes and their relationship to miRNA-155, miRNA-199 and endothelin receptors in the corpus cavernosum and blood of rats submitted to the experimental model of diabetes mellitus and chronic alcoholism. Forty-eight male Wistar rats were divided into four groups: control (C), alcoholic (A), diabetic (D), and alcoholic-diabetic (AD). Samples of the corpus cavernosum were prepared to study the protein expression of endothelin receptors by immunohistochemistry and expression of miRNAs-155 and -199 in serum and the cavernous tissue. Immunostaining for endothelin receptors was markedly higher in the A, D, and AD groups than in the C group. Moreover, a significant hypoexpression of the miRNA-199 in the corpus cavernosum tissue from the AD group was observed, compared to the C group. When analyzing the microRNA profile in blood, a significant hypoexpression of miRNA-155 in the AD group was observed compared to the C group. The miRNA-199 analysis demonstrated significant hypoexpression in D and AD groups compared to the C group. Our findings in corpus cavernosum showed downregulated miRNA-155 and miRNA-199 levels associated with upregulated protein expression and unaltered mRNA expression of ET receptors suggesting decreased ET receptor turnover, which can contribute to erectile dysfunction in diabetic rats exposed to high alcohol levels.

  5. Distribution of cellular HSV-1 receptor expression in human brain.

    PubMed

    Lathe, Richard; Haas, Juergen G

    2017-06-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  6. Role of decoy molecules in neuronal ischemic preconditioning

    PubMed Central

    Panneerselvam, Mathivadhani; Patel, Piyush M.; Roth, David M.; Kidd, Michael W.; Chin-Lee, Blake; Head, Brian P.; Niesman, Ingrid R.; Inoue, Satoki; Patel, Hemal H.; Davis, Daniel P.

    2011-01-01

    Decoy receptors bind with TNF related apoptosis inducing ligands (TRAIL) but do not contain the cytoplasmic domains necessary to transduce apoptotic signals. We hypothesized that decoy receptors may confer neuronal protection against lethal ischemia after ischemic preconditioning (IPC). Mixed cortical neurons were exposed to IPC one day prior to TRAIL treatment or lethal ischemia. IPC increased decoy receptor but reduced death receptor expression compared to lethal ischemia. IPC-induced increase in decoy receptor expression was reduced by prior treatment with CAPE, a nuclear factor-kappa B inhibitor (NFκB). Expression of decoy molecules, dependent on NFκB, may mediate neuronal survival induced by IPC. PMID:21315738

  7. Gene and protein expression of oestrogen-β and progesterone receptors in facial melasma and adjacent healthy skin in women.

    PubMed

    Tamega, A de A; Miot, H A; Moço, N P; Silva, M G; Marques, M E A; Miot, L D B

    2015-04-01

    Compare gene and protein expression for oestrogen receptor-β (ER-β) and progesterone receptor (PR) in facial melasma and adjacent healthy skin. A cross-sectional study including 42 women with facial melasma, conducted at the Dermatology Service of Botucatu Medical School of São Paulo State University, Brazil. Biopsies of the melasma skin were performed, together with healthy surrounding skin. The gene expression (real-time PCR) of the hormone receptors in the tissue was evaluated. Subsequently, skin fragments were immunostained for nuclear ER-β and PR, evaluated according to their HSCORE (epidermis) and percentage of staining per microscopic field (dermis). Messenger RNA tissue expression for ER-β and PR showed no difference between melasma-affected skin fragments and the healthy perilesional areas (P > 0.2). Median nuclear epithelial expression for ER-β and PR was higher in lesioned skin (HSCORE 157 and 58) than in the healthy perilesional skin (HSCORE 97 and 19; P < 0.01), with no difference in dermal immunostaining. Nuclear histological expression for ER-β was associated to sun-induced melasma and negative familiar background; PR expression was associated to sun-induced melasma and darker phototypes. No difference was observed in gene expression for oestrogen-β and progesterone receptors in melasma-affected skin compared with adjacent healthy skin. However, the higher protein expression of these receptors in melasma-affected epithelia suggests hormonal participation in the pathogenesis of this disease. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  8. Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool.

    PubMed

    Jamnongkan, Wassana; Thanan, Raynoo; Techasen, Anchalee; Namwat, Nisana; Loilome, Watcharin; Intarawichian, Piyapharom; Titapun, Attapol; Yongvanit, Puangrat

    2017-07-01

    Labile iron pool is a cellular source of ions available for Fenton reactions resulting in oxidative stress. Living organisms avoid an excess of free irons by a tight control of iron homeostasis. We investigated the altered expression of iron regulatory proteins and iron discrimination in the development of liver fluke-associated cholangiocarcinoma. Additionally, the levels of labile iron pool and the functions of transferrin receptor-1 on cholangiocarcinoma development were also identified. Iron deposition was determined using the Prussian blue staining method in human cholangiocarcinoma tissues. We investigated the alteration of iron regulatory proteins including transferrin, transferrin receptor-1, ferritin, ferroportin, hepcidin, and divalent metal transporter-1 in cholangiocarcinoma tissues using immunohistochemistry. The clinicopathological data of cholangiocarcinoma patients and the expressions of proteins were analyzed. Moreover, the level of intracellular labile iron pool in cholangiocarcinoma cell lines was identified by the RhoNox-1 staining method. We further demonstrated transferrin receptor-1 functions on cell proliferation and migration upon small interfering RNA for human transferrin receptor 1 transfection. Results show that Iron was strongly stained in tumor tissues, whereas negative staining was observed in normal bile ducts of healthy donors. Interestingly, high iron accumulation was significantly correlated with poor prognosis of cholangiocarcinoma patients. The expressions of iron regulatory proteins in human cholangiocarcinoma tissues and normal liver from cadaveric donors revealed that transferrin receptor-1 expression was increased in the cancer cells of cholangiocarcinoma tissues when compared with the adjacent normal bile ducts and was significantly correlated with cholangiocarcinoma metastasis. Labile iron pool level and transferrin receptor-1 expression were significantly increased in KKU-214 and KKU-213 when compared with cholangiocyte cells (MMNK1). Additionally, the suppression of transferrin receptor-1 expression significantly decreased intracellular labile iron pool, cholangiocarcinoma migration, and cell proliferation when compared with control media and control small interfering RNA. In Conclusion, high expression of transferrin receptor-1 resulting in iron uptake contributes to increase in the labile iron pool which plays roles in cholangiocarcinoma progression with aggressive clinical outcomes.

  9. Expression patterns of lectin-like natural killer receptors, inhibitory CD94/NKG2A, and activating CD94/NKG2C on decidual CD56bright natural killer cells differ from those on peripheral CD56dim natural killer cells.

    PubMed

    Kusumi, Maki; Yamashita, Takahiro; Fujii, Tomoyuki; Nagamatsu, Takeshi; Kozuma, Shiro; Taketani, Yuji

    2006-06-01

    The balance of inhibitory and activating natural killer (NK) receptors on maternal decidual NK cells, most of which are CD56bright, is thought to be crucial for the proper growth of trophoblasts in placenta. A lectin-like NK receptor, CD94/NKG2, is the receptor for human leukocyte antigen (HLA)-E, which is expressed on trophoblasts. To clarify the mechanism regulating the activity of decidual NK cells during pregnancy, we investigated the expression patterns of inhibitory NK receptor, CD94/NKG2A, and activating receptor, CD94/NKG2C, on decidual NK cells in an early stage of normal pregnancy and compared them with those on peripheral NK cells, most of which are CD56dim. The rate of NKG2A-positive cells was significantly higher for decidual CD56bright NK cells than for peripheral CD56dim NK cells, but the rates of NKG2C-positive cells were comparable between the two cell types. Interestingly, peripheral CD56dim NK cells reciprocally expressed inhibitory NKG2A and activating NKG2C, but decidual CD56bright NK cells that expressed activating NKG2C simultaneously expressed inhibitory NKG2A. The co-expression of inhibitory and activating NKG2 receptors may fine-tune the immunoregulatory functions of the decidual NK cells to control the trophoblast invasion in constructing placenta.

  10. Different expressions and DNA methylation patterns of lysophosphatidic acid receptor genes in mouse tumor cells.

    PubMed

    Okabe, Kyoko; Hayashi, Mai; Wakabayashi, Naoko; Yamawaki, Yasuna; Teranishi, Miki; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2010-01-01

    Lysophosphatidic acid (LPA) receptors act as several biological effectors through LPA, which is a bioactive phospholipid. Recently, aberrant expressions of LPA receptor genes due to DNA methylation have been detected in several tumor cells. In this study, we measured expression levels and DNA methylation status of LPA receptor genes in mouse tumor cells, LL/2 lung carcinoma, B16F0 melanoma, FM3A mammary carcinoma and L1210 leukemia cells, compared with normal tissues. Total RNAs were extracted and RT-PCR analysis was performed. For DNA methylation status, bisulfite sequencing analysis was carried out, comparing outcomes with other tumor cells and normal tissues. The expressions of LPA1 gene were shown in LL/2, but not in B16F0, FM3A and L1210 cells. While the LPA2 gene was expressed in all 4 tumor cells, the LPA3 gene was unexpressed in them. The LPA1 and LPA3 unexpressed cells were highly methylated, although normal tissues were all unmethylated. The DNA methylation status was correlated with gene expression levels in cancer cells. The present results demonstrate that DNA methylation patterns of LPA receptor genes are dependent on cancer cell types, suggesting that LPA receptors may be new molecular targets for therapeutic approaches and chemoprevention. Copyright © 2011 S. Karger AG, Basel.

  11. G Protein-Coupled Estrogen Receptor (GPER) Expression in Normal and Abnormal Endometrium

    PubMed Central

    Lessey, Bruce A.; Taylor, Robert N.; Wang, Wei; Bagchi, Milan K.; Yuan, Lingwen; Scotchie, Jessica; Fritz, Marc A.; Young, Steven L.

    2012-01-01

    Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of estrogen receptor alpha (ESR1; ERα) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen’s importance in endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endometriosis. Using real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endometrium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably transfected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis. PMID:22378861

  12. G protein-coupled estrogen receptor (GPER) expression in normal and abnormal endometrium.

    PubMed

    Plante, Beth J; Lessey, Bruce A; Taylor, Robert N; Wang, Wei; Bagchi, Milan K; Yuan, Lingwen; Scotchie, Jessica; Fritz, Marc A; Young, Steven L

    2012-07-01

    Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of estrogen receptor alpha (ESR1; ERα) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen's importance in endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endometriosis. Using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endometrium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably transfected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis.

  13. Serotonin systems upregulate the expression of hypothalamic NUCB2 via 5-HT2C receptors and induce anorexia via a leptin-independent pathway in mice.

    PubMed

    Nonogaki, Katsunori; Ohba, Yukie; Sumii, Makiko; Oka, Yoshitomo

    2008-07-18

    NEFA/nucleobindin2 (NUCB2), a novel satiety molecule, is associated with leptin-independent melanocortin signaling in the central nervous system. Here, we show that systemic administration of m-chlorophenylpiperazine (mCPP), a serotonin 5-HT1B/2C receptor agonist, significantly increased the expression of hypothalamic NUCB2 in wild-type mice. The increases in hypothalamic NUCB2 expression induced by mCPP were attenuated in 5-HT2C receptor mutant mice. Systemic administration of mCPP suppressed food intake in db/db mice with leptin receptor mutation as well as lean control mice. On the other hand, the expression of hypothalamic NUCB2 and proopiomelanocortin (POMC) was significantly decreased in hyperphagic and non-obese 5-HT2C receptor mutants compared with age-matched wild-type mice. Interestingly, despite increased expression of hypothalamic POMC, hypothalamic NUCB2 expression was decreased in 5-HT2C receptor mutant mice with heterozygous mutation of beta-endorphin gene. These findings suggest that 5-HT systems upregulate the expression of hypothalamic NUCB2 via 5-HT2C receptors, and induce anorexia via a leptin-independent pathway in mice.

  14. Platelet dysfunction associated with the novel Trp29Cys thromboxane A₂ receptor variant.

    PubMed

    Mumford, A D; Nisar, S; Darnige, L; Jones, M L; Bachelot-Loza, C; Gandrille, S; Zinzindohoue, F; Fischer, A-M; Mundell, S J; Gaussem, P

    2013-03-01

    Genetic variations that affect the structure of the thromboxane A2 receptor (TP receptor) provide insights into the function of this key platelet and vascular receptor, but are very rare in unselected populations. To determine the functional consequences of the TP receptor Trp29Cys (W29C) substitution. We performed a detailed phenotypic analysis of an index case (P1) with reduced platelet aggregation and secretion responses to TP receptor pathway activators, and a heterozygous TP receptor W29C substitution. An analysis of the variant W29C TP receptor expressed in heterologous cells was performed. Total TP receptor expression in platelets from P1 was similar to that of controls, but there was reduced maximum binding and reduced affinity of binding to the TP receptor antagonist [(3) H]SQ29548. HEK293 cells transfected with W29C TP receptor cDNA showed similar total TP receptor expression to wild-type (WT) controls. However, the TP receptor agonist U46619 was less potent at inducing rises in cytosolic free Ca(2+) in HEK293 cells expressing the W29C TP receptor than in WT controls, indicating reduced receptor function. Immunofluorescence microscopy and cell surface ELISA showed intracellular retention and reduced cell surface expression of the W29C TP receptor in HEK293 cells. Consistent with the platelet phenotype, both maximum binding and the affinity of binding of [(3) H]SQ29548 to the W29C TP receptor were reduced compared to WT controls. These findings extend the phenotypic description of the very rare disorder TP receptor deficiency, and show that the W29C substitution reduces TP receptor function by reducing surface receptor expression and by disrupting ligand binding. © 2012 International Society on Thrombosis and Haemostasis.

  15. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1β and TNFα expression profile

    PubMed Central

    Le Maitre, Christine Lyn; Hoyland, Judith Alison; Freemont, Anthony J

    2007-01-01

    Low back pain is a common and debilitating disorder. Current evidence implicates intervertebral disc (IVD) degeneration and herniation as major causes, although the pathogenesis is poorly understood. While several cytokines have been implicated in the process of IVD degeneration and herniation, investigations have predominately focused on Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα). However, to date no studies have investigated the expression of these cytokines simultaneously in IVD degeneration or herniation, or determined which may be the predominant cytokine associated with these disease states. Using quantitative real time PCR and immunohistochemistry we investigated gene and protein expression for IL-1β, TNFα and their receptors in non-degenerate, degenerate and herniated human IVDs. IL-1β gene expression was observed in a greater proportion of IVDs than TNFα (79% versus 59%). Degenerate and herniated IVDs displayed higher levels of both cytokines than non-degenerate IVDs, although in degenerate IVDs higher levels of IL-1β gene expression (1,300 copies/100 ng cDNA) were observed compared to those of TNFα (250 copies of TNFα/100 ng cDNA). Degenerate IVDs showed ten-fold higher IL-1 receptor gene expression compared to non-degenerate IVDs. In addition, 80% of degenerate IVD cells displayed IL-1 receptor immunopositivity compared to only 30% of cells in non-degenerate IVDs. However, no increase in TNF receptor I gene or protein expression was observed in degenerate or herniated IVDs compared to non-degenerate IVDs. We have demonstrated that although both cytokines are produced by human IVD cells, IL-1β is expressed at higher levels and in more IVDs, particularly in more degenerate IVDs (grades 4 to 12). Importantly, this study has highlighted an increase in gene and protein production for the IL-1 receptor type I but not the TNF receptor type I in degenerate IVDs. The data thus suggest that although both cytokines may be involved in the pathogenesis of IVD degeneration, IL-1 may have a more significant role than TNFα, and thus may be a better target for therapeutic intervention. PMID:17688691

  16. Expression of NK cell receptors on decidual T cells in human pregnancy.

    PubMed

    Tilburgs, Tamara; van der Mast, Barbara J; Nagtzaam, Nicole M A; Roelen, Dave L; Scherjon, Sicco A; Claas, Frans H J

    2009-06-01

    Specific receptors enable NK cells to discriminate between cells with normal expression of MHC class I and cells that have low or absent expression of MHC class I molecules. In addition to NK cells, these receptors can be expressed on T cell subsets, mainly on CD8+ T cells but also on gammadeltaTCR+ T cells and CD4+ T cells. Although the function of NK cell receptor expression on T cells is not completely understood, various studies have shown that they are involved in down regulation of T cell receptor (TCR)-mediated activation and influence effector functions, like cytotoxicity and cytokine production. The aim of this study was to analyze expression of NK cell receptors on peripheral blood and decidual T cells during human pregnancy using flow cytometry. We demonstrate that a proportion of decidual T cells express HLA-C specific killer immunoglobulin-like receptors (KIRs). Furthermore, a small proportion of decidual T cells express the HLA-E specific CD94-NKG2A inhibitory and CD94-NKG2C activating receptors. Decidual KIR+ and CD94-NKG2+ T cells mainly display a CD3+CD4-CD8- phenotype. However, decidual tissue also contains higher percentages of KIR and CD94-NKG2 expressing CD4+ and CD8+ T cells compared to peripheral blood. So far, the functional capacities of decidual T cells expressing the NK cell receptors are unknown but NK cell receptor expression on decidual T cells may provide an alternative means by which decidual T cells distinguish self (maternal) cells from allogeneic fetal cells, and act to modulate the decidual immune response.

  17. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    PubMed

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT 3 and 5-HT 4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (Δ I sc ) in GF compared with HM mice. Additionally, 5-HT 3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT 3 receptor antagonist, inhibited 5-HT-evoked Δ I sc in GF mice but not in HM mice. Furthermore, a 5-HT 3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher Δ I sc in GF compared with HM mice. Immunohistochemistry in 5-HT 3A -green fluorescent protein mice localized 5-HT 3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked Δ I sc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT 3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT 3 receptor expression via acetate production. Epithelial 5-HT 3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion. NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT 3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT 3 receptor expression in colonoids.View this article's corresponding video summary at https://www.youtube.com/watch?v=aOMYJMuLTcw&feature=youtu.be. Copyright © 2017 the American Physiological Society.

  18. Differential expression of androgen, estrogen, and progesterone receptors in benign prostatic hyperplasia

    PubMed Central

    Song, Lingmin; Shen, Wenhao; Zhang, Heng; Wang, Qiwu; Wang, Yongquan; Zhou, Zhansong

    2016-01-01

    This study aimed to identify the differential expression levels of androgen receptor (AR), estrogen receptors (ERα, ERβ), and progesterone receptor (PGR) between normal prostate and benign prostatic hyperplasia (BPH). The combination of immunohistochemistry, quantitative real-time reverse transcription polymerase chain reaction, and Western blotting assay was used to identify the distribution and differential expression of these receptors at the immunoactive biomarker, transcriptional, and protein levels between 5 normal human prostate tissues and 40 BPH tissues. The results were then validated in a rat model of BPH induced by testosterone propionate and estradiol benzoate. In both human and rat prostate tissues, AR was localized mainly to epithelial and stromal cell nuclei; ERα was distributed mainly to stromal cells, but not exclusively; ERβ was interspersed in the basal layer of epithelium, but sporadically in epithelial and stromal cells; PGR was expressed abundantly in cytoplasm of epithelial and stromal cells. There were decreased expression of ERα and increased expression of PGR, but no difference in the expression of ERβ in the BPH compared to the normal prostate of both human and rat. Increased expression of AR in the BPH compared to the normal prostate of human was observed, however, the expression of AR in the rat prostate tissue was decreased. This study identified the activation of AR and PGR and repression of ERα in BPH, which indicate a promoting role of AR and PGR and an inhibitory role of ERα in the pathogenesis of BPH. PMID:27294569

  19. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.

    PubMed

    Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J

    2017-08-01

    The dopamine D 2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D 2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D 2 receptor. D 2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D 2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D 2 receptors. D 2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

  20. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples.

    PubMed

    Mohr, Annika; Lüder Ripoli, Florenza; Hammer, Susanne Conradine; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Kiełbowicz, Zdzisław; Murua Escobar, Hugo; Nolte, Ingo

    2016-01-01

    Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.

  1. Angiotensin II AT1 receptor blocker candesartan prevents the fast up-regulation of cerebrocortical benzodiazepine-1 receptors induced by acute inflammatory and restraint stress

    PubMed Central

    Sánchez-Lemus, Enrique; Honda, Masaru; Saavedra, Juan M.

    2012-01-01

    Centrally acting Angiotensin II AT1 receptor blockers (ARBs) protect from stress-induced disorders and decrease anxiety in a model of inflammatory stress, the systemic injection of bacterial endotoxin lipopolysaccharide (LPS). In order to better understand the anxiolytic effect of ARBs, we treated rats with LPS (50 µg/kg) with or without three days of pretreatment with the ARB candesartan (1 mg/kg/day), and studied cortical benzodiazepine (BZ) and corticotrophin-releasing factor (CRF) receptors. We compared the cortical BZ and CRF receptors expression pattern induced by LPS with that produced in restraint stress. Inflammation stress produced a generalized increase in cortical BZ1 receptors and reduced mRNA expression of the GABAA receptor γ2 subunit in cingulate cortex; changes were prevented by candesartan pretreatment. Moreover, restraint stress produced similar increases in cortical BZ1 receptor binding, and candesartan prevented these changes. Treatment with candesartan alone increased cortical BZ1 binding, and decreased γ2 subunit mRNA expression in the cingulate cortex. Conversely, we did not find changes in CRF1 receptor expression in any of the cortical areas studied, either after inflammation or restraint stress. Cortical CRF2 receptor binding was undetectable, but CRF2 mRNA expression was decreased by inflammation stress, a change prevented by candesartan. We conclude that stress promotes rapid and widespread changes in cortical BZ1 receptor expression; and that the stress-induced BZ1 receptor expression is under the control of AT1 receptor activity. The results suggest that the anti-anxiety effect of ARBs may be associated with their capacity to regulate stress-induced alterations in cortical BZ1 receptors. PMID:22503782

  2. The effects of abnormalities of glucose homeostasis on the expression and binding of muscarinic receptors in cerebral cortex of rats.

    PubMed

    Sherin, Antony; Peeyush, Kumar T; Naijil, George; Nandhu, Mohan Sobhana; Jayanarayanan, Sadanandan; Jes, Paul; Paulose, Cheramadathikudiyil Skaria

    2011-01-25

    Glucose homeostasis in humans is an important factor for the functioning of nervous system. Both hypo and hyperglycemia contributes to neuronal functional deficit. In the present study, effect of insulin induced hypoglycemia and streptozotocin induced diabetes on muscarinic receptor binding, cholinergic enzymes; AChE, ChAT expression and GLUT3 in the cerebral cortex of experimental rats were analysed. Total muscarinic, muscarinic M(1) receptor showed a significant decrease and muscarinic M(3) receptor subtype showed a significant increased binding in the cerebral cortex of hypoglycemic rats compared to diabetic and control. Real-Time PCR analysis of muscarinic M(1), M(3) receptor subtypes confirmed the receptor binding studies. Immunohistochemistry of muscarinic M(1), M(3) receptors using specific antibodies were also carried out. AChE and GLUT3 expression up regulated and ChAT expression down regulated in hypoglycemic rats compared to diabetic and control rats. Our results showed that hypo/hyperglycemia caused impaired glucose transport in neuronal cells as shown by altered expression of GLUT3. Increased AChE and decreased ChAT expression is suggested to alter cortical acetylcholine metabolism in experimental rats along with altered muscarinic receptor binding in hypo/hyperglycemic rats, impair cholinergic transmission, which subsequently lead to cholinergic dysfunction thereby causing learning and memory deficits. We observed a prominent cholinergic functional disturbance in hypoglycemic condition than in hyperglycemia. Hypoglycemia exacerbated the neurochemical changes in cerebral cortex induced by hyperglycemia. These findings have implications for both therapy and identification of causes contributing to neuronal dysfunction in diabetes. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Downregulation of adiponectin system in granulosa cells and low levels of HMW adiponectin in PCOS.

    PubMed

    Artimani, Tayebe; Saidijam, Massoud; Aflatoonian, Reza; Ashrafi, Mahnaz; Amiri, Iraj; Yavangi, Mahnaz; SoleimaniAsl, Sara; Shabab, Nooshin; Karimi, Jamshid; Mehdizadeh, Mehdi

    2016-01-01

    The purpose of the study was to investigate changes in adiponectin system expression in granulosa cells (GCs) and high molecular weight adiponectin levels in serum and follicular fluid (FF) of 40 women with polycystic ovary syndrome (PCOS) compared to those in 40 women with normal ovary function. Adiponectin (Adipo), adiponectin receptor 1 (AdipoR1), and adiponectin receptor 2 (AdipoR2) messenger RNA (mRNA) expression levels were measured using quantitative real-time polymerase chain reaction (qRT-PCR). High molecular weight (HMW) adiponectin protein concentration was evaluated by ELISA method. Data were analyzed using Student's t test and one-way ANOVA in SPSS 21 software. At oocyte retrieval, FF was aspirated and GCs were obtained from a pooled collection of FF per each patient. PCR results showed expression of adiponectin, AdipoR1, AdipoR2, follicle-stimulating hormone receptor (FSHR), and luteinizing hormone receptor (LHR) in GCs. After controlling body mass index (BMI) values, qRT-PCR demonstrated a decreased expression of adiponectin system in GCs of PCOS patients compared to those in controls (p = 0.001). There was a strong positive correlation among AdipoR1 and AdipoR2 expression and also among FSH and LH receptor expression. (Both r = 0.8, p = 0.001). There were low levels of high molecular weight adiponectin in the serum of PCOS patients with controlled ovarian hyperstimulation (30.19 ± 4.3 ng/ml) compared to the controls (48.47 ± 5.9 ng/ml) and in the FF of PCOS patients with controlled ovarian hyperstimulation (7.86 ± 1.44 ng/ml) compared to the controls (14.22 ± 2.01 ng/ml; p = 0.02). Lower expression of adiponectin and its receptors in GCs might be an important manifestation in gonadotropin-stimulated PCOS patients which could influence the physiologic adiponectin roles such as interaction with insulin and LH in induction of GC gene expression.

  4. Effect of hypobaric hypoxia on the P2X receptors of pyramidal cells in the immature rat hippocampus CA1 sub-field.

    PubMed

    Zhao, Yan-Dong; Cheng, Sai-Yu; Ou, Shan; Xiao, Zhi; He, Wen-Juan; Jian-Cui; Ruan, Huai-Zhen

    2012-01-01

    This study was designed to evaluate the effect of hypobaric hypoxia (HH) on the function and expression of P2X receptors in rat hippocampus CA1 pyramidal cells. The functional changes of P2X receptors were investigated through the cell HH model and the expressional alterations of P2X receptors were observed through the animal HH model. P2X receptors mediated currents were recorded from the freshly dissociated CA1 pyramidal cells of 7-day-old SD rats by whole cell patch clamp recording. The expression and distribution of P2X receptors were observed through immunohistochemistry and western blot at HH 3-day and 7-day. In acute HH conditions, the amplitudes of ATP evoked peak currents were decreased compared to control. The immunohistochemistry and western blot results reflected there was no change in P2X receptors expression after 3 days HH injury, while P2X receptors expression was up-regulated in response to 7 days HH injury. These findings supported the possibility that the function of P2X receptors was sensitive to HH damage and long-term function decrease should result in the expression increase of P2X receptors.

  5. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor PROKR2 are associated to human colorectal cancer progression and peritoneal carcinomatosis.

    PubMed

    Benlahfid, Mohammed; Traboulsi, Wael; Sergent, Frederic; Benharouga, Mohamed; Elhattabi, Khalid; Erguibi, Driss; Karkouri, Mehdi; Elattar, Hicham; Fadil, Abdelaziz; Fahmi, Yassine; Aboussaouira, Touria; Alfaidy, Nadia

    2018-02-06

    The highest risk factor for mortality among malignant tumors is metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor which biological activity is mediated via two G protein-coupled receptors, prokineticin receptor1 (PROKR1) and PROKR2. Recent studies suggested that EG-VEGF expression is deregulated in multiple cancers including colorectal cancer (CRC). Using distinctive CRC and peritoneal carcinomatosis (PC) cohorts and a corresponding control cohort, we determined the circulating levels of EG-VEGF and its in situ expression, and that of its related receptors. Circulating EG-VEGF levels were significantly increased in patients with metastatic PC compared to CRC and control patients (p< 0.05). Furthermore, according to clinicopathologic examinations, local EG-VEGF expression correlated with higher tumor and nodal stages (p< 0.001) of CRC. EG-VEGF and PROKR2 were highly expressed in colorectal primary lesions compared to positive controls. PROKR1 expression was lower and did not change in tumor specimens. Also, EG-VEGF and its receptor PROKR2 were differentially expressed in the colorectal primary lesions and in the control groups. Altogether these findings suggest that EG-VEGF/receptors system might be an important actor in the CRC progression into PC and might be involved in the ability of tumor cells to invade other organs. Circulating EG-VEGF could be proposed as a prognostic marker in human CRC and its progression into PC.

  6. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration ofmore » sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.« less

  7. Sex-specific hormone receptors in urothelial carcinomas of the human urinary bladder: a comparative analysis of clinicopathological features and survival outcomes according to receptor expression.

    PubMed

    Tuygun, Can; Kankaya, Duygu; Imamoglu, Abdurrahim; Sertcelik, Ayse; Zengin, Kursad; Oktay, Murat; Sertcelik, Nurettin

    2011-01-01

    To investigate the expression of sex-specific hormone receptors in normal bladder urothelium and urothelial carcinomas (UCs) of the bladder, and to analyze clinicopathological features and survival outcomes according to receptor expression. We evaluated the clinical data and tumor specimens of 139 patients with bladder cancer (BC). In addition, 72 samples of normal urothelium were included. Immunohistochemistry was performed using streptavidin-biotin peroxidase method, a monoclonal androgen receptor (AR), and an estrogen receptor-β (ERβ) antibody on paraffin-embedded tissue sections. Expression levels of each receptor were assessed by evaluating 500 tumor cells for each case and the percentage of positively-stained nuclei was recorded. None of the 58 male control cases showed any AR and ERβ expression. Five (35, 71%) of the 14 female control cases expressed ERβ. Of the 139 patients with UCs, 71 (51, 07%) expressed AR (62 male vs. 9 female; P = 0.413) and 44 (31, 65%) (39 male vs. 5 female; P = 0.402) showed ERβ expression (P < 0.001). No significant relationship was found between ERβ expression levels and tumor grades, and stages (P = 0.441; P = 0.247). AR expression was significantly lower in T2-tumors (21%) than in Ta-tumors (60%) and T1-tumors (60%) (P < 0.001). It was significantly higher in low-grade papillary UCs (64%) compared with high-grade papillary UCs (44%) and infiltrative high-grade UCs (17%) (P = 0.039; P < 0.001). Data of 79 patients with noninvasive BC were eligible to present, with a median 29 months follow-up. AR expression level did not influence recurrence-free survival (RFS) and progression-free survival (PFS) (P = 0.095; P = 0.110). No significant association was found between ERβ expression level and RFS (P = 0.293). PFS in patients with lower ERβ-expressing tumors was significantly better than that in patients with higher ERβ-expressing tumors (P = 0.035). Multivariate analysis confirmed this significant influence on PFS (P = 0.025). Although ERβ expression had no impact on histopathological tumor characteristics, decrease in its expression may be associated with better PFS rates in patients with noninvasive BC. Conversely, loss of AR expression was associated with higher grade UCs and invasive UCs, but had no prognostic effect on survival. Finally, sex-specific hormone receptors alone cannot be responsible for gender differences in BC rates because they were expressed in similar rates in both sexes. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Expression of cholinergic, insulin, vitamin D receptors and GLUT 3 in the brainstem of streptozotocin induced diabetic rats: effect of treatment with vitamin D₃.

    PubMed

    Peeyush Kumar, T; Paul, Jes; Antony, Sherin; Paulose, C S

    2011-11-01

    Complications arising from diabetes mellitus include cognitive deficits, neurophysiological and structural changes in the brain. The current study investigated the expression of cholinergic, insulin, Vitamin D receptor and GLUT 3 in the brainstem of streptozotocin-induced diabetic rats. Radioreceptor binding assays and gene expression were done in the brainstem of male Wistar rats. Our results showed that B(max) of total muscarinic, muscarinic M3 receptors was increased and muscarinic M1 receptor was decreased in diabetic rats compared to control. A significant increase in gene expression of muscarinic M3, α7 nicotinic acetylcholine, insulin, Vitamin D₃ receptors, acetylcholine esterase, choline acetyl transferase and GLUT 3 were observed in the brainstem of diabetic rats. Immunohistochemistry studies of muscarinic M1, M3 and α7 nicotinic acetylcholine receptors confirmed the gene expression at protein level. Vitamin D₃ and insulin treatment reversed diabetes-induced alterations to near control. This study provides an evidence that diabetes can alter the expression of cholinergic, insulin, Vitamin D receptors and GLUT 3 in brainstem. We found that Vitamin D₃ treatment could modulate the Vitamin D receptors and plays a pivotal role in maintaining the glucose transport and expressional level of cholinergic receptors in the brainstem of diabetic rats. Thus, our results suggest a therapeutic role of Vitamin D₃ in managing neurological disorders associated with diabetes.

  9. Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist

    PubMed Central

    Newman-Tancredi, A; Martel, J-C; Assié, M-B; Buritova, J; Lauressergues, E; Cosi, C; Heusler, P; Slot, L Bruins; Colpaert, FC; Vacher, B; Cussac, D

    2009-01-01

    Background and purpose: Activation of post-synaptic 5-HT1A receptors may provide enhanced therapy against depression. We describe the signal transduction profile of F15599, a novel 5-HT1A receptor agonist. Experimental approach: F15599 was compared with a chemical congener, F13714, and with (+)8-OH-DPAT in models of signal transduction in vitro and ex vivo. Key results: F15599 was highly selective for 5-HT1A receptors in binding experiments and in [35S]-GTPγS autoradiography of rat brain, where F15599 increased labelling in regions expressing 5-HT1A receptors. In cell lines expressing h5-HT1A receptors, F15599 more potently stimulated extracellular signal-regulated kinase (ERK1/2) phosphorylation, compared with G-protein activation, internalization of h5-HT1A receptors or inhibition of cAMP accumulation. F13714, (+)8-OH-DPAT and 5-HT displayed a different rank order of potency for these responses. F15599 stimulated [35S]-GTPγS binding more potently in frontal cortex than raphe. F15599, unlike 5-HT, more potently and efficaciously stimulated Gαi than Gαo activation. In rat prefrontal cortex (a region expressing post-synaptic 5-HT1A receptors), F15599 potently activated ERK1/2 phosphorylation and strongly induced c-fos mRNA expression. In contrast, in raphe regions (expressing pre-synaptic 5-HT1A receptors) F15599 only weakly or did not induce c-fos mRNA expression. Finally, despite its more modest affinity in vitro, F15599 bound to 5-HT1A receptors in vivo almost as potently as F13714. Conclusions and implications: F15599 showed a distinctive activation profiles for 5-HT1A receptor-mediated signalling pathways, unlike those of reference agonists and consistent with functional selectivity at 5-HT1A receptors. In rat, F15599 potently activated signalling in prefrontal cortex, a feature likely to underlie its beneficial effects in models of depression and cognition. PMID:19154445

  10. α1-Adrenergic receptor downregulates hepatic FGF21 production and circulating FGF21 levels in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2017-01-18

    Fibroblast growth factor 21 (FGF21) is primarily secreted by the liver as an endocrine hormone and is suggested as a promising target for the treatment of metabolic diseases. FGF21 acts centrally to exert its effects on energy expenditure and body weight via the sympathetic nervous system in mice. Here we show that intraperitoneal injection of phentolamine (an α-adrenergic receptor antagonist, 5mg/kg) significantly increased plasma FGF21 levels compared with the saline controls in C57BL6J mice, whereas alprenolol (a β-adrenergic receptor antagonist, 6mg/kg) had no effect. In addition, intraperitoneal injection of prazosin (an α1-adrenergic receptor antagonist, 5mg/kg) significantly increased plasma FGF21 levels compared with the controls, whereas yohimbine (an α2-adrenergic receptor antagonist, 5mg/kg) had no effect. Moreover, the treatment with prazosin significantly increased the expression of hepatic FGF21, while having no effect on the expression of hepatic PPARα and PPARγ. After a 5-h fast, intraperitoneal injection of prazosin significantly increased plasma FGF21 levels and impaired glucose tolerance compared with controls. These findings suggest that α1-adrenergic receptor downregulates the expression of hepatic FGF21 and plasma FGF21 levels independently of feeding and hepatic PPARα and PPARγ expression in mice, and that the increases in circulating FGF21 levels might be related to impaired glucose tolerance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Comparison of progesterone and glucocorticoid receptor binding and stimulation of gene expression by progesterone, 17-alpha hydroxyprogesterone caproate (17-OHPC), and related progestins

    PubMed Central

    Attardi, Barbara J.; Zeleznik, Anthony; Simhan, Hyagriv; Chiao, Jye Ping; Mattison, Donald R; Caritis, Steve N

    2007-01-01

    Condensation 17-hydroxyprogesterone caproate is not better than progesterone in binding to progesterone or glucocorticoid receptors or eliciting gene expression in progesterone responsive genes. Comparison of progesterone and glucocorticoid receptor binding and stimulation of gene expression by progesterone, 17-alpha hydroxyprogesterone caproate (17-OHPC), and related progestins. Objective To determine whether the reduction in premature birth attributable to 17-OHPC occurs because of a greater affinity for progesterone (PR) or glucocorticoid (GR) receptors or by enhanced stimulation of progestogen responsive genes when compared with progesterone. Study Design We performed competitive steroid hormone receptor binding assays using cytosols expressing either recombinant human PR-A (rhPR-A) or B (rhPR-B) or rabbit uterine or thymic cytosols. We used four different carcinoma cell lines to assess transactivation of reporter genes or induction of alkaline phosphatase. Results Relative binding affinity of 17-OHPC for rhPR-B, rhPR-A and rabbit PR was 26–30% that of progesterone. Binding of progesterone to rabbit thymic GR was weak. 17-OHPC was comparable to progesterone in eliciting gene expression in all cell lines studied. Conclusions Binding to PR, GR or expression of progesterone-responsive genes is no greater with 17-OHPC than with progesterone. Other mechanisms must account for the beneficial effect of 17-OHPC on preterm birth rates. PMID:18060946

  12. Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

    PubMed

    Heck, Dorothee; Wortmann, Sebastian; Kraus, Luitgard; Ronchi, Cristina L; Sinnott, Richard O; Fassnacht, Martin; Sbiera, Silviu

    2015-12-01

    Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.

  13. Underexpression of mineralocorticoid receptor in colorectal carcinomas and association with VEGFR-2 overexpression.

    PubMed

    Di Fabio, Francesco; Alvarado, Carlos; Majdan, Agnieszka; Gologan, Adrian; Voda, Linda; Mitmaker, Elliot; Beitel, Lenore K; Gordon, Philip H; Trifiro, Mark

    2007-11-01

    The human mineralocorticoid receptor (MR) is a steroid receptor widely expressed in colorectal mucosa. A significant role for the MR in the reduction of vascular endothelial growth factor receptor-2 (VEGFR-2) mRNA levels has been demonstrated in vitro. To evaluate a potential contribution of MR to colorectal carcinoma progression, we analyzed the expression of MR in relation to VEGFR-2. Fresh human colorectal cancer tissue and adjacent normal mucosa were harvested from 48 consecutive patients. MR and VEGFR-2 mRNA expression levels were determined by real-time reverse transcriptase-polymerase chain reaction and correlated with clinicopathological parameters. A decline of MR expression was observed in all carcinomas compared to normal mucosa. Expression of MR was a median of 11-fold lower in carcinoma compared to the normal mucosa, irrespective of the location, size, stage, and differentiation. MR was a median of 20-fold underexpressed in carcinomas with VEGFR-2 overexpression vs only 9-fold in carcinomas with VEGFR-2 underexpression (p = 0.035, Mann-Whitney test). These findings support the hypothesis that reduction of MR expression may be one of the early events involved in colorectal carcinoma progression. The inverse association between MR and VEGFR-2 expression in carcinoma suggests a potential tumor-suppressive function for MR.

  14. Study of low-density lipoprotein receptor regulation by oral (steroid) contraceptives: desogestrel, levonorgestrel and ethinyl estradiol in JEG-3 cell line and placental tissue.

    PubMed

    Ramakrishnan, Gopalakrishnan; Rana, Anita; Das, Chandana; Chandra, Nimai Chand

    2007-10-01

    The aim of this study was to compare in vitro the role of two oral contraceptives, desogestrel (a less androgenic derivative of levonorgestrel) and levonorgestrel--alone and in combination with ethinyl estradiol--on low-density lipoprotein (LDL) receptor regulation by assessing receptor protein expression and functional effectiveness. Placental tissue and cultured placental cells (JEG-3) were used to study the expression and endocytotic activity of LDL receptor protein. The expression of the receptor was assessed by immunocytochemistry and immunoblot assays with and without contraceptive challenge. Functioning activity of LDL receptor was studied by measuring the rate of uptake of LDL by placental cells. Quantification of LDL was based on the total cholesterol content of the lipoprotein. A combination of desogestrel (20 ng/mL of incubation medium) and ethinyl estradiol (10 ng/mL of incubation medium) maintained the LDL receptor at high level of expression and functioning mode. In contrast, the double-blind preparation of levonorgestrel (20 ng/mL) and ethinyl estradiol (10 ng/mL) had shown much lower expression as well as receptor-mediated LDL uptake. The concentration of contraceptives used in this study was similar to the prevailing concentration of oral contraceptives in clinical use. Higher expression of LDL receptor and enhanced rate of LDL uptake by the receptor protein projects the possibility that there might be less atherosclerosis-related disorders from the combination of desogestrol and ethinyl estradiol.

  15. Individual receptor profiling as a novel tool to support diagnosis of bladder pain syndrome/interstitial cystitis (BPS/IC).

    PubMed

    Neuhaus, Jochen; Schulte-Baukloh, Heinrich; Stolzenburg, Jens-Uwe; Speroni di Fenizio, Pietro; Horn, Lars-Christian; Rüffert, Henrik; Hartenstein, Siegurd; Burger, Maximilian; Schulze, Matthias; Schwalenberg, Thilo

    2012-10-01

    Dysregulation of neurotransmitter receptors may contribute to bladder overactivity (OAB) symptoms. To address the question whether specific receptor expression patterns are associated with bladder pain syndrome/interstitial cystitis (BPS/IC), we examined the expression of muscarinic, purinergic and histamine receptors in the detrusor. Detrusor receptor expression was investigated in bladder biopsies of female BPS/IC patients (n = 44; age 60.64 ± 13.78, mean ± SD) and carcinoma patients (n = 11; age 58.91 ± 12.72) undergoing cystectomy. Protein expression of muscarinic (M2, M3), purinergic (P2X1-3) and histamine receptors (H1, H2) was analysed by confocal immunofluorescence, and gene expression was quantified by real-time polymerase chain reaction (qPCR). M2, P2X1, P2X2 and H1 receptor immunoreactivity (-IR) was significantly enhanced in BPS/IC compared to the control group, while there was no difference for M3-, P2X3- and H2-IR. We calculated a score, which separated BPS/IC from control patients with an AUC of 89.46%, showing 84.09% sensitivity and 90.91% specificity. Patients had a 9.25 times enhanced calculated risk for BPS/IC. In addition, two patient subgroups (M2 > M3 and M3 > M2) were observed, which differed in associated purinergic and histamine receptor expression. M2, P2X1, P2X2 and H1 were significantly upregulated in BPS/IC patients, and H2 was occasionally highly overexpressed. There was no significant correlation between receptor protein and gene expression, implying posttranslational mechanisms being responsible for the altered receptor expressions. On the basis of individual receptor profiles, upregulated receptors could be targeted by monotherapy or combination therapy with already approved receptor inhibitors, thereby promoting tailored therapy for patients suffering from BPS/IC-like symptoms.

  16. Valsartan attenuates intimal hyperplasia in balloon-injured rat aortic arteries through modulating the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas receptor axis.

    PubMed

    Li, Yonghong; Cai, Shanglang; Wang, Qixin; Zhou, Jingwei; Hou, Bo; Yu, Haichu; Ge, Zhiming; Guan, Renyan; Liu, Xu

    2016-05-15

    The role of the Mas receptor in the activity of valsartan against intimal hyperplasia is unclear. Herein, we investigated the role of the angiotensin-converting enzyme 2 (ACE2)-angiotensin-(1-7)-Mas receptor axis on the activity of valsartan against intimal hyperplasiain balloon-injured rat aortic arteries. Wistar rats were randomized equally into the sham control group, injured group, and injured plus valsartan (20 mg/kg/d)-treated group. Valsartan significantly attenuated the vascular smooth muscle cell proliferation and intimal and medial thickening on days 14 and 28 after injury. The angiotensin-(1-7) levels as well as ACE2 and Mas receptor mRNA/protein expression were significantly decreased in the injured rats, compared to the uninjured rats; meanwhile, the angiotensin II level as well as the ACE and AT1 receptor mRNA/protein expression were increased (all P < 0.05 or < 0.01). Additionally, the p-ERK protein expression was increased (P < 0.01). Treatment with valsartan significantly increased the angiotensin-(1-7) levels as well as ACE2 and Mas receptor mRNA/protein expression but decreased the angiotensin II level, ACE and AT1 receptor mRNA/protein expression, as well as the p-ERK protein expression, compared to the injured group (all P < 0.05 or < 0.01). These results suggest that valsartan attenuates neointimal hyperplasiain balloon-injured rat aortic arteries through activation of the ACE2-angiotensin-(1-7)-Mas axis as well as inhibition of the ACE-angiotensin II-AT1 and p-ERK pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Apoptosis gene expression and death receptor signaling in mitomycin-C-treated human tenon capsule fibroblasts.

    PubMed

    Crowston, Jonathan G; Chang, Lydia H; Constable, Peter H; Daniels, Julie T; Akbar, Arne N; Khaw, Peng T

    2002-03-01

    To examine the effect of mitomycin-C on the expression of apoptosis genes in human Tenon capsule fibroblasts and to evaluate whether death receptor signaling modulates mitomycin-C cytotoxicity. Bcl-2, Bax, Bcl-x, Fas (CD95) and tumor necrosis factor (TNF) receptor expression was determined by flow cytometry in control and mitomycin-C-treated Tenon fibroblasts. Fibroblast death was quantified using a lactate dehydrogenase release assay. The effect of Fas and TNF-receptor signaling was evaluated using Fas-specific antibodies and soluble TNF-alpha. Tenon fibroblasts constitutively express Bcl-2, Bax, and Bcl-x in culture. Mitomycin-C (0.4 mg/mL) induced a small but consistent increase in the expression of all three proteins. Tenon fibroblasts express low levels of Fas but are resistant to the effects of Fas-receptor ligation. Mitomycin-C (0.01-1.0 mg/mL) led to a significant increase in Fas expression at all concentrations tested (P < 0.01). Pretreatment with mitomycin-C (0.4 mg/mL) rendered fibroblasts susceptible to agonistic anti-Fas monoclonal IgM antibodies (50-500 ng/mL) and led to a further 50% reduction in viable fibroblasts at 48 hours, compared with mitomycin-C alone (P < 0.05). Antibodies that block the Fas receptor did not inhibit mitomycin-C-induced apoptosis. Mitomycin-C alters apoptosis gene expression and primes fibroblasts to the effects of Fas receptor ligation. Factors other than the level of Fas receptor expression modulate the response to Fas receptor signaling. Determining the signals that regulate fibroblast apoptosis may help to refine therapeutic strategies for switching off the subconjunctival healing response and maintaining intraocular pressure control.

  18. The progestational and androgenic properties of medroxyprogesterone acetate: gene regulatory overlap with dihydrotestosterone in breast cancer cells

    PubMed Central

    Ghatge, Radhika P; Jacobsen, Britta M; Schittone, Stephanie A; Horwitz, Kathryn B

    2005-01-01

    Introduction Medroxyprogesterone acetate (MPA), the major progestin used for oral contraception and hormone replacement therapy, has been implicated in increased breast cancer risk. Is this risk due to its progestational or androgenic properties? To address this, we assessed the transcriptional effects of MPA as compared with those of progesterone and dihydrotestosterone (DHT) in human breast cancer cells. Method A new progesterone receptor-negative, androgen receptor-positive human breast cancer cell line, designated Y-AR, was engineered and characterized. Transcription assays using a synthetic promoter/reporter construct, as well as endogenous gene expression profiling comparing progesterone, MPA and DHT, were performed in cells either lacking or containing progesterone receptor and/or androgen receptor. Results In progesterone receptor-positive cells, MPA was found to be an effective progestin through both progesterone receptor isoforms in transient transcription assays. Interestingly, DHT signaled through progesterone receptor type B. Expression profiling of endogenous progesterone receptor-regulated genes comparing progesterone and MPA suggested that although MPA may be a somewhat more potent progestin than progesterone, it is qualitatively similar to progesterone. To address effects of MPA through androgen receptor, expression profiling was performed comparing progesterone, MPA and DHT using Y-AR cells. These studies showed extensive gene regulatory overlap between DHT and MPA through androgen receptor and none with progesterone. Interestingly, there was no difference between pharmacological MPA and physiological MPA, suggesting that high-dose therapeutic MPA may be superfluous. Conclusion Our comparison of the gene regulatory profiles of MPA and progesterone suggests that, for physiologic hormone replacement therapy, the actions of MPA do not mimic those of endogenous progesterone alone. Clinically, the complex pharmacology of MPA not only influences its side-effect profile; but it is also possible that the increased breast cancer risk and/or the therapeutic efficacy of MPA in cancer treatment is in part mediated by androgen receptor. PMID:16457685

  19. Conventional light chains inhibit the autonomous signaling capacity of the B cell receptor.

    PubMed

    Meixlsperger, Sonja; Köhler, Fabian; Wossning, Thomas; Reppel, Michael; Müschen, Markus; Jumaa, Hassan

    2007-03-01

    Signals from the B cell antigen receptor (BCR), consisting of mu heavy chain (muHC) and conventional light chain (LC), and its precursor the pre-BCR, consisting of muHC and surrogate light chain (SLC), via the adaptor protein SLP-65 regulate the development and function of B cells. Here, we compare the effect of SLC and conventional LC expression on receptor-induced Ca(2+) flux in B cells expressing an inducible form of SLP-65. We found that SLC expression strongly enhanced an autonomous ability of muHC to induce Ca(2+) flux irrespective of additional receptor crosslinking. In contrast, LC expression reduced this autonomous muHC ability and resulted in antigen-dependent Ca(2+) flux. These data indicate that autonomous ligand-independent signaling can be induced by receptor forms other than the pre-BCR. In addition, our data suggest that conventional LCs play an important role in the inhibition of autonomous receptor signaling, thereby allowing further B cell differentiation.

  20. Expression and localization of the AT1 and AT2 angiotensin II receptors and α1A and α1D adrenergic receptors in aorta of hypertensive and diabetic rats.

    PubMed

    Rodríguez, Jessica Edith; Romero-Nava, Rodrigo; Reséndiz-Albor, Aldo Arturo; Rosales-Cruz, Erika; Hong, Enrique; Huang, Fengyang; Villafaña, Santiago

    2017-01-01

    Hypertension and diabetes are multifactorial diseases that frequently coexist and exacerbate each another. During the development of diabetes, the impairment of noradrenergic and renin-angiotensin systems has been reported in the response mediated by α 1 -AR and AT 1 receptors. Although their participation in the development of cardiovascular complications is still controversial, some studies have found increased or diminished response to the vasoconstrictive effect of noradrenaline or angiotensin II in a time-dependent manner of diabetes. Thus, the aim of this work was to investigate the possible changes in the expression or localization of α 1 -AR (α 1A and α 1D ) and angiotensin II receptors (AT 1 and AT 2 ) in aorta of rats after 4 weeks of the onset of diabetes. In order to be able to examine the expression of these receptors, immunofluorescence procedure was performed in tunica intima and tunica media of histological sections of aorta. Fluorescence was detected by a confocal microscopy. Our results showed that the receptors are expressed in both tunics, where adrenergic receptors have a higher density in tunica intima and tunica media of SHR compared with WKY; meanwhile, the expression of angiotensin II receptors is not modified in both groups of rats. On the other hand, the results showed that diabetes produced an increase or a decrease in the expression of receptors that is not associated to a specific type of receptor, vascular region, or strain of rat. In conclusion, diabetes and hypertension modify the expression of the receptors in tunica intima and tunica media of aorta in a different way.

  1. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonogaki, Katsunori, E-mail: knonogaki-tky@umin.ac.jp; Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University; Kaji, Takao

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice.more » Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.« less

  2. Decreased endothelin receptor B expression in large primary uveal melanomas is associated with early clinical metastasis and short survival

    PubMed Central

    Smith, S L; Damato, B E; Scholes, A G M; Nunn, J; Field, J K; Heighway, J

    2002-01-01

    The most devastating aspect of cancer is the metastasis of tumour cells to organs distant from the original tumour site. The major problem facing oncologists treating uveal melanoma, the most common cancer of the eye, is metastatic disease. To lower mortality, it is necessary to increase our understanding of the molecular genetic alterations involved in this process. Using suppression subtractive hybridisation, we have analysed differential gene expression between four primary tumours from patients who have developed clinical metastasis and four primary tumours from patients with no evidence of metastasis to date. We have identified endothelin receptor type B as differentially expressed between these tumours and confirmed this observation using comparative multiplex RT–PCR. In a further 33 tumours, reduced endothelin receptor type B expression correlated with death from metastatic disease. Reduced expression also correlated with other known prognostic indicators, including the presence of epithelioid cells, chromosome 3 allelic imbalance and chromosome 8q allelic imbalance. Endothelin receptor type B expression was also reduced in four out of four primary small cell lung carcinomas compared to normal bronchial epithelium. We also show that the observed down-regulation of endothelin receptor type B in uveal melanoma was not due to gene deletion. Our findings suggest a role for endothelin receptor type B in the metastasis of uveal melanoma and, potentially, in the metastasis of other neural crest tumours. British Journal of Cancer (2002) 87, 1308–1313. doi:10.1038/sj.bjc.6600620 www.bjcancer.com © 2002 Cancer Research UK PMID:12439722

  3. Differential expression of oestrogen receptor isoforms and androgen receptor in the normal vulva and vagina compared with vulval lichen sclerosus and chronic vaginitis.

    PubMed

    Taylor, A H; Guzail, M; Al-Azzawi, F

    2008-02-01

    Although the expression of the oestrogen receptor (ER) alpha isoform and androgen receptor (AR) has been examined in vulval lichen sclerosus (VLS), the distribution pattern of ERalpha, ERbeta and AR has not been described in chronic atrophic vaginitis nor correlated with markers of proliferation (Ki-67) in either of these diseased tissues. To measure the levels and distribution of ERalpha, ERbeta and AR immunoreactivity in relation to Ki-67 in normal and diseased vulva and vagina. The expression of ERalpha, ERbeta and AR in relation to the proliferation marker Ki-67 in VLS, squamous hyperplasia of the vulva and chronic atrophic vaginitis was determined by immunohistomorphometric analysis and compared with that in normal vulva and vagina. VLS showed similar ERalpha and ERbeta expression in the 'epidermal' and 'dermal' tissue layers to that of normal vulvae, whereas AR expression appeared to be absent in most cases. ERbeta and Ki-67 expression was correlated with ERalpha expression but only in the 'fibrovascular' layer of the vulva. ERalpha expression was absent from the 'fibromuscular' layer of diseased vulvae, while ERbeta expression was absent in normal tissues but was highly expressed in diseased vulvae. ERalpha expression was significantly correlated with AR expression in the fibrovascular layer of the vagina and inversely correlated with Ki-67 staining in the parabasal cells of the epidermis in patients with chronic atrophic vaginitis. These data suggest that ER expression and levels may be implicated in the aetiopathology of VLS and chronic atrophic vaginitis.

  4. Increased expression of Toll-like receptors (TLRs) 7 and 9 and other cytokines in systemic lupus erythematosus (SLE) patients: ethnic differences and potential new targets for therapeutic drugs.

    PubMed

    Lyn-Cook, Beverly D; Xie, Chenghui; Oates, Jarren; Treadwell, Edward; Word, Beverly; Hammons, George; Wiley, Kenneth

    2014-09-01

    Increased expression of pro-inflammatory cytokines such as interferon, tumor necrosis factors (TNFs) and specific interleukins (ILs) has been found in a number of autoimmune diseases, including systemic lupus erythematous (SLE). These cytokines are induced by toll-like receptors (TLRs). Toll-like receptors are activated in response to accumulation of apoptotic bodies. These receptors play critical roles in innate immune systems. Increased levels of interferon-alpha (INF-α) have also been found in many SLE patients and often correlate with disease severity. The objectives of this study were to examine the expression of selected TLRs and cytokines that have been identified in animal models and some limited human studies in a group of African Americans (AA) and European Americans (EA) women with lupus in comparison to age-matched non-lupus women. Blood samples were consecutively obtained by informed consent from 286 patients, 153 lupus and 136 non-lupus, seen in the rheumatology clinics at East Carolina University. Cytokines were analyzed from blood serum using enzyme linked immunoassay (ELISA) for IL-6 and INF-α. Total RNA was isolated, using a Paxgene kit, from peripheral blood mononuclear cells of African American and European American women blood samples. Quantitative real-time PCR using the CFX real-time system was conducted on all samples to determine TLRs 7 and 9, as well as INF-α expression. Toll-like receptor 7 (p<0.01) and 9 (p=0.001) expression levels were significantly increased in lupus patients compared to age-matched controls. African American women with lupus had a 2-fold increase in TLR-9 expression level when compared to their healthy controls or European American lupus patients. However, there was no ethnic difference in expression of TLR-7 in lupus patients. INF-α expression was significantly higher in lupus patients (p<0.0001) and also showed ethnic difference in expression. Serum levels revealed significant increases in expression of IL-6, IFN-γ and TNF-α in lupus patients compared to non-lupus patients. African American women with lupus had significantly higher serum levels of IL-6 and TNF-α. African American women with lupus demonstrated increased levels of specific pro-inflammatory cytokines and Toll-like receptors when compared to EA women. Increased expression in these lupus patients provides an opportunity for targeting with antagonist as a new therapy for systemic lupus erythematous. Published by Elsevier Ltd.

  5. Octopaminergic gene expression and flexible social behaviour in the subsocial burying beetle Nicrophorus vespilloides

    PubMed Central

    Cunningham, C B; Douthit, M K; Moore, A J

    2014-01-01

    Flexible behaviour allows organisms to respond appropriately to changing environmental and social conditions. In the subsocial beetle Nicrophorus vespilloides, females tolerate conspecifics when mating, become aggressive when defending resources, and return to social tolerance when transitioning to parenting. Given the association between octopamine and aggression in insects, we hypothesized that genes in the octopaminergic system would be differentially expressed across different social and reproductive contexts. To test this in N. vespilloides, we first obtained the sequences of orthologues of the synthetic enzymes and receptors of the octopaminergic system. We next compared relative gene expression from virgin females, mated females, mated females alone on a resource required for reproduction and mated females on a resource with a male. Expression varied for five receptor genes. The expression of octopamine β receptor 1 and octopamine β receptor 2 was relatively higher in mated females than in other social conditions. Octopamine β receptor 3 was influenced by the presence or absence of a resource and less by social environment. Octopamine α receptor and octopamine/tyramine receptor 1 gene expression was relatively lower in the mated females with a resource and a male. We suggest that in N. vespilloides the octopaminergic system is associated with the expression of resource defence, alternative mating tactics, social tolerance and indirect parental care. PMID:24646461

  6. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts.

    PubMed

    Vousooghi, Nasim; Zarei, Seyed Zeinolabedin; Sadat-Shirazi, Mitra-Sadat; Eghbali, Fatemeh; Zarrindast, Mohammad Reza

    2015-10-01

    Excessive playing of computer games like some other behaviors could lead to addiction. Addictive behaviors may induce their reinforcing effects through stimulation of the brain dopaminergic mesolimbic pathway. The status of dopamine receptors in the brain may be parallel to their homologous receptors in peripheral blood lymphocytes (PBLs). Here, we have investigated the mRNA expression of dopamine D3, D4 and D5 receptors in PBLs of computer game addicts (n = 20) in comparison to normal subjects (n = 20), using a real-time PCR method. The results showed that the expression level of D3 and D4 dopamine receptors in computer game addicts were not statistically different from the control group. However, the expression of the mRNA of D5 dopamine receptor was significantly down-regulated in PBLs of computer game addicts and reached 0.42 the amount of the control group. It is concluded that unlike with drug addiction, the expression levels of the D3 and D4 dopamine receptors in computer game addicts are not altered compared to the control group. However, reduced level of the D5 dopamine receptor in computer game addicts may serve as a peripheral marker in studies where the confounding effects of abused drugs are unwanted.

  7. Placental expression of asialoglycoprotein receptor associated with Hepatitis B virus transmission from mother to child.

    PubMed

    Vyas, Ashish Kumar; Ramakrishna, Usha; Sen, Bijoya; Islam, Mojahidul; Ramakrishna, Gayatri; Patra, Sharda; Rastogi, Archana; Sarin, Shiv Kumar; Trehanpati, Nirupma

    2018-04-30

    Asialoglycoprotein receptor expression on hepatocytes has been associated with endocytosis, binding and uptake of hepatitis B virus. The role of asialoglycoprotein receptor in hepatitis B virus vertical transmission and its expression on placenta has not yet been studied. Thirty-four HBsAg+ve and 13 healthy pregnant mothers along with their newborns were enrolled. The former were categorized into transmitting and non-transmitting mothers based on their newborns being hepatitis B surface antigen and hepatitis B virus DNA positive. Expression of asialoglycoprotein receptor and hepatitis B surface antigen in placenta and isoform of asialoglycoprotein receptor on dendritic cell in peripheral and cord blood dendritic cells were analysed using flowcytometry, immune histochemistry, immune florescence and qRT-PCR. Twelve HBsAg+ve mothers transmitted hepatitis B virus to their newborns whereas the rest (n = 22) did not. Hepatitis B virus-transmitting mothers showed increased expression of asialoglycoprotein receptor in trophoblasts of placenta. Immunofluorescence microscopy revealed colocalization of hepatitis B surface antigen and asialoglycoprotein receptor in placenta as well as in DCs of transmitting mothers. There was no significant difference in the expression of asialoglycoprotein receptor on peripheral blood mononuclear cells or chord blood mononuclear cells between the 2 groups. However, hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed increased mRNA levels of isoform of asialoglycoprotein receptor on dendritic cell in peripheral blood mononuclear cells. Hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed an increased expression of isoform of asialoglycoprotein receptor on dendritic cell on circulating dendritic cells compared to hepatitis B virus non-transmitting mothers and their negative newborns. This study revealed that increased expression of asialoglycoprotein receptor in placenta and colocalization with hepatitis B surface antigen strongly indicates its role in intrauterine transmission of hepatitis B virus. Asialoglycoprotein receptor-blocking strategy can be used for therapeutic intervention of vertical transmission. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Sex- and age-related differences in the chronic pressure-natriuresis relationship: role of the angiotensin type 2 receptor.

    PubMed

    Mirabito, Katrina M; Hilliard, Lucinda M; Kett, Michelle M; Brown, Russell D; Booth, Sean C; Widdop, Robert E; Moritz, Karen M; Evans, Roger G; Denton, Kate M

    2014-10-15

    Sex hormones regulate the renin-angiotensin system. For example, estrogen enhances expression of the angiotensin type 2 receptor. We hypothesized that activation of the angiotensin type 2 receptor shifts the chronic pressure-natriuresis relationship leftward in females compared with males and that this effect is lost with age. Mean arterial pressure was measured by radiotelemetry in adult (4 mo old) and aged (14 mo old) wild-type and angiotensin type 2 receptor knockout male and female mice. Chronic pressure-natriuresis curves were constructed while mice were maintained on a normal-salt (0.26%) diet and following 6 days of high salt (5.0%) diet. Mean arterial pressure was lower in adult wild-type females than males (88 ± 1 and 97 ± 1 mmHg, respectively), a difference that was maintained with age, but was absent in adult knockout mice. In wild-type females, the chronic pressure-natriuresis relationship was shifted leftward compared with knockout females, an effect that was lost with age. In males, the chronic pressure-natriuresis relationship was not influenced by angiotensin type 2 receptor deficiency. Compared with age-matched females, the chronic pressure-natriuresis relationships in male mice were shifted rightward. Renal expression of the angiotensin type 2 receptor was fourfold greater in adult wild-type females than males. With age, the angiotensin type 2 receptor-to-angiotensin type 1 receptor balance was reduced in females. Conversely, in males, angiotensin receptor expression did not vary significantly with age. In conclusion, the angiotensin type 2 receptor modulates the chronic pressure-natriuresis relationship in an age- and sex-dependent manner. Copyright © 2014 the American Physiological Society.

  9. G protein-coupled estrogen receptor (GPER) expression in endometrial adenocarcinoma and effect of agonist G-1 on growth of endometrial adenocarcinoma cell lines.

    PubMed

    Skrzypczak, Maciej; Schüler, Susanne; Lattrich, Claus; Ignatov, Atanas; Ortmann, Olaf; Treeck, Oliver

    2013-11-01

    The G protein-coupled estrogen receptor (GPER, GPR30) is suggested to be involved in non-nuclear estrogen signaling and is expressed in a variety of hormone dependent cancer entities. This study was performed to further elucidate the role of this receptor in endometrial adenocarcinoma. We first analyzed GPER expression at the mRNA level in 88 endometrial cancer or normal endometrial tissue samples and compared it to those of nuclear steroid hormone receptors. GPER transcript levels were found to be about 6-fold reduced, but still present in endometrial cancer. Expression of this receptor was decreased in all grading subgroups when compared to pre- or postmenopausal endometrium. GPER mRNA expression was associated with PR mRNA levels (Spearman's rho 0.4610, p<0.001). We then tested the effect of the GPER ligand G-1 on growth of three endometrial cancer cell lines with different GPER expression. GPER protein levels were highest in RL95-2 cells, moderate in HEC-1A cells and not detectable in HEC-1B cells. The moderate expression level in HEC-1A cells was similar to average tumor tissue expression. Treatment with G-1 significantly inhibited growth of the GPER-positive cell lines RL95-2 and HEC-1A in a dose-dependent manner, whereas the GPER-negative line HEC-1B was not affected. Though GPER transcript levels were found to be reduced in endometrial cancer, our in vitro data suggest that moderate GPER expression might be sufficient to mediate growth-inhibitory effects triggered by its agonist G-1. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Distribution of messenger RNAs for D1 dopamine receptors and DARPP-32 in striatum and cerebral cortex of the cynomolgus monkey: relationship to D1 dopamine receptors.

    PubMed

    Brené, S; Hall, H; Lindefors, N; Karlsson, P; Halldin, C; Sedvall, G

    1995-07-01

    Messenger RNAs for the D1 dopamine receptor and dopamine- and cyclic AMP-regulated phosphoprotein of relative mass 32,000 (DARPP-32) were examined by in situ hybridization in the cynomolgus monkey brain. The messenger RNA distribution was compared to the distribution of D1 dopamine receptors using [3H]SCH 23390 autoradiography. In the caudate nucleus and putamen, D1 dopamine receptor messenger RNA-positive cells were unevenly distributed. Clusters of cells with an approximately three-fold higher intensity of labeling, as compared to surrounding regions, were found. Some of these D1 dopamine receptor messenger RNA intensive cell clusters in the caudate nucleus appeared to some extent to be matched to regions of higher intensity of [3H]SCH 23390 binding. The distribution of cells expressing DARPP-32 messenger RNA in the caudate nucleus and putamen was found to be non-clustered. In neocortical regions, cells of different sizes expressing D1 dopamine receptor messenger RNA were present in layers II-VI. D1 dopamine receptor messenger RNA-positive cells were most abundant in layer V. Unexpectedly, no DARPP-32 messenger RNA signal was detected in neocortex. Chronic SCH 23390 administration did not change the relative levels of messenger RNAs for the D1 dopamine receptor and DARPP-32 or [3H]SCH 23390 binding as measured by quantitative image analysis. The clustered distribution of D1 dopamine receptor messenger RNA is in contrast to that of DARPP-32 messenger RNA. This suggests that D1 dopamine receptors may play a more significant role in regulating DARPP-32 function in patch regions as compared to matrix regions. D1 dopamine receptor messenger RNA-expressing cells could also be visualized in several layers of the primate neocortex, implying that dopamine acts through D1 dopamine receptors within functionally different neuronal circuits of the neocortex.

  11. Adoptive transfer of murine T cells expressing a chimeric-PD1-Dap10 receptor as an immunotherapy for lymphoma.

    PubMed

    Lynch, Adam; Hawk, William; Nylen, Emily; Ober, Sean; Autin, Pierre; Barber, Amorette

    2017-11-01

    Adoptive transfer of T cells is a promising cancer therapy and expression of chimeric antigen receptors can enhance tumour recognition and T-cell effector functions. The programmed death protein 1 (PD1) receptor is a prospective target for a chimeric antigen receptor because PD1 ligands are expressed on many cancer types, including lymphoma. Therefore, we developed a murine chimeric PD1 receptor (chPD1) consisting of the PD1 extracellular domain fused to the cytoplasmic domain of CD3ζ. Additionally, chimeric antigen receptor therapies use various co-stimulatory domains to enhance efficacy. Hence, the inclusion of a Dap10 or CD28 co-stimulatory domain in the chPD1 receptor was compared to determine which domain induced optimal anti-tumour immunity in a mouse model of lymphoma. The chPD1 T cells secreted pro-inflammatory cytokines and lysed RMA lymphoma cells. Adoptive transfer of chPD1 T cells significantly reduced established tumours and led to tumour-free survival in lymphoma-bearing mice. When comparing chPD1 receptors containing a Dap10 or CD28 domain, both receptors induced secretion of pro-inflammatory cytokines; however, chPD1-CD28 T cells also secreted anti-inflammatory cytokines whereas chPD1-Dap10 T cells did not. Additionally, chPD1-Dap10 induced a central memory T-cell phenotype compared with chPD1-CD28, which induced an effector memory phenotype. The chPD1-Dap10 T cells also had enhanced in vivo persistence and anti-tumour efficacy compared with chPD1-CD28 T cells. Therefore, adoptive transfer of chPD1 T cells could be a novel therapy for lymphoma and inclusion of the Dap10 co-stimulatory domain in chimeric antigen receptors may induce a preferential cytokine profile and T-cell differentiation phenotype for anti-tumour therapies. © 2017 John Wiley & Sons Ltd.

  12. Upregulation of Poly (ADP-Ribose) Polymerase-1 (PARP1) in Triple-Negative Breast Cancer and Other Primary Human Tumor Types

    PubMed Central

    Ossovskaya, Valeria; Koo, Ingrid Chou; Kaldjian, Eric P.; Alvares, Christopher; Sherman, Barry M.

    2010-01-01

    Poly (ADP-ribose) polymerase-1 (PARP1) is a key facilitator of DNA repair and is implicated in pathways of tumorigenesis. PARP inhibitors have gained recent attention as rationally designed therapeutics for the treatment of several malignancies, particularly those associated with dysfunctional DNA repair pathways, including triple-negative breast cancer (TNBC). We investigated the PARP1 gene expression profile in surgical samples from more than 8,000 primary malignant and normal human tissues. PARP1 expression was found to be significantly increased in several malignant tissues, including those isolated from patients with breast, uterine, lung, ovarian, and skin cancers, and non-Hodgkin’s lymphoma. Within breast infiltrating ductal carcinoma (IDC) samples tested, mean PARP1 expression was significantly higher relative to normal breast tissue, with over 30% of IDC samples demonstrating upregulation of PARP1, compared with 2.9% of normal tissues. Because of known DNA repair defects, including BRCA1 dysfunction, associated with TNBC, exploration of PARP1 expression in breast cancers related to expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) led to the observation that negative expression of any of the 3 receptors was associated with upregulation of PARP1 expression, compared with receptor-positive tissues. To validate these observations, an independent set of breast adenocarcinomas was evaluated and demonstrated >2-fold upregulation of PARP1 in approximately 70% of primary breast adenocarcinomas, including TNBC, compared with syngeneic nonmalignant breast tissues. Immunohistochemistry (IHC) showed that upregulation of the PARP1 gene was consistent with increased protein expression in TNBC. These analyses suggest a potential biological role for PARP1 in several distinct malignancies, including TNBC. Further investigation of PARP1 as a biomarker for the therapeutic activity of PARP inhibitor-based therapy is warranted. PMID:21779467

  13. GnRH-agonist implantation of prepubertal male cats affects their reproductive performance and testicular LH receptor and FSH receptor expression.

    PubMed

    Mehl, N S; Khalid, M; Srisuwatanasagul, S; Swangchan-Uthai, T; Sirivaidyapong, S

    2016-03-15

    This study was conducted to investigate the effect of GnRH-agonist implantation in prepubertal tomcats on sexual behavior, reproductive performance, and expression of testicular LH receptor (LHR) and FSH receptor (FSHR) and also to compare the testicular characteristics, LHR and FSHR expression between prepubertal and adult tomcats. In experiment 1, 3-month-old tomcats (n = 6/group) were either treated with or left without 4.7 mg deslorelin implants. Semen collection and evaluation were performed just before castration at 48 weeks after treatment; removed testes were analyzed for mRNA and protein expression of LHR and FSHR. We were able to collect semen from six non-treated cats, whereas in treated cats, semen was uncollectable. The results revealed that sexual behavior was absent in the implanted cats throughout the study period. Testicular volume was found to decrease from 30 weeks after treatment onward in the implanted cats compared to the controls (P < 0.05). Semen production was found only in non-implanted cats. Testicular tissue score, seminiferous tubule diameter, and LHR protein expression were found lower in the implanted cats (P < 0.05), but no differences were observed in mRNA expression of LHR and protein expression of FSHR between groups. The mRNA expression of FSHR was higher in the implanted (P < 0.05) compared to control cats. In experiment 2, testes from prepubertal (n = 6) and adult (n = 6) male cats were collected after castration and analyzed for mRNA and protein expression of LHR and FSHR. No differences were observed in the protein expression of LHR and FSHR between the two groups, whereas mRNA expression of FSHR was higher in prepubertal cats (P < 0.05). Testicular and epididymal weight, diameter of seminiferous tubules, and the testicular grade were higher in the adult compared to prepubertal cats (P < 0.05). In conclusion, deslorelin implants suppressed protein expression of LHR and enhanced mRNA expression of FSHR along with suppression of reproductive function without any adverse effects for at least 48 weeks in male cats. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cloning and expression analysis of a novel G-protein-coupled receptor selectively expressed on granulocytes.

    PubMed

    Yousefi, S; Cooper, P R; Potter, S L; Mueck, B; Jarai, G

    2001-06-01

    The migration of neutrophils into sites of acute and chronic inflammation is mediated by chemokines. We used degenerate-primer reverse transcriptase-polymerase chain reaction (RT-PCR) to analyze chemokine receptor expression in neutrophils and identify novel receptors. RNA was isolated from human peripheral blood neutrophils and from neutrophils that had been stimulated for 5 h with granulocyte-macrophage colony-stimulating factor or by coculturing with primary human bronchial epithelial cells. Amplification products were cloned, and clone redundancy was determined. Seven known G-protein-coupled receptors were identified among 38 clones-CCR1, CCR4, CXCR1, CXCR2, CXCR4, HM63, and FPR1-as well as a novel gene, EX33. The full-length EX33 clone was obtained, and an in silico approach was used to identify the putative murine homologue. The EX33 gene encodes a 396-amino-acid protein with limited sequence identity to known receptors. Expression studies of several known chemokine receptors and EX33 revealed that resting neutrophils expressed higher levels of CXCRs and EX33 compared with activated neutrophils. Northern blot experiments revealed that EX33 is expressed mainly in bone marrow, lung, and peripheral blood leukocytes. Using RT-PCR analysis, we showed more abundant expression of EX33 in neutrophils and eosinophils, in comparison with that in T- or B-lymphocytes, indicating cell-specific expression among leukocytes.

  15. Expression of PACAP and PAC1 Receptor in Normal Human Thyroid Gland and in Thyroid Papillary Carcinoma.

    PubMed

    Bardosi, Sebastian; Bardosi, Attila; Nagy, Zsuzsanna; Reglodi, Dora

    2016-10-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) belongs to the vasoactive intestinal peptide-secretin-glucagon peptide family, isolated first from ovine hypothalamus. The diverse physiological effects of PACAP are known mainly from animal experiments, including several actions in endocrine glands. Alteration of PACAP expression has been shown in several tumors, but changes in expression of PACAP and its specific PAC1 receptor in human thyroid gland pathologies have not yet been investigated. Therefore, the aim of the present study was to investigate expression of PACAP and its PAC1 receptor in human thyroid papillary carcinoma, the most common endocrine malignant tumor. PACAP and PAC1 receptor expressions were investigated from thyroid gland samples of patients with papillary carcinomas. The staining intensity of follicular epithelial cells and thyroid colloid of tumor tissue was compared to that of tumor-free tissue in the same thyroid glands in a semi-quantitative way. Our results reveal that both PACAP(-like) and PAC1 receptor(-like) immunoreactivities are altered in papillary carcinoma. Stronger PACAP immunoreactivity was observed in active follicles. Colloidal PACAP immunostaining was either lacking or very weak, and more tumorous cells displayed strong apical immunoreactivity. Regarding PAC1 receptor, cells of the normal thyroid tissue showed strong granular expression, which was lacking in the tumor cells. The cytoplasm of tumor cells displayed weak, minimal staining, while in a few tumor cells we observed strong PAC1 receptor expression. This pattern was similar to that observed in the PACAP expression, but fewer in number. In summary, we showed alteration of PACAP and PAC1 receptor expression in human thyroid papillary carcinoma, indicating that PACAP regulation is disturbed in tumorous tissue of the thyroid gland. The exact role of PACAP in thyroid tumor growth should be further explored.

  16. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion

    PubMed Central

    Valle-Leija, Pablo; Cancino-Rodezno, Angeles; Sánchez-Tafolla, Berardo M.; Arias, Erwin; Elinos, Diana; Feria, Jessica; Zetina, María E.; Morales, Miguel A.; Cifuentes, Fredy

    2017-01-01

    Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity. PMID:28744222

  17. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion.

    PubMed

    Valle-Leija, Pablo; Cancino-Rodezno, Angeles; Sánchez-Tafolla, Berardo M; Arias, Erwin; Elinos, Diana; Feria, Jessica; Zetina, María E; Morales, Miguel A; Cifuentes, Fredy

    2017-01-01

    Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.

  18. [Effect of fentanyl on expression of mu-receptor and beta-arrestin 2 in periaqueductal gray of rats tolerant to morphine].

    PubMed

    Liu, Ruo-shan; Sun, Li; Liu, Xiao-yan; Li, Xuan-ying; Xu, Lei

    2009-05-19

    To investigate the effect of fentanyl upon the expression of mu-receptor and beta-arrestin 2 in peri-aqueductal gray of morphine-tolerant rats. Forty male SD rats weighing (230 +/- 20) g were randomly divided into 5 groups of eight animals each: group NS, group M, group MF1, group MF2 and group MF3. Rats in group NS received only subcutaneous normal saline 1 ml/kg twice a day for 9 consecutive days; group M received subcutaneous morphine 10 mg/kg followed by NS 1 ml/kg twice a day for 9 consecutive days; In groups MF1, MF2 and MF3, morphine 10 mg x kg(-1) was injected subcutaneously followed by fentanyl 3, 6, 12 microg/kg respectively. All animals were sacrificed at Day 9 after measurement of pain threshold. Periaqueductal gray was removed for determination of the expression of mRNA (RT-PCR) and protein (Western-blot) of mu-receptor and beta-arrestin 2. Compared with group NS, TFL of group M was significantly elevated after the first morphine injection (P < 0.01). But TFL of group M returned to the baseline value after chronic morphine treatment. Compared with group M, TFL increased in groups MF2 and MF3 at Days 7 and 9 (P < 0.05 or 0.01). However, TFL of group MF1 was negative (P > 0.05). The expression of mu-receptor mRNA and protein was significantly lower in group M than in group NS (P < 0.01). Compared with group M, the expressions of mu-receptor mRNA and protein were significantly elevated in group MF2 and MF3 (P < 0.05 or 0.01) but there was no significant change in group MF1 (P > 0.05). The expression of beta-arrestin 2 mRNA and protein significantly decreased in group M as compared with group NS (P < 0.01). Compared with group M, the expressions of beta-arrestin 2 mRNA and protein were significantly elevated in group MF2 and MF3 (P < 0.05 or 0.01), but there was no significant change in group MF1 (P > 0.05). Fentanyl at 6 and 12 microg/kg can partly inhibit morphine tolerance through an increased expression of mu-receptor and beta-arrestin 2 in periaqueductal gray of morphine-tolerant rats.

  19. Altered expression of alternatively spliced isoforms of the mRNA NMDAR1 receptor in the visual cortex of strabismic cats.

    PubMed

    Yin, Z Q; Deng, Z M; Crewther, S G; Crewther, D P

    2001-11-20

    Although much has been written about the role of the NMDA receptor's role in experience dependent visual plasticity, the function of the NMDAR1 receptor subunit in the post-plasticity stage of development is still not well understood. However, in the well studied model of strabismic amblyopia where binocularity is reduced, but where most primary visual cortex neurons can be driven by one or other eye, the density of expression of NMDAR1 receptor protein is significantly reduced, compared to normals. This study aims to identify which of eight isoforms of the spliced heterogeneous variants of the NMDAR1 mRNA receptor gene are associated with this decrease in expression as a means of elucidating possible function. A series of digoxygenin-labelled oligonucleotide probes based on the human gene sequence have been used for in situ hybridization (ISH) of sections from the striate cortex of four adult cats. The probes were used to uniquely detect the expression of alternatively spliced mRNA variants in 66,487 cells from sections from the area centralis projection of two normal cats and two cats made esotropic as kittens by tenotomy at two weeks of age. As expected, total NMDAR1 mRNA isoform expression was significantly lower in the striate cortex of strabismic compared to normal cats. The proportion of cortical cells expressing the R1-a, R1-b, and R1-1 isoforms in strabismic animals was decreased while the proportion expressing R1-3 was increased, especially in layers V and VI. No significant difference in expression of the R1-2 and R1-4 isoforms was seen comparing strabismic and normal cats. These results confirm our previous findings and suggest that transcriptional inhibition of specific isoforms of NMDAR1 mRNA may underlie the change in receptor expression. This preferential reduction in the proportion of neurons bearing particular NMDAR1 isoforms, i.e. isoforms R1-a and b, and R1-1 with partial compensation through the expression of the R1-3 isoform, is more likely related to lowered proportion of binocularly activated neurons in the strabismic cat than to changes in eye dominance or the presence of amblyopia in one eye.

  20. Prostate cancer targeting motifs: expression of αν β3, neurotensin receptor 1, prostate specific membrane antigen, and prostate stem cell antigen in human prostate cancer cell lines and xenografts.

    PubMed

    Taylor, Robert M; Severns, Virginia; Brown, David C; Bisoffi, Marco; Sillerud, Laurel O

    2012-04-01

    Membrane receptors are frequent targets of cancer therapeutic and imaging agents. However, promising in vitro results often do not translate to in vivo clinical applications. To better understand this obstacle, we measured the expression differences in receptor signatures among several human prostate cancer cell lines and xenografts as a function of tumorigenicity. Messenger RNA and protein expression levels for integrin α(ν) β(3), neurotensin receptor 1 (NTSR1), prostate specific membrane antigen (PSMA), and prostate stem cell antigen (PSCA) were measured in LNCaP, C4-2, and PC-3 human prostate cancer cell lines and in murine xenografts using quantitative reverse transcriptase polymerase chain reaction, flow cytometry, and immunohistochemistry. Stable expression patterns were observed for integrin α(ν) and PSMA in all cells and corresponding xenografts. Integrin β(3) mRNA expression was greatly reduced in C4-2 xenografts and greatly elevated in PC-3 xenografts compared with the corresponding cultured cells. NTSR1 mRNA expression was greatly elevated in LNCaP and PC-3 xenografts. PSCA mRNA expression was elevated in C4-2 xenografts when compared with C4-2 cells cultured in vitro. Furthermore, at the protein level, PSCA was re-expressed in all xenografts compared with cells in culture. The regulation of mRNA and protein expression of the cell-surface target proteins α(ν) β(3), NTSR1, PSMA, and PSCA, in prostate cancer cells with different tumorigenic potential, was influenced by factors of the microenvironment, differing between cell cultures and murine xenotransplants. Integrin α(ν) β(3), NTRS1 and PSCA mRNA expression increased with tumorigenic potential, but mRNA expression levels for these proteins do not translate directly to equivalent expression levels of membrane bound protein. Copyright © 2011 Wiley Periodicals, Inc.

  1. A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells.

    PubMed

    Moeller, Maria; Haynes, Nicole M; Trapani, Joseph A; Teng, Michele W L; Jackson, Jacob T; Tanner, Jane E; Cerutti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K

    2004-05-01

    T cells engineered to express single-chain antibody receptors that incorporate TCR-zeta and cluster designation (CD)28 signaling domains (scFv-alpha-erbB2-CD28-zeta) can be redirected in vivo to cancer cells that lack triggering costimulatory molecules. To assess the contribution of CD28 signaling to the function of the scFv-CD28-zeta receptor, we expressed a series of mutated scFv-CD28-zeta receptors directed against erbB2. Residues known to be critical for CD28 signaling were mutated from tyrosine to phenylalanine at position 170 or proline to alanine at positions 187 and 190. Primary mouse T cells expressing either of the mutant receptors demonstrated impaired cytokine (IFN-gamma and GM-CSF) production and decreased proliferation after antigen ligation in vitro and decreased antitumor efficacy in vivo compared with T cells expressing the wild-type scFv-CD28-zeta receptor, suggesting a key signaling role for the CD28 component of the scFv-CD28-zeta receptor. Importantly, cell surface expression, binding capacity and cytolytic activity mediated by the scFv-CD28-zeta receptor were not diminished by either mutation. Overall, this study has definitively demonstrated a functional role for the CD28 component of the scFv-CD28-zeta receptor and has shown that incorporation of costimulatory activity in chimeric scFv receptors is a powerful approach for improving adoptive cancer immunotherapy.

  2. Dietary ω-3 Polyunsaturated Fatty Acids Inhibit Tumor Growth in Transgenic ApcMin/+ Mice, Correlating with CB1 Receptor Up-Regulation

    PubMed Central

    Notarnicola, Maria; Tutino, Valeria; De Nunzio, Valentina; Dituri, Francesco; Caruso, Maria Gabriella; Giannelli, Gianluigi

    2017-01-01

    Mediterranean diet components, such as olive oil and ω-3 polyunsaturated fatty acids (ω-3 PUFAs), can arrest cell growth and promote cell apoptosis. Recently, olive oil has been demonstrated to modulate type-1 cannabinoid (CB1) receptor gene expression in both human colon cancer cells and rat colon. The aim of this study was to investigate a possible link between olive oil and ω-3 PUFAs effects and CB1 receptor expression in both intestinal and adipose tissue of ApcMin/+ mice. To confirm the role for the CB1 receptor as a negative modulator of cell proliferation in human colon cancer, CB1 receptor gene expression was also detected in tumor tissue and in surrounding normal mucosa of patients with colorectal cancer (CRC). Dietary ω-3 PUFAs significantly inhibited intestinal polyp growth in mice, correlating with CB1 receptor gene and protein expression induction. CB1 receptor gene up-regulation was also detected in adipose tissue, suggesting a close communication between cancer cells and the surrounding environment. Tissue CB1 receptor induction was associated with a concurrent inactivation of the Wnt/β-catenin pathway. Moreover, there was a significant reduction in CB1 receptor gene expression levels in cancer tissue compared to normal surrounding mucosa of patients with CRC, confirming that in cancer the “protective” action of the CB1 receptor is lost. PMID:28245562

  3. Protective effects of naringin against gp120-induced injury mediated by P2X7 receptors in BV2 microglial cells.

    PubMed

    Chen, Q; Hu, J; Qin, S S; Liu, C L; Wu, H; Wang, J R; Lu, X M; Wang, J; Chen, G Q; Liu, Y; Liu, B Y; Xu, C S; Liang, S D

    2016-05-13

    This study was aimed at exploring the effects of P2X7 receptors on gp120-induced injury and naringin's protective effects against gp120-induced injury in BV2 microglia. BV2 microglia injury model was established by gp120 treatment and MTS assay was used to verify whether naringin has a cell-protective effect against gp120-induced injury. Changes in P2X7 receptor expression were assayed using RT-PCR, qPCR, and western blot. Results showed that the ODs of the Ctrl, gp120, gp120+naringin, and gp120+BBG groups were 0.91 ± 0.10, 0.71 ± 0.09, 0.83 ± 0.10, and 0.83 ± 0.10, respectively. Compared to the control group, the gp120 group showed a significantly decreased cell survival rate. Cell survival rates of the gp120+naringin group increased significantly compared to those of the gp120 group, while no difference was observed when compared to the gp120+BBG group. The relative P2X7 mRNA expression levels in the Ctrl, gp120, gp120+naringin, and gp120+BBG groups were 0.73 ± 0.06, 1.05 ± 0.06, 0.78 ± 0.05, and 0.81 ± 0.04, respectively. The corresponding P2X7 protein expression levels were 0.46 ± 0.04, 0.79 ± 0.04, 0.38 ± 0.07, and 0.42 ± 0.06. P2X7 mRNA and protein expression in the gp120 group increased significantly compared to those in the control group, and declined in the gp120+naringin group compared to those in the gp120 group. Therefore, P2X7 receptors might be involved in gp120-induced injury in BV2 microglia, and naringin might play a protective role by inhibiting the up-regulated expression of P2X7 receptors.

  4. [New methods of patient selection for improved anticholinergic therapy].

    PubMed

    Neuhaus, J; Schwalenberg, T; Schlichting, N; Schulze, M; Horn, L-C; Stolzenburg, J-U

    2007-09-01

    M3-specific inhibitors are currently preferred for anticholinergic therapy of OAB. However, not all of the patients profit from this regimen. This might reflect a heterogeneity of the patient group. The aim of this work is to define subgroups of patients with specific alterations of receptor expression and to profile the receptor expression individually. These receptor profiles might be used for the development of evidence-based "tailored" therapies. Detrusor probes from bladder carcinoma patients (BCa, n=9 F, n=7 male) and interstitial cystitis patients (IC, n=9 female) were examined using confocal immunofluorescence and PCR. M2, M3, P2X1-3, and H1-3 mRNAs were demonstrated in detrusor tissue. As revealed by immunofluorescence, the M2 receptor expression was significantly higher in female compared to male BCa tissues. In addition, the M2 receptor was further upregulated in IC vs BCa in female detrusor. IC patients showed specific alterations of their receptor profile. Individual receptor profiles might be used to optimize medicinal therapies.

  5. Decreased hepatocyte membrane potential differences and GABAA-beta3 expression in human hepatocellular carcinoma.

    PubMed

    Minuk, Gerald Y; Zhang, Manna; Gong, Yuewen; Minuk, Leonard; Dienes, Hans; Pettigrew, Norman; Kew, Michael; Lipschitz, Jeremy; Sun, Dongfeng

    2007-03-01

    To determine whether hepatocyte membrane potential differences (PDs) are depolarized in human HCC and whether depolarization is associated with changes in GABAA receptor expression, hepatocyte PDs and gamma-aminobutyric acid (GABA)A receptor messenger RNA (mRNA) and protein expression were documented in HCC tissues via microelectrode impalement, real-time reverse-transcriptase polymerase chain reaction, and Western blot analysis, respectively. HCC tissues were significantly depolarized (-19.8+/-1.3 versus -25.9+/-3.2 mV, respectively [P<0.05]), and GABAA-beta3 expression was down-regulated (GABAA-beta3 mRNA and protein expression in HCC; 5,693+/-1,385 and 0.29+/-0.11 versus 11,046+/-4,979 copies/100 mg RNA and 0.62+/-0.16 optical density in adjacent tumor tissues, respectively [P=0.002 and P<0.0001, respectively]) when compared with adjacent nontumor tissues. To determine the physiological relevance of the down-regulation, human malignant hepatocytes deficient in GABAA-beta3 receptor expression (Huh-7 cells) were transfected with GABAA-beta3 complementary DNA (cDNA) or vector alone and injected into nu/nu nude mice (n=16-17 group). Tumors developed after a mean (+/-SD) of 51+/-6 days (range: 41-60 days) in 7/16 (44%) mice injected with vector-transfected cells and 70+/-12 days (range: 59-86 days) in 4/17 (24%) mice injected with GABAA-beta3 cDNA-transfected cells (P<0.005). The results of this study indicate that (1) human HCC tissues are depolarized compared with adjacent nontumor tissues, (2) hepatic GABAA-beta3 receptor expression is down-regulated in human HCC, and (3) restoration of GABAA-beta3 receptor expression results in attenuated in vivo tumor growth in nude mice.

  6. Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 costimulation.

    PubMed

    Haynes, Nicole M; Trapani, Joseph A; Teng, Michele W L; Jackson, Jacob T; Cerruti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K

    2002-11-15

    A new strategy to improve the therapeutic utility of redirected T cells for cancer involves the development of novel Ag-specific chimeric receptors capable of stimulating optimal and sustained T cell antitumor activity in vivo. Given that T cells require both primary and costimulatory signals for optimal activation and that many tumors do not express critical costimulatory ligands, modified single-chain Ab receptors have been engineered to codeliver CD28 costimulation. In this study, we have compared the antitumor potency of primary T lymphocytes expressing carcinoembryonic Ag (CEA)-reactive chimeric receptors that incorporate either TCR-zeta or CD28/TCR-zeta signaling. Although both receptor-transduced T cell effector populations demonstrated cytolysis of CEA(+) tumors in vitro, T cells expressing the single-chain variable fragment of Ig (scFv)-CD28-zeta chimera had a far greater capacity to control the growth of CEA(+) xenogeneic and syngeneic colon carcinomas in vivo. The observed enhanced antitumor activity of T cells expressing the scFv-CD28-zeta receptor was critically dependent on perforin and the production of IFN-gamma. Overall, this study has illustrated the ability of a chimeric scFv receptor capable of harnessing the signaling machinery of both TCR-zeta and CD28 to augment T cell immunity against tumors that have lost expression of both MHC/peptide and costimulatory ligands in vivo.

  7. Differential regulation of NMDA receptor-expressing neurons in the rat hippocampus and striatum following bilateral vestibular loss demonstrated using flow cytometry.

    PubMed

    Benoit, Alice; Besnard, Stephane; Guillamin, Maryline; Philoxene, Bruno; Sola, Brigitte; Le Gall, Anne; Machado, Marie-Laure; Toulouse, Joseph; Hitier, Martin; Smith, Paul F

    2018-06-21

    There is substantial evidence that loss of vestibular function impairs spatial learning and memory related to hippocampal (HPC) function, as well as increasing evidence that striatal (Str) plasticity is also implicated. Since the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor is considered essential to spatial memory, previous studies have investigated whether the expression of HPC NMDA receptors changes following vestibular loss; however, the results have been contradictory. Here we used a novel flow cytometric method to quantify the number of neurons expressing NMDA receptors in the HPC and Str following bilateral vestibular loss (BVL) in rats. At 7 and 30 days post-op., there was a significant increase in the number of HPC neurons expressing NMDA receptors in the BVL animals, compared to sham controls (P ≤ 0.004 and P ≤ 0.0001, respectively). By contrast, in the Str, at 7 days there was a significant reduction in the number of neurons expressing NMDA receptors in the BVL group (P ≤ 0.05); however, this difference had disappeared by 30 days post-op. These results suggest that BVL causes differential changes in the number of neurons expressing NMDA receptors in the HPC and Str, which may be related to its long-term impairment of spatial memory. Copyright © 2018. Published by Elsevier B.V.

  8. Hypoglycemia induced behavioural deficit and decreased GABA receptor, CREB expression in the cerebellum of streptozoticin induced diabetic rats.

    PubMed

    Sherin, A; Peeyush, K T; Naijil, G; Chinthu, R; Paulose, C S

    2010-11-20

    Intensive glycemic control during diabetes is associated with an increased incidence of hypoglycemia, which is the major barrier in blood glucose homeostasis during diabetes therapy. The CNS neurotransmitters play an important role in the regulation of glucose homeostasis. In the present study, we showed the effects of hypoglycemia in diabetic and non- diabetic rats on motor functions and alterations of GABA receptor and CREB expression in the cerebellum. Cerebellar dysfunction is associated with seizure generation, motor deficits and memory impairment. Scatchard analysis of [(3)H]GABA binding in the cerebellum of diabetic hypoglycemic and control hypoglycemic rats showed significant (P<0.01) decrease in B(max) and K(d) compared to diabetic and control rats. Real-time PCR amplification of GABA receptor subunit GABA(Aα1) and GAD showed significant (P<0.001) down-regulation in the cerebellum of hypoglycemic rats compared to diabetic and control rats. Confocal imaging study confirmed the decreased GABA receptors in hypoglycemic rats. CREB mRNA expression was down-regulated during recurrent hypoglycemia. Both diabetic and non-diabetic hypoglycemic rats showed impaired performance in grid walk test compared to diabetic and control. Impaired GABA receptor and CREB expression along with motor function deficit were more prominent in hypoglycemic rats than hyperglycemic which showed that hypoglycemia is causing more neuronal damage at molecular level. These molecular changes observed during hypo/hyperglycemia contribute to motor and learning deficits which has clinical significance in diabetes treatment. 2010 Elsevier Inc. All rights reserved.

  9. Effects of chronic scopolamine administration on spatial working memory and hippocampal receptors related to learning.

    PubMed

    Doguc, Duygu K; Delibas, Namik; Vural, Huseyin; Altuntas, Irfan; Sutcu, Recep; Sonmez, Yonca

    2012-12-01

    Scopolamine has been used in neuropsychopharmacology as a standard drug that leads to symptoms mimicking cognitive deficits seen during the aging process in healthy humans and animals. Scopolamine is known to be a nonselective muscarinic receptor blocker, but its chronic effect on the expression of certain hippocampal receptors is not clear. The aim of the present study was to determine the effect of chronic scopolamine administration on hippocampal receptor expression and spatial working memory in two different learning tasks, the water maze and the eight-arm radial maze. Male rats (8-12 months) were trained in both tasks. Subsequently, different groups received physiological saline or 0.1, 0.8, or 2 mg/kg scopolamine hydrobromide, respectively, for 15 days. After drug administration, the rats were retested for both tasks, and hippocampal expressions of NR2A, NR2B, nAChRα7, and mAChRM1 receptors were assessed by western blotting analysis. In both tasks, the spatial working memory was decreased dose dependently in all groups compared with the control group. In terms of receptor expressions, 0.8 and 2 mg/kg scopolamine administration significantly decreased NR2A protein expression, which corroborates suggestions of an interaction between cholinergic and glutamatergic receptors in the hippocampus.

  10. Neurotrophins and tonsillar hypertrophy in children with obstructive sleep apnea.

    PubMed

    Goldbart, Aviv D; Mager, Edward; Veling, Maria C; Goldman, Julie L; Kheirandish-Gozal, Leila; Serpero, Laura D; Piedimonte, Giovanni; Gozal, David

    2007-10-01

    Enlarged adenotonsillar tissue (AT) is a major determinant of obstructive sleep apnea (OSA) severity in children; however, mechanisms of AT proliferation are poorly understood. We hypothesized that early exposure to respiratory syncytial virus (RSV) may modify AT proliferation through up-regulation of nerve growth factor (NGF)-neurokinin 1 (NK1) receptor dependent pathways. AT harvested from 34 children with OSA and 25 children with recurrent tonsillitis (RI) were examined for mRNA expression of multiple growth factors and their receptors. In addition, NK1 receptor expression and location, and substance P tissue concentrations were compared in AT from OSA and RI children. NGF mRNA and its high-affinity tyrosine kinase receptor (trkA) expression were selectively increased in OSA (p<0.001). NK1 receptor mRNA and protein expression were also enhanced in OSA (p<0.01), and substance P concentrations in OSA patients were higher than in RI (p<0.0001). AT from OSA children exhibit distinct differences in the expression of NGF and trkA receptors, NK1 receptors, and substance P. The homology between these changes and those observed in the lower airways following RSV infection suggests that RSV may have induced neuro-immunomodulatory changes within AT, predisposing them to increased proliferation, and ultimately contribute to emergence of OSA.

  11. Neurotrophins and Tonsillar Hypertrophy in Children With Obstructive Sleep Apnea

    PubMed Central

    GOLDBART, AVIV D.; MAGER, EDWARD; VELING, MARIA C.; GOLDMAN, JULIE L.; KHEIRANDISH-GOZAL, LEILA; SERPERO, LAURA D.; PIEDIMONTE, GIOVANNI; GOZAL, DAVID

    2013-01-01

    Enlarged adenotonsillar tissue (AT) is a major determinant of obstructive sleep apnea (OSA) severity in children; however, mechanisms of AT proliferation are poorly understood. We hypothesized that early exposure to respiratory syncytial virus (RSV) may modify AT proliferation through up-regulation of nerve growth factor (NGF)-neurokinin 1 (NK1) receptor dependent pathways. AT harvested from 34 children with OSA and 25 children with recurrent tonsillitis (RI) were examined for mRNA expression of multiple growth factors and their receptors. In addition, NK1 receptor expression and location, and substance P tissue concentrations were compared in AT from OSA and RI children. NGF mRNA and its high-affinity tyrosine kinase receptor (trkA) expression were selectively increased in OSA (p < 0.001). NK1 receptor mRNA and protein expression were also enhanced in OSA (p < 0.01), and substance P concentrations in OSA patients were higher than in RI (p < 0.0001). AT from OSA children exhibit distinct differences in the expression of NGF and trkA receptors, NK1 receptors, and substance P. The homology between these changes and those observed in the lower airways following RSV infection suggests that RSV may have induced neuro-immunomodulatory changes within AT, predisposing them to increased proliferation, and ultimately contribute to emergence of OSA. PMID:17667845

  12. Development of a Competitive Binding Assay System with Recombinant Estrogen Receptors from Multiple Species

    EPA Science Inventory

    ABSTRACT In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human (hERα), quai...

  13. Human Endometriosis Tissue Microarray Reveals Site-specific Expression of Estrogen Receptors, Progesterone Receptor, and Ki67.

    PubMed

    Colón-Caraballo, Mariano; García, Miosotis; Mendoza, Adalberto; Flores, Idhaliz

    2018-04-07

    Most available therapies for endometriosis are hormone-based and generally broadly used without taking into consideration the ovarian hormone receptor expression status. This contrasts strikingly with the standard of care for other hormone-based conditions such as breast cancer. We therefore aimed to characterize the expression of ovarian steroid hormone receptors for estrogen alpha (ESR1), estrogen beta (ESR2), and progesterone (PGR) in different types of endometriotic lesions and eutopic endometrium from women with endometriosis and controls using a tissue microarray (TMA). Nuclear expression levels of the receptors were analyzed by tissue (ie, ectopic vs. eutopic endometrium) and cell type (ie, glands vs. stroma). Ovarian lesions showed the lowest expression of ESR1 and PGR, and the highest expression of ESR2, whereas the fallopian tube lesions showed high expression of the 3 receptors. Differences among endometria included lower expression of ESR1 and higher expression of ESR2 in stroma of proliferative endometrium from patients versus patients, and a trend towards loss of PGR nuclear positivity in proliferative endometrium from patients. The largest ESR2:ESR1 ratios were observed in ovarian lesions and secretory endometrium. The highest proportion of samples with >10% Ki67 positive nuclei was in glands of fallopian tube (54%) and extrapelvic lesions (75%); 60% of glands of secretory endometrium from patients had >10% Ki67 positivity compared with only 15% in controls. Our results provide a better understanding of endometriosis heterogeneity by revealing lesion type-specific differences and case-by-case variability in the expression of ovarian hormone receptors. This knowledge could potentially predict individual responses to hormone therapies, and set the basis for the application of personalized medicine approaches for women with endometriosis.

  14. Gene expression profiling reveals different molecular patterns in G-protein coupled receptor signaling pathways between early- and late-onset preeclampsia.

    PubMed

    Liang, Mengmeng; Niu, Jianmin; Zhang, Liang; Deng, Hua; Ma, Jian; Zhou, Weiping; Duan, Dongmei; Zhou, Yuheng; Xu, Huikun; Chen, Longding

    2016-04-01

    Early-onset preeclampsia and late-onset preeclampsia have been regarded as two different phenotypes with heterogeneous manifestations; To gain insights into the pathogenesis of the two traits, we analyzed the gene expression profiles in preeclamptic placentas. A whole genome-wide microarray was used to determine the gene expression profiles in placental tissues from patients with early-onset (n = 7; <34 weeks), and late-onset (n = 8; >36 weeks) preeclampsia and their controls who delivered preterm (n = 5; <34 weeks) or at term (n = 5; >36 weeks). Genes were termed differentially expressed if they showed a fold-change ≥ 2 and q-value < 0.05. Quantitative real-time reverse transcriptase PCR was used to verify the results. Western blotting was performed to verify the expressions of secreted genes at the protein level. Six hundred twenty-seven genes were differentially expressed in early-compared with late-onset preeclampsia (177 genes were up-regulated and 450 were down-regulated). Gene ontology analysis identified significant alterations in several biological processes; the top two were immune response and cell surface receptor linked signal transduction. Among the cell surface receptor linked signal transduction-related, differentially expressed genes, those involved in the G-protein coupled receptor protein signaling pathway were significantly enriched. G-protein coupled receptor signaling pathway related genes, such as GPR124 and MRGPRF, were both found to be down-regulated in early-onset preeclampsia. The results were consistent with those of western blotting that the abundance of GPR124 was lower in early-onset compared with late-onset preeclampsia. The different gene expression profiles reflect the different levels of transcription regulation between the two conditions and supported the hypothesis that they are separate disease entities. Moreover, the G-protein coupled receptor signaling pathway related genes may contribute to the mechanism underlying early- and late-onset preeclampsia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Prognostic value of estrogen receptor and progesterone receptor tumor expression in Danish ovarian cancer patients: from the 'MALOVA' ovarian cancer study.

    PubMed

    Høgdall, Estrid V S; Christensen, Lise; Høgdall, Claus K; Blaakaer, Jan; Gayther, Simon; Jacobs, Ian J; Christensen, Ib Jarle; Kjaer, Susanne K

    2007-11-01

    Estrogen and progesterone are important hormones secreted by the ovary acting through specific receptors. Tumor tissue expression profiles of these have demonstrated prognostic value in malignancies such as breast, uterine and prostate cancer. In this study, including tissue samples from 773 Danish patients with an ovarian tumor, we evaluated whether estrogen receptor (ER) and progesterone receptor (PR) expression correlated with clinico-pathological parameters, and a possible prognostic impact on ovarian cancer (OC) patients was investigated. Using tissue array and immunohistochemistry, we analyzed the ER and PR expression levels in tissues from 582 women with OC and 191 women with low malignancy potential (LMP) ovarian tumors. Our results demonstrated that ER was expressed in 30 of the 191 LMP tumors (16%) and in 207 of the 582 OC (36%). PR was expressed in 38 LMP tumors (20%) and in 115 OC (20%). For both tumor types an excess of positive tumors was found in the serous compared to the mucinous subtype (p< or =0.00001). The frequency of ER expression-positive OC increased with increasing FIGO stage (p=0.0003), and the frequency of PR-positive tumors increased with increasing histological grade (p=0.0006). In a Cox survival analysis, a tissue ER and PR expression 10% or higher was found to imply an independent significant advantageous course of patient disease-specific survival (ER: hazard ratio (HR), 0.80; 95% confidence interval (CI), 0.63-0.99; PR: HR, 0.69; 95% CI, 0.51-0.94) together with FIGO stage, residual tumor after primary surgery, age at diagnosis and other histological types vs. serous adenocarcinoma. The histological grade of tumor was found to have no independent prognostic value. The prognostic value of ER and PR was found additive with a HR for patients with high ER and PR expression of 0.48 (95% CI, 0.31-0.74) compared to patients with <10% expression for both receptors. In conclusion, our results predict that an elevated expression of ER and PR, alone and in combination, point to a favorable outcome for patients with OC.

  16. β-Carotene-9′,10′-Oxygenase Status Modulates the Impact of Dietary Tomato and Lycopene on Hepatic Nuclear Receptor–, Stress-, and Metabolism-Related Gene Expression in Mice123

    PubMed Central

    Tan, Hsueh-Li; Moran, Nancy E.; Cichon, Morgan J.; Riedl, Ken M.; Schwartz, Steven J.; Erdman, John W.; Pearl, Dennis K.; Thomas-Ahner, Jennifer M.; Clinton, Steven K.

    2014-01-01

    Tomato and lycopene (ψ, ψ-carotene) consumption is hypothesized to protect against nonalcoholic steatohepatitis and hepatocarcinogenesis, processes that may depend upon diet and gene interactions. To investigate the interaction of tomato or lycopene feeding with β-carotene-9′,10′-monooxygenase (Bco2) on hepatic metabolic and signaling pathways, male wild-type (WT) and Bco2−/− mice (3-wk-old; n = 36) were fed semi-purified control, 10% tomato powder–containing, or 0.25% lycopene beadlet–containing diets for 3 wk. Serum lycopene concentrations were higher in lycopene- and tomato-fed Bco2−/− mice compared with WT (P = 0.03). Tomato- and lycopene-fed mice had detectable hepatic apolipoprotein (apo)-6′-, apo-8′-, and apo-12′-lycopenal concentrations. Hepatic expression of β-carotene-15,15’-monooxygenase was increased in Bco2−/− mice compared with WT (P = 0.02), but not affected by diet. Evaluation of hepatic gene expression by focused quantitative reverse transcriptase-polymerase chain reaction arrays for nuclear receptors and coregulators (84 genes) and stress and metabolism (82 genes) genes indicates that tomato feeding affected 31 genes (≥1.5-fold, P < 0.05) and lycopene feeding affected 19 genes, 16 of which were affected by both diets. Lycopene down-regulation of 7 nuclear receptors and coregulators, estrogen-related receptor-α, histone deacetylase 3, nuclear receptor coactivator 4, RevErbA-β, glucocorticoid receptor, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ, coactivator 1 β was dependent upon interaction with Bco2 status. Lycopene and tomato feeding induced gene expression patterns consistent with decreased lipid uptake, decreased cell proliferation and mitosis, down-regulated aryl hydrocarbon receptor signaling, and decreased expression of genes involved in retinoid X receptor heterodimer activation. Tomato feeding also caused expression changes consistent with down-regulation of DNA synthesis and terpenoid metabolism. These data suggest tomato components, particularly lycopene, affect hepatic gene expression, potentially affecting hepatic responses to metabolic, infectious, or chemical stress. PMID:24553694

  17. Decreased expression of thyroid receptor-associated protein 220 in temporal lobe tissue of patients with refractory epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Jinmei; Wang Xuefeng; Xi Zhiqin

    2006-10-06

    Purpose: TRAP220 (thyroid hormone receptor-associated protein) functions as a coactivator for nuclear receptors and stimulates transcription by recruiting the TRAP mediator complex to hormone responsive promoter regions. Thus, TRAP220 enhances the function of thyroid/steroid hormone receptors such as thyroid hormone and oestrogen receptors. This study investigated the expression of TRAP220 mRNA and protein level in epileptic brains comparing with human control. Methods: We examined the expression of TRAP220 mRNA and protein levels in temporal lobes from patients with chronic pharmacoresistant epilepsy who have undergone surgery. Results: Expression of TRAP220 mRNA and protein was shown to be decreased significantly in themore » temporal cortex of the patients with epilepsy. Conclusions: Our work showed that a decrease in TRAP220 mRNA and protein levels may be involved in the pathophysiology of epilepsy and may be associated with impairment of the brain caused by frequent seizures.« less

  18. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond.

    PubMed

    Rytz, Raphael; Croset, Vincent; Benton, Richard

    2013-09-01

    Ionotropic Receptors (IRs) are a recently characterized family of olfactory receptors in the fruit fly, Drosophila melanogaster. IRs are not related to insect Odorant Receptors (ORs), but rather have evolved from ionotropic glutamate receptors (iGluRs), a conserved family of synaptic ligand-gated ion channels. Here, we review the expression and function of IRs in Drosophila, highlighting similarities and differences with iGluRs. We also briefly describe the organization of the neuronal circuits in which IRs function, comparing and contrasting them with the sensory pathways expressing ORs. Finally, we summarize the bioinformatic identification and initial characterization of IRs in other species, which imply an evolutionarily conserved role for these receptors in chemosensation in insects and other protostomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Vitamin D receptor FokI genotype may modify the susceptibility to schizophrenia and bipolar mood disorder by regulation of dopamine D1 receptor gene expression.

    PubMed

    Ahmadi, S; Mirzaei, K; Hossein-Nezhad, A; Shariati, G

    2012-10-01

    This study is designed to test association of FOKI polymorphism in Vitamin D receptor (VDR) gene and its potential effect on expression of dopamine D1 receptor in schizophrenia and bipolar mood disorder as well as in healthy individuals. In this case-control study 196 patient with schizophrenia, 119 patients with bipolar mood disorder and 192 healthy individuals as the control group were recruited. All psychiatric disorders were diagnosed according to DSM IV criteria. Healthy control group denied any family history of such disorders. FOKI was genotyped by means of PCR-RFLP method. The mRNA was extracted from the peripheral blood mononuclear cells (PBMC) and the cDNA was synthesized. Frequency of ff genotype was more common in patients with bipolar disorders compared to the healthy control group (Odds ratio=1.84, 95% CI; 0.81 to 4.17) with increased relative risk (Relative risk=1.31, CI 95%; 0.86 to 1.99). There were significant differences between relative expressions of dopamine D1 receptor gene in various genotypes. Our results indicated that the ff genotype was associated with lower expression of dopamine D1 receptor gene. VDR as a nuclear receptor may contribute to bipolar disorders via modification of the expression of the neurotransmitters receptor such as dopamine.

  20. Memory in aged mice is rescued by enhanced expression of the GluN2B subunit of the NMDA receptor

    PubMed Central

    Brim, B. L.; Haskell, R.; Awedikian, R.; Ellinwood, N.M.; Jin, L.; Kumar, A.; Foster, T.C.; Magnusson, K.

    2012-01-01

    The GluN2B subunit of the N-methyl-D-aspartate (NMDA) receptor shows age-related declines in expression across the frontal cortex and hippocampus. This decline is strongly correlated to age-related memory declines. This study was designed to determine if increasing GluN2B subunit expression in the frontal lobe or hippocampus would improve memory in aged mice. Mice were injected bilaterally with either the GluN2B vector, containing cDNA specific for the GluN2B subunit and enhanced Green Fluorescent Protein (eGFP); a control vector or vehicle. Spatial memory, cognitive flexibility, and associative memory were assessed using the Morris water maze. Aged mice, with increased GluN2B subunit expression, exhibited improved long-term spatial memory, comparable to young mice. However, memory was rescued on different days in the Morris water maze; early for hippocampal GluN2B subunit enrichment and later for the frontal lobe. A higher concentration of the GluN2B antagonist, Ro 25-6981, was required to impair long-term spatial memory in aged mice with enhanced GluN2B expression, as compared to aged controls, suggesting there was an increase in the number of GluN2B-containing NMDA receptors. In addition, hippocampal slices from aged mice with increased GluN2B subunit expression exhibited enhanced NMDA receptor-mediated excitatory post-synaptic potentials (EPSP). Treatment with Ro 25-6981 showed that a greater proportion of the NMDA receptor-mediated EPSP was due to the GluN2B subunit in these animals, as compared to aged controls. These results suggest that increasing the production of the GluN2B subunit in aged animals enhances memory and synaptic transmission. Therapies that enhance GluN2B subunit expression within the aged brain may be useful for ameliorating age-related memory declines. PMID:23103326

  1. Expression of G protein estrogen receptor (GPER) on membrane of mouse oocytes during maturation.

    PubMed

    Li, Yi-Ran; Ren, Chun-E; Zhang, Quan; Li, Ji-Chun; Chian, Ri-Cheng

    2013-02-01

    To determine expression of G-protein estrogen receptor (GPER) in mouse oocyte membrane during maturation. The expression of GPER from different maturation stages of oocytes, in vivo and in vitro matured oocytes as well as aging oocytes was examined by immune-fluorescence GPR30 antibody and the images were analyzed by laser scanning confocal microscope. Further confirmation was performed by Western blots for cell fractionation. Significant fluorescent signal was observed on the surface of mouse oocytes. The image expression was lower in germinal vesicle (GV) stage than mature metaphase-II (M-II) stage oocytes. There was high expression in in-vivo matured oocytes compared to in vitro matured oocytes. The highest expression was observed in aging oocytes compared with other oocytes. The changes of expression of GPER on mouse oocytes plasma membrane confirm oocyte membrane maturation, suggesting that those changes of GPER may be related to the functional role of oocyte maturation.

  2. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma.

    PubMed

    Kremer, Veronika; Ligtenberg, Maarten A; Zendehdel, Rosa; Seitz, Christina; Duivenvoorden, Annet; Wennerberg, Erik; Colón, Eugenia; Scherman-Plogell, Ann-Helén; Lundqvist, Andreas

    2017-09-19

    Adoptive natural killer (NK) cell transfer is being increasingly used as cancer treatment. However, clinical responses have so far been limited to patients with hematological malignancies. A potential limiting factor in patients with solid tumors is defective homing of the infused NK cells to the tumor site. Chemokines regulate the migration of leukocytes expressing corresponding chemokine receptors. Various solid tumors, including renal cell carcinoma (RCC), readily secrete ligands for the chemokine receptor CXCR2. We hypothesize that infusion of NK cells expressing high levels of the CXCR2 chemokine receptor will result in increased influx of the transferred NK cells into tumors, and improved clinical outcome in patients with cancer. Blood and tumor biopsies from 14 primary RCC patients were assessed by flow cytometry and chemokine analysis. Primary NK cells were transduced with human CXCR2 using a retroviral system. CXCR2 receptor functionality was determined by Calcium flux and NK cell migration was evaluated in transwell assays. We detected higher concentrations of CXCR2 ligands in tumors compared with plasma of RCC patients. In addition, CXCL5 levels correlated with the intratumoral infiltration of CXCR2-positive NK cells. However, tumor-infiltrating NK cells from RCC patients expressed lower CXCR2 compared with peripheral blood NK cells. Moreover, healthy donor NK cells rapidly lost their CXCR2 expression upon in vitro culture and expansion. Genetic modification of human primary NK cells to re-express CXCR2 improved their ability to specifically migrate along a chemokine gradient of recombinant CXCR2 ligands or RCC tumor supernatants compared with controls. The enhanced trafficking resulted in increased killing of target cells. In addition, while their functionality remained unchanged compared with control NK cells, CXCR2-transduced NK cells obtained increased adhesion properties and formed more conjugates with target cells. To increase the success of NK cell-based therapies of solid tumors, it is of great importance to promote their homing to the tumor site. In this study, we show that stable engineering of human primary NK cells to express a chemokine receptor thereby enhancing their migration is a promising strategy to improve anti-tumor responses following adoptive transfer of NK cells.

  3. Diminished androgen and estrogen receptors and aromatase levels in hypogonadal diabetic men: reversal with testosterone.

    PubMed

    Ghanim, Husam; Dhindsa, Sandeep; Abuaysheh, Sanaa; Batra, Manav; Kuhadiya, Nitesh D; Makdissi, Antoine; Chaudhuri, Ajay; Dandona, Paresh

    2018-03-01

    One-third of males with type 2 diabetes (T2DM) have hypogonadism, characterized by low total and free testosterone concentrations. We hypothesized that this condition is associated with a compensatory increase in the expression of androgen receptors (AR) and that testosterone replacement reverses these changes. We also measured estrogen receptor and aromatase expression. This is a randomized double-blind placebo-controlled trial. Thirty-two hypogonadal and 32 eugonadal men with T2DM were recruited. Hypogonadal men were randomized to receive intramuscular testosterone or saline every 2 weeks for 22 weeks. We measured AR, ERα and aromatase expression in peripheral blood mononuclear cells (MNC), adipose tissue and skeletal muscle in hypogonadal and eugonadal males with T2DM at baseline and after 22 weeks of treatment in those with hypogonadism. The mRNA expression of AR, ERα (ESR1) and aromatase in adipose tissue from hypogonadal men was significantly lower as compared to eugonadal men, and it increased significantly to levels comparable to those in eugonadal patients with T2DM following testosterone treatment. AR mRNA expression was also significantly lower in MNC from hypogonadal patients compared to eugonadal T2DM patients. Testosterone administration in hypogonadal patients also restored AR mRNA and nuclear extract protein levels from MNC to that in eugonadal patients. In the skeletal muscle, AR mRNA and protein expression are lower in men with hypogonadism. Testosterone treatment restored AR expression levels to that comparable to levels in eugonadal men. We conclude that, contrary to our hypothesis, the expression of AR, ERα and aromatase is significantly diminished in hypogonadal men as compared to eugonadal men with type 2 diabetes. Following testosterone replacement, there is a reversal of these deficits. © 2018 European Society of Endocrinology.

  4. [Upregulation of P2X3 receptors in dorsal root ganglion of TRPV1 knockout female mice].

    PubMed

    Fang, Xiao; Shi, Xiao-Han; Huang, Li-Bin; Rong, Wei-Fang; Ma, Bei

    2014-08-25

    The study was aimed to investigate the changes in mechanical pain threshold in the condition of chronic inflammatory pain after transient receptor potential vanilloid 1 (TRPV1) gene was knockout. Hind-paw intraplantar injection of complete freund's adjuvant (CFA, 20 μL) produced peripheral inflammation in wild-type and TRPV1 knockout female mice. The mechanical pain thresholds were measured during the 8 days after injection and pre-injection by using Von-Frey hair. Nine days after injection, mice were killed and the differences of expression of c-Fos and P2X3 receptor in the dorsal root ganglia (DRG) and spinal cord dorsal horn were examined by Western blotting between the two groups. Compared with that in wild-type mice, the mechanical pain threshold was increased significantly in TRPV1 knockout mice (P < 0.05); 3 days after CFA injection, the baseline mechanical pain threshold in the TRPV1 knockout mice group was significantly higher than that in the wild-type mice group (P < 0.05); The result of Western blotting showed that the expression of c-Fos protein both in DRG and spinal cord dorsal horn of TRPV1 knockout mice group was decreased significantly compared with that in wild-type mice group (P < 0.01, P < 0.05), while the expression of P2X3 receptor in DRG of TRPV1 knockout mice group was increased significantly compared with that in wild-type mice group (P < 0.05). Our findings indicate that TRPV1 may influence the peripheral mechanical pain threshold by mediating the expression of c-Fos protein both in DRG and spinal cord dorsal horn and changing the expression of P2X3 receptor in DRG.

  5. SELF ADMINISTRATION OF OXYCODONE BY ADOLESCENT AND ADULT MICE AFFECTS STRIATAL NEUROTRANSMITTER RECEPTOR GENE EXPRESSION

    PubMed Central

    Mayer-Blackwell, B.; Schlussman, S. D.; Butelman, E. R.; Ho, A.; Ott, J.; Kreek, M. J.; Zhang, Y.

    2014-01-01

    Illicit use of prescription opioid analgesics (e.g., oxycodone) in adolescence is a pressing public health issue. Our goal was to determine whether oxycodone self administration differentially affects striatal neurotransmitter receptor gene expression in the dorsal striatum of adolescent compared to adult C57BL/6J mice. Groups of adolescent mice (4 weeks old, n= 12) and of adult mice (11 weeks old, n= 11) underwent surgery during which a catheter was implanted into their jugular veins. After recovering from surgery, mice self administered oxycodone (0.25 mg/kg/infusion) 2 h/day for 14 consecutive days or served as yoked saline controls. Mice were sacrificed within 1 h after the last self-administration session and the dorsal striatum was isolated for mRNA analysis. Gene expression was analyzed with real time PCR using a commercially available neurotransmitter receptor PCR array containing 84 genes. We found that adolescent mice self administered less oxycodone than adult mice over the 14 days. Monoamine oxidase A (Maoa) and neuropeptide Y receptor 5 mRNA levels were lower in adolescent mice than in adult mice without oxycodone exposure. Oxycodone self administration increased Maoa mRNA levels compared to controls in both age groups. There was a positive correlation of the amount of oxycodone self administered in the last session or across 14 sessions with Maoa mRNA levels. Gastrin-releasing peptide receptor mRNA showed a significant Drug × Age interaction, with point-wise significance. More genes in the dorsal striatum of adolescents (19) changed in response to oxycodone self administration compared to controls than in adult (4) mice. Overall, this study demonstrates that repeated oxycodone self administration alters neurotransmitter receptors gene expression in the dorsal striatum of adolescent and adult mice. PMID:24220688

  6. Brain Natriuretic Peptide Stimulates Lipid Metabolism through Its Receptor NPR1 and the Glycerolipid Metabolism Pathway in Chicken Adipocytes.

    PubMed

    Huang, H Y; Zhao, G P; Liu, R R; Li, Q H; Zheng, M Q; Li, S F; Liang, Z; Zhao, Z H; Wen, J

    2015-11-03

    Brain natriuretic peptide (BNP) is related to lipid metabolism in mammals, but its effect and the molecular mechanisms underlying it in chickens are incompletely understood. We found that the level of natriuretic peptide precursor B (NPPB, which encodes BNP) mRNA expression in high-abdominal-fat chicken groups was significantly higher than that of low-abdominal-fat groups. Partial correlations indicated that changes in the weight of abdominal fat were positively correlated with NPPB mRNA expression level. In vitro, compared with the control group, preadipocytes with NPPB interference showed reduced levels of proliferation, differentiation, and glycerin in media. Treatments of cells with BNP led to enhanced proliferation and differentiation of cells and glycerin concentration, and mRNA expression of its receptor natriuretic peptide receptor 1 (NPR1) was upregulated significantly. In cells exposed to BNP, 482 differentially expressed genes were identified compared with controls without BNP. Four genes known to be related to lipid metabolism (diacylglycerol kinase; lipase, endothelial; 1-acylglycerol-3-phosphate O-acyltransferase 1; and 1-acylglycerol-3-phosphate O-acyltransferase 2) were enriched in the glycerolipid metabolism pathway and expressed differentially. In conclusion, BNP stimulates the proliferation, differentiation, and lipolysis of preadipocytes through upregulation of the levels of expression of its receptor NPR1 and key genes enriched in the glycerolipid metabolic pathway.

  7. α2-containing GABAA receptors expressed in hippocampal region CA3 control fast network oscillations

    PubMed Central

    Heistek, Tim S; Ruiperez-Alonso, Marta; Timmerman, A Jaap; Brussaard, Arjen B; Mansvelder, Huibert D

    2013-01-01

    GABAA receptors are critically involved in hippocampal oscillations. GABAA receptor α1 and α2 subunits are differentially expressed throughout the hippocampal circuitry and thereby may have distinct contributions to oscillations. It is unknown which GABAA receptor α subunit controls hippocampal oscillations and where these receptors are expressed. To address these questions we used transgenic mice expressing GABAA receptor α1 and/or α2 subunits with point mutations (H101R) that render these receptors insensitive to allosteric modulation at the benzodiazepine binding site, and tested how increased or decreased function of α subunits affects hippocampal oscillations. Positive allosteric modulation by zolpidem prolonged decay kinetics of hippocampal GABAergic synaptic transmission and reduced the frequency of cholinergically induced oscillations. Allosteric modulation of GABAergic receptors in CA3 altered oscillation frequency in CA1, while modulation of GABA receptors in CA1 did not affect oscillations. In mice having a point mutation (H101R) at the GABAA receptor α2 subunit, zolpidem effects on cholinergically induced oscillations were strongly reduced compared to wild-type animals, while zolpidem modulation was still present in mice with the H101R mutation at the α1 subunit. Furthermore, genetic knockout of α2 subunits strongly reduced oscillations, whereas knockout of α1 subunits had no effect. Allosteric modulation of GABAergic receptors was strongly reduced in unitary connections between fast spiking interneurons and pyramidal neurons in CA3 of α2H101R mice, but not of α1H101R mice, suggesting that fast spiking interneuron to pyramidal neuron synapses in CA3 contain α2 subunits. These findings suggest that α2-containing GABAA receptors expressed in the CA3 region provide the inhibition that controls hippocampal rhythm during cholinergically induced oscillations. PMID:23109109

  8. Role of atypical chemokine receptor ACKR2 in experimental oral squamous cell carcinogenesis.

    PubMed

    da Silva, Janine Mayra; Dos Santos, Tálita Pollyanna Moreira; Saraiva, Adriana Machado; Fernandes de Oliveira, Ana Laura; Garlet, Gustavo Pompermaier; Batista, Aline Carvalho; de Mesquita, Ricardo Alves; Russo, Remo Castro; da Silva, Tarcília Aparecida

    2018-03-14

    Chemokines and chemokine receptors are critical in oral tumourigenesis. The atypical chemokine receptor ACKR2 is a scavenger of CC chemokines controlling the availability of these molecules at tumour sites, but the role of ACKR2 in the context of oral carcinogenesis is unexplored. In this study, wild-type (WT) and ACKR2 deficient mice (ACKR2 -/- ) were treated with chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) for induction of oral carcinogenesis. Tongues were collected for macro and microscopic analysis and to evaluate the expression of ACKRs, CC chemokines and its receptors, inflammatory cytokines, angiogenic factors, adhesion molecules and extracellular matrix components. An increased expression of ACKR2 in squamous cell carcinoma (SCC) lesions of 4NQO-treated WT mice was observed. No significant differences were seen in the ACKR1, ACKR3 and ACKR4 mRNA expression comparing SCC lesions from WT and ACKR2 -/- treated mice. Significantly higher expression of CCL2, IL-6 and IL-17 was detected in ACKR2 -/- treated mice. In contrast, the expression of other CC-chemokines, and receptors, angiogenic factors, adhesion molecules and extracellular matrix components were similarly increased in SCC lesions of both groups. Clinical and histopathological analysis revealed no differences in inflammatory cell recruitment and in the SCC incidence comparing WT and ACKR2 -/- treated mice. The results suggest that ACKR2 expression regulates inflammation in tumour-microenvironment but the absence of ACKR2 does not impact chemically-induced oral carcinogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Monocyte and plasma expression of TAM ligand and receptor in renal failure: Links to unregulated immunity and chronic inflammation.

    PubMed

    Lee, Iris J; Hilliard, Brendan A; Ulas, Mehriban; Yu, Daohai; Vangala, Chandan; Rao, Swati; Lee, Jean; Gadegbeku, Crystal A; Cohen, Philip L

    2015-06-01

    Chronic inflammation is increased in patients with chronic kidney disease (CKD) and contributes to cardiovascular morbidity and mortality. Specific immune mechanisms and pathways that drive and maintain chronic inflammation in CKD are not well described. The TAM ligands (Gas6 and protein S) and receptors (Axl and Mer) have been recently recognized as playing a prominent role in immune regulation. The receptors exist in both soluble and cell-bound forms; the soluble receptors (sAxl and sMer) are believed to compete with the bound receptors and thus inhibit their function. In this study, we determined the expression of cell-bound and soluble TAM proteins in patients with CKD. CKD patients had significantly lower expression of Mer in monocytes, yet increased expression of soluble TAM receptors sAxl and sMer in plasma compared to controls. The metalloproteinase ADAM 17, responsible for cleavage of Mer to its soluble form, was increased in patient monocytes. Elevated levels of soluble TAM receptors were more evident in patients with progressive renal failure. These observations suggest that functional deficiency of TAM receptor-mediated regulation of inflammation may contribute to chronic inflammation in patients with CKD. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Dramatically reduced surface expression of NK cell receptor KIR2DS3 is attributed to multiple residues throughout the molecule.

    PubMed

    VandenBussche, C J; Mulrooney, T J; Frazier, W R; Dakshanamurthy, S; Hurley, C K

    2009-03-01

    Using flow cytometry, fluorescent microscopy and examination of receptor glycosylation status, we demonstrate that an entire killer cell immunoglobulin-like receptor (KIR) locus (KIR2DS3)--assumed earlier to be surface expressed--appears to have little appreciable surface expression in transfected cells. This phenotype was noted for receptors encoded by three allelic variants including the common KIR2DS3*001 allele. Comparing the surface expression of KIR2DS3 with that of the better-studied KIR2DS1 molecule in two different cell lines, mutational analysis identified multiple polymorphic amino-acid residues that significantly alter the proportion of molecules present on the cell surface. A simultaneous substitution of five residues localized to the leader peptide (residues -18 and -7), second domain (residues 123 and 150) and transmembrane region (residue 234) was required to restore KIR2DS3 to the expression level of KIR2DS1. Corresponding simultaneous substitutions of KIR2DS1 to the KIR2DS3 residues resulted in a dramatically decreased surface expression. Molecular modeling was used to predict how these substitutions contribute to this phenotype. Alterations in receptor surface expression are likely to affect the balance of immune cell signaling impacting the characteristics of the response to pathogens or malignancy.

  11. Finasteride Treatment Alters Tissue Specific Androgen Receptor Expression in Prostate Tissues

    PubMed Central

    Bauman, Tyler M.; Sehgal, Priyanka D.; Johnson, Karen A.; Pier, Thomas; Bruskewitz, Reginald C.; Ricke, William A.; Huang, Wei

    2014-01-01

    BACKGROUND Normal and pathologic growth of the prostate is dependent on the synthesis of dihydrotestosterone (DHT) from testosterone by 5α-reductase. Finasteride is a selective inhibitor of 5α-reductase 2, one isozyme of 5α-reductase found in abundance in the human prostate. The objective of this study was to investigate the effects of finasteride on androgen receptor expression and tissue morphology in human benign prostatic hyperplasia specimens. METHODS Patients undergoing transurethral resection of the prostate and either treated or not treated with finasteride between 2004 and 2010 at the University of Wisconsin-Hospital were retrospectively identified using an institutional database. Prostate specimens from each patient were triple-stained for androgen receptor, prostate-specific antigen, and basal marker cytokeratin 5. Morphometric analysis was performed using the multispectral imaging, and results were compared between groups of finasteride treated and non-treated patients. RESULTS Epithelial androgen receptor but not stromal androgen receptor expression was significantly lower in patients treated with finasteride than in non-treated patients. Androgen receptor-regulated prostate-specific antigen was not significantly decreased in finasteride-treated patients. Significant luminal epithelial atrophy and basal cell hyperplasia were prevalent in finasteride treated patients. Epithelial androgen receptor expression was highly correlated to the level of luminal epithelial atrophy. CONCLUSIONS In this study, finasteride decreased the expression of epithelial androgen receptor in a tissue specific manner. The correlation between epithelial androgen receptor and the extent of luminal epithelial atrophy suggests that epithelial androgen receptor may be directly regulating the atrophic effects observed with finasteride treatment. PMID:24789081

  12. Molecular cloning of a novel receptor tyrosine kinase, tif, highly expressed in human ovary and testis.

    PubMed

    Dai, W; Pan, H; Hassanain, H; Gupta, S L; Murphy, M J

    1994-03-01

    Using a combination of polymerase chain reaction and conventional cDNA library screening approaches, we have cloned and characterized a putative receptor tyrosine kinase termed tif. The extracellular domain of tif has an immunoglobulin-like loop and a fibronectin type III structure. The intracellular domain contains a tyrosine kinase domain. Compared with ryk, a ubiquitously expressed receptor tyrosine kinase, tif expression is tissue-specific with human ovary and testis containing the highest amount of tif mRNA. Many other tested human tissues such as heart, liver, pancreas and thymus do not contain detectable levels of tif mRNA. The molecular cloning and characterization of tif cDNA will facilitate the identification of a potential ligand(s) for the putative receptor and the study of its biological role.

  13. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.

  14. Comparative functional expression of nAChR subtypes in rodent DRG neurons.

    PubMed

    Smith, Nathan J; Hone, Arik J; Memon, Tosifa; Bossi, Simon; Smith, Thomas E; McIntosh, J Michael; Olivera, Baldomero M; Teichert, Russell W

    2013-01-01

    We investigated the functional expression of nicotinic acetylcholine receptors (nAChRs) in heterogeneous populations of dissociated rat and mouse lumbar dorsal root ganglion (DRG) neurons by calcium imaging. By this experimental approach, it is possible to investigate the functional expression of multiple receptor and ion-channel subtypes across more than 100 neuronal and glial cells simultaneously. Based on nAChR expression, DRG neurons could be divided into four subclasses: (1) neurons that express predominantly α3β4 and α6β4 nAChRs; (2) neurons that express predominantly α7 nAChRs; (3) neurons that express a combination of α3β4/α6β4 and α7 nAChRs; and (4) neurons that do not express nAChRs. In this comparative study, the same four neuronal subclasses were observed in mouse and rat DRG. However, the expression frequency differed between species: substantially more rat DRG neurons were in the first three subclasses than mouse DRG neurons, at all developmental time points tested in our study. Approximately 70-80% of rat DRG neurons expressed functional nAChRs, in contrast to only ~15-30% of mouse DRG neurons. Our study also demonstrated functional coupling between nAChRs, voltage-gated calcium channels, and mitochondrial Ca(2) (+) transport in discrete subsets of DRG neurons. In contrast to the expression of nAChRs in DRG neurons, we demonstrated that a subset of non-neuronal DRG cells expressed muscarinic acetylcholine receptors and not nAChRs. The general approach to comparative cellular neurobiology outlined in this paper has the potential to better integrate molecular and systems neuroscience by uncovering the spectrum of neuronal subclasses present in a given cell population and the functionally integrated signaling components expressed in each subclass.

  15. Expression of mammalian beta-adrenergic receptors in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahouth, S.W.; Malbon, C.C.

    1987-05-01

    Xenopus laevis oocytes are a useful transcription and expression system for DNA and RNA, respectively. Total cellular RNA was extracted from mouse lymphoma S49 cells and poly(A)/sup +/mRNA prepared by affinity chromatography of RNA on oligo(dT) cellulose. The membranes of S49 cells contain beta-adrenergic receptors that display pharmacological characteristics of beta/sub 2/-subtype. Xenopus laevis oocytes were injected with 50 ng of mRNA/oocyte. Expression of beta-adrenergic receptors in oocytes incubated for 30 hr after microinjection was assessed in membranes by radioligand binding using (/sup 3/H) dihydroalprenolol. The injected oocytes displayed 0.34 fmol receptor/oocyte as compared to 0.02 fmol receptor/oocyte in themore » control oocytes. The affinity of beta-adrenergic receptors in injected oocytes for this radioligand was 2 nM, a value similar to the affinity of beta-adrenergic receptors for DHA in S49 cell membranes. The potency of beta-adrenergic agonists in competing for DHA binding to oocytes membranes was isoproterenol > epinephrine > norepineprine, indicating that the expressed beta-adrenergic receptors were of the beta/sub 2/-subtype. The K/sub I/ of these agonists for the beta-adrenergic receptor in oocyte membranes was 0.03, 0.15 and 1.2 ..mu..M, respectively. The role of post-translational modification in dictating receptor subtype is analyzed using mRNA of beta/sub 1/- as well as beta/sub 2/-adrenergic receptors.« less

  16. Endothelial insulin receptor restoration rescues vascular function in male insulin receptor haploinsufficient mice.

    PubMed

    Sengupta, Anshuman; Patel, Peysh A; Yuldasheva, Nadira Y; Mughal, Romana S; Galloway, Stacey; Viswambharan, Hema; Walker, Andrew M N; Aziz, Amir; Smith, Jessica; Ali, Noman; Mercer, Ben N; Imrie, Helen; Sukumar, Piruthivi; Wheatcroft, Stephen B; Kearney, Mark T; Cubbon, Richard M

    2018-05-15

    Reduced systemic insulin signaling promotes endothelial dysfunction and diminished endogenous vascular repair. We asked whether restoration of endothelial insulin receptor expression could rescue this phenotype. Insulin receptor haploinsufficient mice (IRKO) were crossed with mice expressing a human insulin receptor transgene in the endothelium (hIRECO), to produce IRKO-hIRECO progeny. No metabolic differences were noted between IRKO and IRKO-hIRECO in glucose- and insulin-tolerance tests. In contrast with control IRKO littermates, IRKO-hIRECO exhibited normal blood pressure and aortic vasodilatation in response to acetylcholine, comparable to parameters noted in wild-type littermates. These phenotypic changes were associated with enhanced basal- and insulin-stimulated nitric oxide production. IRKO-hIRECO also demonstrated normalized endothelial repair after denuding arterial injury, which was associated with rescued endothelial cell migration in vitro, but not with changes in circulating progenitor populations or culture-derived myeloid angiogenic cells. These data show that restoration of endothelial insulin receptor expression alone is sufficient to prevent the vascular dysfunction caused by systemically reduced insulin signaling.

  17. Human Immunodeficiency Virus Type-1 Elite Controllers Maintain Low Co-Expression of Inhibitory Receptors on CD4+ T Cells.

    PubMed

    Noyan, Kajsa; Nguyen, Son; Betts, Michael R; Sönnerborg, Anders; Buggert, Marcus

    2018-01-01

    Human immunodeficiency virus type-1 (HIV-1) elite controllers (ELCs) represent a unique population that control viral replication in the absence of antiretroviral therapy (cART). It is well established that expression of multiple inhibitory receptors on CD8+ T cells is associated with HIV-1 disease progression. However, whether reduced co-expression of inhibitory receptors on CD4+ T cells is linked to natural viral control and slow HIV-1 disease progression remains undefined. Here, we report on the expression pattern of numerous measurable inhibitory receptors, associated with T cell exhaustion (programmed cell death-1, CTLA-4, and TIGIT), on different CD4+ T cell memory populations in ELCs and HIV-infected subjects with or without long-term cART. We found that the co-expression pattern of inhibitory receptors was significantly reduced in ELCs compared with HIV-1 cART-treated and viremic subjects, and similar to healthy controls. Markers associated with T cell exhaustion varied among different memory CD4+ T cell subsets and highest levels were found mainly on transitional memory T cells. CD4+ T cells co-expressing all inhibitory markers were positively correlated to T cell activation (CD38+ HLA-DR+) as well as the transcription factors Helios and FoxP3. Finally, clinical parameters such as CD4 count, HIV-1 viral load, and the CD4/CD8 ratio all showed significant associations with CD4+ T cell exhaustion. We demonstrate that ELCs are able to maintain lower levels of CD4+ T cell exhaustion despite years of ongoing viral replication compared with successfully cART-treated subjects. Our findings suggest that ELCs harbor a "healthy" state of inhibitory receptor expression on CD4+ T cells that might play part in maintenance of their control status.

  18. Exposure to a high-fat high-sugar diet causes strong up-regulation of proopiomelanocortin and differentially affects dopamine D1 and D2 receptor gene expression in the brainstem of rats.

    PubMed

    Alsiö, Johan; Rask-Andersen, Mathias; Chavan, Rohit A; Olszewski, Pawel K; Levine, Allen S; Fredriksson, Robert; Schiöth, Helgi B

    2014-01-24

    A strong link between obesity and dopamine (DA) has been established by studies associating body weight status to variants of genes related to DA signalling. Human and animal studies investigating this relationship have so far focused mainly on the role of DA within the mesolimbic pathway. The aim of this study was to investigate potential DA receptor dysregulation in the brainstem, where these receptors play a potential role in meal termination, during high-fat high-sugar diet (HFHS) exposure. Expression of other key genes, including proopiomelanocortin (POMC), was also analyzed. We randomized rats into three groups; ad libitum access to HFHS (n=24), restricted HFHS access (n=10), or controls (chow-fed, n=10). After 5 weeks, brainstem gene expression was investigated by qRT-PCR. We observed an increase in POMC expression in ad libitum HFHS-fed rats compared to chow-fed controls (p<0.05). Further, expression of DA D2 receptor mRNA was down-regulated in the brainstem of the HFHS ad libitum-fed rats (p<0.05), whereas expression of the DA D1 receptor was upregulated (p<0.05) in these animals compared to chow-fed rats. In control experiments, we observed no effect relative to chow-fed controls on DA-receptor or POMC gene expression in the hypothalamus of HFHS diet-exposed rats, or in the brainstem of acutely food deprived rats. The present findings suggest brainstem POMC to be responsive to palatable foods, and that DA dysregulation after access to energy-dense diets occurs not only in striatal regions, but also in the brainstem, which could be relevant for overeating and for the development and maintenance of obesity. Copyright © 2013. Published by Elsevier Ireland Ltd.

  19. Potential Involvement of P2 Receptors in the Pathological Processes of Hyperthyroidism: A Pilot Study.

    PubMed

    Hong, Wu; Li, Guodong; Nie, Yijun; Zou, Lifang; Zhang, Xi; Liu, Shuangmei; Li, Guilin; Xu, Hong; Zhang, Chun-Ping; Liang, Shangdong

    2016-05-01

    Symptoms of hyperthyroidism manifest mainly as changes in the nervous and metabolic systems. Whether P2X receptors (ionotropic ATP purinergic receptors, including P2X3 receptor and P2X7 receptor) are involved in the alterations of these disorders still remains unclear. Thus, this study aimed to assess the association of hyperthyroidism with the expression of P2X3 and P2X7 receptors and the concentrations of ATP in blood leukocytes and catecholamine. Twelve healthy subjects and twelve patients diagnosed with hyperthyroidism were recruited. Serum free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) levels had been detected by chemiluminescence method. Meanwhile, the catecholamine levels (including adrenaline, noradrenaline, and dopamine) in plasma, ATP level and P2X receptors (including P2X3 receptor and P2X7 receptor) in peripheral blood had been detected by high performance liquid chromatography, bioluminescence method, and reverse transcription polymerase chain reaction, respectively. Levels of epinephrine and norepinephrine were significantly higher in the hyperthyroidism group compared with the control group. The concentration of ATP in the hyperthyroidism group was significantly higher than its in the control group. The expression of P2X3 mRNA and P2X7 mRNA in hyperthyroidism group were significantly increased compared with those in control group. In a conclusion, there is a relationship between the elevated expression of P2X3 receptor and P2X7 receptor in peripheral blood leukocytes and high serum epinephrine and norepinephrine levels in hyperthyroidism patients. © 2016 by the Association of Clinical Scientists, Inc.

  20. Balance of Go1α and Go2α expression regulates motor function via the striatal dopaminergic system.

    PubMed

    Baron, J; Bilbao, A; Hörtnagl, H; Birnbaumer, L; Leixner, S; Spanagel, R; Ahnert-Hilger, G; Brunk, I

    2018-05-10

    The heterotrimeric G-protein Go with its splice variants, Go1α and Go2α, seems to be involved in the regulation of motor function but isoform specific effects are still unclear. We found that Go1α-/- knockouts performed worse on the rota-rod than Go2α-/- and wild type (WT) mice. In Go1+2α-/- mice motor function was partially recovered. Furthermore, Go1+2α-/- mice showed an increased spontaneous motor activity. Compared to wild types or Go2α-/- mice, Go1+2α-/- mice developed increased behavioural sensitization following repetitive cocaine treatment, but failed to develop conditioned place preference. Analysis of dopamine concentration and expression of D1 and D2 receptors unravelled splice-variant specific imbalances in the striatal dopaminergic system: In Go1α-/- mice dopamine concentration and vesicular monoamine uptake were increased compared to wild types. The expression of the D2 receptor was higher in Go1α-/- compared to wild type littermates, but unchanged in Go2α-/- mice. Deletion of both Go1α and Go2α re-established both dopamine and D2 receptor levels comparable to those in the wild type. Cocaine treatment had no effect on the ratio of D1 receptor to D2 receptor in Go1+2α-/- mutants, but decreased this ratio in Go2α-/- mice. Finally, we observed that the deletion of Go1α led to a threefold higher striatal expression of Go2α. Taken together our data suggest that a balance in the expression of Go1α and Go2α sustains normal motor function. Deletion of either splice variant results in divergent behavioural and molecular alterations in the striatal dopaminergic system. Deletion of both splice variants partially restores the behavioural and molecular changes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. [Effect of Electroacupuncture at "Neiguan" (PC 6) and "Tianshu" (ST 25) for Colonic Motility and D 2 Receptor in Irritable Bowel Syndrome Rats].

    PubMed

    Wang, Shan; Guo, Meng-Wei; Gao, Yu-Shan; Ren, Xiao-Xuan; Lan, Ying; Ji, Mao-Xian; Wu, Yan-Ying; Li, Kai-Ge; Tan, Li-Hua; Sui, Ming-He

    2018-01-25

    To observe and compare the effects of electroacupuncture (EA) at "Tianshu" (ST 25) and "Neiguan" (PC 6) for colonic motility and the expression of colon dopamine D 2 in irritable bowel syndrome (IBS) rats, and to explore the specificity of different meridians and different acupoints. Forty Wistar newborn rats were randomly divided into blank, model, Tianshu and Neiguan groups. Separation of mother and child and acetic acid coloclyster combined with colorectal distension were used to establish IBS model in the model, Tianshu and Neiguan groups. At the age of 9 weeks, EA at bilateral ST 25 and PC 6 were applied in the corresponding groups 5 times, once every other day. After the intervention, the Bristol fecal score, the latent period of abdominal retraction reflex and the number of contraction waves were recorded. The expression of dopamine D 2 receptor was detected by immunohistochemistry. Compared with the blank group, the Bristol fecal score of the model group was higher ( P <0.01), the 1 st contraction wave latent period was shorter ( P <0.01), the number of contraction waves in 90 s increased ( P <0.01), the immunoreactive expression of D 2 receptor in colon decreased ( P <0.01). Compared with the model group, the Bristol fecal scores of the Tianshu and Neiguan groups decreased ( P <0.01), the 1 st contraction wave latent periods were longer ( P <0.01), the numbers of contraction waves in 90 s decreased ( P <0.01), the positive expressions of D 2 receptor in colon increased ( P <0.01, P <0.05). Compared with the Tianshu group, the immunoreactive expression of D 2 receptor in the Neiguan group decreased ( P <0.01). EA at ST 25 and PC 6 can improve the symptoms of colonic motility in IBS rats. The effect of EA at ST 25 is better, which indicates that different meridians and different acupoints play specific effects.

  2. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    PubMed

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment. Copyright © 2015. Published by Elsevier B.V.

  3. Tissue Distribution of the 27.8 kDa Receptor and its Dynamic Expression in Response to Lymphocystis Disease Virus Infection in Flounder (Paralichthys olivaceus).

    PubMed

    Wu, R-H; Tang, X-Q; Sheng, X-Z; Zhan, W-B

    2015-11-01

    Lymphocystis disease virus (LCDV) enters and infects the gill cells of flounder (Paralichthys olivaceus) via a 27.8 kDa membrane protein receptor. In the present study, immunohistochemistry was performed to locate the tissue distribution of this molecule in healthy flounder and showed that it was widely distributed in the tissues tested. Indirect enzyme-linked immunosorbent assay (ELISA) showed that the expression of the receptor in healthy flounder was highest in the gills and stomach, then in the skin, intestine and liver, followed by the spleen, head kidney, heart, ovary and brain and finally the kidney. On LCDV infection, ELISA indicated that the expression of the receptor, as determined by ELISA, was significantly upregulated in all tissues of LCDV-infected flounder compared with controls, but this expression decreased over the 4 weeks post infection. In contrast, real-time quantitative polymerase chain reaction demonstrated that the copy number of the LCDV gene in the tissues increased with time post infection, and that viral loads were higher in the tissues with higher expressions of the receptor. These results point to a correlation between high expression of the 27.8 kDa receptor and efficient LCDV propagation. The wide tissue distribution of the receptor might be one reason why LCDV can infect various tissues leading to systemic infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu; Cheng, Kunrong; Saxena, Neeraj

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasionmore » of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding mechanisms underlying muscarinic receptor agonist-induced promotion of colon cancer and, more importantly, indicates that blocking MMP1 expression and activation has therapeutic promise to stop or retard colon cancer invasion and dissemination.« less

  5. Neurotrophins and Neurotrophin Receptors in Proliferative Diabetic Retinopathy

    PubMed Central

    Abu El-Asrar, Ahmed M.; Mohammad, Ghulam; De Hertogh, Gert; Nawaz, Mohd Imtiaz; Van Den Eynde, Kathleen; Siddiquei, Mohammad Mairaj; Struyf, Sofie; Opdenakker, Ghislain; Geboes, Karel

    2013-01-01

    Neurotrophins (NTs) are emerging as important mediators of angiogenesis and fibrosis. We investigated the expression of the NTs nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) and their receptors TrkA, TrkB, and TrkC in proliferative diabetic retinopathy (PDR). As a comparison, we examined the expression of NTs and their receptors in the retinas of diabetic rats. Vitreous samples from 16 PDR and 15 nondiabetic patients were studied by Western blot analysis and enzyme-linked immunosorbent assay (ELISA). Epiretinal membranes from 17 patients with PDR were studied by immunohistochemistry. Rats were made diabetic with a single high dose of streptozotocin and retinas of rats were examined by Western blot analysis. Western blot analysis revealed a significant increase in the expression of NT-3 and NT-4 and the shedding of receptors TrkA and TrkB in vitreous samples from PDR patients compared to nondiabetic controls, whereas NGF and BDNF and the receptor TrkC were not detected with the use of Western blot analysis and ELISA. In epiretinal membranes, vascular endothelial cells and myofibroblasts expressed NT-3 and the receptors TrkA, TrkB and TrkC in situ, whereas NT-4 was not detected. The expression levels of NT-3 and NT-4 and the receptors TrkA and TrkB, both in intact and solubilized forms, were upregulated in the retinas of diabetic rats, whereas the receptor TrkC was not detected. Co-immunoprecipitation studies revealed binding between NT-3 and the receptors TrkA and TrkB in the retinas of diabetic rats. Our findings in diabetic eyes from humans and rats suggest that the increased expression levels within the NT-3 and NT-4/Trk axis are associated with the progression of PDR. PMID:23762379

  6. Differential expression of VEGF ligands and receptors in prostate cancer.

    PubMed

    Woollard, David J; Opeskin, Kenneth; Coso, Sanja; Wu, Di; Baldwin, Megan E; Williams, Elizabeth D

    2013-05-01

    Prostate cancer disseminates to regional lymph nodes, however the molecular mechanisms responsible for lymph node metastasis are poorly understood. The vascular endothelial growth factor (VEGF) ligand and receptor family have been implicated in the growth and spread of prostate cancer via activation of the blood vasculature and lymphatic systems. The purpose of this study was to comprehensively examine the expression pattern of VEGF ligands and receptors in the glandular epithelium, stroma, lymphatic vasculature and blood vessels in prostate cancer. The localization of VEGF-A, VEGF-C, VEGF-D, VEGF receptor (VEGFR)-1, VEGFR-2, and VEGFR-3 was examined in cancerous and adjacent benign prostate tissue from 52 subjects representing various grades of prostate cancer. Except for VEGFR-2, extensive staining was observed for all ligands and receptors in the prostate specimens. In epithelial cells, VEGF-A and VEGFR-1 expression was higher in tumor tissue compared to benign tissue. VEGF-D and VEGFR-3 expression was significantly higher in benign tissue compared to tumor in the stroma and the endothelium of lymphatic and blood vessels. In addition, the frequency of lymphatic vessels, but not blood vessels, was lower in tumor tissue compared with benign tissue. These results suggest that activation of VEGFR-1 by VEGF-A within the carcinoma, and activation of lymphatic endothelial cell VEGFR-3 by VEGF-D within the adjacent benign stroma may be important signaling mechanisms involved in the progression and subsequent metastatic spread of prostate cancer. Thus inhibition of these pathways may contribute to therapeutic strategies for the management of prostate cancer. Copyright © 2012 Wiley Periodicals, Inc.

  7. Sigma receptor antagonists attenuate acute methamphetamine-induced hyperthermia by a mechanism independent of IL-1β mRNA expression in the hypothalamus

    PubMed Central

    Seminerio, Michael J.; Robson, Matthew J.; McCurdy, Christopher R.; Matsumoto, Rae R.

    2013-01-01

    Methamphetamine is currently one of the most widely abused drugs worldwide, with hyperthermia being a leading cause of death in methamphetamine overdose situations. Methamphetamine-induced hyperthermia involves a variety of cellular mechanisms, including increases in hypothalamic interleukin-1 beta (IL-1β) expression. Methamphetamine also interacts with sigma receptors and previous studies have shown that sigma receptor antagonists mitigate many of the behavioral and physiological effects of methamphetamine, including hyperthermia. The purpose of the current study was to determine if the attenuation of methamphetamine-induced hyperthermia by the sigma receptor antagonists, AZ66 and SN79, is associated with a concomitant attenuation of IL-1β mRNA expression, particularly in the hypothalamus. Methamphetamine produced doseand time-dependent increases in core body temperature and IL-1β mRNA expression in the hypothalamus, striatum, and cortex in male, Swiss Webster mice. Pretreatment with the sigma receptor antagonists, AZ66 and SN79, significantly attenuated methamphetamine-induced hyperthermia, but further potentiated IL-1β mRNA in the mouse hypothalamus when compared to animals treated with methamphetamine alone. These findings suggest sigma receptor antagonists attenuate methamphetamine-induced hyperthermia through a different mechanism from that involved in the modulation of hypothalamic IL-1β mRNA expression. PMID:22820108

  8. Impact of Parturition on Chemokine Homing Factor Expression in the Vaginal Distention Model of Stress Urinary Incontinence

    PubMed Central

    Lenis, Andrew T.; Kuang, Mei; Woo, Lynn L.; Hijaz, Adonis; Penn, Marc S.; Butler, Robert S.; Rackley, Raymond; Damaser, Margot S.; Wood, Hadley M.

    2015-01-01

    Purpose Human childbirth simulated by vaginal distention is known to increase the expression of chemokines and receptors involved in stem cell homing and tissue repair. We hypothesized that pregnancy and parturition in rats contributes to the expression of chemokines and receptors after vaginal distention. Materials and Methods We used 72 age matched female Lewis rats, including virgin rats with and without vaginal distention, and delivered rats with and without vaginal distention. Each rat was sacrificed immediately, or 3 or 7 days after vaginal distention and/or parturition, and the urethra was harvested. Relative expression of chemokines and receptors was determined by real-time polymerase chain reaction. Mixed models were used with the Bonferroni correction for multiple comparisons. Results Vaginal distention up-regulated urethral expression of CCL7 immediately after injury in virgin and postpartum rats. Hypoxia inducible factor-1α and vascular endothelial growth factor were up-regulated only in virgin rats immediately after vaginal distention. CD191 expression was immediately up-regulated in postpartum rats without vaginal distention compared to virgin rats without vaginal distention. CD195 was up-regulated in virgin rats 3 days after vaginal distention compared to virgin rats without vaginal distention. CD193 and CXCR4 showed delayed up-regulation in virgin rats 7 days after vaginal distention. CXCL12 was up-regulated in virgin rats 3 days after vaginal distention compared to immediately after vaginal distention. Interleukin-8 and CD192 showed no differential expression. Conclusions Vaginal distention results in up-regulation of the chemokines and receptors expressed during tissue injury, which may facilitate the spontaneous functional recovery previously noted. Pregnancy and delivery up-regulated CD191 and attenuated the expression of hypoxia inducible factor-1α and vascular endothelial growth factor in the setting of vaginal distention, likely by decreasing hypoxia. PMID:23022009

  9. Increased Expression of Toll-Like Receptors by Monocytes and Natural Killer Cells in ANCA-Associated Vasculitis

    PubMed Central

    Tadema, Henko; Abdulahad, Wayel H.; Stegeman, Coen A.; Kallenberg, Cees G. M.; Heeringa, Peter

    2011-01-01

    Introduction Toll-like receptors (TLRs) are a family of receptors that sense pathogen associated patterns such as bacterial cell wall proteins. Bacterial infections are associated with anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Here, we assessed the expression of TLRs 2, 4, and 9 by peripheral blood leukocytes from patients with AAV, and investigated TLR mediated responses ex vivo. Methods Expression of TLRs was determined in 38 AAV patients (32 remission, 6 active disease), and 20 healthy controls (HC). Membrane expression of TLRs 2, 4, and 9, and intracellular expression of TLR9 by B lymphocytes, T lymphocytes, NK cells, monocytes and granulocytes was assessed using 9-color flowcytometry. Whole blood from 13 patients and 7 HC was stimulated ex vivo with TLR 2, 4 and 9 ligands and production of cytokines was analyzed. Results In patients, we observed increased proportions of TLR expressing NK cells. Furthermore, patient monocytes expressed higher levels of TLR2 compared to HC, and in a subset of patients an increased proportion of TLR4+ monocytes was observed. Monocytes from nasal carriers of Staphylococcus aureus expressed increased levels of intracellular TLR9. Membrane expression of TLRs by B lymphocytes, T lymphocytes, and granulocytes was comparable between AAV patients and HC. Patients with active disease did not show differential TLR expression compared to patients in remission. Ex vivo responses to TLR ligands did not differ significantly between patients and HC. Conclusions In AAV, monocytes and NK cells display increased TLR expression. Increased TLR expression by these leukocytes, probably resulting from increased activation, could play a role in disease (re)activation. PMID:21915309

  10. IGF-1 modulates gene expression of proteins involved in inflammation, cytoskeleton, and liver architecture.

    PubMed

    Lara-Diaz, V J; Castilla-Cortazar, I; Martín-Estal, I; García-Magariño, M; Aguirre, G A; Puche, J E; de la Garza, R G; Morales, L A; Muñoz, U

    2017-05-01

    Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1's effects on liver by comparing wild-type controls, heterozygous igf1 +/- , and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.

  11. Reduced retinoids and retinoid receptors' expression in pancreatic cancer: A link to patient survival.

    PubMed

    Bleul, Tim; Rühl, Ralph; Bulashevska, Svetlana; Karakhanova, Svetlana; Werner, Jens; Bazhin, Alexandr V

    2015-09-01

    Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest cancers in the world. All-trans retinoic acid (ATRA) is the major physiologically active form of vitamin A, regulating expression of many genes. Disturbances of vitamin A metabolism are prevalent in some cancer cells. The main aim of this work was to investigate deeply the components of retinoid signaling in PDAC compared to in the normal pancreas and to prove the clinical importance of retinoid receptor expression. For the study, human tumor tissues obtained from PDAC patients and murine tumors from the orthotopic Panc02 model were used for the analysis of retinoids, using high performance liquid chromatography mass spectrometry and real-time RT-PCR gene expression analysis. Survival probabilities in univariate analysis were estimated using the Kaplan-Meier method and the Cox proportional hazards model was used for the multivariate analysis. In this work, we showed for the first time that the ATRA and all-trans retinol concentration is reduced in PDAC tissue compared to their normal counterparts. The expression of RARα and β as well as RXRα and β are down-regulated in PDAC tissue. This reduced expression of retinoid receptors correlates with the expression of some markers of differentiation and epithelial-to-mesenchymal transition as well as of cancer stem cell markers. Importantly, the expression of RARα and RXRβ is associated with better overall survival of PDAC patients. Thus, reduction of retinoids and their receptors is an important feature of PDAC and is associated with worse patient survival outcomes. © 2014 Wiley Periodicals, Inc.

  12. EG-VEGF, BV8, and their receptor expression in human bronchi and their modification in cystic fibrosis: Impact of CFTR mutation (delF508).

    PubMed

    Chauvet, Sylvain; Traboulsi, Wael; Thevenon, Laura; Kouadri, Amal; Feige, Jean-Jacques; Camara, Boubou; Alfaidy, Nadia; Benharouga, Mohamed

    2015-08-01

    Enhanced lung angiogenesis has been reported in cystic fibrosis (CF). Recently, two highly homologous ligands, endocrine gland vascular endothelial growth factor (EG-VEGF) and mammalian Bv8, have been described as new angiogenic factors. Both ligands bind and activate two closely related G protein-coupled receptors, the prokineticin receptor (PROKR) 1 and 2. Yet, the expression, regulation, and potential role of EG-VEGF, BV8, and their receptors in normal and CF lung are still unknown. The expression of the receptors and their ligands was examined using molecular, biochemical, and immunocytochemistry analyses in lungs obtained from CF patients vs. control and in normal and CF bronchial epithelial cells. Cystic fibrosis transmembrane conductance regulator (CFTR) activity was evaluated in relation to both ligands, and concentrations of EG-VEGF were measured by ELISA. At the mRNA level, EG-VEGF, BV8, and PROKR2 gene expression was, respectively, approximately five, four, and two times higher in CF lungs compared with the controls. At the cellular level, both the ligands and their receptors showed elevated expressions in the CF condition. Similar results were observed at the protein level. The EG-VEGF secretion was apical and was approximately two times higher in CF compared with the normal epithelial cells. This secretion was increased following the inhibition of CFTR chloride channel activity. More importantly, EG-VEGF and BV8 increased the intracellular concentration of Ca(2+) and cAMP and stimulated CFTR-chloride channel activity. Altogether, these data suggest local roles for epithelial BV8 and EG-VEGF in the CF airway peribronchial vascular remodeling and highlighted the role of CFTR activity in both ligand biosynthesis and secretion. Copyright © 2015 the American Physiological Society.

  13. [Learning and Memory Capacity and NMDA Receptor Expression in Shen Deficiency Constitution Rats].

    PubMed

    Sun, Yu-ru; Sun, Yao-guang; Zhang, Qi; Wang, Xiao-di; Wang, Xing; Sun, Li-jun

    2016-05-01

    To explore material bases and neurobiological mechanisms of "Shen storing will" by observing learning and memory capacities and N-methyl-D-aspartic acid (NMDA) receptor expressions in Shen deficiency constitution (SDC) rats. Totally 40 SD rats were randomly divided into the model group, the Zuogui Pill (ZP) group, the Yougui Pill (YP) group, the blank control group (consisting of normal pregnant rats), 10 in each group. SDC young rat model (inherent deficiency and postnatal malnutrition) was prepared by the classic way of "cat scaring rat". Medication started when they were scared by cat. Rats in the ZP group and the YP group were administered by gastrogavage with ZP suspension 0.1875 g/mL and YP suspension 0.0938 g/mL respectively. Equal volume of normal saline was administered to rats in the blank control group and the model group by gastrogavage. All medication was given once per day, 5 days in a week for 2 consecutive months. Learning and memory capacities were detected by Morris water maze test. Expressions of NMDA receptor subunits NR2A and NR2B in hippocamus were detected by immunohistochemical method. Compared with the blank control group, the latency period, total distance in Morris water maze test were longer in the model group (P < 0.05). All the aforesaid indices all decreased in the ZP group and the YP group, with statistical difference when compared with the model group (P < 0.05). The protein expressions of NR2A and NR2B in hippocamus were lower in the model group than in the blank control group (P < 0.05). But when compared with the model group, they were obviously higher in the ZP group and the YP group (P < 0.05). SDC rats had degenerated learning and memory capacities and lowered NMDA receptor expressions. ZP and YP could up-regulate learning and memory capacities and NMDA receptor expressions, thereby improving deterioration of brain functions in SDC rats.

  14. Comparative study on the development of intestinal mucin 2, IgA and polymeric Ig receptor expressions between broiler chickens and Pekin ducks

    USDA-ARS?s Scientific Manuscript database

    Intestinal mucin2 (MUC2), a major gel-forming mucin, represents a primary barrier component of mucus layers and target site for secretory IgA. Polymeric Ig receptor (pIgR) expressed on the basolateral surface of epithelium, is used to transport polymeric IgA from the lamina propria into luminal muci...

  15. Homologous upregulation of sst2 somatostatin receptor expression in the rat arcuate nucleus in vivo.

    PubMed

    Tannenbaum, G S; Turner, J; Guo, F; Videau, C; Epelbaum, J; Beaudet, A

    2001-07-01

    In vitro studies using various cell systems have provided conflicting results regarding homologous regulation of somatostatin (SRIH) receptors, and information on whether SRIH regulates the expression of its own receptors in vivo is lacking. In the present study we examined, by in situ hybridization, the effects of pretreatment with the sst2-preferring SRIH analog, octreotide, in vivo, on mRNA levels of two SRIH receptor subtypes, sst1 and sst2, in rat brain and pituitary. (125)I-[DTrp(8)]-SRIH binding was also measured in these regions. Three hours after the iv injection of 50 microg octreotide to conscious adult male rats, there was a 46% increase (p < 0.01) in the labeling density of sst2 mRNA-expressing cells in the hypothalamic arcuate nucleus compared to normal saline-pretreated controls, but not in any of the other brain regions examined. Computer-assisted image analysis revealed that 3 h exposure to octreotide significantly (p < 0.01) augmented both the number and labeling density of sst2 mRNA-expressing cells in the arcuate nucleus, compared to those in saline-treated controls. By contrast, within the anterior pituitary gland, in vivo exposure to octreotide did not affect the expression of sst2 mRNA. No changes in sst1 mRNA-expressing cells were observed after octreotide treatment in any of the regions measured, indicating that the observed effects were homologous, i.e. specific of the receptor subtype stimulated. Octreotide pretreatment was also without effect on the density of (125)I-[DTrp(8)]-SRIH binding in either the arcuate nucleus or pituitary. These results demonstrate, for the first time, that SRIH preexposure in vivo upregulates the expression of a subtype of its own receptors, sst2, within the central nervous system. They further suggest that pretreatment with SRIH in vivo does not cause sst2 receptor desensitization in arcuate nucleus and pituitary. Such homologous regulatory mechanisms may play an important role in the neuroendocrine control of growth hormone (GH) secretion by the arcuate nucleus. Copyright 2001 S. Karger AG, Basel

  16. Expression of receptors for ovarian steroids and prostaglandin E2 in the endometrium and myometrium of mares during estrus, diestrus and early pregnancy.

    PubMed

    Silva, E S M; Scoggin, K E; Canisso, I F; Troedsson, M H T; Squires, E L; Ball, B A

    2014-12-30

    The objective of this study was to compare expression of estrogen receptor alpha (ER-α), β (ER-β), progesterone receptor (PR), as well as prostaglandin E2 type 2 (EP2) and 4 (EP4) receptors in the equine myometrium and endometrium during estrus, diestrus and early pregnancy. Tissues were collected during estrus, diestrus, and early pregnancy. Transcripts for ER-α (ESR1), ER-β (ESR2), PR (PGR), EP2 (PTGER2) and EP4 (PTGER4) were quantified by qPCR. Immunohistochemistry was used to localize ER-α, ER-β, PR, EP2 and EP4. Differences in transcript in endometrium and myometrium were compared by the ΔΔCT method. Expression for ESR1 (P<0.05) tended to be higher during estrus than diestrus in the endometrium (P=0.1) and myometrium (P=0.06). In addition, ESR1 expression was greater during estrus than pregnancy (P<0.05) in the endometrium and tended to be higher in estrus compared to pregnancy in the myometrium (P=0.1). Expression for PGR was greater (P<0.05) in the endometrium during estrus and diestrus than during pregnancy. In the myometrium, PGR expression was greater in estrus than pregnancy (P=0.05) and tended to be higher during diestrus in relation to pregnancy (P=0.07). There were no differences among reproductive stages in ESR2, PTGER2 and PTGER4 mRNA expression (P>0.05). Immunolabeling in the endometrium appeared to be more intense for ER-α during estrus than diestrus and pregnancy. In addition, immunostaining for PR during pregnancy appeared to be more intense in the stroma and less intense in glands and epithelium compared to estrus and diestrus. EP2 immunoreactivity appeared to be more intense during early pregnancy in both endometrium and myometrium, whereas weak immunolabeling for EP4 was noted across reproductive stages. This study demonstrates differential regulation of estrogen receptor (ER) and PR in the myometrium and endometrium during the reproductive cycle and pregnancy as well as abundant protein expression of EP2 in the endometrium and myometrium during early pregnancy in mares. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Sex-steroid receptors, prostaglandin E2 receptors, and cyclooxygenase in the equine cervix during estrus, diestrus and pregnancy: Gene expression and cellular localization.

    PubMed

    Fernandes, Claudia B; Loux, Shavahn C; Scoggin, Kirsten E; Squires, Edward L; Troedsson, Mats H; Esteller-Vico, Alejandro; Ball, Barry A

    2017-12-01

    The cervix is a dynamic structure that undergoes dramatic changes during the estrous cycle, pregnancy and parturition. It is well established that hormonal changes, including estrogens, progestogens and prostaglandins, regulate the expression of key proteins involved in cervical function. The arachidonic acid cascade is important in the remodeling and relaxation of the cervix in the days preceding parturition. Despite the complexity of this mechanism, regulation of cervical function has received little study in the mare. Therefore, the objective of this study was to compare the expression of estrogen receptor α (ESR1) and β (ESR2), progesterone receptor (PGR), prostaglandin E2 type 2 (PTGER2) and type 4 (PTGER4) receptors as well as cyclooxygenase-1 (PTGS1) and -2 (PTGS2) in the equine cervical mucosa and stroma during estrus, diestrus and late pregnancy using qPCR. Immunohistochemistry was used to localize ESR1, ESR2, PGR, PTGER2 and PTGER4 receptors in these regions of the cervix. Relative mRNA expression of ESR1 and PGR was greater during estrus and diestrus than in late pregnancy in both the mucosa and stroma of the cervix. Expression of PTGER2 was highest in the cervical stroma during late pregnancy compared to either estrus or diestrus. Moreover, PTGS1 expression in mucosa and PTGS2 in stroma was greater during late pregnancy compared with estrus, but not diestrus. Immunostaining for ESR1, ESR2, PGR, PTGER2 and PTGER4 was consistently detected in the nucleus and cytoplasm of epithelium of the endocervix as well as the smooth muscle cytoplasm of the cervix in all stages evaluated. Immunolabeling in smooth muscle nuclei was detected for ESR1 and PGR in estrus, diestrus and late pregnancy, and for ESR2 in estrus and late pregnancy stages. The changes noted in late gestation likely reflect preparation of the equine cervix for subsequent parturition. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Prolactin receptor expression in gynaecomastia and male breast carcinoma.

    PubMed

    Ferreira, M; Mesquita, M; Quaresma, M; André, S

    2008-07-01

    Despite the well-established function of prolactin (PRL) in normal breast development, its role in breast cancer pathogenesis is still controversial. PRL activity is dependent on the activation of a transmembrane protein, the PRL receptor (PRLR). The aim was to evaluate and compare PRLR expression in gynaecomastia and male breast carcinoma (MBC). PRLR expression was detected immunohistochemically in 30 cases of gynaecomastia and 30 cases of MBC. The whole series was also assessed for oestrogen receptors (ER), progesterone receptors (PR) and androgen receptors (AR). A cut-off of 10% was used as the criterion for positivity. Histological type and tumour differentiation were evaluated. Pathological stage was assessed [Tumour Node Metastasis (TNM)-International Union Against Cancer system]. Statistical analysis was performed with Fisher's exact test. PRLR positivity was seen in 20% of gynaecomastia cases and in 60% of MBC cases (P = 0.003). In gynaecomastia immunoreactivity was predominantly observed in luminal cell borders, whereas in MBC the reactivity was heterogeneous and mainly cytoplasmic. There was no statistically significant correlation between PRLR expression and ER, PR, AR, pTNM, or histological grade. PRLR is significantly more expressed in MBC than in gynaecomastia, and with different patterns of reactivity, suggesting a role for PRL in male breast carcinogenesis.

  19. Pharmacological characterization of a tyramine receptor from the southern cattle tick, Rhipicephalus (Boophilus) microplus.

    PubMed

    Gross, Aaron D; Temeyer, Kevin B; Day, Tim A; Pérez de León, Adalberto A; Kimber, Michael J; Coats, Joel R

    2015-08-01

    The southern cattle tick (Rhipicephalus (Boophilus) microplus) is a hematophagous external parasite that vectors the causative agents of bovine babesiosis or cattle tick fever, Babesia bovis and B. bigemina, and anaplasmosis, Anaplasma marginale. The southern cattle tick is a threat to the livestock industry in many locations throughout the world. Control methods include the use of chemical acaricides including amitraz, a formamidine insecticide, which is proposed to activate octopamine receptors. Previous studies have identified a putative octopamine receptor from the southern cattle tick in Australia and the Americas. Furthermore, this putative octopamine receptor could play a role in acaricide resistance to amitraz. Recently, sequence data indicated that this putative octopamine receptor is probably a type-1 tyramine receptor (TAR1). In this study, the putative TAR1 was heterologously expressed in Chinese hamster ovary (CHO-K1) cells, and the expressed receptor resulted in a 39-fold higher potency for tyramine compared to octopamine. Furthermore, the expressed receptor was strongly antagonized by yohimbine and cyproheptadine, and mildly antagonized by mianserin and phentolamine. Tolazoline and naphazoline had agonistic or modulatory activity against the expressed receptor, as did the amitraz metabolite, BTS-27271; however, this was only observed in the presence of tyramine. The southern cattle tick's tyramine receptor may serve as a target for the development of anti-parasitic compounds, in addition to being a likely target of formamidine insecticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Changes in myometrial expression of progesterone receptor membrane components 1 and 2 are associated with human parturition at term.

    PubMed

    Wang, Ray; Sheehan, Penelope M; Brennecke, Shaun P

    2016-04-01

    While the exact mechanism of human parturition remains unknown, functional progesterone withdrawal is believed to play a key regulatory role. Progesterone receptor membrane components 1 and 2 (PGRMC1, PGRMC2) are putative progesterone receptors and the aim of this project was to investigate their expression in human myometrium. Human term myometrium was obtained from the lower uterine segment incision in women undergoing elective (not-in-labour, NIL; n=11) and emergency Caesarean sections (in-labour, IL; n=10), following written consent. PGRMC1 and 2 expression was quantified using real-time reverse transcription polymerase chain reaction and western blot. Subcellular localisation was performed by immunohistochemistry and immunofluorescence. There was a significant decrease in PGRMC1 mRNA (P=0.0317) and protein expression (P=0.0151) in IL myometrium, compared with NIL myometrium. PGRMC2 mRNA expression (P=0.0151) was also decreased in IL myometrium, compared with NIL myometrium. Immunostaining studies confirmed the presence of PGRMC1 and 2 in smooth-muscle cells. Expression was perinuclear in NIL myometrium and more generalised and cytoplasmic in IL myometrium. The decrease in PGRMC1 expression and the translocation away from a perinuclear location for both PGRMC1 and 2 could contribute to a functional progesterone withdrawal that may ultimately initiate parturition.

  1. Organotropism and prognostic marker discordance in distant metastases of breast carcinoma: fact or fiction? A clinicopathologic analysis.

    PubMed

    St Romain, Paul; Madan, Rashna; Tawfik, Ossama W; Damjanov, Ivan; Fan, Fang

    2012-03-01

    Prior studies have suggested that the type of breast cancer influences the location of distant metastases ("organotropism") and that there may be discordance of estrogen receptor and human epidermal growth factor receptor 2 (Her2) expression between primaries and metastases. Our aims were to investigate the relationship between tumor type and metastatic site and to compare biomarker expression between primary and metastatic tumors. We retrospectively reviewed 102 biopsy-proven cases of breast cancer metastatic to distant sites from 2000 to 2010 and 34 corresponding primaries for histologic subtype, grade, lymphovascular invasion, lymph node metastasis, and expression of estrogen receptor and Her2. Most metastases were of ductal (88) and lobular (11) histologic types. Available data on primaries indicated that the majority were grade III with positive lymph node metastasis and lymphovascular invasion. Biomarkers on 73 metastases showed 37 estrogen receptor positive/Her2-, 6 estrogen receptor positive/Her2+, 8 estrogen receptor negative/Her2+, and 22 estrogen receptor negative/Her2-. The most common metastatic sites were the lung (26%), bone (32%), and liver (21%). We found no association between estrogen receptor/Her2 profile and metastatic site (P = .16). When compared with ductal carcinoma, lobular carcinoma showed a unique metastatic pattern to gastrointestinal tract/gynecologic sites (P = .014). Of 34 cases with paired prognostic markers for primary and metastatic sites, 7 (20%) demonstrated discordance in estrogen receptor-positive/Her2 profile between the primary and the metastasis. Because the estrogen receptor-positive/Her2 profile of metastatic breast cancer did not always match that of the primary tumor, it is important to repeat the prognostic markers of metastasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Arrestin–dependent but G–protein coupled receptor kinase–independent uncoupling of D2–dopamine receptors

    PubMed Central

    Celver, Jeremy; Sharma, Meenakshi; Thanawala, Vaidehi; Octeau, J. Christopher; Kovoor, Abraham

    2016-01-01

    We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (Kir3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-Kir3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor. PMID:23815307

  3. Arrestin-dependent but G-protein coupled receptor kinase-independent uncoupling of D2-dopamine receptors.

    PubMed

    Celver, Jeremy; Sharma, Meenakshi; Thanawala, Vaidehi; Christopher Octeau, J; Kovoor, Abraham

    2013-10-01

    We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (K(ir)3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-K(ir)3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor. © 2013 International Society for Neurochemistry.

  4. Somatostatin and Somatostatin Receptor Gene Expression in Dominant and Subordinate Males of an African Cichlid Fish

    PubMed Central

    Trainor, Brian C.; Hofmann, Hans A.

    2009-01-01

    Somatostatin is a neuropeptide best known for its inhibitory effects on growth hormone secretion and has recently been implicated in the control of social behavior. Several somatostatin receptor subtypes have been identified in vertebrates, but the functional basis for this diversity is still unclear. Here we investigate the expression levels of the somatostatin prepropeptide and two of its receptors, sstR2, and sstR3, in the brains of socially dominant and subordinate A. burtoni males using real-time PCR. Dominant males had higher somatostatin prepropeptide and sstR3 expression in hypothalamus compared to subordinate males. Hypothalamic sstR2 expression did not differ. There were no differences in gene expression in the telencephalon. We also observed an interesting difference between dominants and subordinates in the relationship between hypothalamic sstR2 expression and body size. As would be predicted based on the inhibitory effects of somatostatin on somatic growth, sstR2 expression was negatively correlated with body size in dominant males. In contrast sstR2 expression was positively correlated with body size in subordinate males. These results suggest that somatostatin prepropeptide and receptor gene expression in the hypothalamus are associated with the control of somatic growth in A. burtoni depending on social status. PMID:17374406

  5. 4-Nitrophenol induces Leydig cells hyperplasia, which may contribute to the differential modulation of the androgen receptor and estrogen receptor-α and -β expression in male rat testes.

    PubMed

    Zhang, Yonghui; Piao, Yuanguo; Li, Yansen; Song, Meiyan; Tang, Pingli; Li, Chunmei

    2013-11-25

    4-Nitrophenol (PNP) is generally regarded as an environmental endocrine disruptor capable of estrogenic and anti-androgenic activities. To investigate PNP-induced reproductive effects, immature male rats were injected subcutaneously with PNP (0.1, 1, 10mg/kg body weight or vehicle) daily for 4 weeks. We assessed reproductive tract alterations, sex hormone balance in the serum and estrogen receptor (ER)-α, -β and androgen receptor (AR) expression in testes. Although no significant difference was observed in body weight or testes weights of PNP-treated rats compared with the controls, the serum concentrations of testosterone in the 10mg/kg PNP-treated group were significantly elevated. This effect was accompanied by Leydig cells hyperplasia in the testes. Conversely, there was a significant decrease in estradiol concentration and aromatase expression in the testes of the 10mg/kg PNP-treated group. Furthermore, we observed a significant increase in ERα expression in the testes of the 10mg/kg PNP-treated group compared with the control group. Conversely, ERβ expression displayed a significant reduction. Moreover, AR expression was significantly increased in the 10mg/kg PNP-treated group compared with the control group. The existence of AR, ER-α and -β in the testes suggests that estradiol and testosterone directly affect germ cells and that differential modulation of AR, ER-α and -β in the testis may be involved in the direct effects of PNP or either the indirect effects of PNP-induced disruption of the estradiol-to-testosterone balance or the Leydig cells hyperplasia. Thus, the measurement of many endpoints is necessary for good risk assessment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. A Single Dose of LSD Does Not Alter Gene Expression of the Serotonin 2A Receptor Gene (HTR2A) or Early Growth Response Genes (EGR1-3) in Healthy Subjects

    PubMed Central

    Dolder, Patrick C.; Grünblatt, Edna; Müller, Felix; Borgwardt, Stefan J.; Liechti, Matthias E.

    2017-01-01

    Rationale: Renewed interest has been seen in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. The repeated use of LSD leads to tolerance that is believed to result from serotonin (5-HT) 5-HT2A receptor downregulation. In rats, daily LSD administration for 4 days decreased frontal cortex 5-HT2A receptor binding. Additionally, a single dose of LSD acutely increased expression of the early growth response genes EGR1 and EGR2 in rat and mouse brains through 5-HT2A receptor stimulation. No human data on the effects of LSD on gene expression has been reported. Therefore, we investigated the effects of single-dose LSD administration on the expression of the 5-HT2A receptor gene (HTR2A) and EGR1-3 genes. Methods: mRNA expression levels were analyzed in whole blood as a peripheral biomarker in 15 healthy subjects before and 1.5 and 24 h after the administration of LSD (100 μg) and placebo in a randomized, double-blind, placebo-controlled, cross-over study. Results: LSD did not alter the expression of the HTR2A or EGR1-3 genes 1.5 and 24 h after administration compared with placebo. Conclusion: No changes were observed in the gene expression of LSD’s primary target receptor gene or genes that are implicated in its downstream effects. Remaining unclear is whether chronic LSD administration alters gene expression in humans. PMID:28701958

  7. Identification and comparative expression analysis of interleukin 2/15 receptor B chain in chickens infected with E. tenella

    USDA-ARS?s Scientific Manuscript database

    Background: Interleukin (IL) 2 and IL15 receptor beta chain (IL2/15Receptor beta, CD122) play critical roles in signal transduction for the biological activities of IL2 and IL15. Increased knowledge of non-mammalian IL2/15Receptor beta will enhance the understanding of IL2 and IL15 functions. Meth...

  8. Quantitative Expression of C-Type Lectin Receptors in Humans and Mice

    PubMed Central

    Lech, Maciej; Susanti, Heni Eka; Römmele, Christoph; Gröbmayr, Regina; Günthner, Roman; Anders, Hans-Joachim

    2012-01-01

    C-type lectin receptors and their adaptor molecules are involved in the recognition of glycosylated self-antigens and pathogens. However, little is known about the species- and organ-specific expression profiles of these molecules. We therefore determined the mRNA expression levels of Dectin-1, MR1, MR2, DC-SIGN, Syk, Card-9, Bcl-10, Malt-1, Src, Dec-205, Galectin-1, Tim-3, Trem-1, and DAP-12 in 11 solid organs of human and mice. Mouse organs revealed lower mRNA levels of most molecules compared to spleen. However, Dec-205 and Galectin-1 in thymus, Src in brain, MR2, Card-9, Bcl-10, Src, and Dec-205 in small intestine, MR2, Bcl-10, Src, Galectin-1 in kidney, and Src and Galectin-1 in muscle were at least 2-fold higher expressed compared to spleen. Human lung, liver and heart expressed higher mRNA levels of most genes compared to spleen. Dectin-1, MR1, Syk and Trem-1 mRNA were strongly up-regulated upon ischemia-reperfusion injury in murine kidney. Tim3, DAP-12, Card-9, DC-SIGN and MR2 were further up-regulated during renal fibrosis. Murine kidney showed higher DAP-12, Syk, Card-9 and Dectin-1 mRNA expression during the progression of lupus nephritis. Thus, the organ-, and species-specific expression of C-type lectin receptors is different between mice and humans which must be considered in the interpretation of related studies. PMID:22949850

  9. Resveratrol-decreased hyperalgesia mediated by the P2X7 receptor in gp120-treated rats.

    PubMed

    Wu, Bing; Ma, Yucheng; Yi, Zhihua; Liu, Shuangmei; Rao, Shenqiang; Zou, Lifang; Wang, Shouyu; Xue, Yun; Jia, Tianyu; Zhao, Shanhong; Shi, Liran; Li, Lin; Yuan, Huilong; Liang, Shangdong

    2017-01-01

    Background Chronic pain is a common symptom in human immunodeficiency virus (HIV)-1 infection/acquired immunodeficiency syndrome patients. The literature shows that the HIV envelope glycoprotein 120 (gp120) can directly cause hyperalgesia by stimulating primary sensory afferent nerves. The P2X 7 receptor in the dorsal root ganglia (DRG) is closely related to neuropathic and inflammatory pain. In this study, we aimed to explore the effect of resveratrol (RES) on gp120-induced neuropathic pain that is mediated by the P2X 7 receptor in the rat DRG. Results Mechanical hyperalgesia in rats treated with gp120 was increased compared with that in the sham group. The P2X 7 expression levels in rats treated with gp120 were higher than those in the sham group. Co-localization of the P2X 7 receptor and glial fibrillary acidic protein (GFAP, a marker of satellite glial cells [SGCs]) in the DRG SGCs of the gp120 group exhibited more intense staining than that of the sham group. RES decreased the mechanical hyperalgesia and P2X 7 expression levels in gp120 treatment rats. Co-localization of the P2X 7 receptor and GFAP in the gp120+ RES group was significantly decreased compared to the gp120 group. RES decreased the IL-1β and TNF-α receptor (R) expression levels and ERK1/2 phosphorylation levels as well as increased IL-10 expression in the DRG of gp120-treated rats. Whole cell clamping demonstrated that RES significantly inhibited adenosine triphosphate-activated currents in HEK293 cells that were transfected with the P2X 7 plasmid. Conclusions RES relieved mechanical hyperalgesia in gp120-treated rats by inhibiting the P2X 7 receptor.

  10. Long-Term Haloperidol Treatment Prolongs QT Interval and Increases Expression of Sigma 1 and IP3 Receptors in Guinea Pig Hearts.

    PubMed

    Stracina, Tibor; Slaninova, Iva; Polanska, Hana; Axmanova, Martina; Olejnickova, Veronika; Konecny, Petr; Masarik, Michal; Krizanova, Olga; Novakova, Marie

    2015-07-01

    Haloperidol is a neuroleptic drug used for a medication of various psychoses and deliria. Its administration is frequently accompanied by cardiovascular side effects, expressed as QT interval prolongation and occurrence of even lethal arrhythmias. Despite these side effects, haloperidol is still prescribed in Europe in clinical practice. Haloperidol binds to sigma receptors that are coupled with inositol 1,4,5-trisphosphate (IP3) receptors. Sigma receptors are expressed in various tissues, including heart muscle, and they modulate potassium channels. Together with IP3 receptors, sigma receptors are also involved in calcium handling in various tissues. Therefore, the present work aimed to study the effects of long-term haloperidol administration on the cardiac function. Haloperidol (2 mg/kg once a day) or vehiculum was administered by intraperitoneal injection to guinea pigs for 21 consecutive days. We measured the responsiveness of the hearts isolated from the haloperidol-treated animals to additional application of haloperidol. Expression of the sigma 1 receptor and IP3 receptors was studied by real time-PCR and immunohistochemical analyses. Haloperidol treatment caused the significant decrease in the relative heart rate and the prolongation of QT interval of the isolated hearts from the haloperidol-treated animals, compared to the hearts isolated from control animals. The expression of sigma 1 and IP3 type 1 and type 2 receptors was increased in both atria of the haloperidol-treated animals but not in ventricles. The modulation of sigma 1 and IP3 receptors may lead to altered calcium handling in cardiomyocytes and thus contribute to changed sensitivity of cardiac cells to arrhythmias.

  11. miR-135a Inhibits the Invasion of Cancer Cells via Suppression of ERRα.

    PubMed

    Tribollet, Violaine; Barenton, Bruno; Kroiss, Auriane; Vincent, Séverine; Zhang, Ling; Forcet, Christelle; Cerutti, Catherine; Périan, Séverine; Allioli, Nathalie; Samarut, Jacques; Vanacker, Jean-Marc

    2016-01-01

    MicroRNA-135a (miR-135a) down-modulates parameters of cancer progression and its expression is decreased in metastatic breast cancers (as compared to non-metastatic tumors) as well as in prostate tumors relative to normal tissue. These expression and activity patterns are opposite to those of the Estrogen-Related Receptor α (ERRα), an orphan member of the nuclear receptor family. Indeed high expression of ERRα correlates with poor prognosis in breast and prostate cancers, and the receptor promotes various traits of cancer aggressiveness including cell invasion. Here we show that miR-135a down-regulates the expression of ERRα through specific sequences of its 3'UTR. As a consequence miR-135a also reduces the expression of downstream targets of ERRα. miR-135a also decreases cell invasive potential in an ERRα-dependent manner. Our results suggest that the decreased expression of miR-135a in metastatic tumors leads to elevated ERRα expression, resulting in increased cell invasion capacities.

  12. miR-135a Inhibits the Invasion of Cancer Cells via Suppression of ERRα

    PubMed Central

    Tribollet, Violaine; Barenton, Bruno; Kroiss, Auriane; Vincent, Séverine; Zhang, Ling; Forcet, Christelle; Cerutti, Catherine; Périan, Séverine; Allioli, Nathalie; Samarut, Jacques; Vanacker, Jean-Marc

    2016-01-01

    MicroRNA-135a (miR-135a) down-modulates parameters of cancer progression and its expression is decreased in metastatic breast cancers (as compared to non-metastatic tumors) as well as in prostate tumors relative to normal tissue. These expression and activity patterns are opposite to those of the Estrogen-Related Receptor α (ERRα), an orphan member of the nuclear receptor family. Indeed high expression of ERRα correlates with poor prognosis in breast and prostate cancers, and the receptor promotes various traits of cancer aggressiveness including cell invasion. Here we show that miR-135a down-regulates the expression of ERRα through specific sequences of its 3’UTR. As a consequence miR-135a also reduces the expression of downstream targets of ERRα. miR-135a also decreases cell invasive potential in an ERRα-dependent manner. Our results suggest that the decreased expression of miR-135a in metastatic tumors leads to elevated ERRα expression, resulting in increased cell invasion capacities. PMID:27227989

  13. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    PubMed Central

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad Reza; Shariati, Mehdi; Fatemi, Iman; Moghadam-ahmadi, Amir; Bazmandegan, Gholamreza; Rezazadeh, Hossein; Allahtavakoli, Mohammad

    2017-01-01

    Objective(s): Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1) channels and toll-like receptors (TLRs) are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist) -treated and capsaicin (TRPV1 agonist) -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke. PMID:29085577

  14. Expression of olfactory receptors in different life stages and life histories of wild Atlantic salmon (Salmo salar).

    PubMed

    Johnstone, K A; Lubieniecki, K P; Koop, B F; Davidson, W S

    2011-10-01

    It has been hypothesized that salmonids use olfactory cues to return to their natal rivers and streams. However, the key components of the molecular pathway involved in imprinting and homing are still unknown. If odorants are involved in salmon homing migration, then olfactory receptors should play a critical role in the dissipation of information from the environment to the fish. Therefore, we examined the expression profiles of a suite of genes encoding olfactory receptors and other olfactory-related genes in the olfactory rosettes of different life stages in two anadromous and one non-anadromous wild Atlantic salmon populations from Newfoundland, Canada. We identified seven differentially expressed OlfC genes in juvenile anadromous salmon compared to returning adults in both populations of anadromous Atlantic salmon. The salmon from the Campbellton River had an additional 10 genes that were differentially expressed in juveniles compared to returning adults. There was no statistically significant difference in gene expression of any of the genes in the non-anadromous population (P < 0.01). The function of the OlfC gene products is not clear, but they are predicted to be amino acid receptors. Other studies have suggested that salmon use amino acids for imprinting and homing. This study, the first to examine the expression of olfactory-related genes in wild North American Atlantic salmon, has identified seven OlfC genes that may be involved in the imprinting and homeward migration of anadromous Atlantic salmon. © 2011 Blackwell Publishing Ltd.

  15. Progestin treatment does not affect expression of cytokines, steroid receptors, oxytocin receptor, and cyclooxygenase 2 in fetal membranes and endometrium from pony mares at parturition.

    PubMed

    Palm, F; Walter, I; Nowotny, N; Budik, S; Helmreich, M; Aurich, C

    2013-01-01

    In most mammalian species, progestins have a major function in maintaining pregnancy. In humans, the physiologic initiation of parturition bears similarities with inflammatory processes and anti-inflammatory effects of progestins have been suggested to postpone birth until term. To examine if comparable effects exist in the horse, mares were treated with the synthetic progestin altrenogest from day 280 of gestation until parturition (N = 5) or were left untreated as controls (N = 7). Tissue from the amnion (AMN), allantochorion (AC), and endometrium (EM) was collected at foaling and mRNA expression of interleukin (IL)-6 and -8, cyclooxygenase 2 (COX2), estrogen receptor (ER) α, progesterone receptor, and oxytocin receptor (OTR) was analyzed. Leukocytes, steroid receptors, COX2, and OTR were also investigated by histology and immunohistochemistry. Expression of mRNA for IL-6 was higher in AMN and EM versus AC (P < 0.01). Expression of IL-8 was higher in AMN than AC and EM (P < 0.001). Steroid receptors and OTR were highly expressed in EM but not in AMN and AC (P < 0.001). Expression of COX2 was most pronounced in AC whereas IL expression was not upregulated in AC. No differences in mRNA expression existed between altrenogest-treated and control animals. Endometrial polymorphonuclear leukocytes were increased in altrenogest-treated mares. Epithelial cells of all tissues, except AC chorionic villi stained progesterone receptor-positive. Staining for ER was more pronounced in the amnion facing epithelium of the AC in altrenogest-treated versus control animals (P < 0.01). In conclusion, COX2 is highly expressed in the AC. The fetal membranes thus might play a role in the onset of labor in the horse. Altrenogest did not affect gene expression in the AMN, AC, and EM but had localized effects on inflammatory cells and ER expression. No anti-inflammatory effects of altrenogest in healthy, late pregnant pony mares could be detected. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Age-related change in the retinoid X receptor beta gene expression in peripheral blood mononuclear cells of healthy volunteers: effect of 13-cis retinoic acid supplementation.

    PubMed

    Brtko, J; Rock, E; Nezbedova, P; Krizanova, O; Dvorcakova, M; Minet-Quinard, R; Farges, M-C; Ribalta, J; Winklhofer-Roob, B M; Vasson, M-P; Macejova, D

    2007-01-01

    The regulation of cell growth and differentiation and also expression of a number of genes by retinoids are mediated by nuclear retinoid receptors (RARs and/or RXRs). In this study we investigated age-related alteration in both RAR and RXR receptor subtypes gene expression and tissue transglutaminase (tTG) activity before and after supplementation with 13-cis retinoic acid (13cRA) in human peripheral blood mononuclear cells (PBMCs). Healthy men (40) were divided in two groups according to their age (young group: 26.1+/-4.1 years and old group: 65.4+/-3.8 years). Each volunteer received 13cRA (Curacné), 0.5mg/(kgday)) during a period of 4 weeks. We have shown that RXRbeta expression was decreased significantly (p=0.0108) in PBMCs of elderly men when compared to that of young volunteers. Distribution of retinoic acid receptor subtype expression in PBMCs was found in the order: RXRbeta>RARgamma>RXRalpha>RARalpha. The tTG activity in PBMCs reflected a trend to be enhanced after 13-cis retinoic acid supplementation. In conclusion, we demonstrate a significant decrease in the expression of RXRbeta subtype of rexinoid receptors in PBMCs of healthy elderly men. Our data suggest that in healthy elderly men reduction of RXRbeta expression in PBMCs might be a common feature of physiological senescence.

  17. A protein crosslinking assay for measuring cell surface expression of glutamate receptor subunits in the rodent brain after in vivo treatments

    PubMed Central

    Boudreau, Amy C.; Milovanovic, Mike; Conrad, Kelly L.; Nelson, Christopher; Ferrario, Carrie R.; Wolf, Marina E.

    2012-01-01

    Trafficking of neurotransmitter receptors between intracellular and cell surface compartments is important for regulating neurotransmission. We developed a method for determining if an in vivo treatment has altered receptor distribution in a particular region of rodent brain. After the treatment, brain slices are rapidly prepared from the region of interest. Then cell surface-expressed receptors are covalently crosslinked to nearby proteins using the membrane-impermeable, bifunctional crosslinker bis(sulfosuccinimidyl)suberate (BS3). This increases the apparent molecular weight of surface receptors, while intracellular receptors are not modified. Thus, surface and intracellular receptor pools can be separated and quantified using SDS-PAGE and immunoblotting. This method is particularly useful for analyzing AMPA receptor subunits, offering advantages in accuracy, efficiency and cost compared to biotinylation. A disadvantage is that some antibodies no longer recognize their target protein after crosslinking. We have used this method to quantify changes in receptor distribution after acute and chronic exposure to psychomotor stimulants. PMID:22470150

  18. Functional significance of muscarinic receptor expression within the proximal and distal rat vagina.

    PubMed

    Basha, Maureen; Labelle, Edward F; Northington, Gina M; Wang, Tanchun; Wein, Alan J; Chacko, Samuel

    2009-11-01

    Information regarding the role of cholinergic nerves in mediating vaginal smooth muscle contraction is sparse, and in vitro studies of the effects of muscarinic agonists on vaginal smooth muscle are discrepant. The goal of this study was to determine the expression of muscarinic receptors in the vaginal wall of the rat. In addition, we sought to determine the effect of the muscarinic receptor agonist carbachol on contractility and inositol phosphate production of the proximal and distal rat vaginal muscularis. RT-PCR analysis indicated that both M(2) and M(3) receptor transcripts were expressed within the proximal and distal rat vagina. Carbachol dose-dependently (10(-7)-10(-4) M) contracted the rat vaginal muscularis with a greater maximal contractile response in the proximal vagina (P < 0.01) compared with the distal vagina. The contractile responses of the rat vaginal muscularis to carbachol were dose dependently inhibited by the M(3) antagonist para-fluoro-hexahydrosiladefenidol, and a pK(B) of 7.78 and 7.95 was calculated for the proximal and distal vagina, respectively. Inositol phosphate production was significantly increased in both regions of the vagina following 20-min exposure to 50 muM carbachol with higher levels detected in the proximal vagina compared with the distal (P < 0.05). Preliminary experiments indicated the presence of M(2) and M(3) receptors in the human vaginal muscularis as well as contraction of human vaginal muscularis to carbachol, indicating that our animal studies are relevant to human tissue. Our results provide strong evidence for the functional significance of M(3) receptor expression in the vaginal muscularis.

  19. Dissecting the determinants of light sensitivity in amphioxus microvillar photoreceptors: possible evolutionary implications for melanopsin signaling.

    PubMed

    Ferrer, Camilo; Malagón, Gerardo; Gomez, María Del Pilar; Nasi, Enrico

    2012-12-12

    Melanopsin, a photopigment related to the rhodopsin of microvillar photoreceptors of invertebrates, evolved in vertebrates to subserve nonvisual light-sensing functions, such as the pupillary reflex and entrainment of circadian rhythms. However, vertebrate circadian receptors display no hint of a microvillar specialization and show an extremely low light sensitivity and sluggish kinetics. Recently in amphioxus, the most basal chordate, melanopsin-expressing photoreceptors were characterized; these cells share salient properties with both rhabdomeric photoreceptors of invertebrates and circadian receptors of vertebrates. We used electrophysiology to dissect the gain of the light-transduction process in amphioxus and examine key features that help outline the evolutionary transition toward a sensor optimized to report mean ambient illumination rather than mediating spatial vision. By comparing the size of current fluctuations attributable to single photon melanopsin isomerizations with the size of single-channels activated by light, we concluded that the gain of the transduction cascade is lower than in rhabdomeric receptors. In contrast, the expression level of melanopsin (gauged by measuring charge displacements during photo-induced melanopsin isomerization) is comparable with that of canonical visual receptors. A modest amplification in melanopsin-using receptors is therefore apparent in early chordates; the decrease in photopigment expression-and loss of the anatomical correlates-observed in vertebrates subsequently enabled them to attain the low photosensitivity tailored to the role of circadian receptors.

  20. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure.

    PubMed

    Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent

    2015-08-01

    Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention. © FASEB.

  1. Expression of G(alpha)(s) proteins and TSH receptor signalling in hyperfunctioning thyroid nodules with TSH receptor mutations.

    PubMed

    Holzapfel, Hans-Peter; Bergner, Beate; Wonerow, Peter; Paschke, Ralf

    2002-07-01

    Constitutively activating mutations of the thyrotrophin receptor (TSHR) are the main molecular cause of hyperfunctioning thyroid nodules (HTNs). The G protein coupling is an important and critical step in the TSHR signalling which mainly includes G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins. We investigated the in vitro consequences of overexpressing G(alpha) proteins on signalling of the wild-type (WT) or mutated TSHR. Moreover, we investigated whether changes in G(alpha) protein expression are pathophysiologically relevant in HTNs or cold thyroid nodules (CTNs). Wild-type TSH receptor and mutated TSH receptors were coexpressed with G(alpha)(s), G(alpha)(i) or G(alpha)(q)/11, and cAMP and inositol phosphate (IP) production was measured after stimulation with TSH. The expression of G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins was examined by Western blotting in 28 HTNs and 14 CTNs. Coexpression of G(alpha)(s) with the WT TSH receptor in COS 7 cells significantly increased the basal and TSH-stimulated cAMP accumulation while coexpression of the G(alpha)(q) or G(alpha)11 protein significantly increased the production of cAMP and inositol triphosphate (IP(3)). The coexpression of the TSH receptor mutants (I486F, DEL613-621), known to couple constitutively to G(alpha)(s) and G(alpha)(q) with G(alpha)(s) and G(alpha)(q)/11, significantly increased the basal and stimulated cAMP and IP(3) accumulation. Coexpression of the TSH receptor mutant V556F with G(alpha)(s) only increased the basal and stimulated cAMP production while its coexpression with G(alpha)(q)/11 increased the basal and stimulated IP(3) signalling. The expression of G(alpha)(s) protein subunits determined by Western blotting was significantly decreased in 14 HTNs with a constitutively activating TSH receptor mutation in comparison with the corresponding surrounding tissue, while in 14 HTNs without TSH receptor or G(alpha)(s) protein mutation and in 14 CTNs the expression of G(alpha)(s) protein was not different compared with the surrounding tissue. The expression of G(alpha)(i) and G(alpha)(q)/11 proteins in HTNs or CTNs was not significantly different compared with the surrounding tissue. The reduced expression of G(alpha)(s) protein subunits in HTNs with TSHR mutations could act as a feedback mechanism to desensitise the chronically stimulated cAMP cascade. As G(alpha) protein expression was not significantly increased in the majority of CTNs and HTNs an influence of G(alpha) overexpression on TSH signalling could be excluded in these nodules.

  2. Alterations of peroxisome proliferator-activated receptor γ and monocyte chemoattractant protein 1 gene expression in the nitrofen-induced hypoplastic lung.

    PubMed

    Gosemann, Jan-Hendrik; Doi, Takashi; Kutasy, Balazs; Friedmacher, Florian; Dingemann, Jens; Puri, Prem

    2012-05-01

    Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in normal lung development. Peroxisome proliferator-activated receptor γ messenger RNA (mRNA) is detectable at 18 days of gestation in fetal rat lungs, and levels peak just before birth. Peroxisome proliferator-activated receptor γ agonists are reported to stimulate lung development, whereas inhibition of PPARγ disrupts postnatal lung maturation. Monocyte chemoattractant protein 1 (MCP-1), which is inhibited by PPARγ, is reported to disrupt late lung morphogenesis. This study was designed to investigate the hypothesis that PPARγ expression is downregulated and that MCP-1 expression is upregulated during the late stages of lung development in nitrofen-induced hypoplastic lungs. Pregnant rats were treated with nitrofen or vehicle on D9. RNA was extracted from fetal lungs (D18 and D21), and relative mRNA expression levels of PPARγ and MCP-1 were determined by reverse transcriptase-polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression/distribution of PPARγ and MCP-1. Relative mRNA expression levels of PPARγ were significantly downregulated in the nitrofen group compared with controls on D21, whereas MCP-1 levels were upregulated. Immunohistochemical study showed markedly decreased PPARγ and increased MCP-1 immunoreactivity in the nitrofen-induced hypoplastic lungs compared with controls on gestational day 21. Altered pulmonary gene expression of PPARγ and MCP-1 during late gestation may impair lung development and maturation, contributing to pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia model. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting.

    PubMed

    Pierce, A L; Fox, B K; Davis, L K; Visitacion, N; Kitahashi, T; Hirano, T; Grau, E G

    2007-01-01

    In fish, pituitary growth hormone family peptide hormones (growth hormone, GH; prolactin, PRL; somatolactin, SL) regulate essential physiological functions including osmoregulation, growth, and metabolism. Teleost GH family hormones have both differential and overlapping effects, which are mediated by plasma membrane receptors. A PRL receptor (PRLR) and two putative GH receptors (GHR1 and GHR2) have been identified in several teleost species. Recent phylogenetic analyses and binding studies suggest that GHR1 is a receptor for SL. However, no studies have compared the tissue distribution and physiological regulation of all three receptors. We sequenced GHR2 from the liver of the Mozambique tilapia (Oreochromis mossambicus), developed quantitative real-time PCR assays for the three receptors, and assessed their tissue distribution and regulation by salinity and fasting. PRLR was highly expressed in the gill, kidney, and intestine, consistent with the osmoregulatory functions of PRL. PRLR expression was very low in the liver. GHR2 was most highly expressed in the muscle, followed by heart, testis, and liver, consistent with this being a GH receptor with functions in growth and metabolism. GHR1 was most highly expressed in fat, liver, and muscle, suggesting a metabolic function. GHR1 expression was also high in skin, consistent with a function of SL in chromatophore regulation. These findings support the hypothesis that GHR1 is a receptor for SL. In a comparison of freshwater (FW)- and seawater (SW)-adapted tilapia, plasma PRL was strongly elevated in FW, whereas plasma GH was slightly elevated in SW. PRLR expression was reduced in the gill in SW, consistent with PRL's function in freshwater adaptation. GHR2 was elevated in the kidney in FW, and correlated negatively with plasma GH, whereas GHR1 was elevated in the gill in SW. Plasma IGF-I, but not GH, was reduced by 4 weeks of fasting. Transcript levels of GHR1 and GHR2 were elevated by fasting in the muscle. However, liver levels of GHR1 and GHR2 transcripts, and liver and muscle levels of IGF-I transcripts were unaffected by fasting. These results clearly indicate tissue specific expression and differential physiological regulation of GH family receptors in the tilapia.

  4. Rearrangement and expression of the human {Psi}C{lambda}6 gene segment results in a surface Ig receptor with a truncated light chain constant region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiernholm, N.B.J.; Verkoczy, L.K.; Berinstein, N.L.

    1995-05-01

    The constant region of the human Ig{lambda} locus consists of seven tandemly organized J-C gene segments. Although it has been established that the J-C{lambda}1, J-C{lambda}2, J-C{lambda}3, and J-C{lambda}7 gene segments are functional, and code for the four distinct Ig{lambda} isotypes found in human serum, the J-C{lambda}4, J-C{lambda}5, and J-C{lambda}6 gene segments are generally considered to be pseudogenes. Although one example of a functional J-C{lambda}6 gene segment has been documented, in the majority of cases, J-C{lambda}6 is rendered nonfunctional by virtue of a single duplication of four nucleotides, creating a premature translational arrest. We show here that rearrangements to the J-C{lambda}6more » gene segment do occur, and that such a rearrangement encodes an Ig{lambda} protein that lacks the terminal end of the constant region. We also show that this truncated protein is expressed on the surface with the IgH chain, creating an unusual surface Ig (sIg) receptor (sIg{triangle}CL). Cells that express this receptor on the surface do so at significantly reduced levels compared with clonally related variants, which express sIg receptors with conventional Ig{lambda} L chains. However, the effects of sIg cross-linking on tyrosine phosphorylation and surface expression of the CD25 and CD71 Ags are similar in cells that express conventional sIg receptors and in those that express sIg{triangle}CL receptors, suggesting that the latter could possibly function as an Ag receptor. 35 refs., 7 figs.« less

  5. A novel thromboxane A2 receptor N42S variant results in reduced surface expression and platelet dysfunction.

    PubMed

    Nisar, Shaista P; Lordkipanidzé, Marie; Jones, Matthew L; Dawood, Ban; Murden, Sherina; Cunningham, Margaret R; Mumford, Andrew D; Wilde, Jonathan T; Watson, Steve P; Mundell, Stuart J; Lowe, Gillian C

    2014-05-05

    A small number of thromboxane receptor variants have been described in patients with a bleeding history that result in platelet dysfunction. We have identified a patient with a history of significant bleeding, who expresses a novel heterozygous thromboxane receptor variant that predicts an asparagine to serine substitution (N42S). This asparagine is conserved across all class A GPCRs, suggesting a vital role for receptor structure and function.We investigated the functional consequences of the TP receptor heterozygous N42S substitution by performing platelet function studies on platelet-rich plasma taken from the patient and healthy controls. We investigated the N42S mutation by expressing the wild-type (WT) and mutant receptor in human embryonic kidney (HEK) cells. Aggregation studies showed an ablation of arachidonic acid responses in the patient, whilst there was right-ward shift of the U46619 concentration response curve (CRC). Thromboxane generation was unaffected. Calcium mobilisation studies in cells lines showed a rightward shift of the U46619 CRC in N42S-expressing cells compared to WT. Radioligand binding studies revealed a reduction in BMax in platelets taken from the patient and in N42S-expressing cells, whilst cell studies confirmed poor surface expression. We have identified a novel thromboxane receptor variant, N42S, which results in platelet dysfunction due to reduced surface expression. It is associated with a significant bleeding history in the patient in whom it was identified. This is the first description of a naturally occurring variant that results in the substitution of this highly conserved residue and confirms the importance of this residue for correct GPCR function.

  6. Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes.

    PubMed

    Hrycay, E G; Bandiera, S M

    2009-12-01

    The present review focuses on the expression, function and regulation of mouse cytochrome P450 (Cyp) enzymes. Information compiled for mouse Cyp enzymes is compared with data collected for human CYP enzymes. To date, approximately 40 pairs of orthologous mouse-human CYP genes have been identified that encode enzymes performing similar metabolic functions. Recent knowledge concerning the tissue expression of mouse Cyp enzymes from families 1 to 51 is summarized. The catalytic activities of microsomal, mitochondrial and recombinant mouse Cyp enzymes are discussed and their involvement in the metabolism of exogenous and endogenous compounds is highlighted. The role of nuclear receptors, such as the aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor, in regulating the expression of mouse Cyp enzymes is examined. Targeted disruption of selected Cyp genes has generated numerous Cyp null mouse lines used to decipher the role of Cyp enzymes in metabolic, toxicological and biological processes. In conclusion, the laboratory mouse is an indispensable model for exploring human CYP-mediated activities.

  7. AMPA, NMDA and kainate glutamate receptor subunits are expressed in human peripheral blood mononuclear cells (PBMCs) where the expression of GluK4 is altered by pregnancy and GluN2D by depression in pregnant women.

    PubMed

    Bhandage, Amol K; Jin, Zhe; Hellgren, Charlotte; Korol, Sergiy V; Nowak, Krzysztof; Williamsson, Louise; Sundström-Poromaa, Inger; Birnir, Bryndis

    2017-04-15

    The amino acid glutamate opens cation permeable ion channels, the iGlu receptors. These ion channels are abundantly expressed in the mammalian brain where glutamate is the main excitatory neurotransmitter. The neurotransmitters and their receptors are being increasingly detected in the cells of immune system. Here we examined the expression of the 18 known subunits of the iGlu receptors families; α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, N-methyl-d-aspartate (NMDA) and delta in human peripheral blood mononuclear cells (PBMCs). We compared the expression of the subunits between four groups: men, non-pregnant women, healthy pregnant women and depressed pregnant women. Out of 18 subunits of the iGlu receptors, mRNAs for 11 subunits were detected in PBMCs from men and non-pregnant women; AMPA: GluA3, GluA4, kainate: GluK2, GluK4, GluK5, NMDA: GluN1, GluN2C, GluN2D, GluN3A, GluN3B, and delta: GluD1. In the healthy and the depressed pregnant women, in addition, the delta GluD2 subunit was identified. The mRNAs for GluK4, GluK5, GluN2C and GluN2D were expressed at a higher level than other subunits. Gender, pregnancy or depression during pregnancy altered the expression of GluA3, GluK4, GluN2D, GluN3B and GluD1 iGlu subunit mRNAs. The greatest changes recorded were the lower GluA3 and GluK4 mRNA levels in pregnant women and the higher GluN2D mRNA level in healthy but not in depressed pregnant women as compared to non-pregnant individuals. Using subunit specific antibodies, the GluK4, GluK5, GluN1, GluN2C and GluN2D subunit proteins were identified in the PBMCs. The results show expression of specific iGlu receptor subunit in the PBMCs and support the idea of physiology-driven changes of iGlu receptors subtypes in the immune cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. NMDA Receptors Regulate Genes Responsible for Major Immune Functions of Mononuclears in Human Peripheral Blood.

    PubMed

    Kuzmina, U Sh; Zainullina, L F; Sadovnikov, S V; Vakhitov, V A; Vakhitova, Yu V

    2018-06-19

    To determine the role of NMDA receptors in the functional regulation of immunocompetent cells, comparative assay was carried out for genes expressed in the mononuclears in peripheral blood of healthy persons under normal conditions and after blockade of these receptors. The genes, whose expression changed in response to blockade of NMDA receptors in mononuclears, encode the products involved in regulation of the major functions of immune cells, such as proliferation (IL4, VCAM1, and CDKN2A), apoptosis (BAX, MYC, CDKN2A, HSPB1, and CADD45A), activation (IL4R, IL4, VCAM1, and CDKN2A), and differentiation (IL4, VCAM1, and BAX).

  9. Increased Sensitivity of Estrogen Receptor Alpha Overexpressing Antral Follicles to Methoxychlor and Its Metabolites

    PubMed Central

    Paulose, Tessie; Hernández-Ochoa, Isabel; Basavarajappa, Mallikarjuna S.; Peretz, Jackye; Flaws, Jodi A.

    2011-01-01

    Methoxychlor (MXC), an organochlorine pesticide, and its metabolites, mono-hydroxy MXC (MOH) and bis-hydroxy MXC (HPTE) are known ovarian toxicants and can cause inhibition of antral follicle growth. Since these chemicals bind to estrogen receptor alpha (ESR1), we hypothesized that ovaries overexpressing ESR1 (ESR1 OE) would be more susceptible to toxicity induced by MXC and its metabolites because the chemicals can bind to more ESR1 in the antral follicles. We cultured antral follicles from controls and ESR1 OE mouse ovaries with either the vehicle dimethylsulfoxide (DMSO), MXC, MOH, or HPTE. The data show that at 96 h, the cultured antral follicles from ESR1 OE antral follicles are more susceptible to toxicity induced by MXC, MOH, and HPTE because low doses of these chemicals cause follicle growth inhibition in ESR1 OE mice but not in control mice. On comparing gene expression levels of nuclear receptors in the cultured antral follicles of ESR1 OE and control follicles, we found differential messenger RNA (mRNA) expression of Esr1, estrogen receptor beta (Esr2), androgen receptor (Ar), progesterone receptor (Pr), and aryl hydrocarbon receptor (Ahr) between the genotypes. We also analyzed mRNA levels of Cyp3a41a, the enzyme metabolizing MOH and HPTE, in the cultured follicles and found that Cyp3a41a was significantly lower in DMSO-treated ESR1 OE follicles compared with controls. In ESR1 OE livers, we found that Cyp3a41a levels were significantly lower compared with control livers. Collectively, these data suggest that MXC and its metabolites cause differential gene expression in ESR1 OE mice compared with controls. The results also suggest that the increased sensitivity of ESR1 OE mouse ovaries to toxicity induced by MXC and its metabolites is due to low clearance of the metabolites by the liver and ovary. PMID:21252393

  10. Up-regulation of proproliferative genes and the ligand/receptor pair placental growth factor and vascular endothelial growth factor receptor 1 in hepatitis C cirrhosis.

    PubMed

    Huang, Xiao X; McCaughan, Geoffrey W; Shackel, Nicholas A; Gorrell, Mark D

    2007-09-01

    Cirrhosis can lead to hepatocellular carcinoma (HCC). Non-diseased liver and hepatitis C virus (HCV)-associated cirrhosis with or without HCC were compared. Proliferation pathway genes, immune response genes and oncogenes were analysed by a quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunostaining. Real-time RT-PCR showed up-regulation of genes in HCV cirrhosis including the proliferation-associated genes bone morphogenetic protein 3 (BMP3), placental growth factor 3 (PGF3), vascular endothelial growth factor receptor 1 (VEGFR1) and soluble VEGFR1, the oncogene FYN, and the immune response-associated genes toll-like receptor 9 (TLR9) and natural killer cell transcript 4 (NK4). Expressions of TLR2 and the oncogenes B-cell CLL/lymphoma 9 (BCL9) and PIM2 were decreased in HCV cirrhosis. In addition, PIM2 and TLR2 were increased in HCV cirrhosis with HCC compared with HCV cirrhosis. The ligand/receptor pair PGF and VEGFR1 was intensely expressed by the portal tract vascular endothelium. VEGFR1 was expressed in reactive biliary epithelial structures in fibrotic septum and in some stellate cells and macrophages. PGF and VEGFR1 may have an important role in the pathogenesis of the neovascular response in cirrhosis.

  11. Lack of hormone binding in COS-7 cells expressing a mutated growth hormone receptor found in Laron dwarfism.

    PubMed Central

    Edery, M; Rozakis-Adcock, M; Goujon, L; Finidori, J; Lévi-Meyrueis, C; Paly, J; Djiane, J; Postel-Vinay, M C; Kelly, P A

    1993-01-01

    A single point mutation in the growth hormone (GH) receptor gene generating a Phe-->Ser substitution in the extracellular binding domain of the receptor has been identified in one family with Laron type dwarfism. The mutation was introduced by site-directed mutagenesis into cDNAs encoding the full-length rabbit GH receptor and the extracellular domain or binding protein (BP) of the human and rabbit GH receptor, and also in cDNAs encoding the full length and the extracellular domain of the related rabbit prolactin (PRL) receptor. All constructs were transiently expressed in COS-7 cells. Both wild type and mutant full-length rabbit GH and PRL receptors, as well as GH and prolactin BPs (wild type and mutant), were detected by Western blot in cell membranes and concentrated culture media, respectively. Immunofluorescence studies showed that wild type and mutant full-length GH receptors had the same cell surface and intracellular distribution and were expressed with comparable intensities. In contrast, all mutant forms (full-length receptors or BPs), completely lost their modify the synthesis ligand. These results clearly demonstrate that this point mutation (patients with Laron syndrome) does not modify the synthesis or the intracellular pathway of receptor proteins, but rather abolishes ability of the receptor or BP to bind GH and is thus responsible for the extreme GH resistance in these patients. Images PMID:8450064

  12. Expression of Angiotensin II Types 1 and 2 Receptors in Endometriotic Lesions.

    PubMed

    Nakao, Takehiro; Chishima, Fumihisa; Sugitani, Masahiko; Tsujimura, Ryusuke; Hayashi, Chuyu; Yamamoto, Tatsuo

    2017-01-01

    The aim of this study was to evaluate the gene and protein expression of angiotensin type (AT) 1, AT2 receptors in endometriotic lesions and its relation to prostaglandin (PG) synthases. Endometriosis samples were obtained from 32 patients with endometriotic cysts. Endometrial tissues were obtained during operations for benign gynecological conditions. The expression of the AT1 and AT2 receptor mRNA and that of PG-endoperoxide synthase 2 and microsomal PGE2 synthase-1 (mPGES-1) was examined by quantitative RT-PCR. Immunohistochemical staining was performed for these receptors. AT1 and AT2 receptor proteins were mostly located in endometrial glandular epithelium and some stromal cells. Immunoreactivity of the receptor proteins was observed in both the eutopic endometrium and endometriotic lesions. The AT1/AT2 ratio in endometriotic cysts (median 7.29, range 1.88-187.60) was significantly increased compared with that in the eutopic endometrium in the proliferative-phase in controls (median 1.01, range 0.37-2.09, p < 0.001). There was a relationship between the AT1 mRNA expression and that of mPGES-1 mRNA in the endometriotic cysts (r = 0.394089, p < 0.05). There was a significant relationship between the mRNA expression of the AT2 receptor and that of mPGES-1 in eutopic endometrium of non-endometriotic control (r = 0.610714, p < 0.05). Renin-angiotensin system may play an important role in the pathophysiology of endometriosis. © 2016 S. Karger AG, Basel.

  13. Modifying Expression Modes of Human Neurotensin Receptor Type 1 Alters Sensing Capabilities for Agonists in Yeast Signaling Biosensor.

    PubMed

    Hashi, Hiroki; Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko

    2018-04-01

    Neurotensin receptor type 1 (NTSR1), a member of the G-protein-coupled receptor (GPCR) family, is naturally activated by binding of a neurotensin peptide, leading to a variety of physiological effects. The budding yeast Saccharomyces cerevisiae is a proven host organism for assaying the agonistic activation of human GPCRs. Previous studies showed that yeast cells can functionally express human NTSR1 receptor, permitting the detection of neurotensin-promoted signaling using a ZsGreen fluorescent reporter gene. However, the fluorescence intensity (sensitivity) of NTSR1-expressing yeast cells is low compared to that of yeast cells expressing other human GPCRs (e.g., human somatostatin receptors). The present study sought to increase the sensitivity of the NTSR1-expressing yeast for use as a fluorescent biosensor, including modification of the expression of human NTSR1 in yeast. Changes in the transcription, translation, and transport of the receptor are attempted by altering the promoter, consensus Kozak-like sequence, and secretion signal sequences of the NTSR1-encoding gene. The resulting yeast cells exhibited increased sensitivity to exogenously added peptide. The cells are further engineered by using cell-surface display technology to ensure that the agonistic peptides are secreted and tethered to the yeast cell wall, yielding cells with enhanced NTSR1 activation. This yeast biosensor holds promise for the identification of agonists to treat NTSR1-related diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Prostaglandin F2alpha-F-prostanoid receptor signaling promotes neutrophil chemotaxis via chemokine (C-X-C motif) ligand 1 in endometrial adenocarcinoma.

    PubMed

    Wallace, Alison E; Sales, Kurt J; Catalano, Roberto D; Anderson, Richard A; Williams, Alistair R W; Wilson, Martin R; Schwarze, Jurgen; Wang, Hongwei; Rossi, Adriano G; Jabbour, Henry N

    2009-07-15

    The prostaglandin F(2alpha) (PGF(2alpha)) receptor (FP) is elevated in endometrial adenocarcinoma. This study found that PGF(2alpha) signaling via FP regulates expression of chemokine (C-X-C motif) ligand 1 (CXCL1) in endometrial adenocarcinoma cells. Expression of CXCL1 and its receptor, CXCR2, are elevated in cancer tissue compared with normal endometrium and localized to glandular epithelium, endothelium, and stroma. Treatment of Ishikawa cells stably transfected with the FP receptor (FPS cells) with 100 nmol/L PGF(2alpha) increased CXCL1 promoter activity, mRNA, and protein expression, and these effects were abolished by cotreatment of cells with FP antagonist or chemical inhibitors of Gq, epidermal growth factor receptor, and extracellular signal-regulated kinase. Similarly, CXCL1 was elevated in response to 100 nmol/L PGF(2alpha) in endometrial adenocarcinoma explant tissue. CXCL1 is a potent neutrophil chemoattractant. The expression of CXCR2 colocalized to neutrophils in endometrial adenocarcinoma and increased neutrophils were present in endometrial adenocarcinoma compared with normal endometrium. Conditioned media from PGF(2alpha)-treated FPS cells stimulated neutrophil chemotaxis, which could be abolished by CXCL1 protein immunoneutralization of the conditioned media or antagonism of CXCR2. Finally, xenograft tumors in nude mice arising from inoculation with FPS cells showed increased neutrophil infiltration compared with tumors arising from wild-type cells or following treatment of mice bearing FPS tumors with CXCL1-neutralizing antibody. In conclusion, our results show a novel PGF(2alpha)-FP pathway that may regulate the inflammatory microenvironment in endometrial adenocarcinoma via neutrophil chemotaxis.

  15. F104S c-Mpl responds to a transmembrane domain-binding thrombopoietin receptor agonist: proof of concept that selected receptor mutations in congenital amegakaryocytic thrombocytopenia can be stimulated with alternative thrombopoietic agents.

    PubMed

    Fox, Norma E; Lim, Jihyang; Chen, Rose; Geddis, Amy E

    2010-05-01

    To determine whether specific c-Mpl mutations might respond to thrombopoietin receptor agonists. We created cell line models of type II c-Mpl mutations identified in congenital amegakaryocytic thrombocytopenia. We selected F104S c-Mpl for further study because it exhibited surface expression of the receptor. We measured proliferation of cell lines expressing wild-type or F104S c-Mpl in response to thrombopoietin receptor agonists targeting the extracellular (m-AMP4) or transmembrane (LGD-4665) domains of the receptor by 1-methyltetrazole-5-thiol assay. We measured thrombopoietin binding to the mutant receptor using an in vitro thrombopoietin uptake assay and identified F104 as a potentially critical residue for the interaction between the receptor and its ligand by aligning thrombopoietin and erythropoietin receptors from multiple species. Cells expressing F104S c-Mpl proliferated in response to LGD-4665, but not thrombopoietin or m-AMP4. Compared to thrombopoietin, LGD-4665 stimulates signaling with delayed kinetics in both wild-type and F104S c-Mpl-expressing cells. Although F104S c-Mpl is expressed on the cell surface in our BaF3 cell line model, the mutant receptor does not bind thrombopoietin. Comparison to the erythropoietin receptor suggests that F104 engages in hydrogen-bonding interactions that are critical for binding to thrombopoietin. These findings suggest that a small subset of patients with congenital amegakaryocytic thrombocytopenia might respond to treatment with thrombopoietin receptor agonists, but that responsiveness will depend on the type of mutation and agonist used. We postulate that F104 is critical for thrombopoietin binding. The kinetics of signaling in response to a transmembrane domain-binding agonist are delayed in comparison to thrombopoietin. 2010 ISEH Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  16. Molecular Changes in Children with Heart Failure Undergoing Left Ventricular Assist Device Therapy.

    PubMed

    Medina, Elizabeth; Sucharov, Carmen C; Nelson, Penny; Miyamoto, Shelley D; Stauffer, Brian L

    2017-03-01

    To determine whether left ventricular assist device (LVAD) treatment in children with heart failure would result in the modification of molecular pathways involved in heart failure pathophysiology. Forty-seven explanted hearts from children were studied (16 nonfailing control, 20 failing, and 11 failing post-LVAD implantation [F-LVAD]). Protein expression and phosphorylation states were determined by receptor binding assays and Western blots. mRNA expression was measured with real-time quantitative polymerase chain reaction. To evaluate for interactions and identify correlations, 2-way ANOVA and regression analysis were performed. Treatment with LVAD resulted in recovery of total β-adrenergic receptor expression and β 1 -adrenergic receptor (β 1 -AR) in failing hearts to normal levels (β-adrenergic receptor expression : 67.2 ± 11.5 fmol/mg failing vs 99.5 ± 27.7 fmol/mg nonfailing, 104 ± 38.7 fmol/mg F-LVAD, P ≤ .01; β 1 -AR: 52.2 ± 10.3 fmol/mg failing vs 83.0 ± 23 fmol/mg non-failing, 76.5 ± 32.1 fmol/mg F-LVAD P ≤ .03). The high levels of G protein-coupled receptor kinase-2 were returned to nonfailing levels after LVAD treatment (5.6 ± 9.0 failing vs 1.0 ± 0.493 nonfailing, 1.0 ± 1.3 F-LVAD). Interestingly, β 2 -adrenergic receptor expression was significantly greater in F-LVAD (27.5 ± 12; P < .005) hearts compared with nonfailing (16.4 ± 6.1) and failing (15.1 ± 4.2) hearts. Phospholamban phosphorylation at serine 16 was significantly greater in F-LVAD (7.7 ± 11.7) hearts compared with nonfailing (1.0 ± 1.2, P = .02) and failing (0.8 ± 1.0, P = .01) hearts. Also, atrial natriuretic factor (0.6 ± 0.8) and brain natriuretic peptide (0.1 ± 0.1) expression in F-LVAD was significantly lower compared with failing hearts (2.8 ± 3.6, P = .01 and 0.6 ± 0.7, P = .02). LVAD treatment in children with heart failure results in reversal of several pathologic myocellular processes, and G protein-coupled receptor kinase-2 may regulate β 1 -AR but not β 2 -adrenergic receptor expression in children with heart failure. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Gene expression information improves reliability of receptor status in breast cancer patients

    PubMed Central

    Kenn, Michael; Schlangen, Karin; Castillo-Tong, Dan Cacsire; Singer, Christian F.; Cibena, Michael; Koelbl, Heinz; Schreiner, Wolfgang

    2017-01-01

    Immunohistochemical (IHC) determination of receptor status in breast cancer patients is frequently inaccurate. Since it directs the choice of systemic therapy, it is essential to increase its reliability. We increase the validity of IHC receptor expression by additionally considering gene expression (GE) measurements. Crisp therapeutic decisions are based on IHC estimates, even if they are borderline reliable. We further improve decision quality by a responsibility function, defining a critical domain for gene expression. Refined normalization is devised to file any newly diagnosed patient into existing data bases. Our approach renders receptor estimates more reliable by identifying patients with questionable receptor status. The approach is also more efficient since the rate of conclusive samples is increased. We have curated and evaluated gene expression data, together with clinical information, from 2880 breast cancer patients. Combining IHC with gene expression information yields a method more reliable and also more efficient as compared to common practice up to now. Several types of possibly suboptimal treatment allocations, based on IHC receptor status alone, are enumerated. A ‘therapy allocation check’ identifies patients possibly miss-classified. Estrogen: false negative 8%, false positive 6%. Progesterone: false negative 14%, false positive 11%. HER2: false negative 2%, false positive 50%. Possible implications are discussed. We propose an ‘expression look-up-plot’, allowing for a significant potential to improve the quality of precision medicine. Methods are developed and exemplified here for breast cancer patients, but they may readily be transferred to diagnostic data relevant for therapeutic decisions in other fields of oncology. PMID:29100391

  18. Expression of fatty acid sensing G-protein coupled receptors in peripartal Holstein cows.

    PubMed

    Agrawal, Alea; Alharthi, Abdulrahman; Vailati-Riboni, Mario; Zhou, Zheng; Loor, Juan J

    2017-01-01

    G-protein coupled receptors (GPCR), also referred as Free Fatty Acid Receptors (FFAR), are widely studied within human medicine as drug targets for metabolic disorders. To combat metabolic disorders prevalent in dairy cows during the transition period, which co-occur with negative energy balance and changes to lipid and glucose metabolism, it may be helpful to identify locations and roles of FFAR and other members of the GPCR family in bovine tissues. Quantitative RT-PCR (qPCR) of subcutaneous adipose, liver, and PMNL samples during the transition period (-10, +7, and +20 or +30 d) were used for expression profiling of medium- (MCFA) and long-chain fatty acid (LCFA) receptors GPR120 and GPR40 , MCFA receptor GPR84 , and niacin receptor HCAR2/3 . Adipose samples were obtained from cows with either high (HI; BCS ≥ 3.75) or low (LO; BCS ≤ 3.25) body condition score (BCS) to examine whether FFAR expression is correlated with this indicator of health and body reserves. Supplementation of rumen-protected methionine (MET), which may improve immune function and production postpartum, was also compared with unsupplemented control (CON) cows for liver and blood polymorphonuclear leukocytes (PMNL) samples. In adipose tissue, GPR84 and GPR120 were differentially expressed over time, while GPR40 was not expressed; in PMNL, GPR40 was differentially expressed over time and between MET vs. CON, GPR84 expression differed only between dietary groups, and GPR120 was not expressed; in liver, GPCR were either not expressed or barely detectable. The data indicate that there is likely not a direct role in liver for the selected GPCR during the transition period, but they do play variable roles in adipose and PMN. In future, these receptors may prove useful targets and/or markers for peripartal metabolism and immunity.

  19. Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits

    PubMed Central

    Kononenko, Olga; Galatenko, Vladimir; Andersson, Malin; Bazov, Igor; Watanabe, Hiroyuki; Zhou, Xing Wu; Iatsyshyna, Anna; Mityakina, Irina; Yakovleva, Tatiana; Sarkisyan, Daniil; Ponomarev, Igor; Krishtal, Oleg; Marklund, Niklas; Tonevitsky, Alex; Adkins, DeAnna L.; Bakalkin, Georgy

    2017-01-01

    Regulation of the formation and rewiring of neural circuits by neuropeptides may require coordinated production of these signaling molecules and their receptors that may be established at the transcriptional level. Here, we address this hypothesis by comparing absolute expression levels of opioid peptides with their receptors, the largest neuropeptide family, and by characterizing coexpression (transcriptionally coordinated) patterns of these genes. We demonstrated that expression patterns of opioid genes highly correlate within and across functionally and anatomically different areas. Opioid peptide genes, compared with their receptor genes, are transcribed at much greater absolute levels, which suggests formation of a neuropeptide cloud that covers the receptor-expressed circuits. Surprisingly, we found that both expression levels and the proportion of opioid receptors are strongly lateralized in the spinal cord, interregional coexpression patterns are side specific, and intraregional coexpression profiles are affected differently by left- and right-side unilateral body injury. We propose that opioid genes are regulated as interconnected components of the same molecular system distributed between distinct anatomic regions. The striking feature of this system is its asymmetric coexpression patterns, which suggest side-specific regulation of selective neural circuits by opioid neurohormones.—Kononenko, O., Galatenko, V., Andersson, M., Bazov, I., Watanabe, H., Zhou, X. W., Iatsyshyna, A., Mityakina, I., Yakovleva, T., Sarkisyan, D., Ponomarev, I., Krishtal, O., Marklund, N., Tonevitsky, A., Adkins, D. L., Bakalkin, G. Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits. PMID:28122917

  20. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching

    PubMed Central

    Suchting, Steven; Freitas, Catarina; le Noble, Ferdinand; Benedito, Rui; Bréant, Christiane; Duarte, Antonio; Eichmann, Anne

    2007-01-01

    Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using γ-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4+/− retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4+/− retinas, dll4+/− vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a “brake” on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development. PMID:17296941

  1. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching.

    PubMed

    Suchting, Steven; Freitas, Catarina; le Noble, Ferdinand; Benedito, Rui; Bréant, Christiane; Duarte, Antonio; Eichmann, Anne

    2007-02-27

    Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using gamma-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4(+/-) retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4(+/-) retinas, dll4(+/-) vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a "brake" on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development.

  2. A receptor tyrosine kinase, UFO/Axl, and other genes isolated by a modified differential display PCR are overexpressed in metastatic prostatic carcinoma cell line DU145.

    PubMed

    Jacob, A N; Kalapurakal, J; Davidson, W R; Kandpal, G; Dunson, N; Prashar, Y; Kandpal, R P

    1999-01-01

    We have used a modified differential display PCR protocol for isolating 3' restriction fragments of cDNAs specifically expressed or overexpressed in metastatic prostate carcinoma cell line DU145. Several cDNA fragments were identified that matched to milk fat globule protein, UFO/Axl, a receptor tyrosine kinase, human homologue of a Xenopus maternal transcript, laminin and laminin receptor, human carcinoma-associated antigen, and some expressed sequence tags. The transcript for milk fat globule protein, a marker protein shown to be overexpressed in breast tumors, was elevated in DU145 cells. The expression of UFO/Axl, a receptor tyrosine kinase, was considerably higher in DU145 cells as compared to normal prostate cells and prostatic carcinoma cell line PC-3. The overexpression of UFO oncogene in DU145 cells is discussed in the context of prostate cancer metastasis.

  3. Predominant mucosal expression of 5-HT4(+h) receptor splice variants in pig stomach and colon

    PubMed Central

    Priem, Evelien KV; De Maeyer, Joris H; Vandewoestyne, Mado; Deforce, Dieter; Lefebvre, Romain A

    2013-01-01

    AIM: To investigate cellular 5-HT4(-h/+h) receptor distribution, particularly in the epithelial layer, by laser microdissection and polymerase chain reaction (PCR) in porcine gastrointestinal (GI) tissues. METHODS: A stepwise approach was used to evaluate RNA quality and to study cell-specific 5-HT4 receptor mRNA expression in the porcine gastric fundus and colon descendens. After freezing, staining and laser microdissection and pressure catapulting (LMPC), RNA quality was evaluated by the Experion automated electrophoresis system. 5-HT4 receptor and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expressions were examined by endpoint reverse transcription (RT)-PCR in mucosal and muscle-myenteric plexus (MMP) tissue fractions, in mucosal and MMP parts of hematoxylin and eosin (HE) stained tissue sections and in microdissected patches of the epithelial and circular smooth muscle cell layer in these sections. Pig gastric fundus tissue sections were also stained immunohistochemically (IHC) for enterochromaffin cells (EC cells; MAB352); these cells were isolated by LMPC and examined by endpoint RT-PCR. RESULTS: After HE staining, the epithelial and circular smooth muscle cell layer of pig colon descendens and the epithelial cell layer of gastric fundus were identified morphologically and isolated by LMPC. EC cells of pig gastric fundus were successfully stained by IHC and isolated by LMPC. Freezing, HE and IHC staining, and LMPC had no influence on RNA quality. 5-HT4 receptor and GAPDH mRNA expressions were detected in mucosa and MMP tissue fractions, and in mucosal and MMP parts of HE stained tissue sections of pig colon descendens and gastric fundus. In the mucosa tissue fractions of both GI regions, the expression of h-exon containing receptor [5-HT4(+h) receptor] mRNA was significantly higher (P < 0.01) compared to 5-HT4(-h) receptor expression, and a similar trend was obtained in the mucosal part of HE stained tissue sections. Large microdissected patches of the epithelial and circular smooth muscle cell layer of pig colon descendens and of the epithelial cell layer of pig gastric fundus, also showed 5-HT4 receptor and GAPDH mRNA expression. No 5-HT4 receptor mRNA expression was detected in gastric LMPC-isolated EC cells from IHC stained tissues, which cells were positive for GAPDH. CONCLUSION: Porcine GI mucosa predominantly expresses 5-HT4(+h) receptor splice variants, suggesting their contribution to the 5-HT4 receptor-mediated mucosal effects of 5-HT. PMID:23840113

  4. Intraspecific variation in estrogen receptor alpha and the expression of male sociosexual behavior in two populations of prairie voles.

    PubMed

    Cushing, Bruce S; Razzoli, Maria; Murphy, Anne Z; Epperson, Pamela M; Le, Wei-Wei; Hoffman, Gloria E

    2004-08-06

    Estrogen (E) regulates a variety of male sociosexual behaviors. We hypothesize that there is a relationship between the distribution of estrogen receptor alpha (ERalpha) and the degree of male social behavior. To test this hypothesis, ERalpha immunoreactivity (IR) was compared in prairie voles (Microtus ochrogaster) from Illinois (IL), which are highly social, and Kansas (KN), which are less social. The expression of androgen receptors (AR) in males also was compared between populations. The expression of ERalpha and AR were compared in brains from KN and IL males and females using immunocytochemistry (ICC). There were significant intrapopulational differences, with males expressing less ERalpha-IR than females in the medial preoptic area, ventromedial nucleus, ventrolateral portion of the hypothalamus, and bed nucleus of the stria terminalis (BST). IL males also displayed less ERalpha-IR in the medial amygdala (MeA) than IL females. While IL males expressed significantly less ERalpha-IR in the BST and MeA than KN males, there was no difference in AR-IR. Differences in the pattern of ERalpha-IR between KN and IL males were behaviorally relevant, as low levels of testosterone (T) were more effective in restoring sexual activity in castrated KN males than IL males. The lack of difference in AR combined with lower expression of ERalpha-IR in IL males suggests that behavioral differences in response to T are associated with aromatization of T to E and that reduced sensitivity to E may facilitate prosocial behavior in males.

  5. UDP-Glucuronosyltransferase Expression in Mouse Liver Is Increased in Obesity- and Fasting-Induced Steatosis

    PubMed Central

    Xu, Jialin; Kulkarni, Supriya R.; Li, Liya

    2012-01-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lepob/ob (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance. PMID:22031624

  6. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis.

    PubMed

    Xu, Jialin; Kulkarni, Supriya R; Li, Liya; Slitt, Angela L

    2012-02-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lep(ob/ob) (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance.

  7. Upregulated Expression of Transient Receptor Potential Cation Channel Subfamily V Receptors in Mucosae of Patients with Oral Squamous Cell Carcinoma and Patients with a History of Alcohol Consumption or Smoking.

    PubMed

    Sakakibara, Akiko; Sakakibara, Shunsuke; Kusumoto, Junya; Takeda, Daisuke; Hasegawa, Takumi; Akashi, Masaya; Minamikawa, Tsutomu; Hashikawa, Kazunobu; Terashi, Hiroto; Komori, Takahide

    2017-01-01

    Transient receptor potential cation channel (subfamily V, members 1-4) (TRPV1-4) are expressed in skin and neurons and activated by external stimuli in normal mucosae of all oral cavity sites. The oral cavity is exposed to various stimuli, including temperature, mechanical stimuli, chemical substances, and changes in pH, and, notably, the risk factors for oncogenic transformation in oral squamous epithelium are the same as the external stimuli received by TRPV1-4 receptors. Hence, we examined the relationship between oral squamous cell carcinoma (SCC) and TRPV1-4 expression. Oral SCC patients (n = 37) who underwent surgical resection were included in this study. We investigated the expression of TRPV1-4 by immunohistochemical staining and quantification of TRPV1-4 mRNA in human oral mucosa. In addition, we compared the TRPV1-4 levels in mucosa from patients with SCC to those in normal oral mucosa. The receptors were expressed in oral mucosa at all sites (tongue, buccal mucosa, gingiva, and oral floor) and the expression was stronger in epithelia from patients with SCC than in normal epithelia. Furthermore, alcohol consumption and tobacco use were strongly associated with the occurrence of oral cancer and were found to have a remarkable influence on TRPV1-4 receptor expression in normal oral mucosa. In particular, patients with a history of alcohol consumption demonstrated significantly higher expression levels. Various external stimuli may influence the behavior of cancer cells. Overexpression of TRPV1-4 is likely to be a factor in enhanced sensitivity to external stimuli. These findings could contribute to the establishment of novel strategies for cancer therapy or prevention.

  8. Molecular Biology In Young Women With Breast Cancer: From Tumor Gene Expression To DNA Mutations.

    PubMed

    Gómez-Flores-Ramos, Liliana; Castro-Sánchez, Andrea; Peña-Curiel, Omar; Mohar-Betancourt, Alejandro

    2017-01-01

    Young women with breast cancer (YWBC) represent roughly 15% of breast cancer (BC) cases in Latin America and other developing regions. Breast tumors occurring at an early age are more aggressive and have an overall worse prognosis compared to breast tumors in postmenopausal women. The expression of relevant proliferation biomarkers such as endocrine receptors and human epidermal growth factor receptor 2 appears to be unique in YWBC. Moreover, histopathological, molecular, genetic, and genomic studies have shown that YWBC exhibit a higher frequency of aggressive subtypes, differential tumor gene expression, increased genetic susceptibility, and specific genomic signatures, compared to older women with BC. This article reviews the current knowledge on tumor biology and genomic signatures in YWBC.

  9. Expression and associations of TRAF1, BMI-1, ALDH1, and Lin28B in oral squamous cell carcinoma.

    PubMed

    Wu, Tian-Fu; Li, Yi-Cun; Ma, Si-Rui; Bing-Liu; Zhang, Wen-Feng; Sun, Zhi-Jun

    2017-04-01

    Tumor necrosis factor receptor-associated factor 1, an adaptor protein of tumor necrosis factor 2, is involved in classical nuclear factor (NF)-κB activation and lymphocyte recruitment. However, less is known about the expression and association of tumor necrosis factor receptor-associated factor 1 with cancer stem cell markers in oral squamous cell carcinoma. This study aimed to investigate the expression of tumor necrosis factor receptor-associated factor 1 and stem cell characteristic markers (lin28 homolog B, B cell-specific Moloney murine leukemia virus integration site 1, and aldehyde dehydrogenase 1) in oral squamous cell carcinoma and analyze their relations. Paraffin-embedded tissues of 78 oral squamous cell carcinomas, 39 normal oral mucosa, and 12 oral dysplasia tissues were employed in tissue microarrays, and the expression of tumor necrosis factor receptor-associated factor 1, B cell-specific Moloney murine leukemia virus integration site 1, aldehyde dehydrogenase 1, and lin28 homolog B was measured by immunohistostaining and digital pathological analysis. The expression of tumor necrosis factor receptor-associated factor 1 was higher in the oral squamous cell carcinoma group as compared with the expression in the oral mucosa (p < 0.01) and oral dysplasia (p < 0.001) groups. In addition, the expression of tumor necrosis factor receptor-associated factor 1 was associated with those of B cell-specific Moloney murine leukemia virus integration site 1, aldehyde dehydrogenase 1, and lin28 homolog B (p = 0.032, r 2  = 0.109; p < 0.0001, r 2  = 0.64; and p < 0.001, r 2  = 0.16) in oral squamous cell carcinoma. The patient survival rate was lower in the highly expressed tumor necrosis factor receptor-associated factor 1 group, although the difference was not significant. The clustering analysis showed that tumor necrosis factor receptor-associated factor 1 was most related to aldehyde dehydrogenase 1. These findings suggest that tumor necrosis factor receptor-associated factor 1 has potential direct/indirect regulations with the cancer stem cell markers in oral squamous cell carcinoma, which may help in further analysis of the cancer stem cell characteristics.

  10. Insulin receptor isoforms A and B as well as insulin receptor substrates-1 and -2 are differentially expressed in prostate cancer.

    PubMed

    Heni, Martin; Hennenlotter, Jörg; Scharpf, Marcus; Lutz, Stefan Z; Schwentner, Christian; Todenhöfer, Tilman; Schilling, David; Kühs, Ursula; Gerber, Valentina; Machicao, Fausto; Staiger, Harald; Häring, Hans-Ulrich; Stenzl, Arnulf

    2012-01-01

    In different cancers types, insulin receptor isoform composition or insulin receptor substrate (IRS) isoforms are different to healthy tissue. This may be a molecular link to increased cancer risk in diabetes and obesity. Since this is yet unclear for prostate cancer, we investigated IR isoform composition and IRS balance in prostate cancer compared to benign and tumor adjacent benign prostate tissue and brought this into relation to cell proliferation. We studied 23 benign prostate samples from radical cystectomy or benign prostatic hyperplasia surgery, 30 samples from benign tissue directly adjacent to prostate cancer foci and 35 cancer samples from different patients. RNA expression levels for insulin receptor isoforms A and B, IRS-1, IRS-2, and IGF-1 receptor were assessed by quantitative real-time RT-PCR. In addition, RNA- and protein expression of the cell cycle regulator p27(Kip1) was quantified by real-time RT-PCR and immunohistochemistry. Insulin receptor isoform A to B ratio was significantly higher in cancer as well as in tumor adjacent benign prostate tissue compared to purely benign prostates (p<0.05). IRS-1 to IRS-2 ratios were lower in malignant than in benign prostatic tissue (p<0.05). These altered ratios both in cancer and adjacent tissue were significantly associated with reduced p27(Kip1) content (p<0.02). Interestingly, IGF-1 receptor levels were significantly lower in patients with type 2 diabetes (p = 0.0019). We found significant differences in the insulin signaling cascade between benign prostate tissue and prostate cancer. Histological benign tissue adjacent to cancer showed expression patterns similar to the malignancies. Our findings suggest a role of the insulin signaling pathway in prostate cancer and surrounding tissue and can hence be relevant for both novel diagnostic and therapeutic approaches in this malignancy.

  11. High expression of long non-coding RNA MALAT1 in breast cancer is associated with poor relapse-free survival.

    PubMed

    Wang, Zhanwei; Katsaros, Dionyssios; Biglia, Nicoletta; Shen, Yi; Fu, Yuanyuan; Loo, Lenora W M; Jia, Wei; Obata, Yuki; Yu, Herbert

    2018-05-29

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been identified as a prognostic marker for the metastasis of early-stage non-small cell lung cancer (NSCLCs). We studied MALAT1 expression in breast cancer in relation to disease features and patient survival. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to measure MALAT1 expression in tumor samples of 509 breast cancer patients. Hazards ratios (HRs) and 95% confidence intervals (CIs) were calculated to assess the association between MALAT1 expression and breast cancer survival using the Cox proportional hazards regression model, and the analysis was adjusted for age at surgery, tumor grade, disease stage, and hormone receptor status. Meta-analysis of multiple microarray datasets from online databases and our own study was performed to evaluate the association of MALAT1 with breast cancer survival. Patients with low-grade or ER-positive tumors had higher expression of MALAT1 compared to those with high-grade (p = 0.013) or ER-negative (p = 0.0002) tumors. Patients with PR-positive tumors also had higher MALAT1 expression than those with PR-negative tumors (p < 0.0001). In patients with positive hormone receptors or low tumor grade, tumors with high MALAT1 expression were more likely to recur. Survival analysis showed that patients with high expression of MALAT1 had a twofold increase in risk of relapse (p = 0.0083) compared to those with low expression. This association remained significant after adjustment for age at surgery, disease stage, tumor grade, and hormone receptor status. Meta-analysis showed that high MALAT1 expression was associated with poor relapse-free survival in patients with hormone receptor-positive tumors (HR 1.44, 95% CI 1.08-1.92). High expression of lncRNA MALAT1 is associated with breast cancer relapse and may play a role in tumor progression.

  12. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet.

    PubMed

    Balbaa, Mahmoud; El-Zeftawy, Marwa; Ghareeb, Doaa; Taha, Nabil; Mandour, Abdel Wahab

    2016-01-01

    The black cumin (Nigella sativa) "NS" or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO) in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride) and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling.

  13. Sex and seasonal differences in mRNA expression of estrogen receptor α (ESR1) in red-sided garter snakes (Thamnophis sirtalis parietalis).

    PubMed

    Ashton, Sydney E; Vernasco, Ben J; Moore, Ignacio T; Parker, M Rockwell

    2018-05-25

    Estrogens are important regulators of reproductive physiology including sexual signal expression and vitellogenesis. For the regulation to occur, the hormone must bind and activate receptors in target tissues, and expression of the receptors can vary by sex and/or season. By simultaneously comparing circulating hormone levels with receptor expression, a more complete understanding of hormone action can be gained. Our study species, the red-sided garter snake (Thamnophis sirtalis parietalis), provides an excellent opportunity to study the interaction between sex steroid hormones and receptor expression in addition to sexual dimorphism and seasonality. During the spring mating season, male garter snakes rely exclusively on the female's skin-based, estrogen-dependent sex pheromone to direct courtship. Males can be stimulated to produce this sexual attractiveness pheromone by treatment with estradiol (E 2 ), which also induces male vitellogenesis. Estrogen receptors (ESRs) are required to transduce the effects of estrogens, thus we used quantitative RT-PCR to analyze expression of ESR alpha (ERα; gene ESR1) mRNA in the skin and liver of wild caught male and female garter snakes across simulated spring and fall conditions in the laboratory. While ESR1 was present in the skin of both sexes, there were no sex or seasonal differences in expression levels. Liver expression of ESR1, however, was sexually dimorphic, with females showing greatest expression in fall when circulating E 2 concentrations were lowest. There were no statistically significant correlations between E 2 and ESR1 expression. Our data suggest that the skin of both sexes is sensitive to estrogen signaling and thus the production of sex pheromone is dependent on bioavailable levels of E 2 . Female expression of ESR1 in the liver may increase in the fall to prime energy storage mechanisms required for vitellogenesis the following year. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Interleukin 31 mediates MAP kinase and STAT1/3 activation in intestinal epithelial cells and its expression is upregulated in inflammatory bowel disease

    PubMed Central

    Dambacher, Julia; Beigel, Florian; Seiderer, Julia; Haller, Dirk; Göke, Burkhard; Auernhammer, Christoph J; Brand, Stephan

    2007-01-01

    Background/aim Interleukin 31 (IL31), primarily expressed in activated lymphocytes, signals through a heterodimeric receptor complex consisting of the IL31 receptor alpha (IL31Rα) and the oncostatin M receptor (OSMR). The aim of this study was to analyse IL31 receptor expression, signal transduction, and specific biological functions of this cytokine system in intestinal inflammation. Methods Expression studies were performed by RT‐PCR, quantitative PCR, western blotting, and immunohistochemistry. Signal transduction was analysed by western blotting. Cell proliferation was measured by MTS assays, cell migration by restitution assays. Results Colorectal cancer derived intestinal epithelial cell (IEC) lines express both IL31 receptor subunits, while their expression in unstimulated primary murine IEC was low. LPS and the proinflammatory cytokines TNF‐α, IL1β, IFN‐γ, and sodium butyrate stimulation increased IL31, IL31Rα, and OSMR mRNA expression, while IL31 itself enhanced IL8 expression in IEC. IL31 mediates ERK‐1/2, Akt, STAT1, and STAT3 activation in IEC resulting in enhanced IEC migration. However, at low cell density, IL31 had significant antiproliferative capacities (p<0.005). IL31 mRNA expression was not increased in the TNFΔARE mouse model of ileitis but in inflamed colonic lesions compared to non‐inflamed tissue in patients with Crohn's disease (CD; average 2.4‐fold increase) and in patients with ulcerative colitis (UC; average 2.6‐fold increase) and correlated with the IL‐8 expression in these lesions (r = 0.564 for CD; r = 0.650 for UC; total number of biopsies analysed: n = 88). Conclusion IEC express the functional IL31 receptor complex. IL31 modulates cell proliferation and migration suggesting a role in the regulation of intestinal barrier function particularly in intestinal inflammation. PMID:17449633

  15. [Impacts on urodynamic parameters and the protein expressions of M2 and M3 receptors of detrusor in the rats of detrusor hyperreflexia treated with ginger-salt-isolated moxibustion at "Shenque" (CV 8)].

    PubMed

    Liu, Yi; Wang, Xuerui; Li, Tianran; Lin, Liting; Shi, Guangxia; Fu, Yuanbo; Liu, Cunzhi

    2017-04-12

    To discuss the effects on detrusor hyperreflexia treated with ginger-salt-isolated moxibustion at "Shenque" (CV 8) and its mechanism. Thirty female adult SD rats were selected. The model of detrusor hyperreflexia was prepared with complete spinal transection at T 9 , of which, 20 rats were randomized into a model group (10 rats) and a moxibustion group (10 rats). A sham-operation group (10 rats) was set up for sham-spinal transection. In the moxibustion group, when urine incontinence occurred (about in 2 weeks of modeling), the ginger-salt-isolated moxibustion at "Shenque" (CV 8) was given, 3 moxa cones each time, once a day, continuously for 7 days. After treatment, in each group, the urodynamic parameters were determined, after which, the bladder detrusor was collected. Western blot was used to determine the protein expressions of M2 and M3 receptors. Compared with the sham-operation group, the micturition interval was shortened apparently ( P <0.01); the maximal bladder pressure was increased apparently ( P <0.01); the protein expression of M2 receptor in the detrusor was increased significantly ( P <0.05) and that of M3 receptor had no apparent change ( P >0.05) in the rats of the model group. Compared with the model group, the micturition interval was longer apparently ( P <0.01), the maximal bladder pressure was reduced apparently ( P <0.01), the protein expression of M2 receptor in the detrusor was reduced significantly ( P <0.05) and that of M3 receptor had no apparent change ( P >0.05) in the rats of the moxibustion group.Compared with the sham-operation group, the results of the above indicators were not different significantly in the moxibustion group (all P >0.05). The ginger-salt-isolated moxibustion at "Shenque" (CV 8) suppresses the overactive bladder in the rat with spinal transection and its effect mechanism is possibly relevant with reducing the protein expression of detrusor M2 and inhibiting the excessive contraction of the detrusor.

  16. ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor), Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile

    PubMed Central

    Harris, Rebecca Louise; van den Berg, Carmen Wilma; Bowen, Derrick John

    2012-01-01

    Background. The asialoglycoprotein receptor (ASGPR) is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2), encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR), expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver. PMID:22919488

  17. Expression of nuclear receptor interacting proteins TIF-1, SUG-1, receptor interacting protein 140, and corepressor SMRT in tamoxifen-resistant breast cancer.

    PubMed

    Chan, C M; Lykkesfeldt, A E; Parker, M G; Dowsett, M

    1999-11-01

    Regulation of gene transcription as a consequence of steroid receptor-DNA interaction is mediated via nuclear receptor interacting proteins (RIPs), including coactivator or corepressor proteins, which interact with both the receptor and components of the basic transcriptional unit and vary between cell types. The aim of this study was to test the hypothesis that resistance of some breast carcinomas to tamoxifen was associated with inappropriate expression of some of these RIPs. Using Northern analysis, we observed no significant difference between the amount of either TIF-1 or SUG-1 mRNA expressed in parental MCF-7 and MCF-7 tamoxifen-resistant cell lines. However, the expression of RIP140 mRNA was lower in the resistant cell line and in the presence of estradiol, the level of RIP140 mRNA was higher in the resistant cells but not in the parental cells. In a cohort of 19 tamoxifen-resistant breast tumor samples, there was no significant difference in the level of the RIP140 and TIF-1 and corepressor SMRT mRNA compared with tamoxifen-treated tumors (n = 6) or untreated tumors (n = 21). However, SUG-1 mRNA was lower in resistant breast tumors. These data provide no support for increased expression of these RIPs or decreased expression of corepressor SMRT for being a mechanism for resistance of breast tumors to tamoxifen.

  18. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma: immunohistochemical and tissue microarray analysis.

    PubMed

    Liu, Zhuofu; Wang, Jingjing; Wang, Huan; Wang, Dehui; Hu, Li; Liu, Quan; Sun, Xicai

    2015-01-01

    This work demonstrated that juvenile nasopharyngeal angiofibromas (JNAs) express high levels of hormone receptors and vascular endothelial growth factor (VEGF) compared with normal nasal mucosa. The interaction between hormone receptors and VEGF may be involved in the initiation and growth of JNA. JNA is a rare benign tumor that occurs almost exclusively in male adolescents. Although generally regarded as a hormone-dependent tumor, this has not been proven in previous studies. The aim of this study was to investigate the role of hormone receptors in JNA and the relationship with clinical characteristics. Standard immunohistochemical microarray analysis was performed on 70 JNA samples and 10 turbinate tissue samples. Specific antibodies for androgen receptor (AR), estrogen receptor-α (ER-α), estrogen receptor-β (ER-β), progesterone receptor (PR), and VEGF were examined, and the relationships of receptor expression with age, tumor stage, and bleeding were evaluated. RESULTS showed that JNA expressed ER-α (92.9%), ER-β (91.4%), AR (65.7%), PR (12.8%), and VEGF (95.7%) at different levels. High level of VEGF was linked to elevated ER-α and ER-β. There was no significant relationship between hormonal receptors and age at diagnosis, tumor stage or bleeding. However, overexpression of ER-α was found to be an indicator of poor prognosis (p = 0.031).

  19. Effect of hyperglycaemia on muscarinic M3 receptor expression and secretory sensitivity to cholinergic receptor activation in islets.

    PubMed

    Hauge-Evans, A C; Reers, C; Kerby, A; Franklin, Z; Amisten, S; King, A J; Hassan, Z; Vilches-Flores, A; Tippu, Z; Persaud, S J; Jones, P M

    2014-10-01

    Islets are innervated by parasympathetic nerves which release acetylcholine (ACh) to amplify glucose-induced insulin secretion, primarily via muscarinic M3 receptors (M3R). Here we investigate the consequence of chronic hyperglycaemia on islet M3R expression and secretory sensitivity of mouse islets to cholinergic receptor activation. The impact of hyperglycaemia was studied in (i) islets isolated from ob/ob mice, (ii) alginate-encapsulated mouse islets transplanted intraperitoneally into streptozotocin-induced diabetic mice and (iii) mouse and human islets maintained in vitro at 5.5 or 16 mmol/l glucose. Blood glucose levels were assessed by a commercial glucose meter, insulin content by RIA and M3R expression by qPCR and immunohistochemistry. M3R mRNA expression was reduced in both ob/ob islets and islets maintained at 16 mmol/l glucose for 3 days (68 and 50% control, respectively). In all three models of hyperglycaemia the secretory sensitivity to the cholinergic receptor agonist, carbachol, was reduced by 60-70% compared to control islets. Treatment for 72 h with the irreversible PKC activator, PMA, or the PKC inhibitor, Gö6983, did not alter islet M3R mRNA expression nor did incubation with the PI3K-inhibitor, LY294002, although enhancement of glucose-induced insulin secretion by LY294002 was reduced in islets maintained at 16 mmol/l glucose, as was mRNA expression of the PI3K regulatory subunit, p85α. Cholinergic regulation of insulin release is impaired in three experimental islet models of hyperglycaemia consistent with reduced expression of M3 receptors. Our data suggest that the receptor downregulation is a PKC- and PI3K-independent consequence of the hyperglycaemic environment, and they imply that M3 receptors could be potential targets in the treatment of type 2 diabetes. © 2014 John Wiley & Sons Ltd.

  20. Gender Dimorphism in Skeletal Muscle Leptin Receptors, Serum Leptin and Insulin Sensitivity

    PubMed Central

    Guerra, Borja; Fuentes, Teresa; Delgado-Guerra, Safira; Guadalupe-Grau, Amelia; Olmedillas, Hugo; Santana, Alfredo; Ponce-Gonzalez, Jesus Gustavo; Dorado, Cecilia; Calbet, José A. L.

    2008-01-01

    To determine if there is a gender dimorphism in the expression of leptin receptors (OB-R170, OB-R128 and OB-R98) and the protein suppressor of cytokine signaling 3 (SOCS3) in human skeletal muscle, the protein expression of OB-R, perilipin A, SOCS3 and alpha-tubulin was assessed by Western blot in muscle biopsies obtained from the m. vastus lateralis in thirty-four men (age = 27.1±6.8 yr) and thirty-three women (age = 26.7±6.7 yr). Basal serum insulin concentration and HOMA were similar in both genders. Serum leptin concentration was 3.4 times higher in women compared to men (P<0.05) and this difference remained significant after accounting for the differences in percentage of body fat or soluble leptin receptor. OB-R protein was 41% (OB-R170, P<0.05) and 163% (OB-R128, P<0.05) greater in women than men. There was no relationship between OB-R expression and the serum concentrations of leptin or 17β-estradiol. In men, muscle OB-R128 protein was inversely related to serum free testosterone. In women, OB-R98 and OB-R128 were inversely related to total serum testosterone concentration, and OB-R128 to serum free testosterone concentration. SOCS3 protein expression was similar in men and women and was not related to OB-R. In women, there was an inverse relationship between the logarithm of free testosterone and SCOS3 protein content in skeletal muscle (r = −0.46, P<0.05). In summary, there is a gender dimorphism in skeletal muscle leptin receptors expression, which can be partly explained by the influence of testosterone. SOCS3 expression in skeletal muscle is not up-regulated in women, despite very high serum leptin concentrations compared to men. The circulating form of the leptin receptor can not be used as a surrogate measure of the amount of leptin receptors expressed in skeletal muscles. PMID:18941624

  1. The Liver X Receptor in Correlation with Other Nuclear Receptors in Spontaneous and Recurrent Abortions

    PubMed Central

    Knabl, Julia; Pestka, Aurelia; Hüttenbrenner, Rebecca; Plösch, Torsten; Welbergen, Lena; Günthner-Biller, Maria

    2013-01-01

    The liver X receptors (LXRs) have been shown to be crucially involved in maternal-fetal cholesterol transport and placentation. The aim of this study was to investigate the expression pattern and frequency of LXR under normal physiological circumstances and in spontaneous abortion and/or recurrent miscarriage. A total of 29 (12 physiologic pregnancies/10 spontaneous abortions/7 recurrent miscarriages) human pregnancies in first trimester were analysed for LXR expression. Expression changes were evaluated by immunohistochemistry for receptor and quantitative RT-PCR (TaqMan) was performed to determine the level of LXR mRNA expression. We also stained for RXRα and PPARγ as possible heterodimers of LXR. LXR expression was downregulated in the syncytiotrophoblast of spontaneous abortion placentas compared to normal pregnancy. In recurrent miscarriage there was a trend for a downregulation. Decidua showed an even stronger downregulation in both groups. In the syncytiotrophoblast we found a positive correlation for the combination of LXR/PPARγ in abortions and a negative correlation for LXR/RXRα. In addition, double-immunofluorescence staining showed that LXR as well as RXRα and PPARγ are expressed by the extravillous trophoblast. Finally, RXRα and LXR showed coexpression in the same extravillous trophoblast cells. To conclude, our data show that LXR expression is decreased in miscarriage. PMID:23690759

  2. Differential microRNA expression is associated with androgen receptor expression in breast cancer.

    PubMed

    Shi, Yaqin; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Gu, Jun; Guan, Xiaoxiang

    2017-01-01

    The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)‑positive breast cancer compared with ER‑negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone‑dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR‑positive and ‑negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR‑positive compared with AR‑negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug‑resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer.

  3. Distinct patterns of outcome valuation and amygdala-prefrontal cortex synaptic remodeling in adolescence and adulthood

    PubMed Central

    Stolyarova, Alexandra; Izquierdo, Alicia

    2015-01-01

    Adolescent behavior is typified by increased risk-taking, reward- and novelty-seeking, as well as an augmented need for social and environmental stimulation. This behavioral phenotype may result from alterations in outcome valuation or reward learning. In the present set of experiments, we directly compared adult and adolescent animals on tasks measuring both of these processes. Additionally, we examined developmental differences in dopamine D1-like receptor (D1R), dopamine D2-like receptor (D2R), and polysialylated neural cell adhesion molecule (PSA-NCAM) expression in animals that were trained on an effortful reward valuation task, given that these proteins play an important role in the functional development of the amygdala-prefrontocortical (PFC) circuit and mesocorticolimbic dopamine system. We found that adolescent animals were not different from adults in appetitive associative learning, but exhibited distinct pattern of responses to differences in outcome values, which was paralleled by an enhanced motivation to invest effort to obtain larger rewards. There were no differences in D2 receptor expression, but D1 receptor expression was significantly reduced in the striatum of animals that had experiences with reward learning during adolescence compared to animals that went through the same experiences in adulthood. We observed increased levels of PSA-NCAM expression in both PFC and amygdala of late adolescents compared to adults that were previously trained on an effortful reward valuation task. PSA-NCAM levels in PFC were strongly and positively associated with high effort/reward (HER) choices in adolescents, but not in adult animals. Increased levels of PSA-NCAM expression in adolescents may index increased structural plasticity and represent a neural correlate of a reward sensitive endophenotype. PMID:25999830

  4. Interactions between IGF-I, estrogen receptor-α (ERα), and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells.

    PubMed

    Mendoza, Rhone A; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E₂) and IGF-I is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating noninterfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions, and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human GH plus epidermal growth factor, but E₂ did not cause an increase in the number of the IGF-IR.low cells compared to controls. The proliferation rate of IGF-IR.low cells was only reduced in response to E₂ compared to controls, whereas their basal and hormone-stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E₂, without affecting control cells. Furthermore, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. In conclusion, suppressing IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK, which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate.

  5. Characteristics of concatemeric GABAA receptors containing α4/δ subunits expressed in Xenopus oocytes

    PubMed Central

    Shu, Hong-Jin; Bracamontes, John; Taylor, Amanda; Wu, Kyle; Eaton, Megan M; Akk, Gustav; Manion, Brad; Evers, Alex S; Krishnan, Kathiresan; Covey, Douglas F; Zorumski, Charles F; Steinbach, Joe Henry; Mennerick, Steven

    2012-01-01

    BACKGROUND AND PURPOSE GABAA receptors mediate both synaptic and extrasynaptic actions of GABA. In several neuronal populations, α4 and δ subunits are key components of extrasynaptic GABAA receptors that strongly influence neuronal excitability and could mediate the effects of neuroactive agents including neurosteroids and ethanol. However, these receptors can be difficult to study in native cells and recombinant δ subunits can be difficult to express in heterologous systems. EXPERIMENTAL APPROACH We engineered concatemeric (fused) subunits to ensure δ and α4 subunit expression. We tested the pharmacology of the concatemeric receptors, compared with a common synaptic-like receptor subunit combination (α1 +β2 +γ2L), and with free-subunit α4/δ receptors, expressed in Xenopus oocytes. KEY RESULTS δ-β2 −α4 +β2-α4 cRNA co-injected into Xenopus oocytes resulted in GABA-gated currents with the expected pharmacological properties of α4/δ-containing receptors. Criteria included sensitivity to agonists of different efficacy, sensitivity to the allosteric activator pentobarbital, and modulation of agonist responses by DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridine-3-yl benzamide; a δ-selective positive modulator), furosemide, and Zn2+. We used the concatemers to examine neurosteroid sensitivity of extrasynaptic-like, δ-containing receptors. We found no qualitative differences between extrasynaptic-like receptors and synaptic-like receptors in the actions of either negative or positive neurosteroid modulators of receptor function. Quantitative differences were explained by the partial agonist effects of the natural agonist GABA and by a mildly increased sensitivity to low steroid concentrations. CONCLUSIONS AND IMPLICATIONS The neurosteroid structure-activity profile for α4/δ-containing extrasynaptic receptors is unlikely to differ from that of synaptic-like receptors such as α1/β2/γ2-containing receptors. PMID:21950777

  6. The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome.

    PubMed Central

    de Keyzer, Y; Lenne, F; Auzan, C; Jégou, S; René, P; Vaudry, H; Kuhn, J M; Luton, J P; Clauser, E; Bertagna, X

    1996-01-01

    Ectopic ACTH secretion occurs in highly differentiated and rather indolent tumors like bronchial carcinoids or, in contrast, in various types of aggressive and poorly differentiated neuroendocrine tumors. We explored this phenomenon using the recently cloned human pituitary V3 vasopressin receptor as an alternate molecular marker of the corticotroph phenotype. Expression of V3 receptor, corticotrophin releasing hormone (CRH) receptor, and proopiomelanocortin (POMC) genes was examined in tumors of pituitary and nonpituitary origin. A comparative RT-PCR approach revealed signals for both V3 receptor and CHR receptor mRNAs in 17 of 18 ACTH-secreting pituitary adenomas, and 6 of 6 normal pituitaries; in six growth hormone- or prolactin-secreting adenomas, a very faint V3 receptor signal was observed in three cases, and CRH receptor signal was undetected in all. Six of eight bronchial carcinoids responsible for the ectopic ACTH syndrome had both POMC and V3 receptor signals as high as those in ACTH-secreting pituitary adenomas; in contrast, no POMC signal and only a very faint V3 receptor signal were detected in six of eight nonsecreting bronchial carcinoids. Northern blot analysis showed V3 receptor mRNA of identical size in ACTH-secreting bronchial carcinoids and pituitary tumors. Other types of nonpituitary tumors responsible for ectopic ACTH syndrome presented much lower levels of both POMC and V3 receptor gene expression than those found in ACTH-secreting bronchial carcinoids. In contrast with the V3 receptor, CRH receptor mRNA was detected in the majority of neuroendocrine tumors irrespective of their POMC status. These results show that expression of the V3 receptor gene participates in the corticotroph phenotype. Its striking association with ACTH-secreting bronchial carcinoids defines a subset of nonpituitary tumors in which ectopic POMC gene expression is but one aspect of a wider process of corticotroph cell differentiation, and opens new possibilities of pharmacological investigations and even manipulations of this peculiar ACTH hypersecretory syndrome. PMID:8636444

  7. The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome.

    PubMed

    de Keyzer, Y; Lenne, F; Auzan, C; Jégou, S; René, P; Vaudry, H; Kuhn, J M; Luton, J P; Clauser, E; Bertagna, X

    1996-03-01

    Ectopic ACTH secretion occurs in highly differentiated and rather indolent tumors like bronchial carcinoids or, in contrast, in various types of aggressive and poorly differentiated neuroendocrine tumors. We explored this phenomenon using the recently cloned human pituitary V3 vasopressin receptor as an alternate molecular marker of the corticotroph phenotype. Expression of V3 receptor, corticotrophin releasing hormone (CRH) receptor, and proopiomelanocortin (POMC) genes was examined in tumors of pituitary and nonpituitary origin. A comparative RT-PCR approach revealed signals for both V3 receptor and CHR receptor mRNAs in 17 of 18 ACTH-secreting pituitary adenomas, and 6 of 6 normal pituitaries; in six growth hormone- or prolactin-secreting adenomas, a very faint V3 receptor signal was observed in three cases, and CRH receptor signal was undetected in all. Six of eight bronchial carcinoids responsible for the ectopic ACTH syndrome had both POMC and V3 receptor signals as high as those in ACTH-secreting pituitary adenomas; in contrast, no POMC signal and only a very faint V3 receptor signal were detected in six of eight nonsecreting bronchial carcinoids. Northern blot analysis showed V3 receptor mRNA of identical size in ACTH-secreting bronchial carcinoids and pituitary tumors. Other types of nonpituitary tumors responsible for ectopic ACTH syndrome presented much lower levels of both POMC and V3 receptor gene expression than those found in ACTH-secreting bronchial carcinoids. In contrast with the V3 receptor, CRH receptor mRNA was detected in the majority of neuroendocrine tumors irrespective of their POMC status. These results show that expression of the V3 receptor gene participates in the corticotroph phenotype. Its striking association with ACTH-secreting bronchial carcinoids defines a subset of nonpituitary tumors in which ectopic POMC gene expression is but one aspect of a wider process of corticotroph cell differentiation, and opens new possibilities of pharmacological investigations and even manipulations of this peculiar ACTH hypersecretory syndrome.

  8. Low gene expression levels of activating receptors of natural killer cells (NKG2E and CD94) in patients with fulminant type 1 diabetes.

    PubMed

    Nakata, Shinsuke; Imagawa, Akihisa; Miyata, Yugo; Yoshikawa, Atsushi; Kozawa, Junji; Okita, Kohei; Funahashi, Tohru; Nakamura, Seiji; Matsubara, Kenichi; Iwahashi, Hiromi; Shimomura, Iichiro

    2013-01-01

    Fulminant type 1 diabetes is an independent subtype of type 1 diabetes characterized by extremely rapid onset and absence of islet-related autoantibodies. However, detailed pathophysiology of this subtype is poorly understood. In this study, a comprehensive approach was applied to understand the pathogenesis of fulminant type 1 diabetes. We determined the genes that were differentially expressed in fulminant type 1 diabetes compared with type 1A diabetes and healthy control, using gene expression microarray in peripheral blood cells. Using volcano plot analysis, we found reduced expression of killer cell lectin-like receptor subfamily C, member 3 (KLRC3) which encodes NKG2E, a natural killer (NK) cell activating receptor, in fulminant type 1 diabetes, compared with healthy controls. This difference was confirmed by real-time RT-PCR among NK-enriched cells. The expression of KLRD1 (CD94), which forms heterodimer with NKG2E (KLRC3), was also reduced in NK-enriched cells in fulminant type 1 diabetes. Furthermore, flow cytometry showed significantly lower proportion of NK cells among peripheral blood mononuclear cells (PBMCs) in fulminant type 1 diabetes than in healthy controls. In patients with fulminant type 1 diabetes, the relative proportion of NK cells correlated significantly with the time period between onset of fever to the appearance of hyperglycemic-related symptoms. We conclude the presence of reduced NK activating receptor gene expression and low proportion of NK cells in fulminant type 1 diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Decreased expression of G-protein coupled receptor kinase 2 in cold thyroid nodules.

    PubMed

    Voigt, C; Holzapfel, H-P; Paschke, R

    2005-02-01

    G-protein coupled receptor kinases (GRKs) have been shown to regulate the homologous desensitization of different G-protein coupled receptors. We have previously demonstrated that the expression of GRK 3 and 4 is increased in hyperfunctioning thyroid nodules (HTNs) and that GRKs 2, 3, 5 and 6 are able to desensitize the TSHR in vitro. Since cold thyroid nodules (CTNs) and HTNs show different molecular and functional properties, different expression patterns of GRKs in these nodules can be expected. The comparison of GRK expression between CTNs and HTNs could give additional insight into the regulation mechanisms of these nodules. We therefore examined the expression of GRKs in CTNs and analyzed the differences to HTNs. The expression of the different GRKs in CTNs was measured by Western blot followed by chemiluminescence imaging. We found a decreased expression of GRK 2 in CTNs compared to their surrounding tissues and an increased expression of GRK 3 and 4 in CTNs, which is similar to HTNs. The decreased GRK 2 expression most likely results from reduced cAMP stimulation in CTNs. However, the increased GRK 3 and 4 expression in CTNs remains unclear and requires further investigations.

  10. Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors.

    PubMed

    Haynes, Nicole M; Trapani, Joseph A; Teng, Michèle W L; Jackson, Jacob T; Cerruti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K

    2002-11-01

    Tumor cells are usually weakly immunogenic as they largely express self-antigens and can down-regulate major histocompatability complex/peptide molecules and critical costimulatory ligands. The challenge for immunotherapies has been to provide vigorous immune effector cells that circumvent these tumor escape mechanisms and eradicate established tumors. One promising approach is to engineer T cells with single-chain antibody receptors, and since T cells require 2 distinct signals for optimal activation, we have compared the therapeutic efficacy of erbB2-reactive chimeric receptors that contain either T-cell receptor zeta (TCR-zeta) or CD28/TCR-zeta signaling domains. We have demonstrated that primary mouse CD8(+) T lymphocytes expressing the single-chain Fv (scFv)-CD28-zeta receptor have a greater capacity to secrete Tc1 cytokines, induce T-cell proliferation, and inhibit established tumor growth and metastases in vivo. The suppression of established tumor burden by cytotoxic T cells expressing the CD28/TCR-zeta chimera was critically dependent upon their interferon gamma (IFN-gamma) secretion. Our study has illustrated the practical advantage of engineering a T-cell signaling complex that codelivers CD28 activation, dependent only upon the tumor's expression of the appropriate tumor associated antigen.

  11. Lower expressions of the human bitter taste receptor TAS2R in smokers: reverse transcriptase-polymerase chain reaction analysis.

    PubMed

    Aoki, Mieko; Takao, Tetsuya; Takao, Kyoichi; Koike, Fumihiko; Suganuma, Narufumi

    2014-01-01

    Despite the fact that smokers have deficit in detecting taste, particularly bitter taste, no study has investigated its biological correlate. In this context, we compared the expression of the bitter taste receptor gene, taste 2 receptor (TAS2R) in the tongues of smokers and non-smokers. Tissue samples were collected from the lateral portion of the tongues of 22 smokers and 22 age- and gender-matched healthy volunteers (19 males and three females) with no history of smoking. Reverse transcriptase-polymerase chain reaction was used to examine the expression of TAS2R in the two groups, and the effect of aging on TAS2R expression was also assessed. TAS2R expression was significantly lower among smokers than non-smokers (t = 6.525, P < .0001, 11.36 ± 6.0 vs. 2.09 ± 2.8, mean ± SD, non-smokers vs. smokers). Further, a positive correlation between age and expression of TAS2R was observed in non-smokers (r = .642, P = .001), but not smokers (r = .124, P = .584). This correlation difference was significant (Z = 1.96, P = .0496). Smokers showed a significantly lower expression of the bitter taste receptor gene than non-smokers, which is potentially caused by their inability to acquire such receptors with age because of cigarette smoking, in contrast to non-smokers.

  12. Prenatal exposure to lambda-cyhalothrin alters brain dopaminergic signaling in developing rats.

    PubMed

    Dhuriya, Yogesh K; Srivastava, Pranay; Shukla, Rajendra K; Gupta, Richa; Singh, Dhirendra; Parmar, Devendra; Pant, Aditya B; Khanna, Vinay K

    2017-07-01

    The present study is focused to decipher the molecular mechanisms associated with dopaminergic alterations in corpus striatum of developing rats exposed prenatally to lambda-cyhalothrin (LCT), a new generation type II synthetic pyrethroid. There was no significant change in the mRNA and protein expression of DA-D1 receptors at any of the doses of LCT (0.5, 1 and 3mg/kg body weight) in corpus striatum of developing rats exposed prenatally to LCT on PD22 and PD45. Prenatal exposure to LCT (1 and 3mg/kg body weight) resulted to decrease the levels of mRNA and protein of DA-D2 receptors in corpus stratum of developing rats on PD22 as compared to controls. Decrease in the binding of 3H-Spiperone in corpus striatum, known to label DA-D2 receptors was also distinct in developing rats on PD22. These rats also exhibited decrease in the expression of proteins - TH, DAT and VMAT2 involved in pre-dopaminergic signaling. Further, decrease in the expression of DARPP-32 and pCREB associated with increased expression of PP1α was evident in developing rats on PD22 as compared to controls. Interestingly, a trend of recovery in the expression of these proteins was observed in developing rats exposed to LCT at moderate dose (1.0mg/kg body weight) while alteration in the expression of these proteins continued to persist in those exposed at high dose (3.0mg/kg body weight) on PD45 as compared to respective controls. No significant change in the expression of any of these proteins was observed in corpus striatum of developing rats prenatally exposed to LCT at low dose (0.5mg/kg body weight) on PD22 and PD45 as compared to respective controls. The results provide interesting evidence that alterations in dopaminergic signaling on LCT exposure are due to selective changes in DA-D2 receptors in corpus striatum of developing rats. Further, these changes could be attributed to impairment in spontaneous motor activity on LCT exposure in developing rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Association of Canine Osteosarcoma and Monocyte Phenotype and Chemotactic Function.

    PubMed

    Tuohy, J L; Lascelles, B D X; Griffith, E H; Fogle, J E

    2016-07-01

    Monocytes/macrophages are likely key cells in immune modulation in dogs with osteosarcoma (OSA). Increased peripheral monocyte counts are negatively correlated with shorter disease-free intervals in dogs with OSA. Understanding the monocyte/macrophage's modulatory role in dogs with OSA can direct further studies in immunotherapy development for OSA. That OSA evades the immune response by down-regulating monocyte chemokine receptor expression and migratory function, and suppresses host immune responses. Eighteen dogs with OSA that have not received definitive treatment and 14 healthy age-matched controls Clinical study-expression of peripheral blood monocyte cell surface receptors, monocyte mRNA expression and cytokine secretion, monocyte chemotaxis, and survival were compared between clinical dogs with OSA and healthy control dogs. Cell surface expression of multiple chemokine receptors is significantly down-regulated in peripheral blood monocytes of dogs with OSA. The percentage expression of CCR2 (median 58%, range 2-94%) and CXCR2 expression (median 54%, range 2-92%) was higher in control dogs compared to dogs with OSA (CCR2 median 29%, range 3-45%, P = 0.0006; CXCR2 median 23%, range 0.2-52%, P = 0.0007). Prostaglandin E2 (PGE2 ) (OSA, median 347.36 pg/mL, range 103.4-1268.5; control, 136.23 pg/mL, range 69.93-542.6, P = .04) and tumor necrosis factor-alpha (TNF-α) (P = .02) levels are increased in OSA monocyte culture supernatants compared to controls. Peripheral blood monocytes of dogs with OSA exhibit decreased chemotactic function when compared to control dogs (OSA, median 1.2 directed to random migration, range 0.8-1.25; control, 1.6, range of 0.9-1.8, P = .018). Dogs with OSA have decreased monocyte chemokine receptor expression and monocyte chemotaxis, potential mechanisms by which OSA might evade the immune response. Reversal of monocyte dysfunction using immunotherapy could improve survival in dogs with OSA. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Comparative Expression Analysis of Cytochrome P450 1A1, Cytochrome P450 1B1 and Nuclear Receptors in the Female Genital and Colorectal Tissues of Human and Pigtailed Macaque

    PubMed Central

    Hu, Minlu; Zhou, Tian; Pearlman, Andrew P; Paton, Dorothy L; Rohan, Lisa C

    2017-01-01

    Summary This manuscript summarizes our recent progress in examine the CYP1A1 and CYP1B1 as well as a number of nuclear receptors in the female genital and colorectal tissues of human and pigtailed macaque. Understanding the nuclear receptor mediated regulation of CYP1A1 and 1B1 expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. However, there is a lack of systematic and comparative analysis of the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and clinically relevant animal models. The current study aims to fill this gap. We found CYP1A1, CYP1B1 and a number of nuclear receptors were expressed in the female genital and colorectal tissues of human and macaque. However, the mRNA level and protein localization of these CYP enzymes and NRs depended on the type of tissue examined. Cytochrome P450 (CYP) 1A1 and CYP1B1 activate hormonal and environmental procarcinogens, and are associated with carcinogenesis in female genital and colorectal tissues. Understanding the nuclear receptor (NR) mediated regulation of CYP expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. The study aims to analyze the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and pigtailed macaques. We found that compared to the liver, human CYP1A1 mRNA level in the genital and colorectal tissues was significantly lower, while the CYP1B1 level was significantly higher. CYP1A1 protein was mainly localized in the plasma membrane of the uterine and endocervical epithelial cells. The CYP1B1 protein was concentrated in the nucleus of genital and colorectal tissues. Fourteen NRs in the genital tract and 12 NRs in colorectal tissue were expressed at levels similar to or higher than the liver. The expression and localization of CYP1A1, CYP1B1, and NRs in macaque tissues were usually comparable to those of human tissues. In addition, menopause did not significantly alter the ectocervical mRNA levels of CYP1A1, CYP1B1, or NRs. PMID:29276805

  15. Comparative Expression Analysis of Cytochrome P450 1A1, Cytochrome P450 1B1 and Nuclear Receptors in the Female Genital and Colorectal Tissues of Human and Pigtailed Macaque.

    PubMed

    Hu, Minlu; Zhou, Tian; Pearlman, Andrew P; Paton, Dorothy L; Rohan, Lisa C

    2016-01-01

    This manuscript summarizes our recent progress in examine the CYP1A1 and CYP1B1 as well as a number of nuclear receptors in the female genital and colorectal tissues of human and pigtailed macaque. Understanding the nuclear receptor mediated regulation of CYP1A1 and 1B1 expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. However, there is a lack of systematic and comparative analysis of the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and clinically relevant animal models. The current study aims to fill this gap. We found CYP1A1, CYP1B1 and a number of nuclear receptors were expressed in the female genital and colorectal tissues of human and macaque. However, the mRNA level and protein localization of these CYP enzymes and NRs depended on the type of tissue examined. Cytochrome P450 (CYP) 1A1 and CYP1B1 activate hormonal and environmental procarcinogens, and are associated with carcinogenesis in female genital and colorectal tissues. Understanding the nuclear receptor (NR) mediated regulation of CYP expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. The study aims to analyze the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and pigtailed macaques. We found that compared to the liver, human CYP1A1 mRNA level in the genital and colorectal tissues was significantly lower, while the CYP1B1 level was significantly higher. CYP1A1 protein was mainly localized in the plasma membrane of the uterine and endocervical epithelial cells. The CYP1B1 protein was concentrated in the nucleus of genital and colorectal tissues. Fourteen NRs in the genital tract and 12 NRs in colorectal tissue were expressed at levels similar to or higher than the liver. The expression and localization of CYP1A1, CYP1B1, and NRs in macaque tissues were usually comparable to those of human tissues. In addition, menopause did not significantly alter the ectocervical mRNA levels of CYP1A1, CYP1B1, or NRs.

  16. Neurotrophin Receptors TrkA, p75NTR, and Sortilin Are Increased and Targetable in Thyroid Cancer.

    PubMed

    Faulkner, Sam; Jobling, Philip; Rowe, Christopher W; Rodrigues Oliveira, S M; Roselli, Severine; Thorne, Rick F; Oldmeadow, Christopher; Attia, John; Jiang, Chen Chen; Zhang, Xu Dong; Walker, Marjorie M; Hondermarck, Hubert

    2018-01-01

    Neurotrophin receptors are emerging targets in oncology, but their clinicopathologic significance in thyroid cancer is unclear. In this study, the neurotrophin tyrosine receptor kinase TrkA (also called NTRK1), the common neurotrophin receptor p75 NTR , and the proneurotrophin receptor sortilin were analyzed with immunohistochemistry in a cohort of thyroid cancers (n = 128) and compared with adenomas and normal thyroid tissues (n = 62). TrkA was detected in 20% of thyroid cancers, compared with none of the benign samples (P = 0.0007). TrkA expression was independent of histologic subtypes but associated with lymph node metastasis (P = 0.0148), suggesting the involvement of TrkA in tumor invasiveness. Nerves in the tumor microenvironment were positive for TrkA. p75 NTR was overexpressed in anaplastic thyroid cancers compared with papillary and follicular subtypes (P < 0.0001). Sortilin was overexpressed in thyroid cancers compared with benign thyroid tissues (P < 0.0001). Neurotrophin receptor expression was confirmed in a panel of thyroid cancer cell lines at the mRNA and protein levels. Functional investigations using the anaplastic thyroid cancer cell line CAL-62 found that siRNA against TrkA, p75 NTR , and sortilin decreased cell survival and cell migration through decreased SRC and ERK activation. Together, these data reveal TrkA, p75 NTR , and sortilin as potential therapeutic targets in thyroid cancer. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Inhibition of insulin-like growth factor receptor-1 reduces necroptosis-related markers and attenuates LPS-induced lung injury in mice.

    PubMed

    Lee, Su Hwan; Shin, Ju Hye; Song, Joo Han; Leem, Ah Young; Park, Moo Suk; Kim, Young Sam; Chang, Joon; Chung, Kyung Soo

    2018-04-15

    Insulin-like growth factor-1 (IGF-1) levels are known to increase in the bronchoalveolar lavage fluid (BALF) of patients with acute respiratory distress syndrome. Herein, we investigated the role of IGF-1 in lipopolysaccharide (LPS)-induced lung injury. In LPS-treated cells, expressions of receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like protein (MLKL) were decreased in IGF-1 receptor small interfering RNA (siRNA)-treated cells compared to control cells. The levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, and macrophage inflammatory protein 2/C-X-C motif chemokine ligand 2 in the supernatant were significantly reduced in IGF-1 receptor siRNA-treated cells compared to control cells. In LPS-induced murine lung injury model, total cell counts, polymorphonuclear leukocytes counts, and pro-inflammatory cytokine levels in the BALF were significantly lower and histologically detected lung injury was less common in the group treated with IGF-1 receptor monoclonal antibody compared to the non-treated group. On western blotting, RIP3 and phosphorylated MLKL expressions were relatively decreased in the IGF-1 receptor monoclonal antibody group compared to the non-treated group. IGF-1 may be associated with RIP3-mediated necroptosis in vitro, while blocking of the IGF-1 pathway may reduce LPS-induced lung injuries in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Functional significance of muscarinic receptor expression within the proximal and distal rat vagina

    PubMed Central

    Basha, Maureen; LaBelle, Edward F.; Northington, Gina M.; Wang, Tanchun; Wein, Alan J.

    2009-01-01

    Information regarding the role of cholinergic nerves in mediating vaginal smooth muscle contraction is sparse, and in vitro studies of the effects of muscarinic agonists on vaginal smooth muscle are discrepant. The goal of this study was to determine the expression of muscarinic receptors in the vaginal wall of the rat. In addition, we sought to determine the effect of the muscarinic receptor agonist carbachol on contractility and inositol phosphate production of the proximal and distal rat vaginal muscularis. RT-PCR analysis indicated that both M2 and M3 receptor transcripts were expressed within the proximal and distal rat vagina. Carbachol dose-dependently (10−7–10−4 M) contracted the rat vaginal muscularis with a greater maximal contractile response in the proximal vagina (P < 0.01) compared with the distal vagina. The contractile responses of the rat vaginal muscularis to carbachol were dose dependently inhibited by the M3 antagonist para-fluoro-hexahydrosiladefenidol, and a pKB of 7.78 and 7.95 was calculated for the proximal and distal vagina, respectively. Inositol phosphate production was significantly increased in both regions of the vagina following 20-min exposure to 50 μM carbachol with higher levels detected in the proximal vagina compared with the distal (P < 0.05). Preliminary experiments indicated the presence of M2 and M3 receptors in the human vaginal muscularis as well as contraction of human vaginal muscularis to carbachol, indicating that our animal studies are relevant to human tissue. Our results provide strong evidence for the functional significance of M3 receptor expression in the vaginal muscularis. PMID:19741053

  19. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration.

    PubMed

    Müller, Jan; von Bernstorff, Wolfram; Heidecke, Claus-Dieter; Schulze, Tobias

    2017-01-01

    Introduction . Macrophages are key players in complex biological processes. In response to environmental signals, macrophages undergo polarization towards a proinflammatory (M1) or anti-inflammatory (M2) phenotype. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that acts via 5 G-protein coupled receptors (S1P 1-5 ) in order to influence a broad spectrum of biological processes. This study assesses S1P receptor expression on macrophages before and after M1 and M2 polarization and performs a comparative analysis of S1P signalling in the two activational states of macrophages. Methods . Bone marrow derived macrophages (BMDM) from C57 BL/6 mice were cultured under either M1- or M2-polarizing conditions. S1P-receptor expression was determined by quantitative RT-PCR. Influence of S1P on macrophage activation, migration, phagocytosis, and cytokine secretion was assessed in vitro. Results . All 5 S1P receptor subclasses were expressed in macrophages. Culture under both M1- and M2-polarizing conditions led to significant downregulation of S1P 1 . In contrast, M1-polarized macrophages significantly downregulated S1P 4 . The expression of the remaining three S1P receptors did not change. S1P increased expression of iNOS under M2-polarizing conditions. Furthermore, S1P induced chemotaxis in M1 macrophages and changed cytokine production in M2 macrophages. Phagocytosis was not affected by S1P-signalling. Discussion . The expression of different specific S1P receptor profiles may provide a possibility to selectively influence M1- or M2-polarized macrophages.

  20. The neural mobilization technique modulates the expression of endogenous opioids in the periaqueductal gray and improves muscle strength and mobility in rats with neuropathic pain

    PubMed Central

    2014-01-01

    Background The neural mobilization (NM) technique is a noninvasive method that has been proven to be clinically effective in reducing pain; however, the molecular mechanisms involved remain poorly understood. The aim of this study was to analyze whether NM alters the expression of the mu-opioid receptor (MOR), the delta-opioid receptor (DOR) and the Kappa-opioid receptor (KOR) in the periaqueductal gray (PAG) and improves locomotion and muscle force after chronic constriction injury (CCI) in rats. Methods The CCI was imposed on adult male rats followed by 10 sessions of NM every other day, starting 14 days after the CCI injury. At the end of the sessions, the PAG was analyzed using Western blot assays for opioid receptors. Locomotion was analyzed by the Sciatic functional index (SFI), and muscle force was analyzed by the BIOPAC system. Results An improvement in locomotion was observed in animals treated with NM compared with injured animals. Animals treated with NM showed an increase in maximal tetanic force of the tibialis anterior muscle of 172% (p < 0.001) compared with the CCI group. We also observed a decrease of 53% (p < 0.001) and 23% (p < 0.05) in DOR and KOR levels, respectively, after CCI injury compared to those from naive animals and an increase of 17% (p < 0.05) in KOR expression only after NM treatment compared to naive animals. There were no significant changes in MOR expression in the PAG. Conclusion These data provide evidence that a non-pharmacological NM technique facilitates pain relief by endogenous analgesic modulation. PMID:24884961

  1. Elabela/Toddler Is an Endogenous Agonist of the Apelin APJ Receptor in the Adult Cardiovascular System, and Exogenous Administration of the Peptide Compensates for the Downregulation of Its Expression in Pulmonary Arterial Hypertension

    PubMed Central

    Yang, Peiran; Read, Cai; Kuc, Rhoda E.; Buonincontri, Guido; Southwood, Mark; Torella, Rubben; Upton, Paul D.; Crosby, Alexi; Sawiak, Stephen J.; Carpenter, T. Adrian; Glen, Robert C.; Morrell, Nicholas W.; Maguire, Janet J.

    2017-01-01

    Background: Elabela/toddler (ELA) is a critical cardiac developmental peptide that acts through the G-protein–coupled apelin receptor, despite lack of sequence similarity to the established ligand apelin. Our aim was to investigate the receptor pharmacology, expression pattern, and in vivo function of ELA peptides in the adult cardiovascular system, to seek evidence for alteration in pulmonary arterial hypertension (PAH) in which apelin signaling is downregulated, and to demonstrate attenuation of PAH severity with exogenous administration of ELA in a rat model. Methods: In silico docking analysis, competition binding experiments, and downstream assays were used to characterize ELA receptor binding in human heart and signaling in cells expressing the apelin receptor. ELA expression in human cardiovascular tissues and plasma was determined using real-time quantitative polymerase chain reaction, dual-labeling immunofluorescent staining, and immunoassays. Acute cardiac effects of ELA-32 and [Pyr1]apelin-13 were assessed by MRI and cardiac catheterization in anesthetized rats. Cardiopulmonary human and rat tissues from PAH patients and monocrotaline- and Sugen/hypoxia-exposed rats were used to show changes in ELA expression in PAH. The effect of ELA treatment on cardiopulmonary remodeling in PAH was investigated in the monocrotaline rat model. Results: ELA competed for binding of apelin in human heart with overlap for the 2 peptides indicated by in silico modeling. ELA activated G-protein– and β-arrestin–dependent pathways. We detected ELA expression in human vascular endothelium and plasma. Comparable to apelin, ELA increased cardiac contractility, ejection fraction, and cardiac output and elicited vasodilatation in rat in vivo. ELA expression was reduced in cardiopulmonary tissues from PAH patients and PAH rat models, respectively. ELA treatment significantly attenuated elevation of right ventricular systolic pressure and right ventricular hypertrophy and pulmonary vascular remodeling in monocrotaline-exposed rats. Conclusions: These results show that ELA is an endogenous agonist of the human apelin receptor, exhibits a cardiovascular profile comparable to apelin, and is downregulated in human disease and rodent PAH models, and exogenous peptide can reduce the severity of cardiopulmonary remodeling and function in PAH in rats. This study provides additional proof of principle that an apelin receptor agonist may be of therapeutic use in PAH in humans. PMID:28137936

  2. Elabela/Toddler Is an Endogenous Agonist of the Apelin APJ Receptor in the Adult Cardiovascular System, and Exogenous Administration of the Peptide Compensates for the Downregulation of Its Expression in Pulmonary Arterial Hypertension.

    PubMed

    Yang, Peiran; Read, Cai; Kuc, Rhoda E; Buonincontri, Guido; Southwood, Mark; Torella, Rubben; Upton, Paul D; Crosby, Alexi; Sawiak, Stephen J; Carpenter, T Adrian; Glen, Robert C; Morrell, Nicholas W; Maguire, Janet J; Davenport, Anthony P

    2017-03-21

    Elabela/toddler (ELA) is a critical cardiac developmental peptide that acts through the G-protein-coupled apelin receptor, despite lack of sequence similarity to the established ligand apelin. Our aim was to investigate the receptor pharmacology, expression pattern, and in vivo function of ELA peptides in the adult cardiovascular system, to seek evidence for alteration in pulmonary arterial hypertension (PAH) in which apelin signaling is downregulated, and to demonstrate attenuation of PAH severity with exogenous administration of ELA in a rat model. In silico docking analysis, competition binding experiments, and downstream assays were used to characterize ELA receptor binding in human heart and signaling in cells expressing the apelin receptor. ELA expression in human cardiovascular tissues and plasma was determined using real-time quantitative polymerase chain reaction, dual-labeling immunofluorescent staining, and immunoassays. Acute cardiac effects of ELA-32 and [Pyr 1 ]apelin-13 were assessed by MRI and cardiac catheterization in anesthetized rats. Cardiopulmonary human and rat tissues from PAH patients and monocrotaline- and Sugen/hypoxia-exposed rats were used to show changes in ELA expression in PAH. The effect of ELA treatment on cardiopulmonary remodeling in PAH was investigated in the monocrotaline rat model. ELA competed for binding of apelin in human heart with overlap for the 2 peptides indicated by in silico modeling. ELA activated G-protein- and β-arrestin-dependent pathways. We detected ELA expression in human vascular endothelium and plasma. Comparable to apelin, ELA increased cardiac contractility, ejection fraction, and cardiac output and elicited vasodilatation in rat in vivo. ELA expression was reduced in cardiopulmonary tissues from PAH patients and PAH rat models, respectively. ELA treatment significantly attenuated elevation of right ventricular systolic pressure and right ventricular hypertrophy and pulmonary vascular remodeling in monocrotaline-exposed rats. These results show that ELA is an endogenous agonist of the human apelin receptor, exhibits a cardiovascular profile comparable to apelin, and is downregulated in human disease and rodent PAH models, and exogenous peptide can reduce the severity of cardiopulmonary remodeling and function in PAH in rats. This study provides additional proof of principle that an apelin receptor agonist may be of therapeutic use in PAH in humans. © 2017 The Authors.

  3. Reduced post-synaptic serotonin type 1A receptor binding in bipolar depression

    PubMed Central

    Nugent, Allison C.; Bain, Earle E.; Carlson, Paul J.; Neumeister, Alexander; Bonne, Omer; Carson, Richard E.; Eckelman, William; Herscovitch, Peter; Zarate, Carlos A.; Charney, Dennis S.; Drevets, Wayne C.

    2013-01-01

    Multiple lines of evidence suggest that serotonin type 1A (5-HT1A) receptor dysfunction is involved in the pathophysiology of mood disorders, and that alterations in 5-HT1A receptor function play a role in the mechanisms of antidepressant and mood stabilizer treatment. The literature is in disagreement, however, as to whether 5-HT1A receptor binding abnormalities exist in bipolar disorder (BD). We acquired PET images of 5-HT1A receptor binding in 26 unmedicated BD subjects and 37 healthy controls using [18F]FCWAY, a highly selective 5-HT1A receptor radio-ligand. The mean 5-HT1A receptor binding potential (BPP) was significantly lower in BD subjects compared to controls in cortical regions where 5-HT1A receptors are expressed post-synaptically, most prominently in the mesiotemporal cortex. Post-hoc assessments involving other receptor specific binding parameters suggested that this difference particularly affected the females with BD. The mean BPP did not differ between groups in the raphe nucleus, however, where 5-HT1A receptors are predominantly expressed pre-synaptically. Across subjects the BPP in the mesiotemporal cortex was inversely correlated with trough plasma cortisol levels, consistent with preclinical literature indicating that hippocampal 5-HT1A receptor expression is inhibited by glucocorticoid receptor stimulation. These findings suggest that 5-HT1A receptor binding is abnormally reduced in BD, and this abnormality may particularly involve the postsynaptic 5-HT1A receptor system of individuals with a tendency toward cortisol hypersecretion. PMID:23434290

  4. Pharmacological endothelin receptor interaction does not occur in veins from ET(B) receptor deficient rats.

    PubMed

    Thakali, Keshari; Galligan, James J; Fink, Gregory D; Gariepy, Cheryl E; Watts, Stephanie W

    2008-07-01

    Heterodimerization of G-protein coupled receptors can alter receptor pharmacology. ET A and ET B receptors heterodimerize when co-expressed in heterologous expression lines. We hypothesized that ET A and ET B receptors heterodimerize and pharmacologically interact in vena cava from wild-type (WT) but not ET B receptor deficient (sl/sl) rats. Pharmacological endothelin receptor interaction was assessed by comparing ET-1-induced contraction in rings of rat thoracic aorta and thoracic vena cava from male Sprague Dawley rats under control conditions, ET A receptor blockade (atrasentan, 10 nM), ET B receptor blockade (BQ-788, 100 nM) or ET B receptor desensitization (Sarafotoxin 6c, 100 nM) and ET A plus ET B receptor blockade or ET A receptor blockade plus ET B receptor desensitization. In addition, similar pharmacological ET receptor antagonism experiments were performed in rat thoracic aorta and vena cava from WT and sl/sl rats. ET A but not ET B receptor blockade or ET B receptor desensitization inhibited aortic and venous ET-1-induced contraction. In vena cava but not aorta, when ET B receptors were blocked (BQ-788, 100 nM) or desensitized (S6c, 100 nM), atrasentan caused a greater inhibition of ET-1-induced contraction. Vena cava from WT but not sl/sl rats exhibited similar pharmacological ET receptor interaction. Immunocytochemistry was performed on freshly dissociated aortic and venous vascular smooth muscle cells to determine localization of ET A and ET B receptors. ET A and ET B receptors qualitatively co-localized more strongly to the plasma membrane of aortic compared to venous vascular smooth muscle cells. Our data suggest that pharmacological ET A and ET B receptor interaction may be dependent on the presence of functional ET B receptors and independent of receptor location.

  5. Laminar shear stress regulates endothelial kinin B1 receptor expression and function: potential implication in atherogenesis

    PubMed Central

    Duchene, Johan; Cayla, Cécile; Vessillier, Sandrine; Scotland, Ramona; Yamashiro, Kazuo; Lecomte, Florence; Syed, Irfan; Vo, Phuong; Marrelli, Alessandra; Pitzalis, Costantino; Cipollone, Francesco; Schanstra, Joost; Bascands, Jean-Loup; Hobbs, Adrian J; Perretti, Mauro; Ahluwalia, Amrita

    2009-01-01

    OBJECTIVE The pro-inflammatory phenotype induced by low laminar shear stress (LSS) is implicated in atherogenesis. The kinin B1 receptor (B1R), known to be induced by inflammatory stimuli, exerts many pro-inflammatory effects including vasodilatation and leukocyte recruitment. We investigated whether low LSS is a stimulus for endothelial B1R expression and function. METHODS AND RESULTS Human and mouse atherosclerotic plaques expressed high level of B1R mRNA and protein. In addition, B1R expression was upregulated in the aortic arch (low LSS region) of ApoE-/- mice fed a high fat diet compared to vascular regions of high LSS and animals fed normal chow. Of interest, a greater expression of B1R was noticed in endothelial cells from regions of low LSS in aortic arch of ApoE-/- mice. B1R was also upregulated in human umbilical vein endothelial cells (HUVEC) exposed to low LSS (0-2dyn/cm2) compared to physiological LSS (6-10dyn/cm2): an effect similarly evident in murine vascular tissue perfused ex vivo. Functionally, B1R activation increased prostaglandin and CXCL5 expression in cells exposed to low, but not physiological, LSS. IL-1β and ox-LDL induced B1R expression and function in HUVECs, a response substantially enhanced under low LSS conditions and inhibited by blockade of NFκB activation. CONCLUSION Herein, we show that LSS is a major determinant of functional B1R expression in endothelium. Furthermore, whilst physiological high LSS is a powerful repressor of this inflammatory receptor, low LSS at sites of atheroma are associated with substantial upregulation, identifying this receptor as a potential therapeutic target. CONDENSED ABSTRACT Low laminar shear stress (LSS) underlies the pro-inflammatory processes in atherogenesis. Herein, we demonstrate that whilst physiological LSS represses inflammatory kinin B1 receptor (B1R) expression/function, low atherogenic LSS is associated with profound upregulation of both in atherosclerosis in both humans and animal models, highlighting B1R as an exciting potential therapeutic target. PMID:19661485

  6. Expression of IGF-I, IGF-I receptor and IGF binding proteins-1, -2, -3, -4 and -5 in human atherectomy specimens.

    PubMed

    Grant, M B; Wargovich, T J; Ellis, E A; Tarnuzzer, R; Caballero, S; Estes, K; Rossing, M; Spoerri, P E; Pepine, C

    1996-12-17

    The molecular and cellular processes that induce rapid atherosclerotic plaque progression in patients with unstable angina and initiate restenosis following coronary interventional procedures are uncertain. We examined primary (de novo) and restenotic lesions retrieved at the time of directional coronary atherectomy for expression of insulin-like-growth factor-I (IGF-I). IGF-I receptor, and five IGF binding proteins (IGFBPs), IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5 in smooth muscle cells (SMCs) using colloidal gold immunocytochemistry. IGF-1, its receptor and binding proteins were not detected in SMCs of normal coronary arteries. IGF-I localized primarily in synthetic smooth muscle cells (sSMCs) in both de novo and restenotic plaques. IGF-I receptor localized on sSMCs and their processes and colocalized with IGF-I. Although morphometric analysis of IGF-I and IGF-I receptor immunoreactivity in sSMCs of de novo and restenotic lesions showed comparable levels of IGF-I (3.2 +/- 1.0 and 2.9 +/- 0.9, respectively). IGF-I receptor was significantly higher in de novo lesions as compared to restenotic lesions (10.7 +/- 2.5 and 4.2 +/- 1.3, P < 0.05, respectively). IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4 and IGFBP-5 localized in the cytoplasm of sSMCs and in the extracellular matrix. Quantitative reverse transcription polymerase chain reaction (QRT-PCR) performed on de novo atherectomy specimens identified mRNA for IGF-I, IGF-I receptor, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5 levels and detected mRNA for IGFBP-3. The expression of IGF-I, IGF-I receptor, and IGFBPs in atherectomy plaques suggests that the development of coronary obstructive lesions may be a result of changes in the IGF system.

  7. Expression of the G protein-coupled estrogen receptor (GPER) in endometriosis: a tissue microarray study.

    PubMed

    Samartzis, Nicolas; Samartzis, Eleftherios P; Noske, Aurelia; Fedier, André; Dedes, Konstantin J; Caduff, Rosmarie; Fink, Daniel; Imesch, Patrick

    2012-04-20

    The G protein-coupled estrogen receptor (GPER) is thought to be involved in non-genomic estrogen responses as well as processes such as cell proliferation and migration. In this study, we analyzed GPER expression patterns from endometriosis samples and normal endometrial tissue samples and compared these expression profiles to those of the classical sex hormone receptors. A tissue microarray, which included 74 samples from different types of endometriosis (27 ovarian, 19 peritoneal and 28 deep-infiltrating) and 30 samples from normal endometrial tissue, was used to compare the expression levels of the GPER, estrogen receptor (ER)-alpha, ER-beta and progesterone receptor (PR). The immunoreactive score (IRS) was calculated separately for epithelium and stroma as the product of the staining intensity and the percentage of positive cells. The expression levels of the hormonal receptors were dichotomized into low (IRS < 6) and high (IRS > = 6) expression groups. The mean epithelial IRS (+/- standard deviation, range) of cytoplasmic GPER expression was 1.2 (+/- 1.7, 0-4) in normal endometrium and 5.1 (+/- 3.5, 0-12) in endometriosis (p < 0.001), of nuclear GPER 6.4 (+/- 2.6, 0-12) and 6.8 (+/- 2.9, 2-12; p = 0.71), of ER-alpha 10.6 (+/- 2.4, 3-12) and 9.8 (+/- 3.0, 2-12; p = 0.26), of ER-beta 2.4 (+/- 2.2; 0-8) and 5.6 (+/- 2.6; 0-10; p < 0.001), and of PR 11.5 (+/- 1.7; 3-12) and 8.1 (+/- 4.5; 0-12; p < 0.001), respectively. The mean stromal IRS of nuclear GPER expression was 7.7 (+/- 3.0; 2-12) in endometrium and 10.8 (+/- 1.7; 6-12) in endometriosis (p < 0.001), of ER-alpha 8.7 (+/- 3.1; 2-12) and 10.6 (+/- 2.4; 2-12; p = 0.001), of ER-beta 1.8 (+/- 2.0; 0-8) and 5.4 (+/- 2.5; 0-10; p < 0.001), and of PR 11.7 (+/- 0.9; 8-12) and 10.9 (+/- 2.0; 3-12; p = 0.044), respectively. Cytoplasmic GPER expression was not detectable in the stroma of endometrium and endometriosis. The observed frequency of high epithelial cytoplasmic GPER expression levels was 50% (n = 30/60) in the endometriosis and none (0/30) in the normal endometrium samples (p < 0.001). High epithelial cytoplasmic GPER expression levels were more frequent in endometriomas (14/20, 70%; p = 0.01), as compared to peritoneal (9/18, 50%) or deep-infiltrating endometriotic lesions (7/22, 31.8%). The frequency of high stromal nuclear GPER expression levels was 100% (n = 74/74) in endometriosis and 76.7% (n = 23/30) in normal endometrium (p < 0.001). The frequency of high epithelial nuclear GPER expression levels did not differ between endometriosis and normal endometrium. The present data indicate a unique GPER expression pattern in endometriosis, especially in endometriomas as compared to the normal endometrium. The overexpression of GPER in endometriotic lesions suggests a potential role for GPER in the hormonal regulation of endometriosis, which should be taken into consideration for future hormonal treatment strategies.

  8. Differential loss of natural killer cell activity in patients with acute myocardial infarction and stable angina pectoris.

    PubMed

    Yan, Wenwen; Zhou, Lin; Wen, Siwan; Duan, Qianglin; Huang, Feifei; Tang, Yu; Liu, Xiaohong; Chai, Yongyan; Wang, Lemin

    2015-01-01

    To evaluate the activity of natural killer cells through their inhibitory and activating receptors and quantity in peripheral blood mononuclear cells extracted from patients with acute myocardial infarction, stable angina pectoris and the controls. 100 patients with myocardial infarction, 100 with stable angina, and 20 healthy volunteers were recruited into the study. 20 randomly chosen people per group were examined for the whole human genome microarray analysis to detect the gene expressions of all 40 inhibitory and activating natural killer cell receptors. Flow cytometry analysis was applied to all 200 patients to measure the quantity of natural killer cells. In myocardial infarction group, the mRNA expressions of six inhibitory receptors KIR2DL2, KIR3DL3, CD94, NKG2A, KLRB1, KLRG1, and eight activating receptors KIR2DS3, KIR2DS5, NKp30, NTB-A, CRACC, CD2, CD7 and CD96 were significantly down-regulated (P<0.05) compared with both angina patients and the controls. There was no statistical difference in receptor expressions between angina patients and control group. The quantity of natural killer cells was significantly decreased in both infarction and angina patients compared with normal range (P<0.001). The significant mRNAs down-regulation of several receptors in myocardial infarction group and reduction in the quantity of natural killer cells in both myocardial infarction and angina patients showed a quantitative loss and dysfunction of natural killer cells in myocardial infarction patients.

  9. The Dtk receptor tyrosine kinase, which binds protein S, is expressed during hematopoiesis.

    PubMed

    Crosier, P S; Freeman, S A; Orlic, D; Bodine, D M; Crosier, K E

    1996-02-01

    Dtk (Tyro 3/Sky/Rse/Brt/Tif) belongs to a recently recognized subfamily of receptor tyrosine kinases that also includes Ufo (Axl/Ark) and Mer (Eyk). Ligands for Dtk and Ufo have been identified as protein S and the related molecule Gas6, respectively. This study examined expression of Dtk during ontogeny of the hematopoietic system and compared the pattern of expression with that of Ufo. Both receptors were abundantly expressed in differentiating embryonic stem cells, yolk sac blood islands, para-aortic splanchnopleural mesoderm, fractionated AA4+ fetal liver cells, and fetal thymus from day 14 until birth. Although Ufo was expressed at moderate levels in adult bone marrow, expression of Dtk in this tissue was barely detectable. In adult bone marrow subpopulations fractionated using counterflow centrifugal elutriation, immunomagnetic bead selection for lineage-depletion and FACS sorting for c-kit expression, very low levels of Dtk and/or Ufo were detected in some cell fractions. These results suggest that Dtk and Ufo are likely to be involved in the regulation of hematopoiesis, particularly during the embryonic stages of blood cell development.

  10. Bile salt receptor TGR5 is highly expressed in esophageal adenocarcinoma and precancerous lesions with significantly worse overall survival and gender differences

    PubMed Central

    Pang, Chunhong; LaLonde, Amy; Godfrey, Tony E; Que, Jianwen; Sun, Jun; Wu, Tong Tong; Zhou, Zhongren

    2017-01-01

    Bile acid reflux in the esophagus plays an important role in the carcinogenesis of esophageal adenocarcinoma (EAC). The G-protein coupled bile acid receptor (TGR5) has been associated with the development of gastrointestinal cancer. However, little is known regarding the role of TGR5 in esophageal carcinoma and precancerous lesions. We analyzed genomic DNA from 116 EACs for copy number aberrations via Affymetrix SNP6.0 microarrays. The TGR5 gene locus was amplified in 12.7% (14/116) of the EACs. The TGR5 protein expression was also assessed using immunohistochemistry from tissue microarrays, including Barrett’s esophagus (BE), low-(LGD) and high-grade dysplasia (HGD), columnar cell metaplasia (CM), squamous epithelium (SE), EAC and squamous cell carcinoma. The TGR5 protein was highly expressed in 71% of EAC (75/106), 100% of HGD (11/11), 72% of LGD (13/18), 66% of BE (23/35), 84% of CM (52/62), and 36% of SE (30/83). The patients with high expression of TGR5 exhibited significantly worse overall survival compared to the patients with nonhigh expression. TGR5 high expression was significantly increased in the males compared to the females in all cases with an odds ratio of 1.9 times. The vitamin D receptor (VDR) was significantly correlated with TGR5 expression. Our findings indicated that TGR5 may play an important role in the development and prognosis of EAC through a bile acid ligand. Gender differences in TGR5 and VDR expression may explain why males have a higher incidence of EAC compared to females. PMID:28223834

  11. RANKL/RANK/OPG cytokine receptor system: mRNA expression pattern in BPH, primary and metastatic prostate cancer disease.

    PubMed

    Christoph, Frank; König, Frank; Lebentrau, Steffen; Jandrig, Burkhard; Krause, Hans; Strenziok, Romy; Schostak, Martin

    2018-02-01

    The cytokine system RANKL (receptor activator of NF-κB ligand), its receptor RANK and the antagonist OPG (osteoprotegerin) play a critical role in bone turnover. Our investigation was conducted to describe the gene expression at primary tumour site in prostate cancer patients and correlate the results with Gleason Score and PSA level. Seventy-one samples were obtained from prostate cancer patients at the time of radical prostatectomy and palliative prostate resection (n = 71). Patients with benign prostate hyperplasia served as controls (n = 60). We performed real-time RT-PCR after microdissection of the samples. The mRNA expression of RANK was highest in tumour tissue from patients with bone metastases (p < 0.001) as compared to BPH or locally confined tumours, also shown in clinical subgroups distinguished by Gleason Score (< 7 or ≥ 7, p = 0.028) or PSA level (< 10 or ≥ 10 µg/l, p = 0.004). RANKL and OPG mRNA expression was higher in tumour tissue from patients with metastatic compared to local disease. The RANKL/OPG ratio was low in normal prostate tissue and high tumours with bone metastases (p < 0.05). Expression of all three cytokines was high in BPH tissue but did not exceed as much as in the tumour tissue. We demonstrated that RANK, RANKL and OPG are directly expressed by prostate cancer cells at the primary tumour site and showed a clear correlation with Gleason Score, serum PSA level and advanced disease. In BPH, mRNA expression is also detectable, but RANK expression does not exceed as much as compared to tumour tissue.

  12. Peroxisome proliferator-activated receptor (PPAR) isoforms are differentially expressed in peri-implantation porcine conceptuses.

    PubMed

    Blitek, Agnieszka; Szymanska, Magdalena

    2017-10-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of ligand-dependent transcription factors. PPARs are critical regulators of glucose homeostasis and lipid metabolism, and affect cell proliferation and differentiation. In the current study, we examined (1) the profiles of PPARA, PPARD, and PPARG mRNA expression and DNA binding activity in porcine conceptuses collected on Days 10-11 (spherical and tubular conceptuses), 11-12 (filamentous conceptuses), 13-14, and 15-16 (elongated conceptuses) of pregnancy, (2) the presence of PPARA, PPARD, and PPARG proteins in Days 10, 12, and 15 conceptuses. Moreover, we analyzed the abundance of retinoid X receptor (RXR; PPARs heterodimer partner) transcripts as well as the correlation between PPARs mRNA expression and the expression of genes important for and/or associated with elongation of porcine conceptuses: aromatase (CYP19A1), prostaglandin endoperoxide synthase 2 (PTGS2), glucose transporter 1 (SLC2A1), and interleukin 1B (IL1B). PPARA mRNA expression in conceptuses did not change during Days 10-14 of gestation, but was greater on Days 15-16 compared to Days 10-11 (P < 0.05). A considerable increase in PPARD and PPARG mRNA expression was observed in filamentous conceptuses from Days 11-12 compared to spherical and tubular conceptuses from Days 10-11 (P < 0.01), followed by a decrease on Days 13-14 and 15-16 (P < 0.05). PPARA, PPARD, and PPARG proteins were present in conceptus tissue demonstrating nuclear localization clearly visible on Days 12 and 15 of pregnancy. DNA binding activity of the PPARD isoform was greater in filamentous conceptuses from Days 11-12 than in spherical and tubular conceptuses from Days 10-11 (P < 0.01). Moreover, concentrations of active PPARD and PPARG proteins in nuclear fractions of conceptus tissue were greater on Days 11-12 compared to Days 13-14 and 15-16 of pregnancy (P < 0.05). RXRA, RXRD, and RXRG mRNA expression in conceptuses increased on Days 11-12 compared to Days 10-11 (P < 0.05). PPARD and PPARG mRNA expression showed strong positive correlations with PTGS2 mRNA expression (P < 0.0001). Additionally, PPARD gene expression correlated with SLC2A1 and IL1B mRNA expression (P < 0.01). Collectively, these results indicate that among all three PPARs expressed in peri-implantation porcine conceptuses, PPARD and PPARG may be involved in conceptus elongation before implantation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Olfactory discrimination largely persists in mice with defects in odorant receptor expression and axon guidance.

    PubMed

    Knott, Thomas K; Madany, Pasil A; Faden, Ashley A; Xu, Mei; Strotmann, Jörg; Henion, Timothy R; Schwarting, Gerald A

    2012-07-04

    The defining feature of the main olfactory system in mice is that each olfactory sensory neuron expresses only one of more than a thousand different odorant receptor genes. Axons expressing the same odorant receptor converge onto a small number of targets in the olfactory bulb such that each glomerulus is made up of axon terminals expressing just one odorant receptor. It is thought that this precision in axon targeting is required to maintain highly refined odor discrimination. We previously showed that β3GnT2(-/-) mice have severe developmental and axon guidance defects. The phenotype of these mice is similar to adenylyl cyclase 3 (AC3) knockout mice largely due to the significant down-regulation of AC3 activity in β3GnT2(-/-) neurons. Microarray analysis reveals that nearly one quarter of all odorant receptor genes are down regulated in β3GnT2(-/-) mice compared to controls. Analysis of OR expression by quantitative PCR and in situ hybridization demonstrates that the number of neurons expressing some odorant receptors, such as mOR256-17, is increased by nearly 60% whereas for others such as mOR28 the number of neurons is decreased by more than 75% in β3GnT2(-/-) olfactory epithelia. Analysis of axon trajectories confirms that many axons track to inappropriate targets in β3GnT2(-/-) mice, and some glomeruli are populated by axons expressing more than one odorant receptor. Results show that mutant mice perform nearly as well as control mice in an odor discrimination task. In addition, in situ hybridization studies indicate that the expression of several activity dependent genes is unaffected in β3GnT2(-/-) olfactory neurons. Results presented here show that many odorant receptors are under-expressed in β3GnT2(-/-) mice and further demonstrate that additional axon subsets grow into inappropriate targets or minimally innervate glomeruli in the olfactory bulb. Odor evoked gene expression is unchanged and β3GnT2(-/-) mice exhibit a relatively small deficit in their ability to discriminate divergent odors. Results suggest that despite the fact that β3GnT2(-/-) mice have decreased AC3 activity, decreased expression of many ORs, and display many axon growth and guidance errors, odor-evoked activity in cilia of mutant olfactory neurons remains largely intact.

  14. Temporal and regional alterations in NMDA receptor expression in Mecp2-null mice

    PubMed Central

    Blue, Mary E.; Kaufmann, Walter E.; Bressler, Joseph; Eyring, Charlotte; O’Driscoll, Cliona; Naidu, SakkuBai; Johnston, Michael V.

    2014-01-01

    Our previous postmortem study of girls with Rett Syndrome (RTT), a development disorder caused by MECP2 mutations, found increases in the density of NMDA receptors in the prefrontal cortex of 2–8 year-old girls, while girls older than 10 years had reductions in NMDA receptors compared to age matched controls (Blue et al., 1999b). Using [3H]-CGP to label NMDA type glutamate receptors in 2 and 7 week old wildtype (WT), Mecp2-null and Mecp2-heterozygous (HET) mice (Bird model), we found that frontal areas of the brain also exhibited a bimodal pattern in NMDA expression, with increased densities of NMDA receptors in Mecp2-null mice at 2 weeks of age, but decreased densities at 7 weeks of age. Visual cortex showed a similar pattern, while other cortical regions only exhibited changes in NMDA receptor densities at 2 weeks (retrosplenial granular) or 7 weeks (somatosensory). In thalamus of null mice, NMDA receptors were increased at 2 and 7 weeks. No significant differences in density were found between HET and WT mice at both ages. Western blots for NMDAR1 expression in frontal brain showed higher levels of expression in Mecp2-null mice at two weeks of age, but not at 1 or 7 weeks of age. Our mouse data support the notion that deficient MeCP2 function is the primary cause of the NMDA receptor changes we observed in RTT. Furthermore, the findings of regional and temporal differences in NMDA expression illustrate the importance of age and brain region in evaluating different genotypes of mice. PMID:21901842

  15. Pharmacological characterization of extracellular acidification rate responses in human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, M C; Boyfield, I; Brown, A M; Stemp, G; Middlemiss, D N

    1999-01-01

    This study characterized pharmacologically the functional responses to agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) zreceptors separately expressed in cloned cells using the cytosensor microphysiometer. Dopaminergic receptor agonists caused increases in extracellular acidification rate in adherent Chinese hamster ovary (CHO) clones expressing hD2, hD3 or hD4 receptors. Acidification rate responses to agonists in other cell lines expressing these receptors were smaller than those in adherent CHO cells. The time courses and maximum increases in acidification rate of the agonist responses in adherent CHO cells were different between the three dopamine receptor clones. Responses were blocked by pretreatment of cells with pertussis toxin or amiloride analogues. Most agonists had full intrinsic activity at each of the dopamine receptor subtypes, as compared to quinpirole, however both enantiomers of UH-232 and (−)3-PPP were partial agonists in this assay system. The functional potency of full agonists at each of the three receptors expressed in CHO cells was either higher than, or similar to, the apparent inhibition constants (Ki) determined in [125I]-iodosulpride competition binding studies. Functional selectivities of the agonists were less than radioligand binding selectivities. The rank orders of agonist potencies and selectivities were similar, but not identical, to the rank orders of radioligand binding affinities and selectivities. The dopamine receptor antagonists, iodosulpride and clozapine, had no effect on basal acidification rates but inhibited acidification responses in CHO cells to quinpirole in an apparently competitive manner. Antagonist potencies closely matched their radioligand binding affinities in these cells. PMID:10455259

  16. Evaluation of the Pichia pastoris expression system for the production of GPCRs for structural analysis

    PubMed Central

    2011-01-01

    Background Various protein expression systems, such as Escherichia coli (E. coli), Saccharomyces cerevisiae (S. cerevisiae), Pichia pastoris (P. pastoris), insect cells and mammalian cell lines, have been developed for the synthesis of G protein-coupled receptors (GPCRs) for structural studies. Recently, the crystal structures of four recombinant human GPCRs, namely β2 adrenergic receptor, adenosine A2a receptor, CXCR4 and dopamine D3 receptor, were successfully determined using an insect cell expression system. GPCRs expressed in insect cells are believed to undergo mammalian-like posttranscriptional modifications and have similar functional properties than in mammals. Crystal structures of GPCRs have not yet been solved using yeast expression systems. In the present study, P. pastoris and insect cell expression systems for the human muscarinic acetylcholine receptor M2 subtype (CHRM2) were developed and the quantity and quality of CHRM2 synthesized by both expression systems were compared for the application in structural studies. Results The ideal conditions for the expression of CHRM2 in P. pastoris were 60 hr at 20°C in a buffer of pH 7.0. The specific activity of the expressed CHRM2 was 28.9 pmol/mg of membrane protein as determined by binding assays using [3H]-quinuclidinyl benzilate (QNB). Although the specific activity of the protein produced by P. pastoris was lower than that of Sf9 insect cells, CHRM2 yield in P. pastoris was 2-fold higher than in Sf9 insect cells because P. pastoris was cultured at high cell density. The dissociation constant (Kd) for QNB in P. pastoris was 101.14 ± 15.07 pM, which was similar to that in Sf9 insect cells (86.23 ± 8.57 pM). There were no differences in the binding affinity of CHRM2 for QNB between P. pastoris and Sf9 insect cells. Conclusion Compared to insect cells, P. pastoris is easier to handle, can be grown at lower cost, and can be expressed quicker at a large scale. Yeast, P. pastoris, and insect cells are all effective expression systems for GPCRs. The results of the present study strongly suggested that protein expression in P. pastoris can be applied to the structural and biochemical studies of GPCRs. PMID:21513509

  17. PDGFRα promoter polymorphisms and expression patterns influence risk of development of imatinib-induced thrombocytopenia in chronic myeloid leukemia: A study from India.

    PubMed

    Guru, Sameer Ahmad; Mir, Rashid; Bhat, Musadiq; Najar, Imtiyaz; Zuberi, Mariyam; Sumi, Mamta; Masroor, Mirza; Gupta, Naresh; Saxena, Alpana

    2017-10-01

    Platelet-derived growth factor receptor has been implicated in many malignant and non-malignant diseases. Platelet-derived growth factor receptor-α is a tyrosine kinase and a side target for imatinib, a revolutionary drug for the treatment of chronic myeloid leukemia that has dramatically improved the survival of chronic myeloid leukemia patients. Given the importance of platelet-derived growth factor receptor in platelet development and its inhibition by imatinib, it was intriguing to analyze the role of platelet-derived growth factor receptor-α in relation to imatinib treatment in the development of imatinib-induced thrombocytopenia in chronic myeloid leukemia patients. We hypothesized that two known functional polymorphisms, +68GA insertion/deletion and -909C/A, in the promoter region of the platelet-derived growth factor receptor-α gene may affect the susceptibility of chronic myeloid leukemia patients receiving imatinib treatment to the development of thrombocytopenia. A case-control study was conducted among a cohort of chronic myeloid leukemia patients admitted to the Lok Nayak Hospital, New Delhi, India. A set of 100 patients of chronic myeloid leukemia in chronic phase and 100 age- and sex-matched healthy controls were studied. After initiation of imatinib treatment, the hematological response of chronic myeloid leukemia patients was monitored regularly for 2 years, in which the development of thrombocytopenia was the primary end point. Platelet-derived growth factor receptor-α promoter polymorphisms +68GA ins/del and -909C/A were studied by allele-specific polymerase chain reaction. Platelet-derived growth factor receptor-α messenger RNA expression was evaluated by quantitative real-time polymerase chain reaction. The messenger RNA expression results were expressed as 2 -Δct ± standard deviation. The distribution of +68GA ins/del promoter polymorphism genotypes differed significantly between the thrombocytopenic and non-thrombocytopenic chronic myeloid leukemia patient groups (p < 0.0001). Moreover, +68GA del/del and ins/del genotypes in imatinib-treated chronic myeloid leukemia patients were associated with an increased risk of developing thrombocytopenia, with odds ratios 6.5 (95% confidence interval = 2.02-0.89, p = 0.001) and 6.0 (95% confidence interval = 2.26-15.91, p = 0.0002), respectively. Similarly, -909C/A promoter polymorphism genotype distribution also differed significantly between thrombocytopenic and non-thrombocytopenic chronic myeloid leukemia patient groups (p = 0.02), and a significantly increased risk of imatinib-induced thrombocytopenia was associated with -909C/A polymorphism mutant homozygous (AA) genotypes the odds ratio being 7.7 (95% confidence interval 1.50 to 39.91, p = 0.009). However, no significant risk of imatinib-induced thrombocytopenia was found to be associated with heterozygous genotype (-909C/A) with odds ratio 1.9 (95% confidence interval = 0.86-4.56, p = 1.14). Platelet-derived growth factor receptor-α messenger RNA expression was significantly higher in chronic myeloid leukemia patients compared to controls (p = 0.008). Moreover, patients with imatinib-induced thrombocytopenia had a significantly lower platelet-derived growth factor receptor-α messenger RNA expression, compared to patients without thrombocytopenia (p = 0.01). A differential expression of platelet-derived growth factor receptor-α messenger RNA was observed with respect to different +68 GA ins/del and -909C/A polymorphism genotypes. The +68GA deletion allele and -909A allele were significantly associated with lower expression of platelet-derived growth factor receptor-α messenger RNA. The platelet-derived growth factor receptor-α +68GA del/del, +68GA ins/del, and -909AA genotypes are associated with an increased risk of developing thrombocytopenia in imatinib-treated chronic myeloid leukemia patients. A significantly lower platelet-derived growth factor receptor-α messenger RNA expression accompanies the +68GA deletion allele in an allele dose-dependent manner. Platelet-derived growth factor receptor-α -909AA genotype is also associated with lower expression of platelet-derived growth factor receptor-α. The downregulation of platelet-derived growth factor receptor-α expression may play a causative role in imatinib-induced thrombocytopenia, a common side effect, in the subset of chronic myeloid leukemia patients with platelet-derived growth factor receptor-α +68 GA ins/del, +68 GA del/del, and -909C/A genotypes.

  18. Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma.

    PubMed

    Planagumà, Anna; Kazani, Shamsah; Marigowda, Gautham; Haworth, Oliver; Mariani, Thomas J; Israel, Elliot; Bleecker, Eugene R; Curran-Everett, Douglas; Erzurum, Serpil C; Calhoun, William J; Castro, Mario; Chung, Kian Fan; Gaston, Benjamin; Jarjour, Nizar N; Busse, William W; Wenzel, Sally E; Levy, Bruce D

    2008-09-15

    Airway inflammation is common in severe asthma despite antiinflammatory therapy with corticosteroids. Lipoxin A(4) (LXA(4)) is an arachidonic acid-derived mediator that serves as an agonist for resolution of inflammation. Airway levels of LXA(4), as well as the expression of lipoxin biosynthetic genes and receptors, in severe asthma. Samples of bronchoalveolar lavage fluid were obtained from subjects with asthma and levels of LXA(4) and related eicosanoids were measured. Expression of lipoxin biosynthetic genes was determined in whole blood, bronchoalveolar lavage cells, and endobronchial biopsies by quantitative polymerase chain reaction, and leukocyte LXA(4) receptors were monitored by flow cytometry. Individuals with severe asthma had significantly less LXA(4) in bronchoalveolar lavage fluids (11.2 +/- 2.1 pg/ml) than did subjects with nonsevere asthma (150.1 +/- 38.5 pg/ml; P < 0.05). In contrast, levels of cysteinyl leukotrienes were increased in both asthma cohorts compared with healthy individuals. In severe asthma, 15-lipoxygenase-1 mean expression was decreased fivefold in bronchoalveolar lavage cells. In contrast, 15-lipoxgenase-1 was increased threefold in endobronchial biopsies, but expression of both 5-lipoxygenase and 15-lipoxygenase-2 in these samples was decreased. Cyclooxygenase-2 expression was decreased in all anatomic compartments sampled in severe asthma. Moreover, LXA(4) receptor gene and protein expression were significantly decreased in severe asthma peripheral blood granulocytes. Mechanisms underlying pathological airway responses in severe asthma include lipoxin underproduction with decreased expression of lipoxin biosynthetic enzymes and receptors. Together, these results indicate that severe asthma is characterized, in part, by defective lipoxin counterregulatory signaling circuits.

  19. PI3K is involved in PDGF-beta receptor upregulation post-PDGF-BB treatment in mouse HSC.

    PubMed

    Lechuga, Carmen G; Hernández-Nazara, Zamira H; Hernández, Elizabeth; Bustamante, Marcia; Desierto, Gregory; Cotty, Adam; Dharker, Nachiket; Choe, Moran; Rojkind, Marcos

    2006-12-01

    Increased expression of PDGF-beta receptors is a landmark of hepatic stellate cell activation and transdifferentiation into myofibroblasts. However, the molecular mechanisms that regulate the fate of the receptor are lacking. Recent studies suggested that N-acetylcysteine enhances the extracellular degradation of PDGF-beta receptor by cathepsin B, thus suggesting that the absence of PDGF-beta receptors in quiescent cells is due to an active process of elimination and not to a lack of expression. In this communication we investigated further molecular mechanisms involved in PDGF-beta receptor elimination and reappearance after incubation with PDGF-BB. We showed that in culture-activated hepatic stellate cells there is no internal protein pool of receptor, that the protein is maximally phosphorylated by 5 min and completely degraded after 1 h by a lysosomal-dependent mechanism. Inhibition of receptor autophosphorylation by tyrphostin 1296 prevented its degradation, but several proteasomal inhibitors had no effect. We also showed that receptor reappearance is time and dose dependent, being more delayed in cells treated with 50 ng/ml (48 h) compared with 10 ng/ml (24 h).

  20. The Role of Cholecystokinin in Peripheral Taste Signaling in Mice

    PubMed Central

    Yoshida, Ryusuke; Shin, Misa; Yasumatsu, Keiko; Takai, Shingo; Inoue, Mayuko; Shigemura, Noriatsu; Takiguchi, Soichi; Nakamura, Seiji; Ninomiya, Yuzo

    2017-01-01

    Cholecystokinin (CCK) is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways. CCK is also expressed in taste buds, suggesting potential roles of CCK in taste signaling in the peripheral taste organ. In the present study, we focused on the function of CCK in the initial responses to taste stimulation. CCK was coexpressed with type II taste cell markers such as Gα-gustducin, phospholipase Cβ2, and transient receptor potential channel M5. Furthermore, a small subset (~30%) of CCK-expressing taste cells expressed a sweet/umami taste receptor component, taste receptor type 1 member 3, in taste buds. Because type II taste cells are sweet, umami or bitter taste cells, the majority of CCK-expressing taste cells may be bitter taste cells. CCK-A and -B receptors were expressed in both taste cells and gustatory neurons. CCK receptor knockout mice showed reduced neural responses to bitter compounds compared with wild-type mice. Consistently, intravenous injection of CCK-Ar antagonist lorglumide selectively suppressed gustatory nerve responses to bitter compounds. Intravenous injection of CCK-8 transiently increased gustatory nerve activities in a dose-dependent manner whereas administration of CCK-8 did not affect activities of bitter-sensitive taste cells. Collectively, CCK may be a functionally important neurotransmitter or neuromodulator to activate bitter nerve fibers in peripheral taste tissues. PMID:29163209

  1. Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes.

    PubMed

    Morrison, R Ray; Teng, Bunyen; Oldenburg, Peter J; Katwa, Laxmansa C; Schnermann, Jurgen B; Mustafa, S Jamal

    2006-10-01

    To examine ischemic tolerance in the absence of A(1) adenosine receptors (A(1)ARs), isolated wild-type (WT) and A(1)AR knockout (A(1)KO) murine hearts underwent global ischemia-reperfusion, and injury was measured in terms of functional recovery and efflux of lactate dehydrogenase (LDH). Hearts were analyzed by real-time RT-PCR both at baseline and at intervals during ischemia-reperfusion to determine whether compensatory expression of other adenosine receptor subtypes occurs with either A(1)AR deletion and/or ischemia-reperfusion. A(1)KO hearts had higher baseline coronary flow (CF) and left ventricular developed pressure (LVDP) than WT hearts, whereas heart rate was unchanged by A(1)AR deletion. After 20 min of ischemia, CF was attenuated in A(1)KO compared with WT hearts, and this reduction persisted throughout reperfusion. Final recovery of LVDP was decreased in A(1)KO hearts (54.4 +/- 5.1 vs. WT 81.1 +/- 3.4% preischemic baseline) and correlated with higher diastolic pressure during reperfusion. Postischemic efflux of LDH was greater in A(1)KO compared with WT hearts. Real-time RT-PCR demonstrated the absence of A(1)AR transcript in A(1)KO hearts, and the message for A(2A), A(2B), and A(3) adenosine receptors was similar in uninstrumented A(1)KO and WT hearts. Ischemia-reperfusion increased A(2B) mRNA expression 2.5-fold in both WT and A(1)KO hearts without changing A(1) or A(3) expression. In WT hearts, ischemia transiently doubled A(2A) mRNA, which returned to preischemic level upon reperfusion, a pattern not observed in A(1)KO hearts. Together, these data affirm the cardioprotective role of A(1)ARs and suggest that induced expression of other adenosine receptor subtypes may participate in the response to ischemia-reperfusion in isolated murine hearts.

  2. Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice.

    PubMed

    Gillis, Caitlin M; Jönsson, Friederike; Mancardi, David A; Tu, Naxin; Beutier, Héloïse; Van Rooijen, Nico; Macdonald, Lynn E; Murphy, Andrew J; Bruhns, Pierre

    2017-04-01

    Anaphylaxis can proceed through distinct IgE- or IgG-dependent pathways, which have been investigated in various mouse models. We developed a novel mouse strain in which the human low-affinity IgG receptor locus, comprising both activating (hFcγRIIA, hFcγRIIIA, and hFcγRIIIB) and inhibitory (hFcγRIIB) hFcγR genes, has been inserted into the equivalent murine locus, corresponding to a locus swap. We sought to determine the capabilities of hFcγRs to induce systemic anaphylaxis and identify the cell types and mediators involved. hFcγR expression on mouse and human cells was compared to validate the model. Passive systemic anaphylaxis was induced by injection of heat-aggregated human intravenous immunoglobulin and active systemic anaphylaxis after immunization and challenge. Anaphylaxis severity was evaluated based on hypothermia and mortality. The contribution of receptors, mediators, or cell types was assessed based on receptor blockade or depletion. The human-to-mouse low-affinity FcγR locus swap engendered hFcγRIIA/IIB/IIIA/IIIB expression in mice comparable with that seen in human subjects. Knock-in mice were susceptible to passive and active anaphylaxis, accompanied by downregulation of both activating and inhibitory hFcγR expression on specific myeloid cells. The contribution of hFcγRIIA was predominant. Depletion of neutrophils protected against hypothermia and mortality. Basophils contributed to a lesser extent. Anaphylaxis was inhibited by platelet-activating factor receptor or histamine receptor 1 blockade. Low-affinity FcγR locus-switched mice represent an unprecedented model of cognate hFcγR expression. Importantly, IgG-related anaphylaxis proceeds within a native context of activating and inhibitory hFcγRs, indicating that, despite robust hFcγRIIB expression, activating signals can dominate to initiate a severe anaphylactic reaction. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Altered expression of glial markers, chemokines, and opioid receptors in the spinal cord of type 2 diabetic monkeys.

    PubMed

    Kiguchi, Norikazu; Ding, Huiping; Peters, Christopher M; Kock, Nancy D; Kishioka, Shiroh; Cline, J Mark; Wagner, Janice D; Ko, Mei-Chuan

    2017-01-01

    Neuroinflammation is a pathological condition that underlies diabetes and affects sensory processing. Given the high prevalence of pain in diabetic patients and crosstalk between chemokines and opioids, it is pivotal to know whether neuroinflammation-associated mediators are dysregulated in the central nervous system of diabetic primates. Therefore, the aim of this study was to investigate whether mRNA expression levels of glial markers, chemokines, and opioid receptors are altered in the spinal cord and thalamus of naturally occurring type 2 diabetic monkeys (n=7) compared with age-matched non-diabetic monkeys (n=6). By using RT-qPCR, we found that mRNA expression levels of both GFAP and IBA1 were up-regulated in the spinal dorsal horn (SDH) of diabetic monkeys compared with non-diabetic monkeys. Among all chemokines, expression levels of three chemokine ligand-receptor systems, i.e., CCL2-CCR2, CCL3-CCR1/5, and CCL4-CCR5, were up-regulated in the SDH of diabetic monkeys. Moreover, in the SDH, seven additional chemokine receptors, i.e., CCR4, CCR6, CCR8, CCR10, CXCR3, CXCR5, and CXCR6, were also up-regulated in diabetic monkeys. In contrast, expression levels of MOP, KOP, and DOP, but not NOP receptors, were down-regulated in the SDH of diabetic monkeys, and the thalamus had fewer changes in the glial markers, chemokines and opioids. These findings indicate that neuroinflammation, manifested as glial activation and simultaneous up-regulation of multiple chemokine ligands and receptors, seems to be permanent in type 2 diabetic monkeys. As chemokines and opioids are important pain modulators, this first-in-primate study provides a translational bridge for determining the functional efficacy of spinal drugs targeting their signaling cascades. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The pharmacological rationale for combining muscarinic receptor antagonists and β-adrenoceptor agonists in the treatment of airway and bladder disease☆

    PubMed Central

    Dale, Philippa R; Cernecka, Hana; Schmidt, Martina; Dowling, Mark R; Charlton, Steven J; Pieper, Michael P; Michel, Martin C

    2014-01-01

    Muscarinic receptor antagonists and β-adrenoceptor agonists are used in the treatment of obstructive airway disease and overactive bladder syndrome. Here we review the pharmacological rationale for their combination. Muscarinic receptors and β-adrenoceptors are physiological antagonists for smooth muscle tone in airways and bladder. Muscarinic agonism may attenuate β-adrenoceptor-mediated relaxation more than other contractile stimuli. Chronic treatment with one drug class may regulate expression of the target receptor but also that of the opposing receptor. Prejunctional β2-adrenoceptors can enhance neuronal acetylcholine release. Moreover, at least in the airways, muscarinic receptors and β-adrenoceptors are expressed in different locations, indicating that only a combined modulation of both systems may cause dilatation along the entire bronchial tree. While all of these factors contribute to a rationale for a combination of muscarinic receptor antagonists and β-adrenoceptor agonists, the full value of such combination as compared to monotherapy can only be determined in clinical studies. PMID:24682092

  5. Evaluation of somatostatin, CXCR4 chemokine and endothelin A receptor expression in a large set of paragangliomas.

    PubMed

    Kaemmerer, Daniel; Sänger, Jörg; Arsenic, Ruza; D'Haese, Jan G; Neumann, Jens; Schmitt-Graeff, Annette; Wirtz, Ralph Markus; Schulz, Stefan; Lupp, Amelie

    2017-10-27

    Paragangliomas are predominantly benign tumors, but in some cases invasive growth and also metastasis are observed. Given the limited number of nonsurgical treatment options, novel target structures for diagnostics and therapy of this tumor entity are urgently needed. In the present study, expression of all five somatostatin receptor (SST) subtypes, chemokine receptor CXCR4 and endothelin receptor type A (ETA) was assessed by means of immunohistochemistry in a total of 66 paraffin-embedded paraganglioma samples from 55 patients. The stainings were rated by means of the Immunoreactive Score and correlated to clinical data and to succinate dehydrogenase subunit B (SDHB) expression. SST2A was by far the most prominent receptor in the paragangliomas investigated. It was present in 89% of the tumors at a high intensity, followed by SST5, SST3, SST1 and SST4, which were detected in 47%, 35%, 35% and 13% of the samples, respectively. SDHB positive tumors exhibited significantly higher SST2A and SST3 expression as compared to SDHB negative cases. There was no correlation between SST and Ki-67 expression or grading of the tumors and no difference in SST expression between primary tumors and metastases. Cell surface expression of CXCR4 and ETA was detected only in few samples. On tumor capillaries, however, exceptionally strong staining for these two receptors was noticed in the vast majority of the tumors. In conclusion, paragangliomas are well suited for SST2A-based diagnostics and treatment modalities. An indirect targeting of these highly vascularized tumors via CXCR4 or ETA may also represent a promising future strategy.

  6. Evaluation of somatostatin, CXCR4 chemokine and endothelin A receptor expression in a large set of paragangliomas

    PubMed Central

    Kaemmerer, Daniel; Sänger, Jörg; Arsenic, Ruza; D’Haese, Jan G.; Neumann, Jens; Schmitt-Graeff, Annette; Wirtz, Ralph Markus; Schulz, Stefan; Lupp, Amelie

    2017-01-01

    Paragangliomas are predominantly benign tumors, but in some cases invasive growth and also metastasis are observed. Given the limited number of nonsurgical treatment options, novel target structures for diagnostics and therapy of this tumor entity are urgently needed. In the present study, expression of all five somatostatin receptor (SST) subtypes, chemokine receptor CXCR4 and endothelin receptor type A (ETA) was assessed by means of immunohistochemistry in a total of 66 paraffin-embedded paraganglioma samples from 55 patients. The stainings were rated by means of the Immunoreactive Score and correlated to clinical data and to succinate dehydrogenase subunit B (SDHB) expression. SST2A was by far the most prominent receptor in the paragangliomas investigated. It was present in 89% of the tumors at a high intensity, followed by SST5, SST3, SST1 and SST4, which were detected in 47%, 35%, 35% and 13% of the samples, respectively. SDHB positive tumors exhibited significantly higher SST2A and SST3 expression as compared to SDHB negative cases. There was no correlation between SST and Ki-67 expression or grading of the tumors and no difference in SST expression between primary tumors and metastases. Cell surface expression of CXCR4 and ETA was detected only in few samples. On tumor capillaries, however, exceptionally strong staining for these two receptors was noticed in the vast majority of the tumors. In conclusion, paragangliomas are well suited for SST2A-based diagnostics and treatment modalities. An indirect targeting of these highly vascularized tumors via CXCR4 or ETA may also represent a promising future strategy. PMID:29163802

  7. Estrogen receptor α dependent regulation of estrogen related receptor β and its role in cell cycle in breast cancer.

    PubMed

    Madhu Krishna, B; Chaudhary, Sanjib; Mishra, Dipti Ranjan; Naik, Sanoj K; Suklabaidya, S; Adhya, A K; Mishra, Sandip K

    2018-05-30

    Breast cancer (BC) is highly heterogeneous with ~ 60-70% of estrogen receptor positive BC patient's response to anti-hormone therapy. Estrogen receptors (ERs) play an important role in breast cancer progression and treatment. Estrogen related receptors (ERRs) are a group of nuclear receptors which belong to orphan nuclear receptors, which have sequence homology with ERs and share target genes. Here, we investigated the possible role and clinicopathological importance of ERRβ in breast cancer. Estrogen related receptor β (ERRβ) expression was examined using tissue microarray slides (TMA) of Breast Carcinoma patients with adjacent normal by immunohistochemistry and in breast cancer cell lines. In order to investigate whether ERRβ is a direct target of ERα, we investigated the expression of ERRβ in short hairpin ribonucleic acid knockdown of ERα breast cancer cells by western blot, qRT-PCR and RT-PCR. We further confirmed the binding of ERα by electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), Re-ChIP and luciferase assays. Fluorescence-activated cell sorting analysis (FACS) was performed to elucidate the role of ERRβ in cell cycle regulation. A Kaplan-Meier Survival analysis of GEO dataset was performed to correlate the expression of ERRβ with survival in breast cancer patients. Tissue microarray (TMA) analysis showed that ERRβ is significantly down-regulated in breast carcinoma tissue samples compared to adjacent normal. ER + ve breast tumors and cell lines showed a significant expression of ERRβ compared to ER-ve tumors and cell lines. Estrogen treatment significantly induced the expression of ERRβ and it was ERα dependent. Mechanistic analyses indicate that ERα directly targets ERRβ through estrogen response element and ERRβ also mediates cell cycle regulation through p18, p21 cip and cyclin D1 in breast cancer cells. Our results also showed the up-regulation of ERRβ promoter activity in ectopically co-expressed ERα and ERRβ breast cancer cell lines. Fluorescence-activated cell sorting analysis (FACS) showed increased G0/G1 phase cell population in ERRβ overexpressed MCF7 cells. Furthermore, ERRβ expression was inversely correlated with overall survival in breast cancer. Collectively our results suggest cell cycle and tumor suppressor role of ERRβ in breast cancer cells which provide a potential avenue to target ERRβ signaling pathway in breast cancer. Our results indicate that ERRβ is a negative regulator of cell cycle and a possible tumor suppressor in breast cancer. ERRβ could be therapeutic target for the treatment of breast cancer.

  8. Identification and characterization of pyrokinin and CAPA peptides, and corresponding GPCRs from spotted wing drosophila, Drosophila suzukii.

    PubMed

    Choi, Man-Yeon; Ahn, Seung-Joon; Kim, A Young; Koh, Youngho

    2017-05-15

    The family of FXPRLamide peptides serves as a major insect hormone. It is characterized by a core active amino acid sequence conserved at the C-terminal ends, and provides various physiological roles across the Insecta. In this study we identified and characterized pyrokinin (PK) and CAPA cDNAs encoding two FXPRLamide peptides, pyrokinin and CAPA-DH (diapause hormone), and two corresponding G protein-coupled receptors (GPCRs) from spotted wing drosophila (SWD), Drosophila suzukii. Expressions of PK and CAPA mRNAs were differentially observed during all life stages except the embryo, and the detection of CAPA transcription was relatively strong compared with the PK gene in SWD. Both D. suzukii pyrokinin receptor (DrosuPKr) and CAPA-DH receptor (DrosuCAPA-DHr) were functionally expressed and confirmed through binding to PK and DH peptides. Differential expression of two GPCRs occurred during all life stages; a strong transcription of DrosuPKr was observed in the 3rd instar. DrosuCAPA-DHr was clearly expressed from the embryo to the larva, but not detected in the adult. Gene regulation during the life stages was not synchronized between ligand and receptor. For example, SWD CAPA mRNA has been up-regulated in the adult while CAPA-DHr was down-regulated. The difference could be from the CAPA mRNA translating multiple peptides including CAPA-DH and two CAPA-PVK (periviscerokinin) peptides to act on different receptors. Comparing the genes of SWD PK, CAPA, PKr and CAPA-DHr to four corresponding genes of D. melanogaster, SWD CAPA and the receptor are more similar to D. melanogaster than PK and the receptor. These data suggest that the CAPA gene could be evolutionally more conserved to have a common biological role in insects. In addition, the effect of Kozak sequences was investigated by the expression of the GPCRs with or without Kozak sequences in Sf9 insect cells. The Kozak sequenced PK receptor was significantly less active than the original (= no Kozak sequenced) receptor. Our results provide a knowledge for potential biological function(s) of PK and CAPA-DH peptides in SWD, and possibly offer a novel control method for this pest insect in the future. Published by Elsevier Inc.

  9. The expression of human natural killer cell receptors in early life.

    PubMed

    Sundström, Y; Nilsson, C; Lilja, G; Kärre, K; Troye-Blomberg, M; Berg, L

    2007-01-01

    Natural killer (NK) cells play an important role in tumour immunosurveillance and the early defence against viral infections. Recognition of altered cells (i.e. infected- or tumour-cells) is achieved through a multiple receptor recognition strategy which gives the NK cells inhibitory or activating signals depending on the ligands present on the target cell. NK cells originate from the bone marrow where they develop and proliferate. However, further maturation processes and homeostasis of NK cells in peripheral blood are not well understood. To determine the proportions of cells and the expression of NK cell receptors, mononuclear cells from children at three time points during early childhood were compared, i.e. cord blood (CB), 2 and 5 years of age. The proportion of NK cells was high in CB, but the interferon-gamma (IFN-gamma) production low compared to later in life. In contrast, the proportion of T cells was low in CB. This may indicate a deviation of the regulatory function of NK cells in CB compared to later in life, implying an importance of innate immunity in early life before the adaptive immune system matures. Additionally, we found that the proportion of LIR-1(+) NK cells increased with increasing age while CD94(+)NKG2C(-) (NKG2A(+)) NK cells and the level of expression of NKG2D, NKp30 and NKp46 decreased with age. These age related changes in NK cell populations defined by the expression of activating and inhibitory receptors may be the result of pathogen exposure and/or a continuation of the maturation process that begins in the bone marrow.

  10. Involvement of the orphan nuclear estrogen receptor-related receptor α in osteoclast adhesion and transmigration

    PubMed Central

    Bonnelye, Edith; Saltel, Frédéric; Chabadel, Anne; Zirngibl, Ralph A; Aubin, Jane E; Jurdic, Pierre

    2010-01-01

    The orphan nuclear receptor, estrogen receptor-related receptor α (ERRα) is expressed in osteoblasts and osteoclasts (OCs) and has been proposed to be a modulator of estrogen signaling. To determine the role of ERRα in OC biology, we knocked down ERRα activity by transient transfection of an siRNA directed against ERRα in the RAW264.7 monocyte–macrophage cell line that differentiates into OCs in the presence of receptor activator of nuclear factor κB-ligands and macrophage colony-stimulating factor. In parallel, stable RAW cell lines expressing a dominant-negative form of ERRα and green fluorescent protein (RAW-GFP-ERRαΔAF2) were used. Expression of OC markers was assessed by real-time PCR, and adhesion and transmigration tests were performed. Actin cytoskeletal organization was visualized using confocal microscopy. We found that RAW264.7 cells expressing siRNA directed against ERRα and RAW-GFP-ERRαΔAF2 OCs displayed abnormal spreading, and decreased osteopontin and β3 integrin subunit expression compared with the corresponding control cells. Decreased adhesion and the absence of podosome belts concomitant with abnormal localization of c-src were also observed in RAW-GFP-ERRαΔAF2-derived OCs. In addition, RAW-GFP-ERRαΔAF2-derived OCs failed to transmigrate through osteoblast cell layers. Our data show that the impairment of ERRα function does not alter OC precursor proliferation and differentiation but does alter the adhesion/spreading and migration capacities of mature OCs. PMID:20841427

  11. Altered peroxisome-proliferator activated receptors expression in human endometrial cancer.

    PubMed

    Knapp, Paweł; Chabowski, Adrian; Błachnio-Zabielska, Agnieszka; Jarząbek, Katarzyna; Wołczyński, Sławomir

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) belong to a family of nuclear hormone receptors acting as transcriptional factors, recently involved also in carcinogenesis. Present study was undertaken to evaluate the presence and subcellular localization of different PPAR isoforms (α, β, γ) in healthy endometrial tissue (n = 10) and endometrial carcinoma (FIGO I, endometrioides type, G1, n = 35). We sought to analyze PPARs mRNA content as well as protein immunohistochemical expression that was further quantified by Western Blot technique. For both PPARα and PPARβ, protein expression was significantly higher in endometrial cancers compared to normal endometrial mucosa. In opposite, PPARγ protein expression was lower in endometrial cancer cells. In each case, immunohistochemical reaction was confined to the perinuclear and/or nuclear region. At the transcriptional level, the content of mRNA of all PPAR subunits did not follow the protein pattern of changes. These results provide evidence for altered PPAR's protein expression and disregulation of posttranslational processes in endometrial cancers.

  12. Native serotonin 5-HT3 receptors expressed in Xenopus oocytes differ from homopentameric 5-HT3 receptors.

    PubMed

    van Hooft, J A; Kreikamp, A P; Vijverberg, H P

    1997-09-01

    Efficacies of the 5-hydroxytryptamine (serotonin) 5-HT3 receptor (5-HT3R) agonists 2-methyl-5-HT, dopamine, and m-chlorophenylbiguanide on 5-HT3R native to N1E-115 cells and on homopentameric 5-HT3R expressed in Xenopus oocytes were determined relative to that of 5-HT. Efficacies of 2-methyl-5-HT and dopamine on 5-HT3R native to differentiated N1E-115 cells are high (54 and 36%) as compared with their efficacies on homopentameric 5-HT3R-A(L) and 5-HT3R-A(S) receptors expressed in oocytes (4-8%). m-Chlorophenylbiguanide does not distinguish between 5-HT3R in N1E-115 cells and in oocytes. The distinct pharmacological profile of 5-HT3R native to differentiated N1E-115 cells is conserved when poly(A)+ mRNA from these cells is expressed in oocytes. The results indicate that, apart from the known 5-HT3R subunits, N1E-115 cells express additional proteins involved in 5-HT3R function.

  13. Effects of age and insulin-like growth factor-1 on rat neurotrophin receptor expression after nerve injury.

    PubMed

    Luo, T David; Alton, Timothy B; Apel, Peter J; Cai, Jiaozhong; Barnwell, Jonathan C; Sonntag, William E; Smith, Thomas L; Li, Zhongyu

    2016-10-01

    Neurotrophin receptors, such as p75(NTR) , direct neuronal response to injury. Insulin-like growth factor-1 receptor (IGF-1R) mediates the increase in p75(NTR) during aging. The aim of this study was to examine the effect of aging and insulin-like growth factor-1 (IGF-1) treatment on recovery after peripheral nerve injury. Young and aged rats underwent tibial nerve transection with either local saline or IGF-1 treatment. Neurotrophin receptor mRNA and protein expression were quantified. Aged rats expressed elevated baseline IGF-1R (34% higher, P = 0.01) and p75(NTR) (68% higher, P < 0.01) compared with young rats. Post-injury, aged animals expressed significantly higher p75(NTR) levels (68.5% above baseline at 4 weeks). IGF-1 treatment suppressed p75(NTR) gene expression at 4 weeks (17.2% above baseline, P = 0.002) post-injury. Local IGF-1 treatment reverses age-related declines in recovery after peripheral nerve injuries by suppressing p75(NTR) upregulation and pro-apoptotic complexes. IGF-1 may be considered a viable adjuvant therapy to current treatment modalities. Muscle Nerve 54: 769-775, 2016. © 2016 Wiley Periodicals, Inc.

  14. Enhancing radiosensitization in EphB4 receptor-expressing Head and Neck Squamous Cell Carcinomas

    PubMed Central

    Bhatia, Shilpa; Hirsch, Kellen; Sharma, Jaspreet; Oweida, Ayman; Griego, Anastacia; Keysar, Stephen; Jimeno, Antonio; Raben, David; Krasnoperov, Valery; Gill, Parkash S.; Pasquale, Elena B.; Wang, Xiao-Jing; Karam, Sana D.

    2016-01-01

    Members of the Eph family of receptor tyrosine kinases have been implicated in a wide array of human cancers. The EphB4 receptor is ubiquitously expressed in head and neck squamous cell carcinoma (HNSCC) and has been shown to impart tumorigenic and invasive characteristics to these cancers. In this study, we investigated whether EphB4 receptor targeting can enhance the radiosensitization of HNSCC. Our data show that EphB4 is expressed at high to moderate levels in HNSCC cell lines and patient-derived xenograft (PDX) tumors. We observed decreased survival fractions in HNSCC cells following EphB4 knockdown in clonogenic assays. An enhanced G2 cell cycle arrest with activation of DNA damage response pathway and increased apoptosis was evident in HNSCC cells following combined EphB4 downregulation and radiation compared to EphB4 knockdown and radiation alone. Data using HNSCC PDX models showed significant reduction in tumor volume and enhanced delay in tumor regrowth following sEphB4-HSA administration with radiation compared to single agent treatment. sEphB4-HSA is a protein known to block the interaction between the EphB4 receptor and its ephrin-B2 ligand. Overall, our findings emphasize the therapeutic relevance of EphB4 targeting as a radiosensitizer that can be exploited for the treatment of human head and neck carcinomas. PMID:27941840

  15. Expression of Toll-Like Receptors 2 and 4 and Related Cytokines in Patients with Hepatic Cystic and Alveolar Echinococcosis

    PubMed Central

    Tuxun, Tuerhongjiang; Ma, Hai-Zhang; Apaer, Shadike; Zhang, Heng; Aierken, Amina; Li, Yu-Peng; Lin, Ren-Yong; Zhao, Jin-Ming; Zhang, Jin-Hui; Wen, Hao

    2015-01-01

    Several studies have demonstrated the important role of Toll-like receptors in various parasitic infections. This study aims to explore expression of Toll-like receptors (TLRs) and related cytokines in patients with human cystic echinococcosis (CE) and alveolar echinococcosis (AE). 78 subjects including AE group (N = 28), CE group (N = 22), and healthy controls (HC, N = 28) were enrolled in this study. The mRNA expression levels of TLR2 and TLR4 in blood and hepatic tissue and plasma levels related cytokines were detected by using ELISA. Median levels of TLR2 mRNA in AE and CE groups were significantly elevated as compared with that in healthy control group. Median levels of TLR4 expression were increased in AE and CE. Plasma concentration levels of IL-5, IL-6, and IL-10 were slightly increased in AE and CE groups compared with those in HC group with no statistical differences (p > 0.05). The IL-23 concentration levels were significantly higher in AE and CE groups than that in HC subjects with statistical significance. The increased expression of TLR2 and IL-23 might play a potential role in modulating tissue infiltrative growth of the parasite and its persistence in the human host. PMID:26635448

  16. Activation of Spinal μ- and δ-Opioid Receptors Potently Inhibits Substance P Release Induced by Peripheral Noxious Stimuli

    PubMed Central

    Beaudry, Hélène; Dubois, Dave; Gendron, Louis

    2013-01-01

    Over the past few years, δ-opioid receptors (DOPRs) and μ-opioid receptors (MOPRs) have been shown to interact with each other. We have previously seen that expression of MOPR is essential for morphine and inflammation to potentiate the analgesic properties of selective DOPR agonists. In vivo, it is not clear whether MOPRs and DOPRs are expressed in the same neurons. Indeed, it was recently proposed that these receptors are segregated in different populations of nociceptors, with MOPRs and DOPRs expressed by peptidergic and nonpeptidergic fibers, respectively. In the present study, the role and the effects of DOPR- and MOPR-selective agonists in two different pain models were compared. Using preprotachykinin A knock-out mice, we first confirmed that substance P partly mediates intraplantar formalin- and capsaicin-induced pain behaviors. These mice had a significant reduction in pain behavior compared with wild-type mice. We then measured the effects of intrathecal deltorphin II (DOPR agonist) and DAMGO (MOPR agonist) on pain-like behavior, neuronal activation, and substance P release following formalin and capsaicin injection. We found that both agonists were able to decrease formalin- and capsaicin-induced pain, an effect that was correlated with a reduction in the number of c-fos-positive neurons in the superficial laminae of the lumbar spinal cord. Finally, visualization of NK1 (neurokinin 1) receptor internalization revealed that DOPR and MOPR activation strongly reduced formalin- and capsaicin-induced substance P release via direct action on primary afferent fibers. Together, our results indicate that functional MOPRs and DOPRs are both expressed by peptidergic nociceptors. PMID:21917790

  17. Effects of nandrolone and resistance training on the blood pressure, cardiac electrophysiology, and expression of atrial β-adrenergic receptors.

    PubMed

    das Neves, Vander José; Tanno, Ana Paula; Cunha, Tatiana Sousa; Fernandes, Tiago; Guzzoni, Vinicius; da Silva, Carlos Alberto; de Oliveira, Edilamar Menezes; Moura, Maria José Costa Sampaio; Marcondes, Fernanda Klein

    2013-05-30

    This study was performed to assess isolated and combined effects of nandrolone and resistance training on the blood pressure, cardiac electrophysiology, and expression of the β1- and β2-adrenergic receptors in the heart of rats. Wistar rats were randomly divided into four groups and submitted to a 6-week treatment with nandrolone and/or resistance training. Cardiac hypertrophy was accessed by the ratio of heart weight to the final body weight. Blood pressure was determined by a computerized tail-cuff system. Electrocardiography analyses were performed. Western blotting was used to access the protein levels of the β1- and β2-adrenergic receptors in the right atrium and left ventricle. Both resistance training and nandrolone induced cardiac hypertrophy. Nandrolone increased systolic blood pressure depending on the treatment time. Resistance training decreased systolic, diastolic and mean arterial blood pressure, as well as induced resting bradycardia. Nandrolone prolonged the QTc interval for both trained and non-trained groups when they were compared to their respective vehicle-treated one. Nandrolone increased the expression of β1- and β2-adrenergic receptors in the right atrium for both trained and non-trained groups when they were compared to their respective vehicle-treated one. This study indicated that nandrolone, associated or not with resistance training increases blood pressure depending on the treatment time, induces prolongation of the QTc interval, and increases the expression of β1- and β2-adrenergic receptors in the cardiac right atrium, but not in the left ventricle. Copyright © 2013. Published by Elsevier Inc.

  18. qPCR in gastrointestinal stromal tumors: Evaluation of reference genes and expression analysis of KIT and the alternative receptor tyrosine kinases FLT3, CSF1-R, PDGFRB, MET and AXL

    PubMed Central

    2010-01-01

    Background Gastrointestinal stromal tumors (GIST) represent the most common mesenchymal tumors of the gastrointestinal tract. About 85% carry an activating mutation in the KIT or PDGFRA gene. Approximately 10% of GIST are so-called wild type GIST (wt-GIST) without mutations in the hot spots. In the present study we evaluated appropriate reference genes for the expression analysis of formalin-fixed, paraffin-embedded and fresh frozen samples from gastrointestinal stromal tumors. We evaluated the gene expression of KIT as well as of the alternative receptor tyrosine kinase genes FLT3, CSF1-R, PDGFRB, AXL and MET by qPCR. wt-GIST were compared to samples with mutations in KIT exon 9 and 11 and PDGFRA exon 18 in order to evaluate whether overexpression of these alternative RTK might contribute to the pathogenesis of wt-GIST. Results Gene expression variability of the pooled cDNA samples is much lower than the single reverse transcription cDNA synthesis. By combining the lowest variability values of fixed and fresh tissue, the genes POLR2A, PPIA, RPLPO and TFRC were chosen for further analysis of the GIST samples. Overexpression of KIT compared to the corresponding normal tissue was detected in each GIST subgroup except in GIST with PDGFRA exon 18 mutation. Comparing our sample groups, no significant differences in the gene expression levels of FLT3, CSF1R and AXL were determined. An exception was the sample group with KIT exon 9 mutation. A significantly reduced expression of CSF1R, FLT3 and PDGFRB compared to the normal tissue was detected. GIST with mutations in KIT exon 9 and 11 and in PDGFRA exon 18 showed a significant PDGFRB downregulation. Conclusions As the variability of expression levels for the reference genes is very high comparing fresh frozen and formalin-fixed tissue there is a strong need for validation in each tissue type. None of the alternative receptor tyrosine kinases analyzed is associated with the pathogenesis of wild-type or mutated GIST. It remains to be clarified whether an autocrine or paracrine mechanism by overexpression of receptor tyrosine kinase ligands is responsible for the tumorigenesis of wt-GIST. PMID:21171987

  19. Reduced angiogenic factor expression in intrauterine fetal growth restriction using semiquantitative immunohistochemistry and digital image analysis.

    PubMed

    Alahakoon, Thushari I; Zhang, Weiyi; Arbuckle, Susan; Zhang, Kewei; Lee, Vincent

    2018-05-01

    To localize, quantify and compare angiogenic factors, vascular endothelial growth factor (VEGF), placental growth factor (PlGF), as well as their receptors fms-like tyrosine kinase receptor (Flt-1) and kinase insert domain receptor (KDR) in the placentas of normal pregnancy and complications of preeclampsia (PE), intrauterine fetal growth restriction (IUGR) and PE + IUGR. In a prospective cross-sectional case-control study, 30 pregnant women between 24-40 weeks of gestation, were recruited into four clinical groups. Representative placental samples were stained for VEGF, PlGF, Flt-1 and KDR. Analysis was performed using semiquantitative methods and digital image analysis. The overall VEGF and Flt-1 were strongly expressed and did not show any conclusive difference in the expression between study groups. PlGF and KDR were significantly reduced in expression in the placentas from pregnancies complicated by IUGR compared with normal and preeclamptic pregnancies. The lack of PlGF and KDR may be a cause for the development of IUGR and may explain the loss of vasculature and villous architecture in IUGR. Automated digital image analysis software is a viable alternative method to the manual reading of placental immunohistochemical staining. © 2018 Japan Society of Obstetrics and Gynecology.

  20. NMDA receptor dependent PGC-1alpha up-regulation protects the cortical neuron against oxygen-glucose deprivation/reperfusion injury.

    PubMed

    Luo, Yun; Zhu, Wenjing; Jia, Jia; Zhang, Chenyu; Xu, Yun

    2009-09-01

    The peroxisome proliferator activated receptor coactivator 1 alpha (PGC-1alpha) is a nuclear transcriptional coactivator that is widely expressed in the brain areas. Over-expression of PGC-1alpha can protect neuronal cells from oxidant-induced injury. The purpose of the current study is to investigate the role of PGC-1alpha in the oxygen (anoxia) deprivation (OGD) neurons. The PGC-1alpha mRNA and protein level between control and OGD neurons were examined by real-time PCR and Western blot. More PGC-1alpha expression was found in the OGD neurons compared with the normal group. Over-expression of PGC-1alpha suppressed cell apoptosis while inhibition of the PGC-1alpha expression induced cell apoptosis in OGD neurons. Furthermore, increase of PGC-1alpha resulted in activation of N-methyl-D-aspartate (NMDA) receptor, p38, and ERK mitogen-activated protein kinase (MAPK) pathway. The blocking of the NMDA receptor by its antagonists MK-801 reduced PGC-1alpha mRNA expression in OGD neurons, while NMDA itself can directly induce the expression of PGC-1alpha in neuronal cells. At the same time, PD98059 (ERK MAPK inhibitor) and SB203580 (P38 MAPK inhibitor) also prevented the up-regulation of PGC-1alpha in OGD neurons and MK801 can inhibit the expression of P38 and ERK MAPK. These data suggested that the expression of PGC-1alpha was up-regulated in OGD mice cortical neurons, which protected the neurons against OGD injury. Moreover, this effect was correlated to the NMDA receptor and the ERK and P38 MAPK pathway. The protective effect of PGC-1alpha on OGD cortical neurons may be useful for stroke therapy.

  1. Glucagon-like peptide-1 receptor expression on human eosinophils and its regulation of eosinophil activation.

    PubMed

    Mitchell, P D; Salter, B M; Oliveria, J P; El-Gammal, A; Tworek, D; Smith, S G; Sehmi, R; Gauvreau, G M; Butler, M; O'Byrne, P M

    2017-03-01

    Glucagon-like peptide-1 (GLP-1) and its receptor are part of the incretin family of hormones that regulate glucose metabolism. GLP-1 also has immune modulatory roles. To measure the expression of the GLP-1 receptor (GLP-1R) on eosinophils and neutrophils in normal and asthmatic subjects and evaluate effects of a GLP-1 analog on eosinophil function. Peripheral blood samples were taken from 10 normal and 10 allergic asthmatic subjects. GLP-1R expression was measured on eosinophils and neutrophils. Subsequently, the asthmatic subjects underwent allergen and diluent inhalation challenges, and GLP-1R expression was measured. Purified eosinophils, collected from mild asthmatic subjects, were stimulated with lipopolysaccharide (LPS) and a GLP-1 analog to evaluate eosinophil cell activation markers CD11b and CD69 and cytokine (IL-4, IL-5, IL-8 and IL-13) production. Glucagon-like peptide-1 receptor is expressed on human eosinophils and neutrophils. Eosinophil, but not neutrophil, expression of GLP-1R is significantly higher in normal controls compared to allergic asthmatics. The expression of GLP-1R did not change on either eosinophils or neutrophils following allergen challenge. A GLP-1 analog significantly decreased the expression of eosinophil-surface activation markers following LPS stimulation and decreased eosinophil production of IL-4, IL-8 and IL-13, but not IL-5. Glucagon-like peptide-1 receptor is expressed on human eosinophils and neutrophils. A GLP-1 analog attenuates LPS-stimulated eosinophil activation. GLP-1 agonists may have additional adjunctive indications in treating persons with concomitant type 2 diabetes mellitus and asthma. © 2016 John Wiley & Sons Ltd.

  2. Neomycin is a platelet-derived growth factor (PDGF) antagonist that allows discrimination of PDGF alpha- and beta-receptor signals in cells expressing both receptor types.

    PubMed

    Vassbotn, F S; Ostman, A; Siegbahn, A; Holmsen, H; Heldin, C H

    1992-08-05

    The aminoglycoside neomycin has recently been found to affect certain platelet-derived growth factor (PDGF) responses in C3H/10T1/2 C18 fibroblasts. Using porcine aortic endothelial cells transfected with PDGF alpha- or beta-receptors, we explored the possibility that neomycin interferes with the interaction between the different PDGF isoforms and their receptors. We found that neomycin (5 mM) inhibited the binding of 125I-PDGF-BB to the alpha-receptor with only partial effect on the binding of 125I-PDGF-AA; in contrast, the binding of 125I-PDGF-BB to the beta-receptor was not affected by the aminoglycoside. Scatchard analyses showed that neomycin (5 mM) decreased the number of binding sites for PDGF-BB on alpha-receptor-expressing cells by 87%. Together with cross-competition studies with 125I-labeled PDGF homodimers, the effect of neomycin indicates that PDGF-AA and PDGF-BB bind to both common and unique structures on the PDGF alpha-receptor. Neomycin specifically inhibited the autophosphorylation of the alpha-receptor by PDGF-BB, with less effect on the phosphorylation induced by PDGF-AA and no effect on the phosphorylation of the beta-receptor by PDGF-BB. Thus, neomycin is a PDGF isoform- and receptor-specific antagonist that provides a possibility to compare the signal transduction pathways of alpha- and beta-receptors in cells expressing both receptor types. This approach was used to show that activation of PDGF beta-receptors by PDGF-BB mediated a chemotactic response in human fibroblasts, whereas activation of alpha-receptors by the same ligand inhibited chemotaxis.

  3. Deletion of the N-terminal Domain (NTD) Alters the Ethanol Inhibition of NMDA Receptors in a Subunit-Dependent Manner

    PubMed Central

    Smothers, C. Thetford; Jin, Chun; Woodward, John J.

    2013-01-01

    Background Ethanol inhibition of NMDA receptors is poorly understood due in part to the organizational complexity of the receptor that provides ample locations for sites of action. Among these the N-terminal domain of NMDA receptor subunits contains binding sites for a variety of modulatory agents including zinc, protons and GluN2B selective antagonists such as ifenprodil or Ro-25–6981. Ethanol inhibition of neuronal NMDA receptors expressed in some brain areas has been reported to be occluded by the presence of ifenprodil or similar compounds suggesting that the N-terminal domain may be important in regulating the ethanol sensitivity of NMDA receptors. Methods Wild-type GluN1 and GluN2 subunits and those in which the coding sequence for the N-terminal domain was deleted were expressed in HEK293 cells. Whole-cell voltage-clamp recording was used to assess ethanol inhibition of wild-type and mutant receptors lacking the N-terminal domain. Results As compared to wild-type GluN1/GluN2A receptors, ethanol inhibition was slightly greater in cells expressing GluN2A subunits lacking the N-terminal domain. In contrast, GluN2B N-terminal deletion mutants showed normal ethanol inhibition while those lacking the N-terminal domain in both GluN1 and GluN2B subunits had decreased ethanol inhibition as compared to wild-type receptors. N-terminal domain lacking GluN2B receptors were insensitive to ifenprodil but retained normal sensitivity to ethanol. Conclusions These findings indicate that the N-terminal domain modestly influences the ethanol sensitivity of NMDA receptors in a subunit-dependent manner. They also show that ifenprodil’s actions on GluN2B containing receptors can be dissociated from those of ethanol. These results suggest that while the N-terminal domain is not a primary site of action for ethanol on NMDA receptors, it likely affects sensitivity via actions on intrinsic channel properties. PMID:23905549

  4. In situ aromatase expression in primary tumor is associated with estrogen receptor expression but is not predictive of response to endocrine therapy in advanced breast cancer

    PubMed Central

    2009-01-01

    Background New, third-generation aromatase inhibitors (AIs) have proven comparable or superior to the anti-estrogen tamoxifen for treatment of estrogen receptor (ER) and/or progesterone receptor (PR) positive breast cancer. AIs suppress total body and intratumoral estrogen levels. It is unclear whether in situ carcinoma cell aromatization is the primary source of estrogen production for tumor growth and whether the aromatase expression is predictive of response to endocrine therapy. Due to methodological difficulties in the determination of the aromatase protein, COX-2, an enzyme involved in the synthesis of aromatase, has been suggested as a surrogate marker for aromatase expression. Methods Primary tumor material was retrospectively collected from 88 patients who participated in a randomized clinical trial comparing the AI letrozole to the anti-estrogen tamoxifen for first-line treatment of advanced breast cancer. Semi-quantitative immunohistochemical (IHC) analysis was performed for ER, PR, COX-2 and aromatase using Tissue Microarrays (TMAs). Aromatase was also analyzed using whole sections (WS). Kappa analysis was applied to compare association of protein expression levels. Univariate Wilcoxon analysis and the Cox-analysis were performed to evaluate time to progression (TTP) in relation to marker expression. Results Aromatase expression was associated with ER, but not with PR or COX-2 expression in carcinoma cells. Measurements of aromatase in WS were not comparable to results from TMAs. Expression of COX-2 and aromatase did not predict response to endocrine therapy. Aromatase in combination with high PR expression may select letrozole treated patients with a longer TTP. Conclusion TMAs are not suitable for IHC analysis of in situ aromatase expression and we did not find COX-2 expression in carcinoma cells to be a surrogate marker for aromatase. In situ aromatase expression in tumor cells is associated with ER expression and may thus point towards good prognosis. Aromatase expression in cancer cells is not predictive of response to endocrine therapy, indicating that in situ estrogen synthesis may not be the major source of intratumoral estrogen. However, aromatase expression in combination with high PR expression may select letrozole treated patients with longer TTP. Trial registration Sub-study of trial P025 for advanced breast cancer. PMID:19531212

  5. Long-term systemic angiotensin II type 1 receptor blockade regulates mRNA expression of dorsomedial medulla renin-angiotensin system components.

    PubMed

    Gilliam-Davis, Shea; Gallagher, Patricia E; Payne, Valerie S; Kasper, Sherry O; Tommasi, Ellen N; Westwood, Brian M; Robbins, Michael E; Chappell, Mark C; Diz, Debra I

    2011-07-14

    In Fischer 344 (F344) rats, renin-angiotensin system (RAS) blockade for 1 yr with the angiotensin II type 1 (AT(1)) receptor blocker L-158,809 prevents age-related impairments in metabolic function, similar to transgenic rats with low glial angiotensinogen (Aogen). Brain RAS regulation may contribute to the benefits of long-term systemic AT(1) antagonism. We assessed the mRNA of RAS components in the dorsomedial medulla of F344 rats at 3 (young; n = 8) or 15 mo of age (old; n = 7) and in rats treated from 3 to 15 mo of age with 20 mg/l of the AT(1) receptor antagonist L-158,809 (Old+L; n = 6). Aogen and renin mRNA were lower in the young compared with old group. Angiotensin-converting enzyme (ACE) mRNA was lower in the old and Old+L compared with the young group. ACE2 and neprilysin expression were significantly higher in Old+L compared with young or old rats. AT(1b), AT(2), and Mas receptor mRNA were higher with treatment. Leptin receptor mRNA was lower in the old rats and this was prevented by L-158,809 treatment. Dual-specificity phosphatase 1 (DUSP1) mRNA was highest in the Old+L group. Aggregate correlate summation revealed a positive relationship for Mas receptor mRNA with food intake. The findings provide evidence for regulation of dorsomedial medullary renin and Aogen mRNA during aging. Long-term AT(1) receptor blockade increases the mRNA of the enzymes ACE2 and neprilysin and the MAS receptor, which could potentially shift the balance from ANG II to ANG-(1-7) and prevent age-related declines in the leptin receptor and its signaling pathway.

  6. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes

    PubMed Central

    Hettrick, Lisa; Revenko, Alexey; Kinberger, Garth A.; Prakash, Thazha P.; Seth, Punit P.

    2017-01-01

    Abstract Antisense oligonucleotide (ASO) therapeutics show tremendous promise for the treatment of previously intractable human diseases but to exert their effects on cellular RNA processing they must first cross the plasma membrane by endocytosis. The conjugation of ASOs to a receptor ligand can dramatically increase their entry into certain cells and tissues, as demonstrated by the implementation of N-acetylgalactosamine (GalNAc)-conjugated ASOs for Asialoglycoprotein Receptor (ASGR)-mediated uptake into liver hepatocytes. We compared the internalization and activity of GalNAc-conjugated ASOs and their parents in endogenous ASGR-expressing cells and were able to recapitulate hepatocyte ASO uptake and activity in cells engineered to heterologously express the receptor. We found that the minor receptor subunit, ASGR2, is not required for effective in vitro or in vivo uptake of GalNAc-conjugated ASO and that the major subunit, ASGR1, plays a small but significant role in the uptake of unconjugated phosphorothioate ASOs into hepatocytes. Moreover, our data demonstrates there is a large excess capacity of liver ASGR for the effective uptake of GalNAc–ASO conjugates, suggesting broad opportunities to exploit receptors with relatively moderate levels of expression. PMID:29069408

  7. Nicotinic cholinergic receptors in esophagus: Early alteration during carcinogenesis and prognostic value

    PubMed Central

    Chianello Nicolau, Marina; Pinto, Luis Felipe Ribeiro; Nicolau-Neto, Pedro; de Pinho, Paulo Roberto Alves; Rossini, Ana; de Almeida Simão, Tatiana; Soares Lima, Sheila Coelho

    2016-01-01

    AIM To compare expression of nicotinic cholinergic receptors (CHRNs) in healthy and squamous cell carcinoma-affected esophagus and determine the prognostic value. METHODS We performed RT-qPCR to measure the expression of CHRNs in 44 esophageal samples from healthy individuals and in matched normal surrounding mucosa, and in tumors from 28 patients diagnosed with esophageal squamous cell carcinoma (ESCC). Next, we performed correlation analysis for the detected expression of these receptors with the habits and clinico-pathological characteristics of all study participants. In order to investigate the possible correlations between the expression of the different CHRN subunits in both healthy esophagus and tissues from ESCC patients, correlation matrices were generated. Subsequently, we evaluated whether the detected alterations in expression of the various CHRNs could precede histopathological modifications during the esophageal carcinogenic processes by using receiver operating characteristic curve analysis. Finally, we evaluated the impact of CHRNA5 and CHRNA7 expression on overall survival by using multivariate analysis. RESULTS CHRNA3, CHRNA5, CHRNA7 and CHRNB4, but not CHRNA1, CHRNA4, CHRNA9 or CHRNA10, were found to be expressed in normal (healthy) esophageal mucosa. In ESCC, CHRNA5 and CHRNA7 were overexpressed as compared with patient-matched surrounding non-tumor mucosa (ESCC-adjacent mucosa; P < 0.0001 and P = 0.0091, respectively). Positive correlations were observed between CHRNA3 and CHRNB4 expression in all samples analyzed. Additionally, CHRNB4 was found to be differentially expressed in the healthy esophagus and the normal-appearing ESCC-adjacent mucosa, allowing for distinguishment between these tissues with a sensitivity of 75.86% and a specificity of 78.95% (P = 0.0002). Finally, CHRNA5 expression was identified as an independent prognostic factor in ESCC; patients with high CHRNA5 expression showed an increased overall survival, in comparison with those with low expression. The corresponding age- and tumor stage-adjusted hazard ratio was 0.2684 (95%CI: 0.075-0.97, P = 0.0448). CONCLUSION Expression of CHRNs is homogeneous along healthy esophagus and deregulated in ESCC, suggesting a pathogenic role for these receptors in ESCC development and progression. PMID:27610024

  8. Nicotinic cholinergic receptors in esophagus: Early alteration during carcinogenesis and prognostic value.

    PubMed

    Chianello Nicolau, Marina; Pinto, Luis Felipe Ribeiro; Nicolau-Neto, Pedro; de Pinho, Paulo Roberto Alves; Rossini, Ana; de Almeida Simão, Tatiana; Soares Lima, Sheila Coelho

    2016-08-21

    To compare expression of nicotinic cholinergic receptors (CHRNs) in healthy and squamous cell carcinoma-affected esophagus and determine the prognostic value. We performed RT-qPCR to measure the expression of CHRNs in 44 esophageal samples from healthy individuals and in matched normal surrounding mucosa, and in tumors from 28 patients diagnosed with esophageal squamous cell carcinoma (ESCC). Next, we performed correlation analysis for the detected expression of these receptors with the habits and clinico-pathological characteristics of all study participants. In order to investigate the possible correlations between the expression of the different CHRN subunits in both healthy esophagus and tissues from ESCC patients, correlation matrices were generated. Subsequently, we evaluated whether the detected alterations in expression of the various CHRNs could precede histopathological modifications during the esophageal carcinogenic processes by using receiver operating characteristic curve analysis. Finally, we evaluated the impact of CHRNA5 and CHRNA7 expression on overall survival by using multivariate analysis. CHRNA3, CHRNA5, CHRNA7 and CHRNB4, but not CHRNA1, CHRNA4, CHRNA9 or CHRNA10, were found to be expressed in normal (healthy) esophageal mucosa. In ESCC, CHRNA5 and CHRNA7 were overexpressed as compared with patient-matched surrounding non-tumor mucosa (ESCC-adjacent mucosa; P < 0.0001 and P = 0.0091, respectively). Positive correlations were observed between CHRNA3 and CHRNB4 expression in all samples analyzed. Additionally, CHRNB4 was found to be differentially expressed in the healthy esophagus and the normal-appearing ESCC-adjacent mucosa, allowing for distinguishment between these tissues with a sensitivity of 75.86% and a specificity of 78.95% (P = 0.0002). Finally, CHRNA5 expression was identified as an independent prognostic factor in ESCC; patients with high CHRNA5 expression showed an increased overall survival, in comparison with those with low expression. The corresponding age- and tumor stage-adjusted hazard ratio was 0.2684 (95%CI: 0.075-0.97, P = 0.0448). Expression of CHRNs is homogeneous along healthy esophagus and deregulated in ESCC, suggesting a pathogenic role for these receptors in ESCC development and progression.

  9. A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells.

    PubMed

    Khaleghi, Sepideh; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J; Pognonec, Philippe

    2012-04-01

    In accordance with the two-step hypothesis of T cell activation and the observation that stimulation through the T cell receptor (TCR) alone may lead to anergy, we focused on the introduction of co-stimulatory signaling to this type of receptors to achieve optimal activation. Enhanced mRNA and cell surface receptor expression via the co-stimulatory gene fragment (OX40) was confirmed by RT-PCR and flow cytometry. Inclusion of the OX40 co-stimulatory signaling region in series with the TCR led to enhanced antigen-induced IL-2 production after stimulation by MUC1-expressing cancer cell lines as compared to the chimeric receptor without OX40. Moreover, with the aim of maintaining high efficiency, while providing a means of controlling any possible unwanted proliferation in vivo, a regulation system was used. This controls the dimerization of a membrane-bound caspase 8 protein. Toward that goal, pFKC8 and CAR constructs were co-transfected into Jurkat cells, and the level of apoptosis was measured. 24 h after addition of the dimerizer, a 91% decrease in transfected cells was observed.

  10. Betaxolol, a selective β1-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats

    PubMed Central

    Rudoy, C.A.; Van Bockstaele, E.J.

    2007-01-01

    Background Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on β-adrenergic receptor (β1 and β2) expression in the amygdala. Methods Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that β1–adrenergic receptor, but not β2–adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective β1–adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 hours following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 hours following the last betaxolol injection. Following behavioral testing, betaxolol effects on β1-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Results Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline. Furthermore, treatment with betaxolol during early cocaine withdrawal significantly decreased β1-adrenergic receptor protein expression in the amygdala to levels comparable to those of control animals. Conclusions The present findings suggest that the anxiolytic-like effect of betaxolol on cocaine-induced anxiety may be related to its effect on amygdalar β1-adrenergic receptors that are up-regulated during early phases of drug withdrawal. These data support the efficacy of betaxolol as a potential effective pharmacotherapy in treating cocaine withdrawal-induced anxiety during early phases of abstinence. PMID:17513029

  11. Betaxolol, a selective beta(1)-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats.

    PubMed

    Rudoy, C A; Van Bockstaele, E J

    2007-06-30

    Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on beta-adrenergic receptor (beta(1) and beta(2)) expression in the amygdala. Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that beta(1)-adrenergic receptor, but not beta(2)-adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective beta(1)-adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 h following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 h following the last betaxolol injection. Following behavioral testing, betaxolol effects on beta(1)-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline. Furthermore, treatment with betaxolol during early cocaine withdrawal significantly decreased beta(1)-adrenergic receptor protein expression in the amygdala to levels comparable to those of control animals. The present findings suggest that the anxiolytic-like effect of betaxolol on cocaine-induced anxiety may be related to its effect on amygdalar beta(1)-adrenergic receptors that are up-regulated during early phases of drug withdrawal. These data support the efficacy of betaxolol as a potential effective pharmacotherapy in treating cocaine withdrawal-induced anxiety during early phases of abstinence.

  12. Hypoxia and prostaglandin E receptor 4 signalling pathways synergise to promote endometrial adenocarcinoma cell proliferation and tumour growth.

    PubMed

    Catalano, Rob D; Wilson, Martin R; Boddy, Sheila C; McKinlay, Andrew T M; Sales, Kurt J; Jabbour, Henry N

    2011-05-12

    The prostaglandin endoperoxide synthase (PTGS) pathway is a potent driver of tumour development in humans by enhancing the biosynthesis and signalling of prostaglandin (PG) E(2). PTGS2 expression and PGE(2) biosynthesis is elevated in endometrial adenocarcinoma, however the mechanism whereby PTGS and PGE(2) regulate endometrial tumour growth is unknown. Here we investigated (a) the expression profile of the PGE synthase enzymes (PTGES, PTGES-2, PTGES-3) and PGE receptors (PTGER1-4) in endometrial adenocarcinomas compared with normal endometrium and (b) the role of PTGER4 in endometrial tumorigenesis in vivo. We found elevated expression of PTGES2 and PTGER4 and suppression of PTGER1 and PTGER3 in endometrial adenocarcinomas compared with normal endometrium. Using WT Ishikawa endometrial adenocarcinoma cells and Ishikawa cells stably transfected with the full length PTGER4 cDNA (PTGER4 cells) xenografted in the dorsal flanks of nude mice, we show that PTGER4 rapidly and significantly enhances tumour growth rate. Coincident with enhanced PTGER4-mediated tumour growth we found elevated expression of PTGS2 in PTGER4 xenografts compared with WT xenografts. Furthermore we found that the augmented growth rate of the PTGER4 xenografts was not due to enhanced angiogenesis, but regulated by an increased proliferation index and hypoxia. In vitro, we found that PGE(2) and hypoxia independently induce expression of PTGER4 indicating two independent pathways regulating prostanoid receptor expression. Finally we have shown that PGE(2) and hypoxia synergise to promote cellular proliferation of endometrial adenocarcinoma cells.

  13. Hypoxia and Prostaglandin E Receptor 4 Signalling Pathways Synergise to Promote Endometrial Adenocarcinoma Cell Proliferation and Tumour Growth

    PubMed Central

    Catalano, Rob D.; Wilson, Martin R.; Boddy, Sheila C.; McKinlay, Andrew T. M.; Sales, Kurt J.; Jabbour, Henry N.

    2011-01-01

    The prostaglandin endoperoxide synthase (PTGS) pathway is a potent driver of tumour development in humans by enhancing the biosynthesis and signalling of prostaglandin (PG) E2. PTGS2 expression and PGE2 biosynthesis is elevated in endometrial adenocarcinoma, however the mechanism whereby PTGS and PGE2 regulate endometrial tumour growth is unknown. Here we investigated (a) the expression profile of the PGE synthase enzymes (PTGES, PTGES-2, PTGES-3) and PGE receptors (PTGER1–4) in endometrial adenocarcinomas compared with normal endometrium and (b) the role of PTGER4 in endometrial tumorigenesis in vivo. We found elevated expression of PTGES2 and PTGER4 and suppression of PTGER1 and PTGER3 in endometrial adenocarcinomas compared with normal endometrium. Using WT Ishikawa endometrial adenocarcinoma cells and Ishikawa cells stably transfected with the full length PTGER4 cDNA (PTGER4 cells) xenografted in the dorsal flanks of nude mice, we show that PTGER4 rapidly and significantly enhances tumour growth rate. Coincident with enhanced PTGER4-mediated tumour growth we found elevated expression of PTGS2 in PTGER4 xenografts compared with WT xenografts. Furthermore we found that the augmented growth rate of the PTGER4 xenografts was not due to enhanced angiogenesis, but regulated by an increased proliferation index and hypoxia. In vitro, we found that PGE2 and hypoxia independently induce expression of PTGER4 indicating two independent pathways regulating prostanoid receptor expression. Finally we have shown that PGE2 and hypoxia synergise to promote cellular proliferation of endometrial adenocarcinoma cells. PMID:21589857

  14. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats

    PubMed Central

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Garner, Ron E; McKallip, Robert J; Zhao, Zhi-Qing

    2015-01-01

    Curcumin is known to improve cardiac function by balancing degradation and synthesis of collagens after myocardial infarction. This study tested the hypothesis that inhibition of myocardial fibrosis by curcumin is associated with modulating expression of angiotensin II (Ang II) receptors and angiotensin-converting enzyme 2 (ACE2). Male Sprague Dawley rats were subjected to Ang II infusion (500 ng/kg/min) using osmotic minipumps for 2 and 4 weeks, respectively, and curcumin (150 mg/kg/day) was fed by gastric gavage during Ang II infusion. Compared to the animals with Ang II infusion, curcumin significantly decreased the mean arterial blood pressure during the course of the observation. The protein level of the Ang II type 1 (AT1) receptor was reduced, and the Ang II type 2 (AT2) receptor was up-regulated, evidenced by an increased ratio of the AT2 receptor over the AT1 receptor in the curcumin group (1.2±0.02%) vs in the Ang II group (0.7±0.03%, P<0.05). These changes were coincident with less locally expressed AT1 receptor and enhanced AT2 receptor in the intracardiac vessels and intermyocardium. Along with these modulations, curcumin significantly decreased the populations of macrophages and alpha smooth muscle actin-expressing myofibroblasts, which were accompanied by reduced expression of transforming growth factor beta 1 and phosphorylated-Smad2/3. Collagen I synthesis was inhibited, and tissue fibrosis was attenuated, as demonstrated by less extensive collagen-rich fibrosis. Furthermore, curcumin increased protein level of ACE2 and enhanced its expression in the intermyocardium relative to the Ang II group. These results suggest that curcumin could be considered as an add-on therapeutic agent in the treatment of fibrosis-derived heart failure patient who is intolerant of ACE inhibitor therapy. PMID:26648693

  15. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko

    Highlights: {yields} Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. {yields} Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. {yields} Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here wemore » studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor {alpha}, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.« less

  16. Curcumin restores diabetes induced neurochemical changes in the brain stem of Wistar rats.

    PubMed

    Kumar, Peeyush T; George, Naijil; Antony, Sherin; Paulose, Cheramadathikudiyil Skaria

    2013-02-28

    Diabetes mellitus, when poorly controlled, leads to debilitating central nervous system (CNS) complications including cognitive deficits, somatosensory and motor dysfunction. The present study investigated curcumin's potential in modulating diabetes induced neurochemical changes in brainstem. Expression analysis of cholinergic, insulin receptor and GLUT-3 in the brainstem of streptozotocin (STZ) induced diabetic rats were studied. Radioreceptor binding assays, gene expression studies and immunohistochemical analysis were done in the brainstem of male Wistar rats. Our result showed that Bmax of total muscarinic and muscarinic M3 receptors were increased and muscarinic M1 receptor was decreased in diabetic rats compared to control. mRNA level of muscarinic M3, α7-nicotinic acetylcholine, insulin receptors, acetylcholine esterase, choline acetyltransferase and GLUT-3 significantly increased and M1 receptor decreased in the brainstem of diabetic rats. Curcumin and insulin treatment restored the alterations and maintained all parameters to near control. The results show that diabetes is associated with significant reduction in brainstem function coupled with altered cholinergic, insulin receptor and GLUT-3 gene expression. The present study indicates beneficial effect of curcumin in diabetic rats by regulating the cholinergic, insulin receptor and GLUT-3 in the brainstem similar to the responses obtained with insulin therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Association of Shiga toxin glycosphingolipid receptors with membrane microdomains of toxin-sensitive lymphoid and myeloid cells.

    PubMed

    Kouzel, Ivan U; Pohlentz, Gottfried; Storck, Wiebke; Radamm, Lena; Hoffmann, Petra; Bielaszewska, Martina; Bauwens, Andreas; Cichon, Christoph; Schmidt, M Alexander; Mormann, Michael; Karch, Helge; Müthing, Johannes

    2013-03-01

    Glycosphingolipids (GSLs) of the globo-series constitute specific receptors for Shiga toxins (Stxs) released by certain types of pathogenic Escherichia coli strains. Stx-loaded leukocytes may act as transporter cells in the blood and transfer the toxin to endothelial target cells. Therefore, we performed a thorough investigation on the expression of globo-series GSLs in serum-free cultivated Raji and Jurkat cells, representing B- and T-lymphocyte descendants, respectively, as well as THP-1 and HL-60 cells of the monocyte and granulocyte lineage, respectively. The presence of Stx-receptors in GSL preparations of Raji and THP-1 cells and the absence in Jurkat and HL-60 cells revealed high compliance of solid-phase immunodetection assays with the expression profiles of receptor-related glycosyltransferases, performed by qRT-PCR analysis, and Stx2-caused cellular damage. Canonical microdomain association of Stx GSL receptors, sphingomyelin, and cholesterol in membranes of Raji and THP-1 cells was assessed by comparative analysis of detergent-resistant membrane (DRM) and nonDRM fractions obtained by density gradient centrifugation and showed high correlation based on nonparametric statistical analysis. Our comprehensive study on the expression of Stx-receptors and their subcellular distribution provides the basis for exploring the functional role of lipid raft-associated Stx-receptors in cells of leukocyte origin.

  18. Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism

    PubMed Central

    Fatemi, S. Hossein; Folsom, Timothy D.; Kneeland, Rachel E.; Liesch, Stephanie B.

    2011-01-01

    Recent work has demonstrated the impact of dysfunction of the GABAergic signaling system in brain and the resultant behavioral pathologies in subjects with autism. In animal models, altered expression of Fragile X mental retardation protein (FMRP) has been linked to downregulation of GABA receptors. Interestingly, the autistic phenotype is also observed in individuals with Fragile X syndrome. This study was undertaken to test previous theories relating abnormalities in levels of FMRP to GABAA receptor underexpression. We observed a significant reduction in levels of FMRP in the vermis of adults with autism. Additionally, we found that levels of metabotropic glutamate receptor 5 (mGluR5) protein were significantly increased in vermis of children with autism vs. age and postmortem interval (PMI) matched controls. There was also a significant decrease in level of GABAA receptor beta 3 (GABRβ3) protein in vermis of adult subjects with autism. Finally, we found significant increases in glial fibrillary acidic protein (GFAP) in vermis of both children and adults with autism when compared with controls. Taken together, our results provide further evidence that altered FMRP expression and increased mGluR5 protein production potentially leads to altered expression of GABAA receptors. PMID:21901840

  19. Immunostimulatory CpG-oligonucleotides induce functional high affinity IL-2 receptors on B-CLL cells: costimulation with IL-2 results in a highly immunogenic phenotype.

    PubMed

    Decker, T; Schneller, F; Kronschnabl, M; Dechow, T; Lipford, G B; Wagner, H; Peschel, C

    2000-05-01

    CpG-oligodeoxynucleotides (CpG-ODN) have been shown to induce proliferation, cytokine production, and surface molecule regulation in normal and malignant human B cells. In the present study, we investigated the potential of CpG-ODN to induce functional high-affinity receptors in leukemic and normal B cells and the effects of costimulation with IL-2 on proliferation, cytokine secretion, and surface molecule regulation. Highly purified B cells from B-CLL patients and normal controls were stimulated with CpG-ODN with or without IL-2. Expression of CD25 was determined using FACS, and the presence of high-affinity IL-2 receptors was determined by scatchard analysis. Costimulatory effects of IL-2 and CpG-ODN were investigated using proliferation assays, ELISA (IL-6, TNF-alpha), and FACS analysis (CD80, CD86 expression). Reactivity of autologous and allogeneic T cells toward activated B-CLL cells was determined in mixed lymphocyte reactions and Interferon-gamma Elispot assays. The CpG-ODN DSP30 caused a significantly stronger induction of the IL-2 receptor alpha chain in malignant as compared with normal B cells (p = 0.03). This resulted in the expression of functional high-affinity IL-2 receptors in B-CLL cells, but fewer numbers of receptors with less affinity were expressed in normal B cells. Although addition of IL-2 to CpG-ODN-stimulated cells augmented proliferation in both normal B cells and B-CLL cells, no costimulatory effect on cytokine production or surface molecule expression could be observed in normal B cells. In contrast, TNF-alpha and IL-6 production was increased in B-CLL cells, and the expression of CD80 and CD86 was further enhanced when IL-2 was used as a costimulus. Autologous and allogeneic immune recognition of B-CLL cells stimulated with CpG-ODN and IL-2 was increased compared with B-CLL cells stimulated with CpG-ODN alone. Stimulation of B-CLL cells with CpG-ODN and IL-2 might be an attractive strategy for potential immunotherapies for B-CLL patients.

  20. Comparison of prostaglandin F2alpha, bimatoprost (prostamide), and butaprost (EP2 agonist) on Cyr61 and connective tissue growth factor gene expression.

    PubMed

    Liang, Yanbin; Li, Chen; Guzman, Victor M; Evinger, Albert J; Protzman, Charles E; Krauss, Achim H-P; Woodward, David F

    2003-07-18

    Connective tissue growth factor (CTGF) and Cyr61 (cysteine-rich angiogenic protein 61) are members of the CCN gene family that encode multifunctional, extracellular matrix-associated signaling proteins. Because the mechanism of action of certain anti-glaucoma drugs involves extracellular matrix remodeling of ocular ciliary muscle, with a resultant increase in drainage of aqueous humor from the eye, we compared the effects of three pharmacologically distinct ocular hypotensive agents on Cyr61 and CTGF gene expression. Thus, prostaglandin F2alpha (PGF2alpha) (FP receptor agonist), Butaprost (EP2 receptor agonist), and Bimatoprost (a prostamide) were compared. Using Affymetrix gene chip technology, we first identified that PGF2alpha dramatically up-regulated Cyr61 and CTGF mRNA expression in HEK 293/EBNA cells (hFP-HEK 293/EBNA). Northern blot further confirmed the Cyr61 and CTGF up-regulation is in a dose- and time-dependent manner. PGF2alpha-induced up-regulation of Cyr61 appeared to exclusively involve the Rho pathway, and up-regulation of CTGF was via multiple intracellular pathways. Because prostamide receptors are, to date, defined only at the pharmacological level, Bimatoprost effects on Cyr61 and CTGF were studied in the isolated feline iris sphincter preparation, a tissue highly responsive to prostamides. Both PGF2alpha and Bimatoprost up-regulated Cyr61 mRNA expression in the cat iris tissue. Only PGF2alpha up-regulated CTGF mRNA expression in the cat iris. Therefore, PGF2alpha and Bimatoprost appear to interact with different receptors populations in the cat iris, according to their markedly different effects on CTGF. Activation of prostaglandin EP2 receptors (Gs-coupled) also up-regulated Cyr61 but not CTGF mRNA expression in the isolated cat iris. Similar data were observed in human primary ciliary smooth muscle cells. Thus, despite quite different signal transduction pathways, FP receptor stimulation up-regulates CTGF and Cyr61. The prostamide analog Bimatoprost and an EP2-selective agonist affects only Cyr61.

  1. Progesterone receptor expression during prostate cancer progression suggests a role of this receptor in stromal cell differentiation.

    PubMed

    Yu, Yue; Yang, Ou; Fazli, Ladan; Rennie, Paul S; Gleave, Martin E; Dong, Xuesen

    2015-07-01

    The progesterone receptor, like the androgen receptor, belongs to the steroid receptor superfamily. Our previous studies have reported that the PR is expressed specifically in prostate stroma. PR inhibits proliferation of, and regulates cytokine secretion by stromal cells. However, PR protein expression in cancer-associated stroma during prostate cancer progression has not been profiled. Since the phenotypes of prostate stromal cells change dynamically as tumors progress, whether the PR plays a role in regulating stromal cell differentiation needs to be investigated. Immunohistochemistry assays measured PR protein levels on human prostate tissue microarrays containing 367 tissue cores from benign prostate, prostate tumors with different Gleason scores, tumors under various durations of castration therapy, and tumors at the castration-resistant stage. Immunoblotting assays determined whether PR regulated the expression of alpha smooth muscle actin (α-SMA), vimentin, and fibroblast specific protein (FSP) in human prostate stromal cells. PR protein levels decreased in cancer-associated stroma when compared with that in benign prostate stroma. This reduction in PR expression was not correlated with Gleason scores. PR protein levels were elevated by castration therapy, but reduced to pre-castration levels when tumors progressed to the castration-resistant stage. Enhanced PR expression in human prostate stromal cells increased α-SMA, but decreased vimentin and FSP protein levels ligand-independently. These results suggest that PR plays an active role in regulating stromal cell phenotypes during prostate cancer progression. © 2015 Wiley Periodicals, Inc.

  2. Expression of inflammation-related genes is altered in gastric tissue of patients with advanced stages of NAFLD.

    PubMed

    Mehta, Rohini; Birerdinc, Aybike; Neupane, Arpan; Shamsaddini, Amirhossein; Afendy, Arian; Elariny, Hazem; Chandhoke, Vikas; Baranova, Ancha; Younossi, Zobair M

    2013-01-01

    Obesity is associated with chronic low-grade inflammation perpetuated by visceral adipose. Other organs, particularly stomach and intestine, may also overproduce proinflammatory molecules. We examined the gene expression patterns in gastric tissue of morbidly obese patients with nonalcoholic fatty liver disease (NAFLD) and compared the changes in gene expression in different histological forms of NAFLD. Stomach tissue samples from 20 morbidly obese NAFLD patients who were undergoing sleeve gastrectomy were profiled using qPCR for 84 genes encoding inflammatory cytokines, chemokines, their receptors, and other components of inflammatory cascades. Interleukin 8 receptor-beta (IL8RB) gene overexpression in gastric tissue was correlated with the presence of hepatic steatosis, hepatic fibrosis, and histologic diagnosis of nonalcoholic steatohepatitis (NASH). Expression levels of soluble interleukin 1 receptor antagonist (IL1RN) were correlated with the presence of NASH and hepatic fibrosis. mRNA levels of interleukin 8 (IL8), chemokine (C-C motif) ligand 4 (CCL4), and its receptor chemokine (C-C motif) receptor type 5 (CCR5) showed a significant increase in patients with advanced hepatic inflammation and were correlated with the severity of the hepatic inflammation. The results of our study suggest that changes in expression patterns for inflammatory molecule encoding genes within gastric tissue may contribute to the pathogenesis of obesity-related NAFLD.

  3. Expression of Inflammation-Related Genes Is Altered in Gastric Tissue of Patients with Advanced Stages of NAFLD

    PubMed Central

    Mehta, Rohini; Birerdinc, Aybike; Neupane, Arpan; Shamsaddini, Amirhossein; Afendy, Arian; Elariny, Hazem; Chandhoke, Vikas; Baranova, Ancha; Younossi, Zobair M.

    2013-01-01

    Obesity is associated with chronic low-grade inflammation perpetuated by visceral adipose. Other organs, particularly stomach and intestine, may also overproduce proinflammatory molecules. We examined the gene expression patterns in gastric tissue of morbidly obese patients with nonalcoholic fatty liver disease (NAFLD) and compared the changes in gene expression in different histological forms of NAFLD. Stomach tissue samples from 20 morbidly obese NAFLD patients who were undergoing sleeve gastrectomy were profiled using qPCR for 84 genes encoding inflammatory cytokines, chemokines, their receptors, and other components of inflammatory cascades. Interleukin 8 receptor-beta (IL8RB) gene overexpression in gastric tissue was correlated with the presence of hepatic steatosis, hepatic fibrosis, and histologic diagnosis of nonalcoholic steatohepatitis (NASH). Expression levels of soluble interleukin 1 receptor antagonist (IL1RN) were correlated with the presence of NASH and hepatic fibrosis. mRNA levels of interleukin 8 (IL8), chemokine (C-C motif) ligand 4 (CCL4), and its receptor chemokine (C-C motif) receptor type 5 (CCR5) showed a significant increase in patients with advanced hepatic inflammation and were correlated with the severity of the hepatic inflammation. The results of our study suggest that changes in expression patterns for inflammatory molecule encoding genes within gastric tissue may contribute to the pathogenesis of obesity-related NAFLD. PMID:23661906

  4. G Protein–Coupled Receptor-Type G Proteins Are Required for Light-Dependent Seedling Growth and Fertility in Arabidopsis[W

    PubMed Central

    Jaffé, Felix W.; Freschet, Gian-Enrico C.; Valdes, Billy M.; Runions, John; Terry, Matthew J.; Williams, Lorraine E.

    2012-01-01

    G protein–coupled receptor-type G proteins (GTGs) are highly conserved membrane proteins in plants, animals, and fungi that have eight to nine predicted transmembrane domains. They have been classified as G protein–coupled receptor-type G proteins that function as abscisic acid (ABA) receptors in Arabidopsis thaliana. We cloned Arabidopsis GTG1 and GTG2 and isolated new T-DNA insertion alleles of GTG1 and GTG2 in both Wassilewskija and Columbia backgrounds. These gtg1 gtg2 double mutants show defects in fertility, hypocotyl and root growth, and responses to light and sugars. Histological studies of shoot tissue reveal cellular distortions that are particularly evident in the epidermal layer. Stable expression of GTG1pro:GTG1-GFP (for green fluorescent protein) in Arabidopsis and transient expression in tobacco (Nicotiana tabacum) indicate that GTG1 is localized primarily to Golgi bodies and to the endoplasmic reticulum. Microarray analysis comparing gene expression profiles in the wild type and double mutant revealed differences in expression of genes important for cell wall function, hormone response, and amino acid metabolism. The double mutants isolated here respond normally to ABA in seed germination assays, root growth inhibition, and gene expression analysis. These results are inconsistent with their proposed role as ABA receptors but demonstrate that GTGs are fundamentally important for plant growth and development. PMID:23001037

  5. Bombykol receptors in the silkworm moth and the fruit fly

    PubMed Central

    Syed, Zainulabeuddin; Kopp, Artyom; Kimbrell, Deborah A.; Leal, Walter S.

    2010-01-01

    Male moths are endowed with odorant receptors (ORs) to detect species-specific sex pheromones with remarkable sensitivity and selectivity. We serendipitously discovered that an endogenous OR in the fruit fly, Drosophila melanogaster, is highly sensitive to the sex pheromone of the silkworm moth, bombykol. Intriguingly, the fruit fly detectors are more sensitive than the receptors of the silkworm moth, although its ecological significance is unknown. By expression in the “empty neuron” system, we identified the fruit fly bombykol-sensitive OR as DmelOR7a (= DmOR7a). The profiles of this receptor in response to bombykol in the native sensilla (ab4) or expressed in the empty neuron system (ab3 sensilla) are indistinguishable. Both WT and transgenic flies responded with high sensitivity, in a dose-dependent manner, and with rapid signal termination. In contrast, the same empty neuron expressing the moth bombykol receptor, BmorOR1, demonstrated low sensitivity and slow signal inactivation. When expressed in the trichoid sensilla T1 of the fruit fly, the neuron housing BmorOR1 responded with sensitivity comparable to that of the native trichoid sensilla in the silkworm moth. By challenging the native bombykol receptor in the fruit fly with high doses of another odorant to which the receptor responds with the highest sensitivity, we demonstrate that slow signal termination is induced by overdose of a stimulus. As opposed to the empty neuron system in the basiconic sensilla, the structural, biochemical, and/or biophysical features of the sensilla make the T1 trichoid system of the fly a better surrogate for the moth receptor. PMID:20439725

  6. Normalization of TAM post-receptor signaling reveals a cell invasive signature for Axl tyrosine kinase.

    PubMed

    Kimani, Stanley G; Kumar, Sushil; Davra, Viralkumar; Chang, Yun-Juan; Kasikara, Canan; Geng, Ke; Tsou, Wen-I; Wang, Shenyan; Hoque, Mainul; Boháč, Andrej; Lewis-Antes, Anita; De Lorenzo, Mariana S; Kotenko, Sergei V; Birge, Raymond B

    2016-09-06

    Tyro3, Axl, and Mertk (TAMs) are a family of three conserved receptor tyrosine kinases that have pleiotropic roles in innate immunity and homeostasis and when overexpressed in cancer cells can drive tumorigenesis. In the present study, we engineered EGFR/TAM chimeric receptors (EGFR/Tyro3, EGFR/Axl, and EGF/Mertk) with the goals to interrogate post-receptor functions of TAMs, and query whether TAMs have unique or overlapping post-receptor activation profiles. Stable expression of EGFR/TAMs in EGFR-deficient CHO cells afforded robust EGF inducible TAM receptor phosphorylation and activation of downstream signaling. Using a series of unbiased screening approaches, that include kinome-view analysis, phosphor-arrays, RNAseq/GSEA analysis, as well as cell biological and in vivo readouts, we provide evidence that each TAM has unique post-receptor signaling platforms and identify an intrinsic role for Axl that impinges on cell motility and invasion compared to Tyro3 and Mertk. These studies demonstrate that TAM show unique post-receptor signatures that impinge on distinct gene expression profiles and tumorigenic outcomes.

  7. Swim training and the genetic expression of adipokines in monosodium glutamate-treated obese rats.

    PubMed

    Svidnicki, Paulo Vinicius; Leite, Nayara Carvalho; Vicari, Marcelo Ricardo; Almeida, Mara Cristina de; Artoni, Roberto Ferreira; Favero, Giovani Marino; Grassiolli, Sabrina; Nogaroto, Viviane

    2015-06-01

    The aim of this study was to evaluate the genetic expression of adipokines in the adipocytes of monosodium glutamate (MSG)-treated obese rats submitted to physical activity. Obesity was induced by neonatal MSG administration. Exercised rats (MSG and control) were subjected to swim training for 30 min for 10 weeks, whereas their respective controls remained sedentary. Total RNA was obtained from sections of the mesenteric adipose tissue of the rats. mRNA levels of adiponectin (Adipoq), tumor necrosis factor alpha (Tnf), peroxisome proliferator-activated receptor alpha (Ppara), and peroxisome proliferator-activated receptor gamma (Pparg) adipokines were quantified by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). In the exercise-trained control group, the expression of Adipoq increased compared to the sedentary control, which was not observed in the MSG-obese rats. Increased levels of Tnf in MSG-obese rats were not reversed by the swim training. The expression of Ppara was higher in sedentary MSG-obese rats compared to the sedentary control. Swimming increased this adipokine expression in the exercise-trained control rats compared to the sedentary ones. mRNA levels of Pparg were higher in the sedentary MSG-rats compared to the sedentary control; however, the exercise did not influenced its expression in the groups analyzed. In conclusion, regular physical activity was not capable to correct the expression of proinflammatory adipokines in MSG-obese rat adipocytes.

  8. Estrogen receptor mRNA expression patterns in the liver and ovary of female rainbow trout over a complete reproductive cycle

    PubMed Central

    Nagler, James J.; Cavileer, Timothy D.; Verducci, Joseph S.; Schultz, Irvin R.; Hook, Sharon E.; Hayton, William L.

    2012-01-01

    Estrogens are critical hormones involved in reproduction and need to bind to estrogen receptors in target organs for biological activity. Fishes have two distinct estrogen receptor subtypes, alpha (α) and beta (β), with variable combinations of additional isoforms of each subtype dependent on the history of genome duplication within a taxon. The comparative expression patterns of estrogen receptor isoforms during the female reproductive cycle will provide important insights into the unique function and importance of each. The purpose of this study was to measure the mRNAs for the four estrogen receptor isoforms (erα1, erα2, erβ1, erβ2) in the liver and ovary of adult, female rainbow trout over the course of an annual reproductive cycle. The expression of estrogen receptor mRNA isoforms was measured by quantitative real-time RT-PCR. Several reproductive indices (gonadosomatic index, maximum oocyte diameter, plasma estradiol-17β, plasma vitellogenin, and ovulation) were also quantified for comparison and used in a correlation analysis to examine any inter-relationships. Of the four isoforms, the expression of erα1 was highest in the liver, and had a significant positive correlation with liver erβ1 expression. Liver expression of erα2 mRNA was the lowest, but showed a significant positive correlation with maximum oocyte diameter in the ovary. The pattern of the erβ isoforms in liver was one of initially elevated mRNA expression followed by a gradual decrease as reproductive development proceeded. In the ovary the erβ1 isoform had the highest mRNA expression of all estrogen receptor isoforms, at the beginning of the reproductive cycle, but then decreased afterward. Both ovarian erβ isoforms had a significant positive correlation with one another. In contrast, erα2 mRNA expression showed a high maximum level in the ovary near the end of the cycle along with a significant positive correlation with plasma estradiol-17β levels; the highest gonadosomatic indices, maximum oocyte diameter, and vitellogenin levels occurred then too. PMID:22732076

  9. Monosodium glutamate versus diet induced obesity in pregnant rats and their offspring.

    PubMed

    Afifi, M M; Abbas, Amr M

    2011-06-01

    We aim at determining the role of monosodium glutamate (MSG) compared with high caloric chow(HCC) in development of obesity in pregnant rats and their offspring. Ninety pregnant rats were divided into 3 groups, control, MSG and HCC fed. We determined energy intake, body weight (BW), abdominal fat, fat to body weight ratio, serum glucose, insulin, leptin, lipid profile, ob and leptin receptor-b gene expressions in pregnant rats and ob and leptin receptor-b gene expressions, serum insulin,glucose, leptin, triacylglycerides (TAG), total lipids (TL) and BW in offspring. Although daily energy intake and BW of MSG treated rats were lower than those of HCC fed rats, their abdominal fat and fat body weight ratio were higher. MSG or HCC increased Ob gene expression, leptin, insulin,LDL, cholesterol, total lipids (TL), glucose and decreased leptin receptor-b gene expression. In offspring of MSG treated rats, BW, serum glucose, insulin, leptin, TAG, TL and Ob gene expression increased and leptin receptor-b gene expression decreased whereas in offspring of HCC fed rats, serum insulin, leptin, Ob and leptin receptor-b gene expression increased but serum glucose, TAG, TL or BW did not change. We conclude that in pregnant rats, MSG, in spite of mild hypophagia, caused severe increase in fat body weight ratio, via leptin resistance, whereas, HCC increased BW and fat body weight ratio, due to hyperphagia with consequent leptin resistance. Moreover, maternal obesity in pregnancy, caused by MSG, has greater impact on offspring metabolism and BW than that induced by HCC.

  10. Reproductive Experience Alters Prolactin Receptor Expression in Mammary and Hepatic Tissues in Female Rats1

    PubMed Central

    Bridges, Robert S.; Scanlan, Victoria F.; Lee, Jong-O; Byrnes, Elizabeth M.

    2011-01-01

    Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer. PMID:21508351

  11. Reproductive experience alters prolactin receptor expression in mammary and hepatic tissues in female rats.

    PubMed

    Bridges, Robert S; Scanlan, Victoria F; Lee, Jong-O; Byrnes, Elizabeth M

    2011-08-01

    Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer.

  12. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    PubMed Central

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P < 0.05) and formed endothelial-like networks to a greater extent (P < 0.05) than SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P < 0.05), and an increased percentage of dNK cells expressed NKG2D at 10% oxygen (P < 0.05) compared to other oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  13. EGFR-driven up-regulation of decoy receptor 3 in keratinocytes contributes to the pathogenesis of psoriasis.

    PubMed

    Wu, Nan-Lin; Huang, Duen-Yi; Hsieh, Shie-Liang; Hsiao, Cheng-Hsiang; Lee, Te-An; Lin, Wan-Wan

    2013-10-01

    Decoy receptor 3 (DcR3) is a soluble receptor of Fas ligand (FasL), LIGHT (TNFSF14) and TNF-like molecule 1A (TL1A) and plays pleiotropic roles in many inflammatory and autoimmune disorders and malignant diseases. In cutaneous biology, DcR3 is expressed in primary human epidermal keratinocytes and is upregulated in skin lesions in psoriasis, which is characterized by chronic inflammation and angiogenesis. However, the regulatory mechanisms of DcR3 over-expression in skin lesions of psoriasis are unknown. Here, we demonstrate that DcR3 can be detected in both dermal blood vessels and epidermal layers of psoriatic skin lesions. Analysis of serum samples showed that DcR3 was elevated, but FasL was downregulated in psoriatic patients compared with normal individuals. Additional cell studies revealed a central role of epidermal growth factor receptor (EGFR) in controlling the basal expression of DcR3 in keratinocytes. Activation of EGFR by epidermal growth factor (EGF) and transforming growth factor (TGF)-α strikingly upregulated DcR3 production. TNF-αenhanced DcR3 expression in both keratinocytes and endothelial cells compared with various inflammatory cytokines involved in psoriasis. Additionally, TNF-α-enhanced DcR3 expression in keratinocytes was inhibited when EGFR was knocked down or EGFR inhibitor was used. The NF-κB pathway was critically involved in the molecular mechanisms underlying the action of EGFR and inflammatory cytokines. Collectively, the novel regulatory mechanisms of DcR3 expression in psoriasis, particularly in keratinocytes and endothelial cells, provides new insight into the pathogenesis of psoriasis and may also contribute to the understanding of other diseases that involve DcR3 overexpression. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Antihypertensive effect of formononetin through regulating the expressions of eNOS, 5-HT2A/1B receptors and α1-adrenoceptors in spontaneously rat arteries.

    PubMed

    Sun, Tao; Wang, Jie; Huang, Lin-Hong; Cao, Yong-Xiao

    2013-01-15

    One of the main pathological changes of hypertension is the dysfunction of blood vessels. We have found in our previous study that formononetin, one kind of phytoestrogens, has an acute antihypertensive effect. Therefore, we hypothesized that formononetin might produce a chronic antihypertensive effect through regulating the expressions of contractile receptors and endothelial nitric oxide synthase (eNOS) in artery. The present study was conducted to verify this effect. Male spontaneously hypertensive rats (SHRs) were divided into two groups, orally administrated formononetin (50mg/kg per day) and Tween 80 vehicle, respectively, for 8 weeks. The blood pressure was measured by tail-cuff method. Isometric tension of arterial rings was recorded by a myograph system. The mRNA and protein expression in arteries was determined with quantitative real-time polymerase chain reaction and immunohistochemistry, respectively. Results showed that the systolic blood pressure of SHRs decreased significantly in formononetin group compared to Tween 80 group. The vasoconstriction induced by phenylephrine or 5-hydroxytryptamine (5-HT) in the mesenteric artery segments in formononetin group was decreased, and the relaxation induced by acetylcholine was increased compared with that in Tween 80 group. In the mesenteric arteries of the formononetin-treated SHRs, the expressions of α(1)-adrenoceptors and 5-HT(2A/1B) receptors at both mRNA and protein levels decreased, while the mRNA and protein expressions of eNOS increased. In conclusion, formononetin has a chronic antihypertensive effect in SHRs. The antihypertensive mechanism may be associated with the down-regulation of α(1)-adrenoceptors and 5-HT(2A/1B) receptors, and the up-regulation of eNOS expression in arteries. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Glucocorticoid receptor is involved in the differential expression of hepatic 3β-hydroxysteroid dehydrogenase between barrows and boars at finishing stage.

    PubMed

    Li, Xian; Cong, Rihua; Yao, Wen; Jia, Yimin; Li, Runsheng; Sun, Zhiyuan; Li, Xi; Zhao, Ruqian

    2018-01-01

    The enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD) plays an important role in androstenone metabolism in pig liver, and its defective expression is related to the development of boar taint. Early age castration is a common practice in many countries to avoid boar taint, yet whether and how castration affects porcine hepatic 3β-HSD expression are still poorly understood. In this study, we aimed to compare the expression of 3β-HSD between intact (boars) and castrated (barrows) male pigs, and to explore the potential factors regulating 3β-HSD transcription. Compared to barrows, boars showed worse carcass quality. Boars had significantly higher levels of serum androstenone (P < 0.01), testosterone (P < 0.01) and hepatic cortisol (P < 0.05), which were contrary to significantly lower expression of 3β-HSD messenger RNA (P < 0.01) and protein (P < 0.01) in the liver. Significant differences were detected for the hepatic expression of androgen receptor (AR) and CCAAT/enhancer binding protein β (C/EBPβ). Chromatin immunoprecipitation (ChIP) assay demonstrated reduced histone H3 acetylation (P < 0.05) but increased glucocorticoid receptor (GR) binding to 3β-HSD gene promoter in boars (P < 0.05). These results indicate that GR binding to 3β-HSD promoter is involved in the differential hepatic 3β-HSD expression between boars and barrows. © 2017 Japanese Society of Animal Science.

  16. Molecular Simulation of Receptor Occupancy and Tumor Penetration of an Antibody and Smaller Scaffolds: Application to Molecular Imaging.

    PubMed

    Orcutt, Kelly D; Adams, Gregory P; Wu, Anna M; Silva, Matthew D; Harwell, Catey; Hoppin, Jack; Matsumura, Manabu; Kotsuma, Masakatsu; Greenberg, Jonathan; Scott, Andrew M; Beckman, Robert A

    2017-10-01

    Competitive radiolabeled antibody imaging can determine the unlabeled intact antibody dose that fully blocks target binding but may be confounded by heterogeneous tumor penetration. We evaluated the hypothesis that smaller radiolabeled constructs can be used to more accurately evaluate tumor expressed receptors. The Krogh cylinder distributed model, including bivalent binding and variable intervessel distances, simulated distribution of smaller constructs in the presence of increasing doses of labeled antibody forms. Smaller constructs <25 kDa accessed binding sites more uniformly at large distances from blood vessels compared with larger constructs and intact antibody. These observations were consistent for different affinity and internalization characteristics of constructs. As predicted, a higher dose of unlabeled intact antibody was required to block binding to these distant receptor sites. Small radiolabeled constructs provide more accurate information on total receptor expression in tumors and reveal the need for higher antibody doses for target receptor blockade.

  17. Characterization of cannabinoid receptor ligands in tissues natively expressing cannabinoid CB2 receptors

    PubMed Central

    Marini, Pietro; Cascio, Maria-Grazia; King, Angela; Pertwee, Roger G; Ross, Ruth A

    2013-01-01

    Background and Purpose Although cannabinoid CB2 receptor ligands have been widely characterized in recombinant systems in vitro, little pharmacological characterization has been performed in tissues natively expressing CB2 receptors. The aim of this study was to compare the pharmacology of CB2 receptor ligands in tissue natively expressing CB2 receptors (human, rat and mouse spleen) and hCB2-transfected CHO cells. Experimental Approach We tested the ability of well-known cannabinoid CB2 receptor ligands to stimulate or inhibit [35S]GTPγS binding to mouse, rat and human spleen membranes and to hCB2-transfected CHO cell membranes. cAMP assays were also performed in hCB2-CHO cells. Key Results The data presented demonstrate that: (i) CP 55,940, WIN 55,212-2 and JWH 133 behave as CB2 receptor full agonists both in spleen and hCB2-CHO cells, in both [35S]GTPγS and cAMP assays; (ii) JWH 015 behaves as a low-efficacy agonist in spleen as well as in hCB2-CHO cells when tested in the [35S]GTPγS assay, while it displays full agonism when tested in the cAMP assay using hCB2-CHO cells; (iii) (R)-AM 1241 and GW 405833 behave as agonists in the [35S]GTPγS assay using spleen, instead it behaves as a low-efficacy inverse agonist in hCB2-CHO cells; and (iv) SR 144528, AM 630 and JTE 907 behave as CB2 receptor inverse agonists in all the tissues. Conclusion and Implications Our results demonstrate that CB2 receptor ligands can display differential pharmacology when assays are conducted in tissues that natively express CB2 receptors and imply that conclusions from recombinant CB2 receptors should be treated with caution. PMID:23711022

  18. Chemokines and their receptors in whiplash injury: elevated RANTES and CCR-5.

    PubMed

    Kivioja, J; Rinaldi, L; Ozenci, V; Kouwenhoven, M; Kostulas, N; Lindgren, U; Link, H

    2001-07-01

    The human sufferings and socioeconomic burden due to whip-lash-associated disorders (WAD) are obvious but the pathogenesis of WAD is obscure. The possible involvement of the immune system during the disease process in WAD is not known. Effector molecules including chemokines and their receptors could play a role in WAD. In a prospective study using flow cytometry, we examined percentages of blood mononuclear cells (MNC) expressing the chemokines RANTES, MCP-1, MIP-1alpha, MIP-1beta, and IL-8, the chemokine receptor CCR-5, the T cell activation marker CD25, and the T cell chemoattractant IL-16 in patients with WAD and, for reference, in healthy controls. Higher percentages of RANTES-expressing blood MNC and T cells were observed in patients with WAD examined within 3 days compared to 14 days after the whiplash injury and, likewise, compared with healthy controls. The patients with WAD examined within 3 days after the accident also had higher percentages of CCR-5-expressing blood MNC, T cells, and CD45RO+ T cells compared to healthy controls. In contrast, there were no differences for any of these variables between patients with WAD examined 14 days after injury and healthy controls. In conclusion, WAD is associated with a systemic but transient dysregulation in percentages of RANTES and CCR-5 expressing MNC and T cells.

  19. Localization and regulation of glucagon receptors in the chick eye and preproglucagon and glucagon receptor expression in the mouse eye.

    PubMed

    Feldkaemper, Marita P; Burkhardt, Eva; Schaeffel, Frank

    2004-09-01

    Myopia is a condition in which the eye is too long for the focal length of cornea and lens. Analysis of the messengers that are released by the retina to control axial eye growth in the animal model of the chicken revealed that glucagon-immunoreactive amacrine cells are involved in the retinal image processing that controls the growth of the sclera. It was found that the amount of retinal glucagon mRNA increased during treatment with positive lenses and pharmacological studies supported the idea that glucagon may act as a stop signal for eye growth. Glucagon exerts its regulatory effects by binding to a single type of glucagon receptor. In this study, we have sequenced the chicken glucagon receptor and compared its DNA and amino acid sequence with the human and mouse homologues. After sequencing about 80% of the receptor, we found a homology between 79.4 and 75.6% on cDNA level. At the protein level, about 73% of the amino acids were identical. Moreover, the cellular localization and regulation of the glucagon receptor in the chick retina was studied. In situ hybridization studies showed that many cells in the ganglion cell layer and inner nuclear layer, and some cells in the outer nuclear layer, express the receptor mRNA. Injection of the glucagon agonist Lys17,18,Glu21-glucagon induced a down-regulation of glucagon receptor mRNA content. Since the mouse would be an attractive mammalian model to study the biochemical and genetic basis of myopia, and because recent studies have demonstrated that form deprivation myopia can be induced, the expression of preproglucagon and glucagon receptor genes were also studied in the mouse retina and were found to be expressed.

  20. The receptor tyrosine kinase ERBB4 is expressed in skin keratinocytes and influences epidermal proliferation.

    PubMed

    Hoesl, Christine; Röhrl, Jennifer M; Schneider, Marlon R; Dahlhoff, Maik

    2018-04-01

    The epidermal growth factor receptor (EGFR) and associated receptors ERBB2 and ERBB3 are important for skin development and homeostasis. To date, ERBB4 could not be unambiguously identified in the epidermis. The aim of this study was to analyze the ERBB-receptor family with a special focus on ERBB4 in vitro in human keratinocytes and in vivo in human and murine epidermis. We compared the transcript levels of all ERBB-receptors and the seven EGFR-ligands in HaCaT and A431 cells. ERBB-receptor activity was analyzed after epidermal growth factor (EGF) stimulation by Western blot analysis. The location of the receptors was investigated by immunofluorescence in human keratinocytes and skin. Finally, we investigated the function of ERBB4 in the epidermis of skin-specific ERBB4-knockout mice. After EGF stimulation, all ligands were upregulated except for epigen. Expression levels of EGFR were unchanged, but all other ERBB-receptors were down-regulated after EGF stimulation, although all ERBB-receptors were phosphorylated. We detected ERBB4 at mRNA and protein levels in both human epidermal cell lines and in the basal layer of human and murine epidermis. Skin-specific ERBB4-knockout mice revealed a significantly reduced epidermal thickness with a decreased proliferation rate. ERBB4 is expressed in the basal layer of human epidermis and cultured keratinocytes as well as in murine epidermis. Moreover, ERBB4 is phosphorylated in HaCaT cells due to EGF stimulation, and its deletion in murine epidermis affects skin thickness by decreasing proliferation. ERBB4 is expressed in human keratinocytes and plays a role in murine skin homeostasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Does Aging Alter the Molecular Substrate of Ionotropic Neurotransmitter Receptors in the Rostral Ventral Lateral Medulla? - A Short Communication

    PubMed Central

    Pawar, Hitesh N.; Balivada, Sivasai; Kenney, Michael J.

    2017-01-01

    Aging alters sympathetic nervous system (SNS) regulation, although central mechanisms are not well understood. In young rats the rostral ventral lateral medulla (RVLM) is critically involved in central SNS regulation and RVLM neuronal activity is mediated by a balance of excitatory and inhibitory ionotropic neurotransmitters and receptors, providing the foundation for hypothesizing that with advanced age the molecular substrate of RVLM ionotropic receptors is characterized by upregulated excitatory and downregulated inhibitory receptor subunits. This hypothesis was tested by comparing the relative mRNA expression and protein concentration of RVLM excitatory (NMDA and AMPA) and inhibitory (GABA and glycinergic) ionotropic neurotransmitter receptor subunits in young and aged Fischer (F344) rats. Brains were removed from anesthetized rats and the RVLM-containing area was micropunched and extracted RNA and protein were subsequently used for TaqMan qRT-PCR gene expression and quantitative ELISA analyses. Bilateral chemical inactivation of RVLM neurons and peripheral ganglionic blockade on visceral sympathetic nerve discharge (SND) was determined in additional experiments. The relative gene expression of RVLM NMDA and AMPA glutamate-gated receptor subunits and protein concentration of select receptor subunits did not differ between young and aged rats, and there were no age-related differences in the expression of RVLM ionotropic GABAA and Gly receptors, or of protein concentration of select GABAA subunits. RVLM muscimol microinjections significantly reduced visceral SND by 70±2% in aged F344 rats. Collectively these findings from this short communication support a functional role for the RVLM in regulation of sympathetic nerve outflow in aged rats, but provide no evidence for an ionotropic RVLM receptor-centric framework explaining age-associated changes in SNS regulation. PMID:28263869

  2. Does aging alter the molecular substrate of ionotropic neurotransmitter receptors in the rostral ventral lateral medulla? - A short communication.

    PubMed

    Pawar, Hitesh N; Balivada, Sivasai; Kenney, Michael J

    2017-05-01

    Aging alters sympathetic nervous system (SNS) regulation, although central mechanisms are not well understood. In young rats the rostral ventral lateral medulla (RVLM) is critically involved in central SNS regulation and RVLM neuronal activity is mediated by a balance of excitatory and inhibitory ionotropic neurotransmitters and receptors, providing the foundation for hypothesizing that with advanced age the molecular substrate of RVLM ionotropic receptors is characterized by upregulated excitatory and downregulated inhibitory receptor subunits. This hypothesis was tested by comparing the relative mRNA expression and protein concentration of RVLM excitatory (NMDA and AMPA) and inhibitory (GABA and glycinergic) ionotropic neurotransmitter receptor subunits in young and aged Fischer (F344) rats. Brains were removed from anesthetized rats and the RVLM-containing area was micropunched and extracted RNA and protein were subsequently used for TaqMan qRT-PCR gene expression and quantitative ELISA analyses. Bilateral chemical inactivation of RVLM neurons and peripheral ganglionic blockade on visceral sympathetic nerve discharge (SND) was determined in additional experiments. The relative gene expression of RVLM NMDA and AMPA glutamate-gated receptor subunits and protein concentration of select receptor subunits did not differ between young and aged rats, and there were no age-related differences in the expression of RVLM ionotropic GABA A and Gly receptors, or of protein concentration of select GABA A subunits. RVLM muscimol microinjections significantly reduced visceral SND by 70±2% in aged F344 rats. Collectively these findings from this short communication support a functional role for the RVLM in regulation of sympathetic nerve outflow in aged rats, but provide no evidence for an ionotropic RVLM receptor-centric framework explaining age-associated changes in SNS regulation. Published by Elsevier Inc.

  3. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control

    PubMed Central

    Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.

    2014-01-01

    Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071

  4. Characterization and pharmacological analysis of two adipokinetic hormone receptor variants of the tsetse fly, Glossina morsitans morsitans.

    PubMed

    Caers, Jelle; Janssen, Tom; Van Rompay, Liesbeth; Broeckx, Valérie; Van Den Abbeele, Jan; Gäde, Gerd; Schoofs, Liliane; Beets, Isabel

    2016-03-01

    Adipokinetic hormones (AKH) are well known regulators of energy metabolism in insects. These neuropeptides are produced in the corpora cardiaca and perform their hormonal function by interacting with specific G protein-coupled receptors (GPCRs) at the cell membranes of target tissues, mainly the fat body. Here, we investigated the sequences, spatial and temporal distributions, and pharmacology of AKH neuropeptides and receptors in the tsetse fly, Glossina morsitans morsitans. The open reading frames of two splice variants of the Glomo-akh receptor (Glomo-akhr) gene and of the AKH neuropeptide encoding genes, gmmhrth and gmmakh, were cloned. Both tsetse AKHR isoforms show strong sequence conservation when compared to other insect AKHRs. Glomo-AKH prepropeptides also have the typical architecture of AKH precursors. In an in vitro Ca(2+) mobilization assay, Glomo-AKH neuropeptides activated each receptor isoform up to nanomolar concentrations. We identified structural features of tsetse AKH neuropeptides essential for receptor activation in vitro. Gene expression profiles suggest a function for AKH signaling in regulating Glossina energy metabolism, where AKH peptides are released from the corpora cardiaca and activate receptors mainly expressed in the fat body. This analysis of the ligand-receptor coupling, expression, and pharmacology of the two Glomo-AKHR variants facilitates further elucidation of the function of AKH in G. m. morsitans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The NMDA antagonist ketamine and the 5-HT agonist psilocybin produce dissociable effects on structural encoding of emotional face expressions.

    PubMed

    Schmidt, André; Kometer, Michael; Bachmann, Rosilla; Seifritz, Erich; Vollenweider, Franz

    2013-01-01

    Both glutamate and serotonin (5-HT) play a key role in the pathophysiology of emotional biases. Recent studies indicate that the glutamate N-methyl-D-aspartate (NMDA) receptor antagonist ketamine and the 5-HT receptor agonist psilocybin are implicated in emotion processing. However, as yet, no study has systematically compared their contribution to emotional biases. This study used event-related potentials (ERPs) and signal detection theory to compare the effects of the NMDA (via S-ketamine) and 5-HT (via psilocybin) receptor system on non-conscious or conscious emotional face processing biases. S-ketamine or psilocybin was administrated to two groups of healthy subjects in a double-blind within-subject placebo-controlled design. We behaviorally assessed objective thresholds for non-conscious discrimination in all drug conditions. Electrophysiological responses to fearful, happy, and neutral faces were subsequently recorded with the face-specific P100 and N170 ERP. Both S-ketamine and psilocybin impaired the encoding of fearful faces as expressed by a reduced N170 over parieto-occipital brain regions. In contrast, while S-ketamine also impaired the encoding of happy facial expressions, psilocybin had no effect on the N170 in response to happy faces. This study demonstrates that the NMDA and 5-HT receptor systems differentially contribute to the structural encoding of emotional face expressions as expressed by the N170. These findings suggest that the assessment of early visual evoked responses might allow detecting pharmacologically induced changes in emotional processing biases and thus provides a framework to study the pathophysiology of dysfunctional emotional biases.

  6. Molecular characterization of human thyroid hormone receptor β isoform 4.

    PubMed

    Moriyama, Kenji; Yamamoto, Hiroyuki; Futawaka, Kumi; Atake, Asami; Kasahara, Masato; Tagami, Tetsuya

    2016-01-01

    Thyroid hormone exerts a pleiotropic effect on development, differentiation, and metabolism through thyroid hormone receptor (TR). A novel thyroid hormone receptor β isoform (TRβ4) was cloned using PCR from a human pituitary cDNA library as a template. We report here the characterization of TRβ4 from a molecular basis. Temporal expression of TRβ4 during the fetal period is abundant in the brain and kidney, comparable with the adult pattern. Western blot analysis revealed that TRs are ubiquitination labile proteins, while TRβ1 is potentially stable. TRβ1, peroxisome proliferator-activated receptors (PPAR), and vitamin D receptor (VDR), which belong to class II transcription factors that function via the formation of heterodimeric complexes with retinoid X receptor (RXR), were suppressed by TRβ4 in a dose-dependent manner. Thus, TRβ4 exhibits ligand-independent transcriptional silencing, possibly as a substitute for dimerized RXR. In this study, TRβ1 and TRβ4 transcripts were detected in several cell lines. Quantitative RT-PCR assay showed that the expression of TRβ4 in human embryonic carcinoma cells of the testis was suppressed by sex hormone in a reciprocal manner to TRβ1. In contrast, TRβ4 was expressed under a high dose of triiodothyronine (T3) in a reciprocal manner to TRβ1. Finally, in transiently transfected NIH-3T3 cells, green fluorescence protein (GFP)-tagged TRβ4 was mostly nuclear in both the absence and the presence of T3. By mutating defined regions of both TRβs, we found that both TRβ1 and TRβ4 had altered nuclear/cytoplasmic distribution as compared with wild-type, and different to T3 and the nuclear receptor corepressor (NCoR). Thus, site-specific DNA binding is not essential for maintaining TRβs within the nucleus.

  7. Paradoxical sleep deprivation in rats causes a selective reduction in the expression of type-2 metabotropic glutamate receptors in the hippocampus.

    PubMed

    Panaccione, Isabella; Iacovelli, Luisa; di Nuzzo, Luigi; Nardecchia, Francesca; Mauro, Gianluca; Janiri, Delfina; De Blasi, Antonio; Sani, Gabriele; Nicoletti, Ferdinando; Orlando, Rosamaria

    2017-03-01

    Paradoxical sleep deprivation in rats is considered as an experimental animal model of mania endowed with face, construct, and pharmacological validity. We induced paradoxical sleep deprivation by placing rats onto a small platform surrounded by water. This procedure caused the animal to fall in the water at the onset of REM phase of sleep. Control rats were either placed onto a larger platform (which allowed them to sleep) or maintained in their home cage. Sleep deprived rats showed a substantial reduction in type-2 metabotropic glutamate (mGlu2) receptors mRNA and protein levels in the hippocampus, but not in the prefrontal cortex or corpus striatum, as compared to both groups of control rats. No changes in the expression of mGlu3 receptor mRNA levels or mGlu1α and mGlu5 receptor protein levels were found with exception of an increase in mGlu1α receptor levels in the striatum of SD rats. Moving from these findings we treated SD and control rats with the selective mGlu2 receptor enhancer, BINA (30mg/kg, i.p.). SD rats were also treated with sodium valproate (300mg/kg, i.p.) as an active comparator. Both BINA and sodium valproate were effective in reversing the manic-like phenotype evaluated in an open field arena in SD rats. BINA treatment had no effect on motor activity in control rats, suggesting that our findings were not biased by a non-specific motor-lowering activity of BINA. These findings suggest that changes in the expression of mGlu2 receptors may be associated with the enhanced motor activity observed with mania. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Winning agonistic encounters increases testosterone and androgen receptor expression in Syrian Hamsters

    PubMed Central

    Clinard, Catherine T.; Barnes, Abigail K.; Adler, Samuel G.; Cooper, Matthew A.

    2016-01-01

    Winning aggressive disputes is one of several experiences that can alter responses to future stressful events. We have previously tested dominant and subordinate male Syrian hamsters in a conditioned defeat model and found that dominant individuals show less change in behavior following social defeat stress compared to subordinates and controls, indicating a reduced conditioned defeat response. Resistance to the effects of social defeat in dominants is experience-dependent and requires the maintenance of dominance relationships for 14 days. For this study we investigated whether winning aggressive interactions increases plasma testosterone and whether repeatedly winning increases androgen receptor expression. First, male hamsters were paired in daily 10-min aggressive encounters and blood samples were collected immediately before and 15-min and 30-min after the formation of dominance relationships. Dominants showed an increase in plasma testosterone at 15-min post-interaction compared to their pre-interaction baseline, whereas subordinates and controls showed no change in plasma testosterone. Secondly, we investigated whether 14 days of dominant social status increased androgen or estrogen alpha-receptor immunoreactivity in brain regions that regulate the conditioned defeat response. Dominants showed more androgen, but not estrogen alpha, receptor immuno-positive cells in the dorsal medial amygdala (dMeA) and ventral lateral septum (vLS) compared to subordinates and controls. Finally, we showed that one day of dominant social status was insufficient to increase androgen receptor immunoreactivity compared to subordinates. These results suggest that elevated testosterone signaling at androgen receptors in the dMeA and vLS might contribute to the reduced conditioned defeat response exhibited by dominant hamsters. PMID:27619945

  9. [Expression of A-type atrial natriuretic peptide receptor in the kidneys of renovascular hypertension rats and its implication].

    PubMed

    Liu, Rong-Tao; Xiao, Jing; Guo, Hui-Ling; Qiu, Dun-Guo; Yin, Hua-Hu; Wang, Zheng-Rong

    2005-11-01

    To investigate the expression of A-type atrial natriuretic peptide receptor (ANPR-A) in the kidneys of renovascular hypertension rats and evaluate the significance of the expression. The rat model of renovascular hypertension was produced by constricting one lateral renal artery. After the renal artery being constricted for 4 weeks and 8 weeks, the systolic BP of rats was measured with a manometer using the tail-cuff method. Then, the expression of ANPR-A was respectively detected by immunohistochemical technique in the kidneys of the two-kidney, one-clip (2K1C) rats, and the expression level of ANPR-A was semi-quantitatively measured by Mias-2000 computer image analyzer. At 4 weeks after the artery-constricted operation,the expression of ANPR-A increased significantly in 2K1C hypertensive rat glomeruli and decreased significantly in renal tubules, compared with control (P<0.01), but there was no marked change in medullar collecting tubules. At 8 weeks after the artery-constricted operation, the expression of ANPR-A decreased significantly in 2K1C hypertensive rat renal tubules and medullar collecting tubules, compared with control (P<0.01); however, there was weak expression in glomeruli, and no statistically significant difference was seen when compared with control (P>0.05). The expression of ANPR-A decreased significantly in kidney tissues of renovascular

  10. Selective upregulation of endothelin B receptor gene expression in severe pulmonary hypertension.

    PubMed

    Bauer, Michael; Wilkens, Heinrike; Langer, Frank; Schneider, Sven O; Lausberg, Henning; Schäfers, Hans-Joachim

    2002-03-05

    The pulmonary circulation is an important site for the production and clearance of endothelin (ET)-1, a potent vasoactive and mitogenic peptide. Increased plasma ET-1 levels are observed in pulmonary arterial hypertension (PHT) and may contribute to the regulation of pulmonary vascular resistance, as well as to proliferative changes in the pulmonary vascular bed. We prospectively assessed changes in plasma big ET-1 levels and changes in ET(A) and ET(B) receptor gene expression in 14 consecutive patients undergoing pulmonary thromboendarterectomy for thromboembolic PHT. Plasma big ET-1 levels were higher in patients with PHT (median, 2.2 pg/mL; 25th to 75th percentile, 1.5 to 3.0 pg/mL) compared with age-matched controls (median, 1.2 pg/mL; 25th to 75th percentile, 1.0 to 1.4 pg/mL; P=0.002). In addition to increased plasma big ET-1 levels, selective upregulation of ET(B) receptor mRNA transcripts and immunoreactive protein in the pulmonary artery was observed in the patients; however, ET(A) receptor gene expression was unaffected. These data suggest that changes in the ET signaling system in PHT caused by thromboembolic disease are not limited to an increased production of ET-1: they also affect ET receptor gene expression.

  11. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice.

    PubMed

    Degl'Innocenti, Andrea; Parrilla, Marta; Harr, Bettina; Teschke, Meike

    2016-01-01

    In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a whole, our findings favor Olfr266 as a model gene to investigate odorant receptor gene choice.

  12. Pituitary adenylate cyclase activating polypeptide and PAC1 receptor signaling increase Homer 1a expression in central and peripheral neurons.

    PubMed

    Girard, Beatrice M; Keller, Emily T; Schutz, Kristin C; May, Victor; Braas, Karen M

    2004-12-15

    Pituitary adenylate cyclase activating polypeptides (PACAP) and PAC1 receptor signaling have diverse roles in central and peripheral nervous system development and function. In recent microarray analyses for PACAP and PAC1 receptor modulation of neuronal transcripts, the mRNA of Homer 1a (H1a), which encodes the noncrosslinking and immediate early gene product isoform of Homer, was identified to be strongly upregulated in superior cervical ganglion (SCG) sympathetic neurons. Given the prominent roles of Homer in synaptogenesis, synaptic protein complex assembly and receptor/channel signaling, we have examined the ability for PACAP to induce H1a expression in sympathetic, cortical and hippocampal neurons to evaluate more comprehensively the roles of PACAP in synaptic function. In both central and peripheral neuronal cultures, PACAP peptides increased transiently H1a transcript levels approximately 3.5- to 6-fold. From real-time quantitative PCR measurements, the temporal patterns of PACAP-mediated H1a mRNA induction among the different neuronal cultures appeared similar although the onset of sympathetic H1a transcript expression appeared protracted. The increase in H1a transcripts was accompanied by increases in H1a protein levels. Comparative studies with VIP and PACAP(6-38) antagonist demonstrated that the PACAP effects reflected PAC1 receptor activation and signaling. The PAC1 receptor isoforms expressed in central and peripheral neurons can engage diverse intracellular second messenger systems, and studies using selective signaling pathway inhibitors demonstrated that the cyclic AMP/PKA and MEK/ERK cascades are principal mediators of the PACAP-mediated H1a induction response. In modulating H1a transcript and protein expression, these studies may implicate broad roles for PACAP and PAC1 receptor signaling in synaptic development and plasticity.

  13. Genomic Profiling of Tumor Necrosis Factor Alpha (TNF-α) Receptor and Interleukin-1 Receptor Knockout Mice Reveals a Link between TNF-α Signaling and Increased Severity of 1918 Pandemic Influenza Virus Infection▿ †

    PubMed Central

    Belisle, Sarah E.; Tisoncik, Jennifer R.; Korth, Marcus J.; Carter, Victoria S.; Proll, Sean C.; Swayne, David E.; Pantin-Jackwood, Mary; Tumpey, Terrence M.; Katze, Michael G.

    2010-01-01

    The influenza pandemic of 1918 to 1919 was one of the worst global pandemics in recent history. The highly pathogenic nature of the 1918 virus is thought to be mediated in part by a dysregulation of the host response, including an exacerbated proinflammatory cytokine response. In the present study, we compared the host transcriptional response to infection with the reconstructed 1918 virus in wild-type, tumor necrosis factor (TNF) receptor-1 knockout (TNFRKO), and interleukin-1 (IL-1) receptor-1 knockout (IL1RKO) mice as a means of further understanding the role of proinflammatory cytokine signaling during the acute response to infection. Despite reported redundancy in the functions of IL-1β and TNF-α, we observed that reducing the signaling capacity of each of these molecules by genetic disruption of their key receptor genes had very different effects on the host response to infection. In TNFRKO mice, we found delayed or decreased expression of genes associated with antiviral and innate immune signaling, complement, coagulation, and negative acute-phase response. In contrast, in IL1RKO mice numerous genes were differentially expressed at 1 day postinoculation, including an increase in the expression of genes that contribute to dendritic and natural killer cell processes and cellular movement, and gene expression profiles remained relatively constant at later time points. We also observed a compensatory increase in TNF-α expression in virus-infected IL1RKO mice. Our data suggest that signaling through the IL-1 receptor is protective, whereas signaling through the TNF-α receptor increases the severity of 1918 virus infection. These findings suggest that manipulation of these pathways may have therapeutic benefit. PMID:20926563

  14. A decrease of regulatory T cells and altered expression of NK receptors are observed in subacute sclerosing panencephalitis.

    PubMed

    Yentur, Sibel P; Gurses, Candan; Demirbilek, Veysi; Adin-Cinar, Suzan; Kuru, Umit; Uysal, Serap; Yapici, Zuhal; Yilmaz, Gülden; Cokar, Ozlem; Onal, Emel; Gökyigit, Aysen; Saruhan-Direskeneli, Güher

    2014-12-01

    Subacute sclerosing panencephalitis (SSPE) is caused by a persistent measles virus infection. Regulatory mechanisms can be responsible for a failure of immunosurveillance in children with SSPE. In this study, peripheral blood cells of 71 patients with SSPE and 57 children with other diseases were compared phenotypically. The proportions of CD4(+), CD8(+) T, and NK cells were homogenous, whereas total CD3(+) T and Treg (CD4(+)CD25(+)CD152(+)) cells were decreased in patients with SSPE. The proportion of CD8(+) T cells expressing the inhibitory NKG2A(+) receptor was also decreased (1.7% ± 1.7% vs. 2.6% ± 1.9%, p = 0.007) in patients with SSPE, whereas the proportion of NK cells expressing activating NKG2C was increased compared with the control group (30.0% ± 17.3% vs. 22.2% ± 17.0%, p = 0.039). The decrease in the number of cells with regulatory phenotype, the lower presence of the inhibitory NK receptors on CD8(+) cells, and higher activating NK receptors on NK cells in SSPE indicate an upregulation of these cell types that favors their response. This state of active immune response may be caused by chronic stimulation of viral antigens leading to altered regulatory pathways.

  15. Molecular Cloning, Characterization, and Expression Analysis of an Estrogen Receptor-Related Receptor Homologue in the Cricket, Teleogryllus emma

    PubMed Central

    He, Hui; Xi, Gengsi; Lu, Xiao

    2010-01-01

    The estrogen receptor-related receptors (ERRs) are a group of nuclear receptors that were originally identified on the basis of sequence similarity to estrogen receptors. The three mammalian ERR genes have been implicated in diverse physiological processes ranging from placental development to maintenance of bone density, but the function and regulation of ERRs in invertebrates are not well understood. A homologue of human ERR was isolated from the cricket Teleogryllus emma (Ohmachi and Matsumura) (Orthoptera: Gryllidae). The full-length cDNA of T. emma ERR, termed TeERR, has 1618 base pair (bp) and contains a 5′?-untranslated region of 140 bp and a 3′?-untranslated region of 272 bp. The open reading frame of TeERR encodes a deduced 401 amino acid peptide with a predicted molecular mass of 45.75 kilodaltons. The results of sequence alignments indicate that the TeERR protein shares an overall identity of 65%–82% with other known ERR homologues, and is most closely related to that of Nasonia vitripennis (Hymenoptera: Pteromalidae) and Apis mellifera (Apidae). Real-time quantitative reverse transcription-polymerase chain reaction was performed to compare the TeERR mRNA expression level at the whole body and gonad during T. emma development. The data revealed that TeERR mRNA is differentially expressed during T. emma development, with the highest expression level in embryos and the lowest in the body of late-instar larvae. The levels of TeERR transcripts also varied throughout gonad development; interestingly testicles had higher higher expression levels than ovaries at every development stage. These results suggest that TeERR has potential significance in the regulation of development in T. emma, due to its expression during different developmental periods. PMID:21265615

  16. Isolated Flinders Sensitive Line rats have decreased dopamine D2 receptor mRNA.

    PubMed

    Bjørnebekk, Astrid; Mathé, Aleksander A; Brené, Stefan

    2007-07-02

    Social isolation has profound effects on animal behavior and dopamine systems. We investigated the effect of social isolation on the dopamine receptor and neuropeptide mRNAs in the brain reward system in an animal model of depression, the Flinders Sensitive Line rats and Sprague-Dawley controls. We demonstrate that socially isolated but not group housed Flinders sensitive line rats had lower dopamine D2 receptor mRNA levels compared with Sprague-Dawley rats. Isolated and group housed Flinders Sensitive Line rats had higher levels of dopamine D1 receptor and substance P and enkephalin but not dynorphin mRNAs when compared with Sprague-Dawley rats. Our findings of decreased dopamine D2 receptor levels in socially isolated Flinders Sensitive Line rats suggest that low D2 receptor expression may play a role in pathophysiology of depression.

  17. Region-specific Alterations in Glucocorticoid Receptor Expression in the Postmortem Brain of Teenage Suicide Victims

    PubMed Central

    Pandey, Ghanshyam N.; Rizavi, Hooriyah S.; Ren, Xinguo; Dwivedi, Yogesh; Palkovits, Miklós

    2013-01-01

    Introduction Abnormal function of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and suicide. The purpose of this study was to test the hypothesis that the reported dysregulation of the HPA axis in suicide may be related to a disturbed feedback inhibition caused by decreased corticoid receptors in the brain. We therefore determined the protein and gene expression of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the postmortem brain of teenage suicide victims and matched normal controls. Methods Protein and mRNA expression of GR (GR-α and GR-β) and MR and the mRNA expression of glucocorticoid-induced leucine zipper (GILZ), a target gene for GR were determined by immunolabeling using Western blot technique and the real-time RT-polymerase chain reaction (qPCR) technique in the prefrontal cortex (PFC), hippocampus, subiculum, and amygdala obtained from 24 teenage suicide victims and 24 teenage control subjects. Results We observed that protein and gene expression of GR-α was significantly decreased in the PFC and amygdala, but not in the hippocampus or subiculum, of teenage suicide victims compared with normal control subjects. Also, the mRNA levels of GR inducible target gene GILZ was significantly decreased in PFC and amygdaloid nuclei but not in hippocampus compared with controls. In contrast, no significant differences were observed in protein or gene expression of MR in any of the areas studied between teenage suicide victims and normal control subjects. There was no difference in the expression of GR-β in the PFC between suicide victims and normal controls. Conclusions These results suggested that the observed dysregulation of the HPA axis in suicide may be related to a decreased expression of GR-α and GR inducible genes in the PFC and amygdala of teenage suicide victims. The reason why GR receptors are not dysregulated in the hippocampus or subiculum, presumably two sites of stress action, are not clear at this time. PMID:23845513

  18. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Hua; Lin, Yingbo; Badin, Margherita

    2011-01-14

    Research highlights: {yields} SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. {yields} Here we show that nuclear IGF-1R over-accumulates in tumor cells. {yields} This requires overexpression of the receptor that is a common feature in tumor cells. {yields} An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclearmore » IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the {beta}-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over-accumulation of nIGF-1R. Over-accumulation of nIGF-1R may contribute to deregulated gene expression and therewith play a pathophysiological role in cancer cells.« less

  19. Androgen Receptor Expression in Epithelial and Stromal Cells of Prostatic Carcinoma and Benign Prostatic Hyperplasia.

    PubMed

    Filipovski, Vanja; Kubelka-Sabit, Katerina; Jasar, Dzengis; Janevska, Vesna

    2017-08-15

    Prostatic carcinoma (PCa) derives from prostatic epithelial cells. However stromal microenvironment, associated with malignant epithelium, also plays a role in prostatic carcinogenesis. Alterations in prostatic stromal cells contribute to the loss of growth control in epithelial cells that lead to progression of PCa. To analyse the differences between Androgen Receptor (AR) expression in both epithelial and stromal cells in PCa and the surrounding benign prostatic hyperplasia (BPH) and to compare the results with tumour grade. Samples from 70 cases of radical prostatectomy specimens were used. The expression and intensity of the signal for AR was analysed in the epithelial and stromal cells of PCa and BPH, and the data was quantified using histological score (H-score). AR showed significantly lower expression in both epithelial and stromal cells of PCa compared to BPH. In PCa a significant positive correlation of AR expression was found between stromal and epithelial cells of PCa. AR expression showed a correlation between the stromal cells of PCa and tumour grade. AR expression is reduced in epithelial and stromal cells of PCa. Expression of AR in stromal cells of PCa significantly correlates with tumour grade.

  20. A Cleavable N-Terminal Signal Peptide Promotes Widespread Olfactory Receptor Surface Expression in HEK293T Cells

    PubMed Central

    Shepard, Blythe D.; Natarajan, Niranjana; Protzko, Ryan J.; Acres, Omar W.; Pluznick, Jennifer L.

    2013-01-01

    Olfactory receptors (ORs) are G protein-coupled receptors that detect odorants in the olfactory epithelium, and comprise the largest gene family in the genome. Identification of OR ligands typically requires OR surface expression in heterologous cells; however, ORs rarely traffic to the cell surface when exogenously expressed. Therefore, most ORs are orphan receptors with no known ligands. To date, studies have utilized non-cleavable rhodopsin (Rho) tags and/or chaperones (i.e. Receptor Transporting Protein, RTP1S, Ric8b and Gαolf) to improve surface expression. However, even with these tools, many ORs still fail to reach the cell surface. We used a test set of fifteen ORs to examine the effect of a cleavable leucine-rich signal peptide sequence (Lucy tag) on OR surface expression in HEK293T cells. We report here that the addition of the Lucy tag to the N-terminus increases the number of ORs reaching the cell surface to 7 of the 15 ORs (as compared to 3/15 without Rho or Lucy tags). Moreover, when ORs tagged with both Lucy and Rho were co-expressed with previously reported chaperones (RTP1S, Ric8b and Gαolf), we observed surface expression for all 15 receptors examined. In fact, two-thirds of Lucy-tagged ORs are able to reach the cell surface synergistically with chaperones even when the Rho tag is removed (10/15 ORs), allowing for the potential assessment of OR function with only an 8-amino acid Flag tag on the mature protein. As expected for a signal peptide, the Lucy tag was cleaved from the mature protein and did not alter OR-ligand binding and signaling. Our studies demonstrate that widespread surface expression of ORs can be achieved in HEK293T cells, providing promise for future large-scale deorphanization studies. PMID:23840901

  1. Upregulated Expression of Transient Receptor Potential Cation Channel Subfamily V Receptors in Mucosae of Patients with Oral Squamous Cell Carcinoma and Patients with a History of Alcohol Consumption or Smoking

    PubMed Central

    Sakakibara, Akiko; Sakakibara, Shunsuke; Kusumoto, Junya; Takeda, Daisuke; Hasegawa, Takumi; Akashi, Masaya; Minamikawa, Tsutomu; Hashikawa, Kazunobu; Terashi, Hiroto; Komori, Takahide

    2017-01-01

    Objectives Transient receptor potential cation channel (subfamily V, members 1–4) (TRPV1–4) are expressed in skin and neurons and activated by external stimuli in normal mucosae of all oral cavity sites. The oral cavity is exposed to various stimuli, including temperature, mechanical stimuli, chemical substances, and changes in pH, and, notably, the risk factors for oncogenic transformation in oral squamous epithelium are the same as the external stimuli received by TRPV1–4 receptors. Hence, we examined the relationship between oral squamous cell carcinoma (SCC) and TRPV1–4 expression. Materials and Methods Oral SCC patients (n = 37) who underwent surgical resection were included in this study. We investigated the expression of TRPV1–4 by immunohistochemical staining and quantification of TRPV1–4 mRNA in human oral mucosa. In addition, we compared the TRPV1–4 levels in mucosa from patients with SCC to those in normal oral mucosa. Results The receptors were expressed in oral mucosa at all sites (tongue, buccal mucosa, gingiva, and oral floor) and the expression was stronger in epithelia from patients with SCC than in normal epithelia. Furthermore, alcohol consumption and tobacco use were strongly associated with the occurrence of oral cancer and were found to have a remarkable influence on TRPV1–4 receptor expression in normal oral mucosa. In particular, patients with a history of alcohol consumption demonstrated significantly higher expression levels. Conclusion Various external stimuli may influence the behavior of cancer cells. Overexpression of TRPV1-4 is likely to be a factor in enhanced sensitivity to external stimuli. These findings could contribute to the establishment of novel strategies for cancer therapy or prevention. PMID:28081185

  2. The effect of platelet rich fibrin on growth factor levels in urethral repair.

    PubMed

    Soyer, Tutku; Ayva, Şebnem; Boybeyi, Özlem; Aslan, Mustafa Kemal; Çakmak, Murat

    2013-12-01

    Platelet rich fibrin (PRF) is an autologous source of growth factors and promotes wound healing. An experimental study was performed to evaluate the effect of PRF on growth factor levels in urethral repair. Eighteen Wistar albino rats were included in the study. Rats were allocated in three groups (n:6): control (CG), sham (SG), and PRF (PRFG). In SG, a 5 mm vertical incision was performed in the penile urethra and repaired with 10/0 Vicryl® under a microscope. In PRFG, during the urethral repair as described in SG, 1 cc of blood was sampled from each rat and centrifuged for 10 minutes at 2400 rpm. PRF obtained from the centrifugation was placed on the repair site during closure. Penile urethras were sampled 24 hours after PRF application in PRFG and after urethral repair in SG. Transforming growth factor beta receptor (TGF-β-R-CD105), vascular endothelial growth factor (VEGF) and its receptor (VEGF-R), as well as endothelial growth factor receptor (EGFR), were evaluated in subepithelia of the penile skin and urethra. Groups were compared for growth factor levels and growth factor receptor expression with the Kruskal Wallis test. TGF-β-R levels were significantly decreased in SG when compared to CG (p<0.05). In PRFG, TGF-β-R was increased in both subepithelia of penile skin and urethra with respect to SG (p<0.05). When VEGF levels and its receptor expression were compared between SG and PRFG, VEGF levels were found to be increased in penile skin subepithelium, whereas VEGF-R expressions were decreased in urethral subepithelia in PRFG (p<0.05). There was no difference between groups for EGFR levels (p>0.05). Use of PRF after urethral repair increases TGF-β-R and VEGF expressions in urethral tissue. PRF can be considered as an alternative measure to improve the success of urethral repair. © 2013.

  3. Insight into Buffalo (Bubalus bubalis) RIG1 and MDA5 Receptors: A Comparative Study on dsRNA Recognition and In-Vitro Antiviral Response

    PubMed Central

    Singh, Manvender; Brahma, Biswajit; Maharana, Jitendra; Patra, Mahesh Chandra; Kumar, Sushil; Mishra, Purusottam; Saini, Megha; De, Bidhan Chandra; Mahanty, Sourav; Datta, Tirtha Kumar; De, Sachinandan

    2014-01-01

    RIG1 and MDA5 have emerged as important intracellular innate pattern recognition receptors that recognize viral RNA and mediate cellular signals controlling Type I interferon (IFN-I) response. Buffalo RIG1 and MDA5 genes were investigated to understand the mechanism of receptor induced antiviral response. Sequence analysis revealed that RIG1 and MDA5 maintain a domain arrangement that is common in mammals. Critical binding site residues of the receptors are evolutionary conserved among mammals. Molecular dynamics simulations suggested that RIG1 and MDA5 follow a similar, if not identical, dsRNA binding pattern that has been previously reported in human. Moreover, binding free energy calculation revealed that MDA5 had a greater affinity towards dsRNA compared to RIG1. Constitutive expressions of RLR genes were ubiquitous in different tissues without being specific to immune organs. Poly I:C stimulation induced elevated expressions of IFN-β and IFN-stimulated genes (ISGs) through interferon regulatory factors (IRFs) mediated pathway in buffalo foetal fibroblast cells. The present study provides crucial insights into the structure and function of RIG1 and MDA5 receptors in buffalo. PMID:24587036

  4. The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer.

    PubMed

    Shaw, Greg L; Whitaker, Hayley; Corcoran, Marie; Dunning, Mark J; Luxton, Hayley; Kay, Jonathan; Massie, Charlie E; Miller, Jodi L; Lamb, Alastair D; Ross-Adams, Helen; Russell, Roslin; Nelson, Adam W; Eldridge, Matthew D; Lynch, Andrew G; Ramos-Montoya, Antonio; Mills, Ian G; Taylor, Angela E; Arlt, Wiebke; Shah, Nimish; Warren, Anne Y; Neal, David E

    2016-08-01

    The androgen receptor (AR) is the dominant growth factor in prostate cancer (PCa). Therefore, understanding how ARs regulate the human transcriptome is of paramount importance. The early effects of castration on human PCa have not previously been studied 27 patients medically castrated with degarelix 7 d before radical prostatectomy. We used mass spectrometry, immunohistochemistry, and gene expression array (validated by reverse transcription-polymerase chain reaction) to compare resected tumour with matched, controlled, untreated PCa tissue. All patients had levels of serum androgen, with reduced levels of intraprostatic androgen at prostatectomy. We observed differential expression of known androgen-regulated genes (TMPRSS2, KLK3, CAMKK2, FKBP5). We identified 749 genes downregulated and 908 genes upregulated following castration. AR regulation of α-methylacyl-CoA racemase expression and three other genes (FAM129A, RAB27A, and KIAA0101) was confirmed. Upregulation of oestrogen receptor 1 (ESR1) expression was observed in malignant epithelia and was associated with differential expression of ESR1-regulated genes and correlated with proliferation (Ki-67 expression). This first-in-man study defines the rapid gene expression changes taking place in prostate cancer (PCa) following castration. Expression levels of the genes that the androgen receptor regulates are predictive of treatment outcome. Upregulation of oestrogen receptor 1 is a mechanism by which PCa cells may survive despite castration. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  5. Developmental expression of the receptor for advanced glycation end-products (RAGE) and its response to hyperoxia in the neonatal rat lung

    PubMed Central

    Lizotte, Pierre-Paul; Hanford, Lana E; Enghild, Jan J; Nozik-Grayck, Eva; Giles, Brenda-Louise; Oury, Tim D

    2007-01-01

    Background The receptor for advanced glycation end products (mRAGE) is associated with pathology in most tissues, while its soluble form (sRAGE) acts as a decoy receptor. The adult lung is unique in that it expresses high amounts of RAGE under normal conditions while other tissues express low amounts normally and up-regulate RAGE during pathologic processes. We sought to determine the regulation of the soluble and membrane isoforms of RAGE in the developing lung, and its expression under hyperoxic conditions in the neonatal lung. Results Fetal (E19), term, 4 day, 8 day and adult rat lung protein and mRNA were analyzed, as well as lungs from neonatal (0–24 hrs) 2 day and 8 day hyperoxic (95% O2) exposed animals. mRAGE transcripts in the adult rat lung were 23% greater than in neonatal (0–24 hrs) lungs. On the protein level, rat adult mRAGE expression was 2.2-fold higher relative to neonatal mRAGE expression, and adult sRAGE protein expression was 2-fold higher compared to neonatal sRAGE. Fetal, term, 4 day and 8 day old rats had a steady increase in both membrane and sRAGE protein expression evaluated by Western Blot and immunohistochemistry. Newborn rats exposed to chronic hyperoxia showed significantly decreased total RAGE expression compared to room air controls. Conclusion Taken together, these data show that rat pulmonary RAGE expression increases with age beginning from birth, and interestingly, this increase is counteracted under hyperoxic conditions. These results support the emerging concept that RAGE plays a novel and homeostatic role in lung physiology. PMID:17343756

  6. Neutralized adenovirus-immune complexes can mediate effective gene transfer via an Fc receptor-dependent infection pathway.

    PubMed

    Leopold, Philip L; Wendland, Rebecca L; Vincent, Theresa; Crystal, Ronald G

    2006-10-01

    Neutralization of adenovirus (Ad) by anti-Ad neutralizing antibodies in serum involves formation of Ad-immune complexes that prevent the virus from interacting with target cells. We hypothesized that Ad-immune complexes likely contain viable Ad vectors which, although no longer capable of gaining access to receptors on target cells, may be able to express transgenes in cells bearing Fc receptors for immunoglobulins, i.e., that antibody-based "neutralization" of Ad vectors may be circumvented by the Fc receptor pathway. To test this hypothesis, we expressed the Fcgamma receptor IIA (FcgammaR) in A549 lung epithelial cells or human dermal fibroblasts and evaluated gene transfer in the presence of human neutralizing anti-Ad serum. FcgammaR-expressing cells bound and internalized copious amounts of Ad, with a distinct population of internalized Ad trafficking to the nucleus. The dose-response curves for inhibition of gene transfer revealed that FcgammaR-expressing cells required a more-than-10-fold higher concentration of anti-Ad serum to achieve 50% inhibition of Ad-encoded beta-galactosidase expression compared with non-FcgammaR-expressing cells. The discrepancy between neutralization of Ad during infection of FcgammaR-expressing cells and neutralization of Ad during infection of non-FcgammaR-expressing cells occurred with either heat-inactivated or non-heat-inactivated sera, was blocked by addition of purified Fc domain protein, and did not require the cytoplasmic domain of FcgammaR, suggesting that immune complex internalization proceeded via endocytosis rather than phagocytosis. FcgammaR-mediated infection by Ad-immune complexes did not require expression of the coxsackie virus-Ad receptor (CAR) since similar data were obtained when CAR-deficient human dermal fibroblasts were engineered to express FcgammaR. However, interaction of the Ad penton base with cell surface integrins contributed to the difference in neutralization between FcgammaR-expressing and non-FcgammaR-expressing cells. The data indicate that complexes formed from Ad and anti-Ad neutralizing antibodies, while compromised with respect to infection of non-FcgammaR-expressing target cells, maintain the potential to transfer genes to FcgammaR-expressing cells, with consequent expression of the transgene. The formation of Ad-immune complexes that can target viable virus to antigen-presenting cells may account for the success of Ad-based vaccines administered in the presence of low levels of neutralizing anti-Ad antibody.

  7. Functional distribution of Ca2+-coupled P2 purinergic receptors among adrenergic and noradrenergic bovine adrenal chromaffin cells.

    PubMed

    Tomé, Angelo R; Castro, Enrique; Santos, Rosa M; Rosário, Luís M

    2007-06-14

    Adrenal chromaffin cells mediate acute responses to stress through the release of epinephrine. Chromaffin cell function is regulated by several receptors, present both in adrenergic (AD) and noradrenergic (NA) cells. Extracellular ATP exerts excitatory and inhibitory actions on chromaffin cells via ionotropic (P2X) and metabotropic (P2Y) receptors. We have taken advantage of the actions of the purinergic agonists ATP and UTP on cytosolic free Ca2+ concentration ([Ca2+]i) to determine whether P2X and P2Y receptors might be asymmetrically distributed among AD and NA chromaffin cells. The [Ca2+]i and the [Na+]i were recorded from immunolabeled bovine chromaffin cells by single-cell fluorescence imaging. Among the ATP-sensitive cells ~40% did not yield [Ca2+]i responses to ATP in the absence of extracellular Ca2+ (Ca2+o), indicating that they expressed P2X receptors and did not express Ca2+- mobilizing P2Y receptors; the remainder expressed Ca2+-mobilizing P2Y receptors. Relative to AD-cells approximately twice as many NA-cells expressed P2X receptors while not expressing Ca2+- mobilizing P2Y receptors, as indicated by the proportion of cells lacking [Ca2+]i responses and exhibiting [Na+]i responses to ATP in the absence and presence of Ca2+o, respectively. The density of P2X receptors in NA-cells appeared to be 30-50% larger, as suggested by comparing the average size of the [Na+]i and [Ca2+]i responses to ATP. Conversely, approximately twice as many AD-cells expressed Ca2+-mobilizing P2Y receptors, and they appeared to exhibit a higher (~20%) receptor density. UTP raised the [Ca2+]i in a fraction of the cells and did not raise the [Na+]i in any of the cells tested, confirming its specificity as a P2Y agonist. The cell density of UTP-sensitive P2Y receptors did not appear to vary among AD- and NA-cells. Although neither of the major purinoceptor types can be ascribed to a particular cell phenotype, P2X and Ca2+-mobilizing P2Y receptors are preferentially located to noradrenergic and adrenergic chromaffin cells, respectively. ATP might, in addition to an UTP-sensitive P2Y receptor, activate an UTP-insensitive P2Y receptor subtype. A model for a short-loop feedback interaction is presented whereby locally released ATP acts upon P2Y receptors in adrenergic cells, inhibiting Ca2+ influx and contributing to terminate evoked epinephrine secretion.

  8. The pregnane X receptor regulates gene expression in a ligand- and promoter-selective fashion.

    PubMed

    Masuyama, Hisashi; Suwaki, Naoko; Tateishi, Yoko; Nakatsukasa, Hideki; Segawa, Tomonori; Hiramatsu, Yuji

    2005-05-01

    Recent studies have revealed that pregnane X receptor (PXR) can function as a master regulator to control the expression of phase I and phase II drug-metabolizing enzymes, as well as members of the drug transporter family, including multiple drug resistance (MDR) 1, which has a major role in multidrug resistance. Previously, we have demonstrated that steroid/xenobiotics metabolism by tumor tissue through the PXR-cytochrome P-450 3A (CYP3A) pathway might play an important role in endometrial cancer. In this study, we examined which endocrine-disrupting chemicals (EDCs) and anticancer agents might be ligands for PXR and whether these chemicals enhanced PXR-mediated transcription through two different PXR-responsive elements (PXREs), CYP3A4 and MDR1, in endometrial cancer cell lines. Some steroids/EDCs strongly activated PXR-mediated transcription through the CYP3A4-responsive element compared with the MDR1-responsive element, whereas these steroids/EDCs also enhanced the CYP3A4 expression compared with the MDR1 expression. In contrast, the anticancer agents, cisplatin and paclitaxel, strongly activated PXR-mediated transcription through the MDR1-responsive element compared with the CYP3A4-responsive element, whereas these drugs also enhanced the MDR1 expression compared with the CYP3A4 expression. We also analyzed how these ligands regulated PXR-mediated transcription through two different PXREs. In the presence of PXR ligands, there was no difference in the DNA binding affinity of the PXR/retinoid X receptor heterodimer to each PXRE, but there were different interactions of the coactivator to each PXR/PXRE complex. These data suggested that PXR ligands enhanced PXR-mediated transcription in a ligand- and promoter-dependent fashion, which in turn differentially regulated the expression of individual PXR targets, especially CYP3A4 and MDR1.

  9. Fasting modulates GH/IGF-I axis and its regulatory systems in the mammary gland of female mice: Influence of endogenous cortistatin.

    PubMed

    Villa-Osaba, Alicia; Gahete, Manuel D; Cordoba-Chacon, José; de Lecea, Luis; Castaño, Justo P; Luque, Raúl M

    2016-10-15

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are essential factors in mammary-gland (MG) development and are altered during fasting. However, no studies have investigated the alterations in the expression of GH/IGF-I and its regulatory systems (somatostatin/cortistatin and ghrelin) in MG during fasting. Therefore, this study was aimed at characterizing the regulation of GH/IGF-I/somatostatin/cortistatin/ghrelin-systems expression in MG of fasted female-mice (compared to fed-controls) and the influence of endogenous-cortistatin (using cortistatin-knockouts). Fasting decreased IGF-I while increased IGF-I/Insulin-receptors expression in MGs. Fasting provoked an increase in GH expression that might be associated to enhanced ghrelin-variants/ghrelin-O-acyl-transferase enzyme expression, while an upregulation of somatostatin-receptors was observed. However, cortistatin-knockouts mice showed a decrease in GH and somatostatin receptor-subtypes expression. Altogether, we demonstrate that GH/IGF-I, somatostatin/cortistatin and ghrelin systems expression is altered in MG during fasting, suggesting a relevant role in coordinating its response to metabolic stress, wherein endogenous cortistatin might be essential for an appropriate response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Successful treatment of HIV-1 infection increases the expression of a novel, short transcript for IL-18 receptor α chain.

    PubMed

    Nasi, Milena; Alboni, Silvia; Pinti, Marcello; Tascedda, Fabio; Benatti, Cristina; Benatti, Stefania; Gibellini, Lara; De Biasi, Sara; Borghi, Vanni; Brunello, Nicoletta; Mussini, Cristina; Cossarizza, Andrea

    2014-11-01

    : The importance of interleukin (IL)-18 in mediating immune activation during HIV infection has recently emerged. IL-18 activity is regulated by its receptor (IL-18R), formed by an α and a β chain, the IL-18-binding protein, and the newly identified shorter isoforms of both IL-18R chains. We evaluated gene expression of the IL-18/IL-18R system in peripheral blood mononuclear cells from HIV+ patients. Compared with healthy donors, IL-18 expression decreased in patients with primary infection. The IL-18Rα short transcript expression was strongly upregulated by successful highly active antiretroviral therapy. HIV progression and its treatment can influence the expression of different components of the complex IL-18/IL-18R system.

  11. Cloning and functional analysis of P2X1b, a new variant in rat optic nerve that regulates the P2X1 receptor in a use-dependent manner.

    PubMed

    Rangel-Yescas, Gisela E; Vazquez-Cuevas, Francisco G; Garay, Edith; Arellano, Rogelio O

    2012-01-01

    P2X receptors are trimeric, ATP-gated cation channels. In mammals seven P2X subtypes have been reported (P2X1-P2X7), as well as several variants generated by alternative splicing. Variants confer to the homomeric or heteromeric channels distinct functional and/or pharmacological properties. Molecular biology, biochemical, and functional analysis by electrophysiological methods were used to identify and study a new variant of the P2X1 receptor named P2X1b. This new variant, identified in rat optic nerve, was also expressed in other tissues. P2X1b receptors lack amino acids 182 to 208 of native P2X1, a region that includes residues that are highly conserved among distinct P2X receptors. When expressed in Xenopus oocytes, P2X1b was not functional as a homomer; however, when co-expressed with P2X1, it downregulated the electrical response generated by ATP compared with that of oocytes expressing P2X1 alone, and it seemed to form heteromeric channels with a modestly enhanced ATP potency. A decrease in responses to ATP in oocytes co-expressing different ratios of P2X1b to P2X1 was completely eliminated by overnight pretreatment with apyrase. Thus, it is suggested that P2X1b regulates, through a use-dependent mechanism, the availability, in the plasma membrane, of receptor channels that can be operated by ATP.

  12. GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism

    PubMed Central

    Fatemi, S. Hossein; Folsom, Timothy D.

    2016-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in Fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems. PMID:25432637

  13. Cerebral ischemia induced inflammatory response and altered glutaminergic function mediated through brain AT1 and not AT2 receptor.

    PubMed

    Justin, A; Divakar, S; Ramanathan, M

    2018-06-01

    In the present study, we investigated the effects of angiotensin (Ang II) receptor blockers in cerebral ischemia by administration of telmisartan (AT 1 blocker) and/or PD123319 (AT 2 blocker) in global ischemic mice model. The neuroprotective effect of AT antagonists was evaluated through monitoring muscle co-ordination and cerebral blood perfusion in ischemic mice. Gene expression studies (NF-κB, GSK-3β, EAAT-2, AT 1 & AT 2 receptors) and staining of brain regions with cresyl violet, GFAP, synaptophysin and NSE methods were carried out in to understand the molecular mechanisms. Further, the brain glutamate, cytokines, and Ang II peptide levels were evaluated and their correlation with EAAT-2 mRNA expression was performed. Our results indicate that the induction of ischemia elevates brain Ang II, cytokines, and glutamate levels and reduced muscle co-ordination and cerebral blood perfusion. The expressions of NF-κB, GSK-3β and AT 1 were significantly increased, whereas, EAAT-2 expression was decreased. Blocking of AT 1 receptors by telmisartan (TM) reversed the detrimental responses of cerebral ischemia and restored the cerebral blood flow denoting blockade of Ang II/AT 1 pathway is beneficial in ischemia, whereas, blockade of AT 2 receptors by PD123319 (PD) increased the ischemic injury in mice. This vulnerable effect of PD may be attributed through augmenting the Ang II/AT 1 dependent cytokines mediated glutamate transporter (EAAT-2) dysfunction. Interestingly, the beneficial effects of AT 1 blocker was remarkably antagonized by AT 2 blocker in most of the parameters studied in ischemic conditions. Also, the expression of AT 2 receptors was significantly increased compared to that of AT 1 receptors upon ischemic induction. It denotes that the endogenous Ang II predominantly acts on AT 2 receptor, thereby promoting its own mRNA transcription. Hence, the increased expression of AT 2 receptors in ischemic condition could be used as target protein for therapeutic benefit. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor-9 in mice.

    PubMed

    Kaur, Sandeep; Mukhopadhyay, C S; Sethi, R S

    2016-11-01

    Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor 9 (TLR-9) in mice. In this study, healthy male Swiss albino mice (n=30) aging 8-10 weeks were used to evaluate TLR-9 expression in lungs of mice following indoxacarb exposure with and without lipopolysaccharide (LPS). Indoxacarb was administered orally dissolved in groundnut oil at 4 and 2 mg/kg/day for 90 days. On day 91, five animals from each group were challenged with LPS/normal saline solution at 80 µg/animal. The lung tissues were processed for real time and immunohistochemical studies. LPS resulted increase in fold change m-RNA expression level of TLR-9 as compare to control, while indoxacarb (4 mg/kg) alone and in combination with LPS resulted 16.21-fold change and 29.4-fold change increase in expression of TLR-9 m-RNA, respectively, as compared to control. Similarly, indoxacarb (2 mg/kg) alone or in combination with LPS also altered TLR-9 expression. Further at protein level control group showed minimal expression of TLR-9 in lungs as compare to other groups, however, LPS group showed intense positive staining in bronchial epithelium as well as in alveolar septal cells. Indoxacarb at both doses individually showed strong immuno-positive reaction as compare to control, however when combined with LPS resulted intense staining in airway epithelium as compare to control. Chronic oral administration of indoxacarb for 90 days (4 and 2 mg/kg) alters expression of TLR-9 at m-RNA and protein level and co-exposure with LPS exhibited synergistic effect.

  15. Prostaglandin F2α–F-Prostanoid Receptor Signalling Promotes Neutrophil Chemotaxis via Chemokine (CXC motif) Ligand-1 in Endometrial Adenocarcinoma

    PubMed Central

    Wallace, Alison E; Sales, Kurt J; Catalano, Roberto D; Anderson, Richard A; Williams, Alistair RW; Wilson, Martin R; Schwarze, Jurgen; Wang, Hongwei; Rossi, Adriano G; Jabbour, Henry N

    2009-01-01

    The prostaglandin F2α (PGF2α) receptor (FP) is elevated in endometrial adenocarcinoma. This study found that PGF2α signalling via FP regulates expression of chemokine (C-X-C motif) ligand 1 (CXCL1) in endometrial adenocarcinoma cells. Expression of CXCL1 and its receptor, CXCR2, are elevated in cancer tissue as compared to normal endometrium and localised to glandular epithelium, endothelium and stroma. Treatment of Ishikawa cells stably transfected with the FP receptor (FPS cells) with 100nM PGF2α increased CXCL1 promoter activity, mRNA and protein expression, and these effects were abolished by co-treatment of cells with FP antagonist or chemical inhibitors of Gq, EGFR and ERK. Similarly, CXCL1 was elevated in response to 100 nM PGF2α in endometrial adenocarcinoma explant tissue. CXCL1 is a potent neutrophil chemoattractant. The expression of CXCR2 colocalised to neutrophils in endometrial adenocarcinoma and increased neutrophils were present in endometrial adenocarcinoma compared with normal endometrium. Conditioned media from PGF2α-treated FPS cells stimulated neutrophil chemotaxis which could be abolished by CXCL1 protein immunoneutralisation of the conditioned media or antagonism of CXCR2. Finally, xenograft tumours in nude mice arising from inoculation with FPS cells showed increased neutrophil infiltration compared to tumours arising from wild-type cells or following treatment of mice bearing FPS tumours with CXCL1-neutralising antibody. In conclusion, our results demonstrate a novel PGF2α-FP pathway that may regulate the inflammatory microenvironment in endometrial adenocarcinoma via neutrophil chemotaxis. PMID:19549892

  16. Effects of granulocyte colony-stimulating factor (G-CSF) treatment on granulocyte function and receptor expression in patients with ventilator-dependent pneumonia

    PubMed Central

    Hustinx, W N M; Van Kessel, C P M; Heezius, E; Burgers, S; Lammers, J-W; Hoepelman, I M

    1998-01-01

    Considerable experimental evidence in animals suggests that treatment with G-CSF may have a beneficial effect in the management of severe infections in non-neutropenic hosts. This beneficial effect is attributed to an enhancement of granulopoiesis and neutrophil function, the latter possibly involving up-regulation of receptors on neutrophils that are involved in antibody-mediated cytotoxicity and killing of microorganisms. We compared neutrophil function and phenotype in blood and bronchoalveolar lavage fluid (BALF) of 10 patients with severe ventilator-dependent pneumonia, at baseline and following initiation of G-CSF treatment as adjunct to standard therapy. G-CSF treatment was associated with three-fold increased blood neutrophil counts at day 3 of treatment compared with baseline counts. Mean serum G-CSF concentration increased from 313 to 2007 pg/ml. After correction for lavage dilution effects, BALF G-CSF levels did not differ significantly from baseline, nor did neutrophil receptor expression (FcγRI, FcγRII, FcγRIII, CR3, and l-selectin) or indicators of neutrophil function such as respiratory burst activity, phagocytosis and killing of Candida albicans in BALF or blood. The mortality in this group of patients was 30% and compared favourably to the APACHE II-derived predicted mortality of 60%. We conclude that the possible therapeutic benefit of G-CSF administration in the early phase of severe bacterial pneumonia is not readily explained by its effect on baseline indicators of neutrophil function or receptor expression. PMID:9649199

  17. Imaging Neurotensin Receptor in Prostate Cancer With 64Cu-Labeled Neurotensin Analogs.

    PubMed

    Deng, Huaifu; Wang, Hui; Zhang, He; Wang, Mengzhe; Giglio, Ben; Ma, Xiaofen; Jiang, Guihua; Yuan, Hong; Wu, Zhanhong; Li, Zibo

    2017-01-01

    Neurotensin receptor 1 (NTR-1) is expressed and activated in prostate cancer cells. In this study, we explore the NTR expression in normal mouse tissues and study the positron emission tomography (PET) imaging of NTR in prostate cancer models. Three 64 Cu chelators (1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid [DOTA], 1,4,7-triazacyclononane-N,N',N″-triacetic acid [NOTA], or AmBaSar) were conjugated to an NT analog. Neurotensin receptor binding affinity was evaluated using cell binding assay. The imaging profile of radiolabeled probes was compared in well-established NTR + HT-29 tumor model. Stability of the probes was tested. The selected agents were further evaluated in human prostate cancer PC3 xenografts. All 3 NT conjugates retained the majority of NTR binding affinity. In HT-29 tumor, all agents demonstrated prominent tumor uptake. Although comparable stability was observed, 64 Cu-NOTA-NT and 64 Cu-AmBaSar-NT demonstrated improved tumor to background contrast compared with 64 Cu-DOTA-NT. Positron emission tomography/computed tomography imaging of the NTR expression in PC-3 xenografts showed high tumor uptake of the probes, correlating with the in vitro Western blot results. Blocking experiments further confirmed receptor specificity. Our results demonstrated that 64 Cu-labeled neurotensin analogs are promising imaging agents for NTR-positive tumors. These agents may help us identify NTR-positive lesions and predict which patients and individual tumors are likely to respond to novel interventions targeting NTR-1.

  18. IL-8 is upregulated in cervical cancer tissues and is associated with the proliferation and migration of HeLa cervical cancer cells.

    PubMed

    Jia, Linlin; Li, Fengying; Shao, Mingliang; Zhang, Wei; Zhang, Chunbin; Zhao, Xiaolian; Luan, Haiyan; Qi, Yaling; Zhang, Pengxia; Liang, Lichun; Jia, Xiuyue; Zhang, Kun; Lu, Yan; Yang, Zhe; Zhu, Xiulin; Zhang, Qi; Du, Jiwei; Wang, Weiqun

    2018-01-01

    Interleukin-8 (IL-8) serves an important function in chronic inflammation and cancer development; however, the underlying molecular mechanism(s) of IL-8 in uterine cervical cancer remains unclear. The present study investigated whether IL-8 and its receptors [IL-8 receptor (IL-8R)A and IL-8RB] contributed to the proliferative and migratory abilities of HeLa cervical cancer cells, and also investigated the potential underlying molecular mechanisms. Results demonstrated that IL-8 and its receptors were detected in HeLa cells, and levels of IL-8RA were significantly increased compared with those of IL-8RB. Furthermore, the level of IL-8 in cervical cancer tissues was significantly increased compared with that in normal uterine cervical tissues, and migratory and proliferative efficiencies of HeLa cells treated with exogenous IL-8 were increased, compared with untreated HeLa cells. In addition, exogenous IL-8 was able to downregulate endocytic adaptor protein (NUMB), and upregulate IL-8RA, IL-8RB and extracellular signal-regulated protein kinases (ERKs) expression levels in HeLa cells. Results suggest that IL-8 and its receptors were associated with the tumorigenesis of uterine cervical cancer, and exogenous IL-8 promotes the carcinogenic potential of HeLa cells by increasing the expression levels of IL-8RA, IL-8RB and ERK, and decreasing the expression level of NUMB.

  19. Hormone Receptor Status in Breast Cancer and its Relation to Age and Other Prognostic Factors

    PubMed Central

    Pourzand, Ali; Fakhree, M. Bassir A.; Hashemzadeh, Shahryar; Halimi, Monireh; Daryani, Amir

    2011-01-01

    Background: Increasing evidence shows the importance of young age, estrogen receptor (ER), progesterone receptor (PR) status, and HER-2 expression in patients with breast cancers. Patients and methods: We organized an analytic cross-sectional study of 105 women diagnosed with breast cancer who have been operated on between 2008 to 2010. We evaluated age, size, hormone receptor status, HER-2 and P53 expression as possible indicator of lymph node involvement. Results: There is a direct correlation between positive progesterone receptor status and being younger than 40 (P < 0.05). Also, compared with older women, young women had tumors that were more likely to be large in size and have higher stages (P < 0.05). Furthermore patients with negative progesterone receptor status were more likely to have HER-2 overexpression (P < 0.05). The differences in propensity to lymph node metastasis between hormone receptor statuses were not statically significant. Conclusions: Although negative progesterone receptor tumors were more likely to have HER-2 overexpression, it is possible that higher stage and larger size breast cancer in younger women is related to positive progesterone receptor status. PMID:21695095

  20. Muscarinic Control of MIN6 Pancreatic β Cells Is Enhanced by Impaired Amino Acid Signaling*

    PubMed Central

    Guerra, Marcy L.; Wauson, Eric M.; McGlynn, Kathleen; Cobb, Melanie H.

    2014-01-01

    We have shown recently that the class C G protein-coupled receptor T1R1/T1R3 taste receptor complex is an early amino acid sensor in MIN6 pancreatic β cells. Amino acids are unable to activate ERK1/2 in β cells in which T1R3 has been depleted. The muscarinic receptor agonist carbachol activated ERK1/2 better in T1R3-depleted cells than in control cells. Ligands that activate certain G protein-coupled receptors in pancreatic β cells potentiate glucose-stimulated insulin secretion. Among these is the M3 muscarinic acetylcholine receptor, the major muscarinic receptor in β cells. We found that expression of M3 receptors increased in T1R3-depleted MIN6 cells and that calcium responses were altered. To determine whether these changes were related to impaired amino acid signaling, we compared responses in cells exposed to reduced amino acid concentrations. M3 receptor expression was increased, and some, but not all, changes in calcium signaling were mimicked. These findings suggest that M3 acetylcholine receptors are increased in β cells as a mechanism to compensate for amino acid deficiency. PMID:24695728

  1. Increased PD-1+ and TIM-3+ TILs during cetuximab therapy inversely correlates with response in head and neck cancer patients

    PubMed Central

    Jie, Hyun-Bae; Srivastava, Raghvendra M.; Argiris, Athanassios; Bauman, Julie E.; Kane, Lawrence P.; Ferris, Robert L.

    2017-01-01

    Despite emerging appreciation for the important role of immune checkpoint receptors in regulating the effector functions of T cells, it is unknown whether their expression is involved in determining the clinical outcome in response to cetuximab therapy. We examined the expression patterns of immune checkpoint receptors (including PD-1, CTLA-4, and TIM-3) and cytolytic molecules (including granzyme B and perforin) of CD8+ tumor-infiltrating lymphocytes (TILs) and compared them to those of peripheral blood T lymphocytes (PBLs) in patients with head and neck cancer (HNSCC) during cetuximab therapy. The frequency of PD-1 and TIM-3 expression was significantly increased in CD8+ TILs compared to CD8+ PBLs (P = 0.008 and P = 0.02, respectively). This increased CD8+ TIL population co-expressed granzyme B/perforin and PD-1/TIM-3, which suggests a regulatory role for these immune checkpoint receptors in cetuximab-promoting cytolytic activities of CD8+ TIL. Indeed, the increased frequency of PD-1+ and TIM-3+ CD8+ TILs was inversely correlated with clinical outcome of cetuximab therapy. These findings support the use of PD-1 and TIM-3 as biomarkers to reflect immune status of CD8+ T cells in the tumor microenvironment during cetuximab therapy. Blockade of these immune checkpoint receptors might enhance cetuximab-based cancer immunotherapy to reverse CD8+ TIL dysfunction, thus potentially improving clinical outcomes of HNSCC patients. PMID:28408386

  2. Comparison of the antiviral potential among soluble forms of herpes simplex virus type-2 glycoprotein D receptors, herpes virus entry mediator A, nectin-1 and nectin-2, in transgenic mice.

    PubMed

    Fujimoto, Yoshikazu; Tomioka, Yukiko; Ozaki, Kinuyo; Takeda, Keiko; Suyama, Haruka; Yamamoto, Sayo; Takakuwa, Hiroki; Morimatsu, Masami; Uede, Toshimitsu; Ono, Etsuro

    2017-07-01

    Herpesvirus entry mediator A (HVEM), nectin-1 and nectin-2 are cellular receptors of glycoprotein D (gD) of herpes simplex virus type-2 (HSV-2). It has been shown that soluble forms of HSV gD receptors have the antiviral potential in cultured cells and transgenic mice. Here, to compare antiviral potential of soluble forms of HVEM, nectin-1 and nectin-2 against HSV-2 infections in vivo, transgenic mice expressing fusion proteins consisting of the entire ectodomain of HVEM, nectin-1 or nectin-2 and the Fc portion of human IgG (HVEMIg, nectin-1Ig and nectin-2Ig, respectively) were intraperitoneally infected with HSV-2. In the infection with 3 MLD50 (50 % mouse lethal dose), effective resistance was not observed in transgenic mice expressing nectin-2Ig. In a transgenic mouse line with high expression of nectin-1Ig, significant protection from the infection with 30 and 300 MLD50 was observed (survival rate of 100 and 71 %, respectively). On the other hand, transgenic mice expressing HVEMIg showed a complete resistance to the lethal infection even with 300 MLD50 (survival rate of 100 %). These results demonstrated that HVEMIg could exert effective antiviral activities against HSV-2 infections in vivo as compared with other soluble forms of HSV gD receptors.

  3. Olfactory discrimination largely persists in mice with defects in odorant receptor expression and axon guidance

    PubMed Central

    2012-01-01

    Background The defining feature of the main olfactory system in mice is that each olfactory sensory neuron expresses only one of more than a thousand different odorant receptor genes. Axons expressing the same odorant receptor converge onto a small number of targets in the olfactory bulb such that each glomerulus is made up of axon terminals expressing just one odorant receptor. It is thought that this precision in axon targeting is required to maintain highly refined odor discrimination. We previously showed that β3GnT2−/− mice have severe developmental and axon guidance defects. The phenotype of these mice is similar to adenylyl cyclase 3 (AC3) knockout mice largely due to the significant down-regulation of AC3 activity in β3GnT2−/− neurons. Results Microarray analysis reveals that nearly one quarter of all odorant receptor genes are down regulated in β3GnT2−/− mice compared to controls. Analysis of OR expression by quantitative PCR and in situ hybridization demonstrates that the number of neurons expressing some odorant receptors, such as mOR256-17, is increased by nearly 60% whereas for others such as mOR28 the number of neurons is decreased by more than 75% in β3GnT2−/− olfactory epithelia. Analysis of axon trajectories confirms that many axons track to inappropriate targets in β3GnT2−/− mice, and some glomeruli are populated by axons expressing more than one odorant receptor. Results show that mutant mice perform nearly as well as control mice in an odor discrimination task. In addition, in situ hybridization studies indicate that the expression of several activity dependent genes is unaffected in β3GnT2−/− olfactory neurons. Conclusions Results presented here show that many odorant receptors are under-expressed in β3GnT2−/− mice and further demonstrate that additional axon subsets grow into inappropriate targets or minimally innervate glomeruli in the olfactory bulb. Odor evoked gene expression is unchanged and β3GnT2−/− mice exhibit a relatively small deficit in their ability to discriminate divergent odors. Results suggest that despite the fact that β3GnT2−/− mice have decreased AC3 activity, decreased expression of many ORs, and display many axon growth and guidance errors, odor-evoked activity in cilia of mutant olfactory neurons remains largely intact. PMID:22559903

  4. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarus, Kyren A.; Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122; Zhao, Zhe

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels highermore » in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.« less

  5. Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine.

    PubMed

    Kong, H; Kuang, W; Li, S; Xu, M

    2011-03-10

    Memories of learned associations between the rewarding properties of drugs and environmental cues contribute to craving and relapse in humans. The mesocorticolimbic dopamine (DA) system is involved in reward-related learning induced by drugs of abuse. DA D3 receptors are preferentially expressed in mesocorticolimbic DA projection areas. Genetic and pharmacological studies have shown that DA D3 receptors suppress locomotor-stimulant effects of cocaine and reinstatement of cocaine-seeking behaviors. Activation of the extracellular signal-regulated kinase (ERK) induced by acute cocaine administration is also inhibited by D3 receptors. How D3 receptors modulate cocaine-induced reward-related learning and associated changes in cell signaling in reward circuits in the brain, however, have not been fully investigated. In the present study, we show that D3 receptor mutant mice exhibit potentiated acquisition of conditioned place preference (CPP) at low doses of cocaine compared to wild-type mice. Activation of ERK and CaMKIIα, but not the c-Jun N-terminal kinase and p38, in the nucleus accumbens, amygdala and prefrontal cortex is also potentiated in D3 receptor mutant mice compared to that in wild-type mice following CPP expression. These results support a model in which D3 receptors modulate reward-related learning induced by low doses of cocaine by inhibiting activation of ERK and CaMKIIα in reward circuits in the brain. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Polymorphism and Expression Profile of Cholecystokinin Type A Receptor in Relation to Gallstone Disease Susceptibility.

    PubMed

    Kazmi, Hasan Raza; Chandra, Abhijit; Nigam, Jaya; Baghel, Kavita; Srivastava, Meenu; Maurya, Shailendra S; Parmar, Devendra

    2016-10-01

    In the present study, we investigated expression pattern of Cholecystokinin type A receptor (CCKAR) in relation to its commonly studied polymorphism (rs1800857, T/C) in gallstone disease (GSD) patients and controls. A total of 502 subjects (272 GSD and 230 controls) were enrolled, and genotyping was performed by evaluating restriction fragments of PstI digested DNA. For analyzing expression pattern of CCKAR in relation to polymorphism, gallbladder tissue samples from 80 subjects (GSD-55; control-25) were studied. Expression of CCKAR mRNA was evaluated by reverse transcriptase-PCR and confirmed using real-time PCR. Protein expression was evaluated by enzyme-linked immunosorbent assay. We observed significantly (p < 0.0001) lower expression of CCKAR mRNA and protein in GSD tissues as compared with control. Significantly higher frequency of A1/A1 genotype (C/T transition) (p = 0.0005) was observed for GSD as compared with control. Expression of CCKAR protein was found to be significantly lower (p < 0.0001) in A1/A1 genotype as compared with other genotypes for GSD patients. Perhaps, this is the first report providing evidence of alteration in CCKAR expression in relation to its polymorphism elucidating the molecular pathway of the disease. Additional investigations with lager sample size are needed to confirm these findings.

  7. Adiponectin and Its Receptors in the Ovary: Further Evidence for a Link between Obesity and Hyperandrogenism in Polycystic Ovary Syndrome

    PubMed Central

    Comim, Fabio V.; Hardy, Kate; Franks, Stephen

    2013-01-01

    Polycystic ovary syndrome (PCOS), characterized by ovarian androgen excess, is the commonest endocrine disorder in women. Obesity increases androgen synthesis, a phenomenon attributed to the accompanying hyperinsulinemia. Our hypothesis was that adipokines, fat cell-derived hormones, play a direct role in modulating ovarian androgen secretion. Therefore, the aims of this study were to explore the effects of adipokines (in particular, adiponectin) on ovarian steroidogenesis and compare the expression of adiponectin receptors in ovaries from women with and without PCO. Sections of archived human ovaries (nine from women with normal ovaries and 16 with PCOS, classified histologically, with reference to menstrual history and ultrasound) were analysed by quantitative morphometry and the proportion of positive-labelling cells compared. In addition, studies of androgen production in relation to adipokine function in primary bovine theca cell culture were also performed. A significantly lower proportion of theca cells expressed adiponectin receptors 1 and 2 (AdipoR1, AdipoR2) in polycystic ovaries than in normal ovaries. In cultured theca cells, adiponectin suppressed androstenedione production and gene expression of LH receptor and key enzymes in the androgen synthesis pathway. Moreover, knockdown of genes for AdipoR1 and AdipoR2 was associated with increased androstenedione secretion by bovine theca cells. These results provide evidence for a direct link between fat cell metabolism and ovarian steroidogenesis, suggesting that disruption of adiponectin and/or its receptors plays a key role in pathogenesis of hyperandrogenism in PCOS. PMID:24260388

  8. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Differential regulation of serotonin (5HT)2A receptor mRNA and protein levels after single and repeated stress in rat brain: role in learned helplessness behavior.

    PubMed

    Dwivedi, Yogesh; Mondal, Amal C; Payappagoudar, Gurubasanagouda V; Rizavi, Hooriyah S

    2005-02-01

    Stress-induced learned helplessness in animals serves as a model of behavioral depression and other stress-related disorders. Our recent report that repeated stress prolongs the duration of learned helplessness behavior in rats may be important since acute and recurrent disorders may have different responsive mechanisms. To examine the role of serotonergic (5HT) mechanisms in such behavior, we studied the expression of 5HT2A receptors in different brain areas of rats, and further investigated whether the alterations in expression of 5HT2A receptors are similar after single versus repeated stress. Rats exposed to inescapable shock once on day 1, or twice, on day 1 and day 7, were tested for escape latency on days 2 and 4, or day 14, respectively. Higher escape latencies were observed on day 2 after single, and on day 14 after repeated shock. Whereas the single-stress paradigm produced a significant decrease of 5HT2A receptor mRNA and protein expression in hippocampus of non-learned helpless and learned helpless rats as compared with tested controls, repeated stress resulted in increase in frontal cortex but decrease in hippocampus and hypothalamus of learned helpless rats only, as compared with tested control rats. These results demonstrate differential regulation of 5HT2A receptors in LH rats after single and repeated stress, which may be critical in the pathophysiology of depression/other stress-related disorders.

  10. Day/night expression of MT1 and MT2 receptors in hypothalamic nuclei of the primate Sapajus apella.

    PubMed

    Pinato, Luciana; Ramos, Dayane; Hataka, Alessandre; Rossignoli, Patricia S; Granado, Marcos Donisete; Mazzetto, Marina Cardoso; Campos, Leila M G

    2017-04-01

    Melatonin is involved in the temporal organization of several physiological and behavioral events, controlled by hypothalamic nuclei, like sleep, feeding, reproduction and metabolic modulation and acts through two types of high-affinity G protein-coupled membrane receptors: MT 1 and MT 2 . This study aimed to investigate the expression of MT 1 and MT 2 receptors proteins in four hypothalamic nuclei, i.e., SCN, supraoptic (SON), paraventricular (PVN) and anteroventral periventricular nuclei (AVPV), of the diurnal primate Sapajus apella using immunohistochemistry. Since these areas are involved in the expression of biological rhythms, they are candidates to have variations in their neurochemistry, so the MT 1 and MT 2 expression has been analyzed at a point in light and another in the dark phase. Both receptors were found to have day/night differences in the four hypothalamic nuclei with an apparent inverse expression in the SCN compared with the other areas. These differences could be related to the idea that the individual should be prepared to respond by different ways to melatonin signal within the several processes and can contribute to the efficacy of melatonin ligands or melatonin in therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Regulation of Ghrelin Receptor by Periodontal Bacteria In Vitro and In Vivo.

    PubMed

    Nokhbehsaim, Marjan; Damanaki, Anna; Nogueira, Andressa Vilas Boas; Eick, Sigrun; Memmert, Svenja; Zhou, Xiaoyan; Nanayakkara, Shanika; Götz, Werner; Cirelli, Joni Augusto; Jäger, Andreas; Deschner, James

    2017-01-01

    Ghrelin plays a major role in obesity-related diseases which have been shown to be associated with periodontitis. This study sought to analyze the expression of the functional receptor for ghrelin (GHS-R1a) in periodontal cells and tissues under microbial conditions in vitro and in vivo . The GHS-R1a expression in human periodontal cells challenged with the periodontopathogen Fusobacterium nucleatum , in gingival biopsies from periodontally healthy and diseased individuals, and from rats with and without ligature-induced periodontitis was analyzed by real-time PCR, immunocytochemistry, and immunofluorescence. F. nucleatum induced an initial upregulation and subsequent downregulation of GHS-R1a in periodontal cells. In rat experimental periodontitis, the GHS-R1a expression at periodontitis sites was increased during the early stage of periodontitis, but significantly reduced afterwards, when compared with healthy sites. In human gingival biopsies, periodontally diseased sites showed a significantly lower GHS-R1a expression than the healthy sites. The expression of the functional ghrelin receptor in periodontal cells and tissues is modulated by periodontal bacteria. Due to the downregulation of the functional ghrelin receptor by long-term exposure to periodontal bacteria, the anti-inflammatory actions of ghrelin may be diminished in chronic periodontal infections, which could lead to an enhanced periodontal inflammation and tissue destruction.

  12. Effects of intrinsic aerobic capacity and ovariectomy on voluntary wheel running and nucleus accumbens dopamine receptor gene expression.

    PubMed

    Park, Young-Min; Kanaley, Jill A; Padilla, Jaume; Zidon, Terese; Welly, Rebecca J; Will, Matthew J; Britton, Steven L; Koch, Lauren G; Ruegsegger, Gregory N; Booth, Frank W; Thyfault, John P; Vieira-Potter, Victoria J

    2016-10-01

    Rats selectively bred for high (HCR) and low (LCR) aerobic capacity show a stark divergence in wheel running behavior, which may be associated with the dopamine (DA) system in the brain. HCR possess greater motivation for voluntary running along with greater brain DA activity compared to LCR. We recently demonstrated that HCR are not immune to ovariectomy (OVX)-associated reductions in spontaneous cage (i.e. locomotor) activity. Whether HCR and LCR rats differ in their OVX-mediated voluntary wheel running response is unknown. To determine whether HCR are protected from OVX-associated reduction in voluntary wheel running. Forty female HCR and LCR rats (age ~27weeks) had either SHM or OVX operations, and given access to a running wheel for 11weeks. Weekly wheel running distance was monitored throughout the intervention. Nucleus accumbens (NAc) was assessed for mRNA expression of DA receptors at sacrifice. Compared to LCR, HCR ran greater distance and had greater ratio of excitatory/inhibitory DA mRNA expression (both line main effects, P<0.05). Wheel running distance was significantly, positively correlated with the ratio of excitatory/inhibitory DA mRNA expression across animals. In both lines, OVX reduced wheel running (P<0.05). Unexpectedly, although HCR started with significantly greater voluntary wheel running, they had greater OVX-induced reduction in wheel running than LCR such that no differences were found 11weeks after OVX between HCROVX and LCROVX (interaction, P<0.05). This significant reduction in wheel running in HCR was associated with an OVX-mediated reduction in the ratio of excitatory/inhibitory DA mRNA expression. The DA system in the NAc region may play a significant role in motivation to run in female rats. Compared to LCR, HCR rats run significantly more, which associates with greater ratio of excitatory/inhibitory DA mRNA expression. However, despite greater inherent motivation to run and an associated brain DA mRNA expression profile, HCR rats are not protected against OVX-induced reduction in wheel running or OVX-mediated reduction in the ratio of excitatory/inhibitory DA receptor mRNA expression. OVX-mediated reduction in motivated physical activity may be partially explained by a reduced ratio of excitatory/inhibitory DA receptor mRNA expression for which intrinsic fitness does not confer protection. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Channel-Opening Kinetic Mechanism of Wild-Type GluK1 Kainate Receptors and a C-Terminal Mutant

    PubMed Central

    Han, Yan; Wang, Congzhou; Park, Jae Seon; Niu, Li

    2012-01-01

    GluK1 is a kainate receptor subunit in the ionotropic glutamate receptor family and can form functional channels when expressed, for instance, in HEK-293 cells. However, the channel-opening mechanism of GluK1 is poorly understood. One major challenge to studying the GluK1 channel is its apparent low surface expression, which results in a low whole-cell current response even to a saturating concentration of agonist. The low surface expression is thought to be contributed by an endoplasmic reticulum (ER) retention signal sequence. When this sequence motif is present as in the wild-type GluK1-2b C-terminus, the receptor is significantly retained in the ER. Conversely, when this sequence is lacking, as in wild-type GluK1-2a (i.e., a different alternatively spliced isoform at the C-terminus) and in a GluK1-2b mutant (i.e., R896A, R897A, R900A and K901A) that disrupts the ER retention signal, there is higher surface expression and greater whole-cell current response. Here we characterize the channel-opening kinetic mechanism for these three GluK1 receptors expressed in HEK-293 cells by using a laser-pulse photolysis technique. Our results show that the wild-type GluK1-2a, wild-type GluK1-2b and the mutant GluK1-2b have identical channel-opening and channel-closing rate constants. These results indicate that the C-terminal ER retention signal sequence, which affects receptor trafficking/expression, does not affect channel-gating properties. Furthermore, as compared with the GluK2 kainate receptor, the GluK1 channel is faster to open, close, and desensitize by at least two-fold, yet the EC50 value of GluK1 is similar to that of GluK2. PMID:22191429

  14. Axonal outgrowth, neuropeptides expression and receptors tyrosine kinase phosphorylation in 3D organotypic cultures of adult dorsal root ganglia

    PubMed Central

    Alves, Cecília J.; Leitão, Luís; Sousa, Daniela M.; Alencastre, Inês S.; Conceição, Francisco; Lamghari, Meriem

    2017-01-01

    Limited knowledge from mechanistic studies on adult sensory neuronal activity was generated, to some extent, in recapitulated adult in vivo 3D microenvironment. To fill this gap there is a real need to better characterize the adult dorsal root ganglia (aDRG) organotypic cultures to make these in vitro systems exploitable for different approaches, ranging from basic neurobiology to regenerative therapies, to address the sensory nervous system in adult stage. We conducted a direct head-to-head comparison of aDRG and embryonic DRG (eDRG) organotypic culture focusing on axonal growth, neuropeptides expression and receptors tyrosine kinase (RTK) activation associated with neuronal survival, proliferation and differentiation. To identify alterations related to culture conditions, these parameters were also addressed in retrieved aDRG and eDRG and compared with organotypic cultures. Under similar neurotrophic stimulation, aDRG organotypic cultures displayed lower axonal outgrowth rate supported by reduced expression of growth associated protein-43 and high levels of RhoA and glycogen synthase kinase 3 beta mRNA transcripts. In addition, differential alteration in sensory neuropeptides expression, namely calcitonin gene-related peptide and substance P, was detected and was mainly pronounced at gene expression levels. Among 39 different RTK, five receptors from three RTK families were emphasized: tropomyosin receptor kinase A (TrkA), epidermal growth factor receptors (EGFR, ErbB2 and ErbB3) and platelet-derived growth factor receptor (PDGFR). Of note, except for EGFR, the phosphorylation of these receptors was dependent on DRG developmental stage and/or culture condition. In addition, EGFR and PDGFR displayed alterations in their cellular expression pattern in cultured DRG. Overall we provided valuable information particularly important when addressing in vitro the molecular mechanisms associated with development, maturation and regeneration of the sensory nervous system. PMID:28742111

  15. Genetic deletion of GPR52 enhances the locomotor-stimulating effect of an adenosine A2A receptor antagonist in mice: A potential role of GPR52 in the function of striatopallidal neurons.

    PubMed

    Nishiyama, Keiji; Suzuki, Hirobumi; Maruyama, Minoru; Yoshihara, Tomoki; Ohta, Hiroyuki

    2017-09-01

    G protein-coupled receptor 52 (GPR52) is largely co-expressed with dopamine D 2 receptor (DRD2) in the striatum and nucleus accumbens, and this expression pattern is similar to that of adenosine A 2A receptor (ADORA2A). GPR52 has been proposed as a therapeutic target for positive symptoms of schizophrenia, based on observations from pharmacological and transgenic mouse studies. However, the physiological role of GPR52 in dopaminergic functions in the basal ganglia remains unclear. Here, we used GPR52 knockout (KO) mice to examine the role of GPR52 in dopamine receptor-mediated and ADORA2A-mediated locomotor activity and dopamine receptor signaling. High expression of GPR52 protein in the striatum, nucleus accumbens, and lateral globus pallidus of wild type (WT) littermates was confirmed by immunohistochemical analysis. GPR52 KO and WT mice exhibited almost identical locomotor responses to the dopamine releaser methamphetamine and the N-methyl-d-aspartate antagonist MK-801. In contrast, the locomotor response to the ADORA2A antagonist istradefylline was significantly augmented in GPR52 KO mice compared to WT mice. Gene expression analysis revealed that striatal expression of DRD2, but not of dopamine D 1 receptor and ADORA2A, was significantly decreased in GPR52 KO mice. Moreover, a significant reduction in the mRNA expression of enkephalin, a marker of the activity of striatopallidal neurons, was observed in the striatum of GPR52 KO mice, suggesting that GPR52 deletion could enhance DRD2 signaling. Taken together, these results imply the physiological relevance of GPR52 in modulating the function of striatopallidal neurons, possibly by interaction of GPR52 with ADORA2A and DRD2. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    USDA-ARS?s Scientific Manuscript database

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  17. Nasal Epithelial Cells as Surrogates for Bronchial Epithelial Cells in Airway Inflammation Studies

    PubMed Central

    McDougall, Catherine M.; Blaylock, Morgan G.; Douglas, J. Graham; Brooker, Richard J.; Helms, Peter J.; Walsh, Garry M.

    2008-01-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, αvβ3, and αvβ5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1β and TNF-α were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation. PMID:18483420

  18. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies.

    PubMed

    McDougall, Catherine M; Blaylock, Morgan G; Douglas, J Graham; Brooker, Richard J; Helms, Peter J; Walsh, Garry M

    2008-11-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, alphavbeta3, and alphavbeta5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1beta and TNF-alpha were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation.

  19. Buprenorphine-elicited alteration of adenylate cyclase activity in human embryonic kidney 293 cells coexpressing κ-, μ-opioid and nociceptin receptors

    PubMed Central

    Wang, Pei-Chen; Ho, Ing-Kang; Lee, Cynthia Wei-Sheng

    2015-01-01

    Buprenorphine, a maintenance drug for heroin addicts, exerts its pharmacological function via κ- (KOP), μ-opioid (MOP) and nociceptin/opioid receptor-like 1 (NOP) receptors. Previously, we investigated its effects in an in vitro model expressing human MOP and NOP receptors individually or simultaneously (MOP, NOP, and MOP+NOP) in human embryonic kidney 293 cells. Here, we expanded this cell model by expressing human KOP, MOP and NOP receptors individually or simultaneously (KOP, KOP+MOP, KOP+NOP and KOP+MOP+NOP). Radioligand binding with tritium-labelled diprenorphine confirmed the expression of KOP receptors. Immunoblotting and immunocytochemistry indicated that the expressed KOP, MOP and NOP receptors are N-linked glycoproteins and colocalized in cytoplasmic compartments. Acute application of the opioid receptor agonists— U-69593, DAMGO and nociceptin— inhibited adenylate cyclase (AC) activity in cells expressing KOP, MOP and NOP receptors respectively. Buprenorphine, when applied acutely, inhibited AC activity to ~90% in cells expressing KOP+MOP+NOP receptors. Chronic exposure to buprenorphine induced concentration-dependent AC superactivation in cells expressing KOP+NOP receptors, and the level of this superactivation was even higher in KOP+MOP+NOP-expressing cells. Our study demonstrated that MOP receptor could enhance AC regulation in the presence of coexpressed KOP and NOP receptors, and NOP receptor is essential for concentration-dependent AC superactivation elicited by chronic buprenorphine exposure. PMID:26153065

  20. Estrogen receptor modulatory effects of germinated brown rice bioactives in the uterus of rats through the regulation of estrogen-induced genes

    PubMed Central

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi Bint; Saeed, Mohammed Ibrahim; Imam, Mustapha Umar; Ishaka, Aminu

    2013-01-01

    Purpose The expression of genes regulated by estrogen in the uterus was studied in ovariectomized (OVX) rats treated with germinated brown rice (GBR) bioactives, and compared to Remifemin or estrogen at different doses to identify the regulation of these genes in the uterus and their molecular mechanisms. Methods Rats were treated orally with GBR bioactives (phenolics), acylated steryl glucosides (ASG), γ-amino butyric acid (GABA), and γ-oryzanol (ORZ) at 100 and 200 mg/kg, Remifemin (REM) at 10 mg/kg and 20 mg/kg, or estrogen (EST) at 0.2 mg/kg. Ribonucleic acid (RNA) was extracted from the uterus, and messenger (m)RNA expression of selected genes encoding estrogen receptor-beta (ER-β), calcium-binding protein (CaBP9k), complement protein (C3), heat shock protein 70 kDa (HSP70), and interleukin (IL)-4 receptor were quantified. Similarly, serum steroid hormone concentration was monitored at 2, 4, and 8 weeks after treatments. ER-β antibody binding to the uterus sections was also studied using immunohistochemistry. Results The group treated with EST (0.2 mg/kg) upregulated ER-β, C3, and IL-4 receptor genes compared to other groups (P<0.001). GBR phenolics (200 mg/kg) treatment upregulated the ER-β gene almost to the level of the sham non-treated group. The CaBP9k gene showed upregulation in groups treated with ASG (200 mg/kg), EST (0.2 mg/kg), and ORZ (200 mg/kg) (P<0.05). Estrogen levels increased in groups treated with EST, ASG, and ORZ (200 mg/kg) compared to the OVX untreated group (P<0.05), and there was a slight non-significant decrease (P>0.05) in the progesterone levels in the OVX untreated group compared to the sham and other treated groups. There was a significant increase at 8 weeks in the level of FSH (P<0.05) in the treated groups compared to the OVX untreated group. There was no significant difference (P>0.05) in serum luteinizing hormone (LH) between the OVX untreated group and other groups. The sham and GBR phenolics treated group showed ER-β reactivity at the glandular epithelium, while the group treated with EST showed immunoreactivity at the glandular, luminal, and stromal epithelium. Conclusion GBR phenolics moderately regulate the expression of ER-β, HSP70, and IL-4 receptor genes, and gave a positive immunoreaction to ER-β antigen in the uterus. ASG regulates the expression of CaBP9k and IL-4 receptor genes, and ORZ regulates the expression of the CaBP9k gene, while GABA at 100 mg/kg regulates the expression of the HSP70 gene. GBR and its bioactives might have an effect on estrogen-regulated genes in the uterus of rats. PMID:24324328

  1. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins.

    PubMed

    Macaulay, Iain C; Tijssen, Marloes R; Thijssen-Timmer, Daphne C; Gusnanto, Arief; Steward, Michael; Burns, Philippa; Langford, Cordelia F; Ellis, Peter D; Dudbridge, Frank; Zwaginga, Jaap-Jan; Watkins, Nicholas A; van der Schoot, C Ellen; Ouwehand, Willem H

    2007-04-15

    To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.

  2. A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide

    PubMed Central

    Di Narzo, Antonio Fabio; Kozlenkov, Alexey; Roussos, Panos; Hao, Ke; Hurd, Yasmin; Lewis, David A.; Sibille, Etienne; Siever, Larry J.; Koonin, Eugene; Dracheva, Stella

    2014-01-01

    Editing of the pre-mRNA for the serotonin receptor 2C (5-HT2CR) by site-specific adenosine deamination (A-to-I pre-mRNA editing) substantially increases the functional plasticity of this key neurotransmitter receptor and is thought to contribute to homeostatic mechanisms in neurons. 5-HT2CR mRNA editing generates up to 24 different receptor isoforms. The extent of editing correlates with 5-HT2CR functional activity: more highly edited isoforms exhibit the least function. Altered 5-HT2CR editing has been reported in postmortem brains of suicide victims. We report a comparative analysis of the connections among 5-HT2CR editing, genome-wide gene expression and DNA methylation in suicide victims, individuals with major depressive disorder and non-psychiatric controls. The results confirm previous findings of an overrepresentation of highly edited mRNA variants (which encode hypoactive 5-HT2CR receptors) in the brains of suicide victims. A large set of genes for which the expression level is associated with editing was detected. This signature set of editing-associated genes is significantly enriched for genes that are involved in synaptic transmission, genes that are preferentially expressed in neurons, and genes whose expression is correlated with the level of DNA methylation. Notably, we report that the link between 5-HT2CR editing and gene expression is disrupted in suicide victims. The results suggest that the postulated homeostatic function of 5-HT2CR editing is dysregulated in individuals who committed suicide. PMID:24781207

  3. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    PubMed Central

    2012-01-01

    Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253

  4. Oestrogen receptor alpha in pulmonary hypertension.

    PubMed

    Wright, Audrey F; Ewart, Marie-Ann; Mair, Kirsty; Nilsen, Margaret; Dempsie, Yvonne; Loughlin, Lynn; Maclean, Margaret R

    2015-05-01

    Pulmonary arterial hypertension (PAH) occurs more frequently in women with mutations in bone morphogenetic protein receptor type 2 (BMPR2) and dysfunctional BMPR2 signalling underpinning heritable PAH. We have previously shown that serotonin can uncover a pulmonary hypertensive phenotype in BMPR2(+/-) mice and that oestrogen can increase serotinergic signalling in human pulmonary arterial smooth muscle cells (hPASMCs). Hence, here we wished to characterize the expression of oestrogen receptors (ERs) in male and female human pulmonary arteries and have examined the influence of oestrogen and serotonin on BMPR2 and ERα expression. By immunohistochemistry, we showed that ERα, ERβ, and G-protein-coupled receptors are expressed in human pulmonary arteries localizing mainly to the smooth muscle layer which also expresses the serotonin transporter (SERT). Protein expression of ERα protein was higher in female PAH patient hPASMCs compared with male and serotonin also increased the expression of ERα. 17β-estradiol induced proliferation of hPASMCs via ERα activation and this engaged mitogen-activated protein kinase and Akt signalling. Female mice over-expressing SERT (SERT(+) mice) develop PH and the ERα antagonist MPP attenuated the development of PH in normoxic and hypoxic female SERT(+) mice. The therapeutic effects of MPP were accompanied by increased expression of BMPR2 in mouse lung. ERα is highly expressed in female hPASMCs from PAH patients and mediates oestrogen-induced proliferation of hPASMCs via mitogen-activated protein kinase and Akt signalling. Serotonin can increase ERα expression in hPASMCs and antagonism of ERα reverses serotonin-dependent PH in the mouse and increases BMPR2 expression. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  5. C-Type Lectin Receptor MCL Facilitates Mincle Expression and Signaling through Complex Formation.

    PubMed

    Miyake, Yasunobu; Masatsugu, Oh-hora; Yamasaki, Sho

    2015-06-01

    C-type lectin receptors expressed in APCs are recently defined pattern recognition receptors that play a crucial role in immune responses against pathogen-associated molecular patterns. Among pathogen-associated molecular patterns, cord factor (trehalose-6,6'-dimycolate [TDM]) is the most potent immunostimulatory component of the mycobacterial cell wall. Two C-type lectin receptors, macrophage-inducible C-type lectin (Mincle) and macrophage C-type lectin (MCL), are required for immune responses against TDM. Previous studies indicate that MCL is required for TDM-induced Mincle expression. However, the mechanism by which MCL induces Mincle expression has not been fully understood. In this study, we demonstrate that MCL interacts with Mincle to promote its surface expression. After LPS or zymosan stimulation, MCL-deficient bone marrow-derived dendritic cells (BMDCs) had a lower level of Mincle protein expression, although mRNA expression was comparable with wild-type BMDCs. Meanwhile, BMDCs from MCL transgenic mice showed an enhanced level of Mincle expression on the cell surface. MCL was associated with Mincle through the stalk region and this region was necessary and sufficient for the enhancement of Mincle expression. This interaction appeared to be mediated by the hydrophobic repeat of MCL, as substitution of four hydrophobic residues within the stalk region with serine (MCL(4S)) abolished the function to enhance the surface expression of Mincle. MCL(4S) mutant failed to restore the defective TDM responses in MCL-deficient BMDCs. These results suggest that MCL positively regulates Mincle expression through protein-protein interaction via its stalk region, thereby magnifying Mincle-mediated signaling. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer.

    PubMed

    Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M

    2012-12-28

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.

  7. Resistin increases the expression of NOD2 in mouse monocytes.

    PubMed

    Ren, Yi; Wan, Taomei; Zuo, Zhicai; Cui, Hengmin; Peng, Xi; Fang, Jing; Deng, Junliang; Hu, Yanchun; Yu, Shuming; Shen, Liuhong; Ma, Xiaoping; Wang, Ya; Ren, Zhihua

    2017-05-01

    Previous studies have indicated that resistin, a type of adipokine, contributes to the development of insulin resistance and type 2 diabetes mellitus, and mediates inflammatory reactions. However, a specific receptor for resistin has not yet been identified. In this study, the relationship between resistin and nucleotide-binding oligomerization domain-like receptors, as well as resistin signal transduction, was examined through transfection, quantitative polymerase chain reaction, western blot analysis and ELISA. The mRNA expression of nucleotide-binding oligomerization domain-containing protein 2 (NOD2), a key immune receptor related to insulin resistance, was significantly increased by resistin treatment at concentrations of 100, 150 and 200 ng/ml (P<0.05, P<0.01 and P<0.01, respectively). The mRNA expression of downstream signaling molecules in the NOD2 signaling pathway, receptor-interacting serine/threonine-protein kinase 2 (RIP2; P<0.01 at 6, 12 and 24 h) and inhibitor of NF-κB kinase subunit beta (P<0.01 at 3, 6, 12 and 24 h) were significantly increased by resistin treatment compared with the control. The mRNA expression of key proinflammatory cytokines, tumor necrosis factor α, IL (interleukin)-6 and IL-1β, were also significantly increased by resistin treatment compared with the control (P<0.01). NOD2 knockdown by small interfering RNA (siRNA) significantly decreased the expression of NOD2 and RIP2 (P<0.01), and there was no significant increase in the levels of cytokines, as compared with treatment with control siRNA. These findings indicate that the inflammatory reaction induced by resistin involves the NOD2-nuclear factor (NF)-κB signaling pathway. The inhibition of NF-κB significantly decreased the secretion of key inflammatory cytokines (P<0.01), suggesting that NF-κB signaling mechanisms are essential to the resistin-induced inflammatory response.

  8. Interactions between insulin-like growth factor-I, estrogen receptor-α (ERα) and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells

    PubMed Central

    Mendoza, Rhone A.; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E2) and insulin-like growth factor-I (IGF-I) is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating non-interfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human growth hormone plus epidermal growth factor, but E2 did not cause increase in the number of the IGF-IR.low cells compared to controls. Proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Further, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. Summary, suppressing the IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate. PMID:20974640

  9. Decreased SMAD4 expression is associated with induction of epithelial-to-mesenchymal transition and cetuximab resistance in head and neck squamous cell carcinoma

    PubMed Central

    Cheng, Haixia; Fertig, Elana J; Ozawa, Hiroyuki; Hatakeyama, Hiromitsu; Howard, Jason D; Perez, Jimena; Considine, Michael; Thakar, Manjusha; Ranaweera, Ruchira; Krigsfeld, Gabriel; Chung, Christine H

    2015-01-01

    Epidermal growth factor receptor (EGFR) is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC) and cetuximab, a monoclonal antibody targeting this receptor, is widely used to treat these patients. In the following investigation, we examined the role of SMAD4 down-regulation in mediating epithelial-to-mesenchymal transition (EMT) and cetuximab resistance in HNSCC. We determined that SMAD4 downregulation was significantly associated with increased cell motility, increased expression of vimentin, and cetuximab resistance in HNSCC cell lines. In the HNSCC genomic dataset obtained from The Cancer Genome Atlas, SMAD4 was altered in 20/279 (7%) of HNSCC via homozygous deletion, and nonsense, missense, and silent mutations. When SMAD4 expression was compared with respect to human papillomavirus (HPV) status, HPV-positive tumors had higher expression compared to HPV-negative tumors. Furthermore, higher SMAD4 expression also correlated with higher CDKN2A (p16) expression. Our data suggest that SMAD4 down-regulation plays an important role in the induction of EMT and cetuximab resistance. Patients with higher SMAD4 expression may benefit from cetuximab use in the clinic. PMID:26046389

  10. Neonatal oxytocin treatment modulates oxytocin receptor, atrial natriuretic peptide, nitric oxide synthase and estrogen receptor mRNAs expression in rat heart

    PubMed Central

    Pournajafi-Nazarloo, Hossein; Perry, Adam; Partoo, Leila; Papademeteriou, Eros; Azizi, Feridoun; Carter, C. Sue; Cushing, Bruce S.

    2007-01-01

    Oxytocin (OT) has been implicated in reproductive functions, induction of maternal behavior as well as endocrine and neuroendocrine regulation of the cardiovascular system. Here we demonstrate that neonatal manipulation of OT can modulate the mRNAs expression for OT receptor (OTR), atrial natriuretic peptide (ANP), endothelial nitric oxide synthase (eNOS) and estrogen receptor alpha (ERα) in the heart. On the first day of postnatal life, female and male rats were randomly assigned to receive one of following treatments; (a) 50 µl i.p. injection of 7 µg OT, (b) 0.7 µg of OT antagonist (OTA), or (c) isotonic saline (SAL). Hearts were collected either on postnatal day 1 or day 21 (D1 or D21) and the mRNAs expression of OTR, ANP, inducible NOS (iNOS), eNOS, ERα and estrogen receptor beta (ERβ) were compared by age, treatment, and sex utilizing Real Time PCR. OT treatment significantly increased heart OTR, ANP and eNOS mRNAs expression on D1 in both males and females, ERα increased only in females. While there were significant changes in the relative expression of all types of mRNA between D1 and D21 there were no significant treatment effects observed in D21 animals. OTA treatment significantly decreased basal ANP and eNOS mRNAs expression on D1 in both sexes. The results indicate that during the early postnatal period OT can have an immediate effect on the expression OTR, ANP, eNOS, and ERα mRNAs and that these effects are mitigated by D21. Also with the exception of ERα mRNA, the effects are the same in both sexes. PMID:17537544

  11. Association of Shiga toxin glycosphingolipid receptors with membrane microdomains of toxin-sensitive lymphoid and myeloid cells[S

    PubMed Central

    Kouzel, Ivan U.; Pohlentz, Gottfried; Storck, Wiebke; Radamm, Lena; Hoffmann, Petra; Bielaszewska, Martina; Bauwens, Andreas; Cichon, Christoph; Schmidt, M. Alexander; Mormann, Michael; Karch, Helge; Müthing, Johannes

    2013-01-01

    Glycosphingolipids (GSLs) of the globo-series constitute specific receptors for Shiga toxins (Stxs) released by certain types of pathogenic Escherichia coli strains. Stx-loaded leukocytes may act as transporter cells in the blood and transfer the toxin to endothelial target cells. Therefore, we performed a thorough investigation on the expression of globo-series GSLs in serum-free cultivated Raji and Jurkat cells, representing B- and T-lymphocyte descendants, respectively, as well as THP-1 and HL-60 cells of the monocyte and granulocyte lineage, respectively. The presence of Stx-receptors in GSL preparations of Raji and THP-1 cells and the absence in Jurkat and HL-60 cells revealed high compliance of solid-phase immunodetection assays with the expression profiles of receptor-related glycosyltransferases, performed by qRT-PCR analysis, and Stx2-caused cellular damage. Canonical microdomain association of Stx GSL receptors, sphingomyelin, and cholesterol in membranes of Raji and THP-1 cells was assessed by comparative analysis of detergent-resistant membrane (DRM) and nonDRM fractions obtained by density gradient centrifugation and showed high correlation based on nonparametric statistical analysis. Our comprehensive study on the expression of Stx-receptors and their subcellular distribution provides the basis for exploring the functional role of lipid raft-associated Stx-receptors in cells of leukocyte origin. PMID:23248329

  12. Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory.

    PubMed

    Alaghband, Yasaman; O'Dell, Steven J; Azarnia, Siavash; Khalaj, Anna J; Guzowski, John F; Marshall, John F

    2014-12-01

    The association of environmental cues with drugs of abuse results in persistent drug-cue memories. These memories contribute significantly to relapse among addicts. While conditioned place preference (CPP) is a well-established paradigm frequently used to examine the modulation of drug-cue memories, very few studies have used the non-preference-based model conditioned activity (CA) for this purpose. Here, we used both experimental approaches to investigate the neural substrates of cocaine-cue memories. First, we directly compared, in a consistent setting, the involvement of cortical and subcortical brain regions in cocaine-cue memory retrieval by quantifying activity-regulated cytoskeletal-associated (Arc) protein expression in both the CPP and CA models. Second, because NMDA receptor activation is required for Arc expression, we investigated the NMDA receptor dependency of memory persistence using the CA model. In both the CPP and CA models, drug-paired animals showed significant increases in Arc immunoreactivity in regions of the frontal cortex and amygdala compared to unpaired controls. Additionally, administration of a NMDA receptor antagonist (MK-801 or memantine) immediately after cocaine-CA memory reactivation impaired the subsequent conditioned locomotion associated with the cocaine-paired environment. The enhanced Arc expression evident in a subset of corticolimbic regions after retrieval of a cocaine-context memory, observed in both the CPP and CA paradigms, likely signifies that these regions: (i) are activated during retrieval of these memories irrespective of preference-based decisions, and (ii) undergo neuroplasticity in order to update information about cues previously associated with cocaine. This study also establishes the involvement of NMDA receptors in maintaining memories established using the CA model, a characteristic previously demonstrated using CPP. Overall, these results demonstrate the utility of the CA model for studies of cocaine-context memory and suggest the involvement of an NMDA receptor-dependent Arc induction pathway in drug-cue memory interference. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory

    PubMed Central

    Alaghband, Yasaman; O'Dell, Steven J.; Azarnia, Siavash; Khalaj, Anna J.; Guzowski, John F.; Marshall, John F.

    2014-01-01

    The association of environmental cues with drugs of abuse results in persistent drug-cue memories. These memories contribute significantly to relapse among addicts. While conditioned place preference (CPP) is a well-established paradigm frequently used to examine the modulation of drug-cue memories, very few studies have used the non-preference-based model conditioned activity (CA) for this purpose. Here, we used both experimental approaches to investigate the neural substrates of cocaine-cue memories. First, we directly compared, in a consistent setting, the involvement of cortical and subcortical brain regions in cocaine-cue memory retrieval by quantifying activity-regulated cytoskeletal associated gene (Arc) protein expression in both the CPP and CA models. Second, because NMDA receptor activation is required for Arc expression, we investigated the NMDA receptor dependency of memory persistence using the CA model. In both the CPP and CA models, drug-paired animals showed significant increases in Arc immunoreactivity in regions of the frontal cortex and amygdala compared to unpaired controls. Additionally, administration of a NMDA receptor antagonist (MK-801 or memantine) immediately after cocaine-CA memory reactivation impaired the subsequent conditioned locomotion associated with the cocaine-paired environment. The enhanced Arc expression evident in a subset of corticolimbic regions after retrieval of a cocaine-context memory, observed in both the CPP and CA paradigms, likely signifies that these regions: (i) are activated during retrieval of these memories irrespective of preference-based decisions, and (ii) undergo neuroplasticity in order to update information about cues previously associated with cocaine. This study also establishes the involvement of NMDA receptors in maintaining memories established using the CA model, a characteristic previously demonstrated using CPP. Overall, these results demonstrate the utility of the CA model for studies of cocaine-context memory and suggest the involvement of an NMDA receptor-dependent Arc induction pathway in drug-cue memory interference. PMID:25225165

  14. Engineering NK Cells Modified With an EGFRvIII-specific Chimeric Antigen Receptor to Overexpress CXCR4 Improves Immunotherapy of CXCL12/SDF-1α-secreting Glioblastoma.

    PubMed

    Müller, Nadja; Michen, Susanne; Tietze, Stefanie; Töpfer, Katrin; Schulte, Alexander; Lamszus, Katrin; Schmitz, Marc; Schackert, Gabriele; Pastan, Ira; Temme, Achim

    2015-06-01

    Natural killer (NK) cells are promising effector cells for adjuvant immunotherapy of cancer. So far, several preclinical studies have shown the feasibility of gene-engineered NK cells, which upon expression of chimeric antigen receptors (CARs) are redirected to otherwise NK cell-resistant tumors. Yet, we reasoned that the efficiency of an immunotherapy using CAR-modified NK cells critically relies on efficient migration to the tumor site and might be improved by the engraftment of a receptor specific for a chemokine released by the tumor. On the basis of the DNAX-activation protein 12 (DAP12), a signaling adapter molecule involved in signal transduction of activating NK cell receptors, we constructed an epidermal growth factor variant III (EGFRvIII)-CAR, designated MR1.1-DAP12 which confers specific cytotoxicity of NK cell towards EGFRvIII glioblastoma cells in vitro and to established subcutaneous U87-MG tumor xenografts. So far, infusion of NK cells with expression of MR1.1-DAP12 caused a moderate but significantly delayed tumor growth and increased median survival time when compared with NK cells transduced with an ITAM-defective CAR. Notably, the further genetic engineering of these EGFRvIII-specific NK cells with the chemokine receptor CXCR4 conferred a specific chemotaxis to CXCL12/SDF-1α secreting U87-MG glioblastoma cells. Moreover, the administration of such NK cells resulted in complete tumor remission in a number of mice and a significantly increased survival when compared with the treatment of xenografts with NK cells expressing only the EGFRvIII-specific CAR or mock control. We conclude that chemokine receptor-engineered NK cells with concomitant expression of a tumor-specific CAR are a promising tool to improve adoptive tumor immunotherapy.

  15. Restored Plasma Anandamide and Endometrial Expression of Fatty Acid Amide Hydrolase in Women With Polycystic Ovary Syndrome by the Combination Use of Diane-35 and Metformin.

    PubMed

    Cui, Na; Feng, Xiaoye; Zhao, Zhiming; Zhang, Jie; Xu, Yueming; Wang, Luning; Hao, Guimin

    2017-04-01

    Polycystic ovary syndrome (PCOS) is a metabolic and endocrinal disorder affecting a number of women of reproductive age. We aimed to reveal the correlation between the endocannabinoid system and PCOS, which may provide a new therapeutic target for PCOS treatment. Serum levels of anandamide and 2-arachidonoylglycerol andexpression of cannabinoid receptors and fatty acid amide hydrolase (FAAH) in the endometrium were compared between women with PCOS and infertile women without PCOS, as well as women with PCOS before and after treatment with Diane-35 and metformin. Cannabinoid receptors and FAAH in the endometrium were stained using the immunohistochemical method. Results were analyzed by calculating integrated optical density. Plasma anandamide was increased significantly in women with PCOS compared with infertile women without PCOS. Treatment with Diane-35 and metformin reversed this increase in women with PCOS. No significant difference in 2-arachidonoylglycerol was observed between the infertile women with or without PCOS. The women with PCOS had lower endometrial expression of FAAH compared with infertile women without PCOS, whereas no significant difference in endometrial expression of cannabinoid receptors was observed between the women with PCOS and infertile women without PCOS. We found that after treatment with Diane-35 and metformin, FAAH expression tended toward a significant increase compared with women before the treatment. Endocannabinoid system may be involved in the progression of PCOS, and serum anandamide could serve as a potential biomarker of clinical diagnosis of PCOS. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  16. Expression of protease activated receptor-2 (PAR-2) in central airways of smokers and non-smokers

    PubMed Central

    Miotto, D; Hollenberg, M; Bunnett, N; Papi, A; Braccioni, F; Boschetto, P; Rea, F; Zuin, A; Geppetti, P; Saetta, M; Maestrelli, P; Fabbri, L; Mapp, C

    2002-01-01

    Background: Protease activated receptor-2 (PAR-2) is a transmembrane G protein coupled receptor preferentially activated by trypsin and tryptase. The protease activated receptors play an important role in most components of injury responses including cell proliferation, migration, matrix remodelling, and inflammation. Cigarette smoking causes an inflammatory process in the central airways, peripheral airways, lung parenchyma, and adventitia of pulmonary arteries. Methods: To quantify the expression of PAR-2 in the central airways of smokers and non-smokers, surgical specimens obtained from 30 subjects undergoing lung resection for localised pulmonary lesions (24 with a history of cigarette smoking and six non-smoking control subjects) were examined. Central airways were immunostained with an antiserum specific for PAR-2 and PAR-2 expression was quantified using light microscopy and image analysis. Results: PAR-2 expression was found in bronchial smooth muscle, epithelium, glands, and in the endothelium and smooth muscle of bronchial vessels. PAR-2 expression was similar in the central airways of smokers and non-smokers. When smokers were divided according to the presence of symptoms of chronic bronchitis and chronic airflow limitation, PAR-2 expression was increased in smooth muscle (median 3.8 (interquartile range 2.9–5.8) and 1.4 (1.07–3.4) respectively); glands (33.3 (18.2–43.8) and 16.2 (11.5–22.2), respectively); and bronchial vessels (54.2 (48.7–56.8) and 40.0 (36–40.4), respectively) of smokers with symptoms of chronic bronchitis with normal lung function compared with smokers with chronic airflow limitation (COPD), but the increase was statistically significant (p<0.005) only for bronchial vessels. Conclusions: PAR-2 is present in bronchial smooth muscle, glands, and bronchial vessels of both smokers and non-smokers. An increased expression of PAR-2 was found in bronchial vessels of patients with bronchitis compared with those with COPD. PMID:11828045

  17. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia.

    PubMed

    Pawlinski, Rafal; Pedersen, Brian; Schabbauer, Gernot; Tencati, Michael; Holscher, Todd; Boisvert, William; Andrade-Gordon, Patricia; Frank, Rolf Dario; Mackman, Nigel

    2004-02-15

    Sepsis is associated with a systemic activation of coagulation and an excessive inflammatory response. Anticoagulants have been shown to inhibit both coagulation and inflammation in sepsis. In this study, we used both genetic and pharmacologic approaches to analyze the role of tissue factor and protease-activated receptors in coagulation and inflammation in a mouse endotoxemia model. We used mice expressing low levels of the procoagulant molecule, tissue factor (TF), to analyze the effects of TF deficiency either in all tissues or selectively in hematopoietic cells. Low TF mice had reduced coagulation, inflammation, and mortality compared with control mice. Similarly, a deficiency of TF expression by hematopoietic cells reduced lipopolysaccharide (LPS)-induced coagulation, inflammation, and mortality. Inhibition of the down-stream coagulation protease, thrombin, reduced fibrin deposition and prolonged survival without affecting inflammation. Deficiency of either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) alone did not affect inflammation or survival. However, a combination of thrombin inhibition and PAR-2 deficiency reduced inflammation and mortality. These data demonstrate that hematopoietic cells are the major pathologic site of TF expression during endotoxemia and suggest that multiple protease-activated receptors mediate crosstalk between coagulation and inflammation.

  18. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea.

    PubMed

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J; Buddenkotte, Jörg; Steinhoff, Martin

    2012-04-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea.

  19. Distribution and Expression of Non-Neuronal Transient Receptor Potential (TRPV) Ion Channels in Rosacea

    PubMed Central

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D.; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J.; Buddenkotte, Jörg; Steinhoff, Martin

    2011-01-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea. PMID:22189789

  20. Characterization of surface interleukin-2 receptor expression on gated populations of peripheral blood mononuclear cells from manatees, Trichechus manatus latirostris.

    PubMed

    Sweat, J M; Johnson, C M; Marikar, Y; Gibbs, E P

    2005-12-15

    An in vitro system to determine surface interleukin-2 receptor (IL-2R) expression on mitogen-stimulated peripheral blood mononuclear cells (PBMC) from free-ranging manatees, Trichechus manatus latirostris was developed. Human recombinant IL-2, conjugated with a fluorescein dye was used in conjunction with flow cytometric analysis to determine changes in surface expression of IL-2R at sequential times over a 48-h period of in vitro stimulation. Surface expression of IL-2R was detected on manatee PBMC, which also cross-reacted with an anti-feline pan T-cell marker. An expression index (EI) was calculated by comparing mitogen-activated and non-activated PBMC. Based on side- and forward-scatter properties, flow cytometric analysis showed an increase in the number of larger, more granular "lymphoblasts" following concanavalin A (Con A) stimulation. The appearance of lymphoblasts was correlated with an increase in their surface expression of IL-2 receptors. Surface IL-2R expression, in Con A-stimulated PBMC, was detected at 16 h, peaked at 24-36 h, and began to decrease by 48 h. Characterization of the IL-2R expression should provide additional information on the health status of manatees, and the effect of their sub lethal exposure to brevetoxin.

  1. Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case–control sample of schizophrenia

    PubMed Central

    Ingason, A; Giegling, I; Hartmann, A M; Genius, J; Konte, B; Friedl, M; Ripke, S; Sullivan, P F; St. Clair, D; Collier, D A; O'Donovan, M C; Mirnics, K; Rujescu, D

    2015-01-01

    Antagonists of the N-methyl-D-aspartate (NMDA)-type glutamate receptor induce psychosis in healthy individuals and exacerbate schizophrenia symptoms in patients. In this study we have produced an animal model of NMDA receptor hypofunction by chronically treating rats with low doses of the NMDA receptor antagonist MK-801. Subsequently, we performed an expression study and identified 20 genes showing altered expression in the brain of these rats compared with untreated animals. We then explored whether the human orthologs of these genes are associated with schizophrenia in the largest schizophrenia genome-wide association study published to date, and found evidence for association for 4 out of the 20 genes: SF3B1, FOXP1, DLG2 and VGLL4. Interestingly, three of these genes, FOXP1, SF3B1 and DLG2, have previously been implicated in neurodevelopmental disorders. PMID:26460480

  2. Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold naoparticles

    PubMed Central

    Li, Xi; Zhou, Hongyu; Yang, Lei; Du, Guoqing; Pai-Panandiker, Atmaram; Huang, Xuefei; Yan, Bing

    2011-01-01

    A dual-ligand gold nanoparticle (DLGNP) was designed and synthesized to explore the therapeutic benefits of multivalent interactions between gold nanoparticles (GNPs) and cancer cells. DLGNP was tested on human epidermal cancer cells (KB), which had high expression of folate receptor. The cellular uptake of DLGNP was increased by 3.9 and 12.7 folds compared with GNP-folate or GNP-glucose. The enhanced cell recognition was due to multivalent interactions between both ligands on GNPs and cancer cells as shown by the ligand competition experiments. Furthermore, the multivalent interactions increased contrast between cells with high and low expression of folate receptors. The enhanced cell recognition enabled DLGNP to kill KB cells under X-ray irradiation at a dose that was safe to folate receptor low-expression (such as normal) cells. Thus DLGP has the potential to be a cancer-specific nano-theranostic agent. PMID:21232787

  3. Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case-control sample of schizophrenia.

    PubMed

    Ingason, A; Giegling, I; Hartmann, A M; Genius, J; Konte, B; Friedl, M; Ripke, S; Sullivan, P F; St Clair, D; Collier, D A; O'Donovan, M C; Mirnics, K; Rujescu, D

    2015-10-13

    Antagonists of the N-methyl-D-aspartate (NMDA)-type glutamate receptor induce psychosis in healthy individuals and exacerbate schizophrenia symptoms in patients. In this study we have produced an animal model of NMDA receptor hypofunction by chronically treating rats with low doses of the NMDA receptor antagonist MK-801. Subsequently, we performed an expression study and identified 20 genes showing altered expression in the brain of these rats compared with untreated animals. We then explored whether the human orthologs of these genes are associated with schizophrenia in the largest schizophrenia genome-wide association study published to date, and found evidence for association for 4 out of the 20 genes: SF3B1, FOXP1, DLG2 and VGLL4. Interestingly, three of these genes, FOXP1, SF3B1 and DLG2, have previously been implicated in neurodevelopmental disorders.

  4. Preliminary study of histamine H4 receptor expressed on human CD4+ T cells and its immunomodulatory potency in the IL-17 pathway of psoriasis.

    PubMed

    Han, Song Hee; Hur, Min Seok; Kim, Min Jung; Kim, Bo Mi; Kim, Kyoung Woon; Kim, Hae Rim; Choe, Yong Beom; Ahn, Kyu Joong; Lee, Yang Won

    2017-10-01

    Previous studies have shown the expression of histamine H 4 receptor (H4R) on CD4 + T cells, especially human CD4 + T h 2-polarized T cells. This study aimed to investigate the role of H4R on these effector T cells in psoriasis. We enrolled three patients each with active psoriasis, inactive psoriasis, scalp seborrheic dermatitis, and three normal controls, and compared the basal expression of H4R mRNA in their peripheral blood CD4 + T cells. Then, we identified H4R expression in dermal CD4 + T cells. Furthermore, we investigated H4R expression after stimulating separated peripheral blood CD4 + T cells with several inflammatory cytokines. The results showed higher H4R expression in the active psoriasis group compared to the inactive psoriasis group. It was interesting that interleukin (IL)-23, which is a representative cytokine contributing to T h 17 cell differentiation, stimulated H4R expression significantly. After adding a selective H4R antagonist (JNJ-7777120) while the CD4 + T cells were polarized into T h 17 cells, we observed a tendency toward suppressed IL-17 secretion. Histamine stimulation influences the IL-17 pathway in psoriasis via the fourth histamine receptor subtype, H4R, on CD4 + T cells. The immunomodulatory roles of H4R suggest its potency as a new therapeutic target for obstinate psoriasis. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  5. Effects of adrenal hormones on the expression of adiponectin and adiponectin receptors in adipose tissue, muscle and liver.

    PubMed

    de Oliveira, Cristiane; Iwanaga-Carvalho, Carla; Mota, João F; Oyama, Lila M; Ribeiro, Eliane B; Oller do Nascimento, Cláudia M

    2011-11-01

    Adiponectin, an insulin-sensitive hormone that is primarily synthesized in adipose tissue, exerts its effects by binding to two receptors, adipoR1 and adipoR2. Little is known regarding the effects of glucocorticoids on the expression of adiponectin receptors. Male Wistar rats were bilaterally adrenalectomized and treated with dexamethasone (0.2 mg/100 g) twice daily for 3 days. To analyze the potential effects of glucocorticoids, rats received two daily injections of the glucocorticoid receptor antagonist (RU-486, 5.0 mg) over the course of 3 days. Additionally, 3T3-L1 adipocytes and C2C12 myotubes were treated with dexamethasone, adrenaline or RU-486. The gene expression of adiponectin, adipoR1 and adipoR2 was determined by real-time PCR, and protein secretion was examined by Western blotting using lysates from retroperitoneal, epididymal and subcutaneous adipose tissue depots, liver and muscle. In rats, excess glucocorticoids increased the levels of insulin in serum and decreased serum adiponectin concentrations, whereas adrenalectomy decreased the mRNA expression of adiponectin (3-fold) and adipoR2 (7-fold) in epididymal adipose tissue and increased adipoR2 gene expression in muscle (3-fold) compared to control group sham-operated. Dexamethasone treatment did not reverse the effects of adrenalectomy, and glucocorticoid receptor blockade did not reproduce the effects of adrenalectomy. In 3T3-L1 adipocytes, dexamethasone and adrenaline both increased adipoR2 mRNA levels, but RU-486 reduced adipoR2 gene expression in vitro. Dexamethasone treatment induces a state of insulin resistance but does not affect adiponectin receptor expression in adipose tissue. However, the effects of catecholamines on insulin resistance may be due to their effects on adipoR2. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Characterization of melanin-concentrating hormone (MCH) and its receptor in chickens: Tissue expression, functional analysis, and fasting-induced up-regulation of hypothalamic MCH expression.

    PubMed

    Cui, Lin; Lv, Can; Zhang, Jiannan; Mo, Chunheng; Lin, Dongliang; Li, Juan; Wang, Yajun

    2017-06-05

    Melanin-concentrating hormone (MCH) is a neuropeptide expressed in the brain and exerts its actions through interaction with the two known G protein-coupled receptors, namely melanin-concentrating hormone receptor 1 and 2 (MCHR1 and MCHR2) in mammals. However, the information regarding the expression and functionality of MCH and MCHR(s) remains largely unknown in birds. In this study, using RT-PCR and RACE PCR, we amplified and cloned a MCHR1-like receptor, which is named cMCHR4 according to its evolutionary origin, and a MCHR2 from chicken brain. The cloned cMCHR4 was predicted to encode a receptor of 367 amino acids, which shares high amino acid identities with MCHR4 of ducks (90%), western painted turtles (85%), and coelacanths (77%), and a comparatively low identity to human MCHR1 (58%) and MCHR2 (38%), whereas chicken MCHR2 encodes a putative C-terminally truncated receptor and is likely a pseudogene. Using cell-based luciferase reporter assays or Western blot, we further demonstrated that chicken (and duck) MCHR4 could be potently activated by chicken MCH 1-19 , and its activation can elevate calcium concentration and activate MAPK/ERK and cAMP/PKA signaling pathways, indicating an important role of MCHR4 in mediating MCH actions in birds. Quantitative real-time PCR revealed that both cMCH and cMCHR4 mRNA are expressed in various brain regions including the hypothalamus, and cMCH expression in the hypothalamus of 3-week-old chicks could be induced by 36-h fasting, indicating that cMCH expression is correlated with energy balance. Taken together, characterization of chicken MCH and MCHR4 will aid to uncover the conserved roles of MCH across vertebrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice.

    PubMed

    Tsou, Ryan C; Zimmer, Derek J; De Jonghe, Bart C; Bence, Kendra K

    2012-09-01

    Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed tyrosine phosphatase implicated in the negative regulation of leptin and insulin receptor signaling. PTP1B(-/-) mice possess a lean metabolic phenotype attributed at least partially to improved hypothalamic leptin sensitivity. Interestingly, mice lacking both leptin and PTP1B (ob/ob:PTP1B(-/-)) have reduced body weight compared with mice lacking leptin only, suggesting that PTP1B may have important leptin-independent metabolic effects. We generated mice with PTP1B deficiency specifically in leptin receptor (LepRb)-expressing neurons (LepRb-PTP1B(-/-)) and compared them with LepRb-Cre-only wild-type (WT) controls and global PTP1B(-/-) mice. Consistent with PTP1B's role as a negative regulator of leptin signaling, our results show that LepRb-PTP1B(-/-) mice are leptin hypersensitive and have significantly reduced body weight when maintained on chow or high-fat diet (HFD) compared with WT controls. LepRb-PTP1B(-/-) mice have a significant decrease in adiposity on HFD compared with controls. Notably, the extent of attenuated body weight gain on HFD, as well as the extent of leptin hypersensitivity, is similar between LepRb-PTP1B(-/-) mice and global PTP1B(-/-) mice. Overall, these results demonstrate that PTP1B deficiency in LepRb-expressing neurons results in reduced body weight and adiposity compared with WT controls and likely underlies the improved metabolic phenotype of global and brain-specific PTP1B-deficient models. Subtle phenotypic differences between LepRb-PTP1B(-/-) and global PTP1B(-/-) mice, however, suggest that PTP1B independent of leptin signaling may also contribute to energy balance in mice.

  8. Increased mandibular condylar growth in mice with estrogen receptor beta deficiency.

    PubMed

    Kamiya, Yosuke; Chen, Jing; Xu, Manshan; Utreja, Achint; Choi, Thomas; Drissi, Hicham; Wadhwa, Sunil

    2013-05-01

    Temporomandibular joint (TMJ) disorders predominantly afflict women of childbearing age, suggesting a role for female hormones in the disease process. In long bones, estrogen acting via estrogen receptor beta (ERβ) inhibits axial skeletal growth in female mice. However, the role of ERβ in the mandibular condyle is largely unknown. We hypothesize that female ERβ-deficient mice will have increased mandibular condylar growth compared to wild-type (WT) female mice. This study examined female 7-day-old, 49-day-old, and 120-day-old WT and ERβ knockout (KO) mice. There was a significant increase in mandibular condylar cartilage thickness as a result of an increased number of cells, in the 49-day-old and 120-day-old female ERβ KO compared with WT controls. Analysis in 49-day-old female ERβ KO mice revealed a significant increase in collagen type X, parathyroid hormone-related protein (Pthrp), and osteoprotegerin gene expression and a significant decrease in receptor activator for nuclear factor κ B ligand (Rankl) and Indian hedgehog (Ihh) gene expression, compared with WT controls. Subchondral bone analysis revealed a significant increase in total condylar volume and a decrease in the number of osteoclasts in the 49-day-old ERβ KO compared with WT female mice. There was no difference in cell proliferation in condylar cartilage between the genotypes. However, there were differences in the expression of proteins that regulate the cell cycle; we found a decrease in the expression of Tieg1 and p57 in the mandibular condylar cartilage from ERβ KO mice compared with WT mice. Taken together, our results suggest that ERβ deficiency increases condylar growth in female mice by inhibiting the turnover of fibrocartilage. Copyright © 2013 American Society for Bone and Mineral Research.

  9. Peroxisome proliferator-activated receptor-β/δ inhibits human neuroblastoma cell tumorigenesis by inducing p53- and SOX2-mediated cell differentiation.

    PubMed

    Yao, Pei-Li; Chen, Liping; Dobrzański, Tomasz P; Zhu, Bokai; Kang, Boo-Hyon; Müller, Rolf; Gonzalez, Frank J; Peters, Jeffrey M

    2017-05-01

    Neuroblastoma is a common childhood cancer typically treated by inducing differentiation with retinoic acid (RA). Peroxisome proliferator-activated receptor-β/δ, (PPARβ/δ) is known to promote terminal differentiation of many cell types. In the present study, PPARβ/δ was over-expressed in three human neuroblastoma cell lines, NGP, SK-N-BE(2), and IMR-32, that exhibit high, medium, and low sensitivity, respectively, to retinoic acid-induced differentiation to determine if PPARβ/δ and retinoic acid receptors (RARs) could be jointly targeted to increase the efficacy of treatment. All-trans-RA (atRA) decreased expression of SRY (sex determining region Y)-box 2 (SOX2), a stem cell regulator and marker of de-differentiation, in NGP and SK-N-BE(2) cells with inactive or mutant tumor suppressor p53, respectively. However, atRA did not suppress SOX2 expression in IMR-32 cells carrying wild-type p53. Over-expression and/or ligand activation of PPARβ/δ reduced the average volume and weight of ectopic tumor xenografts from NGP, SK-N-BE(2), or IMR-32 cells compared to controls. Compared with that found with atRA, PPARβ/δ suppressed SOX2 expression in NGP and SK-N-BE(2) cells and ectopic xenografts, and was also effective in suppressing SOX2 expression in IMR-32 cells that exhibit higher p53 expression compared to the former cell lines. Combined, these observations demonstrate that activating or over-expressing PPARβ/δ induces cell differentiation through p53- and SOX2-dependent signaling pathways in neuroblastoma cells and tumors. This suggests that combinatorial activation of both RARα and PPARβ/δ may be suitable as an alternative therapeutic approach for RA-resistant neuroblastoma patients. Published [2016]. This article is a U.S. Government work and is in the public domain in the USA.

  10. Differential changes in mGlu2 and mGlu3 gene expression following pilocarpine-induced status epilepticus: A comparative real-time PCR analysis

    PubMed Central

    Ermolinsky, Boris; Pacheco Otalora, Luis F.; Arshadmansab, Massoud F.; Zarei, Masoud; Garrido-Sanabria, Emilio R.

    2008-01-01

    Group II metabotropic glutamate (mGlu II) receptors subtype 2 and 3 (mGlu2 and mGlu3) are subtle regulators of neuronal excitability and synaptic plasticity in the hippocampus. In recent years, researchers have investigated the potential neuroprotective and anticonvulsant effects of compounds acting on mGlu II receptors. However, abnormal expression and function of mGlu2 and mGlu3 have been reported in temporal lobe epilepsy, a phenomena that may limit the therapeutic effectiveness of these potentially new antiepileptic drugs. Here, we investigated seizure-induced changes in mGlu2 and mGlu3 mRNA following pilocarpine-inducted status epilepticus (SE) and subsequent epileptogenesis. Relative changes in gene expression were assessed by comparative analysis of quantitative real-time PCR (qrtPCR) by the delta-delta CT method. Pilocarpine-treated and control rats were sacrificed at different periods (24h, 10 days, one month and more than two months) following SE. Total RNA was isolated from microdissected dentate gyrus and processed for RT-PCR and qrtPCR using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an endogenous control gene. Analysis of relative quantification (RQ) ratios of mGlu2 and mGlu3 mRNA expression revealed a significant down-regulation of both targets at 24h after SE. Gene expression partially recovered at 10 days following SE reaching control levels at one month after SE. Two month after SE, mGlu2 mRNA expression was significantly down-regulated to ~41% of control expression whereas mGlu3 mRNA was comparable to control levels. Our data indicate that mGlu2 and mGlu3 expression is dynamically down-regulated or selectively enhanced during critical periods of epileptogenesis. Seizure-induced differential dysregulation of mGlu2 and mGlu3 receptors may affect the availability of these molecular targets for therapeutic compounds in epilepsy. PMID:18585369

  11. Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade.

    PubMed

    Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu

    2016-01-01

    Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named 'beige' or 'brite' adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders.

  12. Common α2A and α2C adrenergic receptor polymorphisms do not affect plasma membrane trafficking.

    PubMed

    Hurt, Carl M; Sorensen, Matt W; Angelotti, Timothy

    2014-06-01

    Various naturally occurring polymorphic forms of human G protein-coupled receptors (GPCRs) have been identified and linked to diverse pathological diseases, including receptors for vasopressin type 2 (nephrogenic diabetes insipidus) and gonadotropin releasing hormone (hypogonadotropic hypogonadism). In most cases, polymorphic amino acid mutations disrupt protein folding, altering receptor function as well as plasma membrane expression. Other pathological GPCR variants have been found that do not alter receptor function, but instead affect only plasma membrane trafficking (e.g., delta opiate and histamine type 1 receptors). Thus, altered membrane trafficking with retained receptor function may be another mechanism causing polymorphic GPCR dysfunction. Two common human α2A and α2C adrenergic receptor (AR) variants have been identified (α2A N251K and α2C Δ322-325 ARs), but pharmacological analysis of ligand binding and second messenger signaling has not consistently demonstrated altered receptor function. However, possible alterations in plasma membrane trafficking have not been investigated. We utilized a systematic approach previously developed for the study of GPCR trafficking motifs and accessory proteins to assess whether these α2 AR variants affected intracellular trafficking or plasma membrane expression. By combining immunofluorescent microscopy, glycosidic processing analysis, and quantitative fluorescent-activated cell sorting (FACS), we demonstrate that neither variant receptor had altered intracellular localization, glycosylation, nor plasma membrane expression compared to wild-type α2 ARs. Therefore, pathopharmacological properties of α2A N251K and α2C Δ322-325 ARs do not appear to be due to altered receptor pharmacology or plasma membrane trafficking, but may involve interactions with other intracellular signaling cascades or proteins.

  13. Continuous measurement of breast tumor hormone receptor expression: a comparison of two computational pathology platforms

    PubMed Central

    Ahern, Thomas P.; Beck, Andrew H.; Rosner, Bernard A.; Glass, Ben; Frieling, Gretchen; Collins, Laura C.; Tamimi, Rulla M.

    2017-01-01

    Background Computational pathology platforms incorporate digital microscopy with sophisticated image analysis to permit rapid, continuous measurement of protein expression. We compared two computational pathology platforms on their measurement of breast tumor estrogen receptor (ER) and progesterone receptor (PR) expression. Methods Breast tumor microarrays from the Nurses’ Health Study were stained for ER (n=592) and PR (n=187). One expert pathologist scored cases as positive if ≥1% of tumor nuclei exhibited stain. ER and PR were then measured with the Definiens Tissue Studio (automated) and Aperio Digital Pathology (user-supervised) platforms. Platform-specific measurements were compared using boxplots, scatter plots, and correlation statistics. Classification of ER and PR positivity by platform-specific measurements was evaluated with areas under receiver operating characteristic curves (AUC) from univariable logistic regression models, using expert pathologist classification as the standard. Results Both platforms showed considerable overlap in continuous measurements of ER and PR between positive and negative groups classified by expert pathologist. Platform-specific measurements were strongly and positively correlated with one another (rho≥0.77). The user-supervised Aperio workflow performed slightly better than the automated Definiens workflow at classifying ER positivity (AUCAperio=0.97; AUCDefiniens=0.90; difference=0.07, 95% CI: 0.05, 0.09) and PR positivity (AUCAperio=0.94; AUCDefiniens=0.87; difference=0.07, 95% CI: 0.03, 0.12). Conclusion Paired hormone receptor expression measurements from two different computational pathology platforms agreed well with one another. The user-supervised workflow yielded better classification accuracy than the automated workflow. Appropriately validated computational pathology algorithms enrich molecular epidemiology studies with continuous protein expression data and may accelerate tumor biomarker discovery. PMID:27729430

  14. Divergent expression of bacterial wall sensing Toll-like receptors 2 and 4 in colorectal cancer.

    PubMed

    Paarnio, Karoliina; Väyrynen, Sara; Klintrup, Kai; Ohtonen, Pasi; Mäkinen, Markus J; Mäkelä, Jyrki; Karttunen, Tuomo J

    2017-07-14

    To characterize the expression of toll-like receptors (TLR) 2 and 4 in colorectal cancer (CRC) and in normal colorectal mucosa. We analysed tissue samples from a prospective series of 118 unselected surgically treated patients with CRC. Sections from formalin fixed, paraffin embedded specimens were analysed for TLR2 and TLR4 expression by immunohistochemistry. Two independent assessors evaluated separately expression at the normal mucosa, at the invasive front and the bulk of the carcinoma, and in the lymph node metastases when present. Expression levels in different locations were compared and their associations with clinicopathological features including TNM-stage and the grade of the tumour and 5-year follow-up observations were analysed. Normal colorectal epithelium showed a gradient of expression of both TLR2 and TLR4 with low levels in the crypt bases and high levels in the surface. In CRC, expression of both TLRs was present in all cases and in the major proportion of tumour cells. Compared to normal epithelium, TLR4 expression was significantly weaker but TLR2 expression stronger in carcinoma cells. Weak TLR4 expression in the invasive front was associated with distant metastases and worse cancer-specific survival at 5 years. In tumours of the proximal colon the cancer-specific survival at 5 years was 36.9% better with strong TLR4 expression as compared with those with weak expression ( P = 0.044). In contrast, TLR2 expression levels were not associated with prognosis. Tumour cells in the lymph node metastases showed higher TLR4 expression and lower TLR2 expression than cells in primary tumours. Tumour cells in CRC show downregulation of TLR4 and upregulation of TLR2. Low expression of TLR4 in the invasive front predicts poor prognosis and metastatic disease.

  15. The G protein-coupled estrogen receptor (GPER) is expressed in two different subcellular localizations reflecting distinct tumor properties in breast cancer.

    PubMed

    Samartzis, Eleftherios P; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick

    2014-01-01

    The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be needed to assess whether the expression status of GPER in breast carcinomas should be routinely observed by clinicians, for instance, before implementing endocrine breast cancer treatment.

  16. The G Protein-Coupled Estrogen Receptor (GPER) Is Expressed in Two Different Subcellular Localizations Reflecting Distinct Tumor Properties in Breast Cancer

    PubMed Central

    Samartzis, Eleftherios P.; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick

    2014-01-01

    Introduction The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. Methods The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. Results A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Conclusion Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be needed to assess whether the expression status of GPER in breast carcinomas should be routinely observed by clinicians, for instance, before implementing endocrine breast cancer treatment. PMID:24421881

  17. Expression of estrogen, estrogen related and androgen receptors in adrenal cortex of intact adult male and female rats.

    PubMed

    Trejter, Marcin; Jopek, Karol; Celichowski, Piotr; Tyczewska, Marianna; Malendowicz, Ludwik K; Rucinski, Marcin

    2015-01-01

    Adrenocortical activity in various species is sensitive to androgens and estrogens. They may affect adrenal cortex growth and functioning either via central pathways (CRH and ACTH) or directly, via specific receptors expressed in the cortex and/or by interfering with adrenocortical enzymes, among them those involved in steroidogenesis. Only limited data on expression of androgen and estrogen receptors in adrenal glands are available. Therefore the present study aimed to characterize, at the level of mRNA, expression of these receptors in specific components of adrenal cortex of intact adult male and female rats. Studies were performed on adult male and female (estrus) Wistar rats. Total RNA was isolated from adrenal zona glomerulosa (ZG) and fasciculate/reticularis (ZF/R). Expression of genes were evaluated by means of Affymetrix® Rat Gene 1.1 ST Array Strip and QPCR. By means of Affymetrix® Rat Gene 1.1 ST Array we examined adrenocortical sex differences in the expression of nearly 30,000 genes. All data were analyzed in relation to the adrenals of the male rats. 32 genes were differentially expressed in ZG, and 233 genes in ZF/R. In the ZG expression levels of 24 genes were lower and 8 higher in female rats. The more distinct sex differences were observed in the ZF/R, in which expression levels of 146 genes were lower and 87 genes higher in female rats. Performed analyses did not reveal sex differences in the expression levels of both androgen (AR) and estrogen (ER) receptor genes in the adrenal cortex of male and female rats. Therefore matrix data were validated by QPCR. QPCR revealed higher expression levels of AR gene both in ZG and ZF/R of male than female rats. On the other hand, QPCR did not reveal sex-related differences in the expression levels of ERα, ERβ and non-genomic GPR30 (GPER-1) receptor. Of those genes expression levels of ERα genes were the highest. In studied adrenal samples the relative expression of ERα mRNA was higher than ERβ mRNA. In adrenals of adult male and female rats expression levels of estrogen-related receptors ERRα and ERRβ were similar, and only in the ZF/R of female rats ERRγ expression levels were significantly higher than in males. We also analyzed expression profile of three isoforms of steroid 5α-reductase (Srd5a1, Srd5a2 and Srd5a3) and aromatase (Cyp19a1) and expression levels of all these genes were similar in ZG and ZF/R of male and female rats. In contrast to Affymetrix microarray data QPCR revealed higher expression levels of AR gene in adrenal glands of the male rats. In adrenals of both sexes expression levels of ERa, ERb, non-genomic GPR30 (GPER-1), ERR α and ERRβ receptors were comparable. The obtained results suggest that acute steroidogenic effect of estrogens on corticosteroid secretion may be mediated by non-genomic GPR30.

  18. Protease-activated receptor-2 (PAR(2)) in human periodontitis.

    PubMed

    Holzhausen, M; Cortelli, J R; da Silva, V Araújo; Franco, G C Nobre; Cortelli, S Cavalca; Vergnolle, N

    2010-09-01

    No evidence for the role of protease-activated receptor-2 (PAR(2)) in human periodontal disease has been demonstrated so far. Thus, we sought to investigate the expression of PAR(2) mRNA in chronic periodontitis, and to examine whether its expression is related to the presence of PAR(2) potential activators. Microbiological and gingival crevicular fluid samples were collected from individuals with chronic periodontitis and control individuals, and the presence of neutrophil serine proteinase 3 (P3) and Porphyromonas gingivalis was evaluated. PAR(2) mRNA expression was higher (p < 0.001) in those with chronic periodontitis compared with control individuals, and it was statistically decreased (p = 0.0006) after periodontal treatment. Furthermore, those with chronic periodontitis presented higher (p < 0.05) levels of IL-1alpha, IL-6, IL-8, and TNF-alpha, total proteolytic activity, P. gingivalis prevalence, and P3mRNA expression compared with control individuals. We conclude that PAR(2) mRNA expression and its potential activators are elevated in human chronic periodontitis, therefore suggesting that PAR(2) may play a role in periodontal inflammation.

  19. NanoString nCounter® Approach in Breast Cancer: A Comparative Analysis with Quantitative Real-Time Polymerase Chain Reaction, In Situ Hybridization, and Immunohistochemistry.

    PubMed

    Hyeon, Jiyeon; Cho, Soo Youn; Hong, Min Eui; Kang, So Young; Do, Ingu; Im, Young Hyuck; Cho, Eun Yoon

    2017-09-01

    Accurate testing for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) is essential for breast cancer treatment. At present, immunohistochemistry (IHC)/florescence in situ hybridization (FISH) are widely accepted as the standard testing methods. To investigate the value of NanoString nCounter®, we performed its comparative analysis with IHC/FISH and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) for the assessment of ER, PR, and HER2. Data on IHC/FISH results for ER, PR, and HER2 in 240 patients from a single tertiary hospital in Korea were collected and compared with NanoString nCounter® and qRT-PCR results at a single institution. Expression levels for each gene using NanoString nCounter® showed good correlation with the corresponding data for protein expression by IHC ( p <0.001) and gene amplification status for HER2 ( p <0.001). Comparisons between gene expression and IHC data showed good overall agreement with a high area under the curve (AUC) for ESR1 /ER (AUC=0.939), PgR /PR (AUC=0.796), and HER2 /HER2 (AUC=0.989) ( p <0.001). The quantification of ER , PgR , and HER2 mRNA expression with NanoString nCounter® may be a viable alternative to conventional IHC/FISH methods.

  20. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis

    PubMed Central

    Gouwy, Mieke; Ruytinx, Pieter; Radice, Egle; Claudi, Federico; Van Raemdonck, Katrien; Bonecchi, Raffaella; Locati, Massimo; Struyf, Sofie

    2016-01-01

    Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology. PMID:27828999

  1. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis.

    PubMed

    Gouwy, Mieke; Ruytinx, Pieter; Radice, Egle; Claudi, Federico; Van Raemdonck, Katrien; Bonecchi, Raffaella; Locati, Massimo; Struyf, Sofie

    2016-01-01

    Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology.

  2. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice

    PubMed Central

    Buckley, Jill; Willingham, Emily; Agras, Koray; Baskin, Laurence S

    2006-01-01

    Background Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA) feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at the morphological and molecular levels. Methods We gave pregnant dams vinclozolin by oral gavage from gestational days 13 through 17. We assessed the fetal genital tubercles from exposed fetuses at E19 to determine location of the urethral opening. After determination of gonadal sex, either genital tubercles were harvested for mRNA quantitation, or urethras were injected with a plastic resin for casting. We analyzed quantified mRNA levels between treated and untreated animals for mRNA levels of estrogen receptors α and β, progesterone receptor, and androgen receptor using nonparametric tests or ANOVA. To determine effects on urethral length (males have long urethras compared to females), we measured the lengths of the casts and performed ANOVA analysis on these data. Results Our morphological results indicated that vinclozolin has morphological effects similar to those of MPA, feminizing males (hypospadias) and masculinizing females (longer urethras). Because these results reflected our MPA results, we investigated the effects of in utero vinclozolin exposure on the mRNA expression levels of androgen, estrogen α and β, and progesterone receptors. At the molecular level, vinclozolin down-regulated estrogen receptor α mRNA in females and up-regulated progesterone receptor mRNA. Vinclozolin-exposed males exhibited up-regulated estrogen receptor α and progesterone receptor mRNA, effects we have also seen with exposure to the synthetic estrogen, ethinyl estradiol. Conclusion The results suggest that vinclozolin virilizes females and directly or indirectly affects progesterone receptor expression. It also affects estrogen receptor expression in a sex-based manner. We found no in vivo effect of vinclozolin on androgen receptor expression. We propose that vinclozolin, which has been designated an anti-androgen, may also exert its effects by involving additional steroid-signaling pathways. PMID:16504050

  3. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice.

    PubMed

    Buckley, Jill; Willingham, Emily; Agras, Koray; Baskin, Laurence S

    2006-02-21

    Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA) feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at the morphological and molecular levels. We gave pregnant dams vinclozolin by oral gavage from gestational days 13 through 17. We assessed the fetal genital tubercles from exposed fetuses at E19 to determine location of the urethral opening. After determination of gonadal sex, either genital tubercles were harvested for mRNA quantitation, or urethras were injected with a plastic resin for casting. We analyzed quantified mRNA levels between treated and untreated animals for mRNA levels of estrogen receptors alpha and beta, progesterone receptor, and androgen receptor using nonparametric tests or ANOVA. To determine effects on urethral length (males have long urethras compared to females), we measured the lengths of the casts and performed ANOVA analysis on these data. Our morphological results indicated that vinclozolin has morphological effects similar to those of MPA, feminizing males (hypospadias) and masculinizing females (longer urethras). Because these results reflected our MPA results, we investigated the effects of in utero vinclozolin exposure on the mRNA expression levels of androgen, estrogen alpha and beta, and progesterone receptors. At the molecular level, vinclozolin down-regulated estrogen receptor alpha mRNA in females and up-regulated progesterone receptor mRNA. Vinclozolin-exposed males exhibited up-regulated estrogen receptor alpha and progesterone receptor mRNA, effects we have also seen with exposure to the synthetic estrogen, ethinyl estradiol. The results suggest that vinclozolin virilizes females and directly or indirectly affects progesterone receptor expression. It also affects estrogen receptor expression in a sex-based manner. We found no in vivo effect of vinclozolin on androgen receptor expression. We propose that vinclozolin, which has been designated an anti-androgen, may also exert its effects by involving additional steroid-signaling pathways.

  4. The clinicopathologic significance of the loss of BAF250a (ARID1A) expression in endometrial carcinoma.

    PubMed

    Zhang, Zheng-mao; Xiao, Shuang; Sun, Guang-yu; Liu, Yue-ping; Zhang, Feng-hua; Yang, Hong-fang; Li, Jia; Qiu, Hong-bing; Liu, Yang; Zhang, Chao; Kang, Shan; Shan, Bao-en

    2014-03-01

    AT-rich interactive domain 1A (ARID1A) is a tumor suppressor gene that encodes the BAF250a protein. Recent studies have shown the loss of ARID1A expression in several types of tumors. We aimed to investigate the clinical and pathologic role of BAF250a in endometrial carcinoma. We examined the expression of BAF250a and its correlation with the expression of p53, estrogen receptor, progesterone receptor, glucocorticoid receptor, hypoxiainduciblefactor-1α, and vascular endothelial growth factor in normal and various malignant endometrial tissues. The expression of BAF250 was significantly down-regulated in endometrial carcinoma when compared with normal endometrial tissues. The loss of BAF250a expression was found in 25% of endometrial carcinoma samples but not in normal endometrial tissues, complex endometrial hyperplasia, and atypical endometrial hyperplasia samples. Subtypes of endometrial carcinoma, especially uterine endometrioid carcinoma and uterine clear cell carcinoma, had higher frequency of loss of BAF250a expression. In addition, the expression of BAF250a was positively correlated with estrogen receptor and negatively correlated with p53 in poorly differentiated endometrial adenocarcinoma. Moreover, the expression of BAF250a was significantly associated with the differentiation status of endometrial carcinoma but not associated with clinical stage, the depth of myometrial invasion, lymph node metastasis, and overall survival of patients with endometrial carcinoma. Our data showed that loss of BAF250a is frequently found in high-grade endometrioid and clear cell carcinomas but not in other types of endometrial carcinoma. The loss of BAF250a expression does not have prognostic value for endometrial carcinoma.

  5. ErbB2 and EGFR are downmodulated during the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Pagano, Eleonora; Calvo, Juan Carlos

    2003-10-15

    The expression of receptors belonging to the epidermal growth factor receptor subfamily has been largely studied these last years in epithelial cells mainly as involved in cell proliferation and malignant progression. Although much work has focused on the role of these growth factor receptors in the differentiation of a variety of tissues, there is little information in regards to normal stromal cells. We investigated erbB2 expression in the murine fibroblast cell line Swiss 3T3L1, which naturally or hormonally induced undergoes adipocyte differentiation. We found that the Swiss 3T3-L1 fibroblasts express erbB2, in addition to EGFR, and in a quantity comparable to or even greater than the breast cancer cell line T47D. Proliferating cells increased erbB2 and EGFR levels when reaching confluence up to 4- and 10-fold, respectively. This expression showed a significant decrease when growth-arrested cells were stimulated to differentiate with dexamethasone and isobutyl-methylxanthine. Differentiated cells presented a decreased expression of both erbB2 and EGFR regardless of whether the cells were hormonally or spontaneously differentiated. EGF stimulation of serum-starved cells increased erbB2 tyrosine phosphorylation and retarded erbB2 migration in SDS-PAGE, suggesting receptor association and activation. Heregulin-alpha1 and -beta1, two EGF related factors, had no effect on erbB2 or EGFR phosphorylation. Although 3T3-L1 cells expressed heregulin, its specific receptors, erbB3 and erbB4, were not found. This is the first time in which erbB2 is reported to be expressed in an adipocytic cell line which does not depend on non EGF family growth factors (thyroid hormone, growth hormone, etc.) to accomplish adipose differentiation. Since erbB2 and EGFR expression were downmodulated as differentiation progressed it is conceivable that a mechanism of switching from a mitogenic to a differentiating signaling pathway may be involved, through regulation of the expression of these growth factor receptors. Copyright 2003 Wiley-Liss, Inc.

  6. Quantification of three steroid hormone receptors of the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination: their tissue distributions and the effect of environmental change on their expressions.

    PubMed

    Endo, Daisuke; Park, Min Kyun

    2003-12-01

    Sex steroid hormones play a central role in the reproduction of all vertebrates. These hormones function through their specific receptors, so the expression levels of the receptors may reflect the responsibility of target organs. However, there was no effective method to quantify the expression levels of these receptors in reptilian species. In this study, we established the competitive-PCR assay systems for the quantification of the mRNA expression levels of three sex steroid hormone receptors in the leopard gecko. These assay systems were successfully able to detect the mRNA expression level of each receptor in various organs of male adult leopard geckoes. The expression levels of mRNA of these receptors were highly various depending on the organs assayed. This is the first report regarding the tissue distributions of sex steroid hormone receptor expressions in reptile. The effects of environmental conditions on these hormone receptor expressions were also examined. After the low temperature and short photoperiod treatment for 6 weeks, only the androgen receptor expression was significantly increased in the testes. The competitive-PCR assay systems established in this report should be applicable for various studies of the molecular mechanism underlying the reproductive activity of the leopard gecko.

  7. CXCR-4 expression by circulating endothelial progenitor cells and SDF-1 serum levels are elevated in septic patients.

    PubMed

    Patry, Christian; Stamm, Daniela; Betzen, Christian; Tönshoff, Burkhard; Yard, Benito A; Beck, Grietje Ch; Rafat, Neysan

    2018-01-01

    Endothelial progenitor cell (EPC) numbers are increased in septic patients and correlate with survival. In this study, we investigated, whether surface expression of chemokine receptors and other receptors important for EPC homing is upregulated by EPC from septic patients and if this is associated with clinical outcome. Peripheral blood mononuclear cells from septic patients ( n  = 30), ICU control patients ( n  = 11) and healthy volunteers ( n  = 15) were isolated by Ficoll density gradient centrifugation. FACS-analysis was used to measure the expression of the CXC motif chemokine receptors (CXCR)-2 and - 4, the receptor for advanced glycation endproducts (RAGE) and the stem cell factor receptor c-Kit. Disease severity was assessed via the Simplified Acute Physiology Score (SAPS) II. The serum concentrations of vascular endothelial growth factor (VEGF), stromal cell-derived factor (SDF)-1α and angiopoietin (Ang)-2 were determined with Enzyme linked Immunosorbent Assays. EPC from septic patients expressed significantly more CXCR-4, c-Kit and RAGE compared to controls and were associated with survival-probability. Significantly higher serum concentrations of VEGF, SDF-1α and Ang-2 were found in septic patients. SDF-1α showed a significant association with survival. Our data suggest that SDF-1α and CXCR-4 signaling could play a crucial role in EPC homing in the course of sepsis.

  8. Development of N-Methyl-D-Aspartate Receptor Subunits in Avian Auditory Brainstem

    PubMed Central

    TANG, YE-ZHONG; CARR, CATHERINE E.

    2012-01-01

    N-methyl-D-aspartate (NMDA) receptor subunit-specific probes were used to characterize developmental changes in the distribution of excitatory amino acid receptors in the chicken’s auditory brainstem nuclei. Although NR1 subunit expression does not change greatly during the development of the cochlear nuclei in the chicken (Tang and Carr [2004] Hear. Res 191:79 – 89), there are significant developmental changes in NR2 subunit expression. We used in situ hybridization against NR1, NR2A, NR2B, NR2C, and NR2D to compare NR1 and NR2 expression during development. All five NMDA subunits were expressed in the auditory brainstem before embryonic day (E) 10, when electrical activity and synaptic responses appear in the nucleus magnocellularis (NM) and the nucleus laminaris (NL). At this time, the dominant form of the receptor appeared to contain NR1 and NR2B. NR2A appeared to replace NR2B by E14, a time that coincides with synaptic refinement and evoked auditory responses. NR2C did not change greatly during auditory development, whereas NR2D increased from E10 and remained at fairly high levels into adulthood. Thus changes in NMDA NR2 receptor subunits may contribute to the development of auditory brainstem responses in the chick. PMID:17366608

  9. Involvement of glutamatergic N-methyl-d-aspartate receptors in the expression of increased head-dipping behaviors in the hole-board tests of olfactory bulbectomized mice.

    PubMed

    Hirose, Noritaka; Saitoh, Akiyoshi; Kamei, Junzo

    2016-10-01

    Olfactory bulbectomized (OB) mice produce agitated anxiety-like behaviors in the hole-board test, which was expressed by an increase in head-dipping counts and a decrease in head-dipping latencies. However, the associated mechanisms remain unclear. In the present study, MK-801 (10, 100μg/kg), a selective N-methyl-d-aspartate (NMDA) receptor antagonist, significantly and dose-dependently suppressed the increased head-dipping behaviors in OB mice, without affecting sham mice. Similar results were obtained with another selective NMDA receptor antagonist D-AP5 treatment in OB mice. On the other hand, muscimol, a selective aminobutyric acid type A (GABAA) receptor agonist produced no effects on these hyperemotional behaviors in OB mice at a dose (100μg/kg) that produced anxiolytic-like effects in sham mice. Interestingly, glutamine contents and glutamine/glutamate ratios were significantly increased in the amygdala and frontal cortex of OB mice compared to sham mice. Based on these results, we concluded that the glutamatergic NMDA receptors are involved in the expression of increased head-dipping behaviors in the hole-board tests of OB mice. Accordingly, the changes in glutamatergic transmission in frontal cortex and amygdala may play important roles in the expression of these abnormal behaviors in OB mice. Copyright © 2016. Published by Elsevier B.V.

  10. Prognostic value of sex-hormone receptor expression in non-muscle-invasive bladder cancer.

    PubMed

    Nam, Jong Kil; Park, Sung Woo; Lee, Sang Don; Chung, Moon Kee

    2014-09-01

    We investigated sex-hormone receptor expression as predicting factor of recurrence and progression in patients with non-muscle invasive bladder cancer. We retrospectively evaluated tumor specimens from patients treated for transitional cell carcinoma of the bladder at our institution between January 2006 and January 2011. Performing immunohistochemistry using a monoclonal androgen receptor antibody and monoclonal estrogen receptor-beta antibody on paraffin-embedded tissue sections, we assessed the relationship of immunohistochemistry results and prognostic factors such as recurrence and progression. A total of 169 patients with bladder cancer were evaluated in this study. Sixty-threepatients had expressed androgen receptors and 52 patients had estrogen receptor beta. On univariable analysis, androgen receptor expression was significant lower in recurrence rates (p=0.001), and estrogen receptor beta expression was significant higher in progression rates (p=0.004). On multivariable analysis, significant association was found between androgen receptor expression and lower recurrence rates (hazard ratio=0.500; 95% confidence interval, 0.294 to 0.852; p=0.011), but estrogen receptor beta expression was not significantly associated with progression rates. We concluded that the possibility of recurrence was low when the androgen receptor was expressed in the bladder cancer specimen and it could be the predicting factor of the stage, number of tumors, carcinoma in situ lesion and recurrence.

  11. Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-specific insulin receptor knock-out mice

    PubMed Central

    Katic, Masa; Kennedy, Adam R.; Leykin, Igor; Norris, Andrew; McGettrick, Aileen; Gesta, Stephane; Russell, Steven J.; Bluher, Matthias; Maratos-Flier, Eleftheria; Kahn, C. Ronald

    2009-01-01

    Summary Caloric restriction, leanness and decreased activity of insulin/insulin-like growth factor 1 (IGF-1) receptor signaling are associated with increased longevity in a wide range of organisms from Caenorhabditis elegans to humans. Fat-specific insulin receptor knock-out (FIRKO) mice represent an interesting dichotomy, with leanness and increased lifespan, despite normal or increased food intake. To determine the mechanisms by which a lack of insulin signaling in adipose tissue might exert this effect, we performed physiological and gene expression studies in FIRKO and control mice as they aged. At the whole body level, FIRKO mice demonstrated an increase in basal metabolic rate and respiratory exchange ratio. Analysis of gene expression in white adipose tissue (WAT) of FIRKO mice from 6 to 36 months of age revealed persistently high expression of the nuclear-encoded mitochondrial genes involved in glycolysis, tricarboxylic acid cycle, β-oxidation and oxidative phosphorylation as compared to expression of the same genes in WAT from controls that showed a tendency to decline in expression with age. These changes in gene expression were correlated with increased cytochrome c and cytochrome c oxidase subunit IV at the protein level, increased citrate synthase activity, increased expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and PGC-1β, and an increase in mitochondrial DNA in WAT of FIRKO mice. Together, these data suggest that maintenance of mitochondrial activity and metabolic rates in adipose tissue may be important contributors to the increased lifespan of the FIRKO mouse. PMID:18001293

  12. Adult cystic nephroma and mixed epithelial and stromal tumor of the kidney are the same disease entity: molecular and histologic evidence.

    PubMed

    Zhou, Ming; Kort, Eric; Hoekstra, Philip; Westphal, Michael; Magi-Galluzzi, Cristina; Sercia, Linda; Lane, Brian; Rini, Brian; Bukowski, Ronald; Teh, Bin T

    2009-01-01

    Adult cystic nephroma (CN) and mixed epithelial and stromal tumor of the kidney (MEST) are considered as separate entities in the 2004 World Health Organization classification of renal neoplasms. Recent studies suggested that the two share clinicopathologic features and may represent the same disease process of varying morphology. However, definitive genetic evidence is lacking. We examined their relationship using gene expression profiling and histologic analysis. Gene expression profiles of 3 CN and 3 MEST were analyzed using HGU133 Plus 2.0 microarrays (Affymetrix) and were compared with each other and also with 48 other renal tumors and 13 normal kidneys. Histologic examination of 26 CN and 13 MEST focused on the cystic septal thickness, cyst-to-stroma ratio, stromal cellularity and composition, types of epithelial cells lining cysts and glands, and estrogen and progesterone receptors expression. Patients' age, sex distribution, and tumor size were similar between the two. They also shared many histologic features, including lining epithelium of cysts and glands, stromal cellularity and composition. Unsupervised clustering of mRNA expression profiles demonstrated that they had very similar expression profiles that were distinct from other renal tumors. By microarray analysis, progesterone receptor expression was significantly higher in CN and MEST relative to both normal and other renal tumors, while estrogen receptor expression was not. By immunohistochemistry, expression of both receptors was similar between CN and MEST. This study provides the most convincing molecular evidence that CN and MEST represent different parts of the morphologic spectrum of the same disease.

  13. CHRFAM7A: a human-specific α7-nicotinic acetylcholine receptor gene shows differential responsiveness of human intestinal epithelial cells to LPS

    PubMed Central

    Dang, Xitong; Eliceiri, Brian P.; Baird, Andrew; Costantini, Todd W.

    2015-01-01

    The human genome contains a unique, distinct, and human-specific α7-nicotinic acetylcholine receptor (α7nAChR) gene [CHRNA7 (gene-encoding α7-nicotinic acetylcholine receptor)] called CHRFAM7A (gene-encoding dup-α7-nicotinic acetylcholine receptor) on a locus of chromosome 15 associated with mental illness, including schizophrenia. Located 5′ upstream from the “wild-type” CHRNA7 gene that is found in other vertebrates, we demonstrate CHRFAM7A expression in a broad range of epithelial cells and sequenced the CHRFAM7A transcript found in normal human fetal small intestine epithelial (FHs) cells to prove its identity. We then compared its expression to CHRNA7 in 11 gut epithelial cell lines, showed that there is a differential response to LPS when compared to CHRNA7, and characterized the CHRFAM7A promoter. We report that both CHRFAM7A and CHRNA7 gene expression are widely distributed in human epithelial cell lines but that the levels of CHRFAM7A gene expression vary up to 5000-fold between different gut epithelial cells. A 3-hour treatment of epithelial cells with 100 ng/ml LPS increased CHRFAM7A gene expression by almost 1000-fold but had little effect on CHRNA7 gene expression. Mapping the regulatory elements responsible for CHRFAM7A gene expression identifies a 1 kb sequence in the UTR of the CHRFAM7A gene that is modulated by LPS. Taken together, these data establish the presence, identity, and differential regulation of the human-specific CHRFAM7A gene in human gut epithelial cells. In light of the fact that CHRFAM7A expression is reported to modulate ligand binding to, and alter the activity of, the wild-type α7nAChR ligand-gated pentameric ion channel, the findings point to the existence of a species-specific α7nAChR response that might regulate gut epithelial function in a human-specific fashion.—Dang, X., Eliceiri, B. P., Baird, A., Costantini, T. W. CHRFAM7A: a human-specific α7-nicotinic acetylcholine receptor gene shows differential responsiveness of human intestinal epithelial cells to LPS. PMID:25681457

  14. Markers of epithelial-to-mesenchymal transition reflect tumor biology according to patient age and Gleason score in prostate cancer

    PubMed Central

    Jędroszka, Dorota; Hamouz, Raneem; Górniak, Karolina; Bednarek, Andrzej K.

    2017-01-01

    Introduction Prostate carcinoma (PRAD) is one of the most frequently diagnosed malignancies amongst men worldwide. It is well-known that androgen receptor (AR) plays a pivotal role in a vast majority of prostate tumors. However, recent evidence emerged stating that estrogen receptors (ERs) may also contribute to prostate tumor development. Moreover, progression and aggressiveness of prostate cancer may be associated with differential expression genes of epithelial-to-mesenchymal transition (EMT). Therefore we aimed to assess the significance of receptors status as well as EMT marker genes expression among PRAD patients in accordance to their age and Gleason score. Materials and methods We analyzed TCGA gene expression profiles of 497 prostate tumor samples according to 43 genes involved in EMT and 3 hormone receptor genes (AR, ESR1, ESR2) as well as clinical characteristic of cancer patients. Then patients were divided into four groups according to their age and 5 groups according to Gleason score. Next, we evaluated PRAD samples according to relationship between the set of variables in different combinations and compared differential expression in subsequent groups of patients. The analysis was applied using R packages: FactoMineR, gplots, RColorBrewer and NMF. Results MFA analysis resulted in distinct grouping of PRAD patients into four age categories according to expression level of AR, ESR1 and ESR2 with the most distinct group of age less than 50 years old. Further investigations indicated opposite expression profiles of EMT markers between different age groups as well as strong association of EMT gene expression with Gleason score. We found that depending on age of prostate cancer patients and Gleason score EMT genes with distinctly altered expression are: KRT18, KRT19, MUC1 and COL4A1, CTNNB1, SNAI2, ZEB1 and MMP3. Conclusions Our major observation is that prostate cancer from patients under 50 years old compared to older ones has entirely different EMT gene expression profiles showing potentially more aggressive invasive phenotype, despite Gleason score classification. PMID:29206234

  15. Markers of epithelial-to-mesenchymal transition reflect tumor biology according to patient age and Gleason score in prostate cancer.

    PubMed

    Jędroszka, Dorota; Orzechowska, Magdalena; Hamouz, Raneem; Górniak, Karolina; Bednarek, Andrzej K

    2017-01-01

    Prostate carcinoma (PRAD) is one of the most frequently diagnosed malignancies amongst men worldwide. It is well-known that androgen receptor (AR) plays a pivotal role in a vast majority of prostate tumors. However, recent evidence emerged stating that estrogen receptors (ERs) may also contribute to prostate tumor development. Moreover, progression and aggressiveness of prostate cancer may be associated with differential expression genes of epithelial-to-mesenchymal transition (EMT). Therefore we aimed to assess the significance of receptors status as well as EMT marker genes expression among PRAD patients in accordance to their age and Gleason score. We analyzed TCGA gene expression profiles of 497 prostate tumor samples according to 43 genes involved in EMT and 3 hormone receptor genes (AR, ESR1, ESR2) as well as clinical characteristic of cancer patients. Then patients were divided into four groups according to their age and 5 groups according to Gleason score. Next, we evaluated PRAD samples according to relationship between the set of variables in different combinations and compared differential expression in subsequent groups of patients. The analysis was applied using R packages: FactoMineR, gplots, RColorBrewer and NMF. MFA analysis resulted in distinct grouping of PRAD patients into four age categories according to expression level of AR, ESR1 and ESR2 with the most distinct group of age less than 50 years old. Further investigations indicated opposite expression profiles of EMT markers between different age groups as well as strong association of EMT gene expression with Gleason score. We found that depending on age of prostate cancer patients and Gleason score EMT genes with distinctly altered expression are: KRT18, KRT19, MUC1 and COL4A1, CTNNB1, SNAI2, ZEB1 and MMP3. Our major observation is that prostate cancer from patients under 50 years old compared to older ones has entirely different EMT gene expression profiles showing potentially more aggressive invasive phenotype, despite Gleason score classification.

  16. Sex differences in creatine kinase after acute heavy resistance exercise on circulating granulocyte estradiol receptors.

    PubMed

    Wolf, Megan R; Fragala, Maren S; Volek, Jeff S; Denegar, Craig R; Anderson, Jeffrey M; Comstock, Brett A; Dunn-Lewis, Courtenay; Hooper, David R; Szivak, Tunde K; Luk, Hui-Ying; Maresh, Carl M; Häkkinen, Keijo; Kraemer, William J

    2012-09-01

    Previous research has shown reduced tissue disruption and inflammatory responses in women as compared to men following acute strenuous exercise. While the mechanism of this action is not known, estrogen may reduce the inflammatory response through its interaction with granulocytes. The purpose of this study was to determine if estrogen receptor β expression on granulocytes is related to sex differences in tissue disruption in response to an acute heavy resistance exercise protocol. Seven healthy, resistance-trained, eumenorrheic women (23 ± 3 years, 169 ± 9.1 cm, 66.4 ± 10.5 kg) and 8 healthy, resistance-trained men (25 ± 5 years, 178 ± 6.7 cm, 82.3 ± 9.33 kg) volunteered to participate in the study. Subjects performed an acute resistance exercise test consisting of six sets of five squats at 90% of the subject's one repetition maximum. Blood samples were obtained pre-, mid-, post-, and 1-, 6-, and 24-h postexercise. Blood samples were analyzed for 17-β-estradiol by ELISA, creatine kinase by colorimetric enzyme immunoassay, and estradiol receptors on circulating granulocytes through flow cytometry. Men had higher CK concentrations than women at baseline/control. Men had significantly higher CK concentrations at 24-h postexercise than women. No significant changes in estradiol β receptors were expressed on granulocytes after exercise or between sexes. While sex differences occur in CK activity in response to strenuous eccentric exercise, they may not be related to estradiol receptor β expression on granulocytes. Thus, although there are sex differences in CK expression following acute resistance exercise, the differences may not be attributable to estrogen receptor β expression on granulocytes.

  17. GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism.

    PubMed

    Fatemi, S Hossein; Folsom, Timothy D

    2015-09-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in the brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), the absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Reduced vasopressin receptors activation mediates the anti-depressant effects of fluoxetine and venlafaxine in bulbectomy model of depression.

    PubMed

    Poretti, María Belén; Sawant, Rahul S; Rask-Andersen, Mathias; de Cuneo, Marta Fiol; Schiöth, Helgi B; Perez, Mariela F; Carlini, Valeria Paola

    2016-03-01

    In response to stress, corticotropin releasing hormone (CRH) and vasopressin (AVP) are released from the hypothalamus, activate their receptors (CRHR1, CRHR2 or AVPr1b), and synergistically act to induce adrenocorticotropic hormone (ACTH) release from the anterior pituitary. Overstimulation of this system has been frequently associated with major depression states. The objective of the study is to assess the role of AVP and CRH receptors in fluoxetine and venlafaxine effects on the expression of depression-related behavior. In an animal model of depression (olfactory bulbectomy in mice, OB), we evaluated the effects of fluoxetine or venlafaxine (both 10 mg/kg/day) chronic administration on depression-related behavior in the tail suspension test. Plasma levels of AVP, CRH, and ACTH were determined as well as participation of their receptors in the expression of depression related-behavior and gene expression of AVP and CRH receptors (AVPr1b, CRHR1, and CRHR2) in the pituitary gland. The expression of depressive-like behavior in OB animals was reversed by treatment with both antidepressants. Surprisingly, OB-saline mice exhibited increased AVP and ACTH plasma levels, with no alterations in CRH levels when compared to sham mice. Chronic fluoxetine or venlafaxine reversed these effects. In addition, a significant increase only in AVPr1b gene expression was found in OB-saline. The antidepressant therapy used seems to be more likely related to a reduced activation of AVP rather than CRH receptors, since a positive correlation between AVP levels and depressive-like behavior was observed in OB animals. Furthermore, a full restoration of depressive behavior was observed in OB-fluoxetine- or venlafaxine-treated mice only when AVP was centrally administered but not CRH.

  19. Increased Protease-Activated Receptor-2 (PAR-2) Expression on CD14++CD16+ Peripheral Blood Monocytes of Patients with Severe Asthma

    PubMed Central

    Shrestha Palikhe, Nami; Nahirney, Drew; Laratta, Cheryl; Gandhi, Vivek Dipak; Vethanayagam, Dilini; Bhutani, Mohit; Mayers, Irvin

    2015-01-01

    Background Protease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied. Methods We recruited 12 severe and 24 mild/moderate asthmatics from the University of Alberta Hospital Asthma Clinics and collected baseline demographic information, medication use and parameters of asthma severity. PAR-2 expression on blood inflammatory cells was analyzed by flow cytometry. Results Subjects with severe asthma had higher PAR-2 expression on CD14++CD16+ monocytes (intermediate monocytes) and also higher percentage of CD14++CD16+PAR-2+ monocytes (intermediate monocytes expressing PAR-2) in blood compared to subjects with mild/moderate asthma. Receiver operating characteristics (ROC) curve analysis showed that the percent of CD14++CD16+PAR-2+ in peripheral blood was able to discriminate between patients with severe and those with mild/moderate asthma with high sensitivity and specificity. In addition, among the whole populations, subjects with a history of asthma exacerbations over the last year had higher percent of CD14++CD16+ PAR-2+ cells in peripheral blood compared to subjects without exacerbations. Conclusions PAR-2 expression is increased on CD14++CD16+ monocytes in the peripheral blood of subjects with severe asthma and may be a biomarker of asthma severity. Our data suggest that PAR-2 -mediated activation of CD14++CD16+ monocytes may play a role in the pathogenesis of severe asthma. PMID:26658828

  20. Increased Protease-Activated Receptor-2 (PAR-2) Expression on CD14++CD16+ Peripheral Blood Monocytes of Patients with Severe Asthma.

    PubMed

    Shrestha Palikhe, Nami; Nahirney, Drew; Laratta, Cheryl; Gandhi, Vivek Dipak; Vethanayagam, Dilini; Bhutani, Mohit; Mayers, Irvin; Cameron, Lisa; Vliagoftis, Harissios

    2015-01-01

    Protease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied. We recruited 12 severe and 24 mild/moderate asthmatics from the University of Alberta Hospital Asthma Clinics and collected baseline demographic information, medication use and parameters of asthma severity. PAR-2 expression on blood inflammatory cells was analyzed by flow cytometry. Subjects with severe asthma had higher PAR-2 expression on CD14++CD16+ monocytes (intermediate monocytes) and also higher percentage of CD14++CD16+PAR-2+ monocytes (intermediate monocytes expressing PAR-2) in blood compared to subjects with mild/moderate asthma. Receiver operating characteristics (ROC) curve analysis showed that the percent of CD14++CD16+PAR-2+ in peripheral blood was able to discriminate between patients with severe and those with mild/moderate asthma with high sensitivity and specificity. In addition, among the whole populations, subjects with a history of asthma exacerbations over the last year had higher percent of CD14++CD16+ PAR-2+ cells in peripheral blood compared to subjects without exacerbations. PAR-2 expression is increased on CD14++CD16+ monocytes in the peripheral blood of subjects with severe asthma and may be a biomarker of asthma severity. Our data suggest that PAR-2 -mediated activation of CD14++CD16+ monocytes may play a role in the pathogenesis of severe asthma.

  1. Differential chemokine, chemokine receptor and cytokine expression in Epstein-Barr virus-associated lymphoproliferative diseases.

    PubMed

    Ohshima, Koichi; Karube, Kennosuke; Hamasaki, Makoto; Tutiya, Takeshi; Yamaguchi, Takahiro; Suefuji, Hiroaki; Suzuki, Keiko; Suzumiya, Junji; Ohga, Shouichi; Kikuchi, Masahiro

    2003-08-01

    T cell immunity plays an important role in the clinicopathology of Epstein-Barr virus (EBV)-associated diseases. Acute EBV-induced infectious mononucleosis (IM) is a common self-limiting disease, however, other EBV-associated diseases, including chronic active EBV infection (CAEBV), NK cell lymphoma (NKL), and Hodgkin's lymphoma (HL), exhibit distinct clinical features. Chemokines are members of a family of small-secreted proteins. The relationships between chemokines and the chemokine receptor (R) are thought to be important for selectivity of local immunity. Some chemokines, chemokine R and cytokines closely associate with the T cell subtypes, Th1 and Th2 T cells and cytotoxic cells. To clarify the role of T cell immunity in EBV-associated diseases, we conducted gene expression profiling, using chemokine, chemokine R and cytokine DNA chips. Compared to EBV negative non-specific lymphadenitis, CAEBV and NKL exhibited diffuse down- and up-regulation, respectively, of these gene profiles. IM had a predominantly Th1-type profile, whereas HL had a mixed Th1/Th2-type profile. Reduction of the Th1-type cytokine interferon gamma (IFN-gamma) in CAEBV was confirmed by Reverse transcriptase-polymerase chain reaction, whereas IFN-gamma expression was markedly enhanced in NKL, and moderately enhanced in IM. Compared to IM, CAEBV showed slight elevation of "regulated upon activation, normal T expressed and secreted" (RANTES), but almost all other genes assayed were down-regulated. NKL exhibited elevated expression of numerous genes, particularly IFN-gamma-inducible-10 (IP-10) and monokine induced by IFN-gamma (MIG). HL showed variable elevated and reduced expression of various genes, with increased expression of IL-13 receptor and MIG. Our study demonstrated the enormous potential of gene expression profiling for clarifying the pathogenesis of EBV-associated diseases.

  2. Sex-specific effects of prenatal chronic mild stress on adult spatial learning capacity and regional glutamate receptor expression profiles.

    PubMed

    Wang, Yan; Ma, Yuchao; Hu, Jingmin; Zhang, Xinxin; Cheng, Wenwen; Jiang, Han; Li, Min; Ren, Jintao; Zhang, Xiaosong; Liu, Mengxi; Sun, Anji; Wang, Qi; Li, Xiaobai

    2016-07-01

    Both animal experiments and clinical studies have demonstrated that prenatal stress can cause cognitive disorders in offspring. To explore the scope of these deficits and identify potential underlying mechanisms, we examined the spatial learning and memory performance and glutamate receptor (GluR) expression patterns of adult rats exposed to prenatal chronic mild stress (PCMS). Principal component analysis (PCA) was employed to reveal the interrelationships among spatial learning indices and GluR expression changes. Female PCMS-exposed offspring exhibited markedly impaired spatial learning and memory in the Morris water maze (MWM) task compared to control females, while PCMS-exposed males showed better initial spatial learning in the MWM compared to control males. PCMS also altered basal and post-MWM glutamate receptor expression patterns, but these effects differed markedly between sexes. Male PCMS-exposed offspring exhibited elevated basal expression of NR1, mGluR5, and mGluR2/3 in the prefrontal cortex (PFC), whereas females showed no basal expression changes. Following MWM training, PCMS-exposed males expressed higher NR1 in the PFC and mammillary body (MB), higher mGluR2/3 in PFC, and lower NR2B in the hippocampus (HIP), PFC, and MB compared to unstressed MWM-trained males. Female PCMS-exposed offspring showed strongly reduced NR1 in MB and NR2B in the HIP, PFC, and MB, and increased mGluR2/3 in PFC compared to unstressed MWM-trained females. This is the first report suggesting that NMDA subunits in the MB are involved in spatial learning. Additionally, PCA further suggests that the NR1-NR2B form is the most important for spatial memory formation. These results reveal long-term sex-specific effects of PCMS on spatial learning and memory performance in adulthood and implicate GluR expression changes within HIP, PFC, and MB as possible molecular mechanisms underlying cognitive dysfunction in offspring exposed to prenatal stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Functional Characteristics of the Naked Mole Rat μ-Opioid Receptor

    PubMed Central

    Roth, Clarisse A.

    2013-01-01

    While humans and most animals respond to µ-opioid receptor (MOR) agonists with analgesia and decreased aggression, in the naked mole rat (NMR) opioids induce hyperalgesia and severe aggression. Single nucleotide polymorphisms in the human mu-opioid receptor gene (OPRM1) can underlie altered behavioral responses to opioids. Therefore, we hypothesized that the primary structure of the NMR MOR may differ from other species. Sequencing of the NMR oprm1 revealed strong homology to other mammals, but exposed three unique amino acids that might affect receptor-ligand interactions. The NMR and rat oprm1 sequences were cloned into mammalian expression vectors and transfected into HEK293 cells. Radioligand binding and 3'-5'-cyclic adenosine monophosphate (cAMP) enzyme immunoassays were used to compare opioid binding and opioid-mediated cAMP inhibition. At normalized opioid receptor protein levels we detected significantly lower [3H]DAMGO binding to NMR compared to rat MOR, but no significant difference in DAMGO-induced cAMP inhibition. Strong DAMGO-induced MOR internalization was detectable using radioligand binding and confocal imaging in HEK293 cells expressing rat or NMR receptor, while morphine showed weak or no effects. In summary, we found minor functional differences between rat and NMR MOR suggesting that other differences e.g. in anatomical distribution of MOR underlie the NMR's extreme reaction to opioids. PMID:24312175

  4. Allergic sensitization modifies the pulmonary expression of 5-hydroxytryptamine receptors in guinea pigs.

    PubMed

    Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia

    2016-03-01

    There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Macrophage activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression.

    PubMed

    Blich, Miry; Golan, Amnon; Arvatz, Gil; Sebbag, Anat; Shafat, Itay; Sabo, Edmond; Cohen-Kaplan, Victoria; Petcherski, Sirouch; Avniel-Polak, Shani; Eitan, Amnon; Hammerman, Haim; Aronson, Doron; Axelman, Elena; Ilan, Neta; Nussbaum, Gabriel; Vlodavsky, Israel

    2013-02-01

    Factors and mechanisms that activate macrophages in atherosclerotic plaques are incompletely understood. We examined the capacity of heparanase to activate macrophages. Highly purified heparanase was added to mouse peritoneal macrophages and macrophage-like J774 cells, and the levels of tumor necrosis factor-α, matrix metalloproteinase-9, interlukin-1, and monocyte chemotactic protein-1 were evaluated by ELISA. Gene expression was determined by RT-PCR. Cells collected from Toll-like receptor-2 and Toll-like receptor-4 knockout mice were evaluated similarly. Heparanase levels in the plasma of patients with acute myocardial infarction, stable angina, and healthy subjects were determined by ELISA. Immunohistochemistry was applied to detect the expression of heparanase in control specimens and specimens of patients with stable angina or acute myocardial infarction. Addition or overexpression of heparanase variants resulted in marked increase in tumor necrosis factor-α, matrix metalloproteinase-9, interlukin-1, and monocyte chemotactic protein-1 levels. Mouse peritoneal macrophages harvested from Toll-like receptor-2 or Toll-like receptor-4 knockout mice were not activated by heparanase. Plasma heparanase level was higher in patients with acute myocardial infarction, compared with patients with stable angina and healthy subjects. Pathologic coronary specimens obtained from vulnerable plaques showed increased heparanase staining compared with specimens of stable plaque and controls. Heparanase activates macrophages, resulting in marked induction of cytokine expression associated with plaque progression toward vulnerability.

  6. Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor-9 in mice

    PubMed Central

    Kaur, Sandeep; Mukhopadhyay, C. S.; Sethi, R. S.

    2016-01-01

    Aim: Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor 9 (TLR-9) in mice. Materials and Methods: In this study, healthy male Swiss albino mice (n=30) aging 8-10 weeks were used to evaluate TLR-9 expression in lungs of mice following indoxacarb exposure with and without lipopolysaccharide (LPS). Indoxacarb was administered orally dissolved in groundnut oil at 4 and 2 mg/kg/day for 90 days. On day 91, five animals from each group were challenged with LPS/normal saline solution at 80 µg/animal. The lung tissues were processed for real time and immunohistochemical studies. Results: LPS resulted increase in fold change m-RNA expression level of TLR-9 as compare to control, while indoxacarb (4 mg/kg) alone and in combination with LPS resulted 16.21-fold change and 29.4-fold change increase in expression of TLR-9 m-RNA, respectively, as compared to control. Similarly, indoxacarb (2 mg/kg) alone or in combination with LPS also altered TLR-9 expression. Further at protein level control group showed minimal expression of TLR-9 in lungs as compare to other groups, however, LPS group showed intense positive staining in bronchial epithelium as well as in alveolar septal cells. Indoxacarb at both doses individually showed strong immuno-positive reaction as compare to control, however when combined with LPS resulted intense staining in airway epithelium as compare to control. Conclusion: Chronic oral administration of indoxacarb for 90 days (4 and 2 mg/kg) alters expression of TLR-9 at m-RNA and protein level and co-exposure with LPS exhibited synergistic effect. PMID:27956782

  7. Oligomeric status of the dihydropyridine receptor in aged skeletal muscle.

    PubMed

    Ryan, M; Carlson, B M; Ohlendieck, K

    2000-10-01

    A prominent feature of aging is represented by a decrease in muscle mass and strength. Abnormalities in Ca2+ -regulatory membrane complexes are involved in many muscular disorders. In analogy, we determined potential age-related changes in a key component of excitation-contraction coupling, the dihydropyridine receptor. Immunoblotting of the microsomal fraction from aged rabbit muscle revealed a drastic decline in the voltage-sensing alpha1-subunit of this transverse-tubular receptor, but only marginally altered expression of its auxiliary alpha(2)-subunit and the Na+/K+ -ATPase. A shift to slower fibre type characteristics was indicated by an age-related increase in the slow calsequestrin isoform. Chemical crosslinking analysis showed that the triad receptor complex has a comparable tendency of protein-protein interactions in young and aged muscles. Hence, a reduced expression and not modified oligomerization of the principal dihydropyridine receptor subunit might be involved in triggering impaired triadic signal transduction and abnormal Ca2+ -homeostasis resulting in a progressive functional decline of skeletal muscles. Copyright 2001 Academic Press.

  8. Enhanced Striatal β1-Adrenergic Receptor Expression Following Hormone Loss in Adulthood Is Programmed by Both Early Sexual Differentiation and Puberty: A Study of Humans and Rats

    PubMed Central

    Perry, Adam N.; Westenbroek, Christel; Hedges, Valerie L.; Becker, Jill B.; Mermelstein, Paul G.

    2013-01-01

    After reproductive senescence or gonadectomy, changes occur in neural gene expression, ultimately altering brain function. The endocrine mechanisms underlying these changes in gene expression beyond immediate hormone loss are poorly understood. To investigate this, we measured changes in gene expression the dorsal striatum, where 17β-estradiol modulates catecholamine signaling. In human caudate, quantitative PCR determined a significant elevation in β1-adrenergic receptor (β1AR) expression in menopausal females when compared with similarly aged males. No differences were detected in β2-adrenergic and D1- and D2-dopamine receptor expression. Consistent with humans, adult ovariectomized female rats exhibited a similar increase in β1AR expression when compared with gonadectomized males. No sex difference in β1AR expression was detected between intact adults, prepubertal juveniles, or adults gonadectomized before puberty, indicating the necessity of pubertal development and adult ovariectomy. Additionally, increased β1AR expression in adult ovariectomized females was not observed if animals were masculinized/defeminized with testosterone injections as neonates. To generate a model system for assessing functional impact, increased β1AR expression was induced in female-derived cultured striatal neurons via exposure to and then removal of hormone-containing serum. Increased β1AR action on cAMP formation, cAMP response element-binding protein phosphorylation and gene expression was observed. This up-regulation of β1AR action was eliminated with 17β-estradiol addition to the media, directly implicating this hormone as a regulator of β1AR expression. Beyond having implications for the known sex differences in striatal function and pathologies, these data collectively demonstrate that critical periods early in life and at puberty program adult gene responsiveness to hormone loss after gonadectomy and potentially reproductive senescence. PMID:23533220

  9. Long-term systemic angiotensin II type 1 receptor blockade regulates mRNA expression of dorsomedial medulla renin-angiotensin system components

    PubMed Central

    Gilliam-Davis, Shea; Gallagher, Patricia E.; Payne, Valerie S.; Kasper, Sherry O.; Tommasi, Ellen N.; Westwood, Brian M.; Robbins, Michael E.; Chappell, Mark C.

    2011-01-01

    In Fischer 344 (F344) rats, renin-angiotensin system (RAS) blockade for 1 yr with the angiotensin II type 1 (AT1) receptor blocker L-158,809 prevents age-related impairments in metabolic function, similar to transgenic rats with low glial angiotensinogen (Aogen). Brain RAS regulation may contribute to the benefits of long-term systemic AT1 antagonism. We assessed the mRNA of RAS components in the dorsomedial medulla of F344 rats at 3 (young; n = 8) or 15 mo of age (old; n = 7) and in rats treated from 3 to 15 mo of age with 20 mg/l of the AT1 receptor antagonist L-158,809 (Old+L; n = 6). Aogen and renin mRNA were lower in the young compared with old group. Angiotensin-converting enzyme (ACE) mRNA was lower in the old and Old+L compared with the young group. ACE2 and neprilysin expression were significantly higher in Old+L compared with young or old rats. AT1b, AT2, and Mas receptor mRNA were higher with treatment. Leptin receptor mRNA was lower in the old rats and this was prevented by L-158,809 treatment. Dual-specificity phosphatase 1 (DUSP1) mRNA was highest in the Old+L group. Aggregate correlate summation revealed a positive relationship for Mas receptor mRNA with food intake. The findings provide evidence for regulation of dorsomedial medullary renin and Aogen mRNA during aging. Long-term AT1 receptor blockade increases the mRNA of the enzymes ACE2 and neprilysin and the MAS receptor, which could potentially shift the balance from ANG II to ANG-(1–7) and prevent age-related declines in the leptin receptor and its signaling pathway. PMID:21540301

  10. Signal Peptide and Denaturing Temperature are Critical Factors for Efficient Mammalian Expression and Immunoblotting of Cannabinoid Receptors*

    PubMed Central

    WANG, Chenyun; WANG, Yingying; WANG, Miao; CHEN, Jiankui; YU, Nong; SONG, Shiping; KAMINSKI, Norbert E.; ZHANG, Wei

    2013-01-01

    Summary Many researchers employed mammalian expression system to artificially express cannabinoid receptors, but immunoblot data that directly prove efficient protein expression can hardly be seen in related research reports. In present study, we demonstrated cannabinoid receptor protein was not able to be properly expressed with routine mammalian expression system. This inefficient expression was rescued by endowing an exogenous signal peptide ahead of cannabinoid receptor peptide. In addition, the artificially synthesized cannabinoid receptor was found to aggregate under routine sample denaturing temperatures (i.e., ≥95°C), forming a large molecular weight band when analyzed by immunoblotting. Only denaturing temperatures ≤75°C yielded a clear band at the predicted molecular weight. Collectively, we showed that efficient mammalian expression of cannabinoid receptors need a signal peptide sequence, and described the requirement for a low sample denaturing temperature in immunoblot analysis. These findings provide very useful information for efficient mammalian expression and immunoblotting of membrane receptors. PMID:22528237

  11. Left ventricular wall stress and sarcoplasmic reticulum Ca(2+)-ATPase gene expression in renal hypertensive rats: dose-dependent effects of ACE inhibition and AT1-receptor blockade.

    PubMed

    Zierhut, W; Studer, R; Laurent, D; Kästner, S; Allegrini, P; Whitebread, S; Cumin, F; Baum, H P; de Gasparo, M; Drexler, H

    1996-05-01

    Cardiac hypertrophy is associated with altered Ca2+ handling and may predispose to the development of LV dysfunction and cardiac failure. At the cellular level, the re-expression of ANF represents a well-established marker of myocyte hypertrophy while the decreased expression of the sarcoplasmatic reticulum (SR) Ca(2+)-ATPase is thought o play a crucial role in the alterations of Ca2+ handling and LV function. We assessed the dose-dependent effect of chronic ACE inhibition or AT1 receptor blockade on cardiac function in relation to the cardiac expression of the SR Ca(2+)-ATPase and ANF. Renal hypertensive rats (2K-1C) were treated for 12 weeks with three different doses of the ACE inhibitor benazepril, the AT1-receptor antagonist valsartan (each drug 0.3, 3, and 10 mg/kg per day i.p.) or placebo. LV dimensions, hypertrophy and wall stress were determined in vivo by magnetic resonance imaging and the gene expressions of ANF and SR Ca(2+)-ATPase were quantified by Northern blot. Low doses of both drugs did not affect blood pressure, hypertrophy, systolic wall stress and the ANF and SR Ca(2+)-ATPase gene expression. High doses of each drug reduced systolic blood pressure, wall stress, and LV hypertrophy to a similar extent and to values comparable to normotensive, age-matched rats. In addition, high dose treatment reduced LV end-systolic and end-diastolic volume as compared to untreated 2K-1C animals and normalized the mRNA levels of both ANF and SR Ca(2+)-ATPase (as compared to normotensive animals). We conclude that in this model, high doses of ACE inhibition and AT1-receptor blockade are necessary to normalize systolic blood pressure, LV hypertrophy and systolic LV wall stress which, in turn, is associated with restoration of a normal cardiac phenotype with respect to SR Ca(2+)-ATPase and ANF and normalization of cardiac function.

  12. Rapid corticosteroid-dependent regulation of mineralocorticoid receptor protein expression in rat brain.

    PubMed

    Kalman, Brian A; Spencer, Robert L

    2002-11-01

    Corticosteroid hormones regulate many aspects of neural function via mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Although GR expression is negatively regulated by endogenous corticosteroids, the autologous regulation of MR expression has been less well studied, partly due to limitations of receptor binding assays that cannot measure the ligand-activated form of MR. Using MR-reactive antibodies and Western blot, we examined relative MR protein expression in rat brain and its potential autoregulation by corticosteroids. We found that MR protein expression is autoregulated in a negative fashion by adrenal steroids. Compared with GR, we see a more rapid regulation of MR, such that there is a substantial increase in MR protein within 12 h after adrenalectomy, whereas GR levels show very little increase until more than 24 h after adrenalectomy. Also, in contrast to GR, which has been found to be regulated by both MR and GR, adrenalectomy-induced increase in MR was prevented by treatment with the MR selective agonist, aldosterone, but not the GR selective agonist, RU28362. Interestingly, acute treatment of adrenalectomized rats with corticosterone produced a significant decrease in whole-cell MR protein within 45 min, suggesting ligand-induced rapid degradation of MR. Chronic high levels of corticosterone also produced a significant decrease in MR protein levels below adrenal-intact rat levels. These results have important implications for previous studies that estimated the proportion of MR that are occupied in vivo by various circulating levels of corticosterone. Those studies compared available MR binding levels in adrenal-intact rats with 24-h adrenalectomized rats, with the assumption that there were no differences between the various conditions in total receptor expression. Those studies concluded that MR is nearly fully occupied by even the lowest circulating corticosterone levels. Given the 2- to 3-fold increase in MR protein that we have observed within 24 h after adrenalectomy, it is likely that those studies significantly overestimated the proportion of MR that were occupied by low basal corticosterone levels. These results support the prospect that MR as well as GR can participate in the transduction of phasic corticosteroid signals.

  13. Platelets Express Activated P2Y12 Receptor in Patients With Diabetes Mellitus.

    PubMed

    Hu, Liang; Chang, Lin; Zhang, Yan; Zhai, Lili; Zhang, Shenghui; Qi, Zhiyong; Yan, Hongmei; Yan, Yan; Luo, Xinping; Zhang, Si; Wang, Yiping; Kunapuli, Satya P; Ye, Hongying; Ding, Zhongren

    2017-08-29

    Platelets from patients with diabetes mellitus are hyperactive. Hyperactivated platelets may contribute to cardiovascular complications and inadequate responses to antiplatelet agents in the setting of diabetes mellitus. However, the underlying mechanism of hyperactivated platelets is not completely understood. We measured P2Y 12 expression on platelets from patients with type 2 diabetes mellitus and on platelets from rats with diabetes mellitus. We also assayed platelet P2Y 12 activation by measuring cAMP and VASP phosphorylation. The antiplatelet and antithrombotic effects of AR-C78511 and cangrelor were compared in rats. Finally, we explored the role of the nuclear factor-κB pathway in regulating P2Y 12 receptor expression in megakaryocytes. Platelet P2Y 12 levels are 4-fold higher in patients with type 2 diabetes mellitus compared with healthy subjects. P2Y 12 expression correlates with ADP-induced platelet aggregation (r=0.89, P <0.01). P2Y 12 in platelets from patients with diabetes mellitus is constitutively activated. Although both AR-C78511, a potent P2Y 12 inverse agonist, and cangrelor have similar antiplatelet efficacy on platelets from healthy subjects, AR-C78511 exhibits more powerful antiplatelet effects on diabetic platelets than cangrelor (aggregation ratio 36±3% versus 49±5%, respectively, P <0.05). Using a FeCl 3 -injury mesenteric arteriole thrombosis model in rats and an arteriovenous shunt thrombosis model in rats, we found that the inverse agonist AR-C78511 has greater antithrombotic effects on GK rats with diabetes mellitus than cangrelor (thrombus weight 4.9±0.3 mg versus 8.3±0.4 mg, respectively, P <0.01). We also found that a pathway involving high glucose-reactive oxygen species-nuclear factor-κB increases platelet P2Y 12 receptor expression in diabetes mellitus. Platelet P2Y 12 receptor expression is significantly increased and the receptor is constitutively activated in patients with type 2 diabetes mellitus, which contributes to platelet hyperactivity and limits antiplatelet drug efficacy in type 2 diabetes mellitus. © 2017 American Heart Association, Inc.

  14. Comprehensive Analysis of Mouse Bitter Taste Receptors Reveals Different Molecular Receptive Ranges for Orthologous Receptors in Mice and Humans*

    PubMed Central

    Lossow, Kristina; Hübner, Sandra; Roudnitzky, Natacha; Slack, Jay P.; Pollastro, Federica; Behrens, Maik; Meyerhof, Wolfgang

    2016-01-01

    One key to animal survival is the detection and avoidance of potentially harmful compounds by their bitter taste. Variable numbers of taste 2 receptor genes expressed in the gustatory end organs enable bony vertebrates (Euteleostomi) to recognize numerous bitter chemicals. It is believed that the receptive ranges of bitter taste receptor repertoires match the profiles of bitter chemicals that the species encounter in their diets. Human and mouse genomes contain pairs of orthologous bitter receptor genes that have been conserved throughout evolution. Moreover, expansions in both lineages generated species-specific sets of bitter taste receptor genes. It is assumed that the orthologous bitter taste receptor genes mediate the recognition of bitter toxins relevant for both species, whereas the lineage-specific receptors enable the detection of substances differently encountered by mice and humans. By challenging 34 mouse bitter taste receptors with 128 prototypical bitter substances in a heterologous expression system, we identified cognate compounds for 21 receptors, 19 of which were previously orphan receptors. We have demonstrated that mouse taste 2 receptors, like their human counterparts, vary greatly in their breadth of tuning, ranging from very broadly to extremely narrowly tuned receptors. However, when compared with humans, mice possess fewer broadly tuned receptors and an elevated number of narrowly tuned receptors, supporting the idea that a large receptor repertoire is the basis for the evolution of specialized receptors. Moreover, we have demonstrated that sequence-orthologous bitter taste receptors have distinct agonist profiles. Species-specific gene expansions have enabled further diversification of bitter substance recognition spectra. PMID:27226572

  15. Comparison of the functional potencies of ropinirole and other dopamine receptor agonists at human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, Martyn C; Boyfield, Izzy; Brown, Tony; Hagan, Jim J; Middlemiss, Derek N

    1999-01-01

    The aim of the present study was to characterize functional responses to ropinirole, its major metabolites in man (SKF-104557 (4-[2-(propylamino)ethyl]-2-(3H) indolone), SKF-97930 (4-carboxy-2-(3H) indolone)) and other dopamine receptor agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in Chinese hamster ovary cells using microphysiometry.All the receptor agonists tested (ropinirole, SKF-104557, SKF-97930, bromocriptine, lisuride, pergolide, pramipexole, talipexole, dopamine) increased extracellular acidification rate in Chinese hamster ovary clones expressing the human D2, D3 or D4 receptor. The pEC50s of ropinirole at hD2, hD3 and hD4 receptors were 7.4, 8.4 and 6.8, respectively. Ropinirole is therefore at least 10 fold selective for the human dopamine D3 receptor over the other D2 receptor family members.At the hD2 and hD3 dopamine receptors all the compounds tested were full agonists as compared to quinpirole. Talipexole and the ropinirole metabolite, SKF-104557, were partial agonists at the hD4 receptor.Bromocriptine and lisuride had a slow onset of agonist action which precluded determination of EC50s.The rank order of agonist potencies was dissimilar to the rank order of radioligand binding affinities at each of the dopamine receptor subtypes. Functional selectivities of the dopamine receptor agonists, as measured in the microphysiometer, were less than radioligand binding selectivities.The results show that ropinirole is a full agonist at human D2, D3 and D4 dopamine receptors. SKF-104557 the major human metabolite of ropinirole, had similar radioligand binding affinities to, but lower functional potencies than, the parent compound. PMID:10455328

  16. Correlation between erythropoietin receptor(s) and estrogen and progesterone receptor expression in different breast cancer cell lines.

    PubMed

    Trošt, Nina; Hevir, Neli; Rižner, Tea Lanišnik; Debeljak, Nataša

    2013-03-01

    Erythropoietin (EPO) receptor (EPOR) expression in breast cancer has been shown to correlate with the expression of estrogen receptor (ESR) and progesterone receptor (PGR) and to be associated with the response to tamoxifen in ESR+/PGR+ tumors but not in ESR- tumors. In addition, the correlation between EPOR and G protein-coupled estrogen receptor 1 [GPER; also known as G protein-coupled receptor 30 (GPR30)] has been reported, suggesting the prognostic potential of EPOR expression. Moreover, the involvement of colony stimulating factor 2 receptor, β, low‑affinity (CSF2RB) and ephrin type-B receptor 4 (EPHB4) as EPOR potential receptor partners in cancer has been indicated. This study analyzed the correlation between the expression of genes for EPO, EPOR, CSF2RB, EPHB4, ESR, PGR and GPER in the MCF-7, MDA-MB-361, T-47D, MDA-MB-231, Hs578Bst, SKBR3, MCF-10A and Hs578T cell lines. The cell lines were also treated with recombinant human EPO (rHuEPO) in order to determine its ability to activate the Jak/STAT5, MAPK and PI3K signaling pathways and modify cell growth characteristics. Expression analysis stratified the cell lines in 2 main clusters, hormone-dependent cell lines expressing ESR and PGR and a hormone-independent cluster. A significant correlation was observed between the expression levels of ESR and PGR and their expression was also associated with that of GPER. Furthermore, the expression of GPER was associated with that of EPOR, suggesting the connection between this orphan G protein and EPO signaling. A negative correlation between EPOR and CSF2RB expression was observed, questioning the involvement of these two receptors in the hetero-receptor formation. rHuEPO treatment only influenced the hormone-independent cell lines, since only the MDA-MB-231, SKBR3 and Hs578T cells responded to the treatment. The correlation between the expression of the analyzed receptors suggests that the receptors may interact in order to activate signaling pathways or to evade their inhibition. Therefore, breast cancer classification upon ESR, PGR and human epidermal growth factor receptor 2 (HER2) may not be sufficient for the selection of suitable treatment protocol. The expression of EPOR, GPER and EPHB4 may be considered as additional classification factors.

  17. Therapeutic potential of endothelin inhibitors in canine hemangiosarcoma.

    PubMed

    Fukumoto, Shinya; Saida, Kaname; Sakai, Hiroki; Ueno, Hiroshi; Iwano, Hidetomo; Uchide, Tsuyoshi

    2016-08-15

    Hemangiosarcoma (HSA) that originates from vascular endothelial cells is the most common splenic malignant neoplasm in dogs, as it accounts for approximately 20% of all canine soft tissue sarcomas. In this study, inhibitory effects of endothelin receptor antagonists on the growth of HSA cells were examined using cell lines established from canine HSA. The preproendothelin-1 (PPET-1), endothelin type A receptor (ETA) and endothelin type B receptor (ETB) mRNA expression levels in HSA cell lines (n=5) were analyzed quantitatively by real-time RT-PCR. These levels were compared with those in HSA tissues (n=11) and those in normal splenic tissues (n=6). ETA and ETB protein expression was examined by western blot. The production and secretion of endothelin-1 (ET-1) and big ET-1 by cell lines were analyzed by measuring the levels in the culture medium by ELISA. The inhibitory effects of endothelin receptor antagonists (ambrisentan, BQ788 and bosentan) on cell growth were evaluated by WST-8 assay. The PPET1 and ETA mRNA expression levels were elevated in HSA tissues and HSA cell lines compared with normal tissues. In cell lines, the production of ET-1 and big ET-1 peptide as well as the expression of ETA protein were detected, but the levels of ETB were not measured. Ambrisentan and bosentan inhibited growth activity in cell lines. Ambrisentan was more effective than bosentan. These findings demonstrate the importance of the ETA axis in canine HSA as well as the potential of ETA inhibitors in the treatment of canine HSA. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. [Association between expression of lectin type receptors by natural killers and intensity of liver fibrosis during chronic hepatitis C].

    PubMed

    Malova, E S; Balmasova, I P; Iuschuk, N D; Shmeleva, E V; Eremina, O F

    2010-01-01

    To study functional activity of natural killers on different stages of fibrosis during chronic hepatitis C. Functional activity of CD3-/CD56+/CD16+ lymphocytes measured as expression of natural killers receptors (NKR) and natural cytotoxicity receptors (NCR) was assessed by flow cytometry. At stage I of fibrosis, decrease of number of CD3-/CD56+/NKG2D+ cells was observed, whereas at precirrhotic stage III--sharp decrease of CD3-/CD56+/CD94+ and CD3-/ CD56+/NKG2D+ populations, and at cirrhotic stage--decrease of number of CD3-/CD56+/ NKG2D+ cells and increase of cytolytic activity of natural killers carrying CD107a marker compared to precirrhotic stage. Obtained data demonstrate that natural killers during chronic hepatitis C receive regulatory signals mainly through lectin type receptors (CD94 and NKG2D).

  19. Expression of protease-activated-receptor 2 (PAR-2) in human esophageal mucosa.

    PubMed

    Inci, Kamuran; Edebo, Anders; Olbe, Lars; Casselbrant, Anna

    2009-01-01

    The role of duodenal reflux in gastroesophageal reflux disease (GERD) containing bile salts and pancreatic enzymes (with special attention to trypsin) is still under discussion. Proteinase-activated receptors (PARs) are a novel family and PAR-2 is a unique member of this family because it is activated by trypsin. The aim of the present study was to examine the presence and the position of the PAR-2 receptor in human esophageal mucosa in different subgroups of GERD. Distal biopsies taken from healthy controls, patients with erosive reflux disease (ERD), patients with specialized intestinal metaplasia (SIM) and adenocarcinoma were analyzed for the PAR-2 receptor with reverse-transcription polymerase chain reaction (RT-PCR), Western blotting and immunohistochemistry. Gene transcripts for the PAR-2 receptor were found in all groups, with increased levels in SIM patients compared to controls. However, this visual pattern was not seen for the protein expression of the PAR-2 receptor showing no apparent quantitative differences between the groups. Immunohistochemistry revealed distinct staining for the PAR-2 receptor in the luminal part of the esophageal epithelium. The localization of the PAR-2 receptor indicates that the receptor can be cleaved and activated by trypsin in duodenogastric esophageal refluxate. The data thus suggest that the trypsin-PAR-2 pathway may be involved in the pathogenesis of GERD.

  20. Receptor for Advanced Glycation End Products (RAGE) is Expressed Predominantly in Medium Spiny Neurons of tgHD Rat Striatum.

    PubMed

    Shi, Dian; Chang, Joshua W; Choi, Jaimin; Connor, Bronwen; O'Carroll, Simon J; Nicholson, Louise F B; Kim, Joo Hyun

    2018-06-01

    Receptor for advanced glycation end products (RAGE) is a multi-ligand receptor involved in the pathology of several progressive neurodegenerative disorders including Huntington's disease (HD). We previously showed that the expression of RAGE and its colocalization with ligands were increased in the striatum of HD patients, increasing with grade severity, and that the pattern of RAGE expression coincided with the medio-lateral pattern of neurodegeneration. However, the exact role of RAGE in HD remains elusive. In order to address the necessity for a direct functional study, we aimed to characterize the pattern of RAGE expression in the transgenic rat model of HD (tgHD rats). Our results showed that RAGE expression was expanded laterally in tgHD rat caudate-putamen (CPu) compared to wildtype littermates, but the expression was unchanged by disease severity. The rostro-caudal location did not affect RAGE expression. RAGE was predominantly expressed in the medium spiny neurons (MSN) where it colocalized most extensively with N-carboxymethyllysine (CML), which largely contradicts with observations from human HD brains. Overall, the tgHD rat model only partially recapitulated the pattern in striatal RAGE expression in human brains, raising a question about its reliability as an animal model for future functional studies. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Maternal nutrient restriction in mid-to-late gestation influences fetal mRNA expression in muscle tissues in beef cattle.

    PubMed

    Paradis, Francois; Wood, Katie M; Swanson, Kendall C; Miller, Stephen P; McBride, Brian W; Fitzsimmons, Carolyn

    2017-08-18

    Manipulating maternal nutrition during specific periods of gestation can result in re-programming of fetal and post-natal development. In this experiment we investigated how a feed restriction of 85% compared with 140% of total metabolizable energy requirements, fed to cows during mid-to-late gestation, influences phenotypic development of fetuses and mRNA expression of growth (Insulin-Like Growth Factor family and Insulin Receptor (INSR)), myogenic (Myogenic Differentiation 1 (MYOD1), Myogenin (MYOG), Myocyte Enhancer Factor 2A (MEF2A), Serum Response Factor (SRF)) and adipogenic (Peroxisome Proliferator Activated Receptor Gamma (PPARG)) genes in fetal longissimus dorsi (LD) and semitendinosus (ST) muscle. DNA methylation of imprinted genes, Insulin Like Growth Factor 2 (IGF2) and Insulin Like Growth Factor 2 Receptor (IGF2R), and micro RNA (miRNA) expression, were also examined as potential consequences of poor maternal nutrition, but also potential regulators of altered gene expression patterns. While the nutrient restriction impacted dam body weight, no differences were observed in phenotypic fetal measurements (weight, crown-rump length, or thorax circumference). Interestingly, LD and ST muscles responded differently to the differential pre-natal nutrient levels. While LD muscle of restricted fetal calves had greater mRNA abundances for Insulin Like Growth Factor 1 and its receptor (IGF1 and IGF1R), IGF2R, INSR, MYOD1, MYOG, and PPARG, no significant differences were observed for gene expression in ST muscle. Similarly, feed restriction had a greater impact on the methylation level of IGF2 Differentially Methylated Region 2 (DMR2) in LD muscle as compared to ST muscle between treatment groups. A negative correlation existed between IGF2 mRNA expression and IGF2 DMR2 methylation level in both LD and ST muscles. Differential expression of miRNAs 1 and 133a were also detected in LD muscle. Our data suggests that a nutrient restriction of 85% as compared to 140% of total metabolizable energy requirements during the 2nd half of gestation can alter the expression of growth, myogenic and adipogenic genes in fetal muscle without apparent differences in fetal phenotype. It also appears that the impact of feed restriction varies between muscles suggesting a priority for nutrient partitioning depending on muscle function and/or fiber composition. Differences in the methylation level in IGF2, a well-known imprinted gene, as well as differences in miRNA expression, may be functional mechanisms that precede the differences in gene expression observed, and could lead to trans-generational epigenetic programming.

  2. Expression of LLT1 and its receptor CD161 in lung cancer is associated with better clinical outcome.

    PubMed

    Braud, Véronique M; Biton, Jérôme; Becht, Etienne; Knockaert, Samantha; Mansuet-Lupo, Audrey; Cosson, Estelle; Damotte, Diane; Alifano, Marco; Validire, Pierre; Anjuère, Fabienne; Cremer, Isabelle; Girard, Nicolas; Gossot, Dominique; Seguin-Givelet, Agathe; Dieu-Nosjean, Marie-Caroline; Germain, Claire

    2018-01-01

    Co-stimulatory and inhibitory receptors expressed by immune cells in the tumor microenvironment modulate the immune response and cancer progression. Their expression and regulation are still not fully characterized and a better understanding of these mechanisms is needed to improve current immunotherapies. Our previous work has identified a novel ligand/receptor pair, LLT1/CD161, that modulates immune responses. Here, we extensively characterize its expression in non-small cell lung cancer (NSCLC). We show that LLT1 expression is restricted to germinal center (GC) B cells within tertiary lymphoid structures (TLS), representing a new hallmark of the presence of active TLS in the tumor microenvironment. CD161-expressing immune cells are found at the vicinity of these structures, with a global enrichment of NSCLC tumors in CD161 + CD4 + and CD8 + T cells as compared to normal distant lung and peripheral blood. CD161 + CD4 + T cells are more activated and produce Th1-cytokines at a higher frequency than their matched CD161-negative counterparts. Interestingly, CD161 + CD4 + T cells highly express OX40 co-stimulatory receptor, less frequently 4-1BB, and display an activated but not completely exhausted PD-1-positive Tim-3-negative phenotype. Finally, a meta-analysis revealed a positive association of CLEC2D (coding for LLT1) and KLRB1 (coding for CD161) gene expression with favorable outcome in NSCLC, independently of the size of T and B cell infiltrates. These data are consistent with a positive impact of LLT1/CD161 on NSCLC patient survival, and make CD161-expressing CD4 + T cells ideal candidates for efficient anti-tumor recall responses.

  3. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sézary syndrome identified by gene expression analysis.

    PubMed

    van Doorn, Remco; Dijkman, Remco; Vermeer, Maarten H; Out-Luiting, Jacoba J; van der Raaij-Helmer, Elisabeth M H; Willemze, Rein; Tensen, Cornelis P

    2004-08-15

    Sézary syndrome (Sz) is a malignancy of CD4+ memory skin-homing T cells and presents with erythroderma, lymphadenopathy, and peripheral blood involvement. To gain more insight into the molecular features of Sz, oligonucleotide array analysis was performed comparing gene expression patterns of CD4+ T cells from peripheral blood of patients with Sz with those of patients with erythroderma secondary to dermatitis and healthy controls. Using unsupervised hierarchical clustering gene, expression patterns of T cells from patients with Sz were classified separately from those of benign T cells. One hundred twenty-three genes were identified as significantly differentially expressed and had an average fold change exceeding 2. T cells from patients with Sz demonstrated decreased expression of the following hematopoietic malignancy-linked tumor suppressor genes: TGF-beta receptor II, Mxi1, Riz1, CREB-binding protein, BCL11a, STAT4, and Forkhead Box O1A. Moreover, the tyrosine kinase receptor EphA4 and the potentially oncogenic transcription factor Twist were highly and selectively expressed in T cells of patients with Sz. High expression of EphA4 and Twist was also observed in lesional skin biopsy specimens of a subset of patients with cutaneous T cell lymphomas related to Sz, whereas their expression was nearly undetectable in benign T cells or in skin lesions of patients with inflammatory dermatoses. Detection of EphA4 and Twist may be used in the molecular diagnosis of Sz and related cutaneous T-cell lymphomas. Furthermore, the membrane-bound EphA4 receptor may serve as a target for directed therapeutic intervention.

  4. Generation of cell lines for drug discovery through random activation of gene expression: application to the human histamine H3 receptor.

    PubMed

    Song, J; Doucette, C; Hanniford, D; Hunady, K; Wang, N; Sherf, B; Harrington, J J; Brunden, K R; Stricker-Krongrad, A

    2005-06-01

    Target-based high-throughput screening (HTS) plays an integral role in drug discovery. The implementation of HTS assays generally requires high expression levels of the target protein, and this is typically accomplished using recombinant cDNA methodologies. However, the isolated gene sequences to many drug targets have intellectual property claims that restrict the ability to implement drug discovery programs. The present study describes the pharmacological characterization of the human histamine H3 receptor that was expressed using random activation of gene expression (RAGE), a technology that over-expresses proteins by up-regulating endogenous genes rather than introducing cDNA expression vectors into the cell. Saturation binding analysis using [125I]iodoproxyfan and RAGE-H3 membranes revealed a single class of binding sites with a K(D) value of 0.77 nM and a B(max) equal to 756 fmol/mg of protein. Competition binding studies showed that the rank order of potency for H3 agonists was N(alpha)-methylhistamine approximately (R)-alpha- methylhistamine > histamine and that the rank order of potency for H3 antagonists was clobenpropit > iodophenpropit > thioperamide. The same rank order of potency for H3 agonists and antagonists was observed in the functional assays as in the binding assays. The Fluorometic Imaging Plate Reader assays in RAGE-H3 cells gave high Z' values for agonist and antagonist screening, respectively. These results reveal that the human H3 receptor expressed with the RAGE technology is pharmacologically comparable to that expressed through recombinant methods. Moreover, the level of expression of the H3 receptor in the RAGE-H3 cells is suitable for HTS and secondary assays.

  5. Differential somatostatin, CXCR4 chemokine and endothelin A receptor expression in WHO grade I-IV astrocytic brain tumors.

    PubMed

    Lange, Franziska; Kaemmerer, Daniel; Behnke-Mursch, Julianne; Brück, Wolfgang; Schulz, Stefan; Lupp, Amelie

    2018-04-25

    Glioblastomas represent the most common primary malignant tumor of the nervous system and the most frequent type of astrocytic tumors. Despite improved therapeutic options, prognosis has remained exceptionally poor over the last two decades. Therefore, new treatment approaches are urgently needed. An overexpression of somatostatin (SST) as well as chemokine CXCR4 and endothelin A (ETA) receptors has been shown for many types of cancer. Respective expression data for astrocytic brain tumors, however, are scarce and contradictory. SST subtype, CXCR4 and ETA expression was comparatively evaluated in a total of 57 grade I-IV astrocytic tumor samples by immunohistochemistry using well-characterized monoclonal antibodies. Overall, receptor expression on the tumor cells was only very low. SST5 was the most prominently expressed receptor, followed by SST3, ETA, SST2 and CXCR4. In contrast, tumor capillaries displayed strong SST2, SST3, SST5, CXCR4 and ETA expression. Presence of SST5, CXCR4 and ETA on tumor cells and of SST3, CXCR4 and ETA on microvessels gradually increased from grade II to grade IV tumors. Ki-67 values correlated significantly with CXCR4 expression on tumor cells and with vascular SST3, CXCR4 or ETA positivity. SST5 or CXCR4 positivity of tumor cells and vascular SST3 or CXCR4 expression negatively correlated with patient outcome. Though having some prognostic value, SST, CXCR4 or ETA expression on astrocytic tumor cells is clearly of no therapeutic relevance. Indirect targeting of these highly vascularized tumors via SST3, SST5, CXCR4 or ETA on the microvessels, in contrast, may represent a promising additional therapeutic strategy.

  6. Vitamin D modulates tissue factor and protease-activated receptor 2 expression in vascular smooth muscle cells.

    PubMed

    Martinez-Moreno, Julio M; Herencia, Carmen; Montes de Oca, Addy; Muñoz-Castañeda, Juan R; Rodríguez-Ortiz, M Encarnación; Díaz-Tocados, Juan M; Peralbo-Santaella, Esther; Camargo, Antonio; Canalejo, Antonio; Rodriguez, Mariano; Velasco-Gimena, Francisco; Almaden, Yolanda

    2016-03-01

    Clinical and epidemiologic studies reveal an association between vitamin D deficiency and increased risk of cardiovascular disease. Because vascular smooth muscle cell (VSMC)-derived tissue factor (TF) is suggested to be critical for arterial thrombosis, we investigated whether the vitamin D molecules calcitriol and paricalcitol could reduce the expression of TF induced by the proinflammatory cytokine TNF-α in human aortic VSMCs. We found that, compared with controls, incubation with TNF-α increased TF expression and procoagulant activity in a NF-κB-dependent manner, as deduced from the increased nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κB) and direct interaction of NF-κB to the TF promoter. This was accompanied by the up-regulation of TF signaling mediator protease-activated receptor 2 (PAR-2) expression and by the down-regulation of vitamin D receptor expression in a miR-346-dependent way. However, addition of calcitriol or paricalcitol blunted the TNF-α-induced TF expression and activity (2.01 ± 0.24 and 1.32 ± 0.14 vs. 3.02 ± 0.39 pmol/mg protein, P < 0.05), which was associated with down-regulation of NF-κB signaling and PAR-2 expression, as well as with restored levels of vitamin D receptor and enhanced expression of TF pathway inhibitor. Our data suggest that inflammation promotes a prothrombotic state through the up-regulation of TF function in VSMCs and that the beneficial cardiovascular effects of vitamin D may be partially due to decreases in TF expression and its activity in VSMCs. © FASEB.

  7. Kinin and Purine Signaling Contributes to Neuroblastoma Metastasis.

    PubMed

    Ulrich, Henning; Ratajczak, Mariusz Z; Schneider, Gabriela; Adinolfi, Elena; Orioli, Elisa; Ferrazoli, Enéas G; Glaser, Talita; Corrêa-Velloso, Juliana; Martins, Poliana C M; Coutinho, Fernanda; Santos, Ana P J; Pillat, Micheli M; Sack, Ulrich; Lameu, Claudiana

    2018-01-01

    Bone marrow metastasis occurs in approximately 350,000 patients that annually die in the U.S. alone. In view of the importance of tumor cell migration into the bone marrow, we have here investigated effects of various concentrations of stromal cell-derived factor-1 (SDF-1), bradykinin- and ATP on bone marrow metastasis. We show for first time that bradykinin augmented chemotactic responsiveness of neuroblastoma cells to SDF-1 and ATP concentrations, encountered under physiological conditions. Bradykinin upregulated VEGF expression, increased metalloproteinase activity and induced adhesion of neuroblastoma cells. Bradykinin augmented SDF-1-induced intracellular Ca 2+ mobilization as well as resensitization and expression of ATP-sensing P2X7 receptors. Bradykinin treatment resulted in higher gene expression levels of the truncated P2X7B receptor compared to those of the P2X7A full-length isoform. Bradykinin as pro-metastatic factor induced tumor proliferation that was significantly decreased by P2X7 receptor antagonists; however, the peptide did not enhance cell death nor P2X7A receptor-related pore activity, promoting neuroblastoma growth. Furthermore, immunodeficient nude/nude mice transplanted with bradykinin-pretreated neuroblastoma cells revealed significantly higher metastasis rates compared to animals injected with untreated cells. In contrast, animals receiving Brilliant Blue G, a P2X7 receptor antagonist, did not show any specific dissemination of neuroblastoma cells to the bone marrow and liver, and metastasis rates were drastically reduced. Our data suggests correlated actions of kinins and purines in neuroblastoma dissemination, providing novel avenues for clinic research in preventing metastasis.

  8. High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC3 cells and their camptothecin-induced up-regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akao, Yukihiro; Banno, Yoshiko; Nakagawa, Yoshihito

    2006-04-21

    Although most of pharmacological therapies for cancer utilize the apoptotic machinery of the cells, the available anti-cancer drugs are limited due to the ability of prostate cancer cells to escape from the anti-cancer drug-induced apoptosis. A human prostate cancer cell line PC3 is resistant to camptothecin (CPT). To elucidate the mechanism of this resistance, we have examined the involvement of sphingosine kinase (SPHK) and sphingosine 1-phosphate (S1P) receptor in CPT-resistant PC3 and -sensitive LNCaP cells. PC3 cells exhibited higher activity accompanied with higher expression levels of protein and mRNA of SPHK1, and also elevated expression of S1P receptors, S1P{sub 1}more » and S1P{sub 3}, as compared with those of LNCaP cells. The knockdown of SPHK1 by small interfering RNA and inhibition of S1P receptor signaling by pertussis toxin in PC3 cells induced significant inhibition of cell growth, suggesting implication of SPHK1 and S1P receptors in cell proliferation in PC3 cells. Furthermore, the treatment of PC3 cells with CPT was found to induce up-regulation of the SPHK1/S1P signaling by induction of both SPHK1 enzyme and S1P{sub 1}/S1P{sub 3} receptors. These findings strongly suggest that high expression and up-regulation of SPHK1 and S1P receptors protect PC3 cells from the apoptosis induced by CPT.« less

  9. Dominant negative mutant of ionotropic glutamate receptor subunit GluR3: implications for the role of a cysteine residue for its channel activity and pharmacological properties.

    PubMed Central

    Watase, K; Sekiguchi, M; Matsui, T A; Tagawa, Y; Wada, K

    1997-01-01

    We reported that a 33-amino-acid deletion (from tyrosine-715 to glycine-747) in a putative extracellular loop of GluR3 produced a mutant that exhibited dominant negative effects upon the functional expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors [Sekiguchi et al. (1994) J. Biol. Chem. 269, 14559-14565]. In this study, we searched for a key residue in the dominant negative effects to explore the mechanism and examined the role of the residue in the function of the AMPA receptor. We prepared 20 GluR3 mutants with amino acid substitutions within the 33-amino-acid-region, and dominant negative effects were tested electrophysiologically in Xenopus oocytes co-expressing the mutant and normal subunits. Among the mutants, only a GluR3 mutant in which an original cysteine (Cys)-722 was replaced by alanine exhibited a dominant negative effect comparable with that of the original mutant in which the entire 33-amino-acid segment is deleted. The co-expression of the Cys-722 mutant did not inhibit the translation of normal subunits in oocytes. The Cys-722 mutant formed a functional homomeric receptor with significantly higher affinity for glutamate or kainate than a homomeric GluR3 receptor. The Cys-722 mutation greatly enhanced the sensitivity of GluR3 for aniracetam, which alters kinetic properties of AMPA receptors. The kainate-induced currents in oocytes expressing the Cys-722 mutant alone showed strong inward rectification. These results suggest that the Cys-722 in GluR3 is important for dominant negative effects and plays a crucial role in the determination of pharmacological properties in AMPA receptor function. PMID:9065754

  10. Postconditioning: "Toll-erating" mesenteric ischemia-reperfusion injury?

    PubMed

    Rosero, Olivér; Ónody, Péter; Kovács, Tibor; Molnár, Dávid; Fülöp, András; Lotz, Gábor; Harsányi, László; Szijártó, Attila

    2017-04-01

    Postconditioning may prove to be a suitable method to decrease ischemia-reperfusion injury of intestine after mesenteric arterial occlusion. Toll-like-receptor-4 is involved in the pathophysiology of organ damage after ischemia-reperfusion; therefore, the aim of our study was to investigate the effect of postconditioning on the mucosal expression of toll-like-receptor-4. Male Wistar rats (n = 10/group) underwent 60 minutes of superior mesenteric artery occlusion followed by 6 hours of reperfusion in 3 groups: sham-operated, ischemia-reperfusion, and a postconditioned group. Postconditioning was performed by 6 alternating cycles of 10 seconds of reperfusion/reocclusion. Blood and tissue samples were collected at the end of reperfusion. Intestinal histopathologic changes and immunohistochemical expression of mucosal caspase-3, antioxidant status, and protein levels of high-mobility group box-1 and toll-like-receptor-4 were assessed. Immunofluorescent labeling and confocal microscopic analysis of toll-like-receptor-4 were performed. Mucosal and serum levels of interleukin-6 and tumor necrosis factor-α protein were measured. Histologic alterations in the postconditioned group were associated with decreased caspase-3 positivity, less toll-like-receptor-4 mRNA, and less protein expression of high-mobility group box-1 and toll-like-receptor-4 in the intestinal villi compared with the ischemia-reperfusion group. Furthermore, a significantly improved antioxidant state of the intestinal mucosa and less mucosal and serum protein levels of interleukin-6 and tumor necrosis factor-α were detected in the postconditioned group. Small intestinal ischemia-reperfusion injury in male Wistar rats caused by the occlusion of the superior mesenteric artery was ameliorated by the use of postconditioning, showing a more favorable inflammatory response, which may be attributed to the decreased mucosal expression of toll-like-receptor-4. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Adolescent social defeat alters N-methyl-D-aspartic acid receptor expression and impairs fear learning in adulthood.

    PubMed

    Novick, Andrew M; Mears, Mackenzie; Forster, Gina L; Lei, Yanlin; Tejani-Butt, Shanaz M; Watt, Michael J

    2016-05-01

    Repeated social defeat of adolescent male rats results in adult mesocortical dopamine hypofunction, impaired working memory, and increased contextual anxiety-like behavior. Given the role of glutamate in dopamine regulation, cognition, and fear and anxiety, we investigated potential changes to N-methyl-D-aspartic acid (NMDA) receptors following adolescent social defeat. As both NMDA receptors and mesocortical dopamine are implicated in the expression and extinction of conditioned fear, a separate cohort of rats was challenged with a classical fear conditioning paradigm to investigate whether fear learning is altered by adolescent defeat. Quantitative autoradiography was used to measure 3H-MK-801 binding to NMDA receptors in regions of the medial prefrontal cortex, caudate putamen, nucleus accumbens, amygdala and hippocampus. Assessment of fear learning was achieved using an auditory fear conditioning paradigm, with freezing toward the auditory tone used as a measure of conditioned fear. Compared to controls, adolescent social defeat decreased adult NMDA receptor expression in the infralimbic region of the prefrontal cortex and central amygdala, while increasing expression in the CA3 region of the hippocampus. Previously defeated rats also displayed decreased conditioned freezing during the recall and first extinction periods, which may be related to the observed decreases and increases in NMDA receptors within the central amygdala and CA3, respectively. The alteration in NMDA receptors seen following adolescent social defeat suggests that dysfunction of glutamatergic systems, combined with mesocortical dopamine deficits, likely plays a role in the some of the long-term behavioral consequences of social stressors in adolescence seen in both preclinical and clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior

    PubMed Central

    Hammack, Sayamwong E.; Cheung, Joseph; Rhodes, Kimberly M.; Schutz, Kristin C.; Falls, William A.; Braas, Karen M.; May, Victor

    2009-01-01

    Exposure to chronic stress has been argued to produce maladaptive anxiety-like behavioral states, and many of the brain regions associated with stressor responding also mediate anxiety-like behavior. Pituitary adenylate cyclase activating polypeptide (PACAP) and its specific G protein-coupled PAC1 receptor have been associated with many of these stress- and anxiety-associated brain regions, and signaling via this peptidergic system may facilitate the neuroplasticity associated with pathological affective states. Here we investigated whether chronic stress increased transcript expression for PACAP, PAC1 receptor, brain-derived neurotrophic factor (BDNF), and tyrosine receptor kinase B (TrkB) in several nuclei. In rats exposed to a 7 day chronic variate stress paradigm, chronic stress enhanced baseline startle responding induced by handling and exposure to bright lights. Following chronic stress, quantitative transcript assessments of brain regions demonstrated dramatic increases in PACAP and PAC1 receptor, BDNF, and TrkB receptor mRNA expression selectively in the dorsal aspect of the anterolateral bed nucleus of the stria terminalis (dBNST). Related vasoactive intestinal peptide (VIP) and VPAC receptor, and other stress peptide transcript levels were not altered compared to controls. Moreover, acute PACAP38 infusion into the dBNST resulted in a robust dose-dependent anxiogenic response on baseline startle responding that persisted for 7 days. PACAP/PAC1 receptor signaling has established trophic functions and its coordinate effects with chronic stress-induced dBNST BDNF and TrkB transcript expression may underlie the maladaptive BNST remodeling and plasticity associated with anxiety-like behavior. PMID:19181454

  13. Enduring, Handling-Evoked Enhancement of Hippocampal Memory Function and Glucocorticoid Receptor Expression Involves Activation of the Corticotropin-Releasing Factor Type 1 Receptor

    PubMed Central

    Fenoglio, Kristina A.; Brunson, Kristen L.; Avishai-Eliner, Sarit; Stone, Blake A.; Kapadia, Bhumika J.; Baram, Tallie Z.

    2011-01-01

    Early-life experience, including maternal care, influences hippocampus-dependent learning and memory throughout life. Handling of pups during postnatal d 2–9 (P2–9) stimulates maternal care and leads to improved memory function and stress-coping. The underlying molecular mechanisms may involve early (by P9) and enduring reduction of hypothalamic corticotropin-releasing factor (CRF) expression and subsequent (by P45) increase in hippocampal glucocorticoid receptor (GR) expression. However, whether hypothalamic CRF levels influence changes in hippocampal GR expression (and memory function), via reduced CRF receptor activation and consequent lower plasma glucocorticoid levels, is unclear. In this study we administered selective antagonist for the type 1 CRF receptor, NBI 30775, to nonhandled rats post hoc from P10–17 and examined hippocampus-dependent learning and memory later (on P50–70), using two independent paradigms, compared with naive and vehicle-treated nonhandled, and naive and antagonist-treated handled rats. Hippocampal GR and hypothalamic CRF mRNA levels and stress-induced plasma corticosterone levels were also examined. Transient, partial selective blockade of CRF1 in nonhandled rats improved memory functions on both the Morris watermaze and object recognition tests to levels significantly better than in naive and vehicle-treated controls and were indistinguishable from those in handled (naive, vehicle-treated, and antagonist-treated) rats. GR mRNA expression was increased in hippocampal CA1 and the dentate gyrus of CRF1-antagonist treated nonhandled rats to levels commensurate with those in handled cohorts. Thus, the extent of CRF1 activation, probably involving changes in hypothalamic CRF levels and release, contributes to the changes in hippocampal GR expression and learning and memory functions. PMID:15932935

  14. Nutritional status alters saccharin intake and sweet receptor mRNA expression in rat taste buds.

    PubMed

    Chen, Ke; Yan, Jianqun; Suo, Yi; Li, Jinrong; Wang, Qian; Lv, Bo

    2010-04-14

    Sweet taste usually signifies the presence of caloric food. It is commonly accepted that a close association exists among sweet taste perception, preference, and nutritional status. However, the mechanisms involved remain unknown. To investigate whether nutritional status affects the preference for palatable solutions and alters sweet taste receptor gene expression in rats, we measured saccharin intake and preference using a two-bottle preference test, and changes in body weight, plasma leptin levels, and gene expression for the sweet taste receptor in taste buds in high-fat diet-induced obese rats and chronically diet-restricted rats. We found that the consumption and preference ratios for 0.01 and 0.04 M saccharin were significantly lower in the high-fat diet-induced obese rats than in the normal diet rats, while the serum leptin levels were markedly increased in obese rats. Consistent with the changes in saccharin intake, the gene expression level of the sweet taste receptor T1R3 was significantly decreased in the high-fat diet-induced obese rats compared with the control rats. By contrast, the chronically diet-restricted rats showed remarkably enhanced consumption and preference for 0.04 M saccharin. The serum leptin concentration was decreased, and the gene expression of the leptin receptor was markedly increased in the taste buds. In conclusion, our results suggest that nutritional status alters saccharin preference and the expression of T1R3 in taste buds. These processes may be involved in the mechanisms underlying the modulation of peripheral sweet taste sensitivity, in which leptin plays a role. Copyright 2010 Elsevier B.V. All rights reserved.

  15. A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide.

    PubMed

    Di Narzo, Antonio Fabio; Kozlenkov, Alexey; Roussos, Panos; Hao, Ke; Hurd, Yasmin; Lewis, David A; Sibille, Etienne; Siever, Larry J; Koonin, Eugene; Dracheva, Stella

    2014-09-15

    Editing of the pre-mRNA for the serotonin receptor 2C (5-HT2CR) by site-specific adenosine deamination (A-to-I pre-mRNA editing) substantially increases the functional plasticity of this key neurotransmitter receptor and is thought to contribute to homeostatic mechanisms in neurons. 5-HT2CR mRNA editing generates up to 24 different receptor isoforms. The extent of editing correlates with 5-HT2CR functional activity: more highly edited isoforms exhibit the least function. Altered 5-HT2CR editing has been reported in postmortem brains of suicide victims. We report a comparative analysis of the connections among 5-HT2CR editing, genome-wide gene expression and DNA methylation in suicide victims, individuals with major depressive disorder and non-psychiatric controls. The results confirm previous findings of an overrepresentation of highly edited mRNA variants (which encode hypoactive 5-HT2CR receptors) in the brains of suicide victims. A large set of genes for which the expression level is associated with editing was detected. This signature set of editing-associated genes is significantly enriched for genes that are involved in synaptic transmission, genes that are preferentially expressed in neurons, and genes whose expression is correlated with the level of DNA methylation. Notably, we report that the link between 5-HT2CR editing and gene expression is disrupted in suicide victims. The results suggest that the postulated homeostatic function of 5-HT2CR editing is dysregulated in individuals who committed suicide. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Expression of NMDA receptor subunits in human blood lymphocytes: A peripheral biomarker in online computer game addiction.

    PubMed

    Sadat-Shirazi, Mitra-Sadat; Vousooghi, Nasim; Alizadeh, Bentolhoda; Makki, Seyed Mohammad; Zarei, Seyed Zeinolabedin; Nazari, Shahrzad; Zarrindast, Mohammad Reza

    2018-05-23

    Background and aims Repeated performance of some behaviors such as playing computer games could result in addiction. The NMDA receptor is critically involved in the development of behavioral and drug addictions. It has been claimed that the expression level of neurotransmitter receptors in the brain may be reflected in peripheral blood lymphocytes (PBLs). Methods Here, using a real-time PCR method, we have investigated the mRNA expression of GluN2A, GluN2D, GluN3A, and GluN3B subunits of the NMDA receptor in PBLs of male online computer game addicts (n = 25) in comparison with normal subjects (n = 26). Results Expression levels of GluN2A, GluN2D, and GluN3B subunits were not statistically different between game addicts and the control group. However, the mRNA expression of the GluN3A subunit was downregulated in PBLs of game addicts. Discussion and conclusions Transcriptional levels of GluN2A and GluN2D subunits in online computer game addicts are similar to our previously reported data of opioid addiction and are not different from the control group. However, unlike our earlier finding of drug addiction, the mRNA expression levels of GluN3A and GluN3B subunits in PBLs of game addicts are reduced and unchanged, respectively, compared with control subjects. It seems that the downregulated state of the GluN3A subunit of NMDA receptor in online computer game addicts is a finding that deserves more studies in the future to see whether it can serve as a peripheral biomarker in addiction studies, where the researcher wants to rule out the confusing effects of abused drugs.

  17. Proteomic Plasma Membrane Profiling Reveals an Essential Role for gp96 in the Cell Surface Expression of LDLR Family Members, Including the LDL Receptor and LRP6

    PubMed Central

    2012-01-01

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96. PMID:22292497

  18. Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, So Yong; Lim, Ju Hyun; Choi, Sung Won

    2010-04-09

    Leptin can enhance thymopoiesis and modulate the T-cell immune response. However, it remains controversial whether these effects correlate with the expression of leptin receptor, ObR. We herein addressed this issue by using in vivo animal models and in vitro culture systems. Leptin treatment in both ob/ob mice and normal young mice induced increases of CD4 SP thymocytes in thymus and CD4 T cells in the periphery. Interestingly, expression of the long form ObR was significantly restricted to DN, DP and CD4 SP, but not CD8 SP thymocytes. Moreover, in the reaggregated DP thymocyte cultures with leptin plus TSCs, leptin profoundlymore » induced differentiation of CD4 SP but not CD8 SP thymocytes, suggesting that the effects of leptin on thymocyte differentiation might be closely related to the expression of leptin receptor in developing thymocytes. Surprisingly, ObR expression was markedly higher in peripheral CD4 T cells than that in CD8 T cells. Furthermore, leptin treatment with or without IL-2 and PHA had preferential effects on cell proliferation of CD4 T cells compared to that of CD8 T cells. Collectively, these data provide evidence that the effects of leptin on differentiation and proliferation of CD4 T cells might be closely related to the expression of leptin receptor.« less

  19. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6.

    PubMed

    Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J

    2012-03-02

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.

  20. Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies.

    PubMed

    Dunn, Sara L; Wilkinson, Jeremy Mark; Crawford, Aileen; Bunning, Rowena A D; Le Maitre, Christine L

    2016-01-01

    Introduction: Cannabinoids have shown to reduce joint damage in animal models of arthritis and reduce matrix metalloproteinase expression in primary human osteoarthritic (OA) chondrocytes. The actions of cannabinoids are mediated by a number of receptors, including cannabinoid receptors 1 and 2 (CB1 and CB2), G-protein-coupled receptors 55 and 18 (GPR55 and GPR18), transient receptor potential vanilloid-1 (TRPV1), and peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ). However, to date very few studies have investigated the expression and localization of these receptors in human chondrocytes, and expression during degeneration, and thus their potential in clinical applications is unknown. Methods: Human articular cartilage from patients with symptomatic OA was graded histologically and the expression and localization of cannabinoid receptors within OA cartilage and underlying bone were determined immunohistochemically. Expression levels across regions of cartilage and changes with degeneration were investigated. Results: Expression of all the cannabinoid receptors investigated was observed with no change with grade of degeneration seen in the expression of CB1, CB2, GPR55, PPARα, and PPARγ. Conversely, the number of chondrocytes within the deep zone of cartilage displaying immunopositivity for GPR18 and TRPV1 was significantly decreased in degenerate cartilage. Receptor expression was higher in chondrocytes than in osteocytes in the underlying bone. Conclusions: Chondrocytes from OA joints were shown to express a wide range of cannabinoid receptors even in degenerate tissues, demonstrating that these cells could respond to cannabinoids. Cannabinoids designed to bind to receptors inhibiting the catabolic and pain pathways within the arthritic joint, while avoiding psychoactive effects, could provide potential arthritis therapies.

  1. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.

    PubMed

    Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B

    2014-03-01

    Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  2. Frontal cortex and hippocampus neurotransmitter receptor complex level parallels spatial memory performance in the radial arm maze.

    PubMed

    Shanmugasundaram, Bharanidharan; Sase, Ajinkya; Miklosi, András G; Sialana, Fernando J; Subramaniyan, Saraswathi; Aher, Yogesh D; Gröger, Marion; Höger, Harald; Bennett, Keiryn L; Lubec, Gert

    2015-08-01

    Several neurotransmitter receptors have been proposed to be involved in memory formation. However, information on receptor complexes (RCs) in the radial arm maze (RAM) is missing. It was therefore the aim of this study to determine major neurotransmitter RCs levels that are modulated by RAM training because receptors are known to work in homo-or heteromeric assemblies. Immediate early gene Arc expression was determined by immunohistochemistry to show if prefrontal cortices (PFC) and hippocampi were activated following RAM training as these regions are known to be mainly implicated in spatial memory. Twelve rats per group, trained and untrained in the twelve arm RAM were used, frontal cortices and hippocampi were taken, RCs in membrane protein were quantified by blue-native PAGE immunoblotting. RCs components were characterised by co-immunoprecipitation followed by mass spectrometrical analysis and by the use of the proximity ligation assay. Arc expression was significantly higher in PFC of trained as compared to untrained rats whereas it was comparable in hippocampi. Frontal cortical levels of RCs containing AMPA receptors GluA1, GluA2, NMDA receptors GluN1 and GluN2A, dopamine receptor D1, acetylcholine nicotinic receptor alpha 7 (nAChR-α7) and hippocampal levels of RCs containing D1, GluN1, GluN2B and nAChR-α7 were increased in the trained group; phosphorylated dopamine transporter levels were decreased in the trained group. D1 and GluN1 receptors were shown to be in the same complex. Taken together, distinct RCs were paralleling performance in the RAM which is relevant for interpretation of previous and design of future work on RCs in memory studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effects of maternally exposed coloring food additives on receptor expressions related to learning and memory in rats.

    PubMed

    Ceyhan, Betul Mermi; Gultekin, Fatih; Doguc, Duygu Kumbul; Kulac, Esin

    2013-06-01

    Exposure to artificial food colors and additives (AFCAs) has been implicated in the induction and severity of some childhood behavioral and learning disabilities. N-methyl-D-aspartate receptors (NMDARs) and nicotinic acetylcholine receptors (nACHRs) are thought to be effective in the learning and memory-generating process. In this study, we investigated the effects of intrauterine exposure to AFCAs on subunit concentrations of NMDARs and nAChRs isoforms in rats. We administered a mixture of AFCAs (Eritrosin, Ponceau 4R, Allura Red AC, Sunset Yellow FCF, Tartrazin, Amaranth, Brilliant Blue, Azorubin and Indigotin) to female rats before and during gestation. The concentration of NR2A and NR2B subunits and nAChR α7, α4β2 isoforms in their offspring's hippocampi were measured by Western Blotting. Expressions of NR2B and nAChR β2 were significantly increased (17% and 6.70%, respectively), whereas expression of nAChR α4 was significantly decreased (5.67%) in male experimental group compared to the male control group (p<0.05). In the female experimental group, AFCAs caused a 14% decrease in NR2B expression when compared to the female control group (p<0.05). Our results indicate that exposure to AFCAs during the fetal period may lead to alterations in expressions of NMDARs and nAChRs in adulthood. These alterations were different between male and female genders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice

    PubMed Central

    Degl'Innocenti, Andrea

    2016-01-01

    Background In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Aim Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Procedures Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. Results In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a whole, our findings favor Olfr266 as a model gene to investigate odorant receptor gene choice. PMID:26794459

  5. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    PubMed

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Molecular analysis of nicotinic receptor expression in autism.

    PubMed

    Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K

    2004-04-07

    Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.

  7. Expression of CXCR-1 and CXCR-2 chemokine receptors on synovial neutrophils in inflammatory arthritides: does persistent or increasing expression of CXCR-2 contribute to the chronic inflammation or erosive changes?

    PubMed

    Pay, Salih; Musabak, Ugur; Simşek, Ismail; Pekel, Aysel; Erdem, Hakan; Dinç, Ayhan; Sengül, Ali

    2006-12-01

    To analyze the CXCR-1 and CXCR-2 chemokine receptor expression on peripheral blood neutrophils (PBN) and synovial fluid neutrophils (SFN) of patients with rheumatoid arthritis (RA) and Behçet's disease (BD) (characterized by erosive and non-erosive arthritis, respectively), and to compare them with those of patients with osteoarthritis (OA). We used flow cytometry to investigate the expression of CXCR-1 and CXCR-2 chemokine receptors on PBN and SFN of fifty-five (22 RA, 22 BD and 11 OA) age and sex-matched patients. In respect to chemokine receptor expression on neutrophils isolated from patients with RA, mean fluorescein intensity (MFI) of CXCR-1 chemokine receptors on PBN from active and inactive RA patients, and SFN from patients with RA were 151 (90-395), 129 (81-539) and 136 (64-220), respectively, and there were not statistically significant difference each other. But MFI of CXCR-2 chemokine receptors on SFN of patients with RA was 18 (10-32), and significantly higher than PBN of active and inactive RA patients (MFI: 10 (6-15) and 12 (7-16), P=0.002 and 0.037, respectively). In respect to chemokine receptor expression on neutrophils isolated from patients with BD, MFI of CXCR-1 chemokine receptors on PBN of active BD patients was 245 (97-844), and higher than PBN of active RA patients and SFN of BD patients (MFI: 151 (90-395) and 134 (61-231), P=0.047 and 0.017, respectively). MFI of CXCR-2 chemokine receptors on PBN of active and inactive BD patients, and SFN of patients BD were 10 (6-14), 10 (2-16), and 12 (8-24), respectively, there were not statistically significant difference each other. MFI of CXCR-1 chemokine receptors on SFN from patients with RA, BD, and OA were 136 (64-220), 134 (61-231), and 114 (60-180), respectively, and there was no difference between the study groups. MFI of CXCR-2 chemokine receptors on SFN of patients with RA was 18 (10-32), and higher than patients with BD and OA (MFI: 12 (8-24) and 11 (9-18), P=0.037 and 0.005, respectively), though there was no difference between last two groups. Our study points that CXCR-1 and CXCR-2 chemokine receptors of SFN may have diverse functions in the course of inflammatory arthritides. These results indicate that CXCR-2 chemokine receptor might play more critical role in long lasting accumulation of neutrophils within the synovial fluid of patients with RA.

  8. Regulation of ocular surface inflammation by prostaglandin E receptor subtype EP3.

    PubMed

    Ueta, Mayumi

    2010-11-01

    We first investigated whether the prostaglandin (PG) E2-PGE receptor subtype EP3 axis regulates the development of murine experimental allergic conjunctivitis because it has been reported that this pathway negatively regulates allergic reactions in a murine allergic asthma model. We observed that EP3 is constitutively expressed in mice conjunctival epithelium. EP3 knockout mice demonstrated significantly increased eosinophil infiltration in conjunctiva after ragweed challenge compared with wild-type mice. Consistently, significantly higher expression of eotaxin-1 messenger RNA was observed in Ptger3-/- mice. Conversely, treatment of wild-type mice with an EP3-selective agonist significantly decreased eosinophil infiltration, which was blunted in Ptger3-/- mice. Expression of cyclooxygenase-2 and PGE synthases was upregulated and PGE2 content increased in the eyelids after ragweed challenge. These data suggest that PGE2 acts on EP3 in the conjunctival epithelium and downregulates the progression of experimental allergic conjunctivitis. We next examined and compared the expression of EP3 in human conjunctival epithelium in various ocular surface diseases. Human conjunctival epithelium expressed EP3-specific messenger RNA and EP3 protein. Although we could clearly find positive signals in the conjunctival epithelium from patients with noninflammatory ocular surface diseases such as conjunctivochalasis and pterygium, we could not find positive signals in that from those with inflammatory disorders such as Stevens-Johnson syndrome and ocular cicatricial pemphigoid. Likewise, expression of the PGE receptor subtype EP4 was clearly found in the conjunctival epithelium from patients with conjunctivochalasis and pterygium but not from patients with Stevens-Johnson syndrome and ocular cicatricial pemphigoid.

  9. Differential eosinophil and mast cell regulation: Mast cell viability and accumulation in inflammatory tissue are independent of proton-sensing receptor GPR65

    PubMed Central

    Zhu, Xiang; Mose, Eucabeth; Hogan, Simon P.

    2014-01-01

    Extracellular acidification has been observed in allergic inflammatory diseases. Recently, we demonstrated that the proton-sensing receptor G protein-coupled receptor 65 (GPR65) regulates eosinophil survival in an acidic environment in vitro and eosinophil accumulation in an allergic lung inflammation model. For mast cells, another inflammatory cell type critical for allergic responses, it remains unknown whether GPR65 is expressed and/or regulates mast cell viability. Thus, in the present study, we employed in vitro experiments and an intestinal anaphylaxis model in which both mastocytosis and eosinophilia can be observed, particularly in the gastrointestinal tract, to enable us to directly compare the effect of GPR65 expression on these two cell types. We identified GPR65 expression on mast cells; however, unlike eosinophil viability, mast cell viability in vitro is not affected by acidification or GPR65 expression. Mechanistically, we determined that mast cells do not respond to extracellular acidification with increased cAMP levels. Furthermore, in the intestinal anaphylaxis model, we observed a significant reduction of eosinophils (59.1 ± 9.2% decrease) in the jejunum of allergen-challenged GPR65-deficient mice compared with allergen-challenged wild-type mice, despite the degree of antigen sensitization and the expression levels of Th2 cytokines (Il4, Il13) and eosinophil chemokines (Ccl11, Ccl24) in the jejunum being comparable. In contrast, the accumulation of mast cells in allergen-challenged mice was not affected by GPR65 deficiency. In conclusion, our study demonstrates differential regulation of eosinophils and mast cells in inflammatory tissue, with mast cell viability and accumulation being independent of GPR65. PMID:24742990

  10. CSF-1 Receptor-Dependent Colon Development, Homeostasis and Inflammatory Stress Response

    PubMed Central

    Huynh, Duy; Akçora, Dilara; Malaterre, Jordane; Chan, Chee Kai; Dai, Xu-Ming; Bertoncello, Ivan; Stanley, E. Richard; Ramsay, Robert G.

    2013-01-01

    The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) directly regulates the development of Paneth cells (PC) and influences proliferation and cell fate in the small intestine (SI). In the present study, we have examined the role of CSF-1 and the CSF-1R in the large intestine, which lacks PC, in the steady state and in response to acute inflammation induced by dextran sulfate sodium (DSS). As previously shown in mouse, immunohistochemical (IHC) analysis of CSF-1R expression showed that the receptor is baso-laterally expressed on epithelial cells of human colonic crypts, indicating that this expression pattern is shared between species. Colons from Csf1r null and Csf1op/op mice were isolated and sectioned for IHC identification of enterocytes, enteroendocrine cells, goblet cells and proliferating cells. Both Csf1r−/− and Csf1op/op mice were found to have colon defects in enterocytes and enteroendocrine cell fate, with excessive goblet cell staining and reduced cell proliferation. In addition, the gene expression profiles of the cell cycle genes, cyclinD1, c-myc, c-fos, and c-myb were suppressed in Csf1r−/− colonic crypt, compared with those of WT mice and the expression of the stem cell marker gene Lgr5 was markedly reduced. However, analysis of the proliferative responses of immortalized mouse colon epithelial cells (lines; Immorto-5 and YAMC) indicated that CSF-1R is not a major regulator of colonocyte proliferation and that its effects on proliferation are indirect. In an examination of the acute inflammatory response, Csf1r +/− male mice were protected from the adverse affects of DSS-induced colitis compared with WT mice, while Csf1r +/− female mice were significantly less protected. These data indicate that CSF-1R signaling plays an important role in colon homeostasis and stem cell gene expression but that the receptor exacerbates the response to inflammatory challenge in male mice. PMID:23451116

  11. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Lusi; Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325015; Jiang, Ying

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAHmore » (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.« less

  12. Endogenous CNS Expression of Neurotensin and Neurotensin Receptors Is Altered during the Postpartum Period in Outbred Mice

    PubMed Central

    Driessen, Terri M.; Zhao, Changjiu; Whittlinger, Anna; Williams, Horecia; Gammie, Stephen C.

    2014-01-01

    Neurotensin (NT) is a neuropeptide identical in mice and humans that is produced and released in many CNS regions associated with maternal behavior. NT has been linked to aspects of maternal care and previous studies have indirectly suggested that endogenous NT signaling is altered in the postpartum period. In the present study, we directly examine whether NT and its receptors exhibit altered gene expression in maternal relative to virgin outbred mice using real time quantitative PCR (qPCR) across multiple brain regions. We also examine NT protein levels using anti-NT antibodies and immunohistochemistry in specific brain regions. In the medial preoptic area (MPOA), which is critical for maternal behaviors, mRNA of NT and NT receptor 3 (Sort1) were significantly up-regulated in postpartum mice compared to virgins. NT mRNA was also elevated in postpartum females in the bed nucleus of the stria terminalis dorsal. However, in the lateral septum, NT mRNA was down-regulated in postpartum females. In the paraventricular nucleus of the hypothalamus (PVN), Ntsr1 expression was down-regulated in postpartum females. Neurotensin receptor 2 (Ntsr2) expression was not altered in any brain region tested. In terms of protein expression, NT immunohistochemistry results indicated that NT labeling was elevated in the postpartum brain in the MPOA, lateral hypothalamus, and two subregions of PVN. Together, these findings indicate that endogenous changes occur in NT and its receptors across multiple brain regions, and these likely support the emergence of some maternal behaviors. PMID:24416154

  13. Retinoic acid induces expression of SLP-76: expression with c-FMS enhances ERK activation and retinoic acid-induced differentiation/G0 arrest of HL-60 cells.

    PubMed

    Yen, Andrew; Varvayanis, Susi; Smith, James L; Lamkin, Thomas J

    2006-02-01

    Retinoic acid (RA) is known to cause MAPK signaling which propels G0 arrest and myeloid differentiation of HL-60 human myeloblastic leukemia cells. The present studies show that RA up-regulated expression of SLP-76 (Src-homology 2 domain-containing leukocyte-specific phospho-protein of 76 kDa), which became a prominent tyrosine-phosphorylated protein in RA-treated cells. SLP-76 is a known adaptor molecule associated with T-cell receptor and MAPK signaling. To characterize functional effects of SLP-76 expression in RA-induced differentiation and G0 arrest, HL-60 cells were stably transfected with SLP-76. Expression of SLP-76 had no discernable effect on RA-induced ERK activation, subsequent functional differentiation, or the rate of RA-induced G0 arrest. To determine the effects of SLP-76 in the presence of a RA-regulated receptor, SLP-76 was stably transfected into HL-60 cells already overexpressing the colony stimulating factor-1 (CSF-1) receptor, c-FMS, from a previous stable transfection. SLP-76 now enhanced RA-induced ERK activation, compared to parental c-FMS transfectants. It also enhanced RA-induced differentiation, evidenced by enhanced paxillin expression, inducible oxidative metabolism and superoxide production. RA-induced RB tumor suppressor protein hypophosphorylation was also enhanced, as was RA-induced G0 cell cycle arrest. A triple Y to F mutant SLP-76 known to be a dominant negative in T-cell receptor signaling failed to enhance RA-induced paxillin expression, but enhanced RA-induced ERK activation, differentiation and G0 arrest essentially as well as wild-type SLP-76. Thus, SLP-76 overexpression in the presence of c-FMS, a RA-induced receptor, had the effect of enhancing RA-induced cell differentiation. This is the first indication to our knowledge that RA induces the expression of an adapter molecule to facilitate induced differentiation via co-operation between c-FMS and SLP-76.

  14. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus.

    PubMed

    Mraz, M; Lacinova, Z; Drapalova, J; Haluzikova, D; Horinek, A; Matoulek, M; Trachta, P; Kavalkova, P; Svacina, S; Haluzik, M

    2011-04-01

    Low-grade inflammation links obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases. To explore the expression profile of genes involved in inflammatory pathways in adipose tissue and peripheral monocytes (PM) of obese patients with and without T2DM at baseline and after dietary intervention. Two-week intervention study with very-low-calorie diet (VLCD). University hospital. Twelve obese females with T2DM, 8 obese nondiabetic females (OB) and 15 healthy age-matched females. Two weeks of VLCD (2500 kJ/d). Metabolic parameters, circulating cytokines, hormones, and mRNA expression of 39 genes in sc adipose tissue (SCAT) and PM. Both T2DM and OB group had significantly increased serum concentrations of circulating proinflammatory factors (C-reactive protein, TNFα, IL-6, IL-8), mRNA expression of macrophage antigen CD68 and proinflammatory chemokines (CCL-2, -3, -7, -8, -17, -22) in SCAT and complementary chemokine receptors (CCR-1, -2, -3, -5) and other proinflammatory receptors (toll-like receptor 2 and 4, TNF receptor superfamily 1A and 1B, IL-6R) in PM, with OB group showing less pronounced chemoattracting and proinflammatory profile compared to T2DM group. In T2DM patients VLCD decreased body weight, improved metabolic profile, and decreased mRNA expression of up-regulated CCRs in PM and chemokines [CCL 8, chemokine (C-X-C motif) ligand 10] in SCAT. VLCD markedly increased mRNA expression of T-lymphocyte attracting chemokine CCL-17 in SCAT. Obese patients with and without T2DM have increased mRNA expression of chemotactic and proinflammatory factors in SCAT and expression of corresponding receptors in PM. Two weeks of VLCD significantly improved this profile in T2DM patients.

  15. Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer.

    PubMed

    Merkin, Ross D; Vanner, Elizabeth A; Romeiser, Jamie L; Shroyer, A Laurie W; Escobar-Hoyos, Luisa F; Li, Jinyu; Powers, Robert S; Burke, Stephanie; Shroyer, Kenneth R

    2017-04-01

    Clinicopathological features of breast cancer have limited accuracy to predict survival. By immunohistochemistry (IHC), keratin 17 (K17) expression has been correlated with triple-negative status (estrogen receptor [ER]/progesterone receptor/human epidermal growth factor receptor-2 [HER2] negative) and decreased survival, but K17 messenger RNA (mRNA) expression has not been evaluated in breast cancer. K17 is a potential prognostic cancer biomarker, targeting p27, and driving cell cycle progression. This study compared K17 protein and mRNA expression to ER/progesterone receptor/HER2 receptor status and event-free survival. K17 IHC was performed on 164 invasive breast cancers and K17 mRNA was evaluated in 1097 breast cancers. The mRNA status of other keratins (16/14/9) was evaluated in 113 ER - /HER2 - ductal carcinomas. IHC demonstrated intense cytoplasmic and membranous K17 localization in myoepithelial cells of benign ducts and lobules and tumor cells of ductal carcinoma in situ. In ductal carcinomas, K17 protein was detected in most triple-negative tumors (28/34, 82%), some non-triple-negative tumors (52/112, 46%), but never in lobular carcinomas (0/15). In ductal carcinomas, high K17 mRNA was associated with reduced 5-year event-free survival in advanced tumor stage (n = 149, hazard ratio [HR] = 3.68, P = .018), and large (n = 73, HR = 3.95, P = .047), triple-negative (n = 103, HR = 2.73, P = .073), and ER - /HER2 - (n = 113, HR = 2.99, P = .049) tumors. There were significant correlations among keratins 17, 16, 14, and 9 mRNA levels suggesting these keratins (all encoded on chromosome 17) could be coordinately expressed in breast cancer. Thus, K17 is expressed in a subset of triple-negative breast cancers, and is a marker of poor prognosis in patients with advanced stage and ER - /HER2 - breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Receptors and aging: structural selectivity of the rhamnose-receptor on fibroblasts as shown by Ca(2+)-mobilization and gene-expression profiles.

    PubMed

    Faury, G; Molinari, J; Rusova, E; Mariko, B; Raveaud, S; Huber, P; Velebny, V; Robert, A M; Robert, L

    2011-01-01

    Qualitative and quantitative modifications of receptors were shown to play a key role in cell and tissue aging. We recently described the properties of a rhamnose-recognizing receptor on fibroblasts involved in the mediation of age-dependent functions of these cells. Using Ca(2+)-mobilization and DNA-microarrays we could show in the presence of rhamnose-rich oligo- and polysaccharides (RROPs) Ca(2+)-mobilization and changes in gene regulation. Here, we compared the effects of several RROPs, differing in their carbohydrate sequence and molecular weights, in normal human dermal fibroblasts (NHDFs). It appeared that different structural features were required for maximal effects on Ca(2+)-mobilization and gene-expression profiles. Maximal effect on Ca(2+) influx and intracellular free calcium regulation was exhibited by RROP-1, a 50 kDa average molecular weight polysaccharide, and RROP-3, a 5 kDa average molecular weight oligosaccharide with a different carbohydrate sequence. Maximal effect on gene-expression profiles was obtained with RROP-3. These results suggest the possibility of several different transmission pathways from the rhamnose-receptor to intracellular targets, differentially affecting these two intracellular functions, with potential consequences on aging. Although of only relative specificity, this receptor site exhibits a high affinity for rhamnose, absent from vertebrate glycoconjugates. The rhamnose-receptor might well represent an evolutionary conserved conformation of a prokaryote lectin. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    PubMed

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  18. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    PubMed

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs through uncoupling of serotonin from the homeostatic regulatory mechanisms of the normal mammary epithelium. The findings open a new avenue for identification of diagnostic and prognostic markers, and valuable new therapeutic targets for managing breast cancer.

  19. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis.

    PubMed

    Ackers, Ian; Szymanski, Candice; Duckett, K Jordan; Consitt, Leslie A; Silver, Mitchell J; Malgor, Ramiro

    Wnt5a is a highly studied member of the Wnt family and recently has been implicated in the pathogenesis of atherosclerosis, but its precise role is unknown. Foam cell development is a critical process to atherosclerotic plaque formation. In the present study, we investigated the role of noncanonical Wnt5a signaling in the development of foam cells. Human carotid atherosclerotic tissue and THP-1-derived macrophages were used to investigate the contribution of Wnt5a signaling in the formation of foam cells. Immunohistochemistry was used to evaluate protein expression of scavenger receptors and noncanonical Wnt5a receptors [frizzled 5 (Fz5) and receptor tyrosine kinase-like orphan receptor 2 (Ror2)] in human atherosclerotic macrophages/foam cells. Changes in protein expression in response to Wnt5a stimulation/inhibition were determined by Western blot, and lipid accumulation was evaluated by fluorescent lipid droplet staining. Wnt5a (P<.05), Fz5 (P<.01), and Ror2 (P<.01) were significantly expressed in advanced atherosclerotic lesions compared to less advanced lesions (N=10). Wnt5a, Fz5, and Ror2 were expressed in macrophages/foam cells within the plaque. In vitro studies revealed that Wnt5a significantly increased the expression of the lipid uptake receptor CD36 (P<.05) but not the lipid efflux receptor ATP-binding cassette transporter (P>.05). rWnt5a also significantly increased lipid accumulation in THP-1 macrophages (P<.05). Furthermore, inhibition of Wnt5a signaling with Box5 prevented lipid accumulation (P<.01) and prevented CD36 up-regulation (P<.01). These results suggest a direct role for Wnt5a signaling in the pathogenesis of atherosclerosis, specifically the accumulation of lipid in macrophages and the formation of foam cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice

    PubMed Central

    Liu, Mingfu; Spellberg, Brad; Phan, Quynh T.; Fu, Yue; Fu, Yong; Lee, Amy S.; Edwards, John E.; Filler, Scott G.; Ibrahim, Ashraf S.

    2010-01-01

    Mucormycosis is a fungal infection of the sinuses, brain, or lungs that causes a mortality rate of at least 50% despite first-line therapy. Because angioinvasion is a hallmark of mucormycosis infections, we sought to define the endothelial cell receptor(s) for fungi of the order Mucorales (the fungi that cause mucormycosis). Furthermore, since patients with elevated available serum iron, including those with diabetic ketoacidosis (DKA), are uniquely susceptible to mucormycosis, we sought to define the role of iron and glucose in regulating the expression of such a receptor. Here, we have identified glucose-regulated protein 78 (GRP78) as what we believe to be a novel host receptor that mediates invasion and damage of human endothelial cells by Rhizopus oryzae, the most common etiologic species of Mucorales, but not Candida albicans or Aspergillus fumigatus. Elevated concentrations of glucose and iron, consistent with those seen during DKA, enhanced GRP78 expression and the resulting R. oryzae invasion and damage of endothelial cells in a receptor-dependent manner. Mice with DKA, which have enhanced susceptibility to mucormycosis, exhibited increased expression of GRP78 in sinus, lungs, and brain compared with normal mice. Finally, GRP78-specific immune serum protected mice with DKA from mucormycosis. These results suggest a unique susceptibility of patients with DKA to mucormycosis and provide a foundation for the development of new therapeutic interventions for these deadly infections. PMID:20484814

  1. Up-regulation of peroxidase proliferator-activated receptor gamma in cholesteatoma.

    PubMed

    Hwang, Soon Jae; Kang, Hee Joon; Song, Jae-Jun; Kang, Jae Seong; Woo, Jeong Soo; Chae, Sung Won; Lee, Heung-Man

    2006-01-01

    To evaluate the localization and expression of peroxidase proliferator-activated receptor (PPAR)gamma in cholesteatoma epithelium. Experimental study. Reverse-transcription polymerase chain reaction was performed on cholesteatoma tissues from 10 adult patients undergoing tympanomastoid surgery for middle ear cholesteatoma and on 10 samples of normal external auditory canal skin tissue. The expression levels of PPARgamma to glyceraldehyde-3-phosphate dehydrogenase transcripts were semiquantified by densitometry. We also characterized the cellular localization of the PPARgamma protein immunohistochemically. Ki-67 was also localized to compare the proliferative activity of cells in cholesteatoma epithelium and in normal external auditory canal skin. PPARgamma mRNA and protein were detected in normal external auditory canal skin and in cholesteatoma epithelium. The expression level of PPARgamma mRNA in cholesteatoma was significantly increased compared with that in normal external auditory canal skin. PPARgamma protein was expressed in cells mainly in the granular and prickle cell layers. However, the intensity of its expression was generally decreased in the parabasal layer of the cholesteatoma epithelium. Ki-67 was expressed in the nuclei of cells in the basal and parabasal layers, and a greater number of cells were Ki-67 immunopositive in cholesteatoma epithelium. PPARgamma is up-regulated in the cholesteatoma epithelium compared with normal external auditory canal skin. These results suggest that PPARgamma may play an important role in the pathogenesis of cholesteatoma.

  2. Antiproliferative effect of the Ginkgo biloba extract is associated with the enhancement of cytochrome P450 1B1 expression in estrogen receptor-negative breast cancer cells

    PubMed Central

    ZHAO, XIAO-DAN; DONG, NI; MAN, HONG-TAO; FU, ZHONG-LIN; ZHANG, MEI-HONG; KOU, SHUANG; MA, SHI-LIANG

    2013-01-01

    Ginkgo biloba is a dioecious tree and its extract is a complex mixture that has been used for thousands of years to treat a variety of ailments in traditional Chinese medicine. The aim of this study was to present our observations on the inhibitory effects of different Ginkgo biloba extracts on human breast cancer cell proliferation and growth. Our results demonstrated that treatment of MCF-7 and MDA-MB-231 human breast cancer cells with Ginkgo biloba leaves and ginkgo fruit extract inhibited cell proliferation. It was also observed that this inhibition was accompanied by the enhancement of cytochrome P450 (CYP) 1B1 expression in MDA-MB-231 cells. In addition, treatment with ginkgo fruit extract resulted in a higher CYP1B1 expression in MDA-MB-231 cells compared to treatment with the Ginkgo biloba leaves extract. Our results suggested that the inhibitory effects of the Ginkgo biloba extract on estrogen receptor-negative breast cancer proliferation and the induction of CYP1B1 expression may be exerted through an alternative pathway, independent of the estrogen receptor or the aryl hydrocarbon receptor pathway. PMID:24649031

  3. SKCa Channels Blockage Increases the Expression of Adenosine A2A Receptor in Jurkat Human T Cells

    PubMed Central

    Regaya, Imed; Aidi-Knani, Sabrine; By, Youlet; Condo, Jocelyne; Gerolami, Victoria; Berge-Lefranc, Jean-Louis; Ben Hamida, Jeannette; Sabatier, Jean-Marc; Fenouillet, Emmanuel; Guieu, Régis

    2013-01-01

    Abstract Adenosine is a nucleoside displaying various biological effects via stimulation of four G-protein–coupled receptors, A1, A2A, A2B, and A3. Adenosine also modulates voltage-gated (Kv) and small conductance calcium-activated (SKCa) potassium channels. The effect of these potassium channels on the expression of adenosine receptors is poorly understood. We evaluated the action of BgK (a natural Kv channel blocker) and Lei-Dab7 (a synthetic SKCa channel blocker) on the expression of adenosine A2A receptors (A2AR) in Jurkat human T cells. We found that Lei-Dab7, but not BgK, increased the maximal binding value of the tritiated ligand ZM241385 to A2AR in a dose-dependent manner (+45% at 5 nM; +70% at 50 nM as compared to control). These results were further confirmed by Western blotting using a specific monoclonal antibody to human A2AR. The ligand affinity-related dissociation constant and A2AR mRNA amount were not significantly modified by either drug. We suggest that modulation of SKCa channels can influence membrane expression of A2AR and thus has a therapeutic potential. PMID:23593569

  4. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation.

    PubMed

    Zhang, Yonghong; Liang, Shuang; Li, Xiujin; Wang, Liyue; Zhang, Jianlou; Xu, Jian; Huo, Shanshan; Cao, Xuebin; Zhong, Zhenyu; Zhong, Fei

    2015-07-09

    Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.

    PubMed

    Zhou, Guoying; Sprengers, Dave; Boor, Patrick P C; Doukas, Michail; Schutz, Hannah; Mancham, Shanta; Pedroza-Gonzalez, Alexander; Polak, Wojciech G; de Jonge, Jeroen; Gaspersz, Marcia; Dong, Haidong; Thielemans, Kris; Pan, Qiuwei; IJzermans, Jan N M; Bruno, Marco J; Kwekkeboom, Jaap

    2017-10-01

    Ligand binding to inhibitory receptors on immune cells, such as programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA4), down-regulates the T-cell-mediated immune response (called immune checkpoints). Antibodies that block these receptors increase antitumor immunity in patients with melanoma, non-small-cell lung cancer, and renal cell cancer. Tumor-infiltrating CD4 + and CD8 + T cells in patients with hepatocellular carcinoma (HCC) have been found to be functionally compromised. We analyzed HCC samples from patients to determine if these inhibitory pathways prevent T-cell responses in HCCs and to find ways to restore their antitumor functions. We collected HCC samples from 59 patients who underwent surgical resection from November 2013 through May 2017, along with tumor-free liver tissues (control tissues) and peripheral blood samples. We isolated tumor-infiltrating lymphocytes (TIL) and intra-hepatic lymphocytes. We used flow cytometry to quantify expression of the inhibitory receptors PD-1, hepatitis A virus cellular receptor 2 (TIM3), lymphocyte activating 3 (LAG3), and CTLA4 on CD8 + and CD4 + T cells from tumor, control tissue, and blood; we studied the effects of antibodies that block these pathways in T-cell activation assays. Expression of PD-1, TIM3, LAG3, and CTLA4 was significantly higher on CD8 + and CD4 + T cells isolated from HCC tissue than control tissue or blood. Dendritic cells, monocytes, and B cells in HCC tumors expressed ligands for these receptors. Expression of PD-1, TIM3, and LAG3 was higher on tumor-associated antigen (TAA)-specific CD8 + TIL, compared with other CD8 + TIL. Compared with TIL that did not express these inhibitory receptors, CD8 + and CD4 + TIL that did express these receptors had higher levels of markers of activation, but similar or decreased levels of granzyme B and effector cytokines. Antibodies against CD274 (PD-ligand1 [PD-L1]), TIM3, or LAG3 increased proliferation of CD8 + and CD4 + TIL and cytokine production in response to stimulation with polyclonal antigens or TAA. Importantly, combining antibody against PD-L1 with antibodies against TIM3, LAG3, or CTLA4 further increased TIL functions. The immune checkpoint inhibitory molecules PD-1, TIM3, and LAG3 are up-regulated on TAA-specific T cells isolated from human HCC tissues, compared with T cells from tumor-free liver tissues or blood. Antibodies against PD-L1, TIM3, or LAG3 restore responses of HCC-derived T cells to tumor antigens, and combinations of the antibodies have additive effects. Strategies to block PD-L1, TIM3, and LAG3 might be developed for treatment of primary liver cancer. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. In vitro re-expression of the aryl hydrocarbon receptor (Ahr) in cultured Ahr-deficient mouse antral follicles partially restores the phenotype to that of cultured wild-type mouse follicles.

    PubMed

    Ziv-Gal, A; Gao, L; Karman, B N; Flaws, J A

    2015-03-01

    The aryl hydrocarbon receptor (AHR) mediates the toxic effects of various endocrine disrupting chemicals. In female mice, global deletion of the Ahr (AhrKO) results in slow growth of ovarian antral follicles. No studies, however, have examined whether injection of the Ahr restores the phenotypes of cultured AhrKO ovarian antral follicles to wild-type levels. We developed a system to construct a recombinant adenovirus containing the Ahr to re-express the Ahr in AhrKO granulosa cells and whole antral follicles. We then compared follicle growth and levels of factors in the AHR signaling pathway (Ahr, Ahrr, Cyp1a1, and Cyp1b1) in wild-type, AhrKO, and Ahr re-expressed follicles. Further, we compared the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in wild-type, AhrKO, and Ahr re-expressed follicles. Ahr injection into AhrKO follicles partially restored their growth pattern to wild-type levels. Further, Ahr re-expressed follicles had significantly higher levels of Ahr, Ahrr, Cyp1a1, and Cyp1b1 compared to wild-type follicles. Upon TCDD treatment, only Cyp1a1 levels were significantly higher in Ahr re-expressed follicles compared to the levels in wild-type follicles. Our system of re-expression of the Ahr partially restores follicle growth and transcript levels of factors in the AHR signaling pathway to wild-type levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Deletion of the EphA2 receptor exacerbates myocardial injury and the progression of ischemic cardiomyopathy.

    PubMed

    O'Neal, Wesley T; Griffin, William F; Kent, Susan D; Faiz, Filza; Hodges, Jonathan; Vuncannon, Jackson; Virag, Jitka A I

    2014-01-01

    EphrinA1-EphA-receptor signaling is protective during myocardial infarction (MI). The EphA2-receptor (EphA2-R) potentially mediates cardiomyocyte survival. To determine the role of the EphA2-R in acute non-reperfused myocardial injury in vivo, infarct size, inflammatory cell density, NF-κB, p-AKT/Akt, and MMP-2 protein levels, and changes in ephrinA1/EphA2-R gene expression profile were assessed 4 days post-MI in B6129 wild-type (WT) and EphA2-R-mutant (EphA2-R-M) mice lacking a functional EphA2-R. Fibrosis, capillary density, morphometry of left ventricular chamber and infarct dimensions, and cardiac function also were measured 4 weeks post-MI to determine the extent of ventricular remodeling. EphA2-R-M infarct size and area of residual necrosis were 31.7% and 113% greater than WT hearts, respectively. Neutrophil and macrophage infiltration were increased by 46% and 84% in EphA2-R-M hearts compared with WT, respectively. NF-κB protein expression was 1.9-fold greater in EphA2-R-M hearts at baseline and 56% less NF-κB after infarction compared with WT. EphA6 gene expression was 2.5-fold higher at baseline and increased 9.8-fold 4 days post-MI in EphA2-R-M hearts compared with WT. EphrinA1 gene expression in EphA2-R-M hearts was unchanged at baseline and decreased by 42% 4 days post-MI compared with WT hearts. EphA2-R-M hearts had 66.7% less expression of total Akt protein and 59% less p-Akt protein than WT hearts post-MI. EphA2-R-M hearts 4 weeks post-MI had increased chamber dilation and interstitial fibrosis and decreased MMP-2 expression and capillary density compared with WT. In conclusion, the EphA2-R is necessary to appropriately modulate the inflammatory response and severity of early injury during acute MI, thereby influencing the progression of ischemic cardiomyopathy.

  8. Deletion of the EphA2 receptor exacerbates myocardial injury and the progression of ischemic cardiomyopathy

    PubMed Central

    O'Neal, Wesley T.; Griffin, William F.; Kent, Susan D.; Faiz, Filza; Hodges, Jonathan; Vuncannon, Jackson; Virag, Jitka A. I.

    2014-01-01

    EphrinA1-EphA-receptor signaling is protective during myocardial infarction (MI). The EphA2-receptor (EphA2-R) potentially mediates cardiomyocyte survival. To determine the role of the EphA2-R in acute non-reperfused myocardial injury in vivo, infarct size, inflammatory cell density, NF-κB, p-AKT/Akt, and MMP-2 protein levels, and changes in ephrinA1/EphA2-R gene expression profile were assessed 4 days post-MI in B6129 wild-type (WT) and EphA2-R-mutant (EphA2-R-M) mice lacking a functional EphA2-R. Fibrosis, capillary density, morphometry of left ventricular chamber and infarct dimensions, and cardiac function also were measured 4 weeks post-MI to determine the extent of ventricular remodeling. EphA2-R-M infarct size and area of residual necrosis were 31.7% and 113% greater than WT hearts, respectively. Neutrophil and macrophage infiltration were increased by 46% and 84% in EphA2-R-M hearts compared with WT, respectively. NF-κB protein expression was 1.9-fold greater in EphA2-R-M hearts at baseline and 56% less NF-κB after infarction compared with WT. EphA6 gene expression was 2.5-fold higher at baseline and increased 9.8-fold 4 days post-MI in EphA2-R-M hearts compared with WT. EphrinA1 gene expression in EphA2-R-M hearts was unchanged at baseline and decreased by 42% 4 days post-MI compared with WT hearts. EphA2-R-M hearts had 66.7% less expression of total Akt protein and 59% less p-Akt protein than WT hearts post-MI. EphA2-R-M hearts 4 weeks post-MI had increased chamber dilation and interstitial fibrosis and decreased MMP-2 expression and capillary density compared with WT. In conclusion, the EphA2-R is necessary to appropriately modulate the inflammatory response and severity of early injury during acute MI, thereby influencing the progression of ischemic cardiomyopathy. PMID:24795639

  9. Olfactory discrimination varies in mice with different levels of α7-nicotinic acetylcholine receptor expression.

    PubMed

    Hellier, Jennifer L; Arevalo, Nicole L; Blatner, Megan J; Dang, An K; Clevenger, Amy C; Adams, Catherine E; Restrepo, Diego

    2010-10-28

    Previous studies have shown that schizophrenics have decreased expression of α7-nicotinic acetylcholine (α7) receptors in the hippocampus and other brain regions, paranoid delusions, disorganized speech, deficits in auditory gating (i.e., inability to inhibit neuronal responses to repetitive auditory stimuli), and difficulties in odor discrimination and detection. Here we use mice with decreased α7 expression that also show a deficit in auditory gating to determine if these mice have similar deficits in olfaction. In the adult mouse olfactory bulb (OB), α7 expression localizes in the glomerular layer; however, the functional role of α7 is unknown. We show that inbred mouse strains (i.e., C3H and C57) with varying α7 expressions (e.g., α7 wild-type [α7+/+], α7 heterozygous knock-out [α7+/-] and α7 homozygous knock-out mice [α7-/-]) significantly differ in odor discrimination and detection of chemically-related odorant pairs. Using [(125)I] α-bungarotoxin (α-BGT) autoradiography, α7 expression was measured in the OB. As previously demonstrated, α-BGT binding was localized to the glomerular layer. Significantly more expression of α7 was observed in C57 α7+/+ mice compared to C3H α7+/+ mice. Furthermore, C57 α7+/+ mice were able to detect a significantly lower concentration of an odor in a mixture compared to C3H α7+/+ mice. Both C57 and C3H α7+/+ mice discriminated between chemically-related odorants sooner than α7+/- or α7-/- mice. These data suggest that α7-nicotinic-receptors contribute strongly to olfactory discrimination and detection in mice and may be one of the mechanisms producing olfactory dysfunction in schizophrenics. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Enhanced expression of peroxisome proliferator-activated receptor gamma in epithelial ovarian carcinoma.

    PubMed

    Zhang, G Y; Ahmed, N; Riley, C; Oliva, K; Barker, G; Quinn, M A; Rice, G E

    2005-01-17

    The peroxisome proliferator-activated receptors (PPARs) belong to a subclass of nuclear hormone receptor that executes important cellular transcriptional functions. Previous studies have demonstrated the expression of PPARgamma in several tumours including colon, breast, bladder, prostate, lung and stomach. This study demonstrates the relative expression of PPARgamma in normal ovaries and different pathological grades of ovarian tumours of serous, mucinous, endometrioid, clear cell and mixed subtypes. A total of 56 ovarian specimens including 10 normal, eight benign, 10 borderline, seven grade 1, nine grade 2 and 12 grade 3 were analysed using immunohistochemistry. Immunoreactive PPARgamma was not expressed in normal ovaries. Out of eight benign and 10 borderline tumours, only one tumour in each group showed weak cytoplasmic PPARgamma expression. In contrast, 26 out of 28 carcinomas studied were positive for PPARgamma expression with staining confined to cytoplasmic and nuclear regions. An altered staining pattern of PPARgamma was observed in high-grade ovarian tumours with PPARgamma being mostly localized in the nuclei with little cytoplasmic immunoreactivity. On the other hand, predominant cytoplasmic staining was observed in lower-grade tumours. Significantly increased PPARgamma immunoreactivity was observed in malignant ovarian tumours (grade 1, 2 and 3) compared to benign and borderline tumours (chi2 = 48.80, P < 0.001). Western blot analyses showed significant elevation in the expression of immunoreactive PPARgamma in grade 3 ovarian tumours compared with that of normal ovaries and benign ovarian tumours (P < 0.01). These findings suggest an involvement of PPARgamma in the onset and development of ovarian carcinoma and provide an insight into the regulation of this molecule in the progression of the disease.

  11. Increased expression of pro-angiogenic factors and vascularization in thyroid hyperfunctioning adenomas with and without TSH receptor activating mutations.

    PubMed

    Celano, Marilena; Sponziello, Marialuisa; Tallini, Giovanni; Maggisano, Valentina; Bruno, Rocco; Dima, Mariavittoria; Di Oto, Enrico; Redler, Adriano; Durante, Cosimo; Sacco, Rosario; Filetti, Sebastiano; Russo, Diego

    2013-02-01

    Autonomously functioning thyroid nodules (AFTN) are known to receive an increased blood influx necessary to sustain their high rate of growth and hormone production. Here, we investigated the expression of hematic and lymphatic vases in a series of 20 AFTN compared with the contralateral non-tumor tissues of the same patients, and the transcript levels of proteins involved in the control of vascular proliferation, including the vascular endothelial growth factor (VEGF) and platelet-derived growth factors (PDGF) and their receptors and the endothelial nitric oxide synthase (eNOS). In parallel, the expression of the differentiation markers sodium/iodide symporter (NIS), thyroperoxidase (TPO), thyroglobulin (Tg), and TSH receptor (TSHR) was also investigated. The data were further analyzed comparing subgroups of tumors with or without mutations in the TSHR gene. Analysis by means of CD31 and D2-40 immunostaining showed in AFTN an increased number of hematic, but not lymphatic, vessels in parallel with an enhanced proliferation rate shown by increased Ki67 staining. Quantitative RT-PCR analysis revealed an increase of VEGF, VEGFR1 and 2, PDGF-A, PDGF-B, and eNOS expression in tumor versus normal tissues. Also, higher transcript levels of NIS, TPO, and Tg were detected. Comparison of the two subgroups of samples revealed only few differences in the expression of the genes examined. In conclusion, these data demonstrate an increased expression of angiogenesis-related factors associated with an enhanced proliferation of hematic, but not lymphatic, vessels in AFTNs. In this context, the presence of TSHR mutations may only slightly influence the expression of pro-angiogenic growth factors.

  12. Expression of the macrophage scavenger receptor, a multifunctional lipoprotein receptor, in microglia associated with senile plaques in Alzheimer's disease.

    PubMed Central

    Christie, R. H.; Freeman, M.; Hyman, B. T.

    1996-01-01

    The macrophage scavenger receptor is a multifunctional receptor whose ligands include oxidized low density lipoprotein (LDL), as well as several other polyanionic macromolecules. Although the capacity of the receptor to bind modified LDL has implicated it in the process of atherosclerosis, its physiological role remains uncertain. We have examined human brain for expression of macrophage scavenger receptor as part of ongoing studies of lipoprotein receptors in the central nervous system. The receptor is expressed on microglia, but not on astrocytes, neurons, or vessel-associated structures. In Alzheimer disease, there is strong expression of the scavenger receptor in association with senile plaques. Images Figure 2 Figure 3 Figure 4 PMID:8579103

  13. Angiotensin-converting enzyme inhibition and angiotensin AT1 receptor blockade downregulate angiotensin-converting enzyme expression and attenuate renal injury in streptozotocin-induced diabetic rats.

    PubMed

    Motawi, Tarek K; El-Maraghy, Shohda A; Senousy, Mahmoud A

    2013-07-01

    Angiotensin-converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ-diabetic rats, and STZ-diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na(+) /K(+) -ATPase activity, oxidative stress, and serum transforming growth factor-β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes-induced changes in ACE expression and Na(+) /K(+) -ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc.

  14. Knockdown of EphB1 receptor decreases medulloblastoma cell growth and migration and increases cellular radiosensitization

    PubMed Central

    Timofeeva, Olga; Pasquale, Elena B.; Hirsch, Kellen; MacDonald, Tobey J.; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel

    2015-01-01

    The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target. PMID:25879388

  15. Knockdown of EphB1 receptor decreases medulloblastoma cell growth and migration and increases cellular radiosensitization.

    PubMed

    Bhatia, Shilpa; Baig, Nimrah A; Timofeeva, Olga; Pasquale, Elena B; Hirsch, Kellen; MacDonald, Tobey J; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel; Rodriguez, Olga; Albanese, Chris; Karam, Sana D

    2015-04-20

    The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target.

  16. Neuron-derived orphan receptor 1 promoted human pulmonary artery smooth muscle cells proliferation.

    PubMed

    Wang, Chang-Guo; Lei, Wei; Li, Chang; Zeng, Da-Xiong; Huang, Jian-An

    2015-05-01

    As a transcription factor of the nuclear receptor superfamily, neuron-derived orphan receptor 1 (NOR1) is induced rapidly in response to various extracellular stimuli. But, it is still unclear its role in pulmonary artery smooth muscle cells proliferation. Human PASMCs were cultured in vitro and stimulated by serum. The special antisense oligodeoxynucleotides (AS-ODNs) were used to knockdown human NOR1 gene expression. Real-time PCR and Western-blot were used to evaluate the gene expression and protein levels. Fetal bovine serum (FBS) induced human PASMCs proliferation in a dose dependent manner. Furthermore, FBS promoted NOR1 gene expression in a dose dependent manner and a time dependent manner. 10% FBS induced a maximal NOR1 mRNA levels at 2 h. FBS also induced a significant higher NOR1 protein levels as compared with control. The NOR1 over-expressed plasmid significantly promoted DNA synthesis and cells proliferation. Moreover, the special AS-ODNs against human NOR1 not only prevented NOR1 expression but also inhibited DNA synthesis and cells proliferation significantly. The NOR1 over-expression plasmid could up-regulate cyclin D1 expression markedly, but the AS-ODNs inhibited cyclin D1 expression significantly. So, we concluded that NOR1 could promote human PASMCs proliferation. Cyclin D1 might be involved in this process.

  17. Expression of a transmembrane phosphotyrosine phosphatase inhibits cellular response to platelet-derived growth factor and insulin-like growth factor-1.

    PubMed

    Mooney, R A; Freund, G G; Way, B A; Bordwell, K L

    1992-11-25

    Tyrosine phosphorylation is a mechanism of signal transduction shared by many growth factor receptors and oncogene products. Phosphotyrosine phosphatases (PTPases) potentially modulate or counter-regulate these signaling pathways. To test this hypothesis, the transmembrane PTPase CD45 (leukocyte common antigen) was expressed in the murine cell line C127. Hormone-dependent autophosphorylation of the platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) receptors was markedly reduced in cells expressing the transmembrane PTPase. Tyrosine phosphorylation of other PDGF-dependent phosphoproteins (160, 140, and 55 kDa) and IGF-1-dependent phosphoproteins (145 kDa) was similarly decreased. Interestingly, the pattern of growth factor-independent tyrosine phosphorylations was comparable in cells expressing the PTPase and control cells. This suggests a selectivity or accessibility of the PTPase limited to a subset of cellular phosphotyrosyl proteins. The maximum mitogenic response to PDGF and IGF-1 in cells expressing the PTPase was decreased by 67 and 71%, respectively. These results demonstrate that a transmembrane PTPase can both affect the tyrosine phosphorylation state of growth factor receptors and modulate proximal and distal cellular responses to the growth factors.

  18. NMDA and AMPA receptors in the anterior cingulate cortex mediates visceral pain in visceral hypersensitivity rats.

    PubMed

    Zhou, Lin; Huang, Junjing; Gao, Jun; Zhang, Guanpo; Jiang, Jinjin

    2014-02-01

    Several studies have shown that N-methyl-D-aspartate (NMDA)-receptor activation in anterior cingulate cortex (ACC) neurons plays critical roles in modulating visceral pain responses in visceral hypersensitivity (VH) rats. However, there are few reports about the expressions of NMDA and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionic-acid (AMPA) receptor subtypes in ACC of VH model rats at different time points. The current study was undertaken to investigate NR2A, NR2B and GluR2 expressions in ACC of VH rats that were induced by administration with 5% mustard oil. Our results indicated that NR2B, but not NR2A, was highly expressed in VH model group on day 15, 22, and 36 compared with normal group (p < 0.05). GluR2 expression was also higher in VH model group on day 15, 22, and 36 than that of normal group (p < 0.05). These findings suggested increased expression of NR2B and GluR2 might be key mechanisms for long-term synaptic plastic changes in VH rats. Copyright © 2014. Published by Elsevier Inc.

  19. The downregulation of sweet taste receptor signaling in enteroendocrine L-cells mediates 3-deoxyglucosone-induced attenuation of high glucose-stimulated GLP-1 secretion.

    PubMed

    Wang, Fei; Song, Xiudao; Zhou, Liang; Liang, Guoqiang; Huang, Fei; Jiang, Guorong; Zhang, Lurong

    2017-12-26

    Sweet taste receptors (STRs) involve in regulating the release of glucose-stimulated glucagon-like peptide-1 (GLP-1). Our in vivo and in vitro studies found that 3-deoxyglucosone (3DG) inhibited glucose-stimulated GLP-1 secretion. This study investigated the role of STRs in 3DG-induced inhibition of high glucose-stimulated GLP-1 secretion. STC-1 cells were incubated with lactisole or 3DG for 1 h under 25 mM glucose conditions. Western blotting was used to study the expression of STRs signaling molecules and ELISA was used to analyse GLP-1 and cyclic adenosine monophosphate (cAMP) levels. Lactisole inhibited GLP-1 secretion. Exposure to 25 mM glucose increased the expressions of STRs subunits when compared with 5.6 mM glucose. 3DG decreased GLP-1 secretion and STRs subunits expressions, with affecting other components of STRs pathway, including the downregulation of transient receptor potential cation channel subfamily M member 5 (TRPM5) expression and the reduction of intracellular cAMP levels. 3DG attenuates high glucose-stimulated GLP-1 secretion by reducing STR subunit expression and downstream signaling components.

  20. Introduction of the human AVPR1A gene substantially alters brain receptor expression patterns and enhances aspects of social behavior in transgenic mice

    PubMed Central

    Charles, Rhonda; Sakurai, Takeshi; Takahashi, Nagahide; Elder, Gregory A.; Gama Sosa, Miguel A.; Young, Larry J.; Buxbaum, Joseph D.

    2014-01-01

    Central arginine vasopressin receptor 1A (AVPR1A) modulates a wide range of behaviors, including stress management and territorial aggression, as well as social bonding and recognition. Inter- and intra-species variations in the expression pattern of AVPR1A in the brain and downstream differential behavioral phenotypes have been attributed to differences in the non-coding regions of the AVPR1A gene, including polymorphic elements within upstream regulatory areas. Gene association studies have suggested a link between AVPR1A polymorphisms and autism, and AVPR1A has emerged as a potential pharmacological target for treatment of social cognitive impairments and mood and anxiety disorders. To further investigate the genetic mechanism giving rise to species differences in AVPR1A expression patterns and associated social behaviors, and to create a preclinical mouse model useful for screening drugs targeting AVPR1A, we engineered and extensively characterized bacterial artificial chromosome (BAC) transgenic mice harboring the entire human AVPR1A locus with the surrounding regulatory elements. Compared with wild-type animals, the humanized mice displayed a more widely distributed ligand-AVPR1A binding pattern, which overlapped with that of primates. Furthermore, humanized AVPR1A mice displayed increased reciprocal social interactions compared with wild-type animals, but no differences in social approach and preference for social novelty were observed. Aspects of learning and memory, specifically novel object recognition and spatial relocation recognition, were unaffected. The biological alterations in humanized AVPR1A mice resulted in the rescue of the prepulse inhibition impairments that were observed in knockout mice, indicating conserved functionality. Although further behavioral paradigms and additional cohorts need to be examined in humanized AVPR1A mice, the results demonstrate that species-specific variations in the genomic content of regulatory regions surrounding the AVPR1A locus are responsible for differential receptor protein expression patterns across species and that they are likely to contribute to species-specific behavioral variation. The humanized AVPR1A mouse is a potential preclinical model for further understanding the regulation of receptor gene expression and the impact of variation in receptor expression on behaviors, and should be useful for screening drugs targeting human AVPR1A, taking advantage of the expression of human AVPR1A in human-relevant brain regions. PMID:24924430

Top